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Summary In this chapter we argue that an intelligent program development en-
vironment that proactively supports the user helps a mainstream programmer to
overcome the difficulties of programming multicore computing systems. We pro-
pose a programming environment based on intelligent software agents that enables
users to work at a high level of abstraction while automating low-level implemen-
tation activities. The programming environment supports program composition in
a model-driven development fashion using parallel building blocks and proactively
assists the user during major phases of program development and performance tun-
ing. We highlight the potential benefits of using such a programming environment
with usage scenarios. An experiment with a parallel building block on a Sun Ul-
traSPARC T2 Plus processor shows how the system may assist the programmer in
achieving performance improvements.
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10.1 Introduction

While multicore processors alleviate several problems that are related to single-core
processors, known as memory wall, power wall, or instruction-level parallelism
wall, they raise the issue of the programmability wall. On the one hand, program
development for multicore processors, especially for heterogeneous multicore pro-
cessors, is significantly more complex than for single-core processors. On the other
hand, programmers have been traditionally trained for the development of sequen-
tial programs, and only a small percentage of them have experience with parallel
programming.

Additionally, there is a portability problem. In the past programmers could trust
that compilers succeeded to pass the increased computing power of next proces-
sor generations without high porting effort. This was due to relatively homogeneous
processor designs even from different hardware vendors with instruction level paral-
lelism (ILP) supported at hardware level. The architectural change to multicore pro-
cessors, however, affects the programmer in several ways. On the one hand, thread
level parallelism (TLP) must be exploited effectively and efficiently. In general, this
cannot be done automatically by a compilation system but requires assistance by the
programmer. On the other hand, multicore architectures differ significantly requir-
ing that applications must be adapted to the various platforms.

While in the past only a relatively small group of programmers interested in
High Performance Computing (HPC) was concerned with the parallel programming
issues, the situation has changed dramatically with the appearance of multicore pro-
cessors on commonly used computing systems. Traditionally parallel programs in
HPC community have been developed by heroic programmers1 using a simple text
editor as programming environment, programming at a low-level of abstraction, and
doing manual performance optimization. It is expected that with the pervasiveness
of multicore processors parallel programming will become mainstream, but it can-
not be expected that a mainstream programmer will like to become an HPC hero.

In this chapter we argue that the programming productivity of multicore2 sys-
tems is increased if an intelligent programming environment would be available
that (1) enables the programmer to work during the process of program develop-
ment at a higher level of abstraction using domain-specific modeling languages in a
model-driven development fashion and (2) provides context-specific knowledge and
performs iterative time-consuming tasks involved in program development in a semi
automatic/autonomic manner (for instance, performance tuning). We propose a par-
allel programming methodology that combines model-driven and agent-supported
program development with the use of high-level parallel building blocks. The goal
is to increase programming productivity without restricting flexibility and creativ-
ity, allowing the programmer to fully use his/her intellectual capacity for software

1Andrea: “Unhappy is the land that breeds no hero." Galileo: “No, Andrea: Unhappy is the land
that needs a hero." – Bertolt Brecht in Life of Galileo.
2Although some authors have introduced the term many-core to denote multicore systems with
many cores (i.e., 100 or more), we will stick to the more established term multicore. We do not see
a need to make a distinction between multi and many.
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design at model-level. Although software development is considered to be an art,
we anticipate that there are many implementation activities that can be performed
more automatically/autonomically.

The rest of this chapter is organized as follows. An overview of the recent de-
velopments in parallel computing systems is given in Sect. 10.2. Section 10.3 de-
scribes our vision for programming of multicore computing systems. We illustrate
our approach experimentally in Sect. 10.4. Section 10.5 reviews the state-of-the-
art in programming multicore computing systems. We conclude the paper with a
summary and future work in Sect. 10.6.

10.2 Recent Developments in Parallel Computing Systems

In this section we provide an overview of the recent developments in parallel com-
puting systems focusing on (1) parallel and distributed programming, (2) compila-
tion techniques, and (3) multicore architectures.

10.2.1 Parallel and Distributed Programming

The dominating programming paradigm for parallel systems is based upon standard
sequential programming languages, augmented with message passing constructs.
In particular the standardized Message-Passing Interface (MPI) is widely used for
parallel programming. In this low-level model the user has to deal with all aspects
of parallelization, distribution of data and work to processors, and communication
and synchronization by means of explicit message passing operations. This leads to
high cost for software and error-prone programs that are difficult to write, reuse, and
maintain. On smaller-scale Symmetric Multiprocessing (SMP) systems, the use of
low-level multithreading libraries, such as POSIX threads, faces similar problems.

Despite significant research efforts, automatic parallelization, i.e., taking a serial
program written in a mainstream language and automatically generating an exe-
cutable program capable of taking advantage of parallel hardware, has not been
successful, either for shared-memory or distributed-memory systems, and remains
an elusive goal. Data-parallel languages such as High Performance Fortran (High
Performance Fortran Forum 1997) provide high-level support for controlling lo-
cality by associating distributions with arrays while delegating the generation of
explicit message passing code to the compiler. Despite some successes, these lan-
guages have not been broadly accepted. OpenMP raises the level of abstraction
for multithreaded programming but lacks constructs for controlling data locality
and is thus constrained to small-scale, homogeneous shared-memory systems. Par-
titioned Global Address Space (PGAS) languages like Co-Array Fortran (Numerich
and Reid 1998), Unified Parallel C (UPC Consortium 2005), and Titanium (Yelick
et al. 1998) have not succeeded in breaking the dominance of low-level message-
passing and thread programming either. More recent efforts in the context of the US
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High Productivity Computing Systems (HPCS) program, characterized by putting
an increased focus on programmability and not just performance, have resulted in
the definition of new languages including Fortress (Allen et al. 2008), Chapel (Cray
2008), and X10 (Charles et al. 2006) that address the challenges of programming
large-scale (PetaFlop/s) systems. So far, however, none of these languages is seeing
user-uptake beyond a rather limited research community.

With the emergence of multicore computing systems consisting of hundreds of
processor cores in the near future, the challenge of parallel programming will not
be restricted to the HPC community any more but will extend to the broad software
industry. Single-chip multicore systems will provide performance levels accommo-
dating applications previously only available on clusters and parallel systems and
will give rise to new exciting applications in the embedded and mobile computing
domains. However, since emerging heterogeneous multi-core systems provide dif-
ferent types of cores including general-purpose cores, GPU-like cores and special-
ized accelerators, the challenges of efficient programming and of achieving porta-
bility across different architectures and architecture generations will be aggravated
compared to traditional parallel systems.

A variety of technologies and tools for programming heterogeneous multicore ar-
chitectures have been made available recently by hardware vendors including TBB
(Threading Building Blocks) (Intel Corp. 2009), CUDA (NVIDIA Corp. CUDA
Zone 2009), Cell SDK (IBM 2008), and others. All these technologies are charac-
terized by an extremely low level of abstraction, forcing programmers to take into
account a myriad of architecture details, usually beyond the capabilities of average
users. Programs relying on these technologies are not portable to other multicore
architectures. Although recently with OpenCL (Khronos OpenCL Working Group
2009) and MCAPI two proposals for standardizing parallel programming of hetero-
geneous multicore systems have been announced, these standards primarily address
portability issues but are still at a very low-level of abstraction.

Some of the programming challenges that are posed by emerging heterogeneous
manycore architectures are similar to those faced in programming large-scale dis-
tributed computing systems (Hall et al. 2008), which are often referred to as Grid
(Foster and Kesselman 2003). In the context of Grid computing systems, applica-
tion developer usually should deal with diversity of programming models and lan-
guages, computation partitioning, data flow and dependencies among the applica-
tion components, legacy code and third-party software components, and diversity
of computational resources. Furthermore, application components are usually ex-
ecuted by heterogeneous computational resources that are not known prior to ex-
ecution. Usually, Grid applications are expressed as workflows, and a workflow
planning/optimization system maps workflow components to available resources for
execution (Taylor et al. 2006).
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10.2.2 Compilation Techniques

Heterogeneous multicore parallel architectures are typically shipped with ANSI C
compilers for each type of core, and by default it is the programmer’s responsibility
to write separate programs for each core, plus glue code so that these programs can
interact. Advanced compilation techniques aiming to avoid this manual effort tend
to be tied into parallel programming systems, where language extensions are used to
indicate where to parallelize and to demarcate code into portions for which distinct
compilation strategies are appropriate.

Sequoia (Fatahalian et al. 2006) (Stanford University) provides a high-level ab-
straction for distributing tasks over multiprocessor systems with hierarchical mem-
ory, implemented for the Cell BE processor and for multicore x86 clusters. Efficient
scheduling of data-movement is eased by requiring the programmer to specify a pri-
ori the working set required by a parallel task. Distribution of data across the mem-
ory hierarchy is made efficient via a sequence of compiler optimizations (Knight et
al. 2009) and via so-called tunable parameters which may be adjusted by the user.
A similar mechanism for specifying data usage upfront is used by CellSs (Barcelona
Supercomputer Center) (Perez et al. 2007). PetaBricks provides an autotuning com-
piler and a programming language that can express multiple algorithms for solving
a specific problem and exposes algorithmic choices to compiler (Ansel et al. 2009).

OpenMP (Chandra et al. 2000) has been applied to heterogeneous multicore with
an implementation for the Cell processor. The IBM XLC compiler (IBM XL C/C++
2009) implements a large part of the standard, using a sophisticated suite of op-
timizations targeting both the PPE and SPE cores (Eichenberger et al. 2006). The
Codeplay Sieve C++ language (Lindley 2007) uses the concept of delayed side-
effects to ease dependence analysis, making automatic parallelization of C++ more
tractable for C++ software. The Sieve system exploits parallelism via speculative ex-
ecution and provides mechanisms to support common parallel patterns (Donaldson
et al. 2007). Sieve C++ has been shown to be portable across homogeneous and het-
erogeneous architectures, with implementations for multicore x86, the Ageia PhysX
(AGEIA Technologies 2009) accelerator card, and the Cell processor.

Specifying data movement explicitly via intent qualifiers, as in Sequoia and
CellSs, is suitable for HPC applications over regular data sets but comes at the ex-
pense of expressiveness. On the other hand, while programming architectures like
Cell via OpenMP or Sieve C++ is more flexible, since the data set required by a task
is implicit in the way data is manipulated, programs in these languages are harder
to optimize. Recent research into decoupled access/execute specifications (Howes
et al. 2009) aims to provide the best of both worlds, by decoupling the execution
of a kernel from its access pattern, via programmer-specified access functions. Ini-
tial experiments with the access/execute model involve predefined transformations
based on common data access patterns; in principle these transformations can be au-
tomated via compiler support based on the polyhedral model (Pouchet et al. 2007).

Recent advances in programmable GPU architectures have led to widespread in-
terest in the use of GPUs for scientific programming. Programming GPUs for scien-
tific applications (Owens et al. 2007) has usually been performed using graphics lan-
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guage such as OpenGL (Shreiner et al. 2005) and more recently using stream com-
puting languages such as CUDA (NVIDIA Corp. CUDA Zone 2009) and Rapid-
Mind (RapidMind corp. 2009). More recently, approaches based on familiar high-
level languages such as C and Fortran have been proposed (Bodin and Bihan 2009).
These approaches are directives based, either new ones (Bodin and Bihan 2009) or
extension of the OpenMP standard (Chandra et al. 2000). Directives specify com-
putation to be offloaded on the GPU. Parallel loop nests are translated into one of
the target GPU-specific programming language. These approaches are very new,
and there are still many issues related to performance tuning. These high-level ap-
proaches are the most promising for heterogeneous multicore since they help to
avoid multiprogramming and to allow the maintenance of a unique source code.

10.2.3 Multi-Core Architectures

For the last 30 years, the makers of General Purpose (GP) CPUs have leveraged
continuous improvements in silicon process technology along two axes: the ever
decreasing feature size (as described by Moore’s Law of 1965) allowed building
ever more complex logic into their CPUs, and the transistors could be driven at
ever lower voltages and higher frequencies. The former has led to the dominance
of just a few advanced highly pipelined, multiscalar processor architectures with
out of order execution capability; the latter allowed one to raise clock frequency
and thereby CPU performance up to about 3 GHz. Application software developers
profited enormously from both trends, since performance improvements were ex-
pected to happen automatically at the cost of at most a recompilation, and there was
no need to port and optimize applications to many different architectures.

Since about 2001, two significant trends are reshaping the whole computer
ecosystem: the traditional CPU evolution did hit the now proverbial “power wall,”
meaning that further increases in clock speed could only be achieved by dissipat-
ing disproportionate amounts of power and were therefore no longer feasible, and
special purpose architectures start to rival GP CPUs in the performance/power and
performance/cost metrics. Intel’s and AMD’s answer to the “power wall” are the
current line of multicore CPUs that derive their performance from up to eight com-
plex, independent execution units (cores), and no longer from increases in clock
frequency.

The need for improvements in power and cost effectiveness is also driving a re-
naissance of architectures that are tailored to special computational models and use
massive parallelism to surpass GP CPUs for these—prime examples are NVIDIA’s
or AMD’s GPUs that combine hundreds of very simple compute units into a very
powerful SIMD parallel system, and FPGAs that can be field programmed to per-
form complex data transformations such as en/decryption and media format conver-
sions at extremely high speeds. These systems need a GP host processor to run the
OS and most applications and are coupled to it by a bus interconnect.
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Today, explicitly parallel multicore CPUs have taken over the market (90% of all
Intel CPUs sold in 2008 had multiple cores), and novel, massively parallel acceler-
ators are making significant inroads. This is not restricted to the high-performance
segment—laptop computers offload part of the GUI processing to their GPUs (Ap-
ple Macbooks), and low-power parallel accelerators are being used for embedded
systems (e.g., for media format conversions or software defined radio). In effect, the
era of heterogeneous multicore platforms is already on us.

Today’s systems exhibit heterogeneity mainly between the host CPU(s) and the
accelerator(s): instruction set and performance characteristics are very much dif-
ferent, and there is usually no shared memory between the components. A typical
example is a workstation that combines two Intel Nehalem CPUs with one to four
NVIDIA Tesla accelerators. Applications need to be aware of the different capabili-
ties of the CPU vs. the GPU cores, must use different methods to write the respective
parallel code components, and have to explicitly manage the data transfer between
CPUs and GPUs. Running such an application in an efficient way requires a smart
runtime system that optimizes scheduling according to data placement, resource
(core) availability, and performance.

On the general purpose CPU side, the future will certainly see further growth
in the number of cores: in 2006, Intel has demonstrated the 80 core Polaris chip,
Sun has announced a 16-core “Rock” UltraSPARC processor for 2009 availability,
and Intel has published their “Larrabee” many-core architecture (Seiler et al. 2008)
which is to scale to dozens of cores. A common theme here is to forego some of
the advanced architecture features (such as out of order execution) to reduce the
complexity and die size of each core and use the “headroom” to both introduce high-
performance SIMD compute units per core and increase the core count at the same
time. These “small and nimble” cores can deliver great performance for applications
that are adapted to them (like graphics processing)—they will perform worse than
conventional cores for many nonadapted programs. Thus, designers of future CPUs
face a difficult decision: should they go the “all small core” approach which will
maximize peak performance, stick with the complex cores that run a wide variety of
(nonoptimized) codes well, or create heterogeneous CPUs that combine both kind
of cores. Today, it is too early to tell which evolution path the dominating CPU
vendors will be taking. A GP CPU that combines different cores remains a distinct
possibility. In the embedded systems space, MIPS-based systems have gone up to
64 cores already, and ARM is joining the multicore bandwagon.

The accelerator field is evolving very quickly; GPUs push the number of process-
ing elements and the functionality of them at the same time, thus increasing peak
performance and extending their reach from pure SIMD data parallel kernels in the
direction of task level or functional parallelism. NVIDIA’s recent communications
and Intel’s entry into the graphics market with the Larrabee architecture provide am-
ple evidence here. A second line of evolution concerns the way of connecting host
CPUs with the GPU: higher performing bus connections (like PCI Express 3.0),
cache coherent interconnects like Intel’s QPI and AMD’s Hypertransport, and fi-
nally the inclusion of graphics processing elements into the host CPU (as announced
from Intel for their Nehalem desktop chips). Combined, these trends will make fu-
ture GPUs much more similar to the CPUs that they compete with and alleviate the
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large performance disparity that we see today between local memory and the bus
interconnects.

10.3 Intelligent Programming of Multi-Core Systems

In this section we outline our methodology and the corresponding environment for
programming multicore systems.

10.3.1 Methodology

Our parallel programming methodology combines model-driven agent-supported
program development with the use of high-level parallel building blocks (PBB). We
propose to address the complexity of programming multicore systems as follows:

• Raise the level of abstraction at which the programmer performs most of the
activities during the process of software development, by using a model-driven
development approach combined with PBBs;

• Support the programmer during the software development, by using intelligent
software agents for providing context-specific knowledge and automation of iter-
ative activities involved in software development and optimization.

10.3.1.1 Model-Driven Development (MDD)

MDD (Model Driven Architecture 2009) is a software development method that
advocates to first model a program and then build the program code. It is inspired
by mature engineering disciplines such as civil engineering, where before an arti-
fact (for instance, a bridge) is built, the corresponding model is first developed. In
software engineering the models are usually described graphically using the Unified
Modeling Language (UML). The model should preferably describe the program at
an abstraction level that is independent from a specific platform. Models may be
used to study the functionality, and the performance of the program before the pro-
gram code for a specific platform is developed. MDD has the potential to reduce
software development time and complexity, by using tools for automatic model-
to-code transformation and thereby reducing the programmer’s effort for manual
coding. Since multicore architectures differ significantly from each other, a signifi-
cant effort is required to adapt (that is, port) programs to the various platforms. Since
MDD captures the program logic as a platform-independent model, program models
remain largely unaffected from the changes in processor architectures. In our previ-
ous work we have developed an extension of UML for the domain of performance-
oriented parallel/distributed programs (Pllana et al. 2002) and the corresponding
tool-support Teuta (Pllana et al. 2004). Teuta allows one to build models of parallel
programs, enrich them with performance-related information, and generate various
textual representations (such as XML or C++).
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10.3.1.2 Parallel Building Blocks

The PBBs are inspired from research in programming concepts such as skeletons
(Alba et al. 2002; Alind et al. 2008; Cole 2004) or dwarfs (Asanovic et al. 2006).
Basically, PBBs may be thought of as program-independent generic programming
units that support software reusability. A set of parameters is used to specify the
functionality of a PBB in the context of a certain program. For instance, as pa-
rameter may serve the program-specific code (that is, the code that PBB requires
to perform the expected functionality in the context of a certain program). PBBs
may be implemented, for instance, using C++ Templates or Java Generics. Paral-
lelism is described within the PBB, and therefore the programmer is not exposed
directly to the parallel programming complexity (such as dealing explicitly with
the communication and synchronization among processing units or deadlock avoid-
ance). Commonly various combinations of PBBs may be used for solving a certain
problem. In the context of programming environments, PBBs lend themselves to
an increased level of automation of various activities such as program transforma-
tion, code generation, performance optimization, and resource usage optimization.
In our previous work, in the context of MALLBA project (Alba et al. 2002), we
have developed a library of parallel skeletons (such as branch and bound, metropo-
lis, simulated annealing, genetic algorithms, or tabu search) for solving various
optimization problems.

10.3.1.3 Intelligent Software Agents

Software agents are programs that are reactive, proactive, autonomic, and so-
cial (Wooldridge 2002). Software agents that have learning and adapting abilities
are known as intelligent software agents. Reactiveness indicates the ability to re-
spond adequately to changes in the context in which it operates. A proactive pro-
gram performs activities to achieve a specific goal based on its initiative (it does not
wait passively for a request of another entity to perform a certain activity). Autonomy
indicates the ability to perform activities independently of user intervention in order
to achieve a specific goal. Social programs are able to communicate and coordinate
activities with other programs (that is, agents). A program is considered intelligent
if it is able to learn from the previous experience (for instance, via trial-and-error or
generalization) and is able to adapt accordingly to the perceived changes in the en-
vironment. We have a vision about several intelligent software agents cooperating
with each other and the programmer during the process of program development.
Our vision is based on the idea that the programming environment should be bet-
ter at helping the programmer as a more active partner. In our previous work, in
the context of the AURORA project (AURORA 2009), we have used intelligent
software agents to automate systematic performance analysis for parallel and dis-
tributed programs. Although software development is considered to be an art, we
anticipate that there are many implementation activities that can be performed more
automatically/autonomically using intelligent software agents.

In the following subsection we propose a programming environment for multi-
core computing systems that uses MDD, PBBs, and intelligent software agents.
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10.3.2 Programming Environment

The proposed programming environment comprises a set of intelligent software
agents that may help to automate the programming process at several levels. Some
agents will advice the composition of programs using PBBs, while others will guide
the exploration of different possible parallel strategies, load balancing, and perfor-
mance optimization (see Fig. 10.1).

The programming environment provides the programmer with information feed-
back useful in the process of developing a program for a multicore system. This
information is collected at several levels, from program composition to information
about resource usage (such as the cache behavior) obtained by execution or simu-
lated execution. Also, information is exchanged between the agents at the system
level in an automated manner continuously looking for ways of obtaining and im-
proving knowledge about the performance of the program being developed. In this
way, a parallel program with good performance can be developed with high pro-
grammer productivity.

In what follows in this section we highlight the major program development and
tuning phases: (1) high-level program composition, (2) design space exploration,
and (3) resource usage optimization.

10.3.2.1 High-level Program Composition

This phase deals with the composition and coordination of PBBs. The granularity
of PBBs may range from frequently used programming idioms to larger patterns
or dwarfs (Asanovic et al. 2006). High-level descriptors are used to capture the
main parallelization aspects of PBBs and serve as interface to agents in the design

Fig. 10.1 Agent-supported program development. The programming environment comprises mul-
tiple intelligent software agents that support program composition, design space exploration, and
resource usage optimization
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Fig. 10.2 UML representation of a PBB

space exploration phase. The user composes the program graphically using a UML
extension for multicore systems.

The UML may be extended by defining new modeling elements, stereotypes,
based on existing elements (also known as base classes or metaclasses). Stereotypes
are notated by the stereotype name enclosed in guillemets «Stereotype Name».
Figure 10.2 depicts the graphical representation of a PBB. «PBB_Type» indicates
the kind of PBB. With a PBB is associated the corresponding parameterized code
and performance model. Parameters determine the behavior of the PBB instance in
the context of a specific program.

The programming environment assists the user proactively during the program
composition. For instance, while the user is loading some old BLAS code for some
dense linear algebra operations, the composer agent interrupts and suggests using
the PBB for dense linear algebra tailored for efficient execution on multicore sys-
tems. Additionally, it may offer a list of other PBBs that often are used together with
this one, also presenting typical compositional patterns in a graphical way.

10.3.2.2 Design Space Exploration

High-level discrete-event simulation is used for rapid model-based performance
evaluation of programs, using a hybrid method that combines mathematical mod-
eling with high-level discrete-event simulation (Pllana et al. 2008).

For instance, after the completion of the program composition phase, the pro-
gramming environment may suggest to the user doing some high-level rapid design
space exploration. The estimated performance of various possible program imple-
mentations is presented by a visualization agent. While the user is studying the
graphs and gets some ideas for improvement, the programming environment is also
analyzing the results and suggests changing some of the parameters in one of the
PBBs (such as the parallelization granularity) and performing some more detailed
simulations for getting better knowledge of the performance that can be obtained
with different task allocation and scheduling policies.

10.3.2.3 Resource Usage Optimization

Instruction-level simulation is used for more detailed studies of the utilization of
shared resources such as shared on-chip memory and off-chip bandwidth. For in-
stance, in Dybdahl et al. (2006) an efficient utilization of the shared cache re-
sources has been found to have great affect on multicore performance. This is inte-
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grated with the use of performance counters. A performance monitoring agent pro-
vides information about the state of the system (resource characteristics and usage).
Instruction-level simulation is time consuming (may take several hours or days) and
therefore should run in background. When finished, the findings will be propagated
upwards back to the higher-level performance models, as a model calibration pro-
cess. It is a systematic way of bringing performance information from the execution
(or simulated execution) environment back to the development environment. Please
note that this kind of optimization is architecture-dependent.

For instance, the user may get hints from the programming environment for
changes that will improve performance of the program. The programming envi-
ronment may offer some detailed simulations at the instruction level and helps the
user to select those simulation experiments that are likely to be the most relevant.
For instance, if higher-level simulations show that some of the processor cores were
waiting for data for long periods, a more detailed study of the on-chip shared mem-
ory resources should be done.

10.4 Example

In this section we illustrate how best practices from HPC, combined with agent-
based program development, offer new opportunities to obtain efficient solutions.

PBBs allow a programmer to specify various parallelization strategies together
with the code and a first guess for individual parameters which are subject to the
tuning process. This follows our assumption that only semi-automatic paralleliza-
tion is reasonable. The programmer specifies the main strategies for parallelizing
the code, and the system explores this restricted optimization space to generate ef-
ficient code. Two factors back up this approach. First, rich analysis work has been
done in the past by the HPC community, including the authors institutions (Vienna
Fortran Compilation System, Benkner et al. 1996), which can be reused. Second,
in the past the strong emphasis on the target-code performance and manual perfor-
mance tuning resulted in low programming productivity. The increasing importance
of development of economically viable software nowadays reveals opportunities
for semiautomatic parallelization, even at the price of achieving lower performance
compared to a hand-tuned version.

In our example we use as hardware platform the Sun UltraSPARC T2 Plus, co-
denamed Niagara-2, multicore processor (shown in Fig. 10.3(a)) which is an SMP
extended version of the T2 allowing multiple Chip-level Multithreading (CMT) pro-
cessors to be used within a single system. The T2 Plus was presented in April 2008
and has up to 8 cores per processor with 8 hardware threads per core resulting in a
maximum number of 64 threads per processor or logical CPUs as reported by the
operating system. T2 Plus offers only poor support for instruction-level parallelism
emphasizing thread-level parallelism. Two integer units are provided per core with
four threads sharing one unit, and one FPU is provided per core with all eight threads
sharing it. The L1 data cache has 8 KB per core, and the on-chip L2 cache offers
4 MB which are shared between the cores.
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(a) Sun UltraSPARC T2 Plus.

(b) Performance improvements.

Fig. 10.3 Processor block diagram and optimization results

In what follows in this section we present an example scenario to illustrate the
agent-supported software development cycle. Different forms of PBBs are possible,
but in the simplest case a PBB can be some loop nest together with data layout and
work distribution annotations. Consider, e.g., an application written in C consist-
ing of a series of PBBs with one of them denoting a floating point matrix–matrix
multiplication, i.e., C[i,j] = C[i,j] + A[i,k] * B[k,j]with loop nest
(i, j, k). As parallelization strategy, the programmer specifies that the elements of
result matrix C should be assigned to processor cores in a row-wise manner and
calculated by them. Since the target architecture is a Sun T2 Plus with 8 cores and
8 FPUs, the programmer specifies that the rows shall be assigned to 8 threads.

When submitted to the design space exploration agent and its analysis framework
(cf. Benkner et al. 1996; Benkner 1999), the framework detects poor spatial cache
locality and performs loop interchange resulting in loop nest (i, k, j). Then the code
is split up in 8 threads, as suggested by the programmer, assigned to the 8 cores
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of T2 Plus, and executed. The monitoring component of the resource usage agent
reveals low memory bandwidth utilization and low FPU utilization for this PBB and
reports this feedback information to the agent. The resource usage agent is aware of
the hardware characteristics of T2 Plus and knows about the hyper-threading (HT)
technology provided by this kind of architecture with up to 8 hardware threads.
Therefore the agent suggests to use HT technology to increase FPU utilization and
reports to the design space agent to explore possibilities to increase the number
of threads. Consequently, the design space agent proposes to assign the rows of
result matrix C to 2, 4, 6 hardware threads per core resulting in a total number
of 16, 32, 48 threads, respectively. Three versions are generated and submitted for
execution. Moreover, feedback information is used by the compilation system to
perform further optimizations (cf. Gupta and Mehofer 2002).

The key point is that this time-consuming tuning task is done automatically by
the system and not by the programmer. The different versions are automatically gen-
erated and run on T2 Plus, and the monitoring results are reported back to the agents
and the programmer. Figure 10.3(b) shows the normalized execution times (longest
execution time denoted by time unit 1.0) for the different versions with 1, 2, 4, 6
threads per core and the improvements achieved by the optimizations taking pro-
grammer annotations and hardware characteristics into account. The performance
improvement of loop interchange is considerable and amounts to 26% for 1 thread
per core, approximately 20% for 2 and 4 threads per core, and 66% for 6 threads per
core. The performance improvement for increasing the number of threads per core to
deal with memory latency is even more significant. The performance improvement
assigning 2 and 4 threads to one core was for both loop nest versions approximately
a factor of 1.7 and 2.5, respectively. For 6 threads per core, we got for (i, j, k) loop
nest a factor of 2.8 and for (i, k, j) loop nest up to 3.7. Based on this experience, the
resource usage agent classifies increasing the number of threads to deal with mem-
ory latency as valuable optimization which has proven beneficial for this processor.
The programming environment may suggest this kind of optimization for similar
processor architectures as well.

10.5 Related Work

An increasing number of research projects is addressing the challenge of program-
ming multicore computing systems. The Habanero project (Habanero Multicore
Software Project 2009), which started in Fall 2007 at Rice University, aims to de-
velop languages and compilers for the development of portable software for multi-
core systems. The SALSA project (Service Aggregated Linked Sequential Activities
2009) at Indiana University is investigating the use of services as building blocks
for composing parallel data-mining applications based on the workflow paradigm.
Linked Sequential Activities in SALSA, which are conceptually based on Commu-
nicating Sequential Processes of Hoare, are used to build services. The Berkeley
View (Asanovic et al. 2006) project investigates the influence of multicore proces-
sors in applications, hardware, programming models, and systems software for par-
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allel computing. The Berkeley View proposes to use a set of dwarfs (a dwarf de-
fines a specific computation and communication pattern) for evaluation of parallel
programming models. The recently established Pervasive Parallelism Laboratory
(PPL) (Pervasive Parallelism Laboratory 2009) at Stanford University is investi-
gating future parallel computing platforms. PPL is supported by six computer and
chip makers that are convinced that their product sales may decline if software is
not able to use effectively the new multicore-based hardware. SWARM (Bader et
al. 2007), developed at Georgia Institute of Technology, is a parallel programming
framework that provides a collection of primitives for programming multicore pro-
cessors. The Programming Environments Laboratory (PELAB) (Programming Envi-
ronments Laboratory 2009) at Linköping University is investigating the applicability
of round-trip engineering techniques to parallelization of sequential programs. The
Cell Superscalar (CellSs) (Perez et al. 2007) project at Barcelona Supercomputing
Center focuses on parallelization of sequential programs for Cell BE processor. The
CellSs parallelization involves the functional decomposition, code annotation, and
the use of a source-to-source compiler. The IT Research Division of the NEC Labo-
ratories Europe (Wagner et al. 2008) is investigating the use of work stealing con-
cept to achieve load balancing. Performance Portability and Programmability for
Heterogeneous Many-core Architectures (PEPPHER) (PEPPHER 2009) is a related
project that is funded under the Seventh Framework Programme of the European
Commission. PEPPHER aims at providing a unified framework for programming
architecturally diverse, heterogeneous manycore processors to ensure performance
portability.

In contrast to the related work, we propose an intelligent programming environ-
ment that proactively supports the user during major phases of program development
and performance tuning by providing context-specific knowledge and performing
iterative time-consuming tasks involved in program development in a semi auto-
matic/autonomic manner.

10.6 Conclusions

We have outlined an intelligent programming environment, which proactively sup-
ports the user during high-level program composition, design space exploration, and
resource usage optimization. We have highlighted the potential benefits of using
such a programming environment with usage-scenarios.

We have observed that even for a rather simple parallel building block such as
matrix multiplication, the exploration of the parameter space may be, on one hand,
time prohibitive, but, on the other hand, there is a big potential for performance
improvement. The example scenario described a first and manageable step toward
an intelligent program environment for multicore architectures. Several projects at
the authors’ home institutions are currently pursued toward the realization of such
an intelligent programming environment for multicore computing systems.
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