
Chapter 9
StreamAPAS: Query Language and Data Model

Marcin Gorawski and Aleksander Chrószcz

Summary The system StreamAPAS and its declarative query language allows
users to define temporal data analysis. This chapter addresses the problem of lack
of the continuous language standard. The proposed language syntax indicates how
hierarchical data structures simplify working with spatial data and groups of tuple
attributes. The query language is also based on object-oriented programming con-
cepts as a result of which continuous processing applications are easier to develop
and maintain. In addition, we discuss the problem of a query logic representation.
In contrast to relations stored in DBMS, data streams are temporal so that DSMS
should be aware of their dynamic characteristics. Streams characteristics can be
described using variables such as tuple rates and invariables like monotonicity. In
StreamAPAS, a query is represented as a directed acyclic graph (DAG) whose op-
erators define tuple data transmission model and have information of result stream
monotonicity associated with them. Even though this representation is still static,
this approach enables us to detect optimization points which are crucial from a
stream processing viewpoint.

9.1 Introduction

In the chapter we present the stream processing architecture of StreamAPAS and
the prototype query language. There are a lot of research projects which develop a
declarative query language for data stream processing (e.g., Babcock et al. 2002;
Ali et al. 2005; Yan-Nei et al. 2004). In these researches authors create query lan-
guages which syntax bases mainly on the SQL. As a result, users are able to de-
fine query upon streams and relations in a convenient way. We should remember
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that the SQL is mainly intended for expressing simple queries which are processed
over a single database. The data stream queries are different in two aspects. Data
Stream Management System (DSMS) usually connects to remote sources and sinks.
Besides, the stream processing applications usually need the implementation of cus-
tom functions. In our research, we concentrate on the problem of finding the abstract
elements that should be introduced to the query language so that the language func-
tionality can be easily adapted to the application requirements.

In defining the semantics and concrete language the following goals were con-
sidered:

• Constructing a query language which allows users to define custom functions,
import them into the stream processing platform, and use them as native language
functions,

• Using a hierarchical data structure, which better suits spatial and analytical data
representation,

• Defining a stream processor based on temporal logical operator algebra (Krämer
and Seeger 2005), which offers efficient stream-to-stream physical operators.

In contrast to STREAM (Babcock et al. 2002) and ATLAS (Yan-Nei et al. 2004)
which are mainly based on the SQL syntax, we added to the query language ele-
ments of Object-Oriented (OO) languages. We adopt from OO languages calling
class functions, calling object functions, and loading user-defined libraries into the
compiler. Thanks to this, the user is able to define new data sources, custom opera-
tors, and data sinks by calling library functions from the level of the query language.

The remaining part of this chapter is organized as follows: Sect. 9.2 describes
the data stream processing implemented in SreamAPAS; Sect. 9.3 introduces its
query language and implementation aspects; next, in Sect. 9.4 we compare our lan-
guage with CQL language; Sect. 9.5 shows the aims of our further work; and finally
Sect. 9.6 presents a summary of our results.

9.2 Data Stream Processing

We use the directed acyclic graph (DAG) to describe the data stream query. DAG
nodes represent data stream operators, and edges define stream connections be-
tween the operators. We distinguish two levels of a query definition. On the log-
ical level, DAG nodes represent operators of the logic operator algebra (Krämer
and Seeger 2005). On the physical level, DAG node describes which algorithm
is used to compute a given logical operator, and DAG edge defines how the
data communication is implemented. There are a number of data stream proces-
sor architectures (Tucker 2005; Krämer and Seeger 2005; Motwani et al. 2003;
Abadi et al. 2003). In contrast to them, we develop a stream processor architec-
ture which processes temporal tuples (Krämer and Seeger 2005; Krämer 2007) and
positive/negative tuples (Ghanem et al. 2005). Let T be a discrete time domain. Let
I := {[ts, te) | ts, te ∈ T ∧ ts ≤ te} be the set of time intervals.
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Fig. 9.1 Different stream
definition approaches

Definition 9.1 (Stream) A pair S = (M,≤ts,te) is a stream if: M is an infinite
sequence of tuples (type, e, [ts, te]), where: type—tuple type, e—attribute tree data,
[ts, te) ∈ T . ≤ts,,te is the lexicographical order relation over M (primarily sorting by
ts and secondarily by te).

We can calculate the set of valid tuples for a given data stream and a specified
point in time t . This set of tuples can be represented in the relational data base as ta-
ble records which are available in time t . Streams S1, S2, and S3 in Fig. 9.1 illustrate
ways of controlling the lifetimes of those records. Stream S1 uses two tuples so as
to define the lifetime of a record. A positive tuple signals the beginning of a record
existence, and a negative one points the end. When those lifetimes are constant and
equal, we can only transmit the positive tuples as it is shown in stream S2. Knowing
the application time and the lifetime period, we can define a time window (Ghanem
et al. 2005) which translates the input stream S2 into the set of valid tuples. When
we knew the lifetimes of table records at their time of creation, we can use temporal
tuples (Krämer and Seeger 2005) which contain start and end timestamps as it is
shown in S3. The main advantage of temporal tuples is that they reduce the amount
of transmitted data doubly. We cannot achieve this reduction in the model with pos-
itive and negative tuples, because their tuples contain only timestamp start. The
stream S4 cannot be reduced to positive tuples like S1 to S2 because the lifetimes
of S4 tuples are not functions of attribute start. However, we can apply the tempo-
ral tuples so as to remove negative tuples form the stream as it shows S5. When
we do not know the lifetimes of tuples at their time of creation, the temporal tu-
ple model becomes useless. In some applications, it is acceptable to divide an entry
time into the periods. Then, when a period elapses, temporal tuples which represent
valid records or events are generated. Unfortunately, this solution generates a lot of
additional data, and tuples are one time period delayed. In our research, we develop
a system which joins the temporal stream model and the streams with positive and
negative tuples.

We use the concepts of positive temporal tuple and negative tuple. When the
lifetime of a table record or an event is known at the time of its generation, it is
represented only by positive temporal tuple. The lifetimes of those tuples are repre-
sented in figures by solid lines. When we do not know the lifetime of the records or
events at the time of their generation, we represent them by dashed lines. In such a
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Fig. 9.2 Joining streams in
different stream definition
approaches

case, the timestamp end of a positive temporal tuple defines the upper boundary of
the tuple lifetime. If we do not know when a tuple can expire, we assign the infinity
value to timestamp end. When we know that a tuple will expire by a given time, we
assign this value to timestamp end. The negative tuple expires the positive temporal
tuple in identical way as it is described in model with positive and negative tuples
(Ghanem et al. 2005). In comparison with positive temporal tuple, the negative tu-
ple has zero lifetime period. Those tuples in figures are represented by points. The
example of this model is stream S6 which can substitute S4.

In Fig. 9.2, we compare join operators for: (a) the model with positive and nega-
tive tuples; (b) the temporal model; and (c) the mixed model. Streams S1 and S2 are
the input streams, and S3 is the result of a join operator. Stream S1 transmits only
positive temporal tuples, and S2 transmits both types of tuples in Fig. 9.2(c). Let
us notice that the result streams S3 in Fig. 9.2(b) and Fig. 9.2(c) transmit the same
tuples, but they have a different interpretation. The result tuples in Fig. 9.2(b) de-
fine precisely their lifetimes, whereas the result tuples in Fig. 9.2(c) define the upper
boundaries of their lifetimes. Let us note that we have negative tuples in input stream
S2 in example (c), however there is no negative result tuples. This situation happens
because the negative tuples arrive at S2 later than the upper lifetime boundary of
result tuples.

In order that physical operators interpret correctly their input streams, each
stream has defined monotonicity which is obtained from the operator connected
to this stream input. In StreamAPAS, we borrow the stream monotonicity classifica-
tion from (Golab 2006). Let Q be a query, and τ a point in time. Assume that at τ ,
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all tuples with lower or equal timestamps have been already processed. The multiset
of input tuples at time τ is denoted S(τ), whereas all the tuples from time 0 to the
current time are denoted by S(0, τ ). Furthermore, let PS(τ) be the result multiset
produced at time τ , and let ES(τ) be the multiset of expired tuples at time τ . The
equation below defines the result set update function:

∀τ Q(τ + 1) = Q(τ) ∪ PS(τ + 1) − ES(τ + 1).

The types of stream monotonicity are defined indirectly. Using the above symbols,
we define operators that generate stream of a given monotonicity:

1. The monotonic operator is an operator that produces result tuples which never
expire. Formally the property is described by ∀τ∀SES(τ) = 0.

2. The weakest nonmonotonic operator is an operator that produces result tuples
whose lifetime is known and constant. Thanks to that, the order in which those
tuples appear at the operator input correspond to the order of their expiration.
Formally represented, it looks like ∀τ∀S∃c ∈ NES(τ) = P(τ − c).

3. The weak nonmonotonic operator is an operator whose result tuples have dif-
ferent lifetimes but they are still known at the time of their generation. Let us
note that the order of tuple insertion and the order of their expiration are differ-
ent. This can be formalized as follows: ∀τ∀S∀S′S(0, τ ) = S′(0, τ ), it is true that
∀t ∈ PS(0, τ )∃et ∈ ES(e) ∧ t ∈ E′

S(e).
4. The strict nonmonotonic operator is an operator whose expiration of tuples de-

pends on the input tuples that will arrive in the future. The lifetimes of tuples
are not known at the time of their generation. This can be formalized as follows:
∃τ∃S∃S′S(0, τ ) = S′(0, τ ) and ∃e∃t ∈ PS(0, τ ) such that t ∈ ES(e) ∧ t /∈ E′

S(e).

The monotonicity of type one says that the tuples of a given stream never expire.
This means that the stream of this type transmits only positive temporal tuples with
infinity assigned to end timestamp. The monotonicity of type two is illustrated by
S3 in Fig. 9.1. The stream S5 in Fig. 9.1 is an example of stream with monotonicity
of type three. The last type of monotonicity is illustrated by S6 in Fig. 9.1. Those
examples show that the type of stream monotonicity gives sufficient information to
determine a tuple processing algorithm.

From the viewpoint of an operator monotonicity, there are two management types
of result streams:

• The direct approach in which an operator calculates the lifetime of a result tuple
directly at the time of the tuple generation. The tuple’s lifetime is determined
only via its timestamp start and end. Hence, the expired tuples can be determined
using the application time without the need for negative tuples. Here we classify
the operators defined over time-based windows.

• The negative tuple approach exists when an operator is assigned to the operator
that generates a negative tuple or the operator is defined over a count type window
(such as a slide window). As a consequence, an operator result stream has negative
tuples. This management type has two disadvantages. The output streams of the
operators have nearly twice as many tuples in comparison to result streams in
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the direct approach. Moreover, operator count type window uses more memory
resources.

Let us notice that the higher number of stream monotonicity, the more complicated
architecture of the tuple collection which is connected to a given stream. Stream
monotonicity of numbers: 1, 2, and 3 process no negative tuples. Those collections
check only timestamp end so as to find expired tuples. If a stream is a weakest
nonmonotonic one, the tuples expiration order is identical to the stream order. As a
result, potentially expired tuples exist only at the beginning of tuple collection. In
consequence, a simple list data structure is enough to implement this tuple collec-
tion. The stream monotonicity of type three has two potential implementations. The
expired tuples can be identified by testing all the elements of a collection, or we can
add an additional list in timestamp end order.

Suppose that there exists a query which consists of a few join operators. Because
the join operators are commutative, we can change the order of their processing in
a query plan. When we reduce the number of operators with high number of mono-
tonicity type in a query plan production, then we also reduce the number of more
complicated and slower tuple collections. When we put an operator which generates
the negative tuple on a higher position in a query production plan, the lower num-
ber of operators became strict nonmonotonic. When we put the operators fed by the
weakest nonmonotonic operators at lower position in a query production plan, we
reduce the number of tuple collections that process the weak nonmonotonic streams.
The above rules are added to a rule optimizer which reorders query operators in the
following ways:

• Selection operators are shifted to the lowest acceptable positions in a query,
• Window operators are lifted to the highest acceptable positions in a query.

The created nearly-optimizer is aware of operator monotonicity; it reorders query
operators in such a way that a query production plan has less complicated and slower
tuple collections. In comparison to the nearly-optimizers based on statistics such as
stream rates and operator selectivity, our optimizer identifies the complexity of data
collection management.

It is worth noticing that the operator monotonicity, which is a static operator
property, enriches the description of a stream query (DAG) in such a way that the
introduced nearly-optimizer is able to identify sub-DAGs which are of benefit to
further query optimization. Next, those sub-DAGs can be dynamically optimized
with the help of two algorithms, adaptive caching (Babu et al. 2005) and data syn-
opses (Arasu et al. 2006). Another area of further optimizer research is creation
of composed operators which consist of basic physical operators. Suppose that our
optimizer identifies a group of strictly nonmonotonic operators; then this knowl-
edge can be used to create a composed operator which shares the tuple collections
between physical operators in order not to duplicate nonmonotonic collections.
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9.3 Query Language

Many query languages have been proposed to stream databases such as CQL (Arasu
et al. 2006), Cayuga (Demers et al. 2007), Esper, and Streaming SQL (Namit et al.
2008; Yijian et al. 2006) which belong to declarative languages. Even though the
Object Representation of Query (ORQ) is a commonly used part of SDMS, we have
not come across extensions of query languages which use elements of the Object-
Oriented (OO) paradigm in order to automatize mapping new DSMS functionalities
to the query language. The development of most stream query languages can be
named descending, because at the beginning a new syntax of language extension is
defined, and then it is implemented in ORQ. In contrast to them, we used elements
of OO paradigm in order to invert the development of our query language. Thanks
to that, we can extend the object representation of a query, and it is automatically
available form the query language level. Moreover, this approach systematizes the
way the language evolves. Let us notice that the OO paradigm can also make the
query language syntax more confusing when the object representation of a query is
complicated.

Now we will specify the data factories and the data collections which are used
in our language presentation. Data collections describe the schemes of streams or
relations. Moreover, they are accessed by data factories. The OO paradigm is used
to represent data factories as objects which supply methods that transform a data
factory into a stream or a relation.

Let us follow the example below. We want to create a tuple-based window on
stream S with the size of five tuples. According to our notation, this is expressed
by S{rangeWindow(5)}, where S{...} indicates the data factory related to
stream S. rangeWindow(5) is an object method which creates the tuple-based
window with the size of five tuples.

9.3.1 Structure of Query Language

The StreamAPAS users define units which represent groups of queries and then
use commands compile, run and remove to control the state of those units in
DSMS. This approach simplifies the management of query resources, because it in-
troduces a higher level of abstraction where we do not have to control each subquery
individually. Stream processing applications are defined as an acyclic directed graph
whose nodes represent operators and edges represent data transfer. Those operators
are created and configured by means of tasks which define the production plans of
streams (and other data structure in future). The query language syntax allows us
to define tasks directly by means of methods and indirectly by a syntax similar to
SQL/CQL.

StreamAPAS is implemented in Java, and therefore we have decided to allow
users to extend the functionality of DSMS by means of packages.

We have defined the following syntax of method call:
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[<fully qualified class name>.]<method name>
[::method modifier]([<arg list>])

where:

• a fully qualified class name is a class name with a path to the name scope from
which the class is referenced. This notation is equivalent to Java notation of fully
qualified class name.

• a method modifier is an element which modifies the way how a method call is
interpreted. Currently the system defines task modifier.

When we call a method which is defined in a current local scope, then we do not
indicate a fully qualified class name. We have to write a fully qualified class name
when we call a static method (class method). The task modifier is used when a
method creates an object task. It is necessary for the compiler to arrange the hierar-
chy of task name scopes correctly.

Example 9.1 We want to collect the times of result latencies measured for the dis-
tinct operator.

test run
begin
Benchmark.RandomStream::task("I")
S{Set.distinct(I{}, "valL")}
Gui.showAndRegisterLatency::task(S{},"out.txt")

end;

This example is solved by a unit named test. It consists of a task which gener-
ates random stream I . Then stream S is defined which is a result of the distinct
operator. Next, S is visualized, and the result latencies are saved to file “out.txt.” Let
us notice that task objects are created by the class methods RandomStream and
showAndRegisterLatency. The object representing the operator distinct
in ORQ is also created by class method Set.distinct. Figure 9.3 shows the
hierarchy of units and tasks for Example 9.1.

The queries below show the full syntax of unit. Additionally, the language offers
a shortcut which allows users to define a unit and run it in one call as it was described
in the previous example.

//compilation and registration
test compile
begin

end;

//starting query
Test run;

//removing query
test delete;
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Fig. 9.3 The query division
into unit and tasks for
Example 9.1

Usually the data processing system consists of a number of streams which cooperate
only at the level of a given unit or task; so this is not necessary to make them ac-
cessible from different levels. Therefore units and tasks create a tree in which each
node has an associated scope of data factory names.

Figure 9.3 illustrates an example structure of name scopes. We have implemented
the following management of name scopes. Let us assume that we refer to data fac-
tory I by the query language. This means that the compiler searches for I declara-
tion, at first, in the current local scope and then recursively in the parent scopes. This
mechanism is enriched with shortcut objects which reside in a local name scope and
point at data factories defined in other name scopes. Those shortcuts can be used to
refer to data factories declared in higher levels of name scope hierarchy by single
name.

The hierarchy of name scopes needs each data factory to be a qualified name
which consists of a data factory name and the path which leads from a unit node to
the name scope where the data factory is defined. In consequence, each name scope
node has to be uniquely identified by name. Let us notice that users do not have to
use qualified names directly to refer to data factories declared in children scopes
because those data factories are reachable through shortcuts. Thanks to that, the
compiler can automatically assign unique names to task nodes, whereas the name
of the unit node is specified by user.

In order to create shortcuts, we have defined the public modificator to data fac-
tories. This modificator orders the compiler for the creation of a shortcut to a given
data factory into the parent scope. In Example 9.1, modifier public is assigned
to stream I . Thanks to that, this stream is reachable from other tasks inside the
unit.

9.3.2 Syntax of Unit and Task

Data stream databases are the subject of intensive research which covers new sched-
ulers, stream operators, indexing structures, and DSMS architectures. Therefore we
have decided to develop a language which requires little effort to extend it in order
to test those new functionalities.

Adding new functionalities to the SQL language is connected with reediting the
language syntax. Our aim is to reduce the necessity of language syntax changes in
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such situations. In consequence, it will be easier to adapt it to the changing DSMS
environment.

Each unit and task can be mapped to an object which belongs to ORQ. Let us
notice that those objects can be created and manipulated directly by the query lan-
guage if only a query language supports the OO paradigm. In consequence, changes
of ORQ would be automatically mapped onto the query language. In order to imple-
ment this, each element in the language has its own name scope which contains the
names of object methods. In the current system, we distinguish three areas which
have defined object methods. The name scope of a unit’s methods which is a body
of units between start and end. The name scopes of the data factories and the
attribute tree nodes which are delimited by {} and []. The implementation details
of how object methods are made accessible from the query language are discussed
in Sect. 9.3.4.

Example 9.2 We want a unit to use scheduler XYZ. This scheduler is defined in the
scheduler package, and the method which configures XYZ is named BasicCfg.

test run
begin
setScheduler(shedulers.XYZ.BasicCfg())
...

end;

In the example above, there is a class method called BasicCfg which creates
an object that represents the configuration of scheduler XYZ. Then this configuration
is passed to the unit by calling object method setScheduler.

Summing up, this example illustrates the power of expressiveness when we allow
users to create some parts of ORQ directly from the query language. Let us notice
that the language syntax is static, and only the contents of the name scope are subject
to change.

9.3.3 Attribute Tree

Stream data bases can be classified as data warehouses which are intended to cal-
culate nearly real response time. In such applications, the data organized hierarchi-
cally facilitates the manipulation and interpretation of results. Hierarchical data can
be used to group attributes thematically. For instance, a car can be described by a
unique identifier and a node which represent its position. Then the position node can
consist of attributes x, y. Hierarchical data is also useful in reflecting the organiza-
tion of aggregates. SQL and CQL languages define relation or stream schemas as
a list of attributes. When we want to create a data schema similar to a hierarchical
data structure by means of SQL, it is necessary to define new custom data types.
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Fig. 9.4 Sample attributes tree

Contrary to the SQL approach, the attribute tree allows us to create a hierarchical
data structure as a composition of simple expressions.

The attribute tree is represented by nested lists of nodes which have names and
declarations of the node value type. These declarations consist of object type decla-
ration and index value indicating the localization of object values in tuples. The la-
bel of the attribute-tree root represents the name of the data collection (e.g., stream).
Not all the nodes contain values; those empty nodes are of none type. Such nodes
are useful in defining groups of attributes. For example, the place node in Fig. 9.4
represents the group of position attributes.

If we define a query expression which reads attribute I.place.x (Fig. 9.4), the
compiler gets the index attribute from the I.place.x node, and then this index =
1 value is used to get the attribute values form the tuples.

The basic syntax of tree logic formulas is presented below. It results from syntax
proposed in Cardelli and Ghelli (2001).

η ::= label expression
$name search for a node in namespace of data collections
name search for a node in current namespace

A,B ::= formula
true subtree of current node
η[A] location of current node
A,B composition of formulas

The composition of formulas allows us to create a new data structure from prim-
itive formulas. The query language is able to check the equivalence of attribute tree
structure types, thanks to that subtrees of attribute trees and single nodes can be used
as function operands. Suppose that we want to use the subtree of the place node as
an operand. In this situation we write the name $I.place.x[true].To simplify
the syntax, e.g., O{z[x = 1.1]}, the series of brackets [] can be replaced by
O{z.x = 1.1,...}.This syntax is known in OO languages as “dot syntax.” At
the time of the declaration of an attribute-tree node, the node has no data type. The
first assignment operation that is called on this node determines its type. When we
assign a value to an attribute-tree node that has a predefined data type, an attempt
is made to cast the value type on the data type of this node. If there is no defined
cast for a given data type, the compilation error will be sent. When we refer to the
data collection object, we have to use braces {}. This syntax allows the compiler to
distinguish whether we operate on tuples or on data collections.
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In the example below, we show how to declare the stream which consists of the
sum of place coordinates and the subtree of the place node.

O{z = $I.place.x + $I.place.y,
$I.place[true]}

At the beginning of this formula, we declare O stream. Then we declare the stream
as a composition of attributes z and place. Next, we define how the values of those
attributes are calculated. The formula not only defines the attribute tree but also the
data collection object.

The use of $ depends on whether a fully qualified name is needed. At the begin-
ning, the name scope points to a catalog of available data collections, and therefore
the name of data collection is not preceded by $.When we are inside the declaration
of a data collection, the other collections and their attributes must be fully qualified.

Summing up, when the data collection schemas are well designed, long lists of
attributes which are met in SQL can be replaced with a shorter one consisting of
attribute tree nodes. The language which is defined to manipulate attribute trees
joins two functionalities. This enables the user to define the data collection schema
and calculation plans together.

9.3.4 Functions

The limited number of available data types diminishes any system usability. To avoid
this, we have implemented abstract types in the StreamAPAS query language. When
a new data type is needed, we have to add new custom functions that create and
operate this new object type. For instance, the RandomStream function creates
object that implements the task interface.

Our compiler has been implemented in Java, so we have decided to use a re-
flective programming paradigm. In order to add a new function to the query lan-
guage, the user defines this function in a java class. Then classpath to this class
has to be added to the library manager of the compiler. The reflection allows
us to search methods by their names and their argument lists inside .class file.
Let us notice that arithmetic functions are called when streams are processed,
whereas the RandomStream function is called during the compilation phase.
Therefore, the compiler needs additional information on the role of the method.
We associate this information with method by means of the annotation mech-
anism. In default, all methods are recognized as arithmetic functions, when a
given method has to be called during the compilation phase, we annotated method
with @MModificator(mode = MModificator.CUSTOM_OP_BASE). This
mechanism allows us to integrate specialized function modifiers defined in the query
language with the Java language code.

Reflection gives unlimited access to all the methods defined inside classes. This
access policy is unacceptable because some methods should be achievable only from
the Java code not from the query language. In order to define a new access policy,



9 StreamAPAS: Query Language and Data Model 199

we use the annotation mechanism. In default, all the methods are visible to the
query language. When we want to hide all the methods of a given class, we annotate
the class with @CModificator(mode = CModificator.HIDEMEMBERS).
When some method should be accessible to the query language, the role in the query
language have to be assigned directly.

Summing up, it is not a complicated task to define a new custom function and add
it to the query language because we need the syntax of Java language only. More-
over, this approach simplifies testing new methods. The java code bellow shows
sample declaration of the StreamUniformRandom class function.

@CModificator(
mode = CModificator.HIDEMEMBERS)
public class benchmark {

@MModificator(
mode=MModificator.CUSTOM_OP_BASE...)
public static OperatorBase

StreamUniformRandom(...
...

Because data collections in the query language are also represented as objects, a data
collection can have methods that are accessible at the query language level. Simi-
larly to class functions, the object functions are annotated by @MModificator(
mode = MModificator.CUSTOM_OP_BASE). An example of object func-
tion is rangeWindow.

9.4 Linear Road Benchmark

The simplified version of the original linear road benchmark will be used to compare
syntaxes of another stream query language named CQL with our language.

The linear road application computes the fee for each vehicle on the motorway
individually, in such a way that vehicles visiting congested segments of the mo-
torway pay a higher fee. In consequence, the traffic on the motorway is balanced,
because drivers chose other routes so as to minimize the fee to be paid. This bench-
mark assumes that each vehicle has a sensor which transmits the values of speed
and location. Then this information is transferred through a sensor system to the
central server which updates the rates and the fees. Next, the updated individual
fee and rates for using the motorway segments are forwarded back to vehicle’s sen-
sors. A detailed description of the linear road benchmark is available in Arasu et al.
(2004).

Figure 9.5 describes the elements of the motorway system. There are L lanes
which are numbered 0, . . . ,L − 1. Each lane is 100 miles long and runs east–west.
The motorway is divided into 100 segments whose boundaries have entrance and
exit ramps. Vehicles on the motorway transmit their positions and speeds every



200 M. Gorawski and A. Chrószcz

Fig. 9.5 A sample segment
of the Linear Road motorway

30 seconds. The position is defined as a lane number, a direction (east/west), and
a distance measured from the left end of the motorway.

Vehicles pay a fee when they go through congested segments. A segment is con-
sidered congested when the average speed of all the vehicles in this segment during
the last 5 minutes is lower than 40 MPH. The fee rates are calculated according to
the following formula: baseFeeRate ∗ (numVehicule − 150)2.

In the remaining part of the chapter, we will assume that the linear road applica-
tion generates stream SegSpeedStr(vehiculeId, speed, segNo, dir, hwy). The attribute
vehiculeId identifies a vehicle, speed is the speed in MPH, segNo denotes segment
where vehicle is, dir denotes the direction (east/west), and hwy denotes the motor-
way number.

9.4.1 CQL

CQL originates from SQL which was extended by two language syntaxes that
correspond to stream-to-relation and relation-to-stream operators. In consequence,
queries in CQL are easy to express by users familiar with SQL. In order to illustrate
the CQL syntax, we will show examples of queries which resolve parts of the liner
road benchmark.

Example 9.3 We want to know which vehicles are active. A vehicle is active when
it has transmitted its position during the last 30 seconds.

Select Istream(distinct vehiculeId)
From SegSpeedStr[Range 30 Seconds]

The above query illustrates the usage of all the operator classes. First, a stream-
to-relation operator represented by the time-sliding window is applied. Then, the
output relation is processed by two relation-to-relation operators, projection and
duplicate elimination, respectively. Finally, the result relation is converted into a
stream with a relation-to-stream operator represented by Istream.

In order to reduce common operators in expressions, CQL specifies the follow-
ing syntactic shortcuts. If a query omits the specification of a stream-to-relation
operator and the semantic needs a relation, then the compiler applies window
S[Range Unbounded]. The compiler also inserts Istream after the root op-
erator of Q when the result of Q is monotonic and a relation-to-stream operator is
not specified. Those rules applied to the previous example result in the following
query:
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Select distinct vehiculeId
From SegSpeedStr[Range 30 Seconds]

Other similarities between CQL (Arasu et al. 2006) and SQL are illustrated by the
queries below.

Example 9.4 We want to create a relation which contains all the segments contain-
ing active vehicles.

Select distinct L.vehiculeId, L.segNo, L.dir, L.hwy
From SegSpeedStr[Range 30 Seconds] as A,

SegSeedStr[Partition by vehiculeId Row 1] as L
Where A.vehiculeId = L.vehiculeId

Example 9.5 We want to create a relation which contains all the congested seg-
ments.

Select segNo, dir, hwy
From SegSpeedStr[Range 5 Minutes]
Group By segNo, dir, hwy
Having Avg(speed) < 40

Example 9.6 We want to calculate the number of vehicles in segments.

Select segNo, dir, hwy,
count(vehiculeId) as numVehicles

From ActiveVehiculeSegRel
Group by segNo, dir, hwy

9.4.2 Example Queries in StreamAPAS

The query bellow shows how Example 9.3 can be expressed in our language.

select result{$SegSpeedStr.vehiculeId}
where SegSpeedStr{slideWindow(30 000)}

resultDist{Set.distinct(result{}, "vehiculeId")}

At first, a time-based window is declared with the size of 30 seconds. Then the
result is saved to stream result. In the next sub query, a distinct operator
is defined which saves result to stream resultDist. It is worth noticing that the
distinct operator is created by calling the class method: Set.distinct. In
contrast to that, the time-based window is created with the use of the object method
slideWindow. This method is declared in the name scope of the data factory
which represents stream SegSpeedStr.



202 M. Gorawski and A. Chrószcz

The following queries show how Examples 9.4–9.6 defined in CQL can be ex-
pressed in our language.

Example 9.7

Select tmp{$L.vehiculeId, $L.segNo, $L.dir, $L.hwy}
From L{SegSpeedStr{}}
Where SegSpeedStr{slideWindow(30 000)},

L{partitionedWindow(1,"vehiculeId"),
SegSpeedStr.vehiculeId = L.vehiculeId

ActiveVehicleSegRel{Set.distinct(tmp{},
"vehiculeId")}

Example 9.8

select CongestedSegRel{$SegSpeedStr.segNo.segNo,
$SegSpeedStr.segNo.dir,
$SegSpeedStr.segNo.hwy}

where SegSpeedStr{slideWindow(300 000)}
group by SegSpeedStr.segNo, SegSpeedStr.dir,

SegSpeedStr.hwy
having Agg.sum($SegSpeedStr.speed) < 40

Example 9.9

Select SegVolRel($ActiveVehiculeSegRel.segNo,
$ActiveVehiculeSegRel.dir,
$ActiveVehiculeSegRel.hwy,
numVehicles = Agg.count())

group by ActiveVehiculeSegRel.segNo,
ActiveVehiculeSegRel.dir,
ActiveVehiculeSegRel.hwy

9.5 Further Work

Development of data warehouses in streaming environments is a promising area of
new applications, and this constitutes the basis of our further work. In the chapter
we have illustrated the query language. Its syntax is motivated by our previous tests
with indexing structures designed for spatio-temporal data.

Let us notice that any indexing structure can be easily represented as a new task.
This process requires us to load package with new functionalities. Then we can use
its class methods to define the specification of an indexing structure, in a way similar
to the one shown in Example 9.2 and the examples below.
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Example 9.10 We want to create index traffic which is an R-tree supplied with
streaming information of vehicle positions transmitted by stream I . The query bel-
low shows the potential beginning of this solution.

gis.Rtree::task("traffic", {$I.point[true]},...)

Example 9.11 Then we want to use index traffic to find the nearest five vehicles
which may be sent to accidents. Let those accidents be notified by stream help which
transfers tuples with accident positions. The query below shows the data factory as
an interface used to define operations on the index structure.

select result{$traffic{}}
where traffic{kNN($help{})};

Example 9.12 The syntax of the query language associates a tree with a data fac-
tory. This tree represents dimensions and subdimensions. Besides, each node has its
own scope of function names. Thanks to that we can look at defining queries upon
indexes in a way similar to the one used in data warehouses. In order to define the
operator which extracts data from a data factory, the user calls the methods of this
node tree. Let us assume that index traffic is an aggregate tree and we want to calcu-
late the number of vehicles falling into a given area. The example below illustrates
how it could be expressed with the use of the data factory syntax.

select result{$traffic{}}
where traffic{contain ($areas{}), measures[sum()]};

9.6 Related Work

There are a lot of stream processing research projects such as STREAM (Motwani
et al. 2003), Telegraph (Shah et al. 2001), TelegraphCQ (Sirish et al. 2003), and
Aurora & Borealis (Balazinska 2006). There are as many stream query languages
proposals as many projects are carried. We can divide those languages into three
categories. In one approach, each operator connection is defined directly in a text
file or graphically (Balazinska 2006). In a procedural language, a user defines query
as a loops that are fed with tuples from stream collections. The most promising
role plays declarative languages (Motwani et al. 2003) because their users may be
not aware of the physical realization (e.g., chosen algorithms). There, the query
optimizer is responsible for translating a task defined on an abstract level into a
physical realization.

Stream processing becomes popular in online analysis based on aggregates de-
fined over different windows, data sequence, prediction, and many more. Undoubt-
edly, those functionalities are closer to data warehouse tools rather than traditional
database operations. Therefore, we not only consider SQL syntax as a basis for fur-
ther research but also CQL and MDX gain our interest. There are a lot of proposi-
tions of SQL syntax extensions which usually address a particular class of problems,
for instance, time sequence analysis (Ali et al. 2005).
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9.7 Conclusion

In the developed language, we test the combination of the Object-Oriented paradigm
and declarative languages including the languages designed for multidimensional
data analysis. The proposed query language is not a complete solution; however, it
has a systematized approach to functionality extensions so that the implementation
of the syntactic analyzer is easier.

In the chapter, we describe the impact of query logic representation on an opti-
mization phase. The proposed query nearly optimizer reduces the number of strict
nonmonotonic operators as a result of which the system transmits the lower num-
ber of negative tuples. Moreover, we show how the information on monotonicity of
operator can be used to accelerate tuple collections governed by physical operators.

Finally, we introduce the attribute tree which represents spatial and analytical
data in a more convenient way, because it allows the user to define expressions on
single attribute or a group of attributes.

The current stream processing engine supports only stream data collections. It
is a subject of our further research to add relations and more sophisticated index
structures into the system.
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