
Chapter 3
EPCIS-Based Supply Chain Event Management

Christoph Goebel, Sergei Evdokimov,
Christoph Tribowski, and Oliver Günther

Summary The coordination of assembly networks still represents a major chal-
lenge in today’s business environment. We present a Radio Frequency Identification
(RFID)-based inter-organizational system architecture that provides the technolog-
ical basis for appropriate decision support. While mapping requirements in terms
of information storage and exchange to technical system features, we consistently
refer to the standards specified by the international industry consortium EPCglobal.
In contrast to the pull-based architecture proposed by EPCglobal that is designed
to retrieve and process historical data with a long lifetime, our system architecture
follows a push approach. It allows for the propagation of relevant decision support
information on past and future events with short validity. The EPCglobal event data
specification is extended to include the required context information. A common
protocol layer that interconnects supply chain stages is described in detail. The use
of the protocol layer in connection with standardized formats for event and con-
text data supports the interoperability of information systems used in different orga-
nizations and facilitates the integration of event-based applications into enterprise
architectures. Using analytical methods, we evaluate the pull- and push-based ar-

C. Goebel (�)
International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94703,
USA
e-mail: goebel@icsi.berkeley.edu

S. Evdokimov · C. Tribowski · O. Günther
Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin, Germany

S. Evdokimov
e-mail: evdokimov@wiwi.hu-berlin.de

C. Tribowski
e-mail: christoph.tribowski@wiwi.hu-berlin.de

O. Günther
e-mail: guenther@wiwi.hu-berlin.de

F. Xhafa et al. (eds.), Complex Intelligent Systems and Their Applications,
Springer Optimization and Its Applications 41,
DOI 10.1007/978-1-4419-1636-5_3, © Springer Science+Business Media, LLC 2010

43

mailto:goebel@icsi.berkeley.edu
mailto:evdokimov@wiwi.hu-berlin.de
mailto:christoph.tribowski@wiwi.hu-berlin.de
mailto:guenther@wiwi.hu-berlin.de
http://dx.doi.org/10.1007/978-1-4419-1636-5_3

44 C. Goebel et al.

chitectures with respect to efficiency and reliability: the push-based architecture is
shown to be particularly suitable for the realization of SCEM applications.

3.1 Introduction

Supply Chain Event Management (SCEM) systems are decision support systems
that allow for monitoring, prioritizing, and reacting to events pertaining to the flow
of goods in a supply chain (Otto 2003). A supply chain event can be any change of
state with respect to the flow of goods, currency, or information. SCEM applications
allow for the specification of rules, which can be applied to streams of events in or-
der to identify those which are critical, i.e., events which call for immediate action
in order to prevent financial loss. The business value of an SCEM application de-
pends on the degree of supply chain visibility and the degree of freedom regarding
possible ways to react to critical events; however, since the available options for all
actions are as dynamic as the various states of supply chain operations, the logical
design of SCEM systems can be very demanding.

Supply chain visibility refers to the amount of information available to the sup-
ply chain manager and can be characterized according to the following dimensions:
detail, timeliness, and accuracy. Radio Frequency Identification (RFID) technol-
ogy can be used for efficient tracking of materials as they move though the supply
chain (Niederman et al. 2007). In contrast to the bar code, it allows for concurrent
reading of item identification data without direct line of sight up to a certain read
range (Michael and McCathie 2005). RFID is expected to increase supply chain vis-
ibility along all three dimensions mentioned. Since SCEM requires a high degree of
supply chain visibility, the introduction of RFID into a supply chain could increase
the business value of SCEM applications.

Standardization of a number of components that make up the architecture of
event management solutions is on the way. Apart from protocols and data schemas
designed to serve the purpose of receiving, accumulating, filtering, and reporting
events pertaining to particular Electronic Product Codes (EPCs), the international
industry consortium EPCglobal has specified Electronic Product Code Informa-
tion Services (EPCIS) that should be responsible storing and exchanging these
events across the supply chain (EPCglobal 2007). While EPC formats and RFID
reader protocols have come a long way, EPCIS is still in an early stage of develop-
ment.

Although the software industry is quick to offer products able to process EPC
data, the development of value-generating business applications still lags behind.
As long as real-world applications are rare, it is hard to justify the definition of a
comprehensive standard. Little academic research on supply chain wide decision
support systems based on auto ID technologies has been published so far. Chow et
al. (2007) provided a schematic description of an interorganizational information
system based on RFID that provides visibility of the processes taking place at a
third-party logistics provider via a web front-end. Trappey et al. (2009) described
an intelligent agent system that, among other things, supports real-time surveillance

3 EPCIS-Based Supply Chain Event Management 45

of production progress. Although these authors have provided interesting starting
points for the realization of interorganizational event-based applications, they do
not go into technical details concerning the data formats and protocols required to
realize these applications. Further research on interorganizational decision support
systems based on auto ID technology is thus needed. In particular, it has to be deter-
mined which architectures suit which business applications. Since standardization
plays a significant role in the design of interorganizational information systems, re-
search on the appropriateness of the current standards proposed by EPCglobal is
warranted.

Motivated by the knowledge gap identified above, we focus on three promising
areas for further research:

• The specification of concrete business applications of event-based interorganiza-
tional supply chain management systems.

• The interoperability of the different components that need to be integrated in
order to realize such systems.

• The intra- and interorganizational management of the EPC context data provided
by different enterprise applications.

• The requirements analysis of EPCglobal’s architecture for the supply chain-wide
exchange of EPC-related data for SCEM applications.

We believe that without a specific requirements analysis, the degree of system in-
teroperability cannot be assessed. The type of context data that needs to be managed
and exchanged naturally depends on the application. Our approach thus consists
of first putting the discussion about EPC-based material tracking into a concrete
business context. To this end, we describe the challenges involved in coordinating
decentralized make-to-order assembly networks. Our choice of the business context
and application example tries to be as simple and general as possible. Thereafter, we
derive technical requirements that need to be addressed by the architectural design,
in particular with respect to interorganizational system interoperability. We present
an approach to realize a two-layered interorganizational event-based architecture. In
contrast to the components proposed by EPCglobal, our architecture follows a push
approach for the dissemination of event data.

Our main contributions are the following:

• We describe a relevant business application of event-based systems in a multi-
organizational context.

• Business requirements are mapped to technical system features while consistently
referring to current EPCglobal specifications.

• We specify a tentative protocol layer that serves to integrate heterogeneous enter-
prise systems that exchange EPC context data.

• We develop quantitative evaluation criteria and compare the centralized EPCIS-
based architecture proposed by EPCglobal with the decentralized EPCIS-based
architecture proposed in the next section.

This work is structured in the following way. In Sect. 3.2, we introduce relevant
components of the EPCglobal network. Section 3.3 outlines the business application

46 C. Goebel et al.

we focus on. In Sect. 3.4, the main ideas behind and some details of our proposed
architecture are presented. A comparison of the developed and the centralized ar-
chitectures, the quantitative evaluation, and its results are presented in Sect. 3.5. In
Sect. 3.6, we discuss our findings. Section 3.7 concludes this chapter and outlines
further research opportunities.

3.2 EPCglobal Network

The accuracy and detail of RFID data are expected to open up new and more efficient
ways to manage the supply chain and reduce many of the inefficiencies plaguing to-
day’s businesses such as incorrect deliveries, shrinkage, and counterfeiting. Since
production and distribution of physical goods are seldom in the hands of one orga-
nization and efficiency gains in supply chains often emanate from centralized supply
chain control, it makes sense in most cases to share selected RFID data among sup-
ply chain participants.

For the cross-company exchange of RFID reader events, the Auto-ID Center and
the industry consortium EPCglobal have specified a stack of specifications which
is currently one of the predominant standardization efforts of the RFID community
(Floerkemeier et al. 2007). In this section, we will sketch the specifications of the
EPCglobal network that are most relevant for this work.

3.2.1 EPCglobal Architecture Framework

The EPCglobal architecture framework (EPCglobal 2009) describes a number of
components required to realize a platform-independent system architecture for col-
lecting, filtering, storing, and retrieving EPC-related data. EPCglobal does not de-
fine the system architecture that end users have to implement but defines interfaces
that the components of end users’ systems (hardware and software) may imple-
ment. These interfaces as well as these hardware and software roles are separated in
Fig. 3.1.

EPCglobal has specified air interfaces for several tag types and reader protocols
that serve to effectively read out EPC data in multitag, multireader environments.

The Application Level Events (ALE) specification defines how to request EPC
data from readers so that it can be used as input for higher-level applications (EPC-
global 2008c).

The EPCIS Capturing Application has the context information about the data
capturing process and supervises the lower elements in the EPCglobal architecture
as described above. Its main task is to create an EPCIS event and store it in the
EPCIS repository using the EPCIS Capture Interface.

To enable easy access to EPC-related data, EPCglobal described several dedi-
cated services. The Object Name Service (ONS) standard specifies a hierarchical

3 EPCIS-Based Supply Chain Event Management 47

Fig. 3.1 EPCglobal architecture framework (based on EPCglobal 2009)

lookup service for locating service endpoints related to the EPC in question (EPC-
global 2008a). The EPC Discovery Services standard is currently under develop-
ment, but the general description can be found in Kürschner et al. (2008). The main
difference between the ONS and a Discovery Service is that EPC-related data pro-
vided by the services returned by the ONS is controlled by the entity that assigned
the EPC to the item, while EPC-related data located using a Discovery Service can
be controlled by any entity.

The EPC is described in more detail in Sect. 3.2.2, and EPCIS in Sect. 3.2.3.

48 C. Goebel et al.

Fig. 3.2 EPC identifier example (SGTIN-96)

3.2.2 Electronic Product Code

The Electronic Product Code (EPC) specification describes a set of encoding
schemas for universal identifiers that provide unique identities for physical objects
(EPCglobal 2008b). The objects can be trade items (products), also logistical units,
fixed assets, physical locations, etc.

The EPC schemas are designed to be backwards compatible with currently used
GS1 codes. For example, the GS1 Serial Shipping Container Code (SSCC) for logis-
tical units identifies unique objects. The corresponding EPC SSCC-96 encoding also
identifies unique objects, and, therefore, there can be a one-to-one correspondence
between SSCC and SSCC-96 identifiers. On the other hand, the Global Trade Item
Number (GTIN)—the successor of the European Article Number (EAN)—identifies
a category of objects, while the corresponding EPC Serialized GTIN (SGTIN-96)
encoding allows identifying individual items by augmenting the GTIN with a serial
number part.

Each EPCglobal subscriber manages its own range of EPCs contained within
the organization’s Company Prefix. The subscriber organization is responsible for
maintaining the numbers of Object Classes and Serial Numbers which, together with
the organization’s Company Prefix, form the EPC (EPCglobal 2008b).1 An example
of such an EPC identifier encoded in SGTIN-96 format is displayed in Fig. 3.2.

3.2.3 EPC Information Services

The EPCIS, as conceived by EPCglobal, consists of three components: a repository
for event data and two interfaces that serve to capture and query event data stored
in this repository. Although EPCglobal does not provide an implementation of any
of these components, they have developed the specification for an extendible data
model for supply chain events as depicted in Fig. 3.3.

The capture interface receives formatted event data from the ALE and adds the
required context data, resulting in one of the event types shown. The query interface

1The only exception is DoD-96 encoding that includes two parts and is used for shipping goods to
the US Department of Defense.

3 EPCIS-Based Supply Chain Event Management 49

Fig. 3.3 EPCglobal’s EPCIS data model

allows applications to specify and manage queries for event data using a query con-
trol interface. Querying can be done on-demand (“pull” approach) or by using the
control interface to define and register standing queries that are executed periodi-
cally (“push” approach).

An EPCIS event can refer to anything happening in a supply chain that can be
linked to a physical item and a discrete date. Each event makes a statement about
the what, where, when, and why of a supply chain event.

• The what dimension is specified by a list of EPCs that identify one or several
physical objects and a list of so-called business transactions that these items are
involved in. A business transaction can, for instance, be a production order.

• The when of an event is established by two time stamps that specify the time the
event happened and when it was captured.

• The where dimension is specified by the two variables, readPoint and bizLoca-
tion. The readPoint value is expected to be some technical ID, whereas the busi-
ness location provides the corresponding context information.

• The why refers to a business step (bizStep) and disposition ID (disposition) that
denote the state of the physical item by the time its EPC is read and its disposition
after that moment.

The EPCIS data model defines four event types. An ObjectEvent captures
information about an event that pertains to one or several physical objects identified

50 C. Goebel et al.

by EPCs. Its mandatory attributes are the event and record times inherited from EP-
CISEvent; a list of EPCs; and an action attribute that can have three values: ADD,
OBSERVE, and DELETE. If the value of the action attribute is set to ADD, it means
that the EPCs were associated with the physical object for the first time. OBSERVE
means that the object has been observed, whereas DELETE signifies that the EPCs
listed in this event were decommissioned as part of the event. All other attributes of
the object represent optional context information and have to be provided by other
enterprise applications before the event gets stored in the database.

An AggregationEvent describes events that pertain to objects that have been
physically aggregated (e.g., products in a box). The action attribute uses the same
semantics: ADD signifies that the aggregation has been observed for the first time in
this event, whereas DELETE means that it has been decommissioned, i.e., child tags
are no longer associated to a parent tag but are still in existence.

The class QuantityEvent represents events that take place with respect to
a specified quantity of some type of objects. This event could be captured, for in-
stance, when the inventory level needs to be reported.

Depending on the value of its action attribute, a TransactionEvent de-
scribes the association or disassociation of physical objects to one or more business
transactions. Its structure is similar to the ObjectEvent class except that it has to
be associated with at least one business transaction.

For more information on the EPCIS events, refer to Hribernik et al. (2007).

3.3 Business Application

Fierce competition and the resulting pressure to reduce costs while maintaining
high customer satisfaction has drawn attention to possible ways to improve sup-
ply chain wide coordination. Collaboration in this context means that several in-
dependent organizations work together to achieve the common goal of supply
chain wide cost reduction (Chopra and Meindl 2004; Simatupang and Sridharan
2005). Supply chain collaboration is a growing field of research; however, most
collaborative efforts have so far been focusing on the demand side (VICS 1998;
Waller et al. 1999): Sharing information on historical or expected demand and
planning production jointly can greatly reduce common supply chain inefficien-
cies caused by phenomena such as the bullwhip effect (Lee et al. 1997). Although
more advanced identification technology can help to increase downstream inven-
tory accuracy (Atali et al. 2006), it has often been argued that the many benefits of
standardized auto ID technologies can be obtained from the ability to track items as
they are moving through the supply chain (Gaukler 2005). Interestingly, short-term
coordination of supply processes using upstream information sources has received
little attention in the operations community to date (Chen 2003).

In order to optimize short-term operations, decision-makers along the supply
chain need to be informed about problems at upstream stages and their options for
dealing with a particular problem. The short-term actions available to steer supply
vary according to individual supply chain characteristics: in long- and medium-haul

3 EPCIS-Based Supply Chain Event Management 51

Fig. 3.4 Example of formalized assembly network

transportation there often exists the possibility to choose among different transporta-
tion modes, e.g., sea, sea/air, and air; the picking process taking place in warehouses
can be accelerated if needed, for instance, by skipping certain quality assurance
processes; or capacity can be added to production processes, e.g., by increasing
machine throughput or by extending shifts. Information on the available short-term
control options is usually only valid for a very short period of time; thus, any event
management system designed to support operational supply chain management has
to include a component capable of transmitting and offering up-to-date control op-
tions.

To be able to analyse the problem of short-time management of assembly net-
works in a structured manner, we introduce the semantics of a simple formalization
of such networks in the following. According to Chopra and Meindl (2004), the
four drivers of supply chain management are facilities, inventories, transportation,
and information. The way that these drivers are applied determines the performance
and operational cost of a supply chain. Each of the four drivers will be reflected in
our formalization. According to our model, an assembly network consists of one
or more supply chain organizations. A supply chain organization in turn consists
of an arbitrary number of internal nodes which can either be an assembly process
node, an inventory node, or a transportation node. Internal nodes are connected by
edges indicating the flow of material. Assembly and transportation processes always
need to be decoupled by an inventory node. Furthermore, one inventory node always
refers to one particular item type. The upstream end of the formal assembly network
is marked by order book nodes. Each order book holds the production orders for a
subsequent assembly node.

Figure 3.4 shows an example assembly network consisting of four supply chain
organizations forming a three-tiered assembly network. The network conforms to
the rules stated above. We will use this example throughout the section to illustrate
the working of our event-based architecture.

The information required to optimize the coordination of an assembly network
basically consists of schedules, i.e., events that are expected to take place at certain
dates, the events actually taking place as material moves downstream, and the rele-
vant control options. The purpose of the system architecture proposed in Sect. 3.4
is to provide all nodes in the network with the technical means to share the required
information in a decentralized way. A coordination mechanism that determines the
optimal control option in case the scheduled events do not match the expected events
within a certain range of tolerance is deliberately not part of this work.

52 C. Goebel et al.

3.4 Decentralized EPCIS-Based SCEM

In this section we propose an extension to the EPCIS specification and describe
a process that utilizes this extension for providing participants of a supply chain
with additional planning capabilities and enabling them to timely detect delays and
promptly react to them. The proposed extension affects data, protocol, and applica-
tion layers of the EPCIS specification. Below we provide a detailed description of
these modifications.

3.4.1 Data Layer

Using a common data format like the one specified by EPCglobal to store EPC-
related data is definitely valuable in providing interoperability between applications
used in one organization and for the interchange of event data between organiza-
tions. However, the business application described in Sect. 3.3 requires context data
in the shape of expected events; therefore, we extended the EPCIS event data frame-
work by the class ExpectedEvent (see Fig. 3.5).

Interorganizational sharing of event data can also be done using an ONS or a
Discovery Service; however, this results in a centralized query infrastructure in the

Fig. 3.5 Extended EPCIS data model

3 EPCIS-Based Supply Chain Event Management 53

hands of EPCglobal with the two mentioned services representing single points of
failure. Furthermore, the context data required to make sense of the event data would
have to be shared via an additional, unstandardized communication channel. In our
proposal we strive to specify an architecture that takes advantage of existing bilateral
business relationships in the supply chain.

3.4.2 Protocol Layer

The entities communicating on the protocol layer are the nodes of the assembly
network. Within our architecture, these nodes represent communication hubs and
controllers at the same time. Each node in the assembly network maintains a list
of predecessors and a successor node for each type of product. Upstream messages
are sent to some subset of predecessor nodes while downstream messages are sent
to the successor node. Different product types have different bills of material, i.e.
nodes would maintain at most one predecessor and successor list for each product
type.

The communication taking place to coordinate the assembly of products is sepa-
rated into six phases. Figure 3.6 presents an overview of the entire protocol. During
phase one, lead times are quoted recursively. Each node implementing the protocol’s
communication primitives can query its upstream assembly network in order to find
out if a certain delivery date can be met. Answering the query implies searching
the assembly tree of a particular product type for the maximum lead time path. The
answer consists of the date by which the order has to be issued at the root node in
order to meet the requested delivery date. There are two message formats defined
for this communication phase: an upstream message, called leadtimeRequest, con-
taining the attributes productType and endDate, and a downstream message, called
leadtimeQuote, containing the attribute startDate. Phase 1 is given as pseudocode
below:

Fig. 3.6 Protocol layer for
EPCIS-based SCEM

54 C. Goebel et al.

• Upon reception of leadtimeRequest(productType:productTypeID, endDate:Date)
by node i:
– If node i is of type orderbook:

· Set startDate to the earliest startDate incremented by node i’s expected du-
ration

· Send leadtimeQuote(productType:productTypeID, startDate:Date) to in-
volved successor node

– Otherwise:
· Send leadtimeRequest(productType, endDate) to all corresponding predeces-

sor nodes

• Upon reception of leadtimeQuote(productType:productTypeID, startDate:Date)
by node i from all involved predecessor nodes:
– Set startDate to the maximum startDate quoted by the predecessors incre-

mented by i’s expected duration
– Send leadtimeQuote(productType:productTypeID, startDate:Date) to the in-

volved successor node

In our example, if the root node of organization A initiates the request, it will
eventually end up with the expected lead time of the entire assembly process. From
the value of startDate it can infer whether the order can be filled before the requested
delivery date or not. If the quoted startDate has already passed, another query using
a later delivery date can be initiated.

Order propagation constitutes the second communication phase. In our exam-
ple, upon reception of a customer order, organization A initializes an upward in-
formation diffusion process of order data: A’s root node sends an order message to
its predecessors indicating that an order has been issued. The message contains a
unique order ID and the scheduled date of delivery. Each order ID is represented
by a BizTransaction object. The predecessor nodes propagate the order ID and the
scheduled delivery date decremented by their respective expected process durations.
The propagation process terminates when an order book node is reached; thereafter,
the order is stored in the order book until the transmitted date coincides with the
actual time. If this happens, the assembly process represented by the successor node
is triggered. Phase 2 is given as pseudocode below:

• Upon reception of order(orderID:BizTransaction, deliveryDate:Date) by node i

from successor:
– Set deliveryDate to the deliveryDate sent by the successor decremented by i’s

duration
– Send order(orderID, deliveryDate) to all involved predecessor nodes

The third communication phase consists of messages containing ExpectedEvent
objects which are sent downstream. The expectedEvents messages used in this phase
serve to let downstream nodes know when certain items are scheduled to enter and
leave each node. The ExpectedEvent class, which is used to store expected events,
represents an extension of the EPCglobal EPCIS standard. We embedded the event
type ExpectedEvent as child of EPCISEvent (see Fig. 3.5). According to EPCglobal,

3 EPCIS-Based Supply Chain Event Management 55

adding a new event type implies updating the EPCIS standard specification. In our
case the semantics of the EPCISEvent class would have to be adapted to include
the possibility of events that have not yet taken place. Upon reception of an ex-
pectedEvents message concerning a particular order from all involved predecessors,
a node remembers which events are scheduled to take place in the future by storing
them in its local event repository or in the volatile storage of an SCEM application.
It then creates the events it expects to happen at its own entry and exit points. As
indicated by Fig. 3.5, an expected event requires the attributes epcList, action, and
BizStep. By the time an ExpectedEvent object is created, there are no EPCs stored
as values of its epcList attribute. If the object is created in response to an order, the
action attribute is set to ADD. In case expected events need to be withdrawn, for
instance, because the corresponding order was canceled, the action attribute is set
to DELETE. The BizStep attribute is needed as a key to later match the expected
with the actual events and is either set to the BizStepID of the entry or the exit point
of the node. Newly created ExpectedEvent objects are combined with the received
objects into a new set and sent downstream. Phase 3 is given as pseudocode below:

• Upon reception of expectedEvents(expectedEventSet:Set[Expected-Event]) per-
taining to a particular BizTransaction by node i from all involved predecessors:
– Capture all ExpectedEvent objects contained in all expectedEventSets
– Merge all expectedEventSets to obtain mergedExpectedEventSet
– Create own ExpectedEvent objects and add them to mergedExpectedEventSet
– Send expectedEvents(mergedExpectedEventSet:Set[Expected-Event]) to the

involved successor node

Phase 4 serves to complete the expected events created in phase 3 by the EPCs.
This information is needed to identify pairs of expected and actual events which
have to be compared in order to detect delays. We assume that EPCs are allocated
at about the same time that physical objects are associated with an EPC. We believe
that this is a reasonable assumption considering practical constraints such as RFID
printers which store fixed EPCs on passive tags. When a physical object gets as-
sociated with an EPC at some node, this node sends an itemTagged message to its
successor. Each message of this type contains an EPC and the keys required to map
the allocated or removed EPC to event entries at downstream nodes. Furthermore, it
contains the type of action to be triggered by the message, i.e., either association or
disassociation of EPC and expected event. When all stored ExpectedEvent objects
have been enabled by adding one or several EPCs, each node possesses the infor-
mation it needs to identify delays as upstream events of any type. Phase 4 is given
as pseudocode below:

• Upon reception of itemTagged(epc:EPC, orderID:BizTransID, nodeStep:
BizStepID, action:ActionID) by node i from a predecessor:
– If action is ADD:

· Add EPC to all previously captured ExpectedEvents with the corresponding
BizTransID and BizStepID

– If action is DELETE:

56 C. Goebel et al.

· Remove EPC from all previously captured ExpectedEvents with the corre-
sponding BizTransID and BizStepID

– Send itemTagged(epc:EPC, orderID:BizTransID, nodeStep:BizStepID,
action:ActionID) to involved successor node

In phase 5, messages of type upstreamEvent are being sent downstream to spread
the news on actual events taking place upstream. Each of them carries an EPCISEv-
ent object including the attached BizTransaction object which refers to the order.
It would be straightforward to only use the generated ObjectEvent objects in the
protocol since they are created at all process steps. Phase 5 is given in pseudocode
below:

• Upon capturing of event:EPCISEvent at node i:
– Send upstreamEvent(event:EPCISEvent) to the involved successor node

• Upon reception of upstreamEvent(event:EPCISEvent) by node i from a prede-
cessor:
– Capture event
– Forward upstreamEvent(event:EPCISEvent) to the involved successor node

The final phase of the communication protocol allows each node to collect up-to-
date action alternatives to make up for a particular delay. By comparing the dates of
expected and actual events that have been captured during the previous communica-
tion phases, a node can identify upstream delays; however, in order to exert control,
the node requires information about which actions can currently be taken to influ-
ence the processing of a particular order. The path of nodes between the node that
caused the delay and the node that identified the delay, we refer to as the action path
of a delay. Our protocol provides the opportunity to query the upstream network
for these action paths. Any node can initiate such a query by sending a message of
type actionsRequest to all its predecessors. This message contains three attributes:
the EPCs that the delayed event refers to, the orderID of the delayed order, and the
BizStepID of the processing step where the delay occurred. When an upstream node
receives a message of type actionsRequest, it first checks whether it has stored an
ExpectedEvent containing the EPCs in the message. If this is the case, it compares
the BizStepID with the one of its exit points. If the two BizStepIDs are not equal,
it forwards the message to all of its predecessors that are involved in the assembly
process; otherwise, the node which has caused the delay has been reached. This
node then creates a message of the type upstreamActions containing information on
all possible actions that can be taken to speed up order processing at its site and
forwards the message to its successor. If the successor is not the original requester,
it adds its own ways to deal with delays concerning this order and sends the mes-
sage to its own successor. This way the original requester ends up with a list of all
up-to-date opportunities along the action path to speed up a particular order. Phase 6
is given in pseudocode below:

• Upon reception of actionsRequest(EPCs:Set[EPC], orderID:BizTransaction, de-
layedStepID:BizStepID) by node i from successor:
– If an ExpectedEvent containing EPCs exists:

3 EPCIS-Based Supply Chain Event Management 57

· If delayedStepID equals exitStepID:
· Retrieve available speedup actions for EPCs and orderID
· Send message upstreamActions(actions) to involved successor

· Otherwise:
· Send message actionsRequest(EPCs:Set[EPC], orderID:BizTransaction,

delayedStepID:BizStepID) to all involved predecessors

• Upon reception of upstreamActions(EPCs:Set[EPC], orderID:BizTransaction,
actions:Set[Action]) by node i from a predecessor:
– If node i is the original requester:

· Evaluate and trigger actions
– Otherwise:

· Retrieve available speedup actions corresponding with EPCs and orderID
· Append these speedup actions to actions
· Send message upstreamActions(EPCs:Set[EPC], orderID:BizTransaction,

actions:Set[Actions]) to the involved successor

3.4.3 Application Layer

Having presented the protocol layer of our architecture in the previous section, we
now turn to its application layer. The application layer consists of all enterprise
systems that use the primitives of the protocol described in Sect. 3.4.2.

Capacity in the shape of production slots, warehouse space, or transportation
capacity is usually managed by a corresponding information system which forms
part of an Enterprise Resource Planning (ERP) solution. The quotation of process
durations in phases 1 and 2 of the communication protocol described in Sect. 3.4.2
thus depends on the input from those systems. The data that has to be provisioned
to the protocol includes the quotable process start dates, the identifiers of entry and
exit points of nodes in the assembly network, and the available speedup actions.
Customer facing systems such as order management provide other inputs required
for the working of the protocol. These inputs include the requested delivery date for
an order, the type of product to be assembled, and the allocated order IDs. Order
management forms part of most standard ERP solutions.

EPCs are allocated by the EPC management of an organization. When a new EPC
is created and attached to a physical object, this information needs to be published
on the protocol layer.

The application layer component of the EPCIS-based decision support architec-
ture required at each node consists of two components: A local EPCIS implemen-
tation and an SCEM application interfacing with users. Expected and actual events
are stored in local EPCIS repositories that need to be accessed by the SCEM appli-
cation to identify delays. The SCEM application also needs to have direct access to
the protocol layer in order to retrieve action paths.

Figure 3.7 depicts the general layout of the proposed architecture. The three com-
ponents Supply Chain Event Management, EPC Management, and EPC Information

58 C. Goebel et al.

Fig. 3.7 Two-layered EPCIS-based architecture for SCEM

Services have to be added to the existing ERP solution in order to let an organization
take advantage of the data being transmitted in the protocol layer.

3.5 Quantitative Comparison of Two Architecture Approaches

In the previous section we described a communication protocol based on the EPCIS
data format that allows for distributing scheduling and monitoring data within an
assembly network. Based on the data transmitted on this protocol layer, the sup-
ply chain stake holders can estimate lead times, detect delays, and obtain complete
information about speedup options. In our proposal we assumed that the commu-
nication hubs exchange event data according to established bilateral relationships
determined by the structure of the assembly network. In this section we aim at pro-
viding an objective comparison of this approach with the approach implied by the
current EPCIS specification, in particular the design of the EPCIS Discovery Ser-
vice used for identifying EPCIS repositories along the supply chain that contain data
related to a given EPC. In the following, we briefly describe the methods applied to
evaluate and compare both architectural designs, present the evaluation results, and
discuss their implications.

3.5.1 EPCIS-Based Event Sharing Using Event Pull

EPCglobal proposes a centralized query infrastructure which can be used to retrieve
all events relating to a particular EPC from all accessible EPCISs worldwide. The

3 EPCIS-Based Supply Chain Event Management 59

Fig. 3.8 Event Pull in a three-tiered supply chain

retrieval process has two steps: first, the EPCIS Discovery Service (DS) is queried
for a set of references to all EPCISs which have stored events involving a particular
EPC. Upon receiving this set, the query interfaces of all EPCIS in the set can be
directly queried for particular types of events, i.e., the range of events searched for
can be restricted to the information of interest. This architecture is well suited for
situations when there is no ex ante knowledge about the applications which will use
it. In principle, it allows for the retrieval of EPCIS events based on arbitrary search
criteria which have previously been stored in any EPCIS; therefore, it can also be
used to realize SCEM.

Figure 3.8 describes how the event-sharing mechanism works in the context of
SCEM if the architecture approach of EPCglobal is followed. The concrete steps are
as follows:

1. The last organization (C) in the supply chain places an order with its supplier (B),
which in turn places an order with its own supplier (A).

2. The first organization in the chain (A) schedules activities, translates the schedule
into expected events, stores these events in its SCEM application, and sends the
set of expected events downstream. The next organization in the supply chain
schedules its own activities relating to the order, adds the corresponding expected
events to the set, saves all events in its SCEM application, and sends the extended
set downstream and so forth.

3. Actual events are continuously captured by the EPCIS.
4. Each time an actual event is captured, the organization publishes the event’s

availability to the EPCIS DS: in this case a key-value pair of EPC and EPCIS
reference.

5. If the SCEM application wants to request the status of an EPC, it has to query the
EPCIS DS to receive the address of the relevant EPCIS repositories; alternatively,
a so-called standing query can be saved so that a foreign EPCIS does not need to
be polled continuously.

60 C. Goebel et al.

6. The addresses of the EPCIS repositories which contain event data related to the
EPCs of the order are sent to the SCEM application.

7. The SCEM applications separately and directly query each EPCIS repository
which contains relevant events.

8. The EPCIS repositories send the event data requested by the downstream SCEM
applications.

9. The SCEM applications constantly compare scheduled with actual events.

3.5.2 EPCIS-Based SCEM Using Event Push (Our Proposal)

Contrary to the approach described in the previous section, events can be exchanged
according to the bilateral relationships in a supply chain, e.g., between a manufac-
turer and its suppliers. Instead of replying to concrete requests from downstream or-
ganizations, upstream organizations can simply push all events relevant for SCEM
to them. These events can be forwarded downstream without a previous request
because upstream organizations know which events are relevant from previous in-
teraction, e.g., the sharing of schedules. In this alternative architecture, the supply
chain also serves as a type of communication network at the same time; therefore,
data only needs to be exchanged by parties which are already involved in a business
relationship.

Figure 3.9 describes the Event Push. Steps 1 and 2 are the same as Event Pull
above. The following steps are:

3. Actual events are continuously captured and immediately sent to the adjacent
downstream supply chain organization, which does the same and so forth.

4. The SCEM applications constantly compare scheduled with actual events.

3.5.3 Evaluation

In order to allow for a rigorous comparison of the two architectures, we out-
line how they work in detail in the following sections. In spite of a number
of qualitative criteria which may also have an influence on which of the pro-
posed architectures will be preferred in practice, we will focus on quantitative

Fig. 3.9 Event Push in a three-tiered supply chain

3 EPCIS-Based Supply Chain Event Management 61

measures for evaluating and comparing the two system architectures presented in
Sect. 3.5. The performance criteria we use refer to three of the most frequently
mentioned performance characteristics of information systems (Bocij et al. 2005;
Garcia et al. 2006): efficient use of network capacity, efficient use of storage, and
system reliability. These performance criteria were operationalized by quantitative
performance metrics based on the number of data objects stored along the supply
chain and the number of messages exchanged between supply chain stages.

The performance metrics depend on several parameters which characterize the
structure of and the flow of material in the supply chain; thus, the evaluation of the
EPCIS-based SCEM architecture depends on performance metrics which inherently
reflect the particularities of the supply chain context. Parameters and performance
metrics will be formally defined in the following sections.

3.5.3.1 Parameters

A supply chain is composed of at least two organizations, tiers, sites, or stages which
work together in order to provide one product to the end customer. The number of
tiers in each supply chain is denoted by l ∈ N+ \ {1}. The number of supply chains
which are monitored by the SCEM application is denoted by d ∈ N+. Note that for
the sake of simplicity, we do not consider intermeshed supply chains; intermeshed
supply chains come into existence if at least one company takes part in two different
supply chains and the organizations in these supply chains are not the same. The last
parameter which is considered in our analysis is the number of tagged components
or products which move through each supply chain during a fixed period of time.
This parameter is denoted by p ∈ N .

3.5.3.2 Efficient Use of Network Capacity

The efficient use of available network capacity is measured in terms of the absolute
number of messages exchanged during a fixed period of time. A message in this
case is defined as a temporarily enclosed and distinct exchange of data between the
information systems of different organizations. Since the two system architectures
to be compared do not differ regarding the way in which order data and schedules (or
expected events) are forwarded along the supply chain, these steps are not included
in the number of messages exchanged.

In the Event Push approach, the actual events which are forwarded along the
supply chain are the only remaining messages. The amount of messages exchanged
grows multiplicatively with the depth of supply chains; events are managed sepa-
rately for different supply chains.

Consider, for example, a supply chain involving two organizations A and B; one
message is sent from organization A to organization B when an event related to
one product has been captured by A. If the supply chain is extended by one orga-
nizational tier (Organization C), not only the captured events of B, but also those

62 C. Goebel et al.

captured by A are sent from B to C (B serves as a communication hub in this case).
The number of exchanged messages in Event Push can be calculated in the follow-
ing way:

Mpush = d ·
l−1∑

k=1

k · p = 1

2
· d · p · (l2 − l

)
. (3.1)

In the Event Pull approach, captured events are not forwarded to subsequent or-
ganizations in the supply chain but rather pulled from upstream organizations on
demand. Again, the amount of exchanged messages grows multiplicatively with the
number of supply chains the organizations are involved in. For each EPC that is
read by an organization, the corresponding key-value pair has to be published via
the EPCIS DS (step 4). In order to compare an expected event with the correspond-
ing actual event, an SCEM system has to query the EPCIS DS for the reference to an
EPCIS repository (steps 5 and 6). For each received reference, SCEM systems have
to query the EPCIS repository for the corresponding EPCIS event (steps 7 and 8);
therefore, the number of exchanged messages in the Event Pull approach is

Mpull = d ·
[
l · p + 4 ·

l−1∑

k=1

k · p
]

= d · p · (2 · l2 − l
)
. (3.2)

Event Push dominates Event Pull in terms of the number of exchanged messages.
The factor with which the push approach performs better can be calculated using
the following formula:

δM = 4 + 2

l − 1
. (3.3)

As (3.3) indicates, the number of supply chains d and products p do not play a role
when comparing the performance of the two proposed architectures with respect
to their use of network capacity: the performance advantage of Event Push only
depends on the length l of the supply chains. The number of exchanged messages
produced by Event Pull is six times higher than the one produced by Event Push for
supply chains with two participants (l = 2), 4.5 times higher for l = 5, 4.2 times for
l = 10, and approaches 4 times higher for high values of l.

3.5.3.3 Efficient Use of Storage Capacity

The efficient use of storage capacity by the two architectural approaches is measured
in terms of the number of stored data objects which refer to the flow of goods.
We initially compare the number of events saved in the EPCIS repositories at the
different supply chain participants.

In Event Push, each supply chain participant stores its expected and actual events
at its own and all subsequent sites. The number of supply chains affects this number

3 EPCIS-Based Supply Chain Event Management 63

multiplicatively. The number of saved EPCIS events can be calculated using the
following formula:

Opush = 2 · d ·
l∑

k=1

k · p = d · p · (l2 + l
)
. (3.4)

In Event Pull as proposed by EPCglobal, schedules would not be stored in the form
of events within the EPCIS repositories but would be directly exchanged by the
SCEM applications; therefore, the number of stored EPCIS events can be calculated
according to formula (3.5):

Opull = d · p · l. (3.5)

However, Event Pull requires the storage of other data objects. Both the key-value
pairs used as references in the EPCIS DS and the expected events stored separately
by the SCEM applications have to be taken into account. Thus, a fair basis for com-
parison regarding the number of stored data objects in the pull approach is given by
formula (3.6):

Ōpull = 2 · d · p · l + d · p ·
l∑

k=1

k = d · p ·
(

1

2
l2 + 5

2
l

)
. (3.6)

No approach formalized in functions (3.4), (3.5), and (3.6) is dominated with respect
to the number of stored data objects. The relative advantage of Event Push over
Event Pull (or vice versa) expressed by formula (3.7) is independent of the number
of supply chains and the number of products moving through each of them.

δO = 2 − 8

l + 5
. (3.7)

The number of stored objects is 1.2 times higher if Event Pull is used for two supply
chain participants, equal for three participants, 1.2 times smaller for five partici-
pants, 1.5 times smaller for ten participants, and approaches 2 times smaller for
high values of l.

3.5.3.4 Reliability

The number of data objects stored at each supply chain participant should not be
much above the average number in order to minimize bottlenecks and maximize re-
liability. We operationalize this performance criterion by measuring how dispersed
the required data objects are stored in the supply chain. A standard measure of sta-
tistical dispersion is the Gini coefficient G. The value of G ranges from 0 to 1; the
nearer it is to 1, the greater the dispersion. Since reliability is expected to be greater
if data objects are distributed more equally among the databases along the supply
chain, a lower Gini coefficient of the number of stored objects indicates higher reli-
ability.

64 C. Goebel et al.

Table 3.1 Comparison results

(a)

l d Gpush Gpull
Gpush−Gpull

Gpull

2 1 0.333 0.381 12.5%

2 2 0.458 0.471 2.8%

2 3 0.500 0.531 5.8%

3 1 0.444 0.438 −1.6%

3 2 0.528 0.530 0.4%

3 3 0.556 0.575 3.4%

4 1 0.500 0.478 −4.7%

4 2 0.563 0.562 −0.1%

4 3 0.583 0.598 2.5%

[· · ·]
10 1 0.600 0.577 −4.0%

10 2 0.625 0.624 −0.2%

10 3 0.633 0.641 1.2%

(b)

l d Gpush Gpull
Gpush−Gpull

Gpull

2 1 0.333 0.381 12.5%

2 100 0.581 0.673 13.7%

2 10000 0.583 0.679 14.0%

3 1 0.444 0.438 −1.6%

3 100 0.609 0.677 10.0%

3 10000 0.611 0.681 10.2%

4 1 0.500 0.478 −4.7%

4 100 0.624 0.678 8.0%

4 10000 0.625 0.681 8.2%

[· · ·]
10 1 0.600 0.577 −4.0%

10 100 0.650 0.676 3.9%

10 10000 0.650 0.677 3.9%

We do not compare the Gini coefficients of data dispersion for the two system
architectures formally since the derivation of a mathematical expression is highly
complex if feasible at all; instead, we base our analysis on a numerical comparison.
Table 3.1(a) shows the relevant results of the numerical calculations and provides
the relative performance differences between both architecture approaches. The per-
formance metrics are invariant with respect to the number of products p but depend
on the depth d of the supply chains.

When comparing the architecture approaches based on our reliability metric, sev-
eral impacts of the parameters l and d can be observed. The longer the supply chain
becomes, the smaller the advantage of Event Push compared to Event Pull. The
more supply chains there are, the greater the advantage of Event Push becomes. Ta-
ble 3.1(a) shows that if the number of supply chains is very low, the push approach
can have a higher Gini coefficient; however, as Table 3.1(b) shows, this disadvan-
tage of Event Push only persists up to parameter configuration with d = 2, i.e., it
should be negligible in realistic settings.

3.5.4 Results

Supply chain wide visibility of the flow of goods is a precondition for supply chain
event management. We have compared two possible system architectures that enable
the sharing of standardized supply chain event data with respect to a number of
quantifiable criteria. According to our evaluation, none of the approaches can be
preferred without further consideration.

3 EPCIS-Based Supply Chain Event Management 65

Table 3.2 Relative
advantage of event push over
event pull

Length of
supply chain l

Network
capacity

Storage
capacity

Reliability

2 83.3% 14.3% 14.0%

3 80.0% 0.0% 10.2%

4 78.6% −11.1% 8.2%

The parameters we used to evaluate and compare the two architectures are real-
istic variable values for length, depth, and number of products. Iyengar (2005) cal-
culated the average length of supply chains using the US Benchmark Input–Output
tables published by the Bureau of Economic Analysis. Based on data from more
than 1 million supply chains, he found that in 1997 the average US supply chain
had a length between 3.4 and 4.1 depending on the industry. Length was defined as
the number of echelons of the supply chain. On the basis of these figures, it seems
realistic to consider supply chains consisting of two to four participants.

Estimating a realistic number of supply chains, which would benefit from SCEM
applications, and the number of products flowing through these supply chains is
considerably more difficult but can be expected to be very high. Kürschner et al.
(2008) state that the EPCIS Discovery Services will have to be able to handle queries
from millions of clients. Against this background, our estimation of 10,000 supply
chains, which are monitored using an SCEM application, should be realistic.

Table 3.2 summarizes the relative advantage of Event Push compared to Event
Pull with respect to the quantitative metrics defined in Sect. 3.5.3.1 and based on
realistic parameter values. In spite of the typical trade-off between usage of data
storage and network bandwidth, Event Push appears to be the preferable architec-
tural choice for short supply chains: up to a supply chain length of three echelons,
the push approach dominates the pull approach according to our criteria.

3.6 Discussion

We have presented a business application and a corresponding information system
architecture that provide the basis for the short-term coordination of a multiorga-
nizational assembly network. The proposed system architecture was chosen for a
number of reasons, each of which can be attributed to the requirements of short-term
decision support in dynamic multiorganizational business environments, in particu-
lar system interoperability and the interorganizational management of EPC context
data.

We have chosen to address the informational needs of our business application
in order to derive concrete requirements. The concept we describe comes near to
what is known as SCEM. SCEM has found general approval in practice since it
addresses a number of pressing problems in today’s competitive environment. To
the best of our knowledge, this work represents the first attempt to suggest possible
ways to realize SCEM applications based on the EPCglobal specifications while

66 C. Goebel et al.

taking their specific requirements regarding interoperability and systems integration
in multiorganizational environments into account.

From an operational point of view, an obvious shortcoming of the proposed ar-
chitecture is that it does not address dynamic scheduling. Although it allows for or-
der cancellation, the schedule of other orders encoded in the form of ExpectedEvent
objects throughout the network cannot be changed in response to such an event. Cer-
tainly the protocol layer could be extended in order to deal with dynamic scheduling,
but it remains to be seen if such an extension is feasible in practical circumstances.
Another limitation of the architecture results from its bilateral character. Messages
are forwarded along the supply chain, i.e., if an organization in the middle of the
supply chain does not implement the protocol, our approach will not work. This
problem could be solved by a third party willing to act as a trusted communication
intermediary.

The proposed architecture supports interoperability in two ways: first, due to its
two-layered design, there is no need to standardize any components on the appli-
cation layer which facilitates the development and integration of the EPC/SCEM
components; second, one common way to describe event data and its context based
on the EPCglobal event data specification is used both for intra- and interorganiza-
tional communication.

In our application, up-to-date context data required by downstream nodes and or-
ganizations gets distributed without former request as soon as it becomes available.
This approach relieves the burden of downstream organizations from the need to
maintain a comprehensive up-to-date internal process view of other organizations.
Furthermore, ex ante knowledge of the organizational structure of the assembly net-
work is not required, which represents a crucial advantage in today’s dynamic and
complex supply chains. Synchronization of data and context is assured by design
since data and context are sent via the same communication channel.

The second research question has been whether the current proposal for the dis-
tributed system architecture of the Internet of Things is suitable for SCEM appli-
cations. Based on three quantitative criteria, we come to the conclusion that an al-
ternative approach based on the idea of pushing EPCIS events downstream could
be the preferable choice. We have also mentioned some qualitative advantages of
the latter architecture, such as taking advantage of existing business relationships
in the supply chain and not requiring a central authority for data management and
authentication which speak for Event Push.

3.7 Conclusions and Future Work

Although our quantitative measures are coarse and based on simplistic assumptions,
they provide an objective means for an initial comparison of Event Pull and Push to
realize inter-organizational SCEM.

Further research on the topic is definitely warranted: in order to make an in-
formed decision, the relative importance of different performance criteria and met-
rics will have to be determined (e.g., based on the available network and data storage

3 EPCIS-Based Supply Chain Event Management 67

capacity and on the variable costs of storing and transmitting data). Furthermore, ad-
ditional criteria and metrics should be defined to obtain a more detailed picture of
possible cost-benefit trade-offs. For instance, operational properties such as latency
and throughput could be measured and compared using supply chain simulations as
soon as implementations of the proposed architectures are available. Finally, eco-
nomic translations of the somewhat technical performance measures used in this
work have to be defined in order to enable a sound investment decision by adopters
of EPCIS-based SCEM.

We see a number of promising areas for further research on the proposed ar-
chitecture. First of all, the architectural design needs to undergo further validation.
Secondly, it needs to be extended to cope with dynamic rescheduling. The business
logic of the actual decision support system, i.e., the development of algorithms used
to optimize courses of action based on action path data, are a promising research di-
rection. Still another issue that needs to be dealt with is authentication and security.
The communication taking place on the protocol layer needs to be secured against
malicious behavior, e.g., by using dedicated public key infrastructures.

References

Atali, A., Lee, H., Özer, Ö.: If the Inventory Manager Knew: Value of Visibility and RFID un-
der Imperfect Inventory Information. In: Manufacturing and Service Operations Management
Conference, Evanston, IL (2006)

Bocij, P., Chaffey, D., Greasley, A., Hickie, S.: Business Information Systems: Technology, Devel-
opment & Management for the E-Business, 3rd edn. Prentice Hall, Upper Saddle River (2005)

Chen, F.: Information Sharing and Supply Chain Coordination. In: T. de Kok, S. Graves (eds.)
Supply Chain Management: Design, Coordination and Operation, pp. 341–421. Elsevier, Am-
sterdam (2003)

Chopra, S., Meindl, P.: Supply Chain Management. Strategy, Planning, and Operations. Prentice
Hall, Upper Saddle River (2004)

Chow, H.K.H., Choy, K.L., Lee, W.B., Chan, F.T.S.: Integration of Web-based and RFID Tech-
nology in Visualizing Logistics Operations—A Case Study. Supply Chain Management: An
International Journal 12(3), 221–234. (2007)

EPCglobal: EPC Information Services (EPCIS), Final Version 1.0.1 (2007)
EPCglobal: Object Naming Service Standard Version 1.0.1. http://www.epcglobalinc.org (2008a)
EPCglobal: Tag Data Standard Version 1.4 (2008b)
EPCglobal: The Application Level Events (ALE) Specification. Version 1.1 Part I: Core Specifica-

tion (2008c)
EPCglobal: The EPCglobal Architecture Framework, Version 1.3 (2009)
Floerkemeier, C., Roduner, C., Lampe, M.: RFID Application Development with the Accada Mid-

dleware Platform. IEEE Systems Journal 1(2), 82–94 (2007)
Garcia, J.D., Carretero, J., Garcia, F., and Calderon, J.F., Singh, D.E.: A Quantitative Justification to

Partial Replication of Web Contents. In: Computational Science and Its Applications, pp. 1136–
1145. Springer, Berlin (2006)

Gaukler, G.M.: RFID in Supply Chain Management. Ph.D. thesis, Stanford University (2005)
Hribernik, K.A., Schnatmeyer, M., Plettner, A., Thoben, K.D.: Application of the Electronic Prod-

uct Code EPC to the Product Lifecycle of Electronic Products. In: EU RFID Forum 2007,
Brussels, Belgium (2007)

Iyengar, D.: Effect of Transaction Cost and Coordination Mechanisms on the Length of the Supply
Chain. Ph.D. thesis, University of Maryland (2005)

http://www.epcglobalinc.org

68 C. Goebel et al.

Kürschner, C., Condea, C., Kasten, O., Thiesse, F.: Discovery Service Design in the EPCglobal
Network—Towards Full Supply Chain Visibility. In: Proceedings of the Internet of Things
2008, Zürich, pp. 19–34 (2008)

Lee, H.L., Padmanabhan, V., Whang, S.: Information Distortion in a Supply Chain: The ‘Bullwhip
Effect’. Management Science 43(4), 546–558 (1997)

Michael, K., McCathie, L.: The Pros and Cons of RFID in Supply Chain Management. In: Inter-
national Conference on Mobile Business, Sydney, pp. 623–629. Sydney, Australia (2005)

Niederman, F., Mathieu, R.G., Morley, R., Kwon, I.W.: Examining RFID Applications in Supply
Chain Management. Communications of the ACM 50(7), 92–101 (2007)

Otto, A.: Supply Chain Event Management: Three Perspectives. International Journal of Logistics
Management 14(2), 1–13 (2003)

Simatupang, T.M., Sridharan, R.: An Integrative Framework for Supply Chain Collaboration. The
International Journal of Logistics Management 16(2), 257–274 (2005)

Trappey, A.J.C., Lu, T.H., Fu, L.D.: Development of an Intelligent Agent System for Collaborative
Mold Production with RFID Technology. Robotics and Computer-Integrated Manufacturing
25(1), 42–56 (2009)

VICS. V.I.C.S.A.: Collaborative Planning, Forecasting and Replenishment. http://www.cpfr.org
(1998)

Waller, M., Johnson, E.M., Davis, T.: Vendor Managed Inventory in the Retail Supply Chain.
Journal of Business Logistics 20(1), 183–203 (1999)

http://www.cpfr.org

	EPCIS-Based Supply Chain Event Management
	Introduction
	EPCglobal Network
	EPCglobal Architecture Framework
	Electronic Product Code
	EPC Information Services

	Business Application
	Decentralized EPCIS-Based SCEM
	Data Layer
	Protocol Layer
	Application Layer

	Quantitative Comparison of Two Architecture Approaches
	EPCIS-Based Event Sharing Using Event Pull
	EPCIS-Based SCEM Using Event Push (Our Proposal)
	Evaluation
	Parameters
	Efficient Use of Network Capacity
	Efficient Use of Storage Capacity
	Reliability

	Results

	Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

