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Abstract The relationship between interindividual variation in our genomes and variation
in our susceptibility to common diseases is expected to be complex with multi-
ple interacting genetic factors. A central goal of human genetics is to identify
which DNA sequence variations predict disease risk in human populations. Our
success in this endeavour will depend critically on the development and imple-
mentation of computational intelligence methods that are able to embrace, rather
than ignore, the complexity of the genotype to phenotype relationship. To this
end, we have developed a computational evolution system (CES) to discover ge-
netic models of disease susceptibility involving complex relationships between
DNA sequence variations. The CES approach is hierarchically organized and is
capable of evolving operators of any arbitrary complexity. The ability to evolve
operators distinguishes this approach from artificial evolution approaches using
fixed operators such as mutation and recombination. Our previous studies have
shown that a CES that can utilize expert knowledge about the problem in evolved
operators significantly outperforms a CES unable to use this knowledge. This
environmental sensing of external sources of biological or statistical knowledge
is important when the search space is both rugged and large as in the genetic anal-
ysis of complex diseases. We show here that the CES is also capable of evolving
operators which exploit one of several sources of expert knowledge to solve the
problem. This is important for both the discovery of highly fit genetic models
and because the particular source of expert knowledge used by evolved operators
may provide additional information about the problem itself. This study brings
us a step closer to a CES that can solve complex problems in human genetics in
addition to discovering genetic models of disease.
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1. Introduction

Computational Challenges in Human Genetics

Human genetics is quickly transitioning away from the study of single genes
to evaluating the entire genome. This has been made possible by inexpensive
new technologies for measuring 106 or more single nucleotide polymorphisms
(SNPs) across the genome and emerging technologies that allow us to measure
all 3 × 109 nucleotides. As this technological shift occurs, it is critical that
the bioinformatics and data analysis approaches for sifting through these large
volumes of data keep pace. The development of machine learning and data
mining methods that are capable of identifying important patterns of genetic
variations that are predictive of disease susceptibility will depend critically
on the complexity of the mapping relationship between genotype and pheno-
type. For common human disease such as breast cancer and schizophrenia
this mapping relationship is expected to be very complex with multiple inter-
acting genetic and environmental factors (Moore, 2003; Moore and Williams,
2005; Thornton-Wells et al., 2004).

For the purposes of this paper we will focus exclusively on the SNP, which
is a single nucleotide or point in the DNA sequence that differs among people.
Most SNPs have two alleles (e.g. A or a) that combine in the diploid human
genome in one of three possible genotypes (e.g. AA, Aa, aa). It is anticipated
that at least one SNP occurs approximately every 100 nucleotides across the
human genome making it the most common type of genetic variation. Some
SNPs will be predictive of disease risk only in the context of other SNPs in the
genome (Moore, 2003). This phenomenon has been referred to as epistasis for
more than 100 years now (Bateson, 1909) and is the focus of the present study.
The general challenge of modeling attribute interactions has been previously
described (Freitas, 2001). The question we address is whether a computational
evolution system is capable of identifying combinations of interacting SNPs
when the fitness landscape is large and rugged. Our results reinforce the idea
that expert knowledge is critical to solving these problems.

A Simple Example of the Concept Difficulty

Epistasis or gene-gene interaction can be defined as biological or statisti-
cal (Moore and Williams, 2005). Biological epistasis occurs at the cellular
level when two or more biomolecules physically interact. In contrast, statis-
tical epistasis occurs at the population level and is characterized by deviation
from additivity in a linear mathematical model. Consider the following simple
example of statistical epistasis in the form of a penetrance function. Penetrance
is simply the probability (P) of disease (D) given a particular combination of
genotypes (G) that was inherited (i.e. P [D|G]). A single genotype is deter-
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Table 2-1. Penetrance values for genotypes from two SNPs.
AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0
Bb (0.50) 1 0 1
bb (0.25) 0 1 0

mined by one allele (i.e. a specific DNA sequence state) inherited from the
mother and one allele inherited from the father. For most single nucleotide
polymorphisms or SNPs, only two alleles (encoded by A or a) exist in the bio-
logical population. Therefore, because the order of the alleles is unimportant,
a genotype can have one of three values: AA, Aa or aa. The model illustrated in
Table 2-1 is an extreme example of epistasis. Let’s assume that genotypes AA,
aa, BB, and bb have population frequencies of 0.25 while genotypes Aa and Bb
have frequencies of 0.5 (values in parentheses in Table 2-1). What makes this
model interesting is that disease risk is dependent on the particular combina-
tion of genotypes inherited. Individuals have a very high risk of disease if they
inherit Aa or Bb but not both (i.e. the Exclusive–OR function). The penetrance
for each individual genotype in this model is 0.5 and is computed by summing
the products of the genotype frequencies and penetrance values. Thus, in this
model there is no difference in disease risk for each single genotype as speci-
fied by the single-genotype penetrance values. This model was first described
by Li and Reich (Li and Reich, 2000). Heritability, or the size of the genetic
effect, is a function of these penetrance values. In this model, the heritability
is 1.0, the maximum possible, because the probability of disease is completely
determined by the genotypes at these two DNA sequence variations. All the
heritability in this model is due to epistasis. As Freitas reviews, this general
class of problems has high concept difficulty (Freitas, 2002).

Artificial and Computational Evolution

Numerous machine learning and data mining methods have been developed
and applied to the detection of gene-gene interactions in population-based stud-
ies of human disease. These include, for example, traditional methods such as
neural networks (Lucek and Ott, 1997) and novel methods such as multifac-
tor dimensionality reduction (Ritchie et al., 2001). Evolutionary computing
methods such as genetic programming (GP) have been applied to both attribute
selection and model discovery in the domain of human genetics. For example,
Ritchie et al (Ritchie et al., 2003) used GP to optimize both the weights and the
architecture of a neural network for modeling the relationship between geno-
type and phenotype in the presence of gene-gene interactions. More recently,
GP has been successfully used for both attribute selection (Moore and White,
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2006a; Moore and White, 2007a; Moore, 2007; Greene et al., 2007) and genetic
model discovery (Moore et al., 2007).

Genetic programming is an automated computational discovery tool that is
inspired by Darwinian evolution and natural selection (Banzhaf et al., 1998a;
Koza, 1992; Koza, 1994; Koza et al., 1999; Koza et al., 2003; Langdon, 1998;
Langdon and Poli, 2002). The goal of GP is to evolve computer programs to
solve problems. This is accomplished by first generating random computer
programs composed of the building blocks needed to solve or approximate a
solution. Each randomly generated program is evaluated and the good programs
are selected and recombined to form new computer programs. This process of
selection based on fitness and recombination to generate variability is repeated
until a best program or set of programs is identified.

Genetic programming and its many variations have been applied successfully
to a wide range of different problems including data mining and knowledge
discovery (e.g. (Freitas, 2002)) and bioinformatics (e.g. (Fogel and Corne,
2003)). Despite the many successes, there are a large number of challenges
that GP practitioners and theorists must address before this general computa-
tional discovery tool becomes one of several tools that a modern problem solver
calls upon (Yu et al., 2006). Spector, as part of an essay regarding the roles of
theory and practice in genetic programming, discusses the push towards biol-
ogy by GP practitioners (Spector, 2003). Banzhaf et al. propose that overly
simplistic and abstracted artificial evolution (AE) methods such as GP need to
be transformed into computational evolution (CE) systems that more closely
resemble the complexity of real biological and evolutionary systems (Banzhaf
et al., 2006). Evolution by natural selection solves problems by building com-
plexity. We are thus interested in testing the working hypothesis that a GP-based
genetic analysis system will find better solutions faster if it is implemented as a
CE system that can evolve a variety of complex operators that in turn generate
variability in solutions. This is in contrast to an AE system that uses a fixed set
of operators.

Research Questions Addressed and Overview

We have previously developed a prototype CE system and have shown that it
is capable of evolving complex operators for problem solving in human genet-
ics (Moore et al., 2008b). We have also previously extended and evaluated this
new open-ended computational evolution system for the detection and charac-
terization of epistasis or gene-gene interactions that are associated with risk of
human disease (Moore et al., 2008a). New features in this previous study in-
cluded simpler operator building blocks, list-based solutions with stack-based
evaluation and an attribute archive that provides the system with a feedback
loop between the population of solutions and the solution operators. These re-
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cently added features are consistent with the idea of transforming an AE system
to a CE system. This study showed that a CE system that could exploit expert
knowledge performed better than a system that could not. This provides the
basis for the present study that addresses the question of whether the CE system
is capable of identifying and exploiting a good source of expert knowledge from
among several other randomly generated sources.

2. A Computational Evolution System

Our primary goal was to develop, extend and evaluate a computational evolu-
tion system that is capable of open-ended evolution for bioinformatics problem-
solving in the domain of human genetics. Figure 2-1 gives a graphical overview
of our hierarchically-organized and spatially-extended GP system that is capable
of open-ended computational evolution. At the bottom layer of this hierarchy is
a grid of solutions. At the second layer of the hierarchy is a grid of operators of
any size and complexity that are capable of modifying the solutions (i.e. solu-
tion operators). At the third layer is a grid of mutation operators that are capable
of modifying the solution operators. At the highest level of the hierarchy is the
mutation frequency that determines the rate at which operators are mutated.
An attribute archive provides a feedback loop between the solutions and the
solution operators. One or more sources of expert knowledge is also provided
to the system for environmental sensing. The details of the experimental design
used to evaluate this system are described in Section 3.

Problem Solutions: Their Representation, Fitness Evaluation
and Reproduction

The goal of a classifier is to accept as input two or more discrete attributes
(i.e. SNPs) and produce a discrete output that can be used to assign class (i.e.
healthy or sick). Here, we used symbolic discriminant analysis or SDA as our
classifier. The SDA method (Moore et al., 2002) has been described previously
for this problem domain (Moore et al., 2008b; Moore et al., 2007; Moore and
White, 2007a). SDA models consist of a set of attributes and constants as
input and a set of mathematical functions that produce for each instance in the
data set a score called a symbolic discriminant score. Here, our SDA function
set was +,−, ∗, /,%, <,<=, >,>=,==, ! = where the % operator is a mod
operation and / is a protected division. The SDA models are represented as
a list of expressions here instead of as expression trees as has been used in
the past to facilitate stack-based evaluation of the classifiers and to facilitate
their representation in text files. This is similar to the GP implementation using
arrays and stack as described by Keith and Martin (Keith and Martin, 1994),
Perkis (Perkis, 1994), and Banzaf et al. (Banzhaf et al., 1998b).
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Figure 2-1. Visual overview of our computational evolution system for discovering symbolic
discriminant functions that differentiate disease subjects from healthy subjects using information
about single nucleotide polymorphisms (SNPs). The hierarchical structure is shown on the left
while some specific examples at each level are shown in the middle. At the lowest level (D)
is a grid of solutions. Each solution consists of a list of functions and their arguments (e.g.
X1 is an attribute) that are evaluated using a stack (denoted by ST in the solution). The next
level up (C) is a grid of solution operators that each consists of some combination of the ADD,
DELETE and COPY functions each with their respective set of probabilities that define whether
expert knowledge (E) or the archive (F, denoted by A in the probability pie) are used instead of
a random generator (denoted by R in the probability pie). The attribute archive (F) is derived
from the frequency with which each attribute occurs among solutions in the population. Finally,
environmental noise (G) perturbs the data in small ways to prevent over fitting. The top two
levels of the hierarchy (A and B) exist to generate variability in the operators that modify the
solutions. This system allows operators of arbitrary complexity to modify solutions. Note that
we used 18×18 grids of 324 solutions in the present study. A 12×12 grid is shown here as an
example.

Classification of instances into one of the two classes requires a decision rule
that is based on the symbolic discriminant score. Thus, for any given symbolic
discriminant score (Sij) in the ith class and for the jth instance, a decision
rule can be formed such that if Sij > So then assign the instance to one class
and if Sij <= So then assign the observation to the other class. When the
prior probability that an instance belongs to one class is equal to the probability
that it belongs to the other class, So can be defined as the arithmetic mean of
the median symbolic discriminant scores from each of the two classes. This
is the classification rule we used in the present study and is consistent with
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previous work in this domain (Moore et al., 2008b; Moore et al., 2007; Moore
and White, 2007a). Using this decision rule, the classification accuracy for
a particular discriminant function can be estimated from the observed data.
Here, accuracy is defined as (TP + TN)/(TP + TN + FP + FN) where TP are
true positives (TP), TN are true negatives, FP are false positives, and FN are
false negatives. We used accuracy as the fitness measure for SDA solutions
as has been described previously but lightly weight it such that for solutions
with equivalent accuracy, ones with shorter genome sizes are preferable (Moore
et al., 2008b; Moore et al., 2007; Moore and White, 2007a).

All SDA solutions in a population are organized on a toroidal grid with spe-
cific X and Y coordinates (see example in Figure 2-1). As such, they resemble
previous work on cellular genetic programming (Folino et al., 1999). In the
present study we used a grid size of 18×18. Reproduction of solutions in the
population is handled in a spatial manner. Each solution is considered for re-
production in the context of its Moore neighborhood using an elitist strategy.
That is, each solution in question will compete with its eight neighbors and be
replaced in the next generation by the neighbor with the highest fitness. This
combines ideas of tournament selection that is common in GP with a set of
solutions on a grid. Variability in solutions is generated using hierarchically
organized operators. This is described below.

Operators for Computational Evolution: Generating Solution
Variability

Traditional artificial evolution approaches such as GP use a fixed set of
operators that include mutation and recombination, for example. The goal
of developing a computational evolution system was to provide building blocks
(i.e. simple functions) for operators that could be combined to create new
operators. We started with the following three basic operator building blocks.
The first operator building block, ADD, adds a new function and its arguments
to the list of functions and arguments that comprise a solution. The second
operator building block, DELETE, deletes a function from the list of functions.
The third operator, COPY, copies one function from the list of functions in
the Moore neighborhood. These operators can combine in any number and
order to generate solution operators of arbitrary complexity. The mutation
operators described below increase or decrease the size and content of the
solution operators.

Each of the operator building blocks has a vector of three probabilities as-
sociated with it. The first number specifies the probability that the function
that is added, deleted or copied to a solution is determined stochastically. The
second specifies the probability that the function that is added, deleted or copied
to a solution is determined according to an archive of attributes that is ranked
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according to the frequency that they occur in the population of solutions (see be-
low). The third specifies the probability that the function that is added, deleted
or copied to a solution is determined according to ReliefF scores for the at-
tributes (see below). The ability to use expert knowledge (i.e. environmental
sensing) is important in this domain. For example, pre-processed ReliefF scores
have been shown to improve the performance of GP as a wrapper in this do-
main when used in a multiobjective fitness function (Moore and White, 2007a),
when used to guide recombination (Moore and White, 2006a) and when used to
guide mutation (Greene et al., 2007). This is consistent with Goldberg’s ideas
about exploiting good building blocks in competent genetic algorithms (Gold-
berg, 2002) and provides a source of complexity as recommended by Banzhaf
et al. (Banzhaf et al., 2006). For example, the use of the archive creates a
feedback loop between the solutions and the solution operators. In the present
study we evaluated whether this system is able to identify a good source of
expert knowledge from among five candidates. Here, each building block had
six probabilities associated with it, one for each of the five sources of expert
knowledge and one for the stochastic element. We did not use the archive in
this study given the focus was on understanding the role of multiple sources of
expert knowledge.

As with the solutions, each operator is organized on a toroidal grid with a
specific X and Y coordinate. We assigned each operator to a set of solutions.
This allows for averaging an operator’s positive or negative effects on multiple
solutions. In this study, we assigned each operator to a 3×3 grid of nine
solutions. Thus, the population of solution operators is organized in a 6×6
grid when an 18×18 grid is used for the solutions and 12×12 when a 36×36
grid is used for the solutions. The assignment of fitness to solution operators is
a variant of Edmond’s Meta-GP framework (Edmonds, 1998; Edmonds, 2001).
To assign fitness to an operator, we first identify the two solutions under the
operator’s control that show the most positive change in fitness, on the basis
that an operator is more fit if it greatly increases fitness in a few solutions, even
if it reduces fitness in many cases. We average these changes in fitness and this
becomes the fitness of the operator. If the operator has not been modified in this
generation, we smooth its fitness by adding half of the previous generation’s
fitness and multiplying by two thirds, so the fitness scale is comparable between
new and unchanged operators.

Mutation of Operators for Computational Evolution:
Generating Operator Variability

An important goal for the computational evolution system is the ability to
generate variability in the operators that modify solutions. To accomplish this
goal we previously developed an additional level in the hierarchy (Figure 2-1)
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with mutation operators that specifically alter the operators described above.
We defined four different fixed mutation operators that are each assigned to
a 2×2 grid of solution operators. Solution operators can be modified in the
following four ways. First, an operator can have a specific operator building
block deleted (DeleteOperator). Second, an operator can have a specific opera-
tor building block added (AddOperator). Third, an operator can have a specific
operator building block changed (ChangeOperator). Finally, an operator can
have its probabilities changed (ChangeOperatorArguments). In this study, we
initialized the probabilities with which each the these mutation operators are
used to 0.25. These are randomly regenerated at a frequency equal to the overall
mutation probability (see below) and their fitness is determined by the change
in fitness of the solution operators that they act on.

Mutation Frequency

The top level of the computational evolution system hierarchy (see Figure
2-1) is the mutation frequency that controls the probability that one of the four
mutation sets in the next level down will mutate a given solution operator two
levels down. In the present study we fixed this to 0.1. In the future this will
be an evolvable parameter. This frequency does not control the frequency with
which a solution operator modifies a solution. That is controlled by the operator
when it specifies which solution(s) it will modify.

Environmental Sensing Using an Archive

Previous studies have demonstrated the utility of archiving GP results for
reuse (Vladislavleva et al., 2007). We have previously implemented an archive
that ranks the attributes by the frequency with which they appear in solutions
from the population. These are ranked by their frequency and then used by
the ADD, DELETE and COPY operators to decide what gets added, deleted or
copied. We have previously used a cumulative archive that updates the previous
results each generation. The archive is an important part of the complexity of
the CE system because it provides a feedback loop between the solutions and
the solution operators. The archive was not used in the present study to allow
us to focus on the use of multiple source of expert knowledge.

Environmental Sensing Using Expert Knowledge

As mentioned above, the use of expert knowledge is important for the appli-
cation of GP strategies to solving complex problems in human genetics. Here,
we used pre-processed ReliefF scores for all of the attributes in the dataset as
a source of statistical knowledge for the analysis. Kira and Rendell developed
the Relief algorithm that is capable of detecting attribute dependencies (Kira
and Rendell, 1992). Relief estimates the quality of attributes through a type
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of nearest neighbor algorithm that selects neighbors (instances) from the same
class and from the different class based on the vector of values across attributes.
Weights (W) or quality estimates for each attribute (A) are estimated based on
whether the nearest neighbor (nearest hit, H) of a randomly selected instance
(R) from the same class and the nearest neighbor from the other class (nearest
miss, M) have the same or different values. This process of adjusting weights
is repeated for m instances. The algorithm produces weights for each attribute
ranging from -1 (worst) to +1 (best). Kononenko improved upon Relief by
choosing n nearest neighbors instead of just one (Kononenko, 1994). This new
ReliefF algorithm has been shown to be more robust to noisy attributes and is
widely used in data mining applications. We have developed a modified Reli-
efF algorithm for the domain of human genetics called Tuned ReliefF (TuRF).
We have previously shown that TuRF is significantly better than ReliefF in
this domain (Moore and White, 2007b). The TuRF algorithm systematically
removes attributes that have low quality estimates so that the ReliefF values if
the remaining attributes can be re-estimated. We applied TuRF as described
by Moore and White (Moore and White, 2007b) to the data set analyzed and
provided the results to the CE system as expert knowledge that can then used
by the ADD, DELETE and COPY operators to decide what gets added, deleted
or copied (Moore et al., 2008a). We also provided four random permutations of
the TuRF knowledge as additional null sources of knowledge to assess whether
the CE system could identify and exploit the correct source.

Implementation

The computational evolution system described above was programmed en-
tirely in C++. A single run of the system with a population of 324 solutions on a
18×18 grid for 1000 generations took approximately 15 minutes on a 3.0 GHz
AMD Opteron processor. Multiple runs for the experiments described below
were carried out in parallel using 100 or more processors.

3. Experimental Design and Data Analysis

Our goal was to provide an evaluation of the CE system described above using
a repeated measures experimental design. The central question addressed in
this study is whether the CE system has the ability to identify and exploit the
correct source of expert knowledge out of a total of five. Here, the probability of
a given operator such as ADD using any given source of knowledge is initialized
randomly for the first generation. The probability associated with each source
of knowledge can change over time based on its fitness reward that is assessed
by the fitness change in the solutions that operator operates on.

Here, we ran the CE system for a total of 1000 generations with a solution
grid size of 18×18. A total of 100 runs each with different random seeds
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Figure 2-2. Distribution of healthy controls (left bars) and diseased cases (right bars) for each
combination of genotypes (coded 0, 1 and 2) for the two functional attributes or SNPs (X0 and
X1). Note the nonlinear pattern of high-risk (dark grey) and low-risk (light grey) genotype
combinations that is indicative of a nonlinear interaction.

were performed on the simulated data described below. For each of 100 runs
we recorded the average probability for each source of knowledge at generation
zero and 1000. We used a repeated measures analysis of variance (RMANOVA)
to test three hypotheses about the results. First, we tested the null hypothesis that
the mean probabilities are the same for each source of expert knowledge (i.e. the
treatment effect). Second, we tested the null hypothesis that the vector or profile
of mean probabilities across generations zero and 1000 are flat for each source
of expert knowledge (i.e. the time effect). Third, we tested the null hypothesis
that the mean probabilities don’t change across generations in a manner that
is dependent on the particular source of knowledge (i.e. treatment by time
interaction). Treatment, time and treatment by time effects were considered
statistically significant at the 0.05 level. Following the RMANOVA analysis
we performed a post-hoc analysis of the time effect within each treatment using
a paired t-test. Specifically, we tested the null hypothesis that difference in
means between generation zero and generation 1000 is zero within each source
of expert knowledge or the random element. Specific contrasts were considered
statistically significant at the 0.008 level. The is a Bonferroni-corrected level of
significance that accounts for the multiple statistical tests that were performed
across contrasts.

We used a simulated data set consisting of 1000 total attributes (SNPs) and
1600 instances (800 cases and 800 controls). Two of the 1000 SNPs are as-
sociated with disease class through a nonlinear interaction as described in the
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introduction. This dataset has been previously described (Velez et al., 2007).
Figure 2-2 illustrates the distribution of healthy controls (left bars) and diseased
cases (right bars) for each combination of genotypes (coded 0, 1 and 2) for the
three functional attributes or SNPs (X0, X1). Note the nonlinear pattern of high-
risk (dark grey) and low-risk (light grey) genotype combinations. The optimal
classification of this dataset yields a classification accuracy of approximately
0.8. This is the fitness target.

4. Results

Figure 2-3 summarizes the mean probabilities for selecting attributes for
each source of expert knowledge and random for generation zero and 1000.
The RMANOVA analysis showed a highly significant difference in mean prob-
abilities between the treatment groups independent of time (P < 0.001). Figure
2-3 shows that the mean probability for the correct source of expert knowledge
is higher than the others. We also found no overall time or generation effect
independent of knowledge source (P > 0.1). This is consistent with what
we see in Figure 2-3. On average there is no generation effect. Finally, the
RMANOVA indicated a highly significant source of knowledge by generation
interaction (P < 0.001). Figure 2-3 illustrates this very clearly with the mean

0 1000

0.
12

0.
14

0.
16

0.
18

0.
20

Generation

P
ro

ba
bi

lit
ie

s

Random
Valid Source
Null Sources

p < 0.001

Figure 2-3. The mean probabilities of operators using expert knowledge increases from the
beginning to the end of the run. The probabilities of operators acting randomly decreases. The
probabilities of the null sources do not significantly change.
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probability increasing from generation zero to 1000 for the correct source of
expert knowledge while staying the same for other null sources of knowledge
and decreasing with the random element. The different slopes of these lines
accounts for the statistically significant interaction. We used a paired t-test
with correction for multiple testing to carry out a post-hoc analysis to ver-
ify that the probabilities for the correct source of expert knowledge do in fact
increase. We found that statistically significant evidence to reject the null hy-
pothesis that the difference in mean probabilities for generation zero and 1000
are zero (P ≤ 0.001). This same null hypothesis for each of the null sources
of knowledge were not rejected (P > 0.1). Interestingly, the probabilities for
the random element significantly decrease (P < 0.001). These results provide
significant evidence in support of our working hypothesis that the CE system is
capable of identifying and exploiting an important source of expert knowledge
in the context of multiple other null sources.

Figure 2-4 illustrates the results from a single run of the CE system for 1000
generations. Plotted in this figure is the maximum fitness (classifier accuracy)
for each generation. Note the first major increase in fitness is associated with the
best model obtaining the correct two attributes while the second major increase

Figure 2-4. The line shows the fitness of the best solution from generation 1 to 1000. The pies,
in ascending order, show the average probabilities associated with the different sources of expert
knowledge at the initial generation (Point A) as well as generations 165 (Point B) and 310 (Point
C). The probabilities are shown for Random (R), the four null sources (N) and the valid source
of knowledge (V). The tree representation of the final solution is shown in the bottom right.
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is associated with obtaining a set of functions that approximates the optimal
solution to the problem. Also shown in Figure 2-4 are the average probabilities
tied to the operator that operated on the best solution. Note that in generation
zero the probabilities start out approximately equal. By the first increase in
fitness the probability of picking attributes based on the good source of expert
knowledge has increased to approximately 0.5. This illustrates the ability of
the CE system to identify and exploit a particular source of knowledge. The
solution shown in Figure 2-4 illustrates an example solution to the problem
that was discovered by the CE system. The CE system was able to discover an
optimal or near optimal solution to this problem in each of the 100 runs.

5. Discussion and Conclusions

Human genetics is transitioning away from the study of single genes to the
study of the entire genome as a risk factor for common human diseases (Moore,
2009). This means we need to prepare the next generation of computational
intelligence approaches that are able to model multiple interacting genetic risk
factors simultaneously in data derived from large epidemiological and genetic
studies. We present here a computational evolution (CE) approach to this prob-
lem that builds on the successes and failures of artificial evolution (e.g. genetic
programming) to provide a comprehensive framework for genetic analysis. We
have previously shown that adding complexity to these algorithms improves
their ability to identify complex genetic models (Moore et al., 2008b; Moore
et al., 2008a). This is consistent with our previous work showing how expert
knowledge can greatly improve the performance of these algorithms (Moore
and White, 2007a; Moore and White, 2006b; Greene et al., 2007). The goal
of this study was to determine whether a CE system could learn to recognize
and exploit a good source of expert knowledge from among several different
options. Our results demonstrate that the CE system does indeed learn to use a
valid source of expert knowledge to discover optimal solutions in this domain.

The ability of the system to identify and exploit a particular source of ex-
pert knowledge to solve a complex problem is important. However, equally
exciting is the possibility of inferring from the behavior of the evolved sys-
tem what source(s) of expert knowledge seems to be important. The results
summarized in Figure 2-3 show the change in probabilities for each source
of knowledge shift from being approximately equal to favoring one particular
source of knowledge. This is important because that source of knowledge may
tell us something about the problem itself. For example, let’s assume that each
source of knowledge was biological in nature representing perhaps biochemical
pathways, gene ontology, chromosomal location, protein-protein interactions
and prior knowledge derived from microarray experiments. Preferential use
of microarray knowledge may tell us that the DNA sequence variations in the
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best model might have something to do with gene expression. This in turn
provide an important basis for interpreting the model and understanding why it
is important. One ultimate goal of these studies is to understand why particular
genetic factors increase or decrease risk. A biological understanding may play
an important role in developing interventions and treatments for the disease.
The present study opens the door to using multiple sources of biological and
statistical knowledge for solving real world genetic analysis problems.

An important future goal will be to explore how multiple sources of knowl-
edge might be used together. Could the CE system learn to use two or three
sources of knowledge that each provide complementary information? How will
we need to modify the operators to effectively use joint information? How will
the sources of expert knowledge interact with the archive? This last point will
be particularly interesting to explore. We turned the archive off in the present
study so as not to confound the question being addressed about multiple sources
of expert knowledge. However, a logical next step will be to turn this back on
to determine whether there is a benefit to having both working together. It
is reasonable to assume that the expert knowledge will be important early in
the process when it is important to find the functional attributes. Once they
are found and rewarded these important building blocks will spread throughout
the population and then become part of the archive. The relative weighting of
the attributes in the archive could be greater than that provided by the expert
knowledge. If this is the case, one might predict that archive would take over
and become more important than the source of expert knowledge. These are
all interesting new directions to pursue. These questions and others will need
to be addressed before this system is ready for the routine analysis of real data.
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