
Chapter 7
Self-Optimised Tree Overlays Using
Proximity-Driven Self-Organised Agents

Evangelos Pournaras, Martijn Warnier,
and Frances M.T. Brazier

Summary Hierarchical structures are often deployed in large-scale distributed sys-
tems to structure communication. Building and maintaining such structures in dy-
namic environments is challenging. Self-organisation is the approach taken in this
chapter. AETOS, the Adaptive Epidemic Tree Overlay Service, provides tree over-
lays on demand. AETOS uses three local agents to this purpose (i) to translate ap-
plication requirements to self-organisation requirements, (ii) to self-organise nodes
into optimised tree topologies based on these requirements, and (iii) to control boot-
strapping and termination of self-organisation. The evaluation of AETOS in dif-
ferent simulation settings shows that it provides high connectivity in tree overlays
optimised according to application requirements.

7.1 Introduction

Complex, intelligent, distributed systems in dynamic environments need to adapt
continuously. Management is a challenge. Central management of such systems is
not often an option: distributed management is required.

Self-management relies on local management at the level of individual systems,
and virtual topologies (overlays) to regulate communication between systems, for
example to aggregate global knowledge about the state of a system. Hierarchies of-
ten provide the structure upon which distributed management is based. Examples of

E. Pournaras (�) · M. Warnier · F.M.T. Brazier
Department of Multi-actor Systems, Section Systems Engineering, Delft University
of Technology, Jaffalaan 5, 2628 BX, Delft, The Netherlands
e-mail: e.pournaras@tudelft.nl

M. Warnier
e-mail: m.e.warnier@tudelft.nl

F.M.T. Brazier
e-mail: f.m.brazier@tudelft.nl

F. Xhafa et al. (eds.), Complex Intelligent Systems and Their Applications,
Springer Optimization and Its Applications 41,
DOI 10.1007/978-1-4419-1636-5_7, © Springer Science+Business Media, LLC 2010

137

mailto:e.pournaras@tudelft.nl
mailto:m.e.warnier@tudelft.nl
mailto:f.m.brazier@tudelft.nl
http://dx.doi.org/10.1007/978-1-4419-1636-5_7

138 E. Pournaras et al.

domains of applications for which this holds include DNS, multimedia multicast-
ing (Tan et al. 2006), energy management (Pournaras et al. 2009a) and distributed
databases (González-Beltrán et al. 2008).

Building and maintaining robust and application-independent hierarchical topo-
logies designed to this purpose is the challenge this chapter addresses, in particular
for tree structures. Connectivity in a tree overlay is of key importance. If a node is
(temporarily) disconnected, the branches underneath the node are also (temporarily)
disconnected from the rest of the system, affecting global performance.

AETOS, the Adaptive Epidemic Tree Overlay Service, is the approach proposed
in this chapter. AETOS makes it possible to create self-organised tree topologies
that are proactively resilient to failures, and reactively self-heal (Chaudhry and Park
2007) the structure built. AETOS (Pournaras et al. 2009b) builds and maintains
application-independent robust tree topologies in dynamic distributed environments.

Intelligent software agents are used (i) to translate application requirements to
self-organisation requirements, (ii) to self-organise nodes in optimised tree topolo-
gies based on these requirements, i.e., reactively reconnecting or rewiring connec-
tions to improve robustness, and (iii) to control bootstrapping and termination of
self-organisation.

Experimental evaluation of the AETOS self-organisation based on connectivity
convergence is presented.

This book chapter is outlined as follows: Sect. 7.2 outlines application domains
in which hierarchical topologies are used. It also illustrates the problem and sum-
marises the contributions of AETOS. Section 7.3 illustrates related work on robust
tree overlays. Section 7.4 provides a high-level overview of the agent-based ap-
proach of AETOS. Sections 7.5–7.7 present the three agents of AETOS: the ‘appli-
cation agent’, the ‘self-organisation agent’ and the ‘system control agent’ respec-
tively. Section 7.8 illustrates the experimental evaluation of the approach that this
book chapter proposes. Finally, Sect. 7.9 concludes this chapter and outlines future
work.

7.2 Objectives and Contributions

This section discusses the importance of tree topologies for various application
domains and identifies the problem of managing application-independent self-
organised trees. It also provides an overview of the proposed solution.

7.2.1 Applications

Tree structures are often used in information management for aggregation, search,
dissemination and decision-making. Their complexity is usually bounded to a loga-
rithmic function or to the number of nodes in the tree structure. They are also used

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 139

for many other purposes, such as knowledge extraction and visual information sys-
tems.

Although the use of trees in centralised systems is typical and has been exten-
sively studied, using and maintaining a tree structure in a decentralised system is the
challenge this chapter addresses. Introducing a dynamic tree structure for distributed
systems potentially enables effective self-management. As an example, EPOS, the
Energy Plan Overlay Self-stabilisation system (Pournaras et al. 2009a), performs
stabilisation in the global energy utilisation of thermostatically controlled devices.
These devices are interconnected and organised in a tree overlay. Based on this
structure, they perform local aggregation and decision-making of the local allocated
energy they consume for a period of time. EPOS achieves the minimisation or the re-
verse of the deviations in the global energy utilisation making it possible (in theory)
for power systems to become more robust and flexible to dynamic environments.

IP multicast appears to have many limitations in its adoption and deployment
(Diot et al. 2000), especially concerning the average end user. These limitations
are related to its routing complexity and scalability. Application-level multicast
has emerged as a new approach for distributing multimedia content. The major-
ity of methods based on application-level multicast use tree overlays. Organising
nodes in a loop-free structure can make distribution of content effective and poten-
tially scalable compared to mesh-based overlays. Extensive comparisons of vari-
ous application-level multicast approaches are illustrated in Birrer and Bustamante
(2007), Liu et al. (2008), Tan et al. (2006).

Tree structures integrated with skip lists (Pugh 1990) in skip tree graphs benefit
distributed database operations such as range queries (González-Beltrán et al. 2008).
In the same domain, tree overlays, introduced as a distributed indexing scheme,
enhance resource searching and sharing (Zhuge and Feng 2008). Finally, super-
peer topologies model distributed systems in a hierarchical fashion that can reflect
the heterogeneity of different node capabilities, such as storing capacity, processing
power, connectivity or bandwidth. This provides the potential for various application
optimisations, such as load-balancing. Such an option is explored in ERGO, the
Enhanced Reconfigurable Gnutella Overlay (Pournaras et al. 2008). ERGO rewires
nodes with high outgoing load to nodes with low incoming load. This is achieved
through the interaction of lower-level nodes with higher-level virtual server nodes
responsible for load-balancing.

7.2.2 Problem Statement

As stated above, building and especially maintaining tree overlays, optimised for
different applications, is the problem this chapter addresses. The main aspects of this
problem are: self-organisation, self-optimisation, and application independence.

Self-Organisation Nodes should be able to self-organise themselves in a tree
overlay using local knowledge. Often, as explained in Sect. 7.6, this knowledge

140 E. Pournaras et al.

is a partial view of the distributed environment. Nodes should be able to connect to
other nodes and potentially rewire connections without introducing loops or violat-
ing restrictions such as their capacity.

Self-Optimisation The satisfaction of application requirements when using tree
overlays is usually an optimisation problem, as described in detail in Sect. 7.3.
Nodes should connect to the appropriate neighbours to maximise their applica-
tions’ utilities. Note that applications most often use topologically different tree
overlays as they are based on different performance metrics. For example, in
EPOS (Pournaras et al. 2009a) availability of nodes is the metric used to identify
disconnected nodes. Note that availability is a metric measurable in many applica-
tions, such as Overnet (Bhagwan et al. 2003). Similarly, application-level multicast
tree overlays are based on metrics such as latency, bandwidth, node degrees and
other. Section 7.3 discusses related approaches.

Application Independence Providing a dedicated self-organisation mechanism
for each application can be costly. Distributed systems are dynamic and support
applications that interact with each other.

Figure 7.1 illustrates the concept of different tree overlays on the same physical
network. Each overlay is used by a different application. A physical host corre-
sponds to one (or more) overlay host in an overlay network. Note that the position
of an overlay host in a tree overlay is different for each application overlay. This
is because the mapping between a physical host and the respective overlay hosts
depends on the application requirements and optimisation metrics.

Each application, for every overlay, is responsible for building and maintaining
the tree structure. A generic self-organisation middleware service can decouple the
building and maintenance from the application. This chapter focuses on the prob-
lem of how such a service can be modelled and how it can function in large-scale
distributed systems, such as virtual networks over physical infrastructures or large-
scale multiagent systems.

Fig. 7.1 Each overlay
application requires a
different optimised tree
topology. A physical node
corresponds to overlay nodes
placed in different position in
the tree. In this case, the
building and maintenance is
application-dependent.
A self-organisation
middleware service for tree
overlays could solve this
problem

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 141

Fig. 7.2 AETOS is placed as
a middleware service in a
distributed environment. It
undertakes the role of
building and maintaining
different tree overlays for
different applications

7.2.3 System Overview

The contribution of this chapter is to propose a self-organisation service for tree
overlays, named AETOS, the Adaptive Epidemic Tree Overlay Service. AETOS is
an agent-based system positioned between the overlay applications and the physi-
cal network. Figure 7.2 illustrates the position and the interactions of AETOS in a
distributed environment.

Overlay nodes have direct access to information from the physical network. This
information, together with other application requirements, is passed to the AETOS
layer. Based on this information, AETOS builds and maintains on-demand different
tree overlays for each application.

AETOS achieves the abstraction of local application requirements to local self-
organisation requirements. Nodes are dynamically self-organised to tree topologies
on-demand based on their proximity derived from the local application require-
ments. Bootstrapping and termination of self-organisation is managed locally.

The experimental evaluation of Sect. 7.8 reveals that AETOS achieves high con-
nectivity of tree overlays in various experimental settings. This chapter also investi-
gates the influence of various factors in the cost-effectiveness of AETOS.

7.3 Related Work

This section presents related literature on self-organised and robust tree overlays,
focusing in particular on: (i) application domain, (ii) optimisation metrics, (iii) com-
plementary overlays, (iv) build and maintenance, (v) decentralisation level, and
(vi) proactiveness vs. reactiveness. Open issues are discussed and outlined, illus-
trating the need for a self-organisation service, such as AETOS.

142 E. Pournaras et al.

7.3.1 Literature Review

This section provides an overview of related work in the area of robust self-
organised tree overlays, on the basis of the six areas distinguished above.

Application Domain The majority of the methods concerns tree overlays for
application-level multicast, video streaming, and real-time applications, as under-
lined in Sect. 7.2.1. Multimedia applications require effective broadcast for guar-
anteeing high QoS. The root is usually the provider of the multimedia content,
and the rest of the nodes are end-users that receive this content. They contribute
resources in the system by forwarding the content they receive from their par-
ents to their children. In database systems, complex queries can be performed over
peer-to-peer tree overlays (Jagadish et al. 2006; Li et al. 2006). Maintaining a ro-
bust and reliable topology is crucial for data consistency and knowledge extrac-
tion from the network. Publish–subscribe systems (Costa and Frey 2005; Frey and
Murphy 2008) also benefit from tree overlays as they can be used to minimise the
changes in the event routing. Other domains in which tree overlays are deployed
are grid environments for task allocation and scheduling (Chakravarti et al. 2005;
England et al. 2007) and sensor networks for data collection (England et al. 2007).
Note that, although these applications vary significantly and have different require-
ments, the common goal of all of them is shared: to maximise its utility by perform-
ing operations over application specific optimised tree overlays.

Optimisation Metrics Robustness in tree overlays can be achieved by single- or
multi-metric objective optimisations in the self-organisation process. Various op-
timisation metrics, related to the application type, are used to organise nodes in
an appropriate tree overlay for the application. Some of the most common op-
timisation metrics include delay, bandwidth, node degree, uptime, and other re-
lated optimisation metrics. Note that these metrics are usually related to the un-
derlying physical network, in order for applications to maximise the utilisation
of available network resources. In England et al. (2007), trees are optimised by
considering the number of hops and the eccentricity, both metrics related to the
experienced delay in the underlying physical network. Bandwidth and node de-
gree are associated in Fei and Yang (2007). The number of children influences
the bandwidth consumed from their parents in multicasting applications. In con-
trast, these two metrics are assumed independent in mTreebone (Wang et al. 2007).
This assumption is valid when other applications consume part of the available
bandwidth. Node degree influences the topology and the optimisation of the ap-
plication. Trees can be balanced, fat (wide), or long ones. Tree topologies, such
as the latter two ones, can be integrated by exploiting trade-offs between op-
posing performance metrics, i.e., uptime and bandwidth (England et al. 2007;
Tan et al. 2006). Similar trade-offs are explored in Li and Ooi (2004) as well.
In these cases, multi-metric objective optimisations are applied by combining or
weighting two or more metrics. For example, in Tan et al. (2006), bandwidth and

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 143

uptime are combined by computing their product, the ‘service capability contribu-
tion’. Weighting schemes between ‘path weight’–‘hop count’ and ‘delay penalty’–
‘resource usage’ are proposed in England et al. (2007) and Li and Ooi (2004) re-
spectively. Finally, the sojourn probability (Lee and Kim 2007) and the joining times
of nodes (Liu and Zhou 2006) can be used for the optimisation of tree overlays.

Complementary Overlays Some multicast applications maintain tree overlays
over mesh ones. RESMO (Li and Ooi 2004) is a minimum delay, minimum re-
source usage spanning tree over a mesh overlay. RESMO selects links from the
mesh overlay with sufficient bandwidth. mTreeBone (Wang et al. 2007) is based on
the similar concept of selecting stable nodes from the mesh overlay to build a back-
bone tree overlay. MeshTree (Tan et al. 2005) is a combination of a tree and mesh
overlay by inserting shortcut links between the nodes of the tree overlay. Such a link
redundancy is used in other approaches as well. For example, BATON* (Jagadish et
al. 2006) additionally inserts adjacent and neighbour links between nodes of the tree
for acquiring additional robustness. TAG (Liu and Zhou 2006) and PRM (Banerjee
et al. 2006) use gossiping and random links respectively to deal with data loss and
discontinuous playback in real-time applications. Gossiping is used to support trees
in GoCast (Tang and Ward 2005) as well. Other underlying complementary overlays
that appear in literature are DHTs (Costa and Frey 2005). However, DHTs are not
resilient to failures and require maintenance.

Build and Maintenance In the investigated approaches in this section, the build-
ing process of tree overlays is either integrated with their maintenance, for example
in Leitao et al. (2007), or it serves as a bootstrapping mechanism for the maintenance
that follows, e.g. (Banerjee et al. 2003). The main method used for building a tree, or
an initial version of it, is the consecutive joins to candidate parents and children (Tan
et al. 2005) or to the leaves of the tree (Tan et al. 2006). These candidates are derived
randomly (Lee and Kim 2007) or from their proximity to the local node (Liu and
Zhou 2006). After the initial joins, nodes either aim to improve their position in the
tree or cooperate to optimise the tree topology. In the first case, nodes perform shift-
up operations (Tan et al. 2006) by moving to an upper level in the tree, whereas,
in the second case, a parent and one of its children swap their positions (Akbari et
al. 2005; Jagadish et al. 2006). Plumtree (Leitao et al. 2007) combines eager and
lazy push gossiping strategies to build and maintain a tree overlay. In Costa and
Frey (2005), the node-key mapping of the underlying DHT is used to form the tree
overlay. Alternative methods for the distributed building of a tree overlay include
the top-down approach proposed in Li and Ooi (2004), the Bellman Ford (England
et al. 2007) and Prim’s algorithm (Fei and Yang 2007). Furthermore, nodes can
monitor the connectivity of their neighbours by sending heartbeats (Li et al. 2006;
Liu and Zhou 2006). In case of a failure, they try to connect with another node.
TreeOpt (Merz and Wolf 2007) improves the tree connectivity by performing two
types of children moves as an evolutionary optimisation of the tree overlay. In
Frey and Murphy (2008), a candidate parent is selected by applying and com-
bining different repair strategies related to the application requirements. Simi-
larly in Chakravarti et al. (2005), ancestor lists are retained in case of failures.

144 E. Pournaras et al.

In contrast, the proposed approach in Fei and Yang (2007) defines a ‘parent-
to-be’ for every node (besides the root) before a failure occurs. Thus, repair
is faster. Other techniques propose link redundancy in order to satisfy alterna-
tive connectivity in case of failures (Jagadish et al. 2006; Wang et al. 2007).
Load-balancing also supports the maintenance of tree overlays by aiming to re-
tain the load in the nodes between root and leaves equal (Jagadish et al. 2006;
Li et al. 2006).

Decentralisation Level Among the illustrated approaches, there are some hy-
brid schemes for topology management. DPOCS (Akbari et al. 2005) is based on
the ‘overlay control server (OCS)’ that assists nodes to join the multicast groups.
OMNI (Banerjee et al. 2003) and TAG (Liu and Zhou 2006) follow a similar concept
by introducing the ‘multicast server nodes (MSNs)’ and a ‘content server’ respec-
tively. mTreebone (Wang et al. 2007) utilises only stable nodes for video multicast-
ing. BulkTree (An et al. 2006) groups the nodes to ‘super-nodes’ in order to increase
the stability of the tree. Finally, the approach of Lee and Kim (2007) is based on a
video broadcasting source node that centrally collects and calculates statistics. This
information is used during for the self-organisation process.

Proactiveness vs. Reactiveness Methods that apply a sorting of the nodes, within
the tree overlay, for application optimisation are considered proactive. For ex-
ample, the use of ‘service capability contribution’ (Tan et al. 2006) as a metric
for combining a bandwidth-ordered and a time-ordered tree makes the multicast-
ing proactively more robust and efficient. Methods that use complementary over-
lays (Leitao et al. 2007; Tan et al. 2005; Tang and Ward 2005; Wang et al. 2007),
link and data redundancy (Banerjee et al. 2006; Jagadish et al. 2006; Li et al. 2006;
Liu and Zhou 2006) are also regarded as proactive approaches. In this case, proac-
tiveness is applied indirectly and externally, by other overlay support. In Fei and
Yang (2007), a highly proactive approach is proposed. Nodes calculate the new par-
ents for their children before a failure occurs and without violating the node degrees.
In contrast, reactive nodes monitor their neighbours (Li et al. 2006) and perform re-
connections to other nodes when a failure occurs. Usually the selection of the nodes
is based on various strategies (Frey and Murphy 2008) that balance performance
trade-offs. TAG (Liu and Zhou 2006) can be considered to be a reactive system as it
operates in highly dynamic environments with real-time constraints. Proactive ap-
proaches benefit from the fact that they aim to decrease the complexity and time
of the repair actions or the impact of failures. However, proactive approaches intro-
duce: (i) a usually constant but (ii) significant communication and processing cost.

7.3.2 Open Issues

The conclusions from the literature review are in line with the AETOS motivation
discussed in Sect. 7.2. Robust and self-organised tree overlays depend on the ap-
plication domain. Most optimisations consider metrics related to physical networks.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 145

It is unclear how other higher-level application-related metrics could influence and
change the proposed self-organisation methods. In addition, related work reveals
that different applications have different trade-offs. Therefore, combining or weight-
ing multiple optimisation metrics, in an application-independent way, is challeng-
ing.

Dynamic protocols, i.e., gossiping protocols, and complementary overlays are
effective in many cases. Usually, they are not required to be dedicated for the self-
organisation of trees but rather can be reused as existing services in distributed en-
vironments. The role of such complementary overlays should be further studied and
clarified. The same holds for the proactive or reactive approaches of self-organised
systems. Although high proactiveness results in high robustness and resilience to
failures, the required cost can be significant with relatively low benefits for the ap-
plication. Future work should explore the level of proactiveness and reactiveness
required for building robust tree overlays for a wide range of applications.

7.4 Approach

The multi-agent systems paradigm, in which individual autonomous agents in-
teract with each other to accomplish their goals, has been successfully applied
to management and self-organisation of distributed systems (Brazier et al. 2009;
Lopes and Oliveira 1999; Tianfield and Unland 2005). AETOS, a service for build-
ing and maintaining on-demand and application-independent robust tree overlays,
deploys agents for the purpose of self-organisation.

Overlay hosts (nodes) are the local environment of AETOS agents. These agents
act solely within their local environment (and do not migrate).

AETOS agents have (i) local knowledge, (ii) local components that manage the
local knowledge and execute local tasks, and (iii) local layers of components that
create a hierarchy in the information flow. The AETOS service is provided by these
agents (and their interaction).

Three local agents participate in AETOS: (i) the application agent, (ii) the self-
organisation agent, and (iii) the system control agent. Figure 7.3 illustrates how they
interact in the local AETOS environment.

The principle interactions among AETOS agents are outlined as follows:

The ‘application agent’ abstracts the application-specific requirements to application-
independent self-organisation requirements by providing a common interface between ap-
plications and AETOS. The ‘system control agent’ turns the self-organisation requirements
to self-organisation parameters that the ‘self-organisation agent’ understands. It then boot-
straps, monitors and finally terminates the self-organisation process. Upon termination, the
‘self-organisation agent’ makes the parent and children neighbours available to the ‘appli-
cation agent’ which makes them accessible to the application.

Note that Fig. 7.3 depicts interaction between the ‘system control agent’ and
other ‘system control agents’ outside its local environment. Such interaction is op-
tional and beyond the focus of this paper.

146 E. Pournaras et al.

Fig. 7.3 AETOS is based on three agents that interact locally. The ‘application agent’ provides
the application requirements to the ‘system control agent’. The latter bootstraps self-organisation,
monitors the ‘self-organisation agent’ and finally terminates self-organisation. When the ‘self-or-
ganisation agent’ is terminated, it makes the parent and the children neighbours available to the
‘application agent’

7.5 Application Agent

The ‘application agent’ provides a generic interface for managing application re-
quirements between AETOS and different applications. Note that these require-
ments are parametrisation settings that make an application work effectively. There
is one ‘application agent’ per application instance. The set of application require-
ments, denoted by A, managed by the ‘application agent’ are the following:

Robustness (r) This is the abstraction of the optimisation metric on which the
self-organisation is based. It can concern any of the previously identified metrics
mentioned in Sects. 7.2.2 and 7.3.1. If the application utilises more than one opti-
misation metrics, the application itself must apply a weighting scheme, or function
to derive the abstract robustness r . Robustness is assumed to be a decimal number.

Node Degree (n) The node degree concerns the number of neighbours for each
application instance. It denotes the available resources the application reserves for
the tree overlay.

Expected Response Time (tr) This is the time period in which AETOS should
return the tree neighbours to the application instance. Higher response times allow
better topology optimisations. Section 7.7 explains the use of this parameter by the
‘system control agent’.

Note that the above application requirements are the local knowledge of the ‘ap-
plication agent’. The executed tasks are the following:

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 147

Register The ‘application agent’ contacts the ‘system control agent’ and sends
(i) its identifier and (ii) a new tree overlay identifier, to register a new tree overlay
in the AETOS service. This information is finally stored in the ‘self-organisation
agent’ together with the reserved space for the tree neighbours.

Build This task concerns the creation and maintenance of a tree overlay. It enables
on-demand self-organisation. The ‘application agent’ sends (i) its identifier, (ii) the
tree overlay identifier, and (iii) the set of application requirements A to the ‘system
control agent’. If the utilised tree overlay does not meet the expectations of the
application, this task is executed again.

Connect When the set of tree neighbours is received from the self-organisation
agent, the set is delivered to the application that finally establishes the connections.

Unregister The ‘application agent’ contacts the ‘system control agent’ and sends
a tree overlay identifier. The self-organisation for this overlay terminates, and all the
information related to this overlay is removed from the ‘self-organisation agent’.

By implementing an ‘application agent’ that incorporates the knowledge and the
tasks above, applications have access to the AETOS service.

7.6 Self-Organisation Agent

In AETOS, each node has one local ‘self-organisation agent’. The ‘self-organisation
agent’ forms the core of the AETOS system. The self-organisation agent’s knowl-
edge, components and 3-layered service architecture are presented in more detail
below.

7.6.1 Knowledge

The ‘self-organisation agent’ has different partial views of its distributed environ-
ment. A partial view is a list of a finite number of other node descriptors. A node
descriptor contains information related to the node and its applications, such as
its address, connection port, overlay identifier and robustness r . A node descriptor
gives the fundamental knowledge which forms the basis for communication between
‘self-organisation agents’. The overlay identifier that belongs to a node descriptor
received is used by the ‘self-organisation agent’ to match and extract the respective
overlay knowledge that holds locally. Each ‘self-organisation agent’ has 3 partial
views: the random view, the proximity view and the tree view, each described below.

148 E. Pournaras et al.

Random View (R) The random view contains the primary knowledge and search
space of the ‘self-organisation agent’. It consists of a collection of random node
descriptors from the distributed environment. Note that the random view is dynamic
and changes continuously. This local knowledge creates a global random graph for
all overlay hosts. The maintenance and the dynamic changes of the random view are
explained in Sect. 7.6.2.

Proximity View (M) The proximity view contains nodes with close proximity to
the local node. Proximity is derived by calculating the ranking distance between
two nodes. In AETOS, rank values refer to the robustness values r . Therefore, the
robustness distance between an agent x and an agent y is d = |rx − ry |. The search
space for filling the proximity view is the random view. However, it is also filled
by enabling close proximity nodes to exchange neighbours (gossip) and further dis-
cover each other faster. Section 7.6.2 illustrates this option. Finally, the proximity
view is dynamic and reconfigurable. This means that the ranking function can po-
tentially change by reconfiguring the view appropriately. This aspect is explained in
detail in Sect. 7.6.2.

The neighbours of a node in the tree hierarchy are split in two levels, the parent
and the children. This concept is applied in the proximity view as well. Two sets of
neighbours are defined: (i) the candidate parents (P) and (ii) the candidate children
(C) such that M = P ∪ C. Note that the sets are sorted according to robustness r of
the node descriptors.

Tree View (T) The tree view is a sorted set with the parent and the children of the
local node in the tree overlay. The search space for filling the tree view is the prox-
imity view. The tree view is the one that is provided at the end of self-organisation
process to the ‘application agent’.

The above views are partial. Their length is a predefined system parameter and
depends on the capacity of nodes and on the size of the whole system. For large-scale
systems with thousands of nodes, |R| ≈ 50 (Jelasity et al. 2007). For the proximity
view, a similar scheme is proposed with |M| ≤ |R|. The length of the tree view is
|T| = n.

The ratio of the length of the candidate children set over the length of candidate
parents set (|C|

|P|) is proportional to the number of children c = n− 1. For example, if
|M| = 12 and c = 3, then |C| = 9 and |P| = 3. This guarantees that the search space
for children and the parent is proportional.

Figure 7.4 illustrates an example of information flow among the views in a self-
organisation agent. The proximity of the local random samples from the random
view is calculated, and the closest neighbours are inserted in the proximity view.
Other close-proximity neighbours are discovered through gossiping. Finally, the
candidate neighbours with the highest robustness are acquired for tree neighbours.
Upon success, they are inserted in the tree view. Section 7.6.2 provides detailed in-
formation about the local interactions and tasks executed by the ‘self-organisation
agent’.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 149

Fig. 7.4 The fundamental
knowledge of a
‘self-organisation agent’ is
based on 3 views: (i) the
random view, (ii) the
proximity view, and (iii) the
tree view. The proximity view
is filled by random samples
and close-proximity
neighbours discovered
through gossiping. The nodes
with the highest robustness in
the proximity view are the
potential neighbours in the
final tree view

7.6.2 Components

The local knowledge and tasks of the ‘self-organisation agent’ are facilitated in the
following components. Figure 7.6 outlines these components and their interactions.

Proximity Manager It holds the proximity view. It interacts with the ‘proxim-
ity sampling’ component and the ‘reconfiguration manager’ component to update
and improve the proximity view. Periodically, it informs the tree manager about the
candidate neighbours with the higher robustness r in its proximity view.

Random Sampling This component maintains the random view. This view is up-
dated through a gossiping protocol, that is, the peer sampling service (Jelasity et al.
2007). With the peer sampling service, nodes continuously have random samples of
the whole distributed environment and refresh old nodes with new ones. Gossiping
creates a dynamic robust overlay on which the tree overlay is based. Readers are
referred to Jelasity et al. (2007) for details concerning the peer sampling service.

Proximity Sampling This is the component that realises the gossiping among
close-proximity nodes as Fig. 7.4 illustrates. ‘Random sampling’ discovers close-
proximity nodes from random samples. In contrast, ‘proximity sampling’ further
discovers candidate neighbours by exchanging node descriptors between close-
proximity nodes. The process of such a gossiping protocol is described in detail
in Jelasity et al. (2009). ‘Proximity sampling’ interacts with the ‘proximity man-
ager’ to update the proximity view with new candidate parents or children. Note
that this component is used to make the system converge faster to the required tree
topology.

Reconfiguration Manager The proximity view is not static but rather dynamic
and reconfigurable. This means that the ranking function is defined in a dynamic
range of robustness values which form a subset of the whole range of values in the

150 E. Pournaras et al.

Fig. 7.5 The parent and
children candidates in the
proximity view. (a) Initial
proximity view, (b) after an
upgrade reconfiguration,
(c) after a downgrade
reconfiguration, (d) applying
an upgrade and a downgrade
reconfiguration

proximity view. The ‘reconfiguration manager’ accesses the ‘proximity manager’
and is responsible for triggering a number of reconfigurations to the proximity view.

The ranges of robustness values for candidate parents and children are examined
below. Let M be the range of the whole set of robustness values that node descrip-
tors contain. All of the indexes refer to robustness values in the proximity view:
(i) l points to robustness value of the local node descriptor. (ii) A potential parent
p belongs to the candidate parents range P such that p ∈ P = [l + 1,pmax]. Simi-
larly, (iii) the potential children c1 < c2 < · · · < cn, with n the number of children,
point to the candidate children range C such that {c1, c2, . . . , cn} ∈ C = [cmin, l−1].
Figure 7.5a illustrates the initial ranges of candidate neighbouring sets. The ‘recon-
figuration manager’ can perform the following reconfigurations:

1. Initialising Configuration: the ranges of the candidate neighbours are configured
as P = [l + 1,pmax] and C = [cmin, l − 1] respectively. The node descriptor
with the higher robustness r in each candidate set is the potential child or parent
respectively. In this case, p = pmax and ci = l − 1 for the ith potential child.

2. Upgrade Reconfiguration: the ‘self-organisation agent’ has already found a par-
ent or its children, and it seeks to connect with more robust nodes. To achieve
this, it binds the starting point of its view to the robustness values of the selected
nodes and fills the view with more robust node descriptors. The candidate parents
range is reconfigured as P = [p + 1,pmax], and the children candidate range as
C = [c1 + 1, l − 1]. Figure 7.5b depicts the upgrade reconfiguration.

3. Downgrade Reconfiguration: if a previously selected candidate neighbour has
rejected the connection, the view is updated with less robust nodes. In this case,
the candidate ranges are updated as P = [l + 1,pmax − 1] and C = [cmin, l − 2]

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 151

respectively. Figure 7.5c illustrates how the view is updated in this case. Note
that the downgrade reconfiguration is performed step-by-step, decrementing the
positions by one for every rejected parent or child connection respectively.

The ‘reconfiguration manager’ has the option to switch from a downgrade or up-
grade configuration back to the initial one. Furthermore, the proximity view can be a
result of both an upgrade and a downgrade reconfiguration. Figure 7.5d illustrates an
example of this case. Any applied reconfiguration keeps the length of the proximity
view equal or lower than the initial maximum length.

Tree Manager The Tree Manager manages the connectivity of the tree overlay
and interacts with other nodes to establish the parent and children connections. The
interactions are based on the exchange of 4 messages: (i) the request of a parent
or child connection, (ii) the acknowledgement of a request, (iii) the rejection of a
request, and (iv) the removal of a parent or child connection.

In its active state, the ‘tree manager’ periodically accesses the ‘proximity man-
ager’ and receives the candidate parent and child with the highest robustness r . It
sends a ‘parent and child request’ to each of them respectively. If the ‘proximity
manager’ cannot provide candidate neighbours to the ‘tree manager’ for a prespeci-
fied period of time, it reports this information to the ‘reaction manager’.

The passive state of the ‘tree manager’ defines the appropriate reactions to the
messages received. For a ‘parent or child request’, the reactions are the following:

1. It checks if the robustness r of the two communicating nodes are consistent. This
means that the value of the parent should be higher than the value of the child.
If inconsistencies occur due to changes in the values of robustness, the ‘tree
manager’ sends a ‘rejection’ message to the requesting agent with information
about the value of local robustness.

2. If there are no inconsistencies, the ‘tree manager’ either
a. updates and inserts the node that sent the ‘parent/child request’ in its tree

view. In this case, the ‘tree manager’ replies with an ‘acknowledgement’. If
the update of the tree view is performed by replacing an existing node de-
scriptor with one with higher robustness, then a ‘removal’ message is sent to
the replaced node. Or,

b. it rejects the request and a ‘rejection’ message is sent. In this case, the existing
parent or children are more robust than the node that sent the request.
In both cases the reply-messages contain information that reflects the more

recent values of the robustness r .
3. A report is sent to the local ‘reaction manager’.

If the ‘tree manager’ receives an ‘acknowledgement’ of its request, it performs:

1. An update of its tree view by inserting the new neighbour. If the update is a
replacement, it sends a ‘removal’ messages to the replaced node.

2. A report to the local ‘reaction manager’.

The ‘rejection’ message triggers the following:

1. A report to the local ‘reaction manager’.

152 E. Pournaras et al.

Finally, in case of a ‘removal’ message, ‘tree manager’ performs:

1. Removal of the parent or one of the children.
2. A report to the local ‘reaction manager’.

These messages form the basic interactions among the AETOS agents to config-
ure the tree overlay connections.

Reaction Manager It receives reports from the ‘tree manager’ concerning the
configuration of the tree connections. Based on these reports, it triggers the appro-
priate reconfigurations in the ‘reconfiguration manager’.

An upgrade reconfiguration is triggered when a new parent or the last child is
added in the candidate parents or children respectively. A downgrade reconfigura-
tion is applied when a ‘parent of child request’ is rejected or a removal is performed
in a parent or child. Finally, the initialising reconfiguration is performed before the
upgrade or downgrade reconfigurations to overwrite the old ones.

7.6.3 Service Layer Architecture

The interactions of the components in the ‘self-organisation agent’ can be outlined
in the following 3-layer hierarchy:

PAROS The ProActive Robust Overlay Sampling is the underlying overlay that
provides high robustness in the tree overlay. It guarantees that the network remains
connected, and it is not clustered due to node departures or failures.

ARMOS The Adaptive Rank-based Middleware Overlay Service is a proximity-
driven reconfigurable overlay. It incorporates the ‘tree manager’, the ‘proximity
sampling’ and the ‘reconfiguration manager’. It is based on PAROS and supports
the connectivity of the tree overlay by providing candidate neighbours.

ATOM The Adaptive Tree Overlay Management is responsible for configuring
the tree connections and provides feedback to ARMOS for improving the candidate
neighbours.

Figure 7.6 outlines the 3-layer hierarchy and the components of the ‘self-
organisation agent’. The sequence of interactions is as follows: (1) ‘random sam-
pling’ provides periodically random samples to the ‘proximity manager’. From
these random samples, the ones with close proximity are selected and stored in
the proximity view. (2) ‘proximity sampling’ exchanges node descriptors with close
proximity nodes for improving the proximity view. (3) Periodically, the ‘proximity
manager provides the best candidate neighbours to the ‘tree manager’. The latter
interacts with these candidates to establish tree connections. (4) The result of these
interactions is reported to the ‘reaction manager’ (5) that triggers the appropriate
reconfigurations in the ‘reconfiguration manager’. (6) Finally, the proximity view is
reconfigured and new candidate neighbours can be provided to the ‘tree manager’.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 153

Fig. 7.6 The 3-layer
hierarchical interactions of
the components within the
‘self-organisation agent’. The
numbers denote the sequence
of interactions between the
components. The arrows (3),
(4), (5) and (6) depict the
feedback loop which forms
the core of adaptivity in
AETOS

Note that the feedback loop between the ‘proximity manager’, ‘tree manager’,
‘reaction manager’ and ‘reconfiguration manager’ forms the core of adaptivity in
AETOS.

7.7 System Control Agent

The ‘system control agent’ acts as a proxy between the ‘application agent’ and ‘self-
organisation agent’. It keeps information about the registered overlays and provides
this information to the ‘self-organisation agent’. It also receives the application re-
quirements for each overlay and monitors the self-organisation process. With this
information, it can control locally the bootstrapping and termination of the self-
organisation.

Bootstrapping The ‘system control agent’ initially guarantees that the robustness
values are unique. This is achieved by assigning a unique comparable random num-
ber in the robustness value r . It then feeds the robustness r and the number of chil-
dren c = n − 1 to the ‘self-organisation agent’. Therefore, the ‘self-organisation
agent’ is able to start executing its component tasks.

Termination Termination is based on the expected response time tr . The ‘system
control agent’ monitors the ‘self-organisation agent’. When the runtime exceeds the
tr , it terminates the self-organisation.

At this moment of local convergence, the agent (i) stops the participation of the
agent in the self-organisation process and (ii) enables the ‘tree manager’ to provide
the tree view to the application. Note that the node can be still contacted when is
not participating in the self-organisation. In this case, it notifies the node about its
current terminated state.

154 E. Pournaras et al.

In this termination approach, the application is the one that defines, through its
requirements, when the self-organisation terminates rather than the underlying AE-
TOS system. The motivation for this decision is that the stability of the tree overlay
is evaluated with respect to the application requirements, and thus it must be the one
that influences the termination of the self-organisation.

7.8 Evaluation of the Proposed Approach

AETOS is implemented and evaluated in ProtoPeer (Galuba et al. 2009), an asyn-
chronous simulation platform for large-scale distributed systems. ProtoPeer pro-
vides a generic interface for enabling the step from single-machine to multiple-
machine simulation and finally to live deployment.

This section focuses on the evaluation of the ‘self-organisation agent’. The goal
of the evaluation is to reveal the cost-effectiveness of AETOS in the connectivity of
two different tree topologies. In this section, connectivity refers to the percentage
of the total number of nodes connected to the main tree. The convergence of con-
nectivity is investigated under varying length of the random view and two different
network sizes.

The input settings in the ProtoPeer simulation environment represent the ‘ap-
plication agent’. The ‘self-organisation agent’ is implemented as three services or
‘peerlets’ in ProtoPeer terminology. Each service corresponds to a layer in the ar-
chitecture of Fig. 7.6. In the first layer, the peer sampling service (Jelasity et al.
2007) is the implementation of the ‘random sampling’ component. In the middle
layer, the ‘proximity manager’ and the ‘reconfiguration manager’ are implemented.
The implementation of ‘proximity sampling’ is part of ongoing work and is not part
of AETOS in the results illustrated in this section. However, the implications of this
missing component are discussed in this section. The two components of the ATOM
layer, the ‘tree manager’ and ‘reaction manager’, are facilitated in a peerlet of the
‘self-organisation agent’. Finally, the evaluation of the bootstrapping and termina-
tion by the ‘system control agent’ is part of future work.

7.8.1 Simulation Settings

Three group of experiments are performed in two different simulation environments.
Table 7.1 outlines the simulation parametrisation in these two environments. ‘Sim-
ulation environment 1’ has 121 nodes. ‘Simulation environment 2’, a larger-scale
network, has 1093 nodes. The first two groups of experiments run for 2500 itera-
tions, and the third for 400. The latter group of experiments runs for fewer iterations
due to restrictive memory scalability of the ProtoPeer measurement infrastructure.
The ProtoPeer environment supports bootstrapping of the system in a ring topology
in the first 6 iterations from which the peer sampling service and the components in
the higher levels are initialised.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 155

Table 7.1 Simulation environments

Parameter Simulation environment 1 Simulation environment 2

Number of nodes (N) 121 1093

Number of children (c) 3–5 3–5

View selection policy swapper swapper

Random view length (|R|) 4–20 40

Candidate parents length (|P|) 2 3

Candidate children length (|C|) 4 5

Number of iterations 2500 400

Requests frequency 2 per iteration 2 per iteration

The swapper selection policy used within the peer sampling service (Jelasity et
al. 2007) is used to increase randomness in the local node samples. In ‘simulation
environment 1’ the length of the random view R is varied between 4-20. In ‘sim-
ulation environment 2’ the length of the random view R is fixed to 40. The length
of the view of candidate parents is chosen to be smaller than the view of the candi-
date children and is |P| = 2, |P| = 4 for the first and |P| = 3, |P| = 5 for the second
simulation environment.

Finally, nodes are organised in two tree topologies: (1) a tree for which the num-
ber of children to which the ‘application agents’ try to connect is 3 and (2) a tree
for which the number of children to which the ‘application agents’ try to connect
is 5. As a result with a fixed number of nodes, the trees have different number of
levels. The robustness r assigned to the ‘self-organisation agent’ is a unique random
number between 0 and 100. Note that in every iteration the ‘self-organisation agent’
potentially sends one parent and one child request, thus the frequency of requests is
2 per iteration.

7.8.2 Results

The first group of experiments runs in ‘simulation environment 1’ in which the num-
ber of children to which agents aim to connect is equal to 3. Figure 7.7(a) illustrates
the convergence of connectivity by varying the length of the random view. Fig-
ure 7.7(b)–(e) depicts the communication cost of AETOS expressed in the number
of messages generated by the ATOM layer of the ‘self-organisation agent’.

The second group of experiments also runs in ‘simulation environment 1’, but
in this case the number of children to which agents aim to connect is equal to 5.
Figure 7.8(a) illustrates the convergence of the connectivity by varying the length
of the random view. Figure 7.8(b)–(e) depicts the communication cost of AETOS
expressed in the number of messages generated by the ATOM layer of the ‘self-
organisation agent’.

Finally, the last group of experiments runs in ‘simulation environment 2’ for
c = 3 and c = 5. Figure 7.9 illustrates the connectivity convergence in this settings.

156 E. Pournaras et al.

Fig. 7.7 Cost-effectiveness of AETOS in ‘simulation environment 1’ for c = 3. (a) Connectivity
convergence for different length of random views. (b)–(e) Number of messages generated by the
ATOM layer of the ‘self-organisation agent’ for |R| = 20

In summary, the above results show that AETOS can achieve a high degree of
connectivity in both simulation environments. AETOS converges to 90% connec-
tivity in less than 150 iterations. An exception is the case of ‘simulation environ-
ment 2’ with c = 3, in which connectivity approaches 60% in the 400th iteration.
Section 7.8.3 explains in detail the behaviour of AETOS in these simulation exper-
iments.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 157

Fig. 7.8 Cost-effectiveness of AETOS in ‘simulation environment 1’ for c = 5. (a) Connectivity
convergence for different lengths of random views. (b)–(e) Number of messages generated by the
ATOM layer of the ‘self-organisation agent’ for |R| = 20

7.8.3 Discussion of Experimental Results

The results reveal that a certain percentage of connectivity can be achieved within
relatively few iterations. For example, 50% connectivity can be achieved in less
than 100 iterations in ‘simulation environment 1’ and between 150–400 iterations
in ‘simulation environment 2’. In contrast, for connectivity higher than 98%, AE-
TOS convergence lasts much longer, requiring 436 iterations in ‘simulation envi-

158 E. Pournaras et al.

Fig. 7.9 Connectivity
convergence in ‘simulation
environment 2’ for c = 3 and
c = 5

ronment 1’. In this environment, increasing connectivity from 90% to 98% requires
more than 250 additional iterations. This effect is more significant in ‘simulation en-
vironment 2’ in which connectivity seems to converge 10%–30% more slowly than
‘simulation environment 1’. The peer sampling service provides a bounded random
search space, and thus convergence speed decreases as the size of the network or
the topology complexity increases. The connectivity jump from 50% to about 80%
in the 150th iteration in Fig. 7.9 is explained by the connection of a large branch of
nodes to the main body of the tree.

The communication cost of the ATOM layer is related to three things: (i) request
frequency, (ii) convergence of the system, and (iii) effectiveness in the termination of
self-organisation. The parent and child requests decrease during convergence 40%–
45% and 25%–35% respectively. This is caused by the effect of the reconfigurations
and the increase in the tree connectivity. In contrast, rejections increase 25%–30%
as there are more nodes already connected that can potentially reject requests. After
convergence, the number of messages is stabilised. At this point the system can
be terminated and thus, alleviate the network from this constant communication
overhead. Removal and acknowledgement messages decrease proportionally to the
convergence time. This is expected, as nodes in a tree with 100% connectivity do
not perform any removals or acknowledgements. Note that the communication cost
of the PAROS layer is constant and dependent on the network size and the gossiping
period.

An increase in the length of random views makes connectivity convergence faster
in both simulation environments. This can be explained by the better global knowl-
edge that the ‘self-organisation agents’ have of the system. Therefore, they can im-
prove the quality of the candidate neighbours select to which they potentially con-
nect. Finally, the number of children c influences the cost-effectiveness of AETOS
significantly. A different number of children results in different topologies. In each
simulation environment setting of this section, trees have the same network size
with a different number of levels. Connectivity increases from 81% (c = 3) to 97%
(c = 5) in ‘simulation environment 1’ and from 50% (c = 3) to 77% (c = 5) in ‘sim-

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 159

ulation environment 2’ at the 400th iteration. Furthermore, communication cost also
decreases 17% by increasing c in ‘simulation environment 1’.

The future addition of ‘proximity sampling’ is expected to enhance the quality of
the proximity view. More specifically, it is expected to (i) decrease the connectivity
convergence time as the self-organisation agent will update the proximity view faster
after the performed reconfigurations and (ii) decrease the communication cost of the
ATOM layer as it is related to convergence time.

7.9 Conclusions and Future Work

This chapter proposes AETOS, the Adaptive Epidemic Tree overlay Service. AE-
TOS is an agent-based system that builds and maintains application-independent
tree overlays, on demand. To this purpose three local agents are defined to (i) ab-
stract application requirements to self-organisation requirements, (ii) self-organise
nodes in various optimised tree topologies based on these requirements, and
(iii) control the bootstrapping and termination of self-organisation. Experiments
show that a high level of connectivity can be acquired and that cost-effectiveness
of self-organisation is highly correlated to the available local knowledge, the tree
topology and the network size.

These results are promising. Further research will include extension of the cur-
rent system with a ‘proximity sampling’ component, study the effects of a dis-
tributed simulation environment and application of AETOS in a more realistic do-
main.

Acknowledgements The authors are grateful to the NLnet Foundation and Delft University of
Technology for their support. http//www.nlnet.nl.

References

B. Akbari, H. R. Rabiee, and M. Ghanbari. DPOCS: A dynamic proxy architecture for video
streaming based on overlay networks. In IEEE MICC & ICON ’05, volume 1, page 6, Novem-
ber 2005.

G. An, D. Gui-guang, D. Qiong-hai, and L. Chuang. BulkTree: An overlay network architecture
for live media streaming. Journal of Zhejiang University, 7(1):125–130, 2006.

S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and S. Khuller. Construction of an ef-
ficient overlay multicast infrastructure for real-time applications. In INFOCOM, volume 2,
pages 1521–1531, 2003.

S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast using overlays.
IEEE/ACM Transactions on Networking, 14(2):237–248, 2006.

R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In IPTPS, pages 256–267,
2003.

S. Birrer and F. E. Bustamante. A comparison of resilient overlay multicast approaches. IEEE
Journal on Selected Areas in Communications, 25(9):1695–1705, 2007.

F. M. T. Brazier, J. O. Kephart, M. Huhns, and H. Van Dyke Parunak. Agents and service-oriented
computing for autonomic computing: A research agenda. IEEE Internet Computing, 13(3):82–
87, May 2009.

http//www.nlnet.nl

160 E. Pournaras et al.

A. J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-organizing computa-
tion on a peer-to-peer network. IEEE Transactions on Systems, Man, and Cybernetics, Part A,
35(3):373–384, 2005.

J. A. Chaudhry and S. Park. Ahsen—autonomic healing-based self management engine for network
management in hybrid networks. In GPC, pages 193–203, 2007.

P. Costa and D. Frey. Publish–subscribe tree maintenance over a DHT. In ICDCSW ’05: Pro-
ceedings of the Fourth International Workshop on Distributed Event-Based Systems (DEBS)
(ICDCSW’05), pages 414–420, Washington, 2005. IEEE Computer Society.

C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues for the IP multi-
cast service and architecture. IEEE Network, 14(1):78–88, 2000.

D. England, B. Veeravalli, and J. B. Weissman. A robust spanning tree topology for data collection
and dissemination in distributed environments. IEEE Transactions on Parallel and Distributed
Systems, 18(5):608–620, 2007.

Z. Fei and M. Yang. A proactive tree recovery mechanism for resilient overlay multicast.
IEEE/ACM Transactions on Networking, 15(1):173–186, 2007.

D. Frey and A. L. Murphy. Failure-tolerant overlay trees for large-scale dynamic networks. In
P2P ’08: Proceedings of the 2008 Eighth International Conference on Peer-to-Peer Computing,
pages 351–361, Washington, 2008. IEEE Computer Society.

W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer. ProtoPeer: a P2P toolkit bridging the gap
between simulation and live deployment. In Simutools ’09: Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques, pages 1–9, ICST, Brussels, Belgium,
2009.

A. González-Beltrán, P. Milligan, and P. Sage. Range queries over skip tree graphs. Computer
Communications, 31(2):358–374, 2008.

H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up search in peer-to-peer
networks with a multi-way tree structure. In SIGMOD ’06: Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data, pages 1–12, New York, 2006. ACM.

M. Jelasity, A. Montresor, and O. Babaoglu. T-man: Gossip-based fast overlay topology construc-
tion. Computer Networks, 53(13):2321–2339, 2009.

C. Y. Lee and H. Dong Kim. Reliable overlay multicast trees for private Internet broadcasting with
multiple sessions. Computers & Operations Research, 34(9):2849–2864, 2007.

J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In SRDS ’07: Proceedings of the
26th IEEE International Symposium on Reliable Distributed Systems, pages 301–310, Wash-
ington, 2007. IEEE Computer Society.

Y. Li and W. T. Ooi. Distributed construction of resource-efficient overlay tree by approximating
MST. In ICME, pages 1507–1510, 2004.

M. Li, W.-C. Lee, and A. Sivasubramaniam. DPTree: A balanced tree based indexing framework
for peer-to-peer systems. In ICNP ’06: Proceedings of the Proceedings of the 2006 IEEE Inter-
national Conference on Network Protocols, pages 12–21, Washington, 2006. IEEE Computer
Society.

J. Liu and M. Zhou. Tree-assisted gossiping for overlay video distribution. Multimedia Tools and
Applications, 29(3):211–232, 2006.

Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer video streaming systems. Peer-to-Peer
Networking and Applications, 1(1):18–28, 2008.

R. P. Lopes and J. L. Oliveira. Software agents in network management. In ICEIS, pages 674–681,
1999.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-based peer
sampling. ACM Transactions on Computer Systems, 25(3):8, 2007.

P. Merz and S. Wolf. TreeOpt: Self-organizing, evolving P2P overlay topologies based on spanning
trees. In SAKS’07, Bern, Switzerland, 2007.

E. Pournaras, G. Exarchakos, and N. Antonopoulos. Load-driven neighbourhood reconfiguration
of Gnutella overlay. Computer Communications, 31(13):3030–3039, 2008.

E. Pournaras, M. Warnier, and F. M. T. Brazier. A distributed agent-based approach to stabilization
of global resource utilization. In Proceedings of International Conference of Complex Intelli-
gent and Software Intensive Systems (CISIS’09), March 2009a.

7 Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents 161

E. Pournaras, M. Warnier, and F. M. T. Brazier. Adaptive agent-based self-organization for robust
hierarchical topologies. In ICAIS ’09: Proceedings of the International Conference on Adaptive
and Intelligent Systems, IEEE, New York, 2009b.

W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

G. Tan, S. A. Jarvis, X. Chen, and D. P. Spooner. Performance analysis and improvement of overlay
construction for peer-to-peer live streaming. Simulation, 82(2):93–106, 2006.

S.-W. Tan, G. Waters, and J. Crawford. MeshTree: Reliable low delay degree-bounded multicast
overlays. International Conference on Parallel and Distributed Systems, 2:565–569, 2005.

C. Tang and C. Ward. GoCast: Gossip-enhanced overlay multicast for fast and dependable group
communication. In DSN ’05: Proceedings of the 2005 International Conference on Dependable
Systems and Networks, pages 140–149, Washington, 2005. IEEE Computer Society.

H. Tianfield and R. Unland. Towards self-organization in multi-agent systems and grid computing.
Multiagent Grid Systems, 1(2):89–95, 2005.

F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid tree/mesh overlay for application-layer live
video multicast. In IEEE ICDCS, page 49, 2007.

H. Zhuge and L. Feng. Distributed suffix tree overlay for peer-to-peer search. IEEE Transactions
on Knowledge and Data Engineering, 20(2):276–285, 2008.

	Self-Optimised Tree Overlays Using Proximity-Driven Self-Organised Agents
	Introduction
	Objectives and Contributions
	Applications
	Problem Statement
	Self-Organisation
	Self-Optimisation
	Application Independence

	System Overview

	Related Work
	Literature Review
	Application Domain
	Optimisation Metrics
	Complementary Overlays
	Build and Maintenance
	Decentralisation Level
	Proactiveness vs. Reactiveness

	Open Issues

	Approach
	Application Agent
	Robustness (r)
	Node Degree (n)
	Expected Response Time (tr)
	Register
	Build
	Connect
	Unregister

	Self-Organisation Agent
	Knowledge
	Random View (R)
	Proximity View (M)
	Tree View (T)

	Components
	Proximity Manager
	Random Sampling
	Proximity Sampling
	Reconfiguration Manager
	Tree Manager
	Reaction Manager

	Service Layer Architecture
	PAROS
	ARMOS
	ATOM

	System Control Agent
	Bootstrapping
	Termination

	Evaluation of the Proposed Approach
	Simulation Settings
	Results
	Discussion of Experimental Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

