

Genetic Programming Theory and Practice VII

 Rick Riolo, Una-May O’Reilly and Trent McConaghy (Eds.)

Genetic and Evolutionary Computation Series

Series Editors

David E. Goldberg
Consulting Editor
IlliGAL, Dept. of General Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA
Email: deg@uiuc.edu

John R. Koza
Consulting Editor
Medical Informatics
Stanford University
Stanford, CA 94305-5479 USA
Email: john@johnkoza.com

For other titles published in this series, go to http://www.springer.com/series/7373

Genetic Programming

Rick Riolo

(Eds.)
Trent McConaghy
Una-May O’Reilly

Theory and Practice VII

ISSN 1932-0167
ISBN 978-1-4419-1625-9 e-ISBN 978-1-4419-1626-6
DOI 10.1007/978-1-4419-1626-6
Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Rick Riolo Una-May O’Reilly

Computer Science and Artificial
University of Michigan Intelligence Laboratory (CSAIL)
323 West Hall Massachusetts Institute of Technology

32 Vassar Street
USA Cambridge, MA 02139

USA

Trent McConaghy
Solido Design Automation, Inc.
102-116 Research Drive
Saskatoon, SK S7N 3R3
Canada
trent_mcconaghy@yahoo.com

rlriolo@umich.edu
 unamay@csail.mit.edu

Center for the Study of Complex Systems

Ann Arbor, MI 48109

Library of Congress Control Number: 2009939939

Contents

Contributing Authors vii

Preface xi

Foreword xiii

1
GPTP 2009: An Example of Evolvability 1
Una-May O’Reilly, Trent McConaghy and Rick Riolo

2
Environmental Sensing of Expert Knowledge in a Computational Evolution

System for Complex Problem Solving in Human Genetics
19

Casey S. Greene, Douglas P. Hill, Jason H. Moore

3
Evolving Coevolutionary Classifiers under large Attribute Spaces 37
John Doucette, Peter Lichodzijewski and Malcolm Heywood

4
Symbolic Regression via Genetic Programming as a Discovery Engine:

Insights on Outliers and Prototypes
55

Mark E. Kotanchek, Ekaterina Y. Vladislavleva and Guido F. Smits

5
Symbolic Regression of Implicit Equations 73
Michael Schmidt and Hod Lipson

6
A Steady-State Version of the Age-Layered Population Structure EA 87
Gregory S. Hornby

7
Latent Variable Symbolic Regression for High-Dimensional Inputs 103
Trent McConaghy

8
Algorithmic Trading with Developmental and Linear Genetic Programming 119
Garnett Wilson and Wolfgang Banzhaf

vi GENETIC PROGRAMMING THEORY AND PRACTICE VII

9
High-significance Averages of Event-Related Potential via Genetic Programming 135
Luca Citi, Riccardo Poli, and Caterina Cinel

10
Using Multi-objective Genetic Programming to Synthesize Stochastic Processes 159
Brian Ross and Janine Imada

11
Graph Structured Program Evolution: Evolution of Loop Structures 177
Shinichi Shirakawa and Tomoharu Nagao

12
A Functional Crossover Operator for Genetic Programming 195
Josh Bongard

13
Symbolic Regression of Conditional Target Expressions 211
Michael F. Korns

Index 229

Contributing Authors

Peter C. Andrews is a software engineer in the Computational Genetics Labora-
tory at Dartmouth Medical School, USA (Peter.C.Andrews@Dartmouth.edu).

Wolfgang Banzhaf is a professor and chair of the Department of Computer
Science at Memorial University of Newfoundland, St. John’s, NL, Canada
(simonh@cs.mun.ca).

Josh Bongard is an assistant professor of Computer Science in the College
of Engineering and Mathematical Sciences at the University of Vermont, USA
(josh.bongard@uvm.edu).

Caterina Cinel is a psychologist and principal research officer within the
School of Computer Science and Electronic Engineering of the University of
Essex, UK (ccinel@essex.ac.uk).

Luca Citi is a research officer within the School of Computer Science and
Electronic Engineering of the University of Essex, UK (lciti@essex.ac.uk).

John Doucette is an undergraduate at the Faculty of Computer Science, Dal-
housie University, NS, Canada (jdoucett@cs.dal.ca).

Casey S. Greene is a graduate student in the Computational Genetics Labora-
tory at Dartmouth Medical School, USA (Casey.S.Greene@Dartmouth.edu).

Malcolm Heywood is a Professor of Computer Science at Dalhousie University,
Halifax, NS, Canada (mheywood@cs.dal.ca).

Douglas P. Hill is a computer programmer in the Computational Genetics Labo-
ratory at Dartmouth Medical School, USA (Douglas.P.Hill@Dartmouth.EDU).

viii GENETIC PROGRAMMING THEORY AND PRACTICE VII

Gregory Hornby is a Senior Scientist with the University of California Santa
Cruz working in the Intelligent Systems Division at NASA Ames Research
Center, USA (gregory.s.hornby@nasa.gov).

Janine Imada recently completed graduate studies in Computer Science at
Brock University, St. Catharines, ON, Canada (jimada@bell.net).

Michael F. Korns is Chief Technology Officer at Freeman Investment Man-
agement, Henderson, Nevada, USA (mkorns@korns.com).

Mark E. Kotanchek is Chief Technology Officer of Evolved Analytics, a
data modeling consulting and systems company, USA/China (mark@evolved-
analytics.com).

Peter Lichodzijewski is a graduate student in the Faculty of Computer Science
at Dalhousie University, Halifax, Nova Scotia, Canada (piotr@cs.dal.ca).

Hod Lipson is an Associate Professor in the school of Mechanical and
Aerospace Engineering and the school of Computing and Information Science
at Cornell University, Ithaca, NY, USA (hod.lipson@cornell.edu).

Trent McConaghy is Chief Scientific Officer at Solido Design Automation
Inc., Canada, and recently completed his PhD at ESAT-MICAS, Katholieke
Universiteit Leuven, Belgium (trent mcconaghy@yahoo.com).

Jason H. Moore is the Frank Lane Research Scholar in Computational Genet-
ics and Associate Professor of Genetics at Dartmouth Medical School, USA
(Jason.H.Moore@Dartmouth.edu).

Tomoharu Nagao is a Professor of the Faculty of Environment and Information
Sciences at Yokohama National University, Japan (nagao@ynu.ac.jp).

Una-May O’Reilly is a Principal Research Scientist in the Computer Science
and Artificial Intelligence Laboratory at Massachusetts Institute of Technology,
USA (unamay@csail.mit.edu).

Riccardo Poli is a Professor of Computer Science in the School of Com-
puter Science and Electronic Engineering at the University of Essex, UK
(rpoli@essex.ac.uk).

Rick Riolo is Director of the Computer Lab and Associate Research Scientist
in the Center for the Study of Complex Systems at the University of Michigan,
USA (rlriolo@umich.edu).

Contributing Authors ix

Brian J. Ross is a Professor of Computer Science at Brock University, St.
Catharines, ON, Canada (bross@brocku.ca).

Michael Schmidt is a graduate student in computational biology at Cornell
University, Ithaca, NY, USA (mds47@cornell.edu).

Shinichi Shirakawa is a Reseacher of the Graduate School of Environ-
ment and Information Sciences at Yokohama National University and a
Research Fellow of the Japan Society for the Promotion of Science (shi-
rakawa@nlab.sogo1.ynu.ac.jp).

Guido F. Smits is a Research and Development Leader in the New Products
Group within the Core R&D Organization of the Dow Chemical Company,
Belgium (gfsmits@dow.com).

Ekaterina Vladislavleva is a Lecturer in the Department of Mathe-
matics and Computer Science at the University of Antwerp, Belgium
(katya@vanillamodeling.com).

Garnett Wilson is a postdoctoral fellow in the Department of Computer Sci-
ence at Memorial University of Newfoundland, St. John’s, NL, Canada (gwil-
son@cs.mun.ca).

Preface

The work described in this book was first presented at the Seventh Workshop
on Genetic Programming, Theory and Practice, organized by the Center for the
Study of Complex Systems at the University of Michigan, Ann Arbor, 14-16
May 2009. The goal of this workshop series is to promote the exchange of
research results and ideas between those who focus on Genetic Programming
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions, the number of talks
and participants was small and the time for discussion was large. Further,
participants were asked to review each other’s chapters before the workshop.
Those reviewer comments, as well as discussion at the workshop, are reflected in
the chapters presented in this book. Additional information about the workshop,
addendums to chapters, and a site for continuing discussions by participants and
by others can be found at http://cscs.umich.edu/gptp-workshops/gptp2009 .

We thank all the workshop participants for making the workshop an exciting
and productive three days. In particular we thank the authors, without whose
hard work and creative talents, neither the workshop nor the book would be
possible. We also thank our keynote speaker Margaret J. Eppstein, Associate
Professor in Computer Science and Director of the Complex Systems Center
at the University of Vermont. Maggie’s talk inspired a great deal of discussion
among the participants throughout the workshop.

The workshop received support from these sources:

The Center for the Study of Complex Systems (CSCS);

John Koza, Third Millennium Venture Capital Limited;

Michael Korns, Freeman Investment Management;

Ying Becker, State Street Global Advisors, Boston, MA;

Mark Kotanchek, Evolved Analytics;

Jason Moore, Computational Genetics Laboratory at Dartmouth College;

Conor Ryan, Biocomputing and Developmental Systems Group, Com-
puter Science and Information Systems, University of Limerick; and

William and Barbara Tozier, Vague Innovation LLC.

We thank all of our sponsors for their kind and generous support for the work-
shop and GP research in general.

A number of people made key contributions to running the workshop and
assisting the attendees while they were in Ann Arbor. Foremost among them

xii GENETIC PROGRAMMING THEORY AND PRACTICE VII

was Howard Oishi, who makes GPTP workshops run smoothly with his dili-
gent efforts before, during and after the workshop itself. During the workshop
Bill Worzel moderated some of the sessions. After the workshop, many people
provided invaluable assistance in producing this book. Special thanks go to
Patrick Hooper, Sarah Cherng and Laura Tomassi, who did a wonderful job
working with the authors, editors and publishers to get the book completed
very quickly. Thanks to William Tozier for assisting in copy-editing many of
the chapters. Jennifer Maurer and Melissa Fearon provided invaluable editorial
efforts, from the initial plans for the book through its final publication. Thanks
also to Deborah Doherty of Springer for helping with various technical pub-
lishing issues. Finally, we thank Carl Simon, Director of CSCS, for his support
for this endeavor from its very inception.

Rick Riolo, Una-May O’Reilly and Trent McConaghy

Foreword

Genetic programming (GP) has emerged as an important computational
methodology for solving complex problems in a diversity of disciplines. The
recent success of GP can be attributed to the highly innovative computer sci-
entists that have developed and extended the approach over the last 20 years
and the numerous investigators and analysts that have been on the front line of
applying these algorithms to difficult problems in their specific domains. This
is all supported by a vibrant and highly collaborative research community that
includes numerous GP conferences and workshops, numerous GP journals and
book series and a wealth of open-source software and internet-based resources.
The continued growth of this community speaks to the impact of GP and its
important place in the future of computation and analysis.

An important challenge for any discipline is to foster close relationships and
collaborations between those that develop computational theory and those that
practice the art of computation. The annual Genetic Programming Theory and
Practice (GPTP) Workshop organized by the Center for the Study of Com-
plex Systems at the University of Michigan in Ann Arbor was first organized
and held in 2003 to specifically bring theorists and practitioners together to
communicate and collaborate in an effort to transform GP from an innovative
algorithm to a general computational strategy for solving complex problems.
The positive impact of this workshop on those that attend has been substantial.
There are several reasons for this. First and foremost, there is an openness and
general sense of collegiality that is lacking at many other scientific venues. The
attendees are genuinely interested in sharing their cutting edge ideas for group
discussion. This selflessness combined with enthusiastic discussion and par-
ticipation creates an environment that significantly fosters innovation. Second,

xiv GENETIC PROGRAMMING THEORY AND PRACTICE VII

there is an incredible sense of memory from past GPTP workshops. Attendees
take what they have learned from previous years and integrate the new ideas
into their work. This cascading of ideas from year to year provides a rare oppor-
tunity to synthesize innovation. Third, each of the attendees is truly interested
in solving complex problems in their respective domains. This is important
because the investigators are open to any idea that helps solve the problem at
hand. The lack of dogmatism and openness to change is refreshing and has
made this workshop a huge success.

This was my fourth year at GPTP and each year has been a tremendous
learning experience. Perhaps the single most eye-opening GPTP event was
learning that Michael Korns of Korns Associates was successfully using GP
to make real life financial investment decisions. This to me is the ultimate
endorsement for the use of GP for solving problems such as security analysis and
stock ranking. There was a sense at GPTP this year that GP has turned the corner
from an innovative algorithm used only by computer scientists to a truly useful
discovery tool used by many. In fact, William Tozier made the prediction that
2010 marks the beginning of a GP bubble characterized by an exponential shift
from art to craft. That is, within the next few years we will increasingly see GP
being used by domain-specific experts such as bioinformaticists, economists,
engineers and meteorologists to solve hard problems. If this is true, the next 10
years of GPTP will be more important than ever.

I encourage you to read and digest each of the chapters in this volume and
those from all the previous volumes. I promise you will come away with a
notebook full of new ideas for using GP to solve your domain-specific problem.

Jason H. Moore, Ph.D.
Frank Lane Research Scholar in Computational Genetics
Professor of Genetics and Community and Family Medicine
Dartmouth Medical School, Lebanon, NH, USA
July, 2009

Chapter 1

GPTP 2009: AN EXAMPLE OF EVOLVABILITY

Una-May O’Reilly1, Trent McConaghy2 and Rick Riolo3

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy; 2Solido Design Automation Inc., Canada; 3Center for Study of Complex Systems, University
of Michigan.

Abstract
This introductory chapter gives a brief description of genetic programming

(GP); summarizes current GP algorithm aims, issues, and progress; and finally
reviews the contributions of this volume, which were presented at the GP Theory
and Practice (GPTP) 2009 workshop.

This year marks a transition wherein the aims of GP algorithms – reasonable
resource usage, high quality results, and reliable convergence – are being consis-
tently realized on an impressive variety of “real-world” applications by skilled
practitioners in the field. These aims have been realized due to GP researchers’
growing collective understanding of the nature of GP problems which require
search across spaces which are massive, multi-modal, and with poor locality, and
how that relates to long-discussed GP issues such as bloat and premature con-
vergence. New ways to use and extend GP for improved computational resource
usage, quality of results, and reliability are appearing and gaining momentum.
These include: reduced resource usage via rationally designed search spaces and
fitness functions for specific applications such as induction of implicit functions
or modeling stochastic processes arising from bio-networks; improved quality
of results by explicitly targeting the interpretability or trustworthiness of the fi-
nal results; and heightened reliability via consistently introducing new genetic
material in a structured manner or via coevolution and teaming. These new de-
velopments highlight that GP’s challenges have changed from simply “making
it work” on smaller problems, to consistently and rapidly getting high-quality
results on large real-world problems. GPTP 2009 was a forum to advance GP’s
state of the art and its contributions demonstrate how these aims can be met on a
variety of difficult problems.

1
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_1,
© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII,

2 GENETIC PROGRAMMING THEORY AND PRACTICE VII

1. The Workshop

In the beautiful, springtime charm of Ann Arbor, the seventh annual Genetic
Programming Theory and Practice (GPTP) workshop was held at the University
of Michigan campus from May 14-16, 2009.

We are grateful to all sponsors and acknowledge the importance of their con-
tributions to such an intellectually productive and regular event. The workshop
is generously founded and sponsored by the University of Michigan Center
for the Study of Complex Systems (CSCS) and receives further funding from
the following people and organizations: Michael Korns of Freeman Investment
Management, Ying Becker of State Street Global Advisors, John Koza of Third
Millenium, Bill and Barbara Tozier of Vague Innovation, Mark Kotanchek of
Evolved Analytics, Jason Moore of the Computational Genetics Laboratory of
Dartmouth College and Conor Ryan of the Biocomputing and Developmental
Systems Group of the University of Limerick.

To make the results of the workshop useful to even a relative novice in the
field of GP, we start the chapter with a brief overview of genetic programming
(GP). Sections 3 and 4 describe current GP challenges and progress in GP.
Sections 5 and 6 then organize and summarize the contributions of chapters
in this volume from two perspectives: according to how contributed empirical
research is informing GP practice, then according to the domains of application
in which success through best practices has been reported. We conclude with
a discussion of observations that emerged from the workshop and potential
avenues of future work.

2. A Brief Introduction to Genetic Programming

Genetic programming (GP) is a search and optimization technique for ex-
ecutable expressions that is modeled on natural evolution. Natural evolution
is a powerful process that can be described by a few central, general mecha-
nisms; for an introduction, see (Futuyma, 2009). A population is composed
of organisms which can be distinguished in terms of how fit they are with re-
spect to their environment. Over time, members of the population breed in
frequency proportional to their fitness. The new offspring inherit the combined
genetic material of their parents with some random variation, and may replace
existing members of the population. The entire process is iterative, adaptive
and open ended. GP and other evolutionary algorithms typically realize this
central description of evolution, albeit in somewhat abstract forms. GP is a set
of algorithms that mimic of survival of the fittest, genetic inheritance and vari-
ation, and that iterate over a “parent”population, selectively “breeding” them
and replacing them with offspring.

Though in general evolution does not have a problem solving goal, GP is
nonetheless used to solve problems arising in diverse domains ranging from en-

GPTP 2009: An Example of Evolvability 3

gineering to art. This is accomplished by casting the organism in the population
as a candidate program-like solution to the chosen problem. The organism is
represented as a computationally executable expression (aka structure), which is
considered its genome. When the expression is executed on some supplied set of
inputs, it generates an output (and possibly some intermediate results). This exe-
cution behavior is akin to the natural phenotype. By comparing the expression’s
output to target output, a measure of the solution’s quality is obtained. This is
used as the “fitness” of an expression. The fact that the candidate solutions are
computationally executable structures (expressions), not binary or continuous
coded values which are elements of a solution, is what distinguishes GP from
other evolutionary algorithms (O’Reilly and Angeline, 1997). GP expressions
include LISP functions (Koza, 1992; Wu and Banzhaf, 1998), stack or register-
based programs (Kantschik and Banzhaf, 2002; Spector and Robinson, 2002),
graphs (Miller and Harding, 2008; Mattiussi and Floreano, 2007; Poli, 1997),
programs derived from grammars (Ryan et al., 2002; Whigham, 1995; Gruau,
1993), and generative representations which evolve the grammar itself (Hem-
berg, 2001; Hornby and Pollack, 2002; O’Reilly and Hemberg, 2007). Key
steps in applying GP to a specific problem collectively define its search space:
the problem’s candidate solutions are designed by choosing a representation;
variation operators (mutation and crossover) are selected (or specialized); and a
fitness function (objectives and constraints) which expresses the relative merits
of partial and complete solutions is formulated.

3. Genetic Programming Challenges

Current challenges for GP include economizing on GP resource usage, en-
suring better quality results, extracting more reliable convergence, or applying
GP to a challenging problem domain.

Economic Resource Usage includes shorter runtime, reduced usage of pro-
cessor(s), and reduced memory and disk usage. Achieving it has traditionally
been a major issue for GP. A key reason is that GP search spaces are astronom-
ically large, multi-modal, and have poor locality. Poor locality means that a
small change in the individual’s genotype often leads to large changes in the
fitness, introducing additional difficulty into the search effort. For example, the
GP “crossover” operation of swapping the subtrees of two parents might change
the comparison of two elements from a “less than” relationship to an “equal to”
relationship. This usually gives dramatically different behavior and fitness. To
handle such challenging search spaces, significant exploration is needed (e.g.
large population sizes). This entails intensive processing and memory needs.
Exacerbating the problem, fitness evaluations (objectives and constraints) of
real-world problems tend to be expensive. Finally, because GP expressions
have variable length, there is a tendency for them to “bloat”— to grow rapidly

4 GENETIC PROGRAMMING THEORY AND PRACTICE VII

without a corresponding increase in performance. Bloat can be a significant
drain on available memory and CPU resources.

Ensuring Quality Results. The key question is: “can a GP result be used
in the target application?” This usability criteria may be more difficult to
attain than evident at first glance because the result may need to be human-
interpretable, trustworthy, or predictive on dramatically different inputs—and
attaining such qualities can be challenging. Ensuring quality results has always
been perceived as an issue, but the goal is becoming more prominent as GP is
being applied to more real world problems. Practitioners, not GP, are respon-
sible for deploying a GP result in their application domain. This means that
practitioners (and potentially their clients) must trust the results sufficiently to
be comfortable using them. Human-interpretability (readability) of the result
is a key factor in trust. This can be an issue when deployment of the result
is expensive or risky, such as analog circuit design (McConaghy and Gielen,
2005); when customers’ understanding of the solution is crucial such as port-
folio strategies (Becker et al., 2007); when the result must be inspected or
approved; or to gain acceptance of GP methodology, e.g. for use of symbolic
regression for modeling industrial processes (Kordon et al., 2005).

Reliable convergence means that the GP run can be trusted to return reason-
able results, without the practitioner having to worry about premature conver-
gence or whether algorithm parameters like population size were set correctly.
GP can fail to capably identify sub-solutions or partially correct solutions and
thus be unable to successfully promote, combine and reuse them to generate
good solutions with effective structure. The default approach has been to use the
largest population size possible, subject to time and resource constraints. How-
ever, this invariably implies high resource usage, and still gives no guarantee
of hitting useful results even if such results exist.

Problem domains present both opportunities and challenges for GP. Due
to its evolution of executable expressions, GP has a far broader set of prob-
lem domain opportunities than other EAs and optimization approaches. But
expression spaces are non-trivial to search across and selecting the expression
primitives is non-trivial. GP representation and variation operator designs must
generate syntactically valid expressions. But that’s the easy part! The design
must be done thoughtfully. Poor choices will lead to high resource usage and
poor quality results. Thoughtfully designed representations and operators can
lead to orders of magnitude difference in speed or quality; e.g. as shown in
(Poli and Page, 2000; McConaghy et al., 2007).

GPTP 2009: An Example of Evolvability 5

4. Progress in Genetic Programming

The field of GP is making progress in addressing the challenges described
in the last section. Resource usage has been decreased by improved algorithm
design, improved design of representation and operators in specific domains.
Its impact has been lessened by Moore’s Law and increasing availability of par-
allel computational approaches, meaning that computational resources become
exponentially cheaper over time. Results quality has improved for the same
reasons, and due to a new emphasis by GP practioners on getting interpretable
or trustworthy results. Reliability has been improved via algorithm techniques
that support continuous evolutionary improvement in a systematic or struc-
tured fashion. For example, by using hierarchical fair competition (HFC) and
Age-Layered Population Structure (ALPS) (Hu et al., 2003; Hornby, 2006),
the practitioner no longer has to “hope” that the algorithm isn’t stuck. Finally,
practice in thoughtful design of expression representation and genetic opera-
tors, for general and specific problem domains, has led to GP systems achieving
human-competitive performance. In the 2008 ACM SIGEVO annual Genetic
and Evolutionary Computation Conference (GECCO) Humies competition GP
was used to generate a novel synthetic RTL benchmark circuit (Pecenka et al.,
2008) and to evolve terms with special properties for a large finite algebra
(Spector et al., 2008). GP has been adopted for industrial scale modeling, data
analysis , design and discovery (Kotanchek et al., 2007; Terry et al., 2006). In
GPTP, we have seen applications ranging from finance to biology to antennae:
(Kim et al., 2008; Korns, 2007; Driscoll et al., 2003; Lohn et al., 2005).

Despite these achievements, GP’s computer-based evolution does not demon-
strate the potential associated with natural evolution, nor does it always satis-
factorily solve important problems we might hope to use it on. Even when
using best-practice approaches to manage challenges in resources, results, and
reliability, the computational load may still be too excessive and the final re-
sults may be inadequate. To achieve success in a difficult problem domain takes
a great deal of human effort toward thoughtful design of representations and
operators.

In the two sections that follow we provide two perspectives on the GPTP
workshop’s intellectual contributions and on the trends we observed with re-
spect to resource economization, results quality and reliable convergence. First,
we review how the empirical research contributions have informed GP prac-
tice. Second, we review how GP has achieved successful application by the
employment of “best practice” approaches.

5. Empirical Research Informing Practice

The intent of GPTP has been to bring together practitioners and theorists in
order to unify the challenges practitioners face with the questions theorists study.

6 GENETIC PROGRAMMING THEORY AND PRACTICE VII

As well, GPTP provides a focused group setting where practitioners describe to
theorists their problems, their GP system, and the issues they have encountered.
This helps the theorists to better appreciate the nature of a problem, examine
the practical outcome of an approach and, with immediacy, suggest how and
why something is happening and what could be done about it. With the theo-
rists present, there is an opportunity for practitioners to ask them whether their
theoretical findings are illustrated in some aspect of the practioners’ imple-
mentations, and whether a theoretical result can shed light on a problem they
face.

One of the trends our readers might notice this year is fewer “conventional”
theory submissions. Conventional GP theory is difficult by nature of GP’s
variable length genome representation, executable phenotype character, and
stochasticity. It does not proceed as quickly in terms of novelty and major
impact as practice.

This year marks contributions that inform practice, yet are not strictly pen-
and-paper theorems and calculations. With Chapter 6 as an example, test prob-
lems are chosen to appropriately challenge a proposed technique, and the anal-
ysis provides an understanding of how it works. GPTP workshop participants
have embraced this sort of study because it focuses on one issue while elegantly
eliminating unrelated complexity and confounding factors. The theory is in the
form of techniques that are measurably better, more transparently analyzed and
better explained and deduced. This kind of result promotes a general (appli-
cable across GP problem domains) best-practice approach and has occurred
in approaches to designing representations, operators or fitness functions, or
approaches to enhanced reliability, quality of results, and resource usage. De-
velopment of a best-practice approach is arguably “empirical research” theory.

The contributions of this volume can be organized accordingly:

One best-practice approach to enhanced reliability and results quality is
to reduce and modulate selection pressure on a specific cohort of the
population. Modulation could be applied to new genetic material, to ge-
netic material that is not the norm, or to expressions that trade off strict
functionality with solution complexity. One specific technique which
is gaining common use is Age-Layered Population Structure (ALPS)
(Hornby, 2006). It provides a structured way for new genetic material
to continually enter the population, allowing new individuals time to im-
prove before they have to compete against older, more fit individuals.
Because this approach is capable and also makes a run’s success less sen-
sitive to population size, the number of research groups adopting ALPS
or similar mechanisms is growing (Hu et al., 2003; McConaghy et al.,
2007; Patel and Clack, 2007; Sun et al., 2007; Willis et al., 2008; Korns
and Nunez, 2008; Kotanchek et al., 2008; Slany, 2009). In Chapter 6,
Hornby presents the steady-state variant of the ALPS.

GPTP 2009: An Example of Evolvability 7

With respect to best practices in design of GP fitness functions, there
are four papers which describe how fitness function design was the
key to make each respective problem tractable for GP. In Chapter 4,
Kotanchek et al. describe the “Data Balancing ” technique, which,
among other benefits, can reduce the cost of symbolic regression fitness
functions by reducing the training data to a smaller yet representative
set. In Chapter 10, Ross and Imada describe multi-objective techniques
that can exploit feature tests which provide different dynamical-system
descriptions of stochastic, noisy time series. In Chapter 5, Schmidt and
Lipson describe fitness functions that provide GP with sufficient selec-
tivity to evolve implicit functions. In Chapter 9, Citi et al. describe a
mapping from genotype to fitness function for Electroencephalography
(EEG) signal classification.

With respect to best practices in representation and operator design on
specific problems, there are four papers. In Chapter 3, Doucette et al.
describe how to decompose a high-dimensional classification problem
into subproblems that can be solved by a team of GP individuals. In
Chapter 7, McConaghy et al. describe a technique to transform a high-
dimensional symbolic regression problem into a 1-dimensional problem.
This dramatically simplifies the problem that GP has to solve. In Chap-
ter 11, Shirakawa and Nagao describe a simple, easy-to-apply represen-
tation for evolving register-based software programs, a general-purpose
problem-solving method. In Chapter 13, Korns describes an operator to
create a conditional expression of two subtrees in a behavior preserv-
ing fashion which enhances locality, and he also describes operators to
locally explore symbolic regression functional spaces.

With respect to best practices in general design of representations and
operators, there are three papers. In Chapter 2, Greene et al. apply a
GP system with a hierarchical organization of search operator control:
evolving a single scalar for mutation probability at the top level, and at
successively lower levels, evolving more fine-grained control down to the
level where individuals themselves are manipulated. In Chapter 8, Wilson
and Banzhaf apply the “PAM DGP” approach which adapts the mapping
from genotype to phenotype during evolution. In Chapter 12, Bongard
describes a “functional crossover" operator which aims to enhance the
locality of search by restricting allowable subtree swaps to subtrees with
similar output ranges.

6. GPTP 2009: Application Successes Via Best Practices

As discussed earlier, progress in the field of GP can be characterized by
GP successes in attacking challenging, industrial-strength, human-competitive

8 GENETIC PROGRAMMING THEORY AND PRACTICE VII

problem domains. In attacking such problems and sharing their experiences
at forums like GPTP, the best practices emerging from the successes are prop-
agated and improved, leading to further successes in a variety of domains.
This section organizes the papers in the volume according to problem domain.
The problem domain groupings are: GP as a “discovery engine”, time-domain
modeling, high-dimensional symbolic regression and classification, financial
applications, and design of graph-based structures. In this book, each domain
is represented by multiple papers.

GP as a Discovery Engine

The fact that GP can return an interpretable expression has been recognized
as important for a long time (Koza, 1992), due to its implications for scientific
discovery and engineering analysis (Keijzer, 2002). This volume marks two
important steps towards broad use of GP: (1) capturing a new, broad class of
functional forms which underpin many types of scientific theories, and (2) an
easy-to-use GP system with novel data analysis capabilities, built directly into
a world-standard mathematical package.

In Chapter 5, Schmidt and Lipson describe how many types of scientific
problems have an implicit functional form: the functions are not merely a map-
ping from input variables to output variables, but instead a system of equations
describes relationships among variables. For example, x2 + y2 = z2 describes
the equation for a circle; there is no single output variable. The challenge
in discovering such functional forms is that a traditional least-squares com-
parison between target values and actual values is not meaningful, because
the true problem involves capturing a surface (manifold) embedded within a
multi-dimensional space. Simplistic fitness functions do not provide enough
differentiation among candidate functions, making it hard for GP to find good
initial designs and even harder to refine designs. To solve the problem, the
authors propose the use of local finite-element analysis to measure gradients
in the manifold, and then apply a least-squares error measure to differences in
gradients. The authors demonstrate how the approach can successfully capture
the dynamics in classical pendulum physics models, as well as capturing dy-
namics of more complex pendulum models for which closed-form equations
describing dynamics are unknown.

In Chapter 4, Kotanchek et al. describe the use of a highly visual, easy-to-
use GP symbolic regression system that is embedded in Mathematica. The
visual, exploratory nature of the system leads to a truly iterative, interactive
means to use GP to explore data in real time. The paper describes techniques to
detect outliers in either a data-based or model-based fashion, measure relative
importance among variables, detect regions in an input-output mapping space
which are over- or under-represented by the training data at hand and rank the

GPTP 2009: An Example of Evolvability 9

importance of each datapoint. They also describe a “Data Balancing” technique
which is a key tool for many of these techniques.

Time-Domain Modeling

This year GPTP had three papers addressing three very different problems re-
lated to time-series signals: EEG time series classification, modeling stochastic
reaction processes, and time series with many state variables.

In Chapter 9, Citi et al. classify time domain Electroencephalography (EEG)
signals with the aim of improving brain-computer interfaces (BCIs). The ap-
proach focuses on Event-Related Potentials (ERPs) which are well-defined
events within EEG signals. EEG signals during an ERP have characteristic
waveforms that provide the possibility of accurate classification. While ERPs
have been explored extensively, an issue is the large number of human-in-the-
loop training trials. In past work Citi et al. have partly alleviated this using a
simple binning technique but this moved the issue to selection of the bin proper-
ties themselves. In this volume they use GP to evolve probabilistic membership
functions for the bins which yields promising improvement in performance.

GP is well suited to learning models that synthesize reaction processes be-
cause a language from the domain and domain dependent operations on the
data can be transfered quite directly to the GP function and terminal set. This
is the case with pi-calculus and process algebra structures that model reactions
of bio-networks. However when the reaction process is stochastic, rather than
deterministic, a challenge arises in specifying fitness objectives. Just using the
error between model prediction and real data fails to account for the statisti-
cal features in the time series that arise from stochastic timing and variance.
In Chapter 10, Ross and Imada discuss and evaluate how different statistical
feature tests can be used simultaneously via multi-objective GP.

In Chapter 12, building on past work, Bongard applies GP to reverse engineer-
ing a broad set of dynamical systems. Because the systems are deterministic,
and known in advance, Bongard’s measure of success is whether GP can suc-
cessfully recapture the original differential equations. While the focus of the
paper is a novel crossover operator, the paper reconfirms that GP is consistently
effective at capturing the system dynamics for a variety of problems.

High-Dimensional Symbolic Regression and Classification

GP modeling approaches have typically attacked problems in the range of
1 to roughly 20 dimensions. But it is well known that the nature of a prob-
lem dramatically shifts past 20 dimensions, because every training data point
is effectively “very far away” from every other datapoint (Hastie et al., 2001).
Problems with 100, 1000, or 10,000 input dimensions have very different prop-
erties. In this book, we have three diverse problems with high-dimensional

10 GENETIC PROGRAMMING THEORY AND PRACTICE VII

inputs: high-dimensional classifier design, high-dimensional regressor design
and identification of key input variable interactions (i.e., epistasis).

In Chapter 2, Greene et al. tackle what they deem a “needle in a haystack”
problem: 10,000+ input variables but only a few have an effect, and the variable
interactions have more effect than single-variable effects. The combination of
high dimensionality and epistasis makes the problem tough. The application is
for DNA analysis, to identify which sequence variations predict disease risk in
human populations. The authors approach the problem via a GP system with
hierarchical operator control, and demonstrate that GP is indeed able to extract
expressions of great use to geneticists.

In supervised problems, where a model has to be learned from a class of
exemplars with a domain of attributes, GP has been successfully used to find
a single binary classifier that automatically identifies the relevant subset of at-
tributes. However, for domains of large numbers of attributes, it is more natural
to consider grouping the exemplars and learning a set of cooperative classi-
fiers that function in a non-overlapping way over the subgroups. Different (and
overlapping) sets of attributes are appropriate to each classifier. In Chapter 3,
Doucette et al. show how to extend GP so it can accomplish this kind of clas-
sification without requiring any preliminary ad hoc intervention to group the
exemplars or attributes. Furthermore, the resulting classifier set is a product of
a single GP run. This is more efficient than using multiple runs to incrementally
learn binary classifiers for multiple classes.

In Chapter 7, McConaghy et al. describe a class of regression problems where
the input variables cannot be heavily pruned to a few key variables, because most
variables have some effect. This class of problems includes modeling the effect
of manufacturing variation in analog electronic circuits. The paper shows that
traditional GP approaches fail badly on such a problem, along with many other
well-known regression and data-mining techniques. It then proposes a “latent
variable” solution, in which the input vector is transformed to a scalar via a linear
transformation, then the scalar is passed through a nonlinear GP expression to
get the output. The process is repeated on the residuals. The challenge is
in determining the linear transformation vectors, and the final expression; the
result is demonstrated to have effective prediction on unseen inputs.

Financial Applications

GPTP has regularly reported contributions from the domain of finance (Zhou,
2003; Yu et al., 2004; Caplan and Becker, 2004; Becker et al., 2006; Korns,
2006; Becker et al., 2007; Korns, 2007; Chen et al., 2008; Korns and Nunez,
2008; Kim et al., 2008). This year marks two new papers advancing the state
of the art of GP application in the area of finance.

GPTP 2009: An Example of Evolvability 11

Over a number of years, a large-scale, industrial-strength, symbolic
regression-classification GP system used for trading models developed by In-
vestment Science Corporation has been revised, extended and improved. It
combines standard genetic programming with abstract expression grammars,
particle swarm optimization, differential evolution, context aware crossover and
age-layered populations. Chief designer, Michael Korns, now of Freeman In-
vestment Management, has stated that its design and analysis has been guided
by insights gained from theoretical findings presented at GPTP. He also credits
observations and analyses arising during cross-connecting discussions by par-
ticipants. Korn’s contribution this year, in Chapter 13, targets techniques for
improving symbolic regression in cases where the target expression contains
conditionals. The system is enhanced with pessimal vertical slicing, splicing
of uncorrelated champions via abstract conditional expressions, and abstract
mutation and crossover.

GPTP also welcomes a new team working on financial modeling. In Chap-
ter 8, co-authors Wilson and Banzhaf consider day trading where a hold, buy or
sell decision is made for each security on a daily basis. Predictions of returns
are based on the recent past. The system addressing the problem is a devel-
opmental co-evolutionary genetic programming approach called PAM DGP.
It was demonstrably better than with standard linear genetic programming in
terms of profitable buys, but not necessarily protective sells, in particular stock
price trend scenarios.

Design of Graph-Based Structures

In Chapter 11, Shirakawa and Nagao propose a method called Graph Struc-
tured Program Evolution (GRAPE). GRAPE expressions are graphs capable of
expressing conditional branches and loops, which can be executed in a register-
based computational machine. Graphs are complemented with a data set for
each of the multiple data types GRAPE supports. The genotype is a linear
string of integers. GRAPE is evaluated on problems emblematic of iterative
and conditional requirements: factorial, exponentiation, and list sorting. While
it can solve these instances, challenges remain with the number of evaluations
required and the complexity of the solutions.

In Chapter 6, Hornby describes the application of ALPS to two problems:
evolving a NASA X-Band antenna, and evolving the structure of a table. The
generative representation used for tables and antennae (GENRE) is general
enough to handle graph-based structures. While the focus of the paper was
ALPS itself, the improved quality of the results themselves is notable.

12 GENETIC PROGRAMMING THEORY AND PRACTICE VII

7. Themes, Summary and Looking Forward

The consensus among the participants this year was that genetic program-
ming has reached a watershed in terms of practicality for a well defined range of
applications. With appropriate determination of algorithm techniques, repre-
sentation, operators, and fitness function, GP has applicability to such challeng-
ing problems as scientific discovery and data modeling, time-domain modeling,
high-dimensional symbolic regression and classification, financial applications,
and design of graph-based structures. In this book, each domain is represented
by two to three papers.

The participants expressed confidence, based on experience, that there are
successful technical approaches that alleviate commonly occurring problems
such as premature evolutionary convergence, bloat, and scalability. Employ-
ing these approaches has become “standard practice” among the participants,
though they admittedly are experts. This convergence on approaches has arisen
over the course of multiple annual GPTP meetings. Participants first proposed
diverse solutions, some of which were stimulated by GP theory. Then, when
brought into the GPTP forum, the solutions were collectively analyzed for key
similarities, differences and capabilities. This enabled those present to arrive at
an understanding of central principles and to unify their ideas into recognizable
broader technical approaches with theoretical and empirical foundations. It is
this process that has bolstered the participants’ confidence in new techniques
and from which best-practice approaches have emerged.

There will always be tradeoffs among results, resources, reliability and hu-
man up-front setup effort in designing representation, operators, and fitness
functions. The workshop seems to herald a transition away from these largely-
explored issues toward those that arise from using GP for other purposes. The
new directions for GP that are exciting and present their unique challenges are,
for example:

What fundamental contributions will allow GP to be adopted into broader
use beyond that of expert practitioners? For example, how can GP be
scoped so that it becomes another standard, off-the-shelf method in the
“toolboxes” of scientists and engineers around the world? Can GP follow
in the same vein of linear programming? Can it follow the example of
support vector machines and convex optimization methods? One chal-
lenge is in formulating GP so that it is easer to lay out a problem. Another
is determining how, by default—without parameter tuning—GP can ef-
ficiently exploit specified resources to return results reliably.

Success with GP often requires extensive human effort in capturing and
embedding the domain knowledge. How can this up-front human effort
be reduced while still achieving excellent results? Are there additional
automatic ways to capture domain knowledge for input to GP systems?

GPTP 2009: An Example of Evolvability 13

How can a system of evolutionary modules interact to exploit domain
knowledge?

Scalability is always relative. GP has attacked fairly large problems, but
how can GP be improved to solve problems that are substantially (10x,
100x, 10,000x or 1,000,000x) larger?

How can the inherent distributed nature of GP be better and more easily
exploited, especially in the current era of multicore CPUs, GPUs, and
cloud computing? What are the implications of distribution in terms of
algorithm dynamics and capabilities?

How can GP be extended with more sophisticated evolutionary mecha-
nisms such as co-evolution or speciation to improve its ability to generate
solutions that exhibit complex properties such as module formation, mod-
ule reuse and self-organization into hierarchies and high level systems?

What other “uncrackable” problems await a creative GP approach?

These questions and their answers will provide the fodder for future GPTP
workshops. We wish you many hours of stimulating reading of this volume’s
contributions.

References

Becker, Ying, Fei, Peng, and Lester, Anna M. (2006). Stock selection : An inno-
vative application of genetic programming methodology. In Riolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and
Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 12,
pages 315–334. Springer, Ann Arbor.

Becker, Ying L., Fox, Harold, and Fei, Peng (2007). An empirical study of multi-
objective algorithms for stock ranking. In Riolo, Rick L., Soule, Terence, and
Worzel, Bill, editors, Genetic Programming Theory and Practice V, Genetic
and Evolutionary Computation, chapter 14, pages 241–262. Springer, Ann
Arbor.

Caplan, Michael and Becker, Ying (2004). Lessons learned using genetic pro-
gramming in a stock picking context. In O’Reilly, Una-May, Yu, Tina, Riolo,
Rick L., and Worzel, Bill, editors, Genetic Programming Theory and Practice
II, chapter 6, pages 87–102. Springer, Ann Arbor.

Chen, Shu-Heng, Zeng, Ren-Jie, and Yu, Tina (2008). Co-evolving trading
strategies to analyze bounded rationality in double auction markets. In Riolo,
Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming
Theory and Practice VI, Genetic and Evolutionary Computation, chapter 13,
pages 195–215. Springer, Ann Arbor.

14 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Driscoll, Joseph A., Worzel, Bill, and MacLean, Duncan (2003). Classification
of gene expression data with genetic programming. In Riolo, Rick L. and
Worzel, Bill, editors, Genetic Programming Theory and Practice, chapter 3,
pages 25–42. Kluwer.

Futuyma, Douglas (2009). Evolution, Second Edition. Sinauer Associates Inc.
Gruau, Frederic (1993). Cellular encoding as a graph grammar. IEE Colloquium

on Grammatical Inference: Theory, Applications and Alternatives, (Digest
No.092):17/1–10.

Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome, and Franklin, James
(2001). The Elements of Statistical Learning. Springer, New York, 2nd edi-
tion.

Hemberg, Martin (2001). GENR8 - A design tool for surface generation. Mas-
ter’s thesis, Department of Physical Resource Theory, Chalmers University,
Sweden.

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer, Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby, Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors, GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Hornby, Gregory S. and Pollack, Jordan B. (2002). Creating high-level com-
ponents with a generative representation for body-brain evolution. Artificial
Life, 8(3):223–246.

Hu, Jianjun, Goodman, Erik D., and Seo, Kisung (2003). Continuous hierar-
chical fair competition model for sustainable innovation in genetic program-
ming. In Riolo, Rick L. and Worzel, Bill, editors, Genetic Programming
Theory and Practice, chapter 6, pages 81–98. Kluwer.

Kantschik, Wolfgang and Banzhaf, Wolfgang (2002). Linear-graph GP—A new
GP structure. In Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan,
Conor, and Tettamanzi, Andrea G. B., editors, Genetic Programming, Pro-
ceedings of the 5th European Conference, EuroGP 2002, volume 2278 of
LNCS, pages 83–92, Kinsale, Ireland. Springer-Verlag.

Keijzer, Maarten (2002). Scientific Discovery using Genetic Programming. PhD
thesis, Danish Technical University, Lyngby, Denmark.

Kim, Minkyu, Becker, Ying L., Fei, Peng, and O’Reilly, Una-May (2008).
Constrained genetic programming to minimize overfitting in stock selection.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice VI, Genetic and Evolutionary Computation,
chapter 12, pages 179–195. Springer, Ann Arbor.

GPTP 2009: An Example of Evolvability 15

Kordon, Arthur, Castillo, Flor, Smits, Guido, and Kotanchek, Mark (2005).
Application issues of genetic programming in industry. In Yu, Tina, Riolo,
Rick L., and Worzel, Bill, editors, Genetic Programming Theory and Practice
III, volume 9 of Genetic Programming, chapter 16, pages 241–258. Springer,
Ann Arbor.

Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice IV, volume 5 of Genetic and Evolutionary
Computation, chapter 16, pages –. Springer, Ann Arbor.

Korns, Michael F. (2007). Large-scale, time-constrained symbolic regression-
classification. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,
Genetic Programming Theory and Practice V, Genetic and Evolutionary
Computation, chapter 4, pages 53–68. Springer, Ann Arbor.

Korns, Michael F. and Nunez, Loryfel (2008). Profiling symbolic regression-
classification. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,
Genetic Programming Theory and Practice VI, Genetic and Evolutionary
Computation, chapter 14, pages 215–229. Springer, Ann Arbor.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2007). Trustable
symoblic regression models. In Riolo, Rick L., Soule, Terence, and Worzel,
Bill, editors, Genetic Programming Theory and Practice V, Genetic and
Evolutionary Computation, chapter 12, pages 203–222. Springer, Ann Arbor.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2008). Exploit-
ing trustable models via pareto GP for targeted data collection. In Riolo,
Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming
Theory and Practice VI, Genetic and Evolutionary Computation, chapter 10,
pages 145–163. Springer, Ann Arbor.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Lohn, Jason D., Hornby, Gregory S., and Linden, Derek S. (2005). Rapid re-
evolution of an X-band antenna for NASA’s space technology 5 mission.
In Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Programming
Theory and Practice III, volume 9 of Genetic Programming, chapter 5, pages
65–78. Springer, Ann Arbor.

Mattiussi, Claudio and Floreano, Dario (2007). Analog genetic encoding for
the evolution of circuits and networks. IEEE Transactions on Evolutionary
Computation, 11(5):596–607.

McConaghy, Trent and Gielen, Georges (2005). Genetic programming in indus-
trial analog CAD: Applications and challenges. In Yu, Tina, Riolo, Rick L.,
and Worzel, Bill, editors, Genetic Programming Theory and Practice III,
volume 9 of Genetic Programming, chapter 19, pages 291–306. Springer,
Ann Arbor.

16 GENETIC PROGRAMMING THEORY AND PRACTICE VII

McConaghy, Trent, Palmers, Pieter, Gielen, Georges, and Steyaert, Michiel
(2007). Genetic programming with reuse of known designs. In Riolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and
Practice V, Genetic and Evolutionary Computation, chapter 10, pages 161–
186. Springer, Ann Arbor.

Miller, Julian Francis and Harding, Simon L. (2008). Cartesian genetic pro-
gramming. In Ebner, Marc, Cattolico, Mike, van Hemert, Jano, Gustafson,
Steven, Merkle, Laurence D., Moore, Frank W., Congdon, Clare Bates,
Clack, Christopher D., Moore, Frank W., Rand, William, Ficici, Sevan G., Ri-
olo, Rick, Bacardit, Jaume, Bernado-Mansilla, Ester, Butz, Martin V., Smith,
Stephen L., Cagnoni, Stefano, Hauschild, Mark, Pelikan, Martin, and Sastry,
Kumara, editors, GECCO-2008 tutorials, pages 2701–2726, Atlanta, GA,
USA. ACM.

O’Reilly, Una-May and Angeline, Peter J. (1997). Trends in evolutionary meth-
ods for program induction. Evolutionary Computation, 5(2):v–ix.

O’Reilly, Una-May and Hemberg, Martin (2007). Integrating generative growth
and evolutionary computation for form exploration. Genetic Programming
and Evolvable Machines, 8(2):163–186. Special issue on developmental sys-
tems.

Patel, S. and Clack, C. D. (2007). ALPS evaluation in financial portfolio optimi-
sation. In Srinivasan, Dipti and Wang, Lipo, editors, 2007 IEEE Congress on
Evolutionary Computation, pages 813–819, Singapore. IEEE Computational
Intelligence Society, IEEE Press.

Pecenka, Tomas, Sekanina, Lukas, and Kotasek, Zdenek (2008). Evolution of
synthetic rtl benchmark circuits with predeÞned testability. The 5th Annual
(2008) ÒHUMIESÓ Awards.

Poli, Riccardo (1997). Evolution of graph-like programs with parallel dis-
tributed genetic programming. In Back, Thomas, editor, Genetic Algorithms:
Proceedings of the Seventh International Conference, pages 346–353, Michi-
gan State University, East Lansing, MI, USA. Morgan Kaufmann.

Poli, Riccardo and Page, Jonathan (2000). Solving high-order boolean parity
problems with smooth uniform crossover, sub-machine code GP and demes.
Genetic Programming and Evolvable Machines, 1(1/2):37–56.

Ryan, Conor, Nicolau, Miguel, and O’Neill, Michael (2002). Genetic algo-
rithms using grammatical evolution. In Foster, James A., Lutton, Evelyne,
Miller, Julian, Ryan, Conor, and Tettamanzi, Andrea G. B., editors, Genetic
Programming, Proceedings of the 5th European Conference, EuroGP 2002,
volume 2278 of LNCS, pages 278–287, Kinsale, Ireland. Springer-Verlag.

Slany, Karel (2009). Comparison of CGP and age-layered CGP performance
in image operator evolution. In Vanneschi, Leonardo, Gustafson, Steven,
Moraglio, Alberto, De Falco, Ivanoe, and Ebner, Marc, editors, Proceedings

GPTP 2009: An Example of Evolvability 17

of the 12th European Conference on Genetic Programming, EuroGP 2009,
volume 5481 of LNCS, pages 351–361, Tuebingen. Springer.

Spector, Lee, Clark, David M., Lindsay, Ian, Barr, Bradford, and Klein, Jon
(2008). Genetic programming for finite algebras. In Keijzer, Maarten, An-
toniol, Giuliano, Congdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin,
Hansen, Nikolaus, Holmes, John H., Hornby, Gregory S., Howard, Daniel,
Kennedy, James, Kumar, Sanjeev, Lobo, Fernando G., Miller, Julian Fran-
cis, Moore, Jason, Neumann, Frank, Pelikan, Martin, Pollack, Jordan, Sastry,
Kumara, Stanley, Kenneth, Stoica, Adrian, Talbi, El-Ghazali, and Wegener,
Ingo, editors, GECCO ’08: Proceedings of the 10th annual conference on Ge-
netic and evolutionary computation, pages 1291–1298, Atlanta, GA, USA.
ACM.

Spector, Lee and Robinson, Alan (2002). Genetic programming and autocon-
structive evolution with the push programming language. Genetic Program-
ming and Evolvable Machines, 3(1):7–40.

Sun, Lei, Hines, Evor L., Green, Roger J., Leeson, Mark S., and Iliescu, D. Da-
ciana (2007). Phase compensating dielectric lens design with genetic pro-
gramming: Research articles. International Journal of RF and Microwave
Computer-Aided Engineering, 17(5):493–504.

Terry, Michael A., Marcus, Jonathan, Farrell, Matthew, Aggarwal, Varun, and
O’Reilly, Una-May (2006). GRACE: generative robust analog circuit ex-
ploration. In Rothlauf, Franz, Branke, Jurgen, Cagnoni, Stefano, Costa,
Ernesto, Cotta, Carlos, Drechsler, Rolf, Lutton, Evelyne, Machado, Penousal,
Moore, Jason H., Romero, Juan, Smith, George D., Squillero, Giovanni,
and Takagi, Hideyuki, editors, Applications of Evolutionary Computing,
EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInter-
action, EvoMUSART, EvoSTOC, volume 3907 of LNCS, pages 332–343,
Budapest. Springer Verlag.

Whigham, P. A. (1995). Grammatically-based genetic programming. In Rosca,
Justinian P., editor, Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, pages 33–41, Tahoe City, Califor-
nia, USA.

Willis, Amy, Patel, Suneer, and Clack, Christopher D. (2008). GP age-layer and
crossover effects in bid-offer spread prediction. In Keijzer, Maarten, Anto-
niol, Giuliano, Congdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin,
Hansen, Nikolaus, Holmes, John H., Hornby, Gregory S., Howard, Daniel,
Kennedy, James, Kumar, Sanjeev, Lobo, Fernando G., Miller, Julian Fran-
cis, Moore, Jason, Neumann, Frank, Pelikan, Martin, Pollack, Jordan, Sastry,
Kumara, Stanley, Kenneth, Stoica, Adrian, Talbi, El-Ghazali, and Wegener,
Ingo, editors, GECCO ’08: Proceedings of the 10th annual conference on Ge-
netic and evolutionary computation, pages 1665–1672, Atlanta, GA, USA.
ACM.

18 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Wu, Annie S. and Banzhaf, Wolfgang (1998). Introduction to the special issue:
Variable-length representation and noncoding segments for evolutionary al-
gorithms. Evolutionary Computation, 6(4):iii–vi.

Yu, Tina, Chen, Shu-Heng, and Kuo, Tzu-Wen (2004). Discovering financial
technical trading rules using genetic programming with lambda abstraction.
In O’Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Ge-
netic Programming Theory and Practice II, chapter 2, pages 11–30. Springer,
Ann Arbor.

Zhou, Anjun (2003). Enhance emerging market stock selection. In Riolo,
Rick L. and Worzel, Bill, editors, Genetic Programming Theory and Practise,
chapter 18, pages 291–302. Kluwer.

Chapter 2

ENVIRONMENTAL SENSING OF EXPERT
KNOWLEDGE IN A COMPUTATIONAL
EVOLUTION SYSTEM FOR COMPLEX
PROBLEM SOLVING IN HUMAN GENETICS

Casey S. Greene1, Douglas P. Hill1, Jason H. Moore1

1 Dartmouth College, One Medical Center Drive, HB7937, Lebanon, NH 03756 USA.

Abstract The relationship between interindividual variation in our genomes and variation
in our susceptibility to common diseases is expected to be complex with multi-
ple interacting genetic factors. A central goal of human genetics is to identify
which DNA sequence variations predict disease risk in human populations. Our
success in this endeavour will depend critically on the development and imple-
mentation of computational intelligence methods that are able to embrace, rather
than ignore, the complexity of the genotype to phenotype relationship. To this
end, we have developed a computational evolution system (CES) to discover ge-
netic models of disease susceptibility involving complex relationships between
DNA sequence variations. The CES approach is hierarchically organized and is
capable of evolving operators of any arbitrary complexity. The ability to evolve
operators distinguishes this approach from artificial evolution approaches using
fixed operators such as mutation and recombination. Our previous studies have
shown that a CES that can utilize expert knowledge about the problem in evolved
operators significantly outperforms a CES unable to use this knowledge. This
environmental sensing of external sources of biological or statistical knowledge
is important when the search space is both rugged and large as in the genetic anal-
ysis of complex diseases. We show here that the CES is also capable of evolving
operators which exploit one of several sources of expert knowledge to solve the
problem. This is important for both the discovery of highly fit genetic models
and because the particular source of expert knowledge used by evolved operators
may provide additional information about the problem itself. This study brings
us a step closer to a CES that can solve complex problems in human genetics in
addition to discovering genetic models of disease.

Keywords: Genetic Epidemiology, Symbolic Discriminant Analysis, Epistasis

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 19
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_2,

20 GENETIC PROGRAMMING THEORY AND PRACTICE VII

1. Introduction

Computational Challenges in Human Genetics

Human genetics is quickly transitioning away from the study of single genes
to evaluating the entire genome. This has been made possible by inexpensive
new technologies for measuring 106 or more single nucleotide polymorphisms
(SNPs) across the genome and emerging technologies that allow us to measure
all 3 × 109 nucleotides. As this technological shift occurs, it is critical that
the bioinformatics and data analysis approaches for sifting through these large
volumes of data keep pace. The development of machine learning and data
mining methods that are capable of identifying important patterns of genetic
variations that are predictive of disease susceptibility will depend critically
on the complexity of the mapping relationship between genotype and pheno-
type. For common human disease such as breast cancer and schizophrenia
this mapping relationship is expected to be very complex with multiple inter-
acting genetic and environmental factors (Moore, 2003; Moore and Williams,
2005; Thornton-Wells et al., 2004).

For the purposes of this paper we will focus exclusively on the SNP, which
is a single nucleotide or point in the DNA sequence that differs among people.
Most SNPs have two alleles (e.g. A or a) that combine in the diploid human
genome in one of three possible genotypes (e.g. AA, Aa, aa). It is anticipated
that at least one SNP occurs approximately every 100 nucleotides across the
human genome making it the most common type of genetic variation. Some
SNPs will be predictive of disease risk only in the context of other SNPs in the
genome (Moore, 2003). This phenomenon has been referred to as epistasis for
more than 100 years now (Bateson, 1909) and is the focus of the present study.
The general challenge of modeling attribute interactions has been previously
described (Freitas, 2001). The question we address is whether a computational
evolution system is capable of identifying combinations of interacting SNPs
when the fitness landscape is large and rugged. Our results reinforce the idea
that expert knowledge is critical to solving these problems.

A Simple Example of the Concept Difficulty

Epistasis or gene-gene interaction can be defined as biological or statisti-
cal (Moore and Williams, 2005). Biological epistasis occurs at the cellular
level when two or more biomolecules physically interact. In contrast, statis-
tical epistasis occurs at the population level and is characterized by deviation
from additivity in a linear mathematical model. Consider the following simple
example of statistical epistasis in the form of a penetrance function. Penetrance
is simply the probability (P) of disease (D) given a particular combination of
genotypes (G) that was inherited (i.e. P [D|G]). A single genotype is deter-

Environmental Sensing of Expert Knowledge 21

Table 2-1. Penetrance values for genotypes from two SNPs.
AA (0.25) Aa (0.50) aa (0.25)

BB (0.25) 0 1 0
Bb (0.50) 1 0 1
bb (0.25) 0 1 0

mined by one allele (i.e. a specific DNA sequence state) inherited from the
mother and one allele inherited from the father. For most single nucleotide
polymorphisms or SNPs, only two alleles (encoded by A or a) exist in the bio-
logical population. Therefore, because the order of the alleles is unimportant,
a genotype can have one of three values: AA, Aa or aa. The model illustrated in
Table 2-1 is an extreme example of epistasis. Let’s assume that genotypes AA,
aa, BB, and bb have population frequencies of 0.25 while genotypes Aa and Bb
have frequencies of 0.5 (values in parentheses in Table 2-1). What makes this
model interesting is that disease risk is dependent on the particular combina-
tion of genotypes inherited. Individuals have a very high risk of disease if they
inherit Aa or Bb but not both (i.e. the Exclusive–OR function). The penetrance
for each individual genotype in this model is 0.5 and is computed by summing
the products of the genotype frequencies and penetrance values. Thus, in this
model there is no difference in disease risk for each single genotype as speci-
fied by the single-genotype penetrance values. This model was first described
by Li and Reich (Li and Reich, 2000). Heritability, or the size of the genetic
effect, is a function of these penetrance values. In this model, the heritability
is 1.0, the maximum possible, because the probability of disease is completely
determined by the genotypes at these two DNA sequence variations. All the
heritability in this model is due to epistasis. As Freitas reviews, this general
class of problems has high concept difficulty (Freitas, 2002).

Artificial and Computational Evolution

Numerous machine learning and data mining methods have been developed
and applied to the detection of gene-gene interactions in population-based stud-
ies of human disease. These include, for example, traditional methods such as
neural networks (Lucek and Ott, 1997) and novel methods such as multifac-
tor dimensionality reduction (Ritchie et al., 2001). Evolutionary computing
methods such as genetic programming (GP) have been applied to both attribute
selection and model discovery in the domain of human genetics. For example,
Ritchie et al (Ritchie et al., 2003) used GP to optimize both the weights and the
architecture of a neural network for modeling the relationship between geno-
type and phenotype in the presence of gene-gene interactions. More recently,
GP has been successfully used for both attribute selection (Moore and White,

22 GENETIC PROGRAMMING THEORY AND PRACTICE VII

2006a; Moore and White, 2007a; Moore, 2007; Greene et al., 2007) and genetic
model discovery (Moore et al., 2007).

Genetic programming is an automated computational discovery tool that is
inspired by Darwinian evolution and natural selection (Banzhaf et al., 1998a;
Koza, 1992; Koza, 1994; Koza et al., 1999; Koza et al., 2003; Langdon, 1998;
Langdon and Poli, 2002). The goal of GP is to evolve computer programs to
solve problems. This is accomplished by first generating random computer
programs composed of the building blocks needed to solve or approximate a
solution. Each randomly generated program is evaluated and the good programs
are selected and recombined to form new computer programs. This process of
selection based on fitness and recombination to generate variability is repeated
until a best program or set of programs is identified.

Genetic programming and its many variations have been applied successfully
to a wide range of different problems including data mining and knowledge
discovery (e.g. (Freitas, 2002)) and bioinformatics (e.g. (Fogel and Corne,
2003)). Despite the many successes, there are a large number of challenges
that GP practitioners and theorists must address before this general computa-
tional discovery tool becomes one of several tools that a modern problem solver
calls upon (Yu et al., 2006). Spector, as part of an essay regarding the roles of
theory and practice in genetic programming, discusses the push towards biol-
ogy by GP practitioners (Spector, 2003). Banzhaf et al. propose that overly
simplistic and abstracted artificial evolution (AE) methods such as GP need to
be transformed into computational evolution (CE) systems that more closely
resemble the complexity of real biological and evolutionary systems (Banzhaf
et al., 2006). Evolution by natural selection solves problems by building com-
plexity. We are thus interested in testing the working hypothesis that a GP-based
genetic analysis system will find better solutions faster if it is implemented as a
CE system that can evolve a variety of complex operators that in turn generate
variability in solutions. This is in contrast to an AE system that uses a fixed set
of operators.

Research Questions Addressed and Overview

We have previously developed a prototype CE system and have shown that it
is capable of evolving complex operators for problem solving in human genet-
ics (Moore et al., 2008b). We have also previously extended and evaluated this
new open-ended computational evolution system for the detection and charac-
terization of epistasis or gene-gene interactions that are associated with risk of
human disease (Moore et al., 2008a). New features in this previous study in-
cluded simpler operator building blocks, list-based solutions with stack-based
evaluation and an attribute archive that provides the system with a feedback
loop between the population of solutions and the solution operators. These re-

Environmental Sensing of Expert Knowledge 23

cently added features are consistent with the idea of transforming an AE system
to a CE system. This study showed that a CE system that could exploit expert
knowledge performed better than a system that could not. This provides the
basis for the present study that addresses the question of whether the CE system
is capable of identifying and exploiting a good source of expert knowledge from
among several other randomly generated sources.

2. A Computational Evolution System

Our primary goal was to develop, extend and evaluate a computational evolu-
tion system that is capable of open-ended evolution for bioinformatics problem-
solving in the domain of human genetics. Figure 2-1 gives a graphical overview
of our hierarchically-organized and spatially-extended GP system that is capable
of open-ended computational evolution. At the bottom layer of this hierarchy is
a grid of solutions. At the second layer of the hierarchy is a grid of operators of
any size and complexity that are capable of modifying the solutions (i.e. solu-
tion operators). At the third layer is a grid of mutation operators that are capable
of modifying the solution operators. At the highest level of the hierarchy is the
mutation frequency that determines the rate at which operators are mutated.
An attribute archive provides a feedback loop between the solutions and the
solution operators. One or more sources of expert knowledge is also provided
to the system for environmental sensing. The details of the experimental design
used to evaluate this system are described in Section 3.

Problem Solutions: Their Representation, Fitness Evaluation
and Reproduction

The goal of a classifier is to accept as input two or more discrete attributes
(i.e. SNPs) and produce a discrete output that can be used to assign class (i.e.
healthy or sick). Here, we used symbolic discriminant analysis or SDA as our
classifier. The SDA method (Moore et al., 2002) has been described previously
for this problem domain (Moore et al., 2008b; Moore et al., 2007; Moore and
White, 2007a). SDA models consist of a set of attributes and constants as
input and a set of mathematical functions that produce for each instance in the
data set a score called a symbolic discriminant score. Here, our SDA function
set was +,−, ∗, /,%, <,<=, >,>=,==, ! = where the % operator is a mod
operation and / is a protected division. The SDA models are represented as
a list of expressions here instead of as expression trees as has been used in
the past to facilitate stack-based evaluation of the classifiers and to facilitate
their representation in text files. This is similar to the GP implementation using
arrays and stack as described by Keith and Martin (Keith and Martin, 1994),
Perkis (Perkis, 1994), and Banzaf et al. (Banzhaf et al., 1998b).

24 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 2-1. Visual overview of our computational evolution system for discovering symbolic
discriminant functions that differentiate disease subjects from healthy subjects using information
about single nucleotide polymorphisms (SNPs). The hierarchical structure is shown on the left
while some specific examples at each level are shown in the middle. At the lowest level (D)
is a grid of solutions. Each solution consists of a list of functions and their arguments (e.g.
X1 is an attribute) that are evaluated using a stack (denoted by ST in the solution). The next
level up (C) is a grid of solution operators that each consists of some combination of the ADD,
DELETE and COPY functions each with their respective set of probabilities that define whether
expert knowledge (E) or the archive (F, denoted by A in the probability pie) are used instead of
a random generator (denoted by R in the probability pie). The attribute archive (F) is derived
from the frequency with which each attribute occurs among solutions in the population. Finally,
environmental noise (G) perturbs the data in small ways to prevent over fitting. The top two
levels of the hierarchy (A and B) exist to generate variability in the operators that modify the
solutions. This system allows operators of arbitrary complexity to modify solutions. Note that
we used 18×18 grids of 324 solutions in the present study. A 12×12 grid is shown here as an
example.

Classification of instances into one of the two classes requires a decision rule
that is based on the symbolic discriminant score. Thus, for any given symbolic
discriminant score (Sij) in the ith class and for the jth instance, a decision
rule can be formed such that if Sij > So then assign the instance to one class
and if Sij <= So then assign the observation to the other class. When the
prior probability that an instance belongs to one class is equal to the probability
that it belongs to the other class, So can be defined as the arithmetic mean of
the median symbolic discriminant scores from each of the two classes. This
is the classification rule we used in the present study and is consistent with

Environmental Sensing of Expert Knowledge 25

previous work in this domain (Moore et al., 2008b; Moore et al., 2007; Moore
and White, 2007a). Using this decision rule, the classification accuracy for
a particular discriminant function can be estimated from the observed data.
Here, accuracy is defined as (TP + TN)/(TP + TN + FP + FN) where TP are
true positives (TP), TN are true negatives, FP are false positives, and FN are
false negatives. We used accuracy as the fitness measure for SDA solutions
as has been described previously but lightly weight it such that for solutions
with equivalent accuracy, ones with shorter genome sizes are preferable (Moore
et al., 2008b; Moore et al., 2007; Moore and White, 2007a).

All SDA solutions in a population are organized on a toroidal grid with spe-
cific X and Y coordinates (see example in Figure 2-1). As such, they resemble
previous work on cellular genetic programming (Folino et al., 1999). In the
present study we used a grid size of 18×18. Reproduction of solutions in the
population is handled in a spatial manner. Each solution is considered for re-
production in the context of its Moore neighborhood using an elitist strategy.
That is, each solution in question will compete with its eight neighbors and be
replaced in the next generation by the neighbor with the highest fitness. This
combines ideas of tournament selection that is common in GP with a set of
solutions on a grid. Variability in solutions is generated using hierarchically
organized operators. This is described below.

Operators for Computational Evolution: Generating Solution
Variability

Traditional artificial evolution approaches such as GP use a fixed set of
operators that include mutation and recombination, for example. The goal
of developing a computational evolution system was to provide building blocks
(i.e. simple functions) for operators that could be combined to create new
operators. We started with the following three basic operator building blocks.
The first operator building block, ADD, adds a new function and its arguments
to the list of functions and arguments that comprise a solution. The second
operator building block, DELETE, deletes a function from the list of functions.
The third operator, COPY, copies one function from the list of functions in
the Moore neighborhood. These operators can combine in any number and
order to generate solution operators of arbitrary complexity. The mutation
operators described below increase or decrease the size and content of the
solution operators.

Each of the operator building blocks has a vector of three probabilities as-
sociated with it. The first number specifies the probability that the function
that is added, deleted or copied to a solution is determined stochastically. The
second specifies the probability that the function that is added, deleted or copied
to a solution is determined according to an archive of attributes that is ranked

26 GENETIC PROGRAMMING THEORY AND PRACTICE VII

according to the frequency that they occur in the population of solutions (see be-
low). The third specifies the probability that the function that is added, deleted
or copied to a solution is determined according to ReliefF scores for the at-
tributes (see below). The ability to use expert knowledge (i.e. environmental
sensing) is important in this domain. For example, pre-processed ReliefF scores
have been shown to improve the performance of GP as a wrapper in this do-
main when used in a multiobjective fitness function (Moore and White, 2007a),
when used to guide recombination (Moore and White, 2006a) and when used to
guide mutation (Greene et al., 2007). This is consistent with Goldberg’s ideas
about exploiting good building blocks in competent genetic algorithms (Gold-
berg, 2002) and provides a source of complexity as recommended by Banzhaf
et al. (Banzhaf et al., 2006). For example, the use of the archive creates a
feedback loop between the solutions and the solution operators. In the present
study we evaluated whether this system is able to identify a good source of
expert knowledge from among five candidates. Here, each building block had
six probabilities associated with it, one for each of the five sources of expert
knowledge and one for the stochastic element. We did not use the archive in
this study given the focus was on understanding the role of multiple sources of
expert knowledge.

As with the solutions, each operator is organized on a toroidal grid with a
specific X and Y coordinate. We assigned each operator to a set of solutions.
This allows for averaging an operator’s positive or negative effects on multiple
solutions. In this study, we assigned each operator to a 3×3 grid of nine
solutions. Thus, the population of solution operators is organized in a 6×6
grid when an 18×18 grid is used for the solutions and 12×12 when a 36×36
grid is used for the solutions. The assignment of fitness to solution operators is
a variant of Edmond’s Meta-GP framework (Edmonds, 1998; Edmonds, 2001).
To assign fitness to an operator, we first identify the two solutions under the
operator’s control that show the most positive change in fitness, on the basis
that an operator is more fit if it greatly increases fitness in a few solutions, even
if it reduces fitness in many cases. We average these changes in fitness and this
becomes the fitness of the operator. If the operator has not been modified in this
generation, we smooth its fitness by adding half of the previous generation’s
fitness and multiplying by two thirds, so the fitness scale is comparable between
new and unchanged operators.

Mutation of Operators for Computational Evolution:
Generating Operator Variability

An important goal for the computational evolution system is the ability to
generate variability in the operators that modify solutions. To accomplish this
goal we previously developed an additional level in the hierarchy (Figure 2-1)

Environmental Sensing of Expert Knowledge 27

with mutation operators that specifically alter the operators described above.
We defined four different fixed mutation operators that are each assigned to
a 2×2 grid of solution operators. Solution operators can be modified in the
following four ways. First, an operator can have a specific operator building
block deleted (DeleteOperator). Second, an operator can have a specific opera-
tor building block added (AddOperator). Third, an operator can have a specific
operator building block changed (ChangeOperator). Finally, an operator can
have its probabilities changed (ChangeOperatorArguments). In this study, we
initialized the probabilities with which each the these mutation operators are
used to 0.25. These are randomly regenerated at a frequency equal to the overall
mutation probability (see below) and their fitness is determined by the change
in fitness of the solution operators that they act on.

Mutation Frequency

The top level of the computational evolution system hierarchy (see Figure
2-1) is the mutation frequency that controls the probability that one of the four
mutation sets in the next level down will mutate a given solution operator two
levels down. In the present study we fixed this to 0.1. In the future this will
be an evolvable parameter. This frequency does not control the frequency with
which a solution operator modifies a solution. That is controlled by the operator
when it specifies which solution(s) it will modify.

Environmental Sensing Using an Archive

Previous studies have demonstrated the utility of archiving GP results for
reuse (Vladislavleva et al., 2007). We have previously implemented an archive
that ranks the attributes by the frequency with which they appear in solutions
from the population. These are ranked by their frequency and then used by
the ADD, DELETE and COPY operators to decide what gets added, deleted or
copied. We have previously used a cumulative archive that updates the previous
results each generation. The archive is an important part of the complexity of
the CE system because it provides a feedback loop between the solutions and
the solution operators. The archive was not used in the present study to allow
us to focus on the use of multiple source of expert knowledge.

Environmental Sensing Using Expert Knowledge

As mentioned above, the use of expert knowledge is important for the appli-
cation of GP strategies to solving complex problems in human genetics. Here,
we used pre-processed ReliefF scores for all of the attributes in the dataset as
a source of statistical knowledge for the analysis. Kira and Rendell developed
the Relief algorithm that is capable of detecting attribute dependencies (Kira
and Rendell, 1992). Relief estimates the quality of attributes through a type

28 GENETIC PROGRAMMING THEORY AND PRACTICE VII

of nearest neighbor algorithm that selects neighbors (instances) from the same
class and from the different class based on the vector of values across attributes.
Weights (W) or quality estimates for each attribute (A) are estimated based on
whether the nearest neighbor (nearest hit, H) of a randomly selected instance
(R) from the same class and the nearest neighbor from the other class (nearest
miss, M) have the same or different values. This process of adjusting weights
is repeated for m instances. The algorithm produces weights for each attribute
ranging from -1 (worst) to +1 (best). Kononenko improved upon Relief by
choosing n nearest neighbors instead of just one (Kononenko, 1994). This new
ReliefF algorithm has been shown to be more robust to noisy attributes and is
widely used in data mining applications. We have developed a modified Reli-
efF algorithm for the domain of human genetics called Tuned ReliefF (TuRF).
We have previously shown that TuRF is significantly better than ReliefF in
this domain (Moore and White, 2007b). The TuRF algorithm systematically
removes attributes that have low quality estimates so that the ReliefF values if
the remaining attributes can be re-estimated. We applied TuRF as described
by Moore and White (Moore and White, 2007b) to the data set analyzed and
provided the results to the CE system as expert knowledge that can then used
by the ADD, DELETE and COPY operators to decide what gets added, deleted
or copied (Moore et al., 2008a). We also provided four random permutations of
the TuRF knowledge as additional null sources of knowledge to assess whether
the CE system could identify and exploit the correct source.

Implementation

The computational evolution system described above was programmed en-
tirely in C++. A single run of the system with a population of 324 solutions on a
18×18 grid for 1000 generations took approximately 15 minutes on a 3.0 GHz
AMD Opteron processor. Multiple runs for the experiments described below
were carried out in parallel using 100 or more processors.

3. Experimental Design and Data Analysis

Our goal was to provide an evaluation of the CE system described above using
a repeated measures experimental design. The central question addressed in
this study is whether the CE system has the ability to identify and exploit the
correct source of expert knowledge out of a total of five. Here, the probability of
a given operator such as ADD using any given source of knowledge is initialized
randomly for the first generation. The probability associated with each source
of knowledge can change over time based on its fitness reward that is assessed
by the fitness change in the solutions that operator operates on.

Here, we ran the CE system for a total of 1000 generations with a solution
grid size of 18×18. A total of 100 runs each with different random seeds

Environmental Sensing of Expert Knowledge 29

Figure 2-2. Distribution of healthy controls (left bars) and diseased cases (right bars) for each
combination of genotypes (coded 0, 1 and 2) for the two functional attributes or SNPs (X0 and
X1). Note the nonlinear pattern of high-risk (dark grey) and low-risk (light grey) genotype
combinations that is indicative of a nonlinear interaction.

were performed on the simulated data described below. For each of 100 runs
we recorded the average probability for each source of knowledge at generation
zero and 1000. We used a repeated measures analysis of variance (RMANOVA)
to test three hypotheses about the results. First, we tested the null hypothesis that
the mean probabilities are the same for each source of expert knowledge (i.e. the
treatment effect). Second, we tested the null hypothesis that the vector or profile
of mean probabilities across generations zero and 1000 are flat for each source
of expert knowledge (i.e. the time effect). Third, we tested the null hypothesis
that the mean probabilities don’t change across generations in a manner that
is dependent on the particular source of knowledge (i.e. treatment by time
interaction). Treatment, time and treatment by time effects were considered
statistically significant at the 0.05 level. Following the RMANOVA analysis
we performed a post-hoc analysis of the time effect within each treatment using
a paired t-test. Specifically, we tested the null hypothesis that difference in
means between generation zero and generation 1000 is zero within each source
of expert knowledge or the random element. Specific contrasts were considered
statistically significant at the 0.008 level. The is a Bonferroni-corrected level of
significance that accounts for the multiple statistical tests that were performed
across contrasts.

We used a simulated data set consisting of 1000 total attributes (SNPs) and
1600 instances (800 cases and 800 controls). Two of the 1000 SNPs are as-
sociated with disease class through a nonlinear interaction as described in the

30 GENETIC PROGRAMMING THEORY AND PRACTICE VII

introduction. This dataset has been previously described (Velez et al., 2007).
Figure 2-2 illustrates the distribution of healthy controls (left bars) and diseased
cases (right bars) for each combination of genotypes (coded 0, 1 and 2) for the
three functional attributes or SNPs (X0, X1). Note the nonlinear pattern of high-
risk (dark grey) and low-risk (light grey) genotype combinations. The optimal
classification of this dataset yields a classification accuracy of approximately
0.8. This is the fitness target.

4. Results

Figure 2-3 summarizes the mean probabilities for selecting attributes for
each source of expert knowledge and random for generation zero and 1000.
The RMANOVA analysis showed a highly significant difference in mean prob-
abilities between the treatment groups independent of time (P < 0.001). Figure
2-3 shows that the mean probability for the correct source of expert knowledge
is higher than the others. We also found no overall time or generation effect
independent of knowledge source (P > 0.1). This is consistent with what
we see in Figure 2-3. On average there is no generation effect. Finally, the
RMANOVA indicated a highly significant source of knowledge by generation
interaction (P < 0.001). Figure 2-3 illustrates this very clearly with the mean

0 1000

0.
12

0.
14

0.
16

0.
18

0.
20

Generation

P
ro

ba
bi

lit
ie

s

Random
Valid Source
Null Sources

p < 0.001

Figure 2-3. The mean probabilities of operators using expert knowledge increases from the
beginning to the end of the run. The probabilities of operators acting randomly decreases. The
probabilities of the null sources do not significantly change.

Environmental Sensing of Expert Knowledge 31

probability increasing from generation zero to 1000 for the correct source of
expert knowledge while staying the same for other null sources of knowledge
and decreasing with the random element. The different slopes of these lines
accounts for the statistically significant interaction. We used a paired t-test
with correction for multiple testing to carry out a post-hoc analysis to ver-
ify that the probabilities for the correct source of expert knowledge do in fact
increase. We found that statistically significant evidence to reject the null hy-
pothesis that the difference in mean probabilities for generation zero and 1000
are zero (P ≤ 0.001). This same null hypothesis for each of the null sources
of knowledge were not rejected (P > 0.1). Interestingly, the probabilities for
the random element significantly decrease (P < 0.001). These results provide
significant evidence in support of our working hypothesis that the CE system is
capable of identifying and exploiting an important source of expert knowledge
in the context of multiple other null sources.

Figure 2-4 illustrates the results from a single run of the CE system for 1000
generations. Plotted in this figure is the maximum fitness (classifier accuracy)
for each generation. Note the first major increase in fitness is associated with the
best model obtaining the correct two attributes while the second major increase

Figure 2-4. The line shows the fitness of the best solution from generation 1 to 1000. The pies,
in ascending order, show the average probabilities associated with the different sources of expert
knowledge at the initial generation (Point A) as well as generations 165 (Point B) and 310 (Point
C). The probabilities are shown for Random (R), the four null sources (N) and the valid source
of knowledge (V). The tree representation of the final solution is shown in the bottom right.

32 GENETIC PROGRAMMING THEORY AND PRACTICE VII

is associated with obtaining a set of functions that approximates the optimal
solution to the problem. Also shown in Figure 2-4 are the average probabilities
tied to the operator that operated on the best solution. Note that in generation
zero the probabilities start out approximately equal. By the first increase in
fitness the probability of picking attributes based on the good source of expert
knowledge has increased to approximately 0.5. This illustrates the ability of
the CE system to identify and exploit a particular source of knowledge. The
solution shown in Figure 2-4 illustrates an example solution to the problem
that was discovered by the CE system. The CE system was able to discover an
optimal or near optimal solution to this problem in each of the 100 runs.

5. Discussion and Conclusions

Human genetics is transitioning away from the study of single genes to the
study of the entire genome as a risk factor for common human diseases (Moore,
2009). This means we need to prepare the next generation of computational
intelligence approaches that are able to model multiple interacting genetic risk
factors simultaneously in data derived from large epidemiological and genetic
studies. We present here a computational evolution (CE) approach to this prob-
lem that builds on the successes and failures of artificial evolution (e.g. genetic
programming) to provide a comprehensive framework for genetic analysis. We
have previously shown that adding complexity to these algorithms improves
their ability to identify complex genetic models (Moore et al., 2008b; Moore
et al., 2008a). This is consistent with our previous work showing how expert
knowledge can greatly improve the performance of these algorithms (Moore
and White, 2007a; Moore and White, 2006b; Greene et al., 2007). The goal
of this study was to determine whether a CE system could learn to recognize
and exploit a good source of expert knowledge from among several different
options. Our results demonstrate that the CE system does indeed learn to use a
valid source of expert knowledge to discover optimal solutions in this domain.

The ability of the system to identify and exploit a particular source of ex-
pert knowledge to solve a complex problem is important. However, equally
exciting is the possibility of inferring from the behavior of the evolved sys-
tem what source(s) of expert knowledge seems to be important. The results
summarized in Figure 2-3 show the change in probabilities for each source
of knowledge shift from being approximately equal to favoring one particular
source of knowledge. This is important because that source of knowledge may
tell us something about the problem itself. For example, let’s assume that each
source of knowledge was biological in nature representing perhaps biochemical
pathways, gene ontology, chromosomal location, protein-protein interactions
and prior knowledge derived from microarray experiments. Preferential use
of microarray knowledge may tell us that the DNA sequence variations in the

Environmental Sensing of Expert Knowledge 33

best model might have something to do with gene expression. This in turn
provide an important basis for interpreting the model and understanding why it
is important. One ultimate goal of these studies is to understand why particular
genetic factors increase or decrease risk. A biological understanding may play
an important role in developing interventions and treatments for the disease.
The present study opens the door to using multiple sources of biological and
statistical knowledge for solving real world genetic analysis problems.

An important future goal will be to explore how multiple sources of knowl-
edge might be used together. Could the CE system learn to use two or three
sources of knowledge that each provide complementary information? How will
we need to modify the operators to effectively use joint information? How will
the sources of expert knowledge interact with the archive? This last point will
be particularly interesting to explore. We turned the archive off in the present
study so as not to confound the question being addressed about multiple sources
of expert knowledge. However, a logical next step will be to turn this back on
to determine whether there is a benefit to having both working together. It
is reasonable to assume that the expert knowledge will be important early in
the process when it is important to find the functional attributes. Once they
are found and rewarded these important building blocks will spread throughout
the population and then become part of the archive. The relative weighting of
the attributes in the archive could be greater than that provided by the expert
knowledge. If this is the case, one might predict that archive would take over
and become more important than the source of expert knowledge. These are
all interesting new directions to pursue. These questions and others will need
to be addressed before this system is ready for the routine analysis of real data.

Acknowledgment

This work was supported by National Institutes of Health (USA) grants
LM009012 and AI59694. We thank the attendees of the 2008 Genetic Pro-
gramming Theory and Practice (GPTP) Workshop for their insightful ideas
about computational evolution.

References

Banzhaf, W., Beslon, G., Christensen, S., Foster, J. A., Kepes, F., Lefort, V.,
Miller, J., Radman, M., and Ramsden, J. J. (2006). From artificial evolution
to computational evolution: a research agenda. Nature Reviews Genetics,
7:729–735.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D.
(1998a). Genetic Programming – An Introduction; On the Automatic Evo-
lution of Computer Programs and its Applications. Morgan Kaufmann, San
Francisco, CA, USA.

34 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Ter-
ence C., editors (1998b). Genetic Programming, volume 1391 of LNCS,
Paris. Springer-Verlag.

Bateson, W. (1909). Mendel’s Principles of Heredity. Cambridge University
Press, Cambridge.

Edmonds, Bruce (1998). Meta-genetic programming: Co-evolving the operators
of variation. CPM Report 98-32, Centre for Policy Modelling, Manchester
Metropolitan University, UK, Aytoun St., Manchester, M1 3GH. UK.

Edmonds, Bruce (2001). Meta-genetic programming: Co-evolving the operators
of variation. Elektrik, 9(1):13–29. Turkish Journal Electrical Engineering and
Computer Sciences.

Fogel, G.B. and Corne, D.W. (2003). Evolutionary Computation in Bioinfor-
matics. Morgan Kaufmann Publishers.

Folino, Gianluigi, Pizzuti, Clara, and Spezzano, Giandomenico (1999). A cel-
lular genetic programming approach to classification. In Banzhaf, Wolfgang,
Daida, Jason, Eiben, Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela,
Mark, and Smith, Robert E., editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, volume 2, pages 1015–1020, Orlando,
Florida, USA. Morgan Kaufmann.

Freitas, A. (2001). Understanding the crucial role of attribute interactions. Ar-
tificial Intelligence Review, 16:177–199.

Freitas, A. (2002). Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer.

Goldberg, D. E. (2002). The Design of Innovation. Kluwer.
Greene, C. S., White, B. C., and Moore, J. H. (2007). An expert knowledge-

guided mutation operator for genome-wide genetic analysis using genetic
programming. Lecture Notes in Bioinformatics, 4774:30–40.

Keith, M. J. and Martin, M. C. (1994). Advances in Genetic Programming. MIT
Press.

Kira, K. and Rendell, L. A. (1992). A practical approach to feature selection.
In: Machine Learning: Proceedings of the AAAI’92.

Kononenko, I. (1994). Estimating attributes: Analysis and extension of relief.
Machine Learning: ECML-94, pages 171–182.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge Massachusetts.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Environmental Sensing of Expert Knowledge 35

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Langdon, W. B. and Poli, Riccardo (2002). Foundations of Genetic Program-
ming. Springer-Verlag.

Langdon, William B. (1998). Genetic Programming and Data Structures: Ge-
netic Programming + Data Structures = Automatic Programming!, volume 1
of Genetic Programming. Kluwer, Boston.

Li, W. and Reich, J. (2000). A complete enumeration and classification of two-
locus disease models. Human Heredity, 50:334–49.

Lucek, P.R. and Ott, J. (1997). Neural network analysis of complex traits. Ge-
netic Epidemiology, 14(6):1101–1106.

Moore, J. H. (2003). The ubiquitous nature of epistasis in determining suscep-
tibility to common human diseases. Human Heredity, 56:73–82.

Moore, J. H. (2007). Genome-wide analysis of epistasis using multifactor di-
mensionality reduction: feature selection and construction in the domain of
human genetics. In Knowledge Discovery and Data Mining: Challenges and
Realities with Real World Data. IGI.

Moore, J. H. and White, B. C. (2006a). Exploiting expert knowledge in genetic
programming for genome-wide genetic analysis. Lecture Notes in Computer
Science, 4193:969–977.

Moore, J. H. and White, B. C. (2007a). Genome-wide genetic analysis using ge-
netic programming: The critical need for expert knowledge. In Riolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and
Practice IV, Genetic and Evolutionary Computation. Springer.

Moore, J. H. and White, B. C. (2007b). Tuning relieff for genome-wide genetic
analysis. Lecture Notes in Computer Science, 4447:166–175.

Moore, J. H. and Williams, S. W. (2005). Traversing the conceptual divide
between biological and statistical epistasis: Systems biology and a more
modern synthesis. BioEssays, 27:637–46.

Moore, Jason H., Greene, Casey S., Andrews, Peter C., and White, Bill C.
(2008a). Does complexity matter? artificial evolution, computational evolu-
tion and the genetic analysis of epistasis in common human diseases. In Ri-
olo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming
Theory and Practice VI, Genetic and Evolutionary Computation, chapter 9,
pages 125–145. Springer, Ann Arbor.

Moore, Jason H. and White, Bill C. (2006b). Exploiting expert knowledge
in genetic programming for genome-wide genetic analysis. In Runars-
son, Thomas Philip, Beyer, Hans-Georg, Burke, Edmund, Merelo-Guervos,
Juan J., Whitley, L. Darrell, and Yao, Xin, editors, Parallel Problem Solving
from Nature - PPSN IX, volume 4193 of LNCS, pages 969–977, Reykjavik,
Iceland. Springer-Verlag.

36 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Moore, J.H. (2009). From genotypes to genometypes: putting the genome back
in genome-wide association studies. Eur J Hum Genet.

Moore, J.H., Andrews, P.C., Barney, N., and White, B.C. (2008b). Development
and evaluation of an open-ended computational evolution system for the
genetic analysis of susceptibility to common human diseases. Lecture Notes
in Computer Science, 4973:129–140.

Moore, J.H, Barney, N., Tsai, C.T, Chiang, F.T, Gui, J., and White, B.C (2007).
Symbolic modeling of epistasis. Human Heridity, 63(2):120–133.

Moore, J.H, Parker, J.S., Olsen, N.J, and Aune, T. (2002). Symbolic discriminant
analysis of microarray data in autoimmune disease. Genetic Epidemiology,
23:57–69.

Perkis, Tim (1994). Stack-based genetic programming. In Proceedings of the
1994 IEEE World Congress on Computational Intelligence, volume 1, pages
148–153, Orlando, Florida, USA. IEEE Press.

Ritchie, M. D., Hahn, L. W., and Moore, J. H. (2003). Power of multifactor
dimensionality reduction for detecting gene-gene interactions in the pres-
ence of genotyping error, phenocopy, and genetic heterogeneity. Genetic
Epidemiology, 24:150–157.

Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl,
F. F., and Moore, J. H. (2001). Multifactor dimensionality reduction reveals
high-order interactions among estrogen metabolism genes in sporadic breast
cancer. American Journal of Human Genetics, 69:138–147.

Spector, Lee (2003). An essay concerning human understanding of genetic pro-
gramming. In Riolo, Rick L. and Worzel, Bill, editors, Genetic Programming
Theory and Practice, chapter 2, pages 11–24. Kluwer.

Thornton-Wells, T. A., Moore, J. H., and Haines, J. L. (2004). Genetics, statistics
and human disease: Analytical retooling for complexity. Trends in Genetics,
20:640–7.

Velez, D.R., White, B.C., Motsinger, A.A., Bush, W.S., Ritchie, M.D., Williams,
S.M., and Moore, J.H. (2007). A balanced accuracy function for epistasis
modeling in imbalanced datasets using multifactor dimensionality reduction.
Genetic Epidemiology, 31(4).

Vladislavleva, Ekaterina, Smits, Guido, and Kotanchek, Mark (2007). Soft evo-
lution of robust regression models. In Riolo, Rick L., Soule, Terence, and
Worzel, Bill, editors, Genetic Programming Theory and Practice V, Genetic
and Evolutionary Computation, chapter 2, pages 13–32. Springer, Ann Ar-
bor.

Yu, T., Riolo, R., and Worzel, B. (Eds.) (2006). Genetic Programming Theory
and Practice III. Springer.

Chapter 3

EVOLVING COEVOLUTIONARY CLASSIFIERS
UNDER LARGE ATTRIBUTE SPACES

John Doucette1, Peter Lichodzijewski1 and Malcolm Heywood1

1Faculty of Computer Science, Dalhousie University, 6050 University Av., Halifax, NS, B3H
1W5. Canada.

Abstract Model-building under the supervised learning domain potentially face a dual
learning problem of identifying both the parameters of the model and the subset
of (domain) attributes necessary to support the model, thus using an embedded
as opposed to wrapper or filter based design. Genetic Programming (GP) has
always addressed this dual problem, however, further implicit assumptions are
made which potentially increase the complexity of the resulting solutions. In
this work we are specifically interested in the case of classification under very
large attribute spaces. As such it might be expected that multiple independent/
overlapping attribute subspaces support the mapping to class labels; whereas GP
approaches to classification generally assume a single binary classifier per class,
forcing the model to provide a solution in terms of a single attribute subspace
and single mapping to class labels. Supporting the more general goal is consid-
ered as a requirement for identifying a ‘team’ of classifiers with non-overlapping
classifier behaviors, in which each classifier responds to different subsets of ex-
emplars. Moreover, the subsets of attributes associated with each team member
might utilize a unique ‘subspace’ of attributes. This work investigates the utility
of coevolutionary model building for the case of classification problems with
attribute vectors consisting of 650 to 100,000 dimensions. The resulting team
based coevolutionary evolutionary method – Symbiotic Bid-based (SBB) GP – is
compared to alternative embedded classifier approaches of C4.5 and Maximum
Entropy Classification (MaxEnt). SSB solutions demonstrate up to an order of
magnitude lower attribute count relative to C4.5 and up to two orders of mag-
nitude lower attribute count than MaxEnt while retaining comparable or better
classification performance. Moreover, relative to the attribute count of individual
models participating within a team, no more than six attributes are ever utilized;
adding a further level of simplicity to the resulting solutions.

Keywords: Problem Decomposition, Bid-based Cooperative Behaviors, Symbiotic Coevo-
lution, Subspace Classifier, Large Attribute Spaces.

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 37
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_3,

38 GENETIC PROGRAMMING THEORY AND PRACTICE VII

1. Introduction

Team or ensemble based frameworks for machine learning may be used to
provide explicit support for the ‘divide and conquer’ metaphor of problem de-
composition. Thus under a classification problem domain, rather than assuming
a single model-based classifier1 per class, the process of credit assignment is
able to actively decompose the problem as originally posed. The resulting solu-
tion engages multiple classifiers to provide the same class label, but in the case
of this work we do so while seeking an explicitly non-overlapping interaction
between classifiers. Such a non-overlapping behavioral requirement implies
that the team of classifiers associated with the same class respond to different
partitions of the exemplars comprising the class in question.2 Thus, under such
an approach, the overall solution is potentially much simpler than assuming a
single classifier per class. For the purposes of this work the simple solution
property has at least two specific properties: (1) the complexity of individual
classifiers associated with the same class is less than that when a priori forcing a
single classifier to represent each class, and; (2) the attributes/ features3 indexed
by a team member need only be a subset of the total attributes utilized under the
single classifier per class approach. The net result is that the transparency of a
solution increases relative to non-team based classifiers and a wider acceptance
of machine learning solutions might be expected in general.

Recent advances to team based evolutionary model building appear to rep-
resent a particularly appropriate approach for realizing both of the above sim-
plification properties simultaneously. To date, however, there has been little
effort to investigate the utility of such models to problem domains with hun-
dreds to hundreds of thousands of attributes. With these goals in mind, we
begin by reviewing advances in team-based evolutionary model building under
the classification domain (Section 2). Section 3 summarizes the properties of
the Symbiotic Bid-Based (SBB) model of coevolutionary machine learning as
employed in this study. The evaluation methodology is established in Section
4, where this includes the details of data sets employed and a summary of two
alternative classification methodologies that also support the embedded identi-
fication of attribute sets (C4.5 and Maximum Entropy Classification). Results
of the empirical benchmarking study follow in Section 5, with conclusions and
future work in Section 6.

1By ‘model-based’ representation we imply that individuals are required to discover a mapping from the
original attribute space to the output space.
2Hereafter ‘team’ and ‘ensemble’ will be used interchangeably with the non-overlapping behavioral con-
straint implicit.
3The term ‘attribute’ and ‘feature’ have became interchangeable in the general literature; although in some
works ‘feature space’ is distinct from the original attribute vector associated with the application domain.
In the following we will associate a ‘feature count’ with all zero argument terms included in a solution, thus
including attributes explicitly included in the classifier as a subset.

Evolving Coevolutionary Classifiers under large Attribute Spaces 39

2. Related Work

When faced with a data set composed of a large potential number of at-
tributes one of two methods are generally employed: filter or embedded (Lal
et al., 2006). Filter methods divide the overall task into two independent steps,
attribute subset identification and then classification; a process that potentially
makes the overall task computationally faster at the potential expense of overall
accuracy. Conversely, the embedded approach takes the view that by perform-
ing both tasks in one step, as part of a single integrated process of learning, the
subset of attributes most appropriate for the model of classification can be ex-
plicitly identified. A third approach – wrapper methods – use the classification
model to iteratively evaluate suggested attribute subsets, but without integrating
the two steps within a single learning algorithm; thus any classification algo-
rithm would suffice for evaluation of the suggested attribute subset. However,
such wrapper methods do not appear to work as well in practice.

Whether one of the two former methods is pursued over the other is often
based on additional factors such as the ultimate cost of model building or the
availability of expert knowledge appropriate for reducing the size of the at-
tribute space. Moreover, some models of classification have a bias towards
including all attributes and then simplifying (e.g., neural networks and SVM
models); whereas other models of machine learning begin with a bias towards
including a low number of attributes and incrementally include more until an
‘optimal’ classification performance is achieved (e.g. decision tree induction
and evolutionary methods of model building).

Our work naturally assumes an embedded approach under the hypothesis
that evolutionary methods for constructing models of classification provide a
suitable basis for incremental attribute identification. Indeed, previous works
have demonstrated that both Genetic Algorithms (GA) and Genetic Program-
ming (GP) are appropriate for attribute subset identification/ attribute creation
(Krawiec, 2002), (Smith and Bull, 2005), (Zhang and Rockett, 2006). In each
case evaluation was limited to problem domains with tens of attributes. How-
ever, such approaches to classification still fall short of the overall objective
pursued in this work as the solution takes the form of a single classifier per
class. That is to say, solutions fail to support transparency under the afore-
mentioned two properties of: (1) team-based classifier decomposition through
non-overlapping behaviors, and; (2) the identification of (potentially) indepen-
dent attribute subsets by each team member. More recently, GP was used as a
pairwise attribute selector in combination with statistical feature selection and
a linearly weighted bi-objective fitness function for wrapper based attribute se-
lection under a Bayes model of classification and dimensionality in the order
of thousands of attributes (More and White, 2007). The work reported here

40 GENETIC PROGRAMMING THEORY AND PRACTICE VII

concentrates on the single step embedded approach to classification–attribute
selection.

In order to support problem decomposition under evolutionary methods var-
ious metaphors have been investigated, including learning classifier systems
(Bernado-Mansilla and Garrell-Guiu, 2003), cooperative coevolution (Potter
and de Jong, 2000), GP teaming (Brameier and Banzhaf, 2001), (Thomason
and Soule, 2007), and various evolutionary approaches for building ensembles
(Jin, 2006). Some of the generic difficulties faced in attempting to compose
such models under the supervised learning domain of classification include:
establishing how many classifiers to include per class; defining an appropriate
credit assignment policy; deciding how to combine multiple individuals once
identified; and simultaneously scaling the model for efficient evolution over
large data sets. Specifically, the generic model of cooperative coevolution es-
tablished by Potter and de Jong assigns an independent population per ‘team
member’ (Potter and de Jong, 2000). Thus, a priori knowledge is necessary in
order to specify the number of individuals required to participate in the class-
wise decomposition. The same constraint has limited teaming metaphors under
GP (Brameier and Banzhaf, 2001), (Thomason and Soule, 2007). In the case
of evolutionary ensemble methods a common requirement is to hold multiple
independent runs to produce each member of the ensemble, where this often
implies suitable computational support, especially when scaling to large data
sets (Folino et al., 2006). Moreover, the generic ensemble learning approach
does not guarantee that the resulting learners will have non-overlapping behav-
iors (Imamura et al., 2003), (Thomason and Soule, 2007). Indeed, in order to
guarantee diversity in the ensemble, techniques such as strongly typed GP (Ku-
mar et al., 2008), local membership functions (McIntyre and Heywood, 2008),
or negative correlation (Chandra et al., 2006) have been proposed; all under the
context of Multi-objective fitness formulations.

With the above discussion in mind, our approach to evolving a team of
learners under the classification domain will assume the Symbiotic Bid-based
(SBB) framework for model building under discrete domains (Lichodzijewski
and Heywood, 2008b). Such an approach provides problem decomposition
without pre-specifying the nature of the decomposition (c.f. the number of
cooperating learners per class) and scales to large data sets care of a competitive
coevolutionary mechanism. Section 3 will summarize the characteristics of the
SBB learning algorithm.

3. Symbiotic Bid-Based framework

Motivation and Methodology

The framework typically assumed for applying model based cases of evolu-
tion – such as Genetic Programming (GP) – to the supervised learning domain

Evolving Coevolutionary Classifiers under large Attribute Spaces 41

of classification requires an individual to map exemplars from an attribute space
to a class label space. An individual’s program expresses the mapping. How-
ever, this is not the case under the bid-based GP framework (Lichodzijewski
and Heywood, 2008a). Instead the task is divided into two components: (1)
deciding which exemplars to label, or the bid, and (2) suggesting class label,
or the action. In the case of the individual’s action, the assumption is made
that an individual will always be associated with the same action (class label).
Thus at initialization, a problem with C classes results in PopSize

C individuals in
the population being pre-assigned to each class. The assignment is defined by
assigning a scalar a to each individual at initialization. Scalars are selected with
uniform probability over the interval {1, ..., C}. The actions are not adapted
during evolution. Conversely, the task of deciding which subset of exemplars to
label is expressed in terms of a bid. The individual with maximum (winning) bid
suggests their pre-assigned action as the class label. Individuals suggesting an
action a that matches the exemplar class label are rewarded, whereas individuals
winning the bid, but not providing a class matching action are penalized.

The most recent form of the bid-based framework – hereafter Symbiotic
Bid-based (SBB) – makes extensive use of coevolution (Lichodzijewski and
Heywood, 2008b), with a total of three populations involved: a population of
points, a population of learners, and a population of teams (Figure 3-1). Specif-
ically, individuals comprising a team are specified by the team population, thus
establishing a symbiotic relationship with the learner population. Only the sub-
set of individuals indexed by an individual in the team population compete to
bid against each other on training exemplars. The use of a symbiotic relation
between teams and learners makes the credit assignment process more transpar-
ent than in the case of a population wide competition between bids (as used in
the earlier variant of the model (Lichodzijewski and Heywood, 2008a)). Thus,
variation operators may now be defined for independently investigating team
composition (team population) and bidding strategy (learner population). The
third population provides the mechanism for scaling evolution to large data sets.
In particular the interaction between team and point population is formulated
in terms of a competitive coevolutionary relation (de Jong, 2007). As such, the
point population indexes a subset of the training data set under an active learn-
ing model (i.e. the subset indexed varies as classifier performance improves).
Biases are enforced to ensure equal sampling of each class, irrespective of their
original exemplar class distribution (Doucette and Heywood, 2008). The con-
cept of Pareto competitive coevolution is used to retain points of most relevance
to the competitive coevolution of teams.

42 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Point

Population

Team

Population

Team

Population

Learner

Population

GA!GP interaction

Symbiotic Coevolution

Competitive Coevolution
GA!GA interaction

Figure 3-1. Architecture of Symbiotic Bid-based GP. Black/ white diamonds denote exemplars
from different classes; Black/ white circles denote programs with different actions.

SBB Algorithm

The SBB model of evolution generates Pgap% new exemplar indexes in
the point population and Mgap% new teams in the team population at each
generation. Specifically, individuals in the point population take the form of
indexes to the training data and are generated stochastically (subject to the
aforementioned class balancing heuristic). New teams are created through
variation operators applied to the current team population. Fitness evaluation
evaluates all teams against all points with (1−Pgap)% points and (1−Mgap)%
teams appearing in the next generation. Pareto competitive coevolution ranks
the performance of teams in terms of a vector of outcomes, thus the Pareto
non-dominated teams are ranked the highest (de Jong, 2007). Likewise, the
points supporting the identification of non-dominated individuals (distinctions)
are also retained. In addition, use is made of competitive fitness sharing in order
to bias survival in favor of teams that exhibit uniqueness in the non-dominated
set (Pareto front).

Evaluation of team mi on a training exemplar defined by point population
member pk results in the construction of an outcome matrix G(mi, pk) in which
unity implies a correctly classified exemplar, and zero an incorrectly classified
exemplar. The ensuing distinction matrix details the pairwise outcome of each
team over all exemplars sampled by the point population, or,

{

1 if G(mi, pk) > G(mj , pk)
0 otherwise

(3.1)

Evolving Coevolutionary Classifiers under large Attribute Spaces 43

where unity implies that point pk ‘distinguishes’ between team mi and mj . The
ensuing Pareto competitive coevolutionary process identifies the non-dominated
teams and points supporting their identification.

Denoting the non-dominated and dominated points as F (P) and D(P) re-
spectively, the SBB framework notes that as long as F (P) contains less than
(1 − Pgap)% points, all the points from F (P) are copied into the next gen-
eration. On the other hand, if F (P) contains more points than are allowed
to survive, then the following fitness sharing heuristic is imposed to rank the
collection of non-dominated points (Rosin and Belew, 1997),

∑

i

dk[i]

1 + Ni
(3.2)

where dk[i] is the ith entry of the distinction vector for pk; and Ni is the sum
of the i th entries over the distinction vectors across all points in F (P) i.e., the
number of points making the same distinction. Thus, points making the same
distinction are weighted less than points making unique distinctions.

An analogous process is repeated for the case of team selection, with (1 −
Mgap)% individuals copied into the next generation. Naturally, under the con-
dition where the (team) non-dominated set exceeds this fraction, the fitness
sharing ranking employs F (M) and D(M) in place of F (P) and D(P) re-
spectively. The resulting process of fitness sharing under a Pareto model of
has been shown to be effective at promoting solutions in which multiple mod-
els cooperate to decompose the original |C| class problem into a set of non-
overlapping behaviors (Lichodzijewski and Heywood, 2008a), (Lichodzijewski
and Heywood, 2008b).

Finally, the learner population of individuals expressing specific bidding
strategies employs a linear representation. Bid values are standardized to the
unit interval through the use of a sigmoid function, or bid(y) = (1+exp−y)−1,
where y is the real valued result of program execution on the current exemplar.
Variation operators take the form of instruction add, delete, swap and mutate;
applied with independent likelihoods, under a uniform probability of selection.
When an individual is no longer indexed by the team population it becomes ex-
tinct and deleted from the learner population. Conversely, during evaluation of
the team population, exactly Mgap% children are created pairwise care of team
based crossover. Learners that are common to both child teams are considered
to be the candidates for retention. Learners not common to the child teams
are subject to stochastic deletion or modification; with corresponding tests for
deletion/ insertion at the learner population. The instruction set follows from
that assumed in (Lichodzijewski and Heywood, 2008b) and consists of eight
opcodes ({cos, exp, log,+,×,−,÷,%}) operating on up to 8 registers, as per
a linear GP representation.

44 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 3-1. Data set properties.

Data set Exemplar Count Feature Count
train (test)

Handwritten character recognition
Multifeature 1,510 (490) 649

Gisette 6,000 (1,000) 5,000
Document Classification: Bag-of-words

NIPS 7,000 (3,500) 12,419
Enron 7,000 (3,500) 28,102

NY Times 7,000 (3,500) 102,660

4. Evaluation Methodology

The Evaluation Methodology is first considered from two perspectives, the
selection of data sets appropriate for performing the comparison, and identifi-
cation of alternative models for establishing a realistic baseline of performance.
Parameterization of the SBB model is briefly discussed and the metrics deployed
for evaluating performance post training are presented.

Data Sets

Data sets with large attribute spaces are frequently encountered under the
context of document analysis (information retrieval), speech recognition, bioin-
formatics, and image processing. In this work, we make use of data sets from
the domains of document analysis and image processing. In the case of the
image processing domain, the ‘Multifeature’ and ‘Gisette’ data sets were em-
ployed (Asuncion and Newman, 2008), where both pertain to the recognition of
handwritten digits (Table 3-1) and used ‘as is’ with no pre-processing applied.
The Multifeature data set is a 10 class problem with each class equally repre-
sented; whereas Gisette is a binary classification problem in which 55% (45%)
of the exemplars are in-class (out-class). Moreover, Gisette has the additional
property that half of the attributes (2,500) are ‘probes,’ thus redundant from the
perspective of building an appropriate classification model.

In the case of the document analysis domain, three binary classification
problems were composed from the UCI Bag-of-words data set (Asuncion and
Newman, 2008). The data set is comprised from a series of distinct document
repositories. The repository content are unlabeled; however, it is known from
which repository a document is sourced. Thus we first combine the common
words from the NIPS, Enron and New York Times (NYT) repositories; whereas
the three binary classification problems entail distinguishing documents in the

Evolving Coevolutionary Classifiers under large Attribute Spaces 45

NIPS/ Enron/ NYT repository from the combination of all three. In each case
document files were normalized with respect to the target class. Thus under the
goal of distinguishing the Enron repository from NIPS and NYT, only words
appearing in the Enron vocabulary were used to build the corresponding bag-
of-words across all three document repositories. The resulting documents were
labeled as in-class if they came from the set of documents that originated the
vocabulary or out-class otherwise. This resulted in the largest attribute spaces
deployed during the ensuing performance evaluation (see Table 3-1). Class
representation was also generally unbalanced with in-class representation at
14, 29 and 43 percent respectively for NIPS, Enron and NYT.

Comparator Models of Classification

In establishing a set of baseline classifiers we considered two alternative
examples of models that operate under an explicitly embedded paradigm and
are widely utilized under large attribute space domains: decision tree induction
and Maximum Entropy Classifiers (MaxEnt). Both models make use of entropy
frameworks for model building. However, decision tree induction – C4.5 – nat-
urally assumes a greedy incremental non-linear model building methodology.
As such this gives the model the explicit ability to trade off model complexity/
feature count with classification performance. Conversely, MaxEnt classifiers
are based on a linear model and might therefore be expected to utilize many
more attributes relative to non-linear models such as C4.5 or SBB. However,
they have repeatedly been shown to be very accurate under domains with high
feature counts, even relative to methods incorporating SVM models of clas-
sification (Haffner, 2006). Indeed, both SVM and MaxEnt are large margin
classifiers, with the SVM approach formulated for exemplar optimization and
MaxEnt formulated for attribute selection (Haffner, 2006).

Finally, in both cases we also consider the impact of model pruning on the
classification performance of the resulting models, with the goal of establishing
to what degree the baseline models can approach the feature counts returned
under SBB solutions. In the following subsections we provide background
on the parameterization/ modifications necessary prior to benchmarking and a
summary of the C4.5 and MaxEnt approaches.

C4.5 Decision Tree Induction. C4.5 is a widely used model for the con-
struction of decision trees under a recursive algorithm in which attributes are
incrementally added to the model care of their respective maximum normalized
information gain relative to class label (Quinlan, 1993). The deployment used
here is essentially the original code from Quinlan with modifications to support
wider ranges of (confidence value) pruning than would normally be the case.
In order to support efficient operation under the larger data sets, modification
was necessary of the code in order to accept implicit data formats. Naturally,

46 GENETIC PROGRAMMING THEORY AND PRACTICE VII

extensive evaluation was performed to verify that results remained consistent
with the original version under smaller attribute dimensions. Such formats
are widely used in text classification domains where they provide a significant
reduction on memory requirements under sparse data sets.

Maximum Entropy Classifier. MaxEnt methods are either based on a
conditional distribution, P (y|x), (Nigam et al., 1999) or a joint distribution,
P (y, x), (Haffner, 2006). Moreover, MaxEnt models’ each class independently,
thus the conditional probability of a binary problem becomes,

P (y = +1|x) =
exp(y(w+)T x)

Z(x)
(3.3)

for the in-class exemplars, and,

P (y = −1|x) =
exp(y(w−)T x)

Z(x)
(3.4)

for the out-class exemplars. However, Z(x) = exp(y(w+)T x) +
exp(y(w−)T x), thus a conditional MaxEnt classifier reduces to a logistic clas-
sifier i.e., a sigmoid function applied to the linear combination of weights
w = (w+) + (w−), with an exponentially weighted error term,

Elog(yiw
T xi) = log(1 + exp(−2yiw

T xi)) (3.5)

This is the most common formulation and will be employed here. In addi-
tion, the frequently employed l2 Gaussian regularization factor for reducing the
likelihood of overfitting will be assumed (Nigam et al., 1999), (Haffner, 2006),
(Lal et al., 2006).

The foregoing description establishes the basis for the definition of the er-
ror term, but says nothing about the scheme employed for adapting the free
parameters, w. One of the very nice properties of MaxEnt methods is that the
constrained multi-objective formulation results in a single unimodal objective
search space (Nigam et al., 1999). As such, gradient based optimization rou-
tines are sufficient. However, it is still important to address stability issues (c.f.
sparse training data) and direct inversion of the Hessian matrix is generally not
possible. In this work, we make use of a recent Conjugate Gradient (binary)
and BFGS (multi-class) implementation, or MegaM, (Daumè III, 2004) – rather
than the originally widely employed Improved Iterative Scaling (IIS) routine
(Nigam et al., 1999) – where MegaM provides a considerable speedup over the
IIS methodology.

Finally, we note that pruning was applied post training through the application
of a simple thresholding scheme in which attributes with free parameters below
the threshold were ignored. Such a simplistic scheme was deemed sufficient for

Evolving Coevolutionary Classifiers under large Attribute Spaces 47

Table 3-2. Parameterization of the Symbiotic Bid-Based model.

Parameter Value
Team/ Point population 90

Point replacement (Pgap) 1 / 3
Team replacement (Mgap) 2 / 3

Max. Team size 100
Prob. Team add/ remove/ swap 0.1

Prob. Learner add remove/ swap/ mutate 0.1
Max. Generations 30,000
Number of Trials 40

qualifying to what degree the resulting linear model was reliant on the overall
composition of the attribute space (as opposed to the potential ability of a non-
linear model to compose features from a smaller subset of the total attribute
space).

SBB Configuration

Relative to the original SBB configuration the most significant modification
necessary to undertake this work was to: (1) provide support for implicit data
formats, and; (2) extend the range of attributes learners may index from 64
to over 100,000. Parameterization of the model essentially follows that of the
original work (Lichodzijewski and Heywood, 2008b), but with larger team sizes
appearing here, and is summarized in Table 3-2. A distribution of the source
code and data is available (http://www.cs.dal.ca/˜mheywood/Code/SBB/).

Post Training Performance Metrics

Post training performance will be assessed from the perspective of clas-
sification and feature count. In the case of classification performance we
make use of detection (sensitivity) as measured class-wise, resulting in a multi-
class measure of detection. Thus, defining the class specific detection rate as
DR(i) = tp(i)

tp(i)+fn(i) where tp(i) and fn(i) are the true positive and false neg-
ative counts under class i ∈ {1, ..., C}, leads to the following definition for
class-wise detection,

CW-detection =
DR(1) + · · · + DR(C)

C
(3.6)

Such a measure is independent of the distribution of exemplars per class.
Thus under an imbalanced binary data set in which 95% (5%) of the exemplars

48 GENETIC PROGRAMMING THEORY AND PRACTICE VII

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Attribute Count (log)

C
la

s
s
-w

is
e
 D

e
te

c
ti

o
n

(a) Multifeature

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000

Attribute Count (log)

C
la

s
s
-w

is
e
 D

e
te

c
ti

o
n

(b) Gisette

Figure 3-2. Class-wide detection (Y axis) versus complexity (log of Attribute count, X axis) on
the Character Recognition data sets. Feature counts are 649 (Multifeature) and 5,000 (Gisette).
× denote solutions from SBB; △ denote solutions from C4.5; and ♦ denote solutions from
MaxEnt.

were out-class (in-class) a degenerate classifier might label all exemplars as the
out-class and achieve an accuracy of 95%; whereas the CW-detection metric
would return a value of 50% or more generally 1

C . Feature count will be
measured in terms of the number of zero argument terms included in the model
i.e., the number of constants and unique domain attributes actually utilized.

5. Benchmarking Results

Benchmarking results will be summarized in terms of 2-D scatter plots of
CW-detection versus Feature count. SBB solutions are plotted per run; C4.5
and MaxEnt solutions are plotted for increasing levels of pruning (c.f. the
pruning threshold of C4.5 and the post training thresholding of the model free
parameters in the case of MaxEnt). As such the C4.5 and MaxEnt results are
likely to span from complex but most accurate, to the simplest achievable but
(relatively speaking) least accurate. This is further emphasized by linking the
points formed by pruning C4.5 and MaxEnt solutions to provide a corresponding
performance curve. Points which tend to the top left of a curve will naturally
dominate the performance of other points in a manner similar to that used to
interpret ROC curves. However, the interaction between CW-detection and
attribute count will not necessarily result in a monotonic curve. Finally, SBB
solutions will naturally result in a distribution of points, due to the multiple
stochastic sources of variation implicit in GP; thus the training partition is used
to identify the top 50 percent of solutions for which test evaluation is performed.

Character Recognition data sets

Figure 3-2 characterizes performance of the three classifiers under the two
Character Recognition data sets considered in this study (Multifeature and

Evolving Coevolutionary Classifiers under large Attribute Spaces 49

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Attribute Count (log)

C
la

s
s
-w

is
e
 D

e
te

c
ti

o
n

(a) NIPS

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Attribute Count (log)

C
la

s
s
-w

is
e
 D

e
te

c
ti

o
n

(b) Enron

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Attribute Count (log)

C
la

s
s
-w

is
e
 D

e
te

c
ti

o
n

(c) NY Times (SBB and MaxEnt only)

Figure 3-3. Class-wide detection (Y axis) versus complexity (log of Attribute count, X axis) on
the Bag-of-words data sets. Feature counts are 12,419 (NIPS), 28,102 (Enron) and 102,660 (NY
Times). × denote solutions from SBB; △ denote solutions from C4.5; and ♦ denote solutions
from MaxEnt.

Gisette). In the case of the smaller attribute space of the Multifeature data
set SBB solutions appear to be stronger in terms of both simplicity and classi-
fication performance with the equivalent of up to nine of ten classes correctly
classified while using 10 to 70 of the 649 attributes. C4.5 and MaxEnt managed
to classify the equivalent of 6 to 7 of the classes, with MaxEnt degenerate under
the higher levels of pruning. Moreover, outside of the degenerate solutions (i.e.,
CW-detection of 0.1) there is a clear ordering of model feature count from SBB
(simplest) to C4.5 to MaxEnt (largest feature utilization). This pattern is also
reflected under Gisette, with the inclusion of additional attributes improving
CW-detection from 90% (SBB) to 95% (C4.5) to 98% (MaxEnt). The penalty
paid for the increased classification performance appears in terms of attribute
count, where MaxEnt generally utilizes thousands of attributes whereas SBB
generally uses no more then 15. We also note that all but the larger MaxEnt
models managed to index less than half of the attributes under Gisette; where
half of the attributes are known to be redundant/ duplicate probes although the
exact identity of the probes remains concealed (Asuncion and Newman, 2008).

50 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Bag-of-words data set

Figure 3-3 characterizes performance under the NIPS, Enron and NY Times
(NYT) domains from the UCI ‘Bag-of-words’ data set; as formulated in terms
of three independent binary classification problems. In the case of NYT, re-
sults are expressed in terms of MaxEnt and SBB alone; C4.5 requiring more
memory capacity than was available under the 2GB RAM limit imposed by the
computing platform. In this case the simple SBB models are generally able to
reach the classification performance identified under MaxEnt. Indeed, they are
within 1% of MaxEnt under NIPS, about 25% more accurate under Enron and
within 5 to 2% of MaxEnt under NYT while utilizing 15 to 90 out of a possible
12,419 (NIPS), 28,102 (Enron) or 102,660 (NYT) attributes. Moreover, at each
level of model feature count identified by SBB, the SBB models dominated the
corresponding MaxEnt solution. C4.5 found solutions with the same attribute
counts as SBB under NIPS, but were about 15% less accurate; whereas under
Enron C4.5 were as accurate, but only by including 50 more attributes than
SBB.

In the case of MaxEnt one characteristic of interest was the pair of peaks
appearing under the Enron category. Rather than pruning resulting in a mono-
tonic decline in performance (as in all previous cases) a series of two mono-
tonic performance profiles are identified. Moreover, it is the curve from the
more complex MaxEnt model which begins at a lower level of classification
performance and decays to degenerate solutions; whereas the second MaxEnt
peak identified solutions that were simpler and avoided degenerate solutions.

SBB team properties

Figure 3-4 summarizes complexity across the SBB teams as a whole. Gisette
appears to require the lowest team complexity, although some of this charac-
teristic is undoubtedly due to the problem with the smallest attribute count
(Multi-feature) also being a ten class problem; thus requiring a greater diver-
sity in model behavior. The three larger ‘bag-of-words’ data sets did establish
some correlation between total attributes indexed over the entire team and at-
tribute count of the original problem domain, Figure 3-4. However, individual
models participating in the team generally indexed no more than in the case of
Multi-feature or Gisette (see Figure 3-5).

Figure 3-5 summaries complexity as measured per individual. It is apparent
that the total number of unique attributes indexed by individual team members
is very low, or typically less than 4 attributes. This makes for very simple rules
that are able to act independently from each other; as opposed to C4.5 which
builds a single monolithic solution from a hierarchy of decisions, thus building
up to quite complex rules as the tree depth increases. Indeed, the simplest SBB
rules tend to be of the form “if attribute X appears in document, it is about

Evolving Coevolutionary Classifiers under large Attribute Spaces 51

0

10

20

30

40

50

60

70

Nips Enron NYT Mfeat Gisette

S
iz

e
 o

f
 T

e
a
m

(a) SBB team size (num. team members)

0

10

20

30

40

50

60

70

80

Nips Enron NYT Mfeat Gisette

#
A

t
t
r
ib

u
t
e
s
 U

s
e
d

(b) SBB total num. unique attributes indexed per
team

Figure 3-4. Summary of SBB Team complexity on each data set.

0

1

2

3

4

5

6

Nips Enron NYT Mfeat Gisette

#
A

t
t
r
ib

u
t
e
s
 I

n
d

e
x
e
d

(a) SBB total num. unique attributes indexed per
team member

3

5

7

9

11

13

15

17

19

Nips Enron NYT Mfeat Gisette

I
n

s
t
r
u

c
t
io

n
 C

o
u

n
t

(b) SBB instruction count per team member

Figure 3-5. Summary of SBB team member (learner) complexity on each data set. Box bound-
aries denote 1st, 2nd (median) and 3rd quartiles. Whiskers denote max and min.

topic Y”. In the case of several data sets we note that some individuals are
returned that do not index any attributes. In these cases, the team member is
bidding a constant value, leaving the bids from the alternate action (class) and/
or same action (class) to provide the counter balancing bid strategy. Finally,
we note that relative simplicity in terms of attribute count is not being traded
for greater model complexity. Specifically, after removal of structural introns,
team members generally consisted of between 4 to 9 instructions, thus, not
detracting from the overall simplicity of SBB solutions—see Figure 3-5 (b).

6. Conclusions

A case is made for the utility of evolutionary model based teaming (or en-
sembles) under classification problems described over large attribute spaces.
The initial hypothesis was that when teams are explicitly designed to seek non-
overlapping behaviors, assuming an evolutionary bias to model building would
enable the resulting teams to provide very simple solutions without compro-

52 GENETIC PROGRAMMING THEORY AND PRACTICE VII

mising classification performance. Benchmarking conducted under data sets
selected from the domains of character recognition and document retrieval (as
represented under a bag-of-words vector space model) appears to support this
hypothesis. In particular the SBB paradigm of evolutionary teaming/ ensemble
generation tends to be more effective at balancing classification performance
versus feature count. Conversely, the domain standard of MaxEnt Classifica-
tion can be counted on to maximize classification performance at the expense
of attributes indexed, whereas the C4.5 model of classification appears to build
models with an intermediate level of complexity and classification performance.

Key properties from SBB supporting this result take at least three forms:
(1) Active learning – evolving solutions directly over the entire training par-
tition would represent a prohibitively expensive computational overhead. In
this work a Pareto competitive coevolutionary approach was assumed although
alternatives such as host-parasite models or stochastic sampling would also be
appropriate. (2) Cooperative problem decomposition – a wide range of en-
semble methods exist, however, most do not support non-overlapping models
of problem decomposition. Instead widespread use is made of post training
voting schemes. This results in multiple models responding to each exemplar
and clarity of the solution is lost (c.f. a weak learner metaphor). The SBB algo-
rithm specifically addresses this problem by using fitness sharing to discount
the Pareto evaluation before ranking solutions. A learning bias supporting the
reward of teams consisting of non-overlapping bidding strategies is therefore
established. (3) Clear paths of credit assignment – unlike the traditional process
of classification through mapping exemplars to a class membership value, the
SBB approach explicitly separates the generally combined tasks of “what to do”
(action) and “when to do it” (bid). Moreover, this is reinforced by assuming a
symbiotic model which explicitly separates the tasks of optimizing team mem-
bership and evolving bidding policy. Without such a separation the bidding
competition responsible for establishing cooperative team behavior would have
to take place across an entire population, thus each time children are created
the current team interaction would face disruption.

Natural extensions of the current study might consider the case of biomedical
data sets (More and White, 2007) or investigate the impact of attribute support
on the relative cost of model complexity, where this appears to be of particular
importance to non-linear classifiers such as the SVM (Doucette et al., 2009).
More generally, we are also interested in the utility of the SBB framework to
problem domains with temporal discounting (reinforcement learning). Such a
context might also benefit from the ability to pose solutions in terms of teams,
as indicated by ongoing research in multi-agent systems in general.

Evolving Coevolutionary Classifiers under large Attribute Spaces 53

Acknowledgments

This work was conducted while John Doucette held an NSERC USRA sum-
mer scholarship and Peter Lichodzijewski held a Precarn Graduate Scholarship
and a Killam Postgraduate Scholarship. Malcolm Heywood would like to thank
research grants from NSERC, MITACS, and CFI and industrial sponsorship
from SwissCom Innovations SA. and TARA Inc.

References

Asuncion, A. and Newman, D. J. (2008). UCI Repository of Machine Learning
Databases [http://www.ics.uci.edu/˜mlearn/mlrepository.html]. Irvine, CA:
University of California, Dept. of Information and Comp. Science.

Bernado-Mansilla, E. and Garrell-Guiu, J.M. (2003). Accuracy-based learning
classifier systems: Models, analysis and applications to classification tasks.
Evolutionary Computation, 11:209–238.

Brameier, M. and Banzhaf, W. (2001). Evolving teams of predictors with lin-
ear Genetic Programming. Genetic Programming and Evolvable Machines,
2(4):381–407.

Chandra, A., Chen, H., and Yao, X. (2006). Trade-off between diversity and ac-
curacy in ensemble generation, chapter 19, pages 429–464. In ((Jin, 2006)).

Daumè III, Hal (2004). Notes on CG and LM-BFGS optimization of logistic
regression. Paper and code available at http://www.cs.utah.edu/˜hal/megam.

de Jong, E.D. (2007). A monotonic archive for pareto-coevolution. Evolutionary
Computation, 15(1):61–93.

Doucette, J. and Heywood, M.I. (2008). GP Classification under Imbalanced
Data Sets: Active Sub-sampling and AUC Approximation. In European Con-
ference on Genetic Programming, volume 4971 of Lecture Notes in Computer
Science, pages 266–277.

Doucette, J., McIntyre, A.R., Lichodzijewski, P., and Heywood, M. I. (2009).
Problem decomposition under large feature spaces using a coevolutionary
memetic algorithm. Manuscript under review.

Folino, G., Pizzuti, C., and Spezzano, G. (2006). GP ensembles for large-
scale data classification. IEEE Transactions on Evolutionary Computation,
10(5):604–616.

Haffner, P. (2006). Scaling large margin classifiers for spoken language under-
standing. Speech Communication, 48:239–261.

Imamura, K., Soule, T., Heckendorn, R. B., and Foster, J. A. (2003). Behavioral
diversity and a probabilistically optimal GP ensemble. Genetic Programming
and Evolvable Machines, 4(3):235–253.

Jin, Y., editor (2006). Multi-Objective Machine Learning, volume 16 of Studies
in Computational Intelligence. Spinger-Verlag.

54 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Krawiec, K. (2002). Genetic Programming-based Construction of Features for
Machine Learning and Knowledge Discovery tasks. Genetic Programming
and Evolvable Machines, 3(4):329–343.

Kumar, R., Joshi, A.H., Banka, K.K., and Rockett, P.I. (2008). Evolution of
hyperheuristics for the biobjective 0/1 knapsack problem by multiobjective
Genetic Programming. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 1227–1234.

Lal, T. N., Chapelle, O., Weston, J., and Elisseeff, A. (2006). Embedded meth-
ods. In Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L.A., editors, Feature
Extraction: Foundations and Applications, pages 137–165. Springer Verlag.

Lichodzijewski, P. and Heywood, M. I. (2008a). Coevolutionary bid-based Ge-
netic Programming for problem decomposition in classification. Genetic Pro-
gramming and Evolvable Machines, 9(4):331–365.

Lichodzijewski, P. and Heywood, M.I. (2008b). Managing team-based problem
solving with Symbiotic Bid-based Genetic Programming. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 363–370.

McIntyre, A.R. and Heywood, M.I. (2008). Cooperative problem decompo-
sition in Pareto competitive classifier models of coevolution. In European
Conference on Genetic Programming, volume 4971 of Lecture Notes in Com-
puter Science, pages 289–300.

More, J. H. and White, B. C. (2007). Genome-wide genetic analysis using
genetic programming. In Riolo, R., Soule, T., and Worzel, B., editors, Genetic
Programming Theory and Practice IV, pages 11–28. Springer Verlag.

Nigam, K., Lafferty, J., and McCallum, A. (1999). Using Maximum Entropy
for Text Classification. In Workshop on Machine Learning for Information
Filtering (IJCAI), pages 61–67.

Potter, M. and de Jong, K. (2000). Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29.

Quinlan, Ross J. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann.

Rosin, C. D. and Belew, R. K. (1997). New methods for competitive coevolution.
Evolutionary Compuatation, 5:1–29.

Smith, M.G. and Bull, L. (2005). Genetic Programming with a Genetic Al-
gorithm for Feature Construction and Selection. Genetic Programming and
Evolvable Machines, 6(3):265–281.

Thomason, R. and Soule, T. (2007). Novel ways of improving cooperation and
performance in Ensemble Classifiers. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1708–1715.

Zhang, Y. and Rockett, P.I. (2006). Feature extraction using multi-objective
genetic programming, chapter 4, pages 75–99. In ((Jin, 2006)).

Chapter 4

SYMBOLIC REGRESSION VIA GENETIC
PROGRAMMING AS A DISCOVERY ENGINE:
INSIGHTS ON OUTLIERS AND PROTOTYPES

Mark E. Kotanchek1, Ekaterina Y. Vladislavleva2 and Guido F. Smits3

1Evolved Analytics L.L.C, Midland, MI, U.S.A.; 2University of Antwerpen, Antwerpen, Belgium;
3Dow Benelux B.V., Terneuzen, the Netherlands.

Abstract
In this chapter we illustrate a framework based on symbolic regression to gener-
ate and sharpen the questions about the nature of the underlying system and pro-
vide additional context and understanding based on multi-variate numeric data.

We emphasize the necessity to perform data modeling in a global approach, it-
eratively applying data analysis and adaptation, model building, and problem
reduction procedures. We illustrate it for the problem of detecting outliers and
extracting significant features from the CountryData 1 – a data set of economic,
political, social and geographic data collected. We present two complementary
ways of extracting outliers from the data -the content-based and the model-based
approach. The content-based approach studies the geometrical structure of the
multi-variate data, and uses data-balancing algorithms to sort the data records in
the order of decreasing typicalness, and identify the outliers as the least typical
records before the modeling is applied to a data set. The model-based outlier
detection approach uses symbolic regression via Pareto genetic programming
(GP) to identify records which are systematically under- or over-predicted by di-
verse ensembles of (thousands of) global non-linear symbolic regression models.

Both approaches applied to the CountryData produce insights into outlier vs.
prototypes division among world countries and about driving economic properties
predicting gross domestic product (GDP) per capita.

Keywords: symbolic regression, data modeling, system identification, research assistant,
discovery engine, outlier detection, outliers, prototypes, data balancing

1http://reference.wolfram.com/mathematica/ref/CountryData.html

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 55
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_4,

56 GENETIC PROGRAMMING THEORY AND PRACTICE VII

1. Introduction

The purpose of models is not to fit the data but to sharpen the questions.
–Samuel Karlin

Reality has a way of destroying beautiful theory. Thus, even though data
modelers might construct beautiful algorithms, if the data does not agree with
the implicit principles in that construct (e.g., system linearity, variable inde-
pendence, variable significance, Gaussian additive noise) the house-of-cards
comes tumbling down when it intersects with reality.

Pursuing data modeling as a main research direction, we have been building
a framework based on symbolic regression to develop models which generate
and sharpen the questions about what constitutes the underlying data-generating
system. A useful framework helps us to understand what we know and do not
know based on the data presented to us. We can begin to understand which
data variables (or features, or attributes) are important and which are not, or
whether we are missing some essential variables, because a reasonable predic-
tion accuracy cannot be achieved. A good framework helps us to detect that
some regions of the data space are either under- or over-represented.

Knowledge about these areas is essential for understanding the data. Data
samples in over-represented areas can be flagged as prototypes, and possibly
pruned for balancing the information content of samples over the data space.
Samples in under-represented areas should be marked as outliers. They either
represent measurement or computation errors, and should be removed from the
modeling process, or on the contrary contain important nuggets of information
about the system. In both cases the outliers are special, need to be treated with
care during data interpretation and modeling, and always require human insight
for the final verdict.

In this chapter we illustrate two sides of a holistic approach for understanding
a multi-variate dataset from real-life - a collection of economic, political and
geographic attributes gathered for 109 world countries. To understand and
interpret the CountryData we present two approaches for outlier detection before
and after the model development stage. The first is a content-based approach,
which checks the spatial structure of the data. The second is a model-based
approach. It uses symbolic regression to check the relationships among the
attributes, and to extract the driving attributes for prediction of a characteristic
economical feature of a country - the gross domestic product (GDP) per capita2.
We apply two approaches to identify the special “outlier” countries:

the countries, which are special, because they are spatially remote
from the prototypic countries, and therefore are located in the under-

2Gross domestic product per capita is the value of all final goods and services produced within a nation in a
given year divided by the average population for the same year.

Symbolic Regression via Genetic Programming as a Discovery Engine 57

represented regions of the data space, and therefore require special treat-
ment during modeling, analysis, measurement justification, etc. (content-
based approach); and

the countries, which are special because they possess an extraordinary
GDPperCapita (extraordinary with respect to predictions of various en-
sembles of diverse symbolic regression models).

The first approach originates in our research on data balancing. It uses heuris-
tic algorithms for weighting multi-variate input and input-output data, and for
ordering the data in the order of decreasing importance - from outliers to pro-
totypes (see (Vladislavleva, 2008)).

The second approach is model-based. It uses symbolic regression via genetic
programming to generate ensembles of diverse regression models, which predict
GDPperCapita attribute on the CountryData, and suggests outliers as points
which consistently produce bad predictions on selected model ensembles.

Both approaches propose an interesting division of countries into “outliers”
and “prototypes” without using any expert knowledge or interpretation of the
CountryData. We believe that the hypothesis-generating aspect of symbolic
regression enhanced with the insights from data balancing is essential for un-
derstanding multi-variate numeric data and data-generating system. It is also
unique compared with other modeling methods, due to the transparency of
explicit symbolic regression models.3

2. CountryData

The CountryData of Wolfram Research is a comprehensive collection of
economic, geographic, social, and political data (224 attributes in total) over
237 world countries (taken from several credible sources like Encyclopae-
dia Britannica, United Nations Department of Economic and Social Affairs,
United Nations Statistics Division, World Health Organization, and many oth-
ers, see http://reference.wolfram.com/mathematica/note/CountryData- Source-
Information.html). We selected this data set because many attributes are highly
correlated, so classic modeling methods alternative to symbolic regression
would not be applicable; the dataset is of high dimensionality and heavily
under-sampled (number of countries is approximately equal to the number of
attributes); an average reader is aware of the economic positions of richest,
poorest, and rapidly developing countries, which makes it easier to relate to the
CountryData and interpret modeling results.

3The only other method with comparable power for discovery and insights is linear regression, but only in
a situation where the underlying model structure is known, which is not the case in many real-life systems.

58 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Our implementation of symbolic regression requires the data samples to be
numeric, finite, and complete (no missing records), so we had to remove some
countries and some attributes from the analysis, and were left with a list of 132
countries, and 128 attributes for them, including the GDPperCapita.

A challenge in our analysis is to reveal the relationship of the GDPper-
Capita of a country with other economic attributes, and to identify outlier coun-
tries with extraordinary GDPperCapita. To increase the chances of finding
non-obvious relationships, we also excluded the attributes, which are explic-
itly related to GDP (we strive for insights, rather then for trivial relationships
of the type GDPperCapita=GDP/TotalPopulation). All attributes other than
GDPperCapita, containing the word GDP, or ValueAdded in their name were
removed from the data set, e.g. AgriculturalValueAdded, ConstructionVal-
ueAdded, GDP, GDPAtParity, GDPPerCapita, GDPRealGrowth, IndustrialVal-
ueAdded, ManufacturingValueAdded, MiscellaneousValueAdded, NationalIn-
come, TradeValueAdded, TransportationValueAdded, ValueAdded.

The remaining attributes for the analysis are:
CountryIndex, AdultPopulation, Airports, AMRadioStations, AnnualBirths, AnnualDeaths, ArableLand-
Area, ArableLandFraction, Area, BirthRateFraction, BoundaryLength, CallingCode, CellularPhones, Child-
Population, CoastlineLength, CropsLandArea, CropsLandFraction, DeathRateFraction, EconomicAid,
ElderlyPopulation, ElectricityConsumption, ElectricityExports, ElectricityImports, ElectricityProduction,
ExchangeRate, ExportValue, ExternalDebt, FemaleAdultPopulation, FemaleChildPopulation, Fe-
maleElderlyPopulation, FemaleInfantMortalityFraction, FemaleLifeExpectancy, FemaleLiteracyFraction,
FemaleMedianAge, FemalePopulation, FixedInvestment, FMRadioStations, GovernmentConsumption,
GovernmentExpenditures, GovernmentReceipts, GovernmentSurplus, GrossInvestment, HighestEle-
vation, HouseholdConsumption, ImportValue, InfantMortalityFraction, InflationRate, InternetHosts,
InternetUsers, InventoryChange, IrrigatedLandArea, IrrigatedLandFraction, LaborForce, LandArea,
LifeExpectancy, LiteracyFraction, LowestElevation, MaleAdultPopulation, MaleChildPopulation,
MaleElderlyPopulation, MaleInfantMortalityFraction, MaleLifeExpectancy, MaleLiteracyFraction,
MaleMedianAge, MalePopulation, MedianAge, MigrationRateFraction, MilitaryAgeMales, MilitaryEx-
penditureFraction, MilitaryFitMales, NaturalGasConsumption, NaturalGasExports, NaturalGasImports,
NaturalGasProduction, NaturalGasReserves, OilConsumption, OilExports, OilImports, OilProduction,
PavedAirports, PavedRoadLength, PhoneLines, Population, PopulationGrowth, PriceIndex, RadioStations,
RoadLength, ShortWaveRadioStations, TelevisionStations, TotalConsumption, TotalFertilityRate, Un-
employmentFraction, UNNumber, WaterArea, ExpenditureFractions• { ExportValue, FixedInvestment,
GovernmentConsumption, GrossInvestment, HouseholdConsumption, ImportValue, InventoryChange },
TotalConsumption, PavedAirportLengths • { 3000To- 5000Feet, 5000To8000Feet, 8000To10000Feet,
Over10000Feet, Total, Under3000Feet }.

This chapter focuses on outlier detection, so our goal in the analysis of
the CountryData is to extract the countries out of 132 available, which are
special, i.e. they deviate from the prototypic countries with ‘normal’ economic
indicators. We are striving to develop a research assisting framework for data
analysis, and thus our ‘outlier’ detecting techniques should suggest ‘outlier’
candidates to the domain expert, but should not use any expert knowledge
during the identification process. The expert is the one to decide what to do
with suggested outliers, and he or she is the one to gain additional insights from
these. The data analysis system is just an enabling technology that triggers the

Symbolic Regression via Genetic Programming as a Discovery Engine 59

expert to ask a new question, and learn something new about the data-generating
system.

3. Data balancing as an insightful pre-processing step and
content-based outlier detection

Data weighting for detecting under-represented regions of the
data space

Pre-processing and scrutinizing data is a crucial first step of the learning
process. Constructing bivariate plots of all variable pairs and computing a
correlation matrix of data can sometimes reveal strong linear dependencies
among variables of interest. This can allow breaking the data down into sets
of smaller dimensionality, which are easier to explore visually, and to reveal
outliers. However, when the data is of high dimensionality and very sparse
(we have 132 records and 128 variables in the CountryData), visual exploration
of bivariate plots of data for potential outliers is, first, time-consuming, and,
second, risky in terms of being deceptive.

In this section we describe a more structured and automated approach of ex-
ploring the geometric structure of data. It does not make any assumptions about
the underlying relationships among data variables, and identifies the records,
which are spatially remote from other records in the data space. We refer to it as
data balancing, since the approach belongs to a suite of techniques for analysis,
adaptation and modeling of imbalanced data, see (Vladislavleva, 2008).

In (Vladislavleva, 2008) several algorithms for weighting and balancing
multi-variate input- and input-output data are presented. Data weighting as-
signs weights to data records, and the weight is interpreted as a measure of
relative importance (information content) of that data record. Information con-
tent is connected to the sparsity of the neighborhood of a data sample. It can
reflect the proximity of a sample to its k nearest or nearest-in-the-input space
neighbors, the surrounding of a sample by k nearest or nearest-in-the-input-
space neighbors, or the local deviation from a hyper-plane approximating k
nearest-in-the input space neighbors. The first two weights are introduced in
(Harmeling et al., 2006) for unlabeled data, and are further extended to include
input-response data and use a particular fractional distance metric.

Due to space limitations of this chapter we will give the definition for one
weighting functional only - the surrounding weight.

By input-output data we mean a set M = {M1, . . . ,MN} of N
points in a (d + 1)-dimensional space R

d+1. Point Mi has coordinates
(xi

1, x
i
2, . . . , x

i
d, y

i) ∈ R
d+1, i = 1,N , with yi corresponding to the response

value at the input point Pi = (xi
1, x

i
2, . . . , x

i
d) ∈ X ⊂ R

d. We say that the
input-output point Mi represents the input point Pi, since the projection of Mi

60 GENETIC PROGRAMMING THEORY AND PRACTICE VII

on the input space X ⊂ R
d is exactly Pi. The set of all input points is denoted

as P, the vector of outputs as Y = (y1, . . . , yN)T .
By {n1(Pi,P), n2(Pi,P), . . . , nk(Pi,P)} ∈ P we denote k nearest neigh-

bors of the point Pi ∈ P in metric L2 or L1/d.
For unlabeled data the surrounding weight is defined as the length of the sum

of vectors connecting a sample with its k nearest neighbors (averaged over k):

σ(i,P, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k

k
∑

j=1

(Pi − nj(Pi,P))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.1)

where the nj(Pi,P) is the j-th nearest neighbor of the point Pi from the set
P in the norm ‖ · ‖1/d or ‖ · ‖2.

For labeled data, the surrounding weight is defined as the length of the sum
of vectors connecting a sample with its k nearest-in-the-input space neighbors:

σ(i,M,P, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k

k
∑

j=1

(Mi − n̄j(Mi,M,P)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4.2)

where n̄j(Mi,M,P) is the j-th nearest-in-the-input-space neighbor of point
Mi in the set M. This means that the projection of n̄j(Mi,M,P) onto the
input space X is nj(Pi,P).

The neighborhood definition changes to reflect the fact that labeled data is
assumed to belong to the response-surface, and in the input-output data space
the notion of closeness to the closest neighbors can be deceiving (points, which
are the closest in the input-response space may not be the closest on the response
surface).

Data balancing for construction of smaller subsets with
similar information content

The neighborhood size k dictates the scale in the perception of the data - small
neighborhood size suggests local analysis of data, while big neighborhood size
implies a global view on data. High weights, computed for the neighborhood
size of k = 1, reflect the local importance of the points. They identify points,
which are remote even from their nearest, or nearest-in-the-input-space neigh-
bors. Such points are located in remote clusters of size one, and can therefore
be interpreted as ‘outliers’.

This approach of identifying remote clusters of points as outliers stops work-
ing if the size of the clusters is bigger than the neighborhood size k used in the
weight computation.

For example, the points which are located in remote clusters of size k+1, will
all have small weights computed for the neighborhood k, because they are close

Symbolic Regression via Genetic Programming as a Discovery Engine 61

1 3 5 7 9 11
1

3

5

(a) k = 1

1 3 5 7 9 11
1

3

5

(b) k = 5

Figure 4-1. Straightforward weight computation in one pass cannot discover remote clusters of
data if the neighborhood size is smaller than the size of the cluster.

to its k neighbors in the cluster. Small weights do not indicate the remoteness
of such a cluster relative to the entire data set. To discover that the cluster is
remote, we would need to compute weights of points with neighborhoods larger
than the cluster size.

In Figure 4-1 we illustrate the problem of detecting remote data clusters
with one-pass weighting. Figure 4-1 shows the unlabeled data set of 27 points,
two of which are located in a sparse region of data space. In Figure 4-1(a) we
indicate the surrounding weights of 27 points computed with 1 nearest neighbor
(weights correspond to the radii of the circles with centers in data points). The
weights of the remote points are very small in this case relative to the weights of
other points in the data set. A simple observation of the sorted weights profile
does not provide insights into the fact that the two points are outliers.

In Figure 4-1(b) we show the surrounding weights computed with the neigh-
borhood size of k = 5. Since the k is greater than the size of the remote cluster
- the large weights of the points in the cluster do reflect the discrepancy in the
spatial location of cluster points relative to other points in the data set.

62 GENETIC PROGRAMMING THEORY AND PRACTICE VII

To still be able to identify the records belonging to regions which are globally
remote from prototypic samples, but locally densely populated, we use an al-
gorithm which iteratively eliminates records with the smallest weight from the
data set, and recomputes the weights for points which had the eliminated record
among the k nearest, or nearest-in-the-input-space neighbors. This proce-
dure, called a Simple Multi-dimensional Iterative Technique for Sub-sampling
(smits), gradually prunes the data set starting from the most densely populated
regions, removes records with the smallest obtained weight from the data set,
and ranks these points by the order, in which they are eliminated. After the
record is eliminated from the data set, the weights of the points that had the
eliminated point among k nearest or nearest-in-the-input-space neighbors must
be re-evaluated at each iteration step. At the end of the elimination procedure
only k points remain in the data set, and those points are randomly ranked by
indexes N − k + 1, . . . ,N .

We interpret the elimination rank as a measure of the global relative impor-
tance of a data point. Points, which are representatives of the dense clusters
will be eliminated the last. The weights of these points gradually increase as
their neighbors get eliminated. At the moment when a point gets eliminated
(which happens if the current weight of this point is the smallest among all
points left) - the weight of the point represents the cumulative weight of the
cluster, in which the point was originally located. For this reason archiving the
weights of eliminated points at each elimination step - will get us the ordering
of data records from prototypes (located in well- or over-represented regions)
to the “back-bone” points (forming a space-filling support structure of the data
set).

The geometrical outliers, or representatives of clusters of outliers (as in the
example with three points) will never be eliminated before the prototypic points
which have a smaller weight. Therefore the outliers, or representatives of the
clusters of outliers will stay in the data set till the last stage of the elimination
process.4

The smits procedure defines an order of the data records, which can be
used to partition the data set into nested subsets of increasing size (when the
eliminated records are added one by one to a subset of k records). If during
the elimination process we archive a weight of each eliminated point, we can
compute the cumulative sum of these weights for each elimination step in the
order opposite to the order of elimination. If the weights are normalized by
the total sum of the weights of the data set they will sum up to the number
of records N . After normalization the resulting cumulative sum of eliminated

4The elimination stops when there are k records left n the data set, since the surrounding weight weight
relative to k nearest or nearest-in-the-input space neighbors will not be defined for less than k records.

Symbolic Regression via Genetic Programming as a Discovery Engine 63

weights can be interpreted as a cumulative information content of the data set
ranked with the smits procedure.

We illustrate the procedures of data weighting and cumulative information
content calculation on the CountryData.

Scaling the CountryData

If all attributes are equally important for the modeler, we suggest scaling
the data to a standard range before weighting and balancing it. But rather than
scaling the ranges of all attributes to a particular range, e.g. [0, 1], we advise
mapping the 10th and 90th percentiles of the attribute ranges to the ends of the
selected interval. This decreases the sensitivity of the scaled results to outliers
in the records.

Insights for CountryData

Weighting the data: Since we are interested in the outlier-countries with atyp-
ical GDPperCapita we turn our data into input-response data, with 108 input
attributes, and one response attribute - GDPperCapita. We weigh the data with
the surrounding weight and one nearest-in-the-input-space neighbor. By defini-
tion of the surrounding weight, the countries located in the very sparse regions
of the data space will get the highest surrounding weights. In Figure 4-2 we
plot the sorted surrounding weights computed for one neighbor (the nearest
neighbors are determined in the input space, and distances are computed in the
109 dimensional input-output space). The weights are normalized, so they sum
up to the number of countries. From the plot we can infer that the weights of
five countries are radically different from the rest. These countries with corre-
sponding single-pass weights are UnitedStates (weight 18.1), Russia (weight
7.7), Canada (weight 6.2), India (weight 5.9), and China (weight 5.9). Other
countries all have weights smaller than 3.6 (the weight of Japan), and can be
considered as prototypes, since they are located in the better proximity to their
nearest-in-the-input space neighbors5.

Since the Euclidean distance L2(p, q) =
(
∑d

j=1(pi − qi)
2
)1/2

, p, q ∈
Rd was shown to fail in giving a meaningful notion of proximity in a high-
dimensional space, we suggest using a fractional distance metric L1/d in a
d-dimensional space, when d is large:

dist1/d(u, v) =

(

d
∑

i=1

|ui − vi|1/d

)d

,

5The results of the weighting are almost the same in this example compared with weighting of CountryData
without specifying GDPperCapita as a response variable. Only the rankings of 7 countries in the mid-weights
range change slightly for a different definition of nearest neighbors.

64 GENETIC PROGRAMMING THEORY AND PRACTICE VII

0 20 40 60 80 100 120
0

5

10

15

Country index

Su
rr

ou
nd

in
g

w
ei

gh
t

Figure 4-2. Exploration of the weights of data records gives insights into the remote outlier
records located in sparse under-represented regions of the data space.

L1/d : ‖u‖1/d =

(

d
∑

i=1

|ui|1/d

)d

.

A fractional distance metric in a space of high dimensionality can scale
better, see (Aggarwal et al., 2001). See (Francois et al., 2007) for the detailed
discussion on the relevance of using fractional distances with respect to the
distance concentration phenomenon.
Balancing the data: Now we apply a balancing heuristic (the smits algorithm)
to order the CountryData with GDPperCapita as a response variable in the order
of decreasing importance. We again use one nearest-in-the input space neighbor,
and two distance measures.

In Figure 4-3 we plot the cumulative information contents (CIC) of the Coun-
tryData ranked with surrounding weight via the smits procedure using two
distance metrics. A value on a curve at point m is by definition a cumulative
elimination weight of the first m samples in the balanced subset. It can be
interpreted as a fraction of the information about the data contained in the first
m samples of the ranked data set, m = 1 : N .

We can observe that the shape of the cumulative information content and also
the smits-based ranking of countries changes, if the distance metric changes.
From the plot 4-3(b) we can observe that the first nine to ten countries in the
CountryData subset, balanced with the fractional distance metric, are repre-
senting 80% of the information content (i.e. have the cumulative elimination

Symbolic Regression via Genetic Programming as a Discovery Engine 65

Zimbabwe

UnitedStates
India
Russia

Canada
Japan

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

Size of balanced subset

In
fo

rm
at

io
n

C
on

te
nt

(a) Euclidean distance metric. k = 1

UnitedStates

India

China

SouthKorea
Mexico
Iran

BrazilRussia Canada

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

Size of balanced subset

In
fo

rm
at

io
n

C
on

te
nt

(b) Fractional (1/108)-distance metric. k = 1

Figure 4-3. Cumulative information content of the balanced data set can indicate compressibility
of the set, and the fractions of outliers and prototypes.

66 GENETIC PROGRAMMING THEORY AND PRACTICE VII

weight of 0.8). The back-bone countries, i.e. outliers and the most representa-
tive prototypes are contained in this subset of countries. The difference between
the elimination weight of a country and its actual weight (computed with the
one-pass procedure) provides insight into the likelihood of a country to be an
outlier. Since the elimination weight of the country can be interpreted as a cu-
mulative weight of a cluster that the country is representing, the small difference
in the elimination and one-pass weight indicates that the country represents a
cluster of size one (i.e. is very likely to be an outlier). A big difference in
the elimination weight and the one-pass weight indicates that the country is a
representative of a big cluster, and cannot be viewed as a special data point.

So, the data balancing with euclidean distance and neighborhood of k = 1
produces the ranking of countries with the following elimination weights6:
Zimbabwe (14.1), UnitedStates (14.1), India (7.7), Russia (6.2), Canada (5.6),
Japan (4.2), China (4.1), UnitedKingdom (3.1), Brazil (2.8), Italy (2.4), In-
donesia (2.2), and other countries, whose elimination weights quickly decrease
below 2. Observing the differences we can hypothesize, that the seven to ten
countries represent data clusters, which are likely to be outliers.

The data balancing with a fractional L1/109 distance and k = 1 produces the
following elimination weights: UnitedStates (38.3), India (38.3), China (12.9),
SouthKorea (3.9), Mexico (6.1), Iran (5.4), Brazil (5.3), Russia (4.4), Canada
(2.9), and other countries, whose weights quickly decrease in values below 2.

We provide the interested reader with the rankings of the subset of 30 coun-
tries obtained with weighting and balancing with different distance metrics in
Table 4-1.
Identifying outliers among attributes by balancing the transposed data
matrix: We note that the data balancing algorithm can also be applied to identify
the ‘back-bone’ attributes of the data set. By applying the smits algorithm to
the transposed data matrix of the CountryData, and treating attributes as records
- we can get interesting insights into attributes, which are representative of the
entire set of 109 attributes. By using a fractional distance metric L1/132 and
balancing the transposed data matrix (of the size 109×132) with smits for the
neighborhood size of k = 1 we obtain a content-based ranking of attributes and
their elimination weights. Because of space limitations we cannot give a full
ranking of attributes, but would like to share the top ones with the reader. The
blind data balancing algorithm applied to the scaled (transposed) data matrix
(without any a priori information about the importance, or preferences for
any attributes) discovers the following top four attributes for the CountryData:
GDPPerCapita, ExpenditureFractions–>TotalConsumption, CallingCode, and
MaleLiteracyFraction!

6For comparison purposes all elimination weights are normalized to sum up to the total number of records
(132 in this case).

Symbolic Regression via Genetic Programming as a Discovery Engine 67

Table 4-1. Content-based rankings of 30 countries of the CountryData for k = 1. The first col-
umn represents the ranking obtained by sorting the one-pass surrounding weights computed with
Euclidean distance. The second and the third columns represent ranking obtained with data bal-
ancing via smits algorithm with Euclidean distance and fractional 1/109-distance respectively.
Observe that changing the distance generates different ‘back-bone’ countries as representatives
of the dense clusters of countries.

Country Weight rank smits Euclidean smits Fractional
UnitedStates 1 2 1

Russia 2 4 8
Canada 3 5 9

India 4 3 7
China 5 7 3
Japan 6 6 29
Brazil 7 9 7

UnitedKingdom 8 8 40
Indonesia 9 11 57
Germany 10 12 65

Italy 11 10 12
France 12 29 14

Iran 13 22 6
Qatar 14 14 67

SaudiArabia 15 15 79
Australia 16 20 64
Lesotho 17 16 110
Mexico 18 25 5

Turkmenistan 19 27 34
Vietnam 20 13 33
Norway 21 18 24
Nigeria 22 20 72

Bangladesh 23 32 10
Spain 24 24 28

Paraguay 25 26 19
Peru 26 21 31

Algeria 27 31 25
Philippines 28 28 37

Turkey 29 23 53
SouthKorea 30 36 4

In the next section we use symbolic regression to discover relationships of
the GDPperCapita with other attributes of the CountryData. After creating
hundreds of explicit regression models we define outliers as countries, whose
GDPperCapita is consistently under or over-predicted by the constructed mod-
els.

4. Symbolic regression and model-based outlier detection

Symbolic regression as a modeling engine

Symbolic regression via genetic programming (GP) is a non-parametric non-
linear regression technique that looks for an appropriate model structure and
model parameters (as opposed to classic regression that assumes a certain model

68 GENETIC PROGRAMMING THEORY AND PRACTICE VII

structure and estimates the optimal parameters). Symbolic regression is an
attractive modeling engine because it mitigates the need to make a cascade of
simplifying assumptions about the system and, instead, allows the data to define
the appropriate model forms (provided it is used with intelligent and rigorous
complexity control!). We use a particular flavour of genetic programming, with
a multi-objective selection operator, which favors high prediction accuracy and
low model complexity in models during the selection process. Propagation
rights are distributed among individuals satisfying some conditions on Pareto-
optimality in the objective space of accuracy vs. complexity. We refer to this
methodology as to symbolic regression via Pareto genetic programming (Pareto
GP), see (Smits and Kotanchek, 2004),(Kotanchek et al., 2006).

The strongest capabilities of modeling with symbolic regression via Pareto
GP (and with other GP flavors with incorporated complexity control, fitness
inheritance for successful variables, ensemble-based predictions) are:

automatic (and robust) selection of significant variables related to a re-
sponse variable (see e.g. (Smits et al., 2005));

automatic generation of diverse model structures describing the relation-
ship between the response and significant input variables;

automatic generation of ensembles of diverse prediction models (all of
which are global learners, but are constrained to be diverse with respect
to complexity and uncorrelated w.r.t. prediction error), see (Kotanchek
et al., 2007);

automatic “outlier” identification (where outliers are defined as samples,
which persistently imply worse prediction errors compared with the av-
erage (or prototypic) data samples on selected ensembles of diverse re-
gression models).

With symbolic regression we can discover simplifying variable transforma-
tions, that make subsequent modeling cycles more efficient, accurate, and easier
to interpret and might potentially reveal something about the underlying phys-
ical system. With symbolic regression via Pareto GP we can identify optimal
trade-offs between competing modeling structures. We can begin to understand
what dimensionality of the space is sufficient to describe the system. We can
exploit the multitude of solutions of competing accuracy and complexities gen-
erated by symbolic regression to our advantage: ensembles of diverse models
can always be used to generate an estimate of prediction trustworthiness that
guides the user in his exploration of the new areas of the data space.

The hypothesis generating aspects of symbolic regression embedded into
a global data modeling framework turn it into a valuable research assistant.
Rather than eliminating the modeler from the modeling cycle, it frees more

Symbolic Regression via Genetic Programming as a Discovery Engine 69

thinking time for a modeler, triggers new ideas and reveals the flaws in existing
levels of understanding.

Model ensembles and suggested “outliers” on CountryData

We executed 150 independent runs of 10 minutes each for modeling GDP-
perCapita via other 108 attributes of the CountryData. All runs used the default
settings Pareto GP evolutionary strategy - two-objective selection with archiv-
ing, 300 population individuals, 100 archive members, 95%crossover, 5% mu-
tation rates, and standard basis functions - multiplication, subtraction, product,
division, inverse, negation, square root, and square (maximal arity of non-unary
operators limited to 4). Objective functions for pareto-based model selection
were normalized sum of squared errors (scaled to the interval [0, 1], with zero
corresponding to no error) and expressional complexity, computed as the total
sum of nodes in all subtrees of a model tree. In both objectives smaller values
are preferred.

Variable Selection

The GP runs generated more than 18000 regression models. We selected
3914 ‘interesting’ models with expressional complexity of at most 150, and
normalized prediction error of at most 0.3. These models were inspected
for variable presence to identify the driving attributes related to the GDP-
perCapita. We plot the variable presence map in Figure 4-4. The follow-
ing (correlated) attributes were present in the 3914 interesting models: Total-
Consumption (in 86% models), FixedInvestment (68%), GovernmentReceipts
(59%), Population (45%), GrossInvestment (42%), AdultPopulation (28%),
FemalePopulation (21%), HouseholdConsumption (21%), FemaleAdultPopu-
lation (20%), GovernmentSurplus(16%), GovernmentConsumption (12%), Ex-
portValue (12%), ImportValue(8%), GovernmentExpenditures (6%). It is inter-
esting to observe that the Population-related variable is clearly a driving attribute
for predicting the GDPperCapita, and attributes of consumption, investment,
import, and export have a stronger relation to GDPperCapita (according to sym-
bolic regression results) than NaturalGasProduction, or Road-Length, etc. The
attributes, which are not listed above appeared in less than 5% of interesting
models.

Ensemble construction and outlier identification

We pruned the set of interesting models further to automatically select 927
candidate models, from which an ensemble of 17 diverse accurate and parsimo-
nious models was created. In the left plot of Figure 4-5 we plot the prediction
of this ensemble. Based on deviation of predictions of ensemble models, we
define a measure of ensemble disagreement for each point of the data space,

70 GENETIC PROGRAMMING THEORY AND PRACTICE VII

1000 2000 3000
Model index

V
ar

ia
bl

es

Figure 4-4. Symbolic regression can be used to discover significant attributes related to GDP-
perCapita in a robust and reproducible fashion.

where the prediction is computed. In this way solutions of symbolic regression
become trustworthy - with each prediction a confidence interval is supplied, see
(Kotanchek et al., 2007) for more details. As soon as an ensemble is created,
we can analyze data records with respect to systematic errors in predictions
of ensemble models. Records, which are consistently under- or over-predicted
by an ensemble are candidates for outliers. The top 19 countries deviating
from ensemble predictions are shown in the right of Figure 4-5. Relative to
the constructed models such countries as CaymanIslands, Greece, Iceland,
Spain, Bahamas, and Estonia are underperforming, and should have shown
a higher GDPperCapita than actual. The countries like Singapore, Switzerland,
Qatar, Ireland, Bermuda, Japan, Bahrain, and others are on the contrary over-
performing, which might imply that some other hidden attributes not included
in our current list are contributing to an increased GDPperCapita. This in it-
self is an interesting and very relevant result of this type of data analysis using
symbolic regression.

In such an interpretation the outliers are defined as records which disagree
with produced models. Such an approach is viable only if produced mod-
els are reliable, and provide plausible descriptions of the system or process.
This requires a domain expert to take decisions about reliability of produced
models. There are, however, two factors, which contribute to justification of
the approach and to convincing the expert to exploit symbolic regression as a
research assistant:

Symbolic Regression via Genetic Programming as a Discovery Engine 71

0 10 000 20 000 30 000 40 000 50 000 60 000

0

10 000

20 000

30 000

40 000

50 000

60 000

Observed

Pr
ed

ic
te

d

"GDP per Capita Model-based Outliers"

oulier rank country oulier distance classification

1 CaymanIslands 17.63 Overpredicted
2 Greece 14.85 Overpredicted
3 Singapore -13.68 Underpredicted
4 Switzerland -10.54 Underpredicted
5 Qatar -8.72 Underpredicted
6 Ireland -7.53 Underpredicted
7 Iceland 7.14 Overpredicted
8 Bermuda -6.34 Underpredicted
9 Spain 5.36 Overpredicted

10 Japan -5.40 Underpredicted
11 Bahrain -5.15 Underpredicted
12 SaudiArabia -4.41 Underpredicted
13 Norway -4.27 Underpredicted
14 Bahamas 3.82 Overpredicted
15 Estonia 3.80 Overpredicted
16 UnitedStates -3.99 Underpredicted
17 Canada -3.85 Underpredicted
18 Germany -3.20 Underpredicted
19 NewZealand -3.02 Underpredicted

Figure 4-5. Ensembles of symbolic regression models can be used to discover records, which
systematically disagree with predictions of individual ensemble models.

The fact that thousands of diverse regression models are created during the
modeling process without external assumptions about the model structure
implies, the models in the ensemble have maximal predictive power and
the highest reliability warranted by the data.

The fact that the ensemble of multiple symbolic regression models is used
to decide whether a record is an outlier or not makes this approach robust
(the more models from a reliable and diverse collection identify a record
as an outlier, the more likely this is actually true).

5. Conclusions and Recommendations

Outlier detection for nonlinear systems with lots of input variables is hard
to achieve using conventional methods, and is dangerous to perform if samples
are defined as outliers with respect to a model, and the model is “guessed”
incorrectly. An outlier is either the most important nugget in the data set or
something which should be removed from the modeling process to avoid dis-
torting the results. Interpretation of an outlier always requires human insight
of a domain expert.

We have shown two approaches for (automatic) outlier detection both before
and after the model development process. It is automatic in a sense that no
assumptions or guesses are made about the model or about the trustworthiness
of the data records up until the final stage, where the outliers are identified. At
that point the user or the modeler need to make a decision about an outlier’s
destiny - it is a "jewel or junk". We believe that both approaches are viable and

72 GENETIC PROGRAMMING THEORY AND PRACTICE VII

need to be used in combination to fully exploit the power of symbolic regression
as a discovery engine.

References

Aggarwal, Charu C., Hinneburg, Alexander, and Keim, Daniel A. (2001). On the
surprising behavior of distance metrics in high dimensional space. Lecture
Notes in Computer Science, 1973:420–434.

Francois, Damien, Wertz, Vincent, and Verleysen, Michel (2007). The concen-
tration of fractional distances. IEEE Trans. on Knowledge and Data Engi-
neering, 19(7):873–886.

Harmeling, Stefan, Dornhege, Guido, Tax, David, Meinecke, Frank, and Muller,
Klaus-Robert (2006). From outliers to prototypes: Ordering data. Neurocom-
puting, 69(13-15):1608–1618.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2006). Pursuing
the pareto paradigm tournaments, algorithm variations & ordinal optimiza-
tion. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic
Programming Theory and Practice IV, volume 5 of Genetic and Evolution-
ary Computation, chapter 12, pages 167–186. Springer, Ann Arbor.

Kotanchek, Mark, Smits, Guido, and Vladislavleva, Ekaterina (2007). Trustable
symoblic regression models. In Riolo, Rick L., Soule, Terence, and Worzel,
Bill, editors, Genetic Programming Theory and Practice V, Genetic and
Evolutionary Computation, chapter 12, pages 203–222. Springer, Ann Arbor.

Smits, Guido, Kordon, Arthur, Vladislavleva, Katherine, Jordaan, Elsa, and
Kotanchek, Mark (2005). Variable selection in industrial datasets using
pareto genetic programming. In Yu, Tina, Riolo, Rick L., and Worzel, Bill,
editors, Genetic Programming Theory and Practice III, volume 9 of Genetic
Programming, chapter 6, pages 79–92. Springer, Ann Arbor.

Smits, Guido and Kotanchek, Mark (2004). Pareto-front exploitation in sym-
bolic regression. In O’Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel,
Bill, editors, Genetic Programming Theory and Practice II, chapter 17, pages
283–299. Springer, Ann Arbor.

Vladislavleva, Ekaterina (2008). Model-based Problem Solving through Sym-
bolic Regression via Pareto Genetic Programming. PhD thesis, Tilburg Uni-
versity, Tilburg, the Netherlands.

Chapter 5

SYMBOLIC REGRESSION OF IMPLICIT
EQUATIONS

Michael Schmidt1 and Hod Lipson2,3

1Computational Biology, Cornell University, Ithaca, NY 14853, USA; 2School of Mechani-
cal and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA; 3Computing and
Information Science, Cornell University, Ithaca, NY 14853, USA.

Abstract Traditional Symbolic Regression applications are a form of supervised learning,
where a label y is provided for every ~x and an explicit symbolic relationship of the
form y = f(~x) is sought. This chapter explores the use of symbolic regression
to perform unsupervised learning by searching for implicit relationships of the
form f(~x, y) = 0. Implicit relationships are more general and more expressive
than explicit equations in that they can also represent closed surfaces, as well as
continuous and discontinuous multi-dimensional manifolds. However, searching
these types of equations is particularly challenging because an error metric is
difficult to define. We studied several direct and indirect techniques, and present
a successful method based on implicit derivatives. Our experiments identified
implicit relationships found in a variety of datasets, such as equations of circles,
elliptic curves, spheres, equations of motion, and energy manifolds.

Keywords: Symbolic Regression, Implicit Equations, Unsupervised Learning

1. Introduction

Symbolic regression (Koza, 1992) is a method for searching the space of
mathematical expressions, while minimizing various error metrics. Unlike
traditional linear and nonlinear regression methods that fit parameters to an
equation of a given form, symbolic regression searches both the parameters
and the form of equations simultaneously. This process automatically forms
mathematical equations that are amenable to human interpretation and help
explicate observed phenomena. This paper focuses on the symbolic regression
of functions in implicit form.

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII,
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_5,

73

74 GENETIC PROGRAMMING THEORY AND PRACTICE VII

An implicit equation represents a mathematical relationship where the de-
pendent variable is not given explicitly. For example, an implicit function could
be given in the form f(~x, y) = 0, whereas an explicit function would be given
in the form y = f(~x). Implicit equations can be more expressive and are
often used to concisely define complex surfaces or functions with multiple out-
puts. Consider, for example, the equation of a circle: It could be represented
implicitly as x2 +y2−r2 = 0, explicitly using a multi-output square root func-
tion as y = ±

√
r2 − x2, or as a parametric equation of the form x = cos(t),

y = sin(t), t = 0..2π. Our goal is to automatically infer implicit equations to
model experimental data.

Regressing implicit relationships can be thought of as a form of unsuper-
vised learning. Traditional Symbolic Regression applications are a form of
supervised learning, where a label y is provided for every input vector ~x and
a symbolic relationship of the form y = f(~x) is sought. When seeking an
implicit relationship of the form f(~x, y) = 0, we are looking for any pattern
that uniquely identifies the points in the dataset, and excludes all other points
in space.

Like clustering methods and other data mining approaches (McConaghy
et al., 2008), unsupervised learning has the potential to find unexpected rela-
tionships in the data (De Falco et al., 2002; Mackin and Tazaki, 2000; Hetland
and Saetrom, 2005). For example, unsupervised learning can create a model
from positive examples only, and then use that model to detect outliers that do
not belong to the original set. This is important in many practical applications
where negative examples are difficult or costly to come by. For example, when
training a system to monitor a jet engine, a learning algorithm will typically

−1 0 1 2

−2

−1

0

1

2

x

y

Inferred Implicit
Equation Model:

y2 − x3 + x− 1 = 0

Figure 5-1. Many datasets exist that do not have explicit dependent variables, such as an elliptic
curve shown here. Instead, this type of data must be modeled with an implicit equation. We
explore using symbolic regression to infer these types of models.

Symbolic Regression of Implicit Equations 75

be trained using sensor data from intact operation only, but will be required to
alert an operator if abnormal sensor data is detected.

Implicit equations can also provide deeper insight into the mechanism un-
derlying an observed phenomenon by identifying conservations. For example,
when observing a pendulum, an explicit equation can be used to fit the data and
thus predict the pendulum’s future state based on its current and past states. In
contrast, searching for implicit relationships can lead to finding equations of
invariants, such as conservation of energy or momentum (Schmidt and Lipson,
2009). These conservations can also be used to make predictions, but provide
more insight into the underlying principles, beyond prediction.

While symbolic regression has been used to find explicit (Korns, 2006; Duffy
and Engle-Warnick, 1999; Bautu et al., 2005) and differential equations (Bon-
gard and Lipson, 2007), it is not immediately obvious how it could be used to
search for implicit equations (Figure 5-1). Symbolic regression ordinarily mod-
els and predicts a specific signal or value. In implicit equations, the equation
always evaluates to zero over the dataset.

A key challenge is that there are an infinite number of valid implicit equations
for any given dataset. For example, sin2(x)+cos2(x)−1 is exactly zero for all
points in the dataset, but it is also exactly zero for all points not in the dataset.
There are also an infinite number of relationships that are arbitrarily close to
zero, such as 1/(1000 + x2). In order to utilize symbolic regression, we need
to devise a fitness function that avoids these trivial solutions.

We experimented with a number of fitness functions for searching invariant
equations. We explored minimizing the variance of the function from zero over
the dataset while penalizing trivial equations that are zero everywhere, and
numerically solving the implicit equation and minimizing its distance to each
data point. Due to the difficulty of trivial solutions and susceptibility to local
optima, none of these direct methods worked well.

Based on these results, we looked for a different metric that would relate
an implicit equation to the dataset. Rather than attempting to model the data
points themselves or the zeros of the target function, we decided to look at the
gradients of the data. We found that we could derive implicit derivatives of the
data variables using an arbitrary implicit equation, and then compare the two.
Instead of fitting data points directly, this approach fits line segments (partial
derivatives) derived from the data to the line segments (implicit derivatives) of
the implicit function.

To test this approach, we experimented on modeling a number of implicit
systems – ranging from equations of circles to equations of motion. We found
this to be a reliable method for all these systems, whereas the other methods
failed to find even the equation of the circle with similar computational effort.

76 GENETIC PROGRAMMING THEORY AND PRACTICE VII

In the remaining sections, we describe the direct methods in more detail, our
proposed fitness for arbitrary implicit equations, the experiments and results on
modeling implicit systems, and finally, concluding remarks.

2. The Implicit Equation Problem

The need to search for implicit equations arises when we do not know or
do not have an explicit dependent variable in a dataset. Instead, we are given
a large vector of data points and our goal is to find an equation that holds true
for all of these points. For example, an equation that when solved numerically
reproduces the points in the dataset.

An implicit equation has the form:

f(x, y, ...) = 0 (5.1)

where x, y, etc. are independent variables of the system. Implicit equations
in this form may or may not have an explicit equation in general (it may not
be possible to solve for any single variable). However, these equations can be
solved numerically or graphically when the equation is known.

Our task is to identify expression f(x, y, ...) that satisfies the Equation 5.1
uniquely for all points in the dataset.

3. Direct Methods

Table 5-1. A summary of direct methods and their difficulties
Method Difficulty

Equations that equal zero at all data
points

Trivial solutions such as 0 = 0, x−x =
0, etc

Equations that equal zero near data,
but grow with distance

Places too many constraints on the re-
sulting equations

Equations that equal zero but have
non-zero derivative

Places too many constraints on the re-
sulting equations

Equations that equal zero but not sym-
bolically zero when simplified

Trivial solutions, just more complex
zero identities such as cos2 x3+sin2 x3

−

1

Equations that Equal zero, but nonzero
at random point away from data

Trivial solutions such as f(x) =
1/(100 + x)2, which is non-zero near
x = −100

Numerically solve equation, measure
distance from data points to closest
zero

Difficult to evolve, many degenerate
equations do not have solutions, and
computationally expensive

Based on Equation 5.1, it might be tempting to search for equations that
evaluate to zero for all data points in the dataset. A simple fitness function for
this would be second moment or squared-error from zero. The problem with

Symbolic Regression of Implicit Equations 77

this naive method is quickly obvious however: evolution almost immediately
converges to a trivial solution such as x − x = 0 or x + 4.56 − yx/y, etc.
These trivial solutions are zero everywhere and are not particularly interesting
or useful for analyzing the data.

We tried a slight modification of this method by adding a test for trivial
solutions such as 0 = 0. For each candidate equation, we would perform a quick
symbolic simplification to see if the result reduces to zero. Unfortunately, the
evolution always converged to more complex identities equal to zero than we
could add to our simplification test. For example, (x−1)−(x2−2x+1)/(x−1)
and − sin2(x)− cos2(x) + 1, or more complex elaborations of zero identities.

A third method we tried was rewarding the function for being non-zero away
from the points in the dataset. In this circumstance, evolution still converged on
trivial solutions that were arbitrarily close to zero over most of the data, but still
nonzero away from the data. For example, solutions such as 1/(1 + x2), can
become arbitrarily close implicit equations over the data, but are still trivial.

Finally, we decided to try numerically solving the candidate implicit equa-
tions and comparing with the data points. This method is extremely slow as the
numerical solution requires an iterative procedure. It also has serious evolv-
ability problems. Many candidate equations do not have implicit solutions (for
example, f(x) = 1/x2 never crosses zero) which makes finding the numerical
solution non-convergent.

We modified this procedure slightly to find the local absolute valued mini-
mum of a candidate equation around each point in the data set, summing the
distance from the data points to their minima on the implicit function and the
distance of the minima from zero. In the case that there is no local minimum
for a data point, we capped the iterated procedure to a maximum distance.

This approach was able to identify implicit versions of simple lines, such as
x+y = 0, and once found the correct implicit equations in the unit circle dataset
(though these solutions were not repeatable). Unfortunately, all runs on more
complex datasets, and most runs on the unit circle dataset, became trapped in
local optima solutions. A common type of local optima evolved zeros around a
part of the dataset (for example 1/(x+a)−b−y can model the left and bottom
sides of a circle accurately), but rarely jumped to fit remaining data points.

While this final direct method may be a workable approach with more so-
phistication, it is far from elegant or efficient. Below, we describe a more direct
and greatly more reliable and efficient fitness calculation for implicit equations.

4. The Implicit Derivatives Method

The difficulties of the direct methods (Table 5-1) suggest that comparing the
zeros of the candidate implicit equation directly is insufficient to reliably find
accurate and nontrivial models.

78 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Rather than looking at the individual points, we decided to look at the local
derivatives of these points. If the candidate implicit equation is modeling the
points in a meaningful way, it should be able to predict relationships between
derivatives of each variable. Importantly, we must also be able to measure such
a relationship readily from the dataset.

For our method, we propose using the ratio of partial derivatives between
pairs of variables (implicit derivatives). The idea is that dividing two partial
derivatives of a candidate implicit equation f(...) = 0 cancels out the implicit
f(...) signal, leaving only the implied derivative between two variables of the
system.

For example, in a two-dimensional dataset we could measure variables x(t)
and y(t) over time. The system’s implicit derivatives estimated from time-
series data would then be ∆x/∆y = x′/y′ and ∆y/∆x = y′/x′, where x′

and y′ represent the time-derivatives of x and y. Similarly, given a candidate
implicit equation f(x, y), we can derive the same values through differentiation:
δx/δy = (δf/δy)/(δf/δx) and δy/δx = (δf/δx)/(δf/δy). We can now
compare ∆x/∆y values from the experimental data with δx/δy values from
a candidate implicit equation f(x, y) to measure how well it predicts indirect
relationships between variables of the system.

Finally, we can use this process in a fitness function for implicit equations.
We simply measure the error on all implicit derivatives that we can derive from
each candidate equation. In our experiments, we return the mean logarithmic
error of these derivatives:

− 1

N

N
∑

i=1

log

(

1 + |∆xi

∆yi
− δxi

δyi
|
)

(5.2)

where N is the number of data points, ∆x/∆y is a implicit derivative estimated
from the data, and δx/δy is the implicit derivative derived from the candidate
implicit equation.

5. Handling Unordered Datasets

The implicit method can also be applied to unordered and non-time series
data as there are several ways to estimate implicit derivatives from experimental
data. An implicit derivative is simply a local relation of how two variables
covary. In 2D, the implicit derivative is the slope of the tangent line. In 3D, the
implicit derivatives lie on the tangent plane. In higher dimensions, they lie on
the n-dimensional tangent hyperplane.

To generalize this procedure for arbitrary unordered data, one can fit a hy-
perplane, or higher-order surface such as a conic section (Shpitalni and Lipson,
1995), to local clouds of data points. From each hyperplane, one can then

Symbolic Regression of Implicit Equations 79

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

x

y

dy
dx

dy
dx

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

z

dz
dy

dx
dy

dz
dx

Figure 5-2. Implicit derivatives can be estimated from unordered, or shuffled data, nonpara-
metrically by fitting a hyperplane or higher-order surface to neighboring points. After fitting the
neighboring points, simply take any of the implicit derivatives of the locally fit surface.

sample implicit derivatives by taking the implicit derivative of the hyperplane
equation (Figure 5-2).

We verified that this procedure works in our experimental datasets by ran-
domly shuffling them and discarding their time ordering. The method regresses
the same implicit equations as in our results below using this procedure.

6. Experiments on Implicit Equations

We experimented on six implicit equation problems of varying complexity
and difficulty (Figure 5-3). The simplest are the equation of a circle and an
elliptic curve. These are well-known two dimensional systems with only two
implicit derivatives (δx/δy and δy/δx) that require implicit equations. A sim-
ilar but slightly more difficult problem is the 3-dimensional sphere. In each of
these systems we can collect data uniformly on their implicit surfaces.

The next three systems are dynamical systems of varying complexity: a
simple linear harmonic oscillator, a nonlinear pendulum, and a chaotic spring-
pendulum. We simulated single trajectories of each system, recording the po-
sitions, velocities, and accelerations for the implicit datasets. In these systems,
we are seeking the implicit equation of motion. In the spring-pendulum we are
seeking a similar implicit equation, the Hamiltonian, which only uses position
and velocity data. The data used for each system is shown in Figure 5-3.

From this data, we estimate the partial derivatives from the data (∆x/∆y)
by taking the ratio of the time derivatives. For the circle, elliptic curve, and
sphere, we picked an arbitrary time trajectory around their surfaces (two in the
case of the elliptic curve). This works because the time component cancels out
in the ratio. We could also have fit a local plane to each point to estimate the
partial derivatives non-parametrically of unordered data as discussed earlier.

80 GENETIC PROGRAMMING THEORY AND PRACTICE VII

−5 0 5

−3

−2

−1

0

1

2

3

x

y

(a) Circle: x2 + y2 − 42

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

(b) Elliptic Curve: x3 + x − y2 − 1.5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

z

(c) Sphere: x2 + y2 + z2 − 12

0 1 2 3 4 5 6 7 8
−6

−4

−2

0

2

4

6

8

x

y

(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x

−3 −2 −1 0 1 2 3
−20

−15

−10

−5

0

5

10

15

20

x

y

(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)

−15 −10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r

(f) Spring Pendulum: −10r+0.5ṙ2+5r2−
10rcos(θ) + 0.5r2θ̇2

Figure 5-3. Data sampled from six target implicit equation systems. Data is collected uniformly
for the geometric systems. In the dynamical systems, the data is a single simulated trajectory
from a random initial condition.

We used a basic symbolic regression algorithm (Schmidt and Lipson, 2006)
to search the space of implicit equations. We use the deterministic crowding
selection method (Mahfoud, 1995), with 1% mutation probability and 75%
crossover probability. The encoding is an acyclic graph (Schmidt and Lipson,
2007) with a maximum of 128 operations/nodes. The operation set contains ad-

θ

Symbolic Regression of Implicit Equations 81

dition, subtraction, multiply, sine, and cosine operations. Fitness was calculated
using Equation 5.2.

10
8

10
9

10
10

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(a) Circle: x2 + y2 − 42

10
8

10
9

10
10

10
11

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(b) Elliptic Curve: x3 + x − y2 − 1.5

10
8

10
9

10
10

10
11

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(c) Sphere: x2 + y2 + z2 − 12

10
8

10
9

10
10

10
11

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x

10
8

10
9

10
10

10
11

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)

10
8

10
9

10
10

10
11

10
12

10
13

−1.5

−1

−0.5

0

Computational Effort [evaluations]

F
itn

es
s

[−
lo

g−
er

ro
r]

(f) Spring Pendulum: −10r+0.5ṙ2+5r2−
10rcos(θ) + 0.5r2θ̇2

Figure 5-4. Fitness of the symbolic regression algorithm using the implicit derivatives fitness
for each of the six systems. Results are the top ranked solution versus time, averaged over 20
independent trials. Error bars indicate the first standard error.

7. Results on Implicit Equations

We conducted 20 independent trials on each system, recording fitnesses and
solutions overtime. Evolution was stopped after a solution converged onto a

82 GENETIC PROGRAMMING THEORY AND PRACTICE VII

near perfect solution. Figure 5-4 shows the mean fitness of the top-ranked
solution during the evolutionary runs on a validation dataset.

Each evolutionary run identified the correct implicit equation for these sys-
tems, although different systems required more computation than others. The
circle took less than a minute to converge on average; the elliptic curve, sphere,
and pendulum took five to ten minutes on average; and the spring pendulum
took approximately one to two hours.

In comparison, none of the direct methods could find solutions to any of these
systems, even with considerably more computational effort. In the case of the
circle, the implicit derivatives methods obtained the correct solution 20 out of
20 trials in under one minute per trial. In contrast, the direct methods did not
obtain the correct solution even once in 20, one hour trials. The best solution
found by the direct method over these runs was a/(x2 + b)− y− c = 0. In the
remaining target systems, the direct methods performed even worse.

Over our experiments, we also tracked the Pareto Front of the implicit
equation fitness and complexity for each system (Figure 5-5). This front shows
the tradeoff between equation complexity and its ability to model the implicit
data (Smits and Kotanchek, 2004). Here, we measure the complexity of an
equation as the number of nodes in its binary parse tree.

The Pareto fronts tend to contain cliff features where fitness jumps rapidly at
some minimum complexity. In the cases where even more complex equations
are found on the front, even several times more complex, the improvement in
fitness is only marginal.

For each system, the simplest implicit equation to reach the highest quali-
tative fitness on the Pareto front was the exact target equation. Looking more
closely at the higher complexity solutions, we found they were elaborations on
the exact solution – for example, extraneous terms with very small coefficients,
perhaps compensating for small errors in estimating the partial derivatives from
the data.

We also noticed that simpler and lower fitness solutions on the fronts con-
tained approximations to the exact solutions – for example, small angle approx-
imations in the pendulum and spring pendulum systems.

8. Conclusion

The ability to search for implicit equations enables searching for multi-
dimensional surfaces, equations of motion, and other invariant models in experi-
mental data. However, identifying meaningful and nontrivial implicit equations
poses difficult challenges.

We explored several naive fitness methods for rewarding implicit equations
to model data. These methods, which considered the individual data points and

Symbolic Regression of Implicit Equations 83

−11 −10 −9 −8 −7 −6 −5 −4 −3
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(a) Circle: x2 + y2 − 42

−18 −16 −14 −12 −10 −8 −6 −4 −2
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(b) Elliptic Curve: x3 + x − y2 − 1.5

−20 −15 −10 −5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(c) Sphere: x2 + y2 + z2 − 12

−18 −16 −14 −12 −10 −8 −6 −4
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x

−60 −50 −40 −30 −20 −10 0
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)

−35 −30 −25 −20 −15 −10 −5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Parsimony [−nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[−
lo

g−
er

ro
r]

(f) Spring Pendulum: −10r+0.5ṙ2+5r2−
10rcos(θ) + 0.5r2θ̇2

Figure 5-5. The fitness and equation complexity Pareto fronts found for each of the six systems.
The exact solutions are the simplest equations to reach near perfect fitness. More complex
solutions show elaborations on the exact solution, improving fitness only marginally.

the zeros of the implicit equations directly, were unable to solve the simplest
implicit equations reliably or consistently.

We showed that looking instead at ratios of partial derivatives of local data
points provided a reliable search gradient for a variety of implicit systems. This
method identified geometric equations such as elliptic curves and 3-dimensional
spheres, as well as equations of motions in nonlinear dynamical systems.

84 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Acknowledgment

This research is supported in part by the U.S. National Science Foundation
Graduate Research Fellowship and by U.S. Defense Threat Reduction Agency
(DTRA) grant HDTRA1-09-1-0013.

References

Bautu, Elena, Bautu, Andrei, and Luchian, Henri (2005). Symbolic regression
on noisy data with genetic and gene expression programming. In Seventh
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC’05), pages 321–324.

Bongard, Josh and Lipson, Hod (2007). Automated reverse engineering of non-
linear dynamical systems. Proceedings of the National Academy of Sciences,
104(24):9943–9948.

De Falco, Ivanoe, Cioppa, Antonio Della, and Tarantino, Ernesto (2002). Un-
supervised spectral pattern recognition for multispectral images by means
of a genetic programming approach. In Fogel, David B., El-Sharkawi, Mo-
hamed A., Yao, Xin, Greenwood, Garry, Iba, Hitoshi, Marrow, Paul, and
Shackleton, Mark, editors, Proceedings of the 2002 Congress on Evolution-
ary Computation CEC2002, pages 231–236. IEEE Press.

Duffy, John and Engle-Warnick, Jim (1999). Using symbolic regression to infer
strategies from experimental data. In Belsley, David A. and Baum, Christo-
pher F., editors, Fifth International Conference: Computing in Economics
and Finance, page 150, Boston College, MA, USA. Book of Abstracts.

Hetland, Magnus Lie and Saetrom, Pal (2005). Evolutionary rule mining in time
series databases. Machine Learning, 58(2-3):107–125.

Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice IV, volume 5 of Genetic and Evolutionary
Computation, chapter 16, pages –. Springer, Ann Arbor.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Mackin, Kenneth J. and Tazaki, Eiichiro (2000). Unsupervised training of Mul-
tiobjective Agent Communication using Genetic Programming. In Proceed-
ings of the Fourth International Conference on Knowledge-Based Intelli-
gent Engineering Systems and Allied Technology, volume 2, pages 738–741,
Brighton, UK. IEEE.

Mahfoud, Samir W. (1995). Niching methods for genetic algorithms. PhD thesis,
Champaign, IL, USA.

McConaghy, Trent, Palmers, Pieter, Gielen, Georges, and Steyaert, Michiel
(2008). Automated extraction of expert domain knowledge from genetic pro-
gramming synthesis results. In Riolo, Rick L., Soule, Terence, and Worzel,

Symbolic Regression of Implicit Equations 85

Bill, editors, Genetic Programming Theory and Practice VI, Genetic and
Evolutionary Computation, chapter 8, pages 111–125. Springer, Ann Arbor.

Schmidt, Michael and Lipson, Hod (2007). Comparison of tree and graph en-
codings as function of problem complexity. In Thierens, Dirk, Beyer, Hans-
Georg, Bongard, Josh, Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Con-
gdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs, Tim, Kumar,
Sanjeev, Miller, Julian F., Moore, Jason, Neumann, Frank, Pelikan, Martin,
Poli, Riccardo, Sastry, Kumara, Stanley, Kenneth Owen, Stutzle, Thomas,
Watson, Richard A, and Wegener, Ingo, editors, GECCO ’07: Proceedings
of the 9th annual conference on Genetic and evolutionary computation, vol-
ume 2, pages 1674–1679, London. ACM Press.

Schmidt, Michael and Lipson, Hod (2009). Distilling Free-Form Natural Laws
from Experimental Data. Science, 324(5923):81–85.

Schmidt, Michael D. and Lipson, Hod (2006). Co-evolving fitness predictors
for accelerating and reducing evaluations. In Riolo, Rick L., Soule, Terence,
and Worzel, Bill, editors, Genetic Programming Theory and Practice IV,
volume 5 of Genetic and Evolutionary Computation, chapter 17, pages –.
Springer, Ann Arbor.

Shpitalni, M. and Lipson, H. (1995). Classification of sketch strokes and corner
detection using conic sections and adaptive clustering. ASME Journal of
Mechanical Design, 119:131–135.

Smits, Guido and Kotanchek, Mark (2004). Pareto-front exploitation in sym-
bolic regression. In O’Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel,
Bill, editors, Genetic Programming Theory and Practice II, chapter 17, pages
283–299. Springer, Ann Arbor.

Chapter 6

A STEADY-STATE VERSION OF THE
AGE-LAYERED POPULATION
STRUCTURE EA

Gregory S. Hornby1

1U.C. Santa Cruz, Mail Stop 269-3, Moffett Field, CA 94035, USA.

Abstract
The Age-Layered Population Structure (ALPS) paradigm is a novel meta-

heuristic for overcoming premature convergence by running multiple instances
of a search algorithm simultaneously. When the ALPS paradigm was first in-
troduced it was combined with a generational Evolutionary Algorithm (EA) and
the ALPS-EA was shown to work significantly better than a basic EA. Here we
describe a version of ALPS with a steady-state EA, which is well suited for use
in situations in which the synchronization constraints of a generational model
are not desired. To demonstrate the effectiveness of our version of ALPS we
compare it against a basic steady-state EA (BEA) in two test problems and find
that it outperforms the BEA in both cases.

Keywords:
Age, Evolutionary Design, Genetic Programming, Metaheuristic, Premature

Convergence

1. Introduction

One of the main problems with Evolutionary Algorithms (EAs) is that the
population will eventually converge on a mediocre solution from which further
iterations of the EA are unable to improve upon. Recently, the Age-Layered
Population Structure (ALPS) paradigm was proposed as a novel approach for
addressing this problem of premature convergence (Hornby, 2006) and, since
then, others have also found it to work significantly better than a basic EA (Korns
and Nunez, 2008; McConaghy et al., 2007; Willis et al., 2008). In this chapter

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII,
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_6,

87

88 GENETIC PROGRAMMING THEORY AND PRACTICE VII

we describe a steady-state version of the ALPS algorithm and demonstrate its
effectiveness by comparing it against a basic EA.

While the ALPS paradigm is a metaheuristic which is applicable to any op-
timization strategy, the original description of an implementation of ALPS was
combined with a generational EA. Since the management of individuals in the
different age-layers of an ALPS implementation depends on the measuring of
an individual’s age, and age was counted using generations as units, modifying
the generational ALPS system to a steady-state one requires a revised measure
of age. For our combination of ALPS with a steady-state EA (ALPS-SS) we
modify the measure of age to be based on the number of evaluations divided by
the population size. In addition, since individuals are moved up layers asyn-
chronously, we adjust the algorithm to prevent an individual from replacing one
which was just moved up.

The rest of this chapter is organized as follows. In Section 2 we review
the problem of premature convergence. Next, in Section 3, we review the
ALPS paradigm with its measure of age. In Section 4 we present the Steady-
State ALPS EA. Then, in Section 5 we describe our experimental setup for
evaluating ALPS and then present our comparison on two different test problems
in Sections 6 and 7. Finally, in Section 8, we close with a discussion in which
we consider a variation to assigning age and give our conclusions in Section 9.

2. Premature Convergence

One of the main problems with EAs is that after some time they prematurely
converge on a mediocre solution and further iterations of evolution do not find
any significantly better solutions. Over the years various approaches have been
tried for overcoming this problem of premature convergence. Basic approaches
are to increase the mutation size or rate or to increase the population size.
More sophisticated techniques try to maintain genotypic diversity through an
evolutionary run (Cavicchio, 1970; DeJong, 1975; Mahfoud, 1992; Goldberg
and Richardson, 1987). While these methods work to varying degrees, so far
no approach has solved the problem.

Once an EA has converged and stops improving, the only option is to restart it
with a new, randomly generated initial population using a new random number
seed. Restarting can be done at fixed intervals with a multi-run EA, which
divides a total of n generations into m runs of n/m generations. While regularly
restarting the EA can improve search performance (Cantú-Paz and Goldberg,
2003; Luke, 2001), one of the challenges is figuring out when to restart. If
too few generations are used, then the population will not have enough time to
climb the fitness peak of the global optima, and if too many are used then much
time will be wasted while the population has converged on top of a mediocre
fitness peak before the next run is started. Alternatively, the population can be

Steady-State ALPS 89

I0,0...
0,m−1I

...
I

I1,0

1,m−1

...
I

I

n−1,0

n−1,m−1

ALPS:

L0 L1 Ln−1...

Figure 6-1. The layout of an ALPS system with n layers (L0 to Ln−1) and m individuals in
each layer (Ii,0 to Ii,m−1).

automatically restarted when no improvements have been detected after some
number of generations, but then the problem is deciding how long to wait. All
such multistart EAs have the problem that good genetic material found in one
solution are not shared with others.

An alternative to restarting the entire EA is to run multiple EAs simultane-
ously and only restart one of them, and this is what is done with ALPS.

3. The ALPS Metaheuristic

The Age-Layered Population Structure was developed by Hornby (Hornby,
2006) as a type of meta-EA to overcome the problem of premature convergence.
More generally, the ALPS paradigm applies to any stochastic search or opti-
mization technique. With ALPS, several instances of a search algorithm are
run in parallel, each in its own age-layer, and the age of solutions is kept track
of (see Figure 6-1). The key properties of ALPS are:

Multiple instances of a search algorithm are run in parallel, with each
instance in its own age layer and having its own population of one or
more candidate solutions (individuals).

Each age-layer has a maximum age and it may not contain individuals
older than that maximum age.

The age of individuals is based on when the original genetic material was
created from random.

The search algorithm in a given age-layer can look at individuals in its
own population and at the populations in younger age layers but it can
only replace individuals in its own population.

At regular intervals, the search algorithm in the first age-layer is restarted.

Measuring Age

Typical optimization algorithms start with a population of one or more ran-
dom points, or candidate solutions, in the search space. These candidate so-

90 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 6-1. Different systems for setting the age-limits for each age-layer and the corresponding
maximum age in each layer for an age-gap of 1.

Max age in layer
Aging-scheme 0 1 2 3 4 5 6
Linear 1 2 3 4 5 6 7
Fibonacci 1 2 3 5 8 13 21
Polynomial (n2) 1 2 4 9 16 25 49
Exponential (2n) 1 2 4 8 16 32 64

lutions are also known as individuals and the data which encodes a solution is
called a genotype and what the genotype encodes is called the phenotype. Opti-
mization of individuals occurs by making small changes to them (mutation) or
by combining parts of two or more individuals (recombination). With ALPS,
age is a measure of how long it has been since an individual’s ancestor was
randomly created.

Randomly generated individuals start with an age of 1 and individuals created
through mutation or recombination inherit the age of their oldest parent. After a
new population of individuals has been created, the age of the parents and their
offspring is increased by one. For example, if individual IndA, age 23, and
individual IndB, age 28, are selected as parents for recombination then their
offspring, IndC , will be assigned an age of 28. At the end of the reproduction
phase IndA will have its age increased to 24 and IndB and IndC will have
their ages increased to 29. More generally, as will be explained later, age is
calculated based on the number of evaluations.

The ALPS method of measuring age is different from previous age measures
in the EA community (Huber and Mlynski, 1998; Kim et al., 1995; Kubota
et al., 1994). With other systems for measuring age, individuals created by
modifying existing ones (such as through mutation or recombination) are given
an age of 1 and what is measured is the age of that exact genotype. With ALPS,
an individual’s age is the age of its lineage of genetic material and only the age
of individuals created at random start with an age 1.

Maximum Age of Age-Layers

With the ALPS paradigm, there are multiple searches going on in parallel,
each in its own age layer and each age layer has its own maximum age. The
maximum ages for age layers is monotonically increasing and different methods
can be used for setting these values (see Table 6-1). Since there is generally
little need to segregate individuals which are within a few “generations” of each
other, these values are then multiplied by an age-gap parameter. In addition,

Steady-State ALPS 91

this allows individuals in the first age-layer some time to be optimized before
them, or their offspring, are pushed to the next age layer. Also, the age-gap
parameter sets the frequency of how often the first layer, L0, is restarted. Finally,
there is no age-limit to the last layer so as to be able to keep the best individuals
from the most promising (longest running) search. Thus with 6 age layers,
a polynomial aging-scheme and an age gap of 20 the maximum ages for the
layers are: 20, 40, 80, 180, 320 and ∞. With this configuration the search
algorithm in the bottom layer is restarted with a new population of randomly
created individuals every 20 generations.

ALPS Examples

ALPS can be used with any type of optimizer that has some element of
randomness in it, whether the randomness is in selecting the initial starting
conditions, in how new candidate solutions are chosen to be tested, or for both.
Used with a hill climbing algorithm, each layer Li would have one individual
(m = 1) and its own independent hill climbing algorithm running inside it. The
ALPS hill climber (ALPS-HC) would cycle through each layer with each hill
climbing algorithm performing one hill-climbing step. One way of allowing
better individuals to move up layers (from a given Li−1 to Li) is when a hill
climber is updated, it checks whether the individual in the previous layer, Ii−1,0

is better than its own individual Ii,0. If Ii−1,0 is better than Ii,0 then it replaces
individual Ii,0 with a copy of Ii−1,0. Alternatively, when the individual in layer
Li becomes too old for its current layer then it is replaced with a copy of the
individual in layer Li−1. Optionally, a replaced individual can be moved up to
the next layer, Li+1, and replace Ii+1,0 if it is better.

Instead of a hill climbing algorithm, a simulated annealing (SA) algorithm
(Kirkpatrick et al., 1983) could be used instead. In this case, along with moving
copies of individuals up layers, a copy of the entire search state—the temper-
ature—should also be moved up. Also, population based optimizers such as
Evolutionary Algorithms can be used in each layer, in which case each layer
will have a population of individuals (from Ii,0 to Ii,m−1) (Hornby, 2006).

When using an Evolutionary Algorithm in each layer, we have found that
using around 10 age layers, each with 20 to 50 individuals, works well. Setting
the age gap and aging scheme depends on the desired maximum number of
evaluations. It seems useful to set these such that the maximum age for the
second oldest layer is some fraction of the maximum age that an individual can
reach. For example, if an ALPS-EA with 10 age layers, each with 50 individuals
will be run for one million evaluations, then the maximum age an individual
can reach is 4000. With a polynomial aging scheme, a good range of values for
the age gap is from 3 to 20.

92 GENETIC PROGRAMMING THEORY AND PRACTICE VII

4. Steady-State ALPS EA

Our proposed combination of a Steady-State EA inside each ALPS layer
(ALPS-SS) is much like our original system, which used a generational EA
(Hornby, 2006), with one difference being in how age is calculated. In the
original system, using a generational EA, age was counted in generations and
the age of all individuals was increased after the EAs in all layers had processed
one generation. Since there are no explicit generations with ALPS-SS, we
keep track of the number of evaluations. Age is then calculated by taking
the number of evaluations in which an individual’s genetic material has been
around and dividing it by the size of the population. Randomly generated
individuals store the number of evaluations that have been performed so far,
and individuals created through mutation and recombination store the smallest
(which is equivalent to “oldest”) value of their parents.

The equation for calculating the age of an individual is:

age = 1 + (evalscurrent − evalscreated)/popsize (6.1)

Where: evalscurrent is the number of evaluations that have been performed so
far; evalscreated is the number of evaluations that had been performed when the
individual’s genetic material was first created; and popsize is the total number
of individuals in all layers. A constant of 1 is added so that the age of randomly
generated individuals is 1 at creation time.

Using this measure of age, ALPS-SS works as follows. The algorithm starts
by configuring the age layers and then creating, and evaluating, an initial, ran-
dom population. Once the initial population is created and evaluated, ALPS-SS
enters its main loop which consists of iteratively selecting a layer, Li to update
and then an index in that layer, Ii,j , for which to create a new individual, creat-
ing the new individual, and then inserting it in the population. In more detail,
this main loop is shown in Figure 6-2. The algorithm allows for different meth-
ods for selecting the parents (eg tournament selection or some form of roulette
wheel selection). In addition, elitism can be added either to just the top layer
or to all layers.

An additional change that is made to ALPS-SS is the method by which
individuals are moved up. In generational ALPS, all individuals that are being
replaced in one layer can be moved up as a group at the end of the generation.
This means that individuals being moved up cannot overwrite other individuals
from their same layer that are also being moved up. To prevent an individual
which is being moved up a layer from overwriting an individual that was also
just recently moved up, ALPS-SS has an additional check that when moving an
individual up it only replaces individuals that were moved more than P (where
P is the total size of the population) evaluations ago.

Steady-State ALPS 93

1: procedure AlpsSS()
2: doInit← false.
3: nextInit← 0.
4: while not done do
5: Select a layer, Li. ⊲ Randomly or sequentially
6: if i == 0 & doInit then
7: j ← nextInit
8: nextInit + = 1
9: if nextInit >= m then

10: doInit← false
11: end if
12: Inew ← randomly created individual.
13: else
14: Select a value for j. ⊲ Randomly or sequentially
15: Select parents from Li and Li−1. ⊲ 1 for mut., 2 for recomb.
16: if No valid parents then ⊲ Must be in layer L0.
17: doInit← true
18: nextIndex← 1
19: j ← 0
20: Inew ← randomly created individual.
21: else
22: Inew ← offspring of parent(s).
23: end if
24: end if
25: Evaluate(Inew)
26: TryMoveUp(i, j)
27: Ii,j ← Inew

28: end while
29: end procedure
30: procedure TryMoveUp(i, j)
31: if i < n then
32: Look for an individual Ii+1,k in Li+1 which Ii,j can replace.
33: if A replaceable Ii+1,k exists then
34: TryMoveUp(i + 1, k)
35: Ii+1,k ← Ii,j

36: end if
37: end if
38: end procedure

Figure 6-2. The ALPS-SS algorithm.

94 GENETIC PROGRAMMING THEORY AND PRACTICE VII

5. Experimental Setup

The objective of these experiments is to compare the performance of the
proposed Steady-State ALPS (ALPS-SS) EA against a basic, Steady-State EA
(BEA). The ALPS-SS configuration which is used in the following experiments
consists of 10 layers of 40 individuals, an exponential aging scheme with an age
gap of 3, and an elitism of 5. Parents are selected using a tournament selection
with a tournament size of 5 and offspring are created using either mutation or
recombination, with equal probability. The BEA is implemented as a single
layer version of ALPS-SS, with 400 individuals in its single age-layer. With no
maximum age on its single age-layer, this single-layer ALPS system operates
exactly like a traditional, steady-state EA. Each of the next two sections presents
a comparison of these two EAs on a different test problem.

6. Evolving Antennas

One of the successes in the Evolutionary Computation community is the
evolution of an X-band antenna for NASA’s ST-5 Mission (Lohn et al., 2005),
which was a co-winner of the Gold Award at the first Human Competitive
Competition at GECCO-04. The version of the test problem which we use here
is much like that used to evolve the NASA ST-5 antenna. In the rest of this
section we describe first the generative representation for encoding an antenna
and then give the results of comparing ALPS-SS against the BEA.

Encoding an Antenna

The generative representation used for evolving antennas consists of an
antenna-constructing program which is based on a programming language we
devised for building objects out of line segments (Hornby et al., 2003). This is
the GP-style representation that was used for evolving the antenna for NASA’s
ST5 mission (Lohn et al., 2005). This language is composed of operators
that specify wire segments and perform coordinate system rotations. An an-
tenna design is created by starting with an initial feedwire and creating wires
specified by executing the evolved antenna-constructing program. The operator
forward(length, radius) adds a wire with the given length and radius. The
operator rotate-x(angle) changes the coordinate system orientation by ro-
tating it the specified amount about the x-axis. Similar operators are defined for
the y and z axes. For example, in executing the program rotate-z(0.5236)
forward(1.0,0.000406), therotate-z() operator causes the current orien-
tation to rotate 0.5236 radians (30◦) about the Z axis. The forward() operator
adds a wire of length 1.0 cm and radius 0.000406 cm (which corresponds to a
20 gauge wire) in the current forward direction. In the instance of the problem

Steady-State ALPS 95

used here, all antennas start with a feed-element segment from (0.0, 0.0, 0.0)
to (0.0, 0.0, 0.001) (units are in meters).

Antenna Results

To evaluate antenna designs we use the same fitness function which Lohn
et al. (Lohn et al., 2005) used for their GA implementation, although here we
are optimizing for a single frequency (2106.0 MHz) whereas in their work they
were optimizing for two frequencies. This fitness function sums the squared
difference of gain values for those values below a given level (here we use 0.5
dBic) and the objective is to find an antenna which minimizes this function:

Fitness =
∑

0
◦ < φ < 360

◦

0
◦ < θ < 90

◦

(gainφ,θ − T)2 if gainφ,θ < T (6.2)

where gainφ,θ is the gain of the antenna in dBic (right-hand polarization) at
a particular angle, T is the target gain (0.5 dBic), φ is the azimuth, and θ is
the elevation. The gain component of the fitness function takes the gain (in
dBic) in 5◦ increments about the angles of interest: from 0◦ ≤ θ ≤ 90◦ and
0◦ ≤ φ ≤ 360◦. These angles of interest are for a hemispherical pattern.

In addition, there are two qualifications to this fitness function. Frequently
the software for analyzing an antenna, NEC, fails to evaluate an antenna (this
happens with about one quarter of randomly generated antennas but with much
lower frequency on offspring of successfully evaluated antennas) in which case
a worst score of 1.0e+8 is returned. Also, antennas are constrained to fit in a
box of ±0.04m in the X and Y direction and 0-0.041m in the Z (up) direction;
this dimensional constraint approximates what might be given for commercial
antennas at this frequency. Those designs which have segments that go outside
this box are also given the worst fitness value of 1.0e+8.

Using the fitness function just described, both EAs were run 30 times with
one million evaluations in each trial. A graph comparing the performance of
ALPS-SS and the BEA is shown in Figure 6-3. While ALPS-SS starts off
slightly slower then the BEA, it quickly achieves much better fitness scores.
Averaged over the 30 trials ALPS-SS scores 2.738e+03±4.21e+02 and the
BEA scores 6.709e+03±1.37e+03 and this difference in performance is highly
significant (P < 0.001, using a two-tailed Mann-Whitney test).

7. Evolving Tables

The second test problem uses both a different design domain and a different
generative representation. This second domain consists of constructing 3D
solid objects out of cubes and the objective we use is to evolve tables. Here,
the generative representation we use is a more powerful encoding system with

96 GENETIC PROGRAMMING THEORY AND PRACTICE VII

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 0 250000 500000 750000 1e+06

fit
ne

ss

evaluations

Evolving Antennas (minimizing)

ALPS
Basic EA

Figure 6-3. Comparison between ALPS-SS and the Basic EA on the antenna design problem.
Plots are of the best individual found, averaged over 30 trials.

conditionals, loops and parameterized procedures. We first describe this more
advanced generative representation used to encode table designs and then give
the results of our comparison.

Encoding a Table

The generative representation language used in this substrate is a kind of
linear, computer-programming language inspired by L-systems. The language
consists of a framework for object-construction rules and a set of these rules
defines a program for an object. Objects are created by compiling a program
into an assembly procedure of construction operators and then executing this
assembly procedure in the module which constructs objects. The rules for
constructing an object consist of a rule head followed by a number of condition-
body pairs. For example in the following rule,

A(n0, n1) : n1 > 5→ B(n1+1)cD(n1+0.5, n0−2)

the rule head is A(n0, n1), the condition is n1 > 5 and the body is B(n1+1)
c D(n1+0.5, n0−2). A complete encoding of an object consists of a starting

Steady-State ALPS 97

operator and a sequence of rules. For example an object could be encoded as,

P0(4)
P0(n0) : n0 > 1.0→ [P1(n0 ∗ 1.5)] up(1) forward(3)

down(1) P0(n0− 1)

P1(n0) : n0 > 1.0→ { [forward(n0)] left(1) }(4)
Through an iterative sequence of replacing rule heads with the appropriate body
this program compiles as follows,

1. P0(4)
2. [P1(6)] up(1) forward(3) down(1) P0(3)
3. [{ [forward(6)] left(1) }(4)] up(1) forward(3) down(1) [P1(4.5)

] up(1) forward(3) down(1) P0(2)
4. [{ [forward(6)] left(1) }(4)] up(1) forward(3) down(1) [{ [

forward(4.5)] left(1) }(4)] up(1) forward(3) down(1) [P1(3)] up(1)
forward(3) down(1) P0(1)

5. [{ [forward(6)] left(1) }(4)] up(1) forward(3) down(1) [{ [
forward(4.5)] left(1)}(4)] up(1) forward(3) down(1) [{ [forward(3)
] left(1) }(4)] up(1) forward(3) down(1)

6. [[forward(6)] left(1) [forward(6)] left(1) [forward(6)] left(1)
[forward(6)] left(1)] up(1) forward(3) down(1) [[forward(4.5)]
left(1) [forward(4.5)] left(1) [forward(4.5)] left(1) [forward(4.5)]
left(1)] up(1) forward(3) down(1) [[forward(3)] left(1) [forward(3)
] left(1) [forward(3)] left(1) [forward(3)] left(1)] up(1) forward(3)
down(1) forward(3)

The particular language used in this example is an encoding for three-
dimensional objects that are constructed out of cubes in a three-dimensional
grid. The operators in this language are: back(n), move in the negative X
direction n units; clockwise(n), rotate heading n × 90◦ about the X axis;
counter-clockwise(n), rotate heading n×−90◦; about the X axis; down(n),
rotate heading n×−90◦ about the Z axis; forward(n), move in the positive X
direction n units; left(n), rotate heading n×90◦ about the Y axis; right(n),
rotate heading n×−90◦ about the Y axis; up(n), rotate heading n× 90◦ about
the Z axis; [, push the current state to the stack; and], pop the top state off the
stack and makes it the current state.

With this construction language an object starts with a single cube in a three-
dimensional grid and new cubes are added with the operators forward() and
back(). The current state, consisting of location and orientation, is maintained
and the operators clockwise(), counter-clockwise(), down(), left(),
right(), and up() change the orientation. A branching in object construction
is achieved through the use of the operators [and], which push (save) and pop
(restore) the current state onto a stack.

98 GENETIC PROGRAMMING THEORY AND PRACTICE VII

(a) (b)

Figure 6-4. Two tree structures produced from the same set of rules with different starting
operators.

Executing the final assembly procedure produced by the example program
results in the structure shown in figure 6-4.a. Interestingly, the rules of this
program encode for a family of objects and by using a different value as the
parameter to the starting operator different objects can be created. The object
in Figure 6-4.b is created by using the starting operator P0(6) instead of P0(4).

Results on Evolving Tables

The fitness function to score tables is a function of their height, surface
structure, stability and number of excess cubes used. Height, fheight, is the
number of cubes above the ground. Surface structure, fsurface, is the number
of cubes at the maximum height. Stability, fstability , is a function of the volume
of the table and is calculated by summing the area at each layer of the table.
Maximizing height, surface structure and stability typically results in table
designs that are solid volumes, thus a measure of excess cubes, fexcess, is used
to reward designs that use fewer bricks. To produce a single fitness score for a
table these four criteria are combined together:

fitness = fheight × fsurface × fstability/fexcess (6.3)

In our comparison we setup the design space to consist of a grid of 40×40×40
cubes and performed thirty trials with each algorithm. For each trial the evo-
lutionary algorithm was configured to run for one million evaluations with a
population of 400 individuals. As with the evolutionary algorithm for evolv-
ing antennas, table designs are bred by selecting as parents the better ones
to reproduce and then performing mutation and recombination on the table-
constructing programs to produce new table designs. The graph in figure 6-5

Steady-State ALPS 99

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 1e+06 2e+06 3e+06 4e+06 5e+06

fit
ne

ss

evaluations

Evolving Tables (maximizing)

ALPS
Basic EA

Figure 6-5. Comparison between ALPS-SS and the Basic EA on the antenna design problem.
Plots are of the best individual found, averaged over 30 trials.

contains the results of these experiments. ALPS-SS had superior performance
(2.14e+07±3.84e+06) than the BEA (1.42e+07±7.63e+06) and this difference
is highly significant (P < 0.001, using a two-tailed Mann-Whitney test).

8. Discussion: Rethinking Aging

In re-working the basic EA into an age-layered system, ALPS introduces
more variables to be set by the user: the number of age layers and the maximum
ages for each layer. As noted in Section 3.0, one method for assigning maximum
age values for each layer is to use some aging scheme whereby the maximum
values for each layer increase by some constant (the age-gap) times a series
of monotonically increasing numbers (the aging scheme). In tweaking ALPS
to improve its performance, choosing the value for the age-gap and the aging
scheme can have a noticeable impact on evolutionary performance. One of the
main issues is ensuring that the maximum age of the second-to-last layer, Li−2,
is high enough that individuals have enough time to compete with individuals
in the last (and oldest) layer, Li−1.

In the process of implementing this version of ALPS, a mistake was made
when assigning the age of an individual created through recombination. Instead
of setting its age of creation to be that of its oldest parent, they were assigned that
of their youngest parent. This had the fortuitous benefit that ages of individuals
stayed quite low—they seem to top out at roughly one or two times the age gap

100 GENETIC PROGRAMMING THEORY AND PRACTICE VII

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 1e+06 2e+06 3e+06 4e+06 5e+06

fit
ne

ss

evaluations

Evolving Tables (maximizing)

ALPS - younger
ALPS - older

Figure 6-6. Comparison between two versions of ALPS: in the original version (ALPS - older),
the age of a child created through recombination is based on its oldest parent; in the new variation
(ALPS - younger) the age of such a child is based on the age of its youngest parent. Plots are of
the best individual found, averaged over 30 trials.

times the number of age layers. Using such an age-assignment system may
make setting the aging-scheme and age gap easier.

To determine if using the age value of the younger parent can also produce as
good evolutionary results as when age is based on the value of the older parent,
we performed an additional set of runs on the table design problem. Results of
our runs are shown in Figure 6-6 and show that both systems achieve comparable
fitness levels. Taking the age of the older parent averaged 2.14e+07±3.84e+06
and taking the age of the younger parent averaged 2.48e+07±1.22e+06, with
the difference being highly significant (P <= 0.001, using a two-tailed Mann-
Whitney test). This suggests that a possible direction for future research is to
more thoroughly compare these two methods of age assignment.

9. Conclusion

When the Age-Layered Population Structure (ALPS) was introduced, a gen-
erational version was shown to work well on an antenna design problem with a
GP-style representation (Hornby, 2006). More recent work has found it to work
well with other GP systems and different problems. One of the main interests
in this paper was devising a version of ALPS to work with a steady-state EA.
Necessary for this steady-state implementation was the development of a way
for calculating age that does not rely on explicit generations.

Steady-State ALPS 101

We compared our ALPS with a steady-state EA (ALPS-SS) implementation
against a steady-state, basic EA (BEA), on two different test problems, each
with its own generative representation. On both test problems we found that
ALPS-SS greatly outperformed the BEA. This version of ALPS is likely to be
of interest to those who need, or prefer, a steady-state algorithm rather than a
generational one.

Acknowledgment

This material is supported in part by the National Science Foundation’s
Creative-IT grant 0757532.

References

Cantú-Paz, E. and Goldberg, D. E. (2003). Are multiple runs of genetic algo-
rithms better than one? In et al., E. Cantu-Paz, editor, Proc. of the Genetic
and Evolutionary Computation Conference, LNCS 2724, pages 801–812,
Berlin. Springer-Verlag.

Cavicchio, D. J. (1970). Adaptive Search using simulated evolution. PhD thesis,
University of Michigan, Ann Arbor.

DeJong, K. A. (1975). Analysis of the Behavior of a Class of Genetic Adap-
tive Systems. Dept. Computer and Communication Sciences, University of
Michigan, Ann Arbor.

Goldberg, David E. and Richardson, Jon (1987). Genetic algorithms with shar-
ing for multimodal function optimization. In Grefenstette, John J., edi-
tor, Proc. of the Second Intl. Conf. on Genetic Algorithms, pages 41–49.
Lawrence Erlbaum Associates.

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer, Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby, Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors, GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. (2003). Generative
representations for the automated design of modular physical robots. IEEE
transactions on Robotics and Automation, 19(4):709–713.

Huber, A. and Mlynski, D. A. (1998). An age-controlled evolutionary algorithm
for optimization problems in physical layout. In International Symposium on
Circuits and Systems, pages 262–265. IEEE Press.

102 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Kim, J.-H., Jeon, J.-Y., Chae, H.-K., and Koh, K. (1995). A novel evolution-
ary algorithm with fast convergence. In IEEE International Conference on
Evolutionary Computation, pages 228–29. IEEE Press.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by simu-
lated annealing. Science, 220:671–680.

Korns, M. F. and Nunez, L. (2008). Profiling symbolic regression-classification.
In Riolo, R. L., Soule, T., and Worzel, B., editors, Genetic Programming
Theory and Practice VI, Genetic and Evolutionary Computation, chapter 14,
pages 215–229. Springer, Ann Arbor.

Kubota, N., Fukuda, T., Arai, F., and Shimojima, K. (1994). Genetic algorithm
with age structure and its application to self-organizing manufacturing sys-
tem. In IEEE Symposium on Emerging Technologies and Factory Automa-
tion, pages 472–477. IEEE Press.

Lohn, Jason D., Hornby, Gregory S., and Linden, Derek S. (2005). Rapid re-
evolution of an X-band antenna for NASA’s space technology 5 mission.
In Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Programming
Theory and Practice III, volume 9 of Genetic Programming, chapter 5, pages
65–78. Springer, Ann Arbor.

Luke, Sean (2001). When short runs beat long runs. In Spector, Lee, Goodman,
Erik D., Wu, Annie, Langdon, W. B., Voigt, Hans-Michael, Gen, Mitsuo,
Sen, Sandip, Dorigo, Marco, Pezeshk, Shahram, Garzon, Max H., and Burke,
Edmund, editors, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 74–80, San Francisco, California, USA.
Morgan Kaufmann.

Mahfoud, S. W. (1992). Crowding and preselection revisited. In Männer, R.
and Manderick, B., editors, Parallel Problem Solving from Nature, 2, pages
27–36. North-Holland.

McConaghy, Trent, Palmers, Pieter, Gielen, Georges, and Steyaert, Michiel
(2007). Genetic programming with reuse of known designs. In Riolo, Rick L.,
Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and
Practice V, Genetic and Evolutionary Computation, chapter 10, pages 161–
186. Springer, Ann Arbor.

Willis, A., Patel, S., and Clack, C. D. (2008). GP age-layer and crossover effects
in bid-offer spread prediction. In Proceedings of the 10th annual conference
on Genetic and Evolutionary Computation Conference, Atlanta, GA.

Chapter 7

LATENT VARIABLE SYMBOLIC REGRESSION
FOR HIGH-DIMENSIONAL INPUTS

Trent McConaghy1

1Solido Design Automation Inc., Canada

Abstract
This paper explores symbolic regression when there are hundreds of input vari-
ables, and the variables have similar influence which means that variable pruning
(a priori, or on-the-fly) will be ineffective. For this problem, traditional genetic
programming and many other regression approaches do poorly. We develop a
technique based on latent variables, nonlinear sensitivity analysis, and genetic
programming designed to manage the challenge. The technique handles 340-
input variable problems in minutes, with promise to scale well to even higher
dimensions. The technique is successfully verified on 24 real-world circuit mod-
eling problems.

Keywords: symbolic regression, latent variables, latent variable regression, LVR, analog,
integrated circuits

1. Introduction

Symbolic regression (SR) is the automated extraction of static whitebox
models that map input variables to output variables. Genetic programming (GP)
(Koza, 1992) is a popular approach to do SR, with successful applications to
industrial problems such as industrial processing (Kordon et al., 2005), medicine
(Moore et al., 2008; Almal and al., 2006), finance (Korns, 2007; Becker et al.,
2007), and robotics (Schmidt and Lipson, 2006).

In most GP-based SR applications, there are one to ten input variables, and
hundreds to thousands of training samples. GP-based approaches are quite good
at handling these. There are two approaches to handling more input variables.
The first is to prune the variables beforehand, e.g. from neural networks (Kordon

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 103
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_7,

104 GENETIC PROGRAMMING THEORY AND PRACTICE VII

et al., 2002). The second is to let GP prune the variables on-the-fly during the
SR run (Smits et al., 2005; Korns, 2007).

Pruning is reasonable when the significant variables are just a fraction of the
overall set of variables. But what about when most variables have a degree of
influence that cannot be ignored? Consider Figure 7-1 left, which is the output
of a nonlinear sensitivity analysis from input/output X/y training data. Here,
the input variables are ordered from highest to lowest impact. The cumulative
sum of impacts vs. variable number is plotted. While the first 10 variables
explain about 50% of the total variation in y, almost all of the variables are
needed in order to capture 95% of the total variation.

Figure 7-1. Cumulative relative impacts of input variables on a target output variable. The
nonlinear impacts on the left plot were extracted using the impact-extraction technique in (Mc-
Conaghy et al., 2008) where the regression models are Random Forests (Breiman, 2001). The
impacts on the right plot are the weights on the model found by gradient directed regularization
(Friedman and Popescu, 2004).

Because most variables are needed for a reasonable model, pruning variables
will be ineffective. Even if we try a different technique that places extra bias on
the most important variables (Figure 7-1 right), we still see that 1/3 of variables
– the same order of magnitude as total number of variables – are needed in order
to capture 95% of the total variation.

This is the problem we face when modeling analog circuit performances as
a function of manufacturing process variations. This matters, because better
models allow higher-quality circuits to be designed in less time. The impact
plots of Figure 7-1 were for the “AV” output of circuit in Figure 7-2 left. It
has approximately 10 process variables per transistor (Drennan and McAndrew,
1999), which leads to 90 input variables overall.

In this paper, we test on 24 benchmark problems having up to 341 input
variables with impact profiles similar to Figure 7-1. Section 3 will show that
a modern GP-based SR technique and several other state-of-the-art regression
techniques will fail, badly, on even the easiest 16 problems. A different way to
think about the symbolic regression problem is needed. So, in section 4 we in-

Latent Variable Symbolic Regression for High-Dimensional Inputs 105

troduce the perspective brought by latent variable regression (LVR)(Friedman
and Tukey, 1974). Each “latent variable” ti in an LVR model is a linear combi-
nation of the input variables ti = wT

i
x; and the model’s output is a nonlinear

function of the latent variables f̂(x) =
∑

i gi(w
T

i
x). Latent variables can be

thought of as auto-discovered “hidden intermediate variables” which transform
the inputs into a reduced-dimensionality space. An LVR technique recently
introduced in circuits (Li and Cao, 2008) is promising, but assumes a quadratic
model when setting wi’s and does not return a symbolic model.

The contributions of this paper are the use of an LVR framework for solving
this challenging SR problem, a means to determine the LVR linear-combination
vectors wi without assuming quadratic mapping, and, most particularly, a
means to find the symbolic nonlinear functions gi. We determine wi’s by
building models of x 7→ f , extracting variable impacts from those models, and
using those impacts as the basis for setting wi. Once wi is determined, a (trivial
for GP) one-dimensional SR run is performed having ti = wT

i
x as the input

variable and f as the output. The process is repeated on the residuals of f until
a stopping criteria is hit.

We dub our approach LVSR: Latent Variable Symbolic Regression.
This paper is organized as follows. Section 2 describes the problem setup.

Section 3 gives experimental results of a modern GP technique and state-of-the-
art regression techniques on the 16 benchmark problems. Section 4 introduces
LVR in the context of a recent approach (Li and Cao, 2008), highlighting the
promise of LVR and the current shortcomings. Section 5 introduces LVSR,
which is designed to overcome the issues of past SR, regression, and LVR
approaches. Section 6 has experimental validation of LVSR on 24 real-world
circuit modeling problems. Section 7 concludes.

Figure 7-2. Schematics of 10-device (left) and 30-device operational amplifier (right).

2. Modeling Problems

The modeling problems come from two analog circuits as shown in Figure
7-2. These circuits are well-known to the domain experts (analog circuit de-
signers). Each circuit’s device sizes were set to have “reasonable” values by an

106 GENETIC PROGRAMMING THEORY AND PRACTICE VII

analog circuit designer, leading to “reasonable” performance values. Each cir-
cuit has 8 performance measures of interest: AV (gain), BW (bandwidth), GBW
(gain-bandwidth), GM (gain margin), OS (overshoot), PM (phase margin), SR
(slew rate), ST (settling time) (Sansen, 2006).

The variations in the circuit performance due to manufacturing imprecision
can be modeled as a joint probability density function (jpdf). We use the well-
known model (Drennan and McAndrew, 1999) where the random variables are
“process variables” which model quantities like “substrate doping concentra-
tion”. Variations in these quantities affect the electrical behavior of the circuit,
and therefore its performances. In this model, there are about 10 normal in-
dependent identically-distributed (NIID) random variables per transistor. In
total, the 10-transistor amp had 90 random variables, and the 30-transistor amp
had 215 random variables. (Section 6 will introduce an even larger problem, a
50-transistor amp with 431 input variables.)

To simulate the effect of manufacturing variations, a “Monte Carlo” (MC)
analysis was performed on each circuit. In MC analysis, we draw N = 600
points from the jpdf. At each random point, we simulate the circuit at several sets
of environmental conditions (combinations of high/low temperature, high/low
power supply Vdd, high/low load). Each random point will get a “worst-case”
value of each performance across the environmental points, which is either the
minimum or maximum value (e.g. worst-case for gain “AV” is minimum value
because we want to maximize gain).1

For our modeling problem, each random point is the model’s input vector
x. Each worst-case performance metric is a model’s scalar output, e.g. yAV .
Therefore we have 8 modeling problems with n = 90 input variables (for the
10T circuit), 8 modeling problems with n = 215 input variables (for the 30T
circuit), and N = 600 input/output pairs per problem.

We need a scheme to assess the ability of the final models to predict on
previously-unseen data. A popular approach is k-fold cross-validation, which
is accurate but requires kx more computational approach than a single pass of
learning. Another approach is to set aside a random subset of ≈ 25% of the data
for testing. This has the virtue of speed but inconsistent results, because the
chosen test samples may not be representative of the whole dataset. We employ
a technique which has both speed and consistency: sort the data according to
the y-values, then take every 4th point for testing.2

1The specific technology was TSMC 0.18µm CMOS. The simulator was a proprietary SPICE-like simulator
of a leading analog semiconductor company, with accuracy and runtime comparable to HSPICETM .
2This was inspired by vertical slicing (Korns, 2007) which used sorted y-values for a different purpose.

Latent Variable Symbolic Regression for High-Dimensional Inputs 107

3. Experiments Using Traditional Regressors

This section gives results from applying a modern GP-based SR technique
and several other state-of-the-art regression techniques to the problems.
We test the following regressors, which range from simple linear techniques to
progressively more nonlinear approaches:

Least-squares (LS) linear regression.

Regularized linear regression via gradient directed regularization
(GDR), in which a regularization term limits the variance among the
linear model’s weights. GDR is a generalization of both the lasso and
ridge regression (Friedman and Popescu, 2004).

Quadratic modeling using PROBE, which models the variable inter-
actions as a rank-reduced weight matrix which improves scaling from
O(n2) to O(k ∗ n) (k=rank, typically 2-10; n = number of input vari-
ables) (Li et al., 2007).

GP using CAFFEINE, a modern SR approach which restricts the search
space to interpretable-by-construction models and has demonstrated abil-
ity to scale to 100+ input variables (it does prune variables) (McConaghy
and Gielen, 2009; McConaghy and Gielen, 2006).

Boosted trees using Stochastic Gradient Boosting (SGB), which builds
a shallow CART tree at each boosting iteration. Iterations zoom in on
hard-to-model regions (Friedman, 2002).

Bootstrapped trees using Random Forests (RF), in which each CART
tree in an ensemble is greedily built from a different bootstrapped sample
of the training data (Breiman, 2001; Breiman et al., 1984).

Settings for each regressor were as follows. In the notation of (Friedman and
Popescu, 2004), GDR had threshold parameter τ = 0.2 and stepsize δµ =
0.002. PROBE hadmax rank = 2. CAFFEINE had settings like (McConaghy
and Gielen, 2009), except population size of 250, population initialization size
250, and 1000 generations. SGB parameters were: learning rate α = 0.10,
minimum tree depth = 2, maximum tree depth = 7, target training error = 5%.
RF had 200 CARTs; CART-building would consider

√
n input variables at each

split; and splitting would continue until no possible splits remained.
Table 7-1 gives the results of the regressors on the 16 modeling problems

(2 circuits x 8 problems per circuit) on the test data. Root-mean squared error

rmse(y, ŷ) =
√

1/N ∗∑N
j ((ŷj − yj)/σy)2 reports the difference between y

and ŷ on testing data. Note that rmse is scaled by y’s standard deviation σy.
Because SGB and RF are stochastic, for each problem we do 30 independent

108 GENETIC PROGRAMMING THEORY AND PRACTICE VII

runs and report the median value. (We report median and not mean because the
worst rmse values are significantly higher, in a Poisson-like distribution.)

Table 7-1. Test RMSE values with traditional regressors. 10T = 10-transistor circuit. 30T =
30-transistor circuit. AV, BW, etc. are different circuit output metrics.

Problem LS-lin Reg-lin Quad GP Boost Bootstr.
(GDR) (PROBE) (CAFF- tree tree

EINE) (SGB) (RF)
10T AV 0.4377 0.4430 0.1384 ≫10.0 0.5947 0.7419
10T BW 0.6175 0.6131 0.2417 3.0170 0.7300 0.8716
10T GBW 0.4257 0.4290 0.2826 0.6016 0.5696 0.7052
10T GM 0.4404 0.4381 0.3416 0.2189 0.5524 0.6782
10T OS 0.2397 0.2506 0.2913 ≫10.0 0.4830 0.7002
10T PM 0.6028 0.5907 0.6710 ≫10.0 0.7842 0.9190
10T SR 0.0132 0.0151 0.0205 0.0555 0.4260 0.6818
10T ST 0.0566 0.0607 0.0765 ≫10.0 0.4379 0.6839

30T AV 0.1141 0.1158 0.1281 ≫10.0 0.6282 0.8118
30T BW 0.0766 0.0760 0.0949 ≫10.0 0.5780 0.7540
30T GBW 0.0675 0.0675 0.0766 ≫10.0 0.5687 0.7516
30T GM 0.1099 0.1102 0.1204 ≫10.0 0.6043 0.8055
30T OS 0.2165 0.2009 0.2209 ≫10.0 0.6101 0.7801
30T PM 0.0782 0.0844 0.1026 ≫10.0 0.6085 0.7665
30T SR 0.1963 0.1744 0.1903 ≫10.0 0.5651 0.7258
30T ST 0.1658 0.1640 0.1681 ≫10.0 0.6165 0.7903

Let us examine the results, one regressor at a time. As a reference, rmse
values of <0.10 are quite good, and values of >0.20 are very poor. The LS-
linear regressor did very poorly on about half the problems, including the first
six. However, it got rmse <0.10 in some problems, indicating that some of
them have nearly-linear mappings. The regularized-linear regressor performed
comparably to LS. The quadratic modeling approach improved upon the linear
approaches for some problems, but still had very poor performance for 6/16
problems. This improved behavior that while the modeling is not quite linear
and not quite quadratic, it may not be significantly more nonlinear.

The GP technique did very poorly in all but two problems. Remember that
this technique did well on other 100+ variable problems. But the difference
is that on those problems, pruning variables was helpful. In examining GP’s
behavior on the 16 problems at hand, we found that GP prunes out variables
fairly aggressively, which explains its poor performance.

Both tree-based approaches did very poorly in predicting on previously-
unseen inputs. There is a straightforward explanation. The quadratic models

Latent Variable Symbolic Regression for High-Dimensional Inputs 109

do fairly well on 10/16 problems, indicating that an assumption a continuous
mapping holds fairly well. Yet the tree-based approaches, with their piecewise-
discontinuous nature, do not make this continuity assumption, making the mod-
eling problem unnecessarily difficult.

Not shown in the table, we also tested two variants of radial basis functions
(RBFs) (Poggio and Girosi, 1990) (with renormalization (Hastie et al., 2001)).
The first variant used Euclidian distance measure and Gaussian kernels. It
gave rmse values comparable to the tree-based approaches (very poor). Such
performance is unsurprising, because with 100 or 200 input variables, all points
are effectively far apart from all other points, rendering the Euclidian distance
ineffective (Hastie et al., 2001; Smits et al., 2005). The second RBF variant
used the Fractional distance measure which has been hypothesized to handle
dimensionality better (Vladislavleva, 2008), but it had poor rmse results too.

In summary, none of the eight “traditional” approaches tested could ade-
quately capture the target circuit mappings. Even the best one did poorly on
6/16 problems. We need to examine the problem from a different perspective.

4. Latent Variable Regression

This section introduces latent variable regression (LVR). The general regres-
sion problem is to find a model ŷ = f̂(X) which minimizes rmse(y, ŷ) on
testing data X . In symbolic regression, we also want f̂ to be interpretable, i.e.
can be inspected by a human to gain insight into the mapping.

In LVR, the mapping f̂ is decomposed into a sum of k one-dimensional
functions gi:

f̂(x) = g1(w
T

1
x) + g2(w

T

1
x) + . . . + gk(wT

k
x) (7.1)

where each gi takes in a scalar value ti = wT

i
x that has been transformed from

x-space by projection vector wi. k is the model’s rank; i = 1 . . . k.
The power of LVR techniques is that a high-dimensional input vector x

may be transformed into a one-dimensional (scalar) value t, and that nonlinear
processing g is deferred until after the transformation. The LVR challenges are
to find the projection vectors {wi}∀i and the nonlinear mappings {gi}∀i.

LVR is not new. For linear functions, it was introduced decades ago as
projection pursuit (Friedman and Tukey, 1974), and related forms are called
partial least squares (PLS).

The PROBE quadratic-modeling approach (Li et al., 2007) tested in section
3 can actually be interpreted as an LVR approach, where the gi’s are quadratic.
Of course, the quadratic gi’s are also PROBE’s weakness.

The work (Baffi et al., 1999) uses neural networks, which can handle arbitrary
nonlinear mappings. However, it is slow because it iterated between finding
wi’s, and finding gi’s. The approach (Malthouse et al., 1997) uses three coupled

110 GENETIC PROGRAMMING THEORY AND PRACTICE VII

neural networks, which is complex and therefore severely prone to overfitting.
The SiLVR approach of (Singhee and Rutenbar, 2007) needs just one neural
network, but it only has a local optimizer for weight tuning and remains prone
to overfitting. In (Jordan and Jacobs, 1994), each ti is a neural network, and
each gi is a normalized output from an overall “gating” network. A problem
with all neural-network approaches is that the gi mapping is opaque due to the
hard-to-interpret sigmoidal squashing function(s).

The recent P2M approach (Li and Cao, 2008) is of particular interest to us,
because of how it decomposes the problem. In P2M, the first projection vector
w1 is chosen by (1) building a PROBE model, and (2) extracting w1 from
either the linear or the quadratic component of the model. Then t1 = wT

1
x is

computed for each input/output pair j = 1 . . . N . Finally, an M=10-segment
piecewise-linear (PWL) model of t1 7→ y is fit using LS, to complete the
rank-1 LVR model. To build a rank-k model, the target y updates the residual
ytarget = yprev −

∑

i gi(w
T

i
x), and the process re-loops to the first step. P2M

is particularly interesting because it demonstrated that if an algorithm could
choose good projection vectors wi, then one could decouple learning the wi’s
from the gi’s, simplifying and speeding the algorithm.

P2M has issues. First, it could choose the wrong projection vector because
of the quadratic assumption, or because it must choose between quadratic vs.
linear without reconciling them. Second, while the PWL model is first-order
continuous, it is not second-order continuous despite experimental evidence
indicating this is the case. Finally, like the neural network approaches, the
PWL model is hard to interpret, which is against our symbolic regression goals.

With a thorough search of the GP literature, we found just one set of work
using LVR (McKay et al., 1999). However, that work was tuned for low-
dimensional problems (just 4 dimensions in the paper), and the output expres-
sions were hard to interpret (e.g. g1 = 2.61∗exp(tanh(tanh(exp(4∗ t1))))−
4.58). We seek a more focused approach with more interpretable results.

5. Latent Variable Symbolic Regression

This section introduces latent variable symbolic regression (LVSR). Gen-
eralizing upon P2M’s approach, LVSR decomposes the problem into finding
projection vectors wi, finding nonlinear mappings gi, and iterating one rank at
a time. The choices within that framework are:

To enable the symbolic part of latent variable symbolic regression, the gi’s
are determined via GP-based symbolic regression. We use CAFFEINE
(McConaghy and Gielen, 2006; McConaghy and Gielen, 2009), but any
almost GP-based SR system would do here since the problem is a simple
1-d mapping.

Latent Variable Symbolic Regression for High-Dimensional Inputs 111

To choose the projection vectors, we test multiple options, each for a
different reason. For a nonlinear model having discontinuities, we use
Random Forests (bootstrapped trees) (Breiman, 2001) where we set each
projection variable wi, l as the impact of the lth variable in the Random
Forest. Its sign is computed by observing the change in y going from
xnominal = {0, 0, ..., 0} to a 1-σ perturbation in the lth variable with
x = {0, 0, ..., 1, ..., 0}. We call this LVSR-RF. For a model having con-
tinuous mapping that is robust to mild nonlinearities, we use regularized
linear learning with aggressive weight pruning (GDR, where τ = 0.95).
We call this LVSR-GDR. A bonus of using aggressive weight pruning
is to reduce the final number of variables, at the possible expense of
model accuracy. For completeness in comparison to P2M, we also test a
quadratic model-based approach to projection-vector extraction. We call
this LVSR-PROBE.

Figure 7-3 left gives the algorithm flow for LVSR.

Figure 7-3. Left: Algorithm flow for Latent Variable Symbolic Regression (LVSR). The key
steps are extracting the projection vector wi , and determining 1-d mapping gi. Right: LVSR
with tuning.

We have also designed a further variant of LVSR, which adds tuning as shown
in Figure 7-3 right. It starts by getting wi and a PWL-extracted gi. It then tunes
those values, minimizing rmse by changing the wi (with n parameters) and
the PWL parameters α and β (each with M + 1 parameters, M = 10). We
tune with a simple, fast, and derivative-free local optimizer (Nelder and Mead,
1965). Up to 50,000 evaluations are allowed. Each evaluation is cheap, needing

112 GENETIC PROGRAMMING THEORY AND PRACTICE VII

just one vector-matrix product of t = wi ∗ X3, followed by simulation of the
1-d PWL model gi(t) at the N values in t.

We found that, for this application, models of rank > 2 did not improve test
rmse (similar to the results of (Singhee and Rutenbar, 2007)), so results shown
are from max rank = 2. Runtime for all LVSR variants is on the order of a few
minutes on a single-core 2 GHz CPU, with the SR portion taking the majority
of time.

6. Experiments Using Latent Variable Regression

Let us first examine LVR in action, with the P2M algorithm. Figure 7-4
illustrates P2M on the 10T AV problem, where it performed the best of any
regressor. The left plot shows the outcome after the first round. At any given
t-value (x-axis value), the spread of points is quite tight, which indicates that
the direction w1 can account for a major part of the variation. Also note that
the curve on the left plot cannot be readily modeled by a linear mapping; this
corresponds to the poor performance exhibited by the linear models on 10T
AV seen in section 3 (rmse values of 0.4377 and 0.4430). The curve can be
fit fairly well by a quadratic, though not perfectly, which is why the quadratic
approach PROBE did reasonably well (rmse of 0.1384). On this plot, a PWL
curve is able to capture the trend well, to complete the first iteration (final rmse
of P2M was 0.0915).

Figure 7-4. Left: Result after first round of P2M (rank=1) on 10 AV problem. The y-axis is
g1; the x-axis is the projection t1 = wT

1 x which in this case was found via quadratic modeling
(PROBE). The scatter points are the 450 training samples projected onto the g1-t1 plane. The
line among the scatter points is a 10-segment PWL model. Right: Result second round of P2M
(rank=2) on 10T AV problem, g2 vs. t2.

3Actually, since the optimizer changes just a subset of variables in wi , only those changes need to propagate
through X to update t.

Latent Variable Symbolic Regression for High-Dimensional Inputs 113

The second P2M iteration learns on the residuals of the first round. Since the
first round captured most of the variation, the y-range for the second round is
significantly smaller (g2 ranges from just≈-1 to≈+1, whereas g1 was from≈45
to≈70). The PWL model captures this as best it can, though this second round
helps little. However, it illluminates a risk of PWL modeling: the model is not
second-order continuous and goes to a more extreme value when extrapolating
to large values of t (right hand side of the plot). This will hurt prediction ability.

Figure 7-5. For P2M on 10T BW problem, g1 vs. t1.

On the next problem, 10T BW, P2M did not capture the direction well, as
Figure 7-5 illustrates. The rank-1 projection of BW vs. t1 = wT

1
x has a very

weak pattern, with much spread in BW at any given x-axis value t. This contrast
sharply with the tightly-spread rank-1 projection we just observed for AV in
Figure 7-4 left. For 10T BW, the PWL model attempts to capture the weak
trend, but of course results in a poor model. The rank-2 projection helps little.
The final rmse was 0.9077, which is the worst of any regressor.

In contrast to P2M’s approach of capturing projection vectors using quadratic
modeling, the LVSR approaches use impacts from either Random Forests or
regularized linear learning (LVSR-RF and LVRS-GDR, respectively). Figure 7-
1 is worth re-examining: it shows relative variable impacts as extracted by RF or
GDR. We see that GDR needs sharply fewer variables to capture the majority of
variation. This is due to the nature of the respective model-building algorithms.
RF has no bias to reduce the number of variables – given two variables causing
the same effect, RF will “democratically” keep both. In contrast, GDR has bias
to reduce variables – given two variables with the same effect, just one will be
kept.

Recall that P2M did poorly on the 10T BW problem. Figure 7-6 shows
the rank=1 projections from LVSR-RF (left plot), and from LVSR-GDR (right
plot). Both approaches captured the trend, and GDR captured it very tightly.
This is reflected in the final rmse values: whereas P2M had an rmse of 0.9077,

114 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 7-6. Left: For LVSR-RF on 10T BW problem, g1 vs. t1. Right: For LVSR-GDR on
10T BW problem, g1 vs. t1.

LVSR-RF had rmse of 0.4331E, and LVSR-GDR had rmse of 0.1728 (the
lowest rmse for 10T BW).

Table 7-2. Test RMSE values with LVR regressors
Problem P2M: LVSR- LVSR- LVSR- LVSR-

PROBE/PWL PROBE RF GDR GDR-tune
10T AV 0.0915 0.3297 0.4914 0.4012 0.1167
10T BW 0.9077 0.7018 0.6802 0.2767 0.4671
10T GBW 0.4202 0.3997 0.5271 0.4050 0.4091
10T GM 0.2723 0.3614 0.5348 0.4017 0.3738
10T OS 0.2527 0.2549 0.3807 0.2316 0.2370
10T PM 0.7188 0.5817 0.6933 0.6077 0.5937
10T SR 0.0136 0.0376 0.2913 0.0448 0.0464
10T ST 0.0574 0.0600 0.3293 0.0716 0.0556

30T AV 0.1499 0.1758 0.3744 0.1107 0.1023
30T BW 0.1058 0.1232 0.2887 0.0868 0.0777
30T GBW 0.1147 0.1038 0.3119 0.0459 0.0525
30T GM 0.1623 0.1752 0.3732 0.6198 0.1056
30T OS 0.3533 0.3393 0.3640 0.2017 0.1933
30T PM 0.1120 0.1236 0.3665 0.0856 0.0712
30T SR 0.2885 0.3749 0.3096 0.1648 0.1676
30T ST 0.2021 0.1950 0.3317 0.1673 0.1583

Table 7-2 gives test rmse values for the various LVSR approaches. Because
the LVSR approaches are stochastic, for each problem we do 30 independent
runs and report the median value. P2M is hit and miss – sometimes it gets
excellent performance but sometimes it is abysmal (e.g. rmse of 0.9077).

Latent Variable Symbolic Regression for High-Dimensional Inputs 115

LVSR-PROBE, which uses quadratic models like P2M, performs similarly to
P2M, except avoiding the abysmal failures. Because the only difference is in gi

approach, the abysmal failures are almost certainly due to the PWL mappings’
poor extrapolations. LVSR-RF approach is mediocre everywhere. This is not
surprising: RF tends to “soften” (lowpass filter) the variable impacts due to its
“democratic” variable selection (lack of bias in choosing variables).

LVSR-GDR-tune and LVSR-GDR do the best, with comparable rmse val-
ues. They both have low rmse in most cases, and never have abysmal per-
formance. LVSR-GDR-tune and LVSR-GDR does better on 10T AV and 30T
GM, and LVSR-GDR does better on 10T BW. So, tuning can help, but not
always. There are three remaining problems that resist good models in the
median (10T GBW, 10T GM, 10T PM). However, since the runs’ best (mini-
mum) rmse values are 0.3797, 0.2992, and 0.3428 respectively, good models
are achievable.

The final rank-1 symbolic model for one run of 10T BW, via LVSR-GDR,
is given in Table 7-3. The projection vector has too many terms to interpret,
but that is compensated by visualizing the gi vs. ti projections, the symbolic
models of gi, and if desired, a cumulative impact plot like Figure 7-1.

Table 7-3. Final model for 10T BW, as found by LVSR-GDR

g1(t1) = 1.184e+06 + 0.871e+6 * max(0, 5.214 * t1)1/2 * t1 + 0.213e+6 * t1
t1 = 1.338e+06 + 6.683e+03 * DP1 M2 nsmm TOX + (40 other terms)

To test scalability to larger problems yet, we tested LVSR-GDR-tune on the
50-transistor circuit shown in Figure 7-7. Each modeling problem has 341 input
variables. Like 10T and 30T problems, the outputs are AV, BW, etc. The rest
of the setup was the same. Runtime was about the same (minutes), because the
1-d SR takes the majority of time. 30 runs were performed for each problem.

Table 7-4 gives median rmse values for each of the 8 modeling problems.
We see that in most cases, the rmse is acceptable, and it is never abysmal.
The rmse of the best run’s 50T GBW was 0.2721. This signifies that LVSR
has scaled very nicely to this problem with more variables; which the non-LVR
approaches would have had extreme difficulty with. We expect LVSR to scale to
problems of much higher dimensionality, e.g. circuits with ≈1,000 transistors
and ≈10,000 input variables. We leave that to future research.

Table 7-4. Test rmse values for LVSR-GDR-tune, for 50T-amp problems having 316 input
variables.

AV BW GBW GM OS PM SR ST
0.2852 0.4047 0.2379 0.2265 0.2549 0.1742 0.1772 0.2162

116 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 7-7. Schematic of 50-device operational amplifier.

7. Conclusion

This paper described a new challenge for GP-based symbolic regression:
handling high-dimensional inputs when pruning does not work because too
many variables have significant impact. This challenge matters for the real-
world problem of variation-aware analog circuit design. This paper showed
how how traditional GP-based SR performed poorly on such problems, along-
side the poor performance of other state-of-the-art regression techniques. Then
this paper introduced the latent variable regression (LVR) view of the regression
problem, reviewed existing LVR techniques and their shortcomings, and intro-
duced latent variable symbolic regression (LVSR). LVSR provides a symbolic
model and useful visualizations of the projection vectors. On real-world circuit
modeling problems, LVSR demonstrated significantly lower prediction error
than traditional non-LVR approaches and a modern LVR approach (P2M).

8. Acknowledgment

Funding for the reported research results is acknowledged from Solido De-
sign Automation Inc.

References

Almal, Arpit A. and al. (2006). Using genetic programming to classify node
positive patients in bladder cancer. In Proc. Genetic and Evolutionary Com-
putation Conference, pages 239–246.

Baffi, G., Martin, E.B., and Morris, A.J. (1999). Non-linear projection to la-
tent structures revisited (the neural network pls algorithm). Computers in
Chemical Engineering, 23(9).

Becker, Y.L., Fox, H., and Fei, P. (2007). An empirical study of multi-objective
algorithms for stock ranking. In Riolo, R.L., Soule, T., and Worzel, B., editors,
Genetic Programming Theory and Practice V, pages 241–262. Springer.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classifica-

tion and Regression Trees. Chapman & Hall.

Latent Variable Symbolic Regression for High-Dimensional Inputs 117

Drennan, P. and McAndrew, C. (1999). A comprehensive mosfet mismatch
model. In Proc. International Electron Devices Meeting.

Friedman, J.H. (2002). Stochastic gradient boosting. Journal of Computational
Statistics & Data Analysis, 38(4):367–378.

Friedman, J.H. and Popescu, B.E. (2004). Gradient directed regularization for
linear regression and classification. Technical report, Stanford University,
Department of Statistics.

Friedman, J.H. and Tukey, J.W. (1974). A projection pursuit algorithm for ex-
ploratory data analysis. IEEE Trans. Computers, C-23:881.

Hastie, T., Tibshirani, R., and Friedman, J.H. (2001). The Elements of Statistical
Learning. Springer.

Jordan, Michael I. and Jacobs, Robert A. (1994). Hierarchical mixtures of ex-
perts and the em algorithm. Neural Computation, 6:181–214.

Kordon, A., Castillo, F., Smits, G., and Kotanchek, M. (2005). Application
issues of genetic programming in industry. In Yu, T., Riolo, R.L., and Worzel,
B., editors, Genetic Programming Theory and Practice III, chapter 16, pages
241–258. Springer.

Kordon, A., Smits, G., Jordaan, E., and Rightor, E. (2002). Robust soft sensors
based on integration of genetic programming, analytical neural networks,
and support vector machines. In Fogel, D.B. and al., editors, Congress on
Evolutionary Computation, pages 896–901. IEEE Press.

Korns, M.F. (2007). Large-scale, time-constrained symbolic regression-
classification. In Riolo, R.L., Soule, T., and Worzel, B., editors, Genetic
Programming Theory and Practice V, chapter 4, pages 53–68. Springer.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Li, X. and Cao, Y. (2008). Projection-based piecewise-linear response surface
modeling for strongly nonlinear vlsi performance variations. In IEEE/ACM
International Symposium on Quality Electronic Design.

Li, X., Gopalakrishnan, P., Xu, Y., and Pileggi, L. (2007). Robust analog/rf
circuit design with projection-based performance modeling. IEEE Trans.
Comput.-Aided Design of Integr. Circuits and Systems, 26(1):2–15.

Malthouse, C., Tamhane, A.C., and Mah, R.S.H. (1997). Nonlinear partial least
squares. Computers in Chemical Engineering, 21(8).

McConaghy, T. and Gielen, G.G.E. (2006). Canonical form functions as a simple
means for genetic programming to evolve human-interpretable functions. In
Proc. Genetic and Evolutionary Computation Conference, pages 855–862.

McConaghy, T. and Gielen, G.G.E. (2009). Template-free symbolic perfor-
mance modeling of analog circuits via canonical form functions and genetic
programming. IEEE Trans. Comput.-Aided Design of Integr. Circuits and
Systems (to appear).

118 GENETIC PROGRAMMING THEORY AND PRACTICE VII

McConaghy, T., Palmers, P., Gielen, G.G.E., and Steyaert, M. (2008). Auto-
mated extraction of expert domain knowledge from genetic programming
synthesis results. In Riolo, R.L., Soule, T., and Worzel, B., editors, Genetic
Programming Theory and Practice VI, pages 111–125. Springer.

McKay, B., Willis, M., Searson, D., and Montague, G. (1999). Non-linear con-
tinuum regression using genetic programming. In Banzhaf, W. and al., edi-
tors, Proc. Genetic and Evol. Comput. Conference, pages 1106–1111.

Moore, J.H., Greene, C.S., Andrews, P.C., and White, B.C. (2008). Does com-
plexity matter? artificial evolution, computational evolution and the genetic
analysis of epistasis in common human diseases. In Riolo, R.L., Soule, T., and
Worzel, B., editors, Genetic Programming Theory and Practice VI, Genetic
and Evolutionary Computation, chapter 9, pages 125–145. Springer.

Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization.
Computer Journal, 7:308–313.

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning.
Proc. of the IEEE, 78(9):1481–1497.

Sansen, W. (2006). Analog Design Essentials. Springer.
Schmidt, M.D. and Lipson, H. (2006). Co-evolving fitness predictors for accel-

erating and reducing evaluations. In Riolo, R.L., Soule, T., and Worzel, B.,
editors, Genetic Programming Theory and Practice IV, chapter 17. Springer.

Singhee, A. and Rutenbar, R.A. (2007). Beyond low-order statistical response
surfaces: Latent variable regression for efficient, highly nonlinear fitting. In
Proc. Design Automation Conference.

Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., and Kotanchek, M. (2005).
Variable selection in industrial datasets using pareto genetic programming.
In Yu, T., Riolo, R.L., and Worzel, B., editors, Genetic Programming Theory
and Practice III, volume 9 of Genetic Programming, pages 79–92. Springer.

Vladislavleva, E. (2008). Model-based Problem Solving through Symbolic Re-
gression via Pareto Genetic Programming. PhD thesis, Tilburg University.

Chapter 8

ALGORITHMIC TRADING WITH
DEVELOPMENTAL AND LINEAR GENETIC
PROGRAMMING

Garnett Wilson1 and Wolfgang Banzhaf1
1Memorial University of Newfoundland, St. John’s, NL, Canada.

Abstract A developmental co-evolutionary genetic programming approach (PAM DGP)
and a standard linear genetic programming (LGP) stock trading system are applied
to a number of stocks across market sectors. Both GP techniques were found
to be robust to market fluctuations and reactive to opportunities associated with
stock price rise and fall, with PAM DGP generating notably greater profit in some
stock trend scenarios. Both algorithms were very accurate at buying to achieve
profit and selling to protect assets, while exhibiting both moderate trading activity
and the ability to maximize or minimize investment as appropriate. The content
of the trading rules produced by both algorithms are also examined in relation to
stock price trend scenarios.

Keywords: Developmental Genetic Programming, Linear Genetic Programming, Computa-
tional Finance

1. Introduction

Algorithmic trading examines a stock’s past price movements in order to
anticipate what effect they will have on its future price. Such analysis uses
technical indicators like price fluctuations and trading volume to identify these
changes in an asset’s price. Evolutionary Computation techniques, such as
genetic programming (GP), have been applied to the analysis of financial mar-
kets with a reassuring degree of success (Brabazon and O’Neill, 2006). This
chapter explores the application of a developmental GP system, Probabilis-
tic Adaptive Mapping Developmental Genetic Programming (PAM DGP), and
linear genetic programming (LGP), to interday stock trading. PAM DGP uses
co-operative co-evolution of genotype solutions and genotype-phenotype map-

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 119
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_8,

120 GENETIC PROGRAMMING THEORY AND PRACTICE VII

pings and permits emphasis of certain functions over others, while LGP uses a
single genotype population and the encoding of functions is static.

The following section discusses previous GP-related approaches to stock
market analysis. Section 3 describes the stock trading implementations of LGP
and PAM DGP, including function set and interpretation of trading rules as
genotype individuals. The ability of both algorithms to generate profit when
applied to a number of stocks across market sectors is examined in Section 4.
Section 5 examines the general trading activity and its profitability for the two
algorithms. Section 6 presents an analysis of the actual function set content of
the trading rules. Conclusions and future work follow in Section 7.

2. Related Approaches to Stock Prediction

Genetic programming is pervasive in the field of financial analysis , and
a number of implementations are described in the literature. The system de-
scribed here was first introduced in (Wilson and Banzhaf, 2009). In this work,
we examine a much more substantial variety of stocks and price trends, and
also the trading rules generated by the different implementations. The first
implementation we consider is traditional linear GP (Brameier and Banzhaf,
2007). LGP has been applied to stock market analysis previously by (Grosan
and Abraham, 2006), where a LGP hybrid (with multi-expression systems)
outperformed neural networks and neuro-fuzzy systems for interday prediction
of stock prices for NASDAQ and Nifty indices. The second implementation
we examine is PAM DGP, a co-evolutionary developmental approach. While
the authors are not aware of any previous approaches to stock market analysis
using developmental approaches, a co-evolutionary process has been applied to
the evolution of trading rules by (Drezewski and Sepielak, 2008). In their co-
evolutionary system, one species represented entry strategies and one species
represented exit strategies. Both a multi-agent version of the co-evolutionary
algorithm and an evolutionary algorithm were created, where the multi-agent
co-evolutionary approach generated the most profit.

In terms of the application of the GP algorithms to interday trading, some
modified elements of the grammatical evolution (GE) approach of (Brabazon
and O’Neill, 2006) were adopted. In their approach, after initial evolution
during a training period, the best rules in the population traded live for a window
of n days. The training window then shifted and the current population was
retrained using the data in the window on which it was previously trading live.
The algorithm then traded live on the following n days, and so on. The authors
compared two versions of the GE system, one where the final population from
the last window was used as the starting population for the current window,
and one that re-initialized the population with each window shift. The authors
found that maintaining the population, rather than re-initializing it, provided

Algorithmic Trading with Developmental and Linear Genetic Programming 121

more profitable performance (and better rules). Similarly, our populations were
not re-initialized with each window shift. Our technique uses a shifting window
of length 5 days, but shifts only in increments of 1 day.

3. LGP and PAM DPG Algorithm for Stock Analysis

LGP is a very popular form of genetic programming, where instead of the
most traditionl form of trees being used as individuals, genotypes consist of
binary strings and registers to store subresults. These binary strings are inter-
preted as instructions of a program, where a unique binary sequence encodes
for only one member of the function set. Throughout program execution in
standard LGP, the mapping of binary sequence to instruction does not change.

In PAM DGP (Wilson and Heywood, 2007), there is a population of geno-
types that cooperatively coevolves with a separate population of mappings. A
probability table is updated throughout algorithm execution with entries corre-
sponding to each pairing of individual genotype and mapping from both pop-
ulations. The table entries represent frequencies that dictate the probability
that roulette selection in a steady state tournament will choose the genotype-
mapping pairing of individuals determined by the indices of the table. The
genotype and mapping individual that are members of the current best genotype-
mapping pairing are immune to mutation and crossover to maintain the current
best solution discovered. Each tournament round involves the selection of four
unique genotype-mapping pairings. Following fitness evaluation and ranking,
the probability table columns associated with the winning combinations have
the winning combination in that column updated using Equation (8.1) and the
remaining combinations in that column updated using Equation (8.2)

P (g,m)new = P (g,m)old + α(1 − P (g,m)old) (8.1)

P (g,m)new = P (g,m)old − α(P (g,m)old) (8.2)

where g is the genotype individual/index, m is the mapping individual/index, α
is the learning rate (corresponding to how much emphasis is placed on current
values versus previous search), and P(g,m) is the probability in table element
[g, m]. To prevent premature convergence, the algorithm uses a noise threshold.
If an element in the table exceeds the noise threshold following a tournament
round, a standard Gaussian probability in the interval [0, 1] is placed in that ele-
ment and all values in its column are re-normalized so the column elements sum
to unity. The PAM DGP algorithm and selection mechanism are summarized
in Figure8-1.

Genotypes in PAM DGP are binary strings, with interpretation of sections of
the binary string being instruction-dependent. Mappings in this work are redun-
dant such that individuals are composed of b ≥ s 10-bit binary strings, where
b is the minimum number of binary sequences required to represent a function

122 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 8-1. Probabilistic Adaptive Mapping Developmental Genetic Programming (PAM
DGP).

Figure 8-2. PAM DGP mapping process.

set of s symbols. Each 10 bit mapping section is interpreted as its decimal
equivalent, normalized to the range [0, 1], and mapped to an ordered function
set index by multiplying by s and truncating to an integer value (allowing redun-
dant encoding of symbols). The process whereby a particular mapping is used
to isolate and emphasize certain members of the function set when interpret-
ing genotype is depicted in Figure 8-2. Using this mapping mechanism with
co-evolutionary selection, PAM DGP will emphasize the most useful members
of the function set, ignore members of the function set which are not pertinent,
and simultaneously evolve an appropriate genotype solution.

PAM DGP is compared to the standard LGP implementation (Brameier and
Banzhaf, 2007) in this study. LGP individuals are also bit strings, and there
is naturally only a genotype population. The interpretation of instructions for
PAM DGP is the same for LGP, where LGP here can be seen as a special case
of PAM DGP that uses a static mapping and constant function set. (PAM DGP
extends LGP such that members of a function set are adaptively emphasized.)
Additional details of PAM DGP, along with its original motivations and compar-
isons to related developmental systems, are available in (Wilson and Heywood,
2007).

Algorithmic Trading with Developmental and Linear Genetic Programming 123

The PAM DGP and LGP implementations are applied to several stocks across
market segments, including technology: Google Inc. (GOOG), Apple Inc.
(AAPL), and Microsoft Corporation (MSFT), energy: Chevron Co. (CVX)
and Ballard Power Systems (BLDP), consumer: PepsiCo Inc. (PEP), automo-
bile: Ford Motor Co. (F), and finance: Bank of Montreal (BMO). The initial
exchange portion of the ticker symbols were removed in all cases for brevity.
High, low, open, and close data was provided as input for 200 day periods
throughout 2007 and 2008, with different dates chosen to test the implementa-
tions’ performance. The first 16 days of the 200 days were reserved as a basis
on which to draw initial data for the technical indicators. After those dates,
GP fitness was evaluated on data corresponding to a moving window of n days.
Individuals represent sets of trading rules, based on functions in the function
set. For each window of n days corresponding to trading days m to n, each of m
to n - 1 days were used for calculation of a trading decision given the individ-
ual’s rule set, with m + 1 to n being used to evaluate the recommendation based
on the immediately preceding day. Days used for the calculation of a trading
decision were normalized using two-phase preprocessing as in (Brabazon and
O’Neill, 2006): All daily values were transformed by division by a lagged
moving average, and then normalized using linear scaling into the range [0, 1]
using

vscaled =
vt − ln
hn − ln

(8.3)

where vscaled is the normalized daily trading value, vt is the transformed daily
trading value at time step t, hn is highest transformed value in the last n time
steps, ln is the lowest transformed value in the last n time steps, and n is length
of the time lag chosen for the initial transformation.

In addition to an instruction set, each individual consists of a set of four reg-
isters, a flag for storing the current value of logical operations, and a separate
output (trade) register for storing a final value corresponding to a trade recom-
mendation. Following the execution of the trading rules of a GP individual, if
the value of the trade register is 0, no action is recommended. Otherwise, the
final value in the trade register corresponds to a value in the range [0, 1]. This
value was multiplied by a maximum dollar amount to be bought or sold per
trade ($10,000 was used here based on an initial account balance of $100,000
with which to trade) to give some portion of $10,000 to be traded. For each
trade conducted, there is a $10 commission penalty. The trading system is
permitted to run a small deficit >= $10 to either handle a sell recommendation
when maximally invested (where the deficit would be immediately recouped)
or, similarly, to allow a buy in order to be maximally invested. Fitness of an
individual is the value of the cash and shares held.

124 GENETIC PROGRAMMING THEORY AND PRACTICE VII

The best individual consisting of the best trading rule set is used by a “live”
trading algorithm. That is, the live trader provides known information to the
GP for days m to n. The GP algorithm returns a recommendation on which
the live trading system bases its decision to trade on the following day, n + 1.
In particular, the net number of shares bought and sold by the best evolved
individual (trading rules) given the recommendation of the trade register over
all the fitness cases is the buy or sell recommendation to the “live” trading
system. The transactions of the live trading system are thus based on unknown
data, and determine the success of the algorithms.

While PAM DGP uses co-evolution to refine function set composition, the
appropriate initial function set members must be provided as a basis upon which
the algorithm can select its optimum function set. In the case of standard GP,
this initial function set remains constant throughout execution. The function
set includes standard mathematical operators, and instructions to trade based
on logical operators applied to the four internal registers. In addition, there
are established financial analysis metrics used: moving average, momentum,
channel breakout, and current day high, low, open, or close price. The financial
technical indicator moving average (MA) is the mean of the previous n share
prices. The momentum indicator (MOM) provides the rate of change indicator,
and is the ratio of a particular time-lagged price to the current price. Channel
breakout (BRK) establishes a trading range for a stock, and reflects its volatil-
ity. The most popular solution places Bollinger bands around a n-day moving
average of the price at ± 2 standard deviations of the price movement.

4. Profit Analysis

The worth of the live trading system’s assets over 184 days of trading is
examined (200 fitness cases in total were actually used, with the first 16 reserved
to provide initial values for technical indicators). Fifty trials over the 184 trading
days were conducted for the four stocks using an Apple iMac Intel Core 2 Duo
2.8 GHz CPU and 4GB RAM using OS X Leopard v10.5.4. With an initial
account of $100,000, the mean worth (with standard error) of all assets (cash and
shares) of the live trading system for PAM DGP, LGP, and naive buy-and-hold
strategies is given in Figure 8-3. Naive buy-and-hold is simply the strategy of
maximally investing on the first trading day and staying invested for the entire
time period.

It is evident from Figure 8-3 that PAM DGP and LGP are both robust to
share price fluctuations (where the buy and hold trend line is a direct indication
of share price fluctuations). The evolved solutions seem to take advantage
of the upward trends, although the solutions reflect a conservative strategy
overall, adept at anticipating and buffering against sharp share price declines
and volatility in general. In terms of specific upward trends, GOOG and AAPL

Algorithmic Trading with Developmental and Linear Genetic Programming 125

exhibit moderately volatile behavior followed by fairly sharp declines (from
approximately day 60 to 80), proceeded by climbing stock prices. In both of
these instances, LGP and PAM DGP outperform buy-and-hold, with PAM DGP
outperforming LGP. Given PEP and CVX, a general upward climbing trend can
be examined. Here, the performance of LGP and PAM DGP is much closer.
While the more steady upward climb of PEP does not allow LGP or PAM DGP
to outperform buy-and-hold, the price drops of CVX between days 60 and 120
allow PAM DGP and LGP to outperform buy-and-hold by the end of the time
period. Note that in the instance of PEP, both algorithms are naturally not
invested to the (maximal) extent of buy-and-hold prior to the steep price climb,
and thus have less final profit (but are still competitive and almost as profitable).

In terms of the ability of the algorithms to handle downward market trends,
BLDP and MSFT show downward trending stock prices. MSFT exhibits a fairly
gradual downward trending slope. PAM DGP and LGP perform relatively on
par with buy-and-hold, with all implementations generating comparable losses
at the end of the time period. BLDP, in contrast, features some volatility with
spiking near the end. This volatility allows LGP and PAM DGP to end the time
period with greater profit than buy-and-hold (although all algorithms suffer
losses when investing in these downward trending stocks). While we see in all
stocks in Figure 8-3 that LGP and PAM DGP are typically able to recognize
steep downward trends, and sell assets to protect investments, general downward
trends with consistent moderate volatility (see MSFT especially) can prevent
the algorithm from pulling out assets to a large degree because there are brief
episodes of profit. F and BMP exhibit an upward trend, followed by punctuated
steeper downward trends. During the downward trends, LGP and PAM DGP
will typically sell to protect investments (although PAM DGP does get caught in
a very sudden drop at the end of the time period for BMO). Final and cumulative
measures of profit are shown in Figures 8-4 and 8-5, respectively.

In the boxplots of Figures 8-4 and 8-5, each box indicates the lower quartile,
median, and upper quartile values. If the notches of two boxes do not overlap,
the medians of the two groups differ at the 0.95 confidence interval. Points
represent outliers to whiskers of 1.5 times the interquartile range. In Figure
8-4, a comparison of final profit indicates that stocks that were well-chosen
(were profitable overall during the time period) generated profit for both algo-
rithms. Note that time period end is arbitrary and profits are a direct reflection
of underlying market trend. If a stock is losing value, direct buying and selling
of the stock cannot generate profit.

Figure 8-5 is more informative, as it shows the mean daily cumulative profit
(%) greater than buy-and-hold for the LGP and PAM DGP live trading systems
over all trading days. Both PAM DGP and LGP were generally more profitable
than buy-and-hold at any given time for all stocks. Exceptions included, nat-
urally, the case of PEP where naïve buy-and-hold is a very good strategy, and

126 GENETIC PROGRAMMING THEORY AND PRACTICE VII

20 40 60 80 100 120 140 160 180
6

7

8

9

10

11

12
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Google Inc. (GOOG)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Apple Inc. (AAPL)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
0.95

1

1.05

1.1

1.15

1.2

1.25
x 10

5

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

PepsiCo Inc. (PEP)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
x 10

5

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Chevron Co. (CVX)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
4

5

6

7

8

9

10

11
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Ballard Power Systems Inc. (BLDP)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
2

4

6

8

10

12

14

16
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Ford Motor Co. (F)

Linear GP
PAM DGP
Buy and Hold

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11

12
x 10

4

Day

V
al

ue
 o

f C
as

h
an

d
S

ha
re

s
H

el
d

($
)

Bank of Montreal (BMO)

Linear GP
PAM DGP
Buy and Hold

Figure 8-3. Mean total worth (value of cash and shares) for PAM DGP, LGP, and buy-and-hold
strategies over 50 trials with standard error given initial $100,000 cash value.

Algorithmic Trading with Developmental and Linear Genetic Programming 127

GOOG AAPL MSFT CVX BLDP PEP F BMO

−60

−40

−20

0

20

40

A
bs

ol
ut

e
P

ro
fit

/L
os

s
(%

)

Linear GP

Stock
GOOG AAPL MSFT CVX BLDP PEP F BMO

−60

−40

−20

0

20

40

A
bs

ol
ut

e
P

ro
fit

/L
os

s
(%

)

PAM DGP

Stock

Figure 8-4. Boxplot of mean final profit (%) greater than buy-and-hold for PAM DGP and LGP
over 50 trials. Value of 0 indicates the breakeven point.

GOOG AAPL MSFT CVX BLDP PEP F BMO

−10

−5

0

5

10

15

20

25

30

35

D
ai

ly
 C

um
ul

at
iv

e
P

ro
fit

 (
%

)
di

ffe
re

nc
e

fr
om

 B
uy

−
an

d−
H

ol
d

Linear GP

Stocks
GOOG AAPL MSFT CVX BLDP PEP F BMO

−10

−5

0

5

10

15

20

25

30

35

D
ai

ly
 C

um
ul

at
iv

e
P

ro
fit

 (
%

)
di

ffe
re

nc
e

fr
om

 B
uy

−
an

d−
H

ol
d

PAM DGP

Stocks

Figure 8-5. Boxplot of mean daily cumulative profit (%) difference from buy-and-hold for PAM
DGP and LGP over 50 trials. Value of 0 indicates the breakeven point.

BLDP and MSFT where high volatility combined with a drawn out downward
trend caused losses. In all cases where buy-and-hold was cumulatively more
profitable, the performance was only lower for LGP or PAM DGP by a very
slight amount (0–1% for BLDP and PEP, less than 5% for MSFT). PAM DGP
was more profitable than LGP at any given time by a large margin for GOOG
and AAPL and a very small margin for PEP. LGP slightly outperformed PAM
DGP for CVX. Given the behavior in Figures 8-3 and 8-5, PAM DGP pro-
vides increased robustness to market downturns and quickly takes advantage of
growth opportunities later in evolution. Also, we can see in Figure 8-5 that LGP
slightly outperforms PAM DGP for CVX by not selling quite as much stock
during a market dip immediately preceding a steady climb starting at approx-
imately day 100 (Figure 8-3). Thus PAM DGP is slightly more reactive in its
selling to prevent loss, where this benefits performance for GOOG and AAPL,

128 GENETIC PROGRAMMING THEORY AND PRACTICE VII

but not CVX. There was no substantial statistically significant difference in
cumulative profit for the other stocks.

5. Trading Activity

Trading activity is shown in Figure 8-6, expressed as the number of shares
retained daily as a percentage of the live system’s total worth. Comparing
Figures 8-3 and 8-6, it is evident that both PAM DGP and LGP are capable
of efficiently reacting to the market: they will both sell if a stock price starts
to drop and buy if the stock price appears to be rising. Figures 8-3 and 8-
6 collectively show that both algorithms will stay maximally invested during
sustained profitable periods.

The performance of these trades can be further examined by analysis of
how many trades were conducted and their benefit. Proportion of profitable
trades is a common metric for evaluation of trading activity, although it can
be deceptive: it does not even reflect the overall ability of an algorithm in
terms of actual profit generated (Brabazon and O’Neill, 2006). Many trades are
beneficial in preventing loss during market downturns, and generate no profit at
all. Thus, rather than the standard measure of percentage of profitable trades,
the percentage of profitable buy trades and percentage of sell trades preventing
loss for each algorithm are given in Figures 8-7 and 8-8, respectively. Figure
8-9 shows the percentage of trading opportunities where a trade was actually
conducted. The number of trading opportunities not taken when the system was
maximally or minimally invested, out of all possible trades, is shown in Figure
8-10. Figure 8-7 reveals that both LGP and PAM DGP are very accurate when
buying for profit: LGP exhibited medians of 96–100% profitable buys across all
stocks, and PAM DGP exhibited 87% to 100% profitable buys across all stocks
(with the vast majority above 96%). Figure 8-8 shows that LGP was extremely
good at selling to prevent loss; all medians were 100%. PAM DGP did not
perform quite as well, but still exhibited very impressive results by selling to
prevent loss with 94–100% accuracy. Overall, both algorithms were very good
at both buying for profit and selling to prevent loss. Even outliers in either
buying for profit or selling to prevent loss were acceptably high percentages.

Figure 8-9 shows the trading activity behind all the performance measures
we have considered so far. PAM DGP generally conducted more trades (based
on spread of data) than LGP for all stocks. For all stocks with a general up-
ward trend (GOOG, AAPL, CVX, and PEP), a lower number of trades were
conducted for both LGP and PAM DGP. In particular, LGP conducted approx-
imately 28–35% (based on median) of possible trades for (generally) rising
stocks, while approximately 37–42% of possible trades were conducted for the
(generally) falling stocks (MSFT, BLDP, F, BMO). PAM DGP conducted ap-
proximately 30–40% of available trades for rising stocks and 44–50% for falling

Algorithmic Trading with Developmental and Linear Genetic Programming 129

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Google Inc. (GOOG)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Apple Inc. (AAPL)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

PepsiCo Inc. (PEP)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Chevron Co. (CVX)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Ballard Power Systems Inc. (BLDP)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Microsoft Corporation (MSFT)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Ford Motor Co. (F)

Linear GP
PAM DGP

20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Day

W
or

th
 o

f S
ha

re
s

H
el

d
(%

)

Bank of Montreal (BMO)

Linear GP
PAM DGP

Figure 8-6. Mean shares held by PAM DGP (black line) and LGP (grey line) live trading systems
as a percentage of total worth over 50 trials with standard error.

130 GENETIC PROGRAMMING THEORY AND PRACTICE VII

GOOG AAPL MSFT CVX BLDP PEP F BMO

88

90

92

94

96

98

100

P
ro

fit
ab

le
 B

uy
 T

ra
de

s
(%

)

Linear GP

Stocks
GOOG AAPL MSFT CVX BLDP PEP F BMO

80

85

90

95

100

P
ro

fit
ab

le
 B

uy
 T

ra
de

s
(%

)

PAM DGP

Stocks

Figure 8-7. Percentage of profitable buy trades for 184 trading days over 50 trials.

GOOG AAPL MSFT CVX BLDP PEP F BMO

88

90

92

94

96

98

100

S
el

ls
 P

re
ve

nt
in

g
Lo

ss
 (

%
)

Linear GP

Stocks
GOOG AAPL MSFT CVX BLDP PEP F BMO

88

90

92

94

96

98

100

S
el

ls
 P

re
ve

nt
in

g
Lo

ss
 (

%
)

PAM DGP

Stocks

Figure 8-8. Percentage of sell trades preventing losses for 184 trading days over 50 trials.

GOOG AAPL MSFT CVX BLDP PEP F BMO

20

25

30

35

40

45

50

T
ra

de
s

C
on

du
ct

ed
 (

%
 o

f A
ll

P
os

si
bl

e
T

ra
de

s)

Linear GP

Stocks
GOOG AAPL MSFT CVX BLDP PEP F BMO

20

25

30

35

40

45

50

55

T
ra

de
s

C
on

du
ct

ed
 (

%
 o

f A
ll

P
os

si
bl

e
T

ra
de

s)

PAM DGP

Stocks

Figure 8-9. Percentage of trades executed overall for each stock for 184 trading days over 50
trials.

stocks. Overall, the groups of falling stocks caused both algorithms to trade
more actively than they would for the rising stocks, where this was statistically

Algorithmic Trading with Developmental and Linear Genetic Programming 131

GOOG AAPL MSFT CVX BLDP PEP F BMO

15

20

25

30

35

40

45

50

55

60

65

N
o

T
ra

de
, M

ax
 o

r
M

in
 In

ve
st

ed
 (

%
 o

f a
ll

P
os

si
bl

e
T

ra
de

s)

Linear GP

Stocks
GOOG AAPL MSFT CVX BLDP PEP F BMO

10

15

20

25

30

35

40

45

50

55

60

N
o

T
ra

de
, M

ax
 o

r
M

in
 In

ve
st

ed
 (

%
 o

f a
ll

P
os

si
bl

e
T

ra
de

s)

PAM DGP

Stocks

Figure 8-10. Trades not conducted while maximally or minimally invested as a percentage of
all trades for 184 trading days over 50 trials.

significant for both LGP and PAM DGP. Figure 8-10 indicates the percentage
of all trades where the system wished to maintain a maximally or minimally
invested position. For both LGP and PAM DGP, the system would maximize
(or minimize) investment for all rising stocks between approximately 35 and
45% (based on median) of the time for rising stocks. Compared with Figure
8-6, it is evident that most of these positions were maximal investment to gen-
erate profit. However, again for both algorithms, the system would maximize
or minimize investment for only approximately 20 to 35% (median) of the time
for falling stocks. Overall, Figures 8-7 to 8-10 indicate that the proportion
of beneficial trades (generating profit or protecting the investor from further
losses) was impressive, where this occurred in the context of moderate levels
of trading.

6. Trading Rules

The actual content of the trading rules will vary between trading days and
across general stock price trends. Since populations are kept across training
windows, as recommended in (Brabazon and O’Neill, 2006) (see Section 3),
the content of an individual at the arbitrary end of a time period is a reflection
of trading rules for that stock built up over the entire time period. Thus, we
examine the proportion of each member of the function set in the final best
individual at the end of the time period over all 50 trials. The composition
of individuals for two stock price trend types are examined: a rising stock
(AAPL) that achieved profit and a falling stock (BMO) that suffered losses.
The percentage of each function set member in the final individuals over all 50
trials is provided for AAPL and BMO in Figure 8-11 and 8-12, respectively.
Standard mathematical operators, a logical operator (logical), moving average
(ma), momentum (mom), a measure of the turbulence (trb), measures based on

132 GENETIC PROGRAMMING THEORY AND PRACTICE VII

stock ticker data (ticker), and different trading mechanisms (trade1 to trade4)
are shown.

Figure 8-11. Percentage composition corresponding to function set members in final day trading
rules after 184 trading days over 50 trials for AAPL.

Figure 8-12. Percentage composition corresponding to function set members in final day trading
rules after 184 trading days over 50 trials for BMO.

Algorithmic Trading with Developmental and Linear Genetic Programming 133

We can note from Figure 8-11 that there are only statistically significant
differences in the trading rules of LGP and PAM DGP for 5 of the 12 function
set members, but never by a margin of more than 5%. In terms of interesting
quantitative measures, momentum analysis dominates the instruction sets for
the dropping followed by rising stock (AAPL) where profits were greatest. For
the mean number of instructions in the sets over all trials for the falling BMO
stock in Figure 8-12, there is a more even distribution of instruction types.
However, PAM DGP does provide greater emphasis on certain instructions that
execute trades (trade3 and trade4). As with AAPL, only 5 of the 12 function set
members differ statistically for BMO between LGP and PAM DGP, but never
by more than 5% (with the exception of trade1). Overall, there appears to be no
substantial difference in proportional function set composition seen in Figures
8-11 and 8-12, averaging content within all final instructions sets.

7. Conclusions and Future Work

This work examined the trading performance of a co-evolutionary develop-
mental GP model (PAM DGP) using a genotype-phenotype mapping and more
traditional LGP on eight stocks across market sectors. Both implementations
were found to be robust to stock price fluctuations, and outperformed naïve
buy-and-hold strategies in almost all scenarios (with the exceptions of steady
rise, where buy-and-hold cannot be beaten, and volatile moderate downturn).
Even for a stock with a steady rise in price, LGP and PAM DGP are still very
competitive and a less risky strategy for shorter time periods than buy-and-hold.
Both algorithms evolved so that they protected investments during price drops
with impressive accuracy, and they very accurately made buying decisions to
generate profit. The beneficial trades by both algorithms were conducted with
moderate trading activity and periods of maximal investment to capitalize on
rising stock prices. Analysis of trading rules for two chosen stock trends showed
that, overall, both algorithms picked similar levels for the majority of functions
over all trials. Future work will examine index trading, intraday trading, incor-
poration of additional quantitative metrics, and extension of the algorithms for
trading portfolios of multiple stocks.

Acknowledgment

We would like to thank the reviewers for their helpful comments, especially
Michael Korns and Gregory Hornby.

References

Brabazon, Anthony and O’Neill, Michael (2006). Biologically Inspired Algo-
rithms for Financial Modelling. Natural Computing Series. Springer.

134 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Brameier, Markus and Banzhaf, Wolfgang (2007). Linear Genetic Program-
ming. Number XVI in Genetic and Evolutionary Computation. Springer.

Drezewski, Rafal and Sepielak, Jan (2008). Evolutionary system for generat-
ing investment strategies. In Giacobini, Mario, Brabazon, Anthony, Cagnoni,
Stefano, Caro, Gianni Di, Drechsler, Rolf, Ekárt, Anikó, Esparcia-Alcázar,
Anna, Farooq, Muddassar, Fink, Andreas, McCormack, Jon, O’Neill,
Michael, Romero, Juan, Rothlauf, Franz, Squillero, Giovanni, Uyar, Sima,
and Yang, Shengxiang, editors, EvoWorkshops, volume 4974 of Lecture
Notes in Computer Science, pages 83–92. Springer.

Grosan, Crina and Abraham, Ajith (2006). Stock market modeling using genetic
programming ensembles. In Nedjah, Nadia, de Macedo Mourelle, Luiza,
and Abraham, Ajith, editors, Genetic Systems Programming, volume 13 of
Studies in Computational Intelligence, pages 131–146. Springer.

Wilson, Garnett and Banzhaf, Wolfgang (2009). Prediction of interday stock
prices using developmental and linear genetic programming. In Giacobini,
Mario, De Falco, Ivanoe, and Ebner, Marc, editors, Applications of Evo-
lutionary Computing, EvoWorkshops2009: EvoCOMNET, EvoENVIRON-
MENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, Evo-
MUSART, EvoNUM, EvoPhD, EvoSTOC, EvoTRANSLOG, LNCS, Tubin-
gen, Germany. Springer Verlag.

Wilson, Garnett and Heywood, Malcolm (2007). Introducing probabilistic adap-
tive mapping developmental genetic programming with redundant mappings.
Genetic Programming and Evolvable Machines, 8(2):187–220. Special issue
on developmental systems.

Chapter 9

HIGH-SIGNIFICANCE AVERAGES OF
EVENT-RELATED POTENTIAL VIA
GENETIC PROGRAMMING

Luca Citi1, Riccardo Poli1, and Caterina Cinel1
1School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park,
CO4 3SQ, UK

Abstract In this paper we use register-based genetic programming with memory-with-
memory to discover probabilistic membership functions that are used to divide up
data-sets of event-related potentials recorded via EEG in psycho-physiological
experiments based on the corresponding response times. The objective is to
evolve membership functions which lead to maximising the statistical signif-
icance with which true brain waves can be reconstructed when averaging the
trials in each bin. Results show that GP can significantly improve the fidelity
with which ERP components can be recovered.

Keywords: Event-related potentials, Averaging, Register-based GP, Memory-with-Memory

1. Introduction

The electrical activity of the brain is typically recorded from the scalp us-
ing Electroencephalography (EEG). This is used in electrophysiology, in psy-
chology, as well as in Brain-Computer Interface (BCI) research. Particularly
important for these purposes are Event-Related Potentials (ERPs). ERPs are
relatively well defined shape-wise variations to the ongoing EEG elicited by a
stimulus and/or temporally linked to it (Luck, 2005). ERPs include early exoge-
nous responses, due to the primary processing of the stimulus, as well as later
endogenous responses, which are a reflection of higher cognitive processing
induced by the stimulus (Donchin and Coles, 1988).

While the study of single-trial ERPs has been considered of great importance
since the early days of ERP analysis, in practice the presence of noise and
artifacts has forced researchers to make use of averaging as part of their standard
investigation methodology (Donchin and Lindsley, 1968). Even today, despite

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 135
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_9,

136 GENETIC PROGRAMMING THEORY AND PRACTICE VII

enormous advances in acquisition devices and signal-processing equipment and
techniques, ERP averaging is still ubiquitous (Handy, 2004; Luck, 2005).

ERP averaging is also a key element in many BCIs. BCIs measure specific
signals of brain activity intentionally and unintentionally induced by the partic-
ipant and translate them into device control signals (see, for example, (Farwell
and Donchin, 1988; Wolpaw et al., 1991; Pfurtscheller et al., 1993; Birbaumer
et al., 1999; Wolpaw et al., 2000; Furdea et al., 2009)). Averaging is frequently
used to increase accuracy in BCIs where the objective is to determine which of
the stimuli sequentially presented to a user is attended. This is achieved via the
classification of the ERP components elicited by the stimuli. This form of BCI
— which effectively started off with the seminal work of (Farwell and Donchin,
1988) who showed that it was possible to spell words through the detection of
P300 waves — is now one of the most promising areas of the discipline (e.g.,
see (Bostanov, 2004; Rakotomamonjy and Guigue, 2008; Citi et al., 2008)).

Averaging has empirically been shown to improve the accuracy in ERP-based
BCIs. However, the larger the number of trials that need to be averaged, the
longer it takes for the system to produce a decision. So, only a limited number
of trials can be averaged before a decision has to be taken. A limitation on
the number of trials one can average is also present in psychophysiological
studies based on ERPs: the larger the number of trials that are accumulated in
an average, the longer an experiment will last, potentially leading to participants
fatiguing, to increases in noise due to variations in electrode impedances, etc.
So, both in psychophysiological studies and in BCIs it would be advantageous
to make the absolute best use of all the information available in each trial.
However, as we will discuss in Section 2, standard averaging techniques do not
achieve this.

In recent work (Poli et al., ress) we proposed, tested and theoretically anal-
ysed an extremely simple technique which can be used in forced-choice exper-
iments. In such experiments response times are measured via a button press
or a mouse click. Our technique consists of binning trials based on response
times and then averaging. This can significantly alleviate the problems of other
averaging methods, particularly when response times are relatively long. In
particular, results indicated that the method produces clearer representations of
ERP components than standard averaging, revealing finer details of components
and helping in the evaluation of the true amplitude and latency of ERP waves.

The technique relies on dividing an ERP dataset into bins. The size and
position of these bins is extremely important in determining the fidelity with
which bin averages represent true brain waves. In (Poli et al., ress) we simply
used standard (mutually exclusive) bins. That is, each bin covered a particular
range of response times, the ranges associated to different bins did not overlap
and no gaps were allowed between the bins. As we will explain in Section 3,
this implies that, in bin averages, true ERP components are distorted via the

High-significance ERP Averages via GP 137

convolution with a kernel whose frequency response is itself a convolution
between the frequency response of the original latency distribution ℓ(t) and the
Fourier transform of a rectangular window (a sinc function).

While provably this has the effect of improving the resolution with which
ERPs can be recovered via averages, it is clear that the convolution with sinc
will produce distortions due to the Gibbs phenomenon. Also, the width and
position of the bins we used in (Poli et al., ress) was determined heuristically.
We chose bins as follows: one gathered the lower 30% of the response time
distribution, one the middle 30% and one the longer 30%.1 However, it is clear
that neither the choice of crisp mutually exclusive membership functions for
bins (leading to convolution with sinc) nor the position and width of the bins is
optimal.

So, although our binning method is a marked improvement over traditional
techniques, it still does not make the best use of the information available in
an ERP dataset. It is arguable, for example, that doing binning using gradual
membership functions would provide even better ERP reconstruction fidelity.
Similarly, setting the size of the bins on the basis of the noise in the data and the
particular shape of the response time distribution would be beneficial to make
best use of the available trials. Finding bin membership functions which satisfy
these criteria, however, is difficult. It is also difficult to specify what notion of
optimality one should use. In this paper we solve both problems.

The paper is organised as follows. After the reviews of previous work pro-
vided in Sections 2 and 3, we define what an optimal set of binning functions
is (Section 4). As we will see this involves the use of statistical tests on the
data belonging to different bins. Then (Section 5), we apply Genetic Program-
ming (Poli et al., 2008) to the task of identifying optimal membership functions
for bins in such a way as to get the best possible reconstruction of real ERP
components from bin averages. The results of this process, as described in
Section 6, provide significant improvements over the original technique. We
give some conclusions and indications of future work in Section 7.

2. Averaging Techniques for ERPs

There are essentially three classes of methods that are commonly used to
resolve ERP components via averaging. Stimulus-locked averaging requires
extracting epochs of fixed duration from the EEG signal starting at the stimu-
lus presentation and averaging the corresponding ERPs (Lindsley, 1968). An
important problem with this form of averaging is that any ERP components
whose latency is not phase-locked with the presentation of the stimuli may be

1Since extremely long response times are typically the sign of the participant being distracted or having had
some other problem with providing a response, the 10% of the trials with the longest response times were
discarded.

138 GENETIC PROGRAMMING THEORY AND PRACTICE VII

significantly distorted as a result of averaging (Spencer, 2004; Luck, 2005).
This is because the average, a(t), of randomly shifted versions of a waveform,
w(t), is the convolution between the original waveform and the latency distri-
bution, ℓ(t), for that waveform, i.e., a(t) = w(t) ⋆ ℓ(t) =

∫

w(t − τ)ℓ(τ) dτ ,
e.g., see (Zhang, 1998). This typically means that a stimulus-locked average
can only show a smoothed (low-pass filtered) version of each variable-latency
component.

The problem is particularly severe when the task a subject needs to perform
after the presentation of the stimuli is relatively difficult since the variability in
the latencies of endogenous ERP components and in response times increase
with the complexity of the task (Luck, 2005; Polich and Comerchero, 2003). In
these cases, multiple endogenous variable-latency components may appear as a
single large blurred component in the average; a synthetic example is shown in
Figure 9-1 (left).2 This makes it very difficult to infer true brain area activity for
any response occurring after the early exogenous potentials typically elicited
by (and synchronised with) a stimulus.

In experiments in which the task requires participants to provide a specific
behavioural response (e.g., in the form of a button press or a spoken response),
response-locked averaging can be used as an alternative to stimulus-locked av-
eraging to help resolve variable-latency ERP components that are synchronised
with the response; see, for example, (Luck and Hillyard, 1990; Keus et al.,
2005; Spencer, 2004; Töllner et al., 2008). In this case, however, the early re-
sponses associated and phase-locked with the stimulus will end up being blurred
and hard to distinguish, since they are represented in the average by the convo-
lution of their true waveform with the response-time distribution; see (Zhang,
1998). A synthetic example illustrating this problem is shown in Figure 9-1
(right).

Thus, inferring whether a component in an average represents a true effect
or it is due to averaging biases can then be very difficult. Note that averaging
more data does not help increase the fidelity of the reconstructed signals because
there is a systematic error in the averaging process.

A third alternative to resolve variable-latency waves is to attempt to identify
such components in each trial and estimate their latency. Then, shifting trials
on the basis of estimated latencies and averaging may bring out the desired
component from its noise background. However, most methods of this kind re-
quire prior knowledge of what type of component to expect and at what times.
What if this knowledge is not available? Without this information automated
detection algorithms have very little hope of finding the latency of the waves
of interest. Also, latency detection algorithms assume that the component of

2Real EEG signals are extremely noisy. So, synthetic data illustrate the problem more clearly.

High-significance ERP Averages via GP 139

STIMULUS LOCKED RESPONSE LOCKED

Figure 9-1. Example of distortions produced by averaging: the five sample ERPs at the top
present two positive and one negative deflections each, which are phase-locked with a stimulus,
as well as one positive component, which is of variable latency. Averaging them (plots at
the bottom) preserves the exogenous components when trials are stimulus-locked (left). This,
however, turns the variable-latency component into an inconspicuous plateau which could easily
be misinterpreted as a continuation of the preceding positive wave. A response-locked average
(right), on the other hand, preserves the variable-latency endogenous component but smears out
the details of early potentials turning them into a single, wide positive deflection.

interest is present in every trial and we just need to find its latency in the trial.
What if an ERP component is not always elicited by the stimuli? The presence
of a component might be, for example, condition-dependent, or dependent on
whether or not a participant attended a stimulus, whether a participant was
rested or tired, whether there was habituation to the stimuli, etc. (Bonala et al.,
2008; Wagner et al., 2000). If a component was absent frequently, running a
latency-measuring algorithm on trials where the component did not occur would
inundate the averaging process with bias and noise. And, unfortunately, thresh-
olds or even more sophisticated algorithms for the detection of the presence
of the component, which in principle could be used to properly handle trials
that do not contain it, produce large numbers of mis-classification errors. So,

140 GENETIC PROGRAMMING THEORY AND PRACTICE VII

the composition of detection errors with latency-estimation errors may render
component-locked averaging very unreliable in many situations.

Note also that all methods that realign trials based on component latencies can
potentially suffer from a clear-centre/blurred-surround problem. That is, after
shifting trials based on the latency of a particular ERP component, all instances
of that component will be synchronised, thereby effectively becoming fixed-
latency elements. However, stimulus-locked components will now become
variable-latency components. Also, all (other) components that are phase-
locked with some other event (e.g., the response), but not with the component
of interest, will remain variable-latency. Not surprisingly, then, they will appear
blurred and distorted in a component-locked average.

It is clear that the standard averaging techniques reviewed above are not en-
tirely satisfactory and that a more precise and direct way of identifying variable-
latency components as well as measuring their latency and amplitude is needed.
In the following section we describe the binning technique we developed in (Poli
et al., ress), which significantly improves on previous methods.

3. Averaging Response-time Binned ERPs

In (Poli et al., ress) we proposed an extremely simple technique — bin-
ning trials based on their recorded response time and then applying averag-
ing to the bins. This has the potential of solving the problems with the three
main ways of performing averages (stimulus-locked, component-locked and
response-locked) discussed above, effectively reconciling the three methods.
In particular, response-time binning allows one to significantly improve the
resolution with which variable-latency waves can be recovered via averaging,
even if they are distant from the stimulus-presentation and response times. The
reason for this is simple to understand from a qualitative point of view.

The idea is that if one selects out of a dataset all those epochs where a par-
ticipant was presented with qualitatively identical stimuli and gave the same
response within approximately the same amount of time, it is reasonable to
assume that similar internal processes will have taken place. So, within those
trials, ERP components that would normally have a widely variable latency
might be expected to, instead, present a much narrower latency distribution,
i.e., they should occur at approximately the same time in the selected subset of
trials. Thus, if we bin epochs on the basis of stimuli, responses and response
times, we would then find that, for the epochs within a bin, the stimulus, the
response, as well as fixed- and variable-latency components are much more
synchronised than if one did not divide the dataset. Averaging such epochs
should, therefore, allow the rejection of noise while at the same time reduc-
ing the undesirable distortions and blurring (the systematic errors) associated
with averaging. Response-time binning and averaging should thus result in

High-significance ERP Averages via GP 141

the production of clearer, less biased descriptions of the activity which really
takes place in the brain in response to the stimuli without the need for prior
knowledge of the phenomena taking place and ERP components present in the
EEG recordings.

In (Poli et al., ress) we assessed the binning technique both empirically
and theoretically. For empirical validation we modified and used an exper-
iment originally designed by (Esterman et al., 2004) in which the task was
relatively difficult, since target detection is based on specific combinations of
multiple features (i.e., requiring feature binding), and where response times
varied from around 400ms to over 2 seconds. We evaluated the empirical re-
sults in a number of ways, including: (a) a comparison between stimulus-locked
and response-locked averages which showed how these are essentially identical
under response-time binning; (b) an analysis of differences between bin means,
medians and quartiles of the amplitude distributions and an analysis of sta-
tistical significance of amplitude differences using Kolmogorov-Smirnov tests
which showed that bins indeed captured statistically different ERP components;
and (c) an analysis of the signal-to-noise ratio (SNR) with and without binning
which showed that the (expected) drop in SNR due to the smaller dataset cardi-
nality associated with bins is largely compensated by a corresponding increase
due to the reduction in systematic errors.

From the theoretical point of view, we provided a comprehensive analysis of
the resolution of averages with and without binning, which showed that there
are resolution benefits in applying response-time binning even when there is
still a substantial variability in the latency of variable-latency components after
response-time binning. We summarise this analysis below since this is the
starting point for our fitness function, as we will show in Section 4.

Let us assume that there are three additive components in the ERPs
recorded in a forced-choice experiment — a stimulus-locked component, s(t),
a response-locked component, r(t), and a variable-latency component, v(t).
Let R be a stochastic variable representing the response time in a trial and let
ρ(t) be its density function. Similarly, let L be a stochastic variable represent-
ing the latency of the component v(t) and let ℓ(t) be the corresponding density
function. Let us further assume that response time and latency do not affect the
shape of these components. Under these assumptions we obtain the following
equation for the stimulus-locked average as(t):

as(t) = s(t) + v(t) ⋆ ℓ(t) + r(t) ⋆ ρ(t) (9.1)

where ⋆ is the convolution operation.
Let us consider the most general conditions possible. Let L and R be de-

scribed by an unspecified joint density function p(l, r). So, the latency and

142 GENETIC PROGRAMMING THEORY AND PRACTICE VII

response-time distributions are marginals of this joint distribution:

ℓ(l) =

∫

p(l, r) dr and ρ(r) =

∫

p(l, r) dl.

Note that by the definition of conditional density function, we have that

p(l, r) = p(r|l)ℓ(l) and p(l, r) = p(l|r)ρ(r)

where p(r|l) is the pdf of R when L = l and p(l|r) is the pdf of L when R = r.
In (Poli et al., ress) we showed that if one considers a classical “rectangu-

lar” bin collecting the subset of the trials having response times in the interval
[χ1, χ2), i.e., such that χ1 ≤ R < χ2, the joint distribution of L and R trans-
forms into

p[χ1,χ2)(l, r) =
δ(χ1 ≤ r < χ2)p(l, r)

∫ χ2

χ1
ρ(r) dr

,

where the δ(x) returns 1 if x is true and 0 otherwise. So, it has the function of
zeroing the distribution outside the strip [χ1, χ2). The denominator normalises
the result so that p[χ1,χ2)(l, r) integrates to 1.

We also showed that taking the marginal of this distribution w.r.t. l gives us
the response time distribution for response-time bin [χ1, χ2):

ρ[χ1,χ2)(r) =
δ(χ1 ≤ r < χ2) ρ(r)

∫ χ2

χ1
ρ(r) dr

.

The marginal of the distribution p[χ1,χ2)(l, r) w.r.t. r, which gives us the latency
distribution for the trials in response-time bin [χ1, χ2), is:

ℓ[χ1,χ2)(l) =
Pr{χ1 ≤ R < χ2 | l} ℓ(l)

∫ χ2

χ1
ρ(r) dr

.

These two marginals are important because we can express the stimulus-locked
bin average as follows:

a[χ1,χ2)
s (t) = s(t) + v(t) ⋆ ℓ[χ1,χ2)(t) + r(t) ⋆ ρ[χ1,χ2)(t).

The marginals determine in what ways and to what extent v(t) and r(t) appear

distorted and blurred in the average. So, in order to understand why a
[χ1,χ2)
s (t)

provides a better representation of r(t) and ℓ(t) than as(t), we need to analyse
the differences between the distribution ρ[χ1,χ2)(t) and ρ(t) and between the
distribution ℓ[χ1,χ2)(t) and ℓ(t). We will concentrate on the former pair since
the arguments for the latter are almost symmetric.

The key difference between ρ[χ1,χ2)(t) and ρ(t) is that, apart from a scaling
factor, ρ[χ1,χ2)(t) is the product of ρ(t) and a rectangular windowing func-
tion, δ(χ1 ≤ t < χ2). In the frequency domain, therefore, the spectrum of

High-significance ERP Averages via GP 143

ρ[χ1,χ2)(t), which we denote with R[χ1,χ2)(f), is the convolution between the
spectrum of ρ(t), denoted asR(f), and the spectrum of a translated rectangle,
∆(f). This is a scaled and rotated (in the complex plane) version of the sinc
function (i.e., it behaves like sin(f)/f). The function |∆(f)| has a large cen-
tral lobe whose width is inversely proportional to the bin width χ2−χ1. Thus,
when convolved with R(f), ∆(f) behaves as a low pass filter. As a result,
R[χ1,χ2)(f) = R(f) ⋆ ∆(f) is a smoothed and enlarged version of R(f). In
other words, while ρ[χ1,χ2)(t) is still a low-pass filter, it has a higher cut-off

frequency than ρ(t). So, a
[χ1,χ2)
s (t) provides a less blurred representation of

r(t) than as(t).
We will modify this analysis in the next section for the purpose of defining

a suitable fitness measure the optimisation of which would lead to maximising
the statistical significance with which ERP components can be reconstructed
via binning and averaging.

4. Binning Optimality and Fitness Function

As described in the previous section, in (Poli et al., ress) we used the function
δ(χ1 ≤ R < χ2) to bin trials. To get the best out of the binning technique, here
we will replace this function with a probabilistic membership function which
gives the probability that a trial characterised by a response time R would be
accepted in a particular bin b. Let us denote this probabilistic membership
function as

Pb(r) = Pr{accept trial in bin b | trial response time R = r}.
Naturally, when Pb(r) = δ(χ1 ≤ R < χ2), then b is a traditional (crisp,
rectangular) bin.

Let us denote with a binary stochastic variable A the event
{accept trial for averaging in bin b}. Let p(a, l, r) be the joint distribution of
the events R = r, L = l and A = a. This can be decomposed as follows

p(a, l, r) = p(a|l, r)p(l, r).

Since A does not depend on L but only on R (we base the decision to accept
trials in a bin only on their associated response time), we have that p(A =
true|l, r) = Pb(r) and p(A = false|l, r) = 1− Pb(r).

Focusing our attention on the subset of the trials falling within bin b, we
obtain the following joint distribution of L and R

pb(l, r) = p(l, r |A = true) =
p(A = true, l, r)

p(A = true)
=

p(A = true | l, r)p(l, r)

p(A = true)

Hence

pb(l, r) =
Pb(r)p(l, r)

∫ ∫

Pb(r)p(l, r) dr dl
=
Pb(r)p(l, r)
∫

Pb(r)ρ(r) dr
.

144 GENETIC PROGRAMMING THEORY AND PRACTICE VII

So,

ρb(r) =

∫

pb(l, r) dl =
Pb(r)

∫

p(l, r) dl
∫

Pb(r)ρ(r) dr
=

Pb(r)ρ(r)
∫

Pb(r)ρ(r) dr
.

Also,

ℓb(l) =

∫

pb(l, r) dr =

∫

Pb(r)p(l, r) dr
∫

Pb(r)ρ(r) dr
=

ℓ(l)
∫

Pb(r)p(r|l) dr
∫

Pb(r)ρ(r) dr
.

Again these two marginals are important because we can express the stimulus-
locked bin average as follows:

ab
s(t) = s(t) + v(t) ⋆ ℓb(t) + r(t) ⋆ ρb(t).

From the equations above, one can clearly understand how different definitions
of the probabilistic membership function Pb(r) can lead to radically different
results in terms of the resolution of true ERP components in bin averages.

Naturally, one will generally use multiple probabilistic response-time bins for
the purpose of analysing ERP trials. For each, a membership function Pb(r)
must be defined. Our objective is to use GP to discover these membership
functions in such a way as to maximise the information extracted from the raw
data. To do so, we need to define an appropriate fitness function.

While we form bins based on response times, each data element in a bin
actually represents a fragment of EEG signal recorded at some electrode site.
The question we need to ask is: what do we mean by extracting maximal infor-
mation from these data? Naturally, alternative definitions are possible. Here we
want to focus on the getting ERP averages which are maximally significantly
different.

An ERP bin average, ab
s(t), is effectively a vector, each element of which

is the signal amplitude recorded at a particular time after stimulus presentation
averaged over all the trials in a bin. Because we use probabilistic membership
functions for the bins, the composition of a bin is in fact a stochastic variable.
Let us denote the stochastic variable representing bin b withBb. The probability
distribution of Bb is determined by the membership function Pb(r) and by the
response time distribution ρ(r). An instantiation of Bb, βb, is effectively an
array with as many rows as there are trials in bin b and as many columns as
there are time steps in each epoch. An element in βb represents the voltage
amplitude recorded in a particular trial and in a particular time step in that trial
at the chosen electrode. Let βb(t) represent the set of the amplitudes recorded
at time t in the trials in bin b.

Let us consider two bins, b1 and b2. If βb1 is an instantiation of Bb1 and
βb2 is an instantiation of Bb2 , one could check whether the signal amplitude
distributions recorded in bins b1 and b2 at a particular time step t are statistically
different by applying the Kolmogorov-Smirnov test for distributions to the data-
sets βb1(t) and βb2(t). The test would return a p value, which we will call

High-significance ERP Averages via GP 145

pb1,b2(t). The smaller pb1,b2(t), the better the statistical separation between the
signal amplitude distributions in bins b1 and b2 at time step t. Naturally to get
an indication of how statistically different the ERPs in different bins are one
would then need to somehow integrate the pb1,b2(t) values obtained at different
t’s and for different pairs of bins.

Since we are interested in obtaining bins (via the optimisation of their mem-
bership functions Pb(r)) which contain maximally mutually statistically differ-
ent trials, we require that the sum of the p values returned by the Kolmogorov-
Smirnov test when comparing the signal amplitudes in each pair of bins over
the time steps in an epoch be as small as possible. So, we want to maximise
the following fitness function:

f =
∑

b1 6=b2

∑

t

(1− E[pb1,b2(t)]), (9.2)

where the expectation operator E[·] is required because pb1,b2(t) is a stochastic
variable in that we can only apply the Kolmogorov-Smirnov test to amplitude
measurements obtained from instantiations of the stochastic variables Bb1 and
Bb2 . For this reason, the use of Equation (9.2) as a fitness function would require
repeatedly assigning trials to bins based on their membership functions, assess-
ing the mutual statistical independence of the trials, and averaging the results.
However, this repeated sampling is a very expensive operation (see Section 5).
Therefore, we adopted a noisy fitness function, where the expectation operator
is omitted. In other words, we only sample the stochastic variables Bb1 and Bb2

once per fitness evaluation. Fitness, however, gets re-evaluated periodically, as
described in the next section. So, general and robust solutions to the problem
are favoured by evolution.

5. GP System and Settings

We did our experiments using a linear register-based GP system. The system
uses a steady-state update schedule.

The primitive set used in our experiments is shown in Table 9-1. The in-
structions refer to four registers: the input register ri which is loaded with
the response time, r, of a trial before a program is evaluated, the two general-
purpose registers r0 and r1 that can be used for numerical calculations, and
the register rs which can be used as a swap area. r0, r1 and rs are initialised
to 0. The output of the program is read from r0 at the end of its execution. In
the addition and multiplication instructions we used the memory-with-memory
technique proposed in (McPhee and Poli, 2008) with a memory coefficient
of 0.5. So, for example the instruction r0 <- r0 + ri is actually imple-
mented as r0 = 0.5 * r0 + 0.5 * (r0 + ri) while r1 <- r0 * r1
is implemented as r1 = 0.5 * r1 + 0.5 * (r0 * r1).

146 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 9-1. Primitive set used in our experiments.
NOP r0 <- -1 r1 <- r0 + r1
r0 <- 0 r1 <- 1 r0 <- r0 * r1
r1 <- 0 r0 <- -r0 r1 <- r0 * r1
r0 <- 0.5 r1 <- -r1 r0 <- r0 * r0
r1 <- -0.5 r0 <- r0 + ri r1 <- r1 * r1
r0 <- -0.1 r1 <- r1 + ri rs <-> r0
r1 <- 0.1 r0 <- r0 + r1 rs <-> r1

As in (Poli et al., ress), in our tests we consider three bins. So, we need
to evolve three membership functions, which we will call P1(r), P2(r) and
P3(r). To help GP in this difficult task we constrained the family of functions
from which the membership functions could be drawn. So, instead of evolving
the three functions P1(r), P2(r) and P3(r), we decomposed each function
into three components and we asked GP to evolve the components used in the
formulation of eachPi(r). So, each GP individual was actually made up of nine
programs. All nine must be run to decide with which probability an element of
an ERP dataset should belong to each response-time bin.

More specifically, our membership functions had the following form:

Pi(x) =

(

pcos

(

r − c(r)

w(r)

))|e(r)|

where c(r) = ci+pic(r), w(r) = wi+piw(r), e(r) = ei+pie(r) andpcos(x) =
cos
(

π
2 x
)

if |x| < 1, and 0 otherwise. Here p1c(r), p2c(r), p3c(r), p1w(r),
p2w(r), p3w(r), p1e(r), p2e(r), and p3e(r) are the nine programs forming a
particular individual. The terms c1, c2, c3, w1, w2, w3, e1, e2 ande3 are constants
which we defined so as to give meaningful bins even if pic(r) = piw(r) =
pie(r) = 0 for all i and r. Since we initialised the programs in the population
with a high proportion of NOP operations, this ensured that even individuals in
the first generation could obtain reasonable fitness levels. More specifically, c1,
c2 and c3 were set to be the medians of the three bins chosen using the heuristic
method described in (Poli et al., ress) (where each bin gathered 30% of the
response-time distribution), while w1, w2 and w3 were set to twice the standard
deviation of the data in such bins. Standard deviations were estimated using
the robust estimator provided by 1.4826 times the median absolute deviation
from the median (or MAD for short) (Wilcox, 2005). Finally, the constants e1,
e2 and e3 were all set to 0.5. This value is half-way between 0, which would
give an perfectly rectangular bin, and 1, which gives bins a perfectly sinusoidal
shape.

The system initialised the population as follows. All nine programs in an
individual had identical length (50 instructions). The length was fixed, but

High-significance ERP Averages via GP 147

through the use of NOP instructions, the active code was effectively of variable
size. The nine programs were concatenated, so effectively an individual was
an array of 450 instructions. Programs were initially all made up only of NOP
instructions, but they were immediately mutated with point mutation with a
mutation rate of 8% so that on average approximately 4 instructions in each of
the 9 programs were non-NOP. When an instruction was mutated, the instruction
was replaced with a random instruction from the whole primitive set. These
choices of parameters were based on some preliminary tests.

The system used tournament selection with tournament size 10. At each
iteration, the system randomly decided whether to perform reevaluation of the
fitness of an individual (keep in mind that our fitness function is noisy) or to
create a new individual. It reevaluated fitness with probability 0.1 and performed
crossover with a probability of 0.9. When fitness reevaluation was chosen, the
new fitness value was blended with the old one using the formula: f = 0.8fold+
0.2fnew. This effectively low-pass filters the fitness values using a simple IIR
filter, thereby eventually leading to fitness values to stabilise around the expected
value for each program. When crossover was performed, two parent individuals
were selected, and 9-point crossover was performed. The 9 points were not
constrained to fall within the 9 programs that form an individual. Crossover
returned one offspring after each application. The offspring was mutated using
point mutation with a mutation rate of 4% (so, on average each program was
hit by two mutations) and then was evaluated. The offspring was then inserted
in the population, replacing an individual which was selected using a negative
tournament (with tournament size 10). Given the heavy computational nature
of the task we used populations of size 1,000 and 5,000 and we performed 50
generations in each run. To see what kind of results could be obtained with
smaller runs, we also performed runs with a population size of 50 run for 20
generations (for a total of 1,000 fitness evaluations).

The data used for our experiments were obtained as follows. We modified an
experiment originally designed by (Esterman et al., 2004). In the experiment
a composite stimulus is presented at a randomly chosen location (out of four
possible locations) on a display for a very short time (between 50 and 150ms
depending on conditions). The task of the subject is to identify whether the
stimulus represented a target or a non-target stimulus. To correctly perform the
task participants needed to identify and conjoin multiple features of the stimu-
lus and then they needed to click a button to signal their response. While the
participant performed the task they were connected to electroencephalographic
equipment so that the waves generated during the task in different areas of
the brain could be recorded. We used a BioSemi ActiveTwo system with 64
pre-amplified electrodes plus additional electrodes on the earlobes, the external
canthi and infra-orbital positions. Signals were acquired at 2048 samples per
second, were then bandpass-filtered between 0.15 and 40 Hz and, finally, were

148 GENETIC PROGRAMMING THEORY AND PRACTICE VII

down-sampled to 512 samples per second. We tested six students from the
University of Essex, all with normal or corrected-to-normal vision. Each ex-
periment lasted about one hour, and took about one further hour for preparation
and for practice.

Trials were classified according to whether the target was present or absent
and according to whether the response was ‘Correct’ or ‘Incorrect’. This re-
sulted in four conditions: true positives (target present, correct response), true
negatives (target absent, correct response), false positives (target absent, incor-
rect response) and false negatives (target present, incorrect response). For the
tests reported in this paper we focused on the largest class, the True Negatives,
which included a total of 2967 trials. We used epochs of approximately 1200ms
(614 samples). That is, each trial contained a vector of 614 signal amplitude
samples for each electrode. Each trial had an associated response/reaction time
which represents the time lapsed between the presentation of the stimulus and
the response provided by the user in the form of a mouse click. Following (Poli
et al., ress), the 10% of the trials with the longest response times were dis-
carded. This left 2670 trials. In order to evaluate the fitness of an individual in
the population, we needed to run the nine programs included in the individual
on each of the trials in the dataset, i.e., the GP interpreter was invoked over
24,000 times before the fitness function could start executing.

With the fitness function defined in Section 4, the objective of evolution is to
identify three membership functions which allow one to divide up this dataset
into bins based on response times in such a way as to maximise the mutual
statistical significance of differences in the bins’ amplitude averages. Note that
evolution can choose to evolve functions that discard certain ranges of response
times if this is advantageous.

With 3 bins (i.e., 3 bin-vs-bin comparisons), 64 electrodes and 614 sam-
ples per epoch evaluating our fitness function would require running 117,888
Kolmogorov-Smirnov tests per fitness evaluation. Since such tests are rather
computationally expensive, we decided to scale down the problem by con-
centrating on one particular electrode (‘Pz’) and by further sub-sampling the
amplitude data by a factor of 16. So, after performing the binning of the dataset,
we needed to run the Kolmogorov-Smirnov test 3× 38 = 114 times per fitness
evaluation.

6. Results

We show the response-time distribution recorded in our experiments for the
True Negatives in Figure 9-2 (note that amplitudes have been normalised so that
the curves are density functions; abscissas are in seconds). The boundaries of
the 30%-quantile fixed-size bins produced with the method described in (Poli
et al., ress) are shown as vertical lines in Figure 9-2. The medians and standard

High-significance ERP Averages via GP 149

Figure 9-2. Response time distributions for true negative trials recorded in our experiments.
Response times of 2000ms or longer have been grouped in the rightmost bin. The vertical lines
within each plot represent the boundaries of the bins produced by the standard binning method
described in (Poli et al., ress). In each plot medians and standard deviations are also shown both
for the bins (top) and for the overall distribution (bottom).

deviations, estimated using MAD, for the whole distribution and for the bins
are also shown in Figure 9-2. As indicated above, the objective of GP is to
probabilistically divide up this distribution into bins using appropriate mem-
bership functions in such a way to maximise the statistical significance of bin
averages.

The fitness value for the standard membership functions (rectangular bins)
is approximately 0.8297, which corresponds to a mean Kolmogorov-Smirnov
p-value of 0.1703. This implies that only for a fraction of the time steps in
an epoch differences between bin averages are statistically significant at the
standard confidence levels of 0.10 and 0.05. We want GP to improve on this.

We performed 50 runs with populations of size 50 and 1,000, and 10 runs
with populations of size 5,000 on 182-core Linux cluster with Xeon CPUs. We
report the mean, standard deviation, min and max of best fitnesses as well as
the quartiles of the fitness distribution recorded in out experiments in Table 9-
2. As one can see in all conditions, the method is very reliable, all standard
deviations being very small. Even with the smallest population GP improved
over the standard binning technique in all runs. This is particularly remarkable
given that such runs required only approximately 2 minutes of CPU time each.
Naturally, only runs with 1,000 and 5,000 individuals consistently achieved best

150 GENETIC PROGRAMMING THEORY AND PRACTICE VII

fitnesses close to or exceeding 0.9, which corresponds to average p values of 0.1
or less. This is a very significant improvement over the p value associated with
rectangular bins. Now, for a large proportion of the time in an epoch differences
between bin averages are statistically significant. CPU time was approximately
4 hours for runs of 1,000 individuals and approximately one day for runs of
5,000 individuals. Note that these long training times are not a problem in
the domain of ERP analysis, since setting up an experiment, trialling it, then
collecting the data with independent subjects, preparing the data for averaging
and finally interpreting them after averaging require many weeks of work.

In order to achieve this high level of performance and reliability in the ERP
binning problem, GP has discovered how to partition the data based on response
times in such a way as to optimally balance two needs: (a) the need to include
as many trials as possible in each bin so as to reduce noise in both variable-
latency and fixed-latency ERP components, and (b) the need to make the bins
as narrow as possible so as to reduce the systematic errors associated with
averaging variable-latency components.

Table 9-2. Mean, standard deviation, min and max of best and quartiles of the fitness distribution
recorded in out experiments.

Population size 50, 20 generations
Statistic Best Qrtl 1 Qrtl 2 Qrlt 3 Qrtl 4

Mean 0.87750 0.86354 0.86020 0.85613 0.17514
StdDev 0.008868 0.006952 0.007123 0.008249 0.272409

Max 0.900335 0.877868 0.876486 0.872651 0.753881
Min 0.855929 0.845703 0.842577 0.837546 0.000000

Population size 1,000, 50 generations
Statistic Best Qrtl 1 Qrtl 2 Qrlt 3 Qrtl 4

Mean 0.89862 0.88161 0.88056 0.87910 0.00000
StdDev 0.00396 0.00293 0.00288 0.00307 0.00000

Max 0.91348 0.89096 0.88979 0.88922 0.00000
Min 0.89197 0.87720 0.87526 0.87346 0.00000

Population size 5,000, 50 generations
Statistic Best Qrtl 1 Qrtl 2 Qrlt 3 Qrtl 4

Mean 0.90431 0.88301 0.88214 0.88091 0.00000
StdDev 0.0060682 0.0039270 0.0038899 0.0040199 0.00000

Max 0.91763 0.89148 0.89053 0.88947 0.00000
Min 0.89914 0.88039 0.87956 0.87794 0.00000

High-significance ERP Averages via GP 151

As an example, we plot the best evolved bin membership functions in the 50
runs with a population of 1,000 individuals in Figure 9-3. These correspond to
the following equations:

P1(r) =

(

pcos

(

r − 0.394

0.127

))0.375

(9.3)

P2(r) =

(

pcos

(

r − 0.633

0.129 − 0.5r

))0.4+0.5r

(9.4)

P3(r) =

(

pcos

(

r − 1.381

0.327

))0.688

(9.5)

Figure 9-3. Best membership functions evolved in 50 runs with a population of 1,000 individ-
uals.

These were obtained by analysing and then symbolically simplifying the
nine programs making up the best individual evolved in such runs. The listing
of the nine programs is shown in Table 9-3.

152 GENETIC PROGRAMMING THEORY AND PRACTICE VII
Ta

bl
e

9-
3.

T
he

ni
ne

pr
og

ra
m

s
fo

rm
in

g
th

e
be

st
ev

ol
ve

d
so

lu
ti

on
to

th
e

E
R

P
bi

nn
in

g
pr

ob
le

m
(N

O
P

in
st

ru
ct

io
ns

ha
ve

be
en

ed
it

ed
ou

t)
.

B
in

1
B

in
2

B
in

3
C

en
tr

e
W

id
th

E
xp

on
en

t
C

en
tr

e
W

id
th

E
xp

on
en

t
C

en
tr

e
W

id
th

E
xp

on
en

t

r
1
<
-
0

r
1
<
-
-
.
5

r
1
<
-
.
1

r
0
<
-
.
5

r
0
<
-
r
0
+
r
i

r
0
<
-
-
1

r
1
<
-
r
0
+
r
1

r
0
<
-
r
0
+
r
1

r
0
<
-
r
0
*
r
1

r
1
<
-
r
1
*
r
1

r
0
<
-
r
0
+
r
i

r
0
<
-
-
.
1

r
1
<
-
0

r
1
<
-
r
1
*
r
1

r
0
<
-
r
0
*
r
0

r
1
<
-
-
r
1

r
0
<
-
r
0
+
r
i

r
s
<
-
>
r
1

r
0
<
-
r
0
*
r
0

r
0
<
-
r
0
*
r
1

r
1
<
-
-
.
5

r
1
<
-
.
1

r
1
<
-
-
r
1

r
0
<
-
r
0
*
r
0

r
1
<
-
0

r
0
<
-
r
0
+
r
i

r
0
<
-
0

r
1
<
-
.
1

r
0
<
-
-
r
0

r
0
<
-
r
0
*
r
1

r
0
<
-
-
r
0

r
0
<
-
-
.
1

r
1
<
-
-
r
1

r
s
<
-
>
r
1

r
0
<
-
r
0
+
r
i

r
s
<
-
>
r
1

r
0
<
-
r
0
+
r
i

r
1
<
-
.
1

r
0
<
-
r
0
*
r
0

r
1
<
-
r
0
+
r
1

r
1
<
-
-
.
5

r
0
<
-
.
5

r
0
<
-
0

r
1
<
-
r
1
+
r
i

r
1
<
-
-
r
1

r
1
<
-
r
1
*
r
1

r
1
<
-
0

r
1
<
-
-
r
1

r
0
<
-
r
0
*
r
1

r
0
<
-
-
.
1

r
s
<
-
>
r
1

r
0
<
-
0

r
1
<
-
.
1

r
1
<
-
1

r
1
<
-
r
1
+
r
i

r
1
<
-
.
1

r
1
<
-
1

r
0
<
-
r
0
*
r
0

r
1
<
-
r
1
+
r
i

r
1
<
-
-
r
1

r
0
<
-
r
0
*
r
0

r
0
<
-
r
0
*
r
0

r
0
<
-
0

r
1
<
-
1

r
0
<
-
-
r
0

r
1
<
-
r
1
+
r
i

r
0
<
-
r
0
+
r
1

r
0
<
-
.
5

r
s
<
-
>
r
0

r
1
<
-
0

r
s
<
-
>
r
0

r
1
<
-
r
1
+
r
i

r
0
<
-
-
r
0

r
s
<
-
>
r
1

r
1
<
-
r
1
+
r
i

r
0
<
-
r
0
+
r
i

r
0
<
-
-
r
0

r
0
<
-
r
0
+
r
1

r
0
<
-
r
0
*
r
1

r
0
<
-
r
0
+
r
1

r
1
<
-
r
1
*
r
1

r
1
<
-
r
1
*
r
1

r
1
<
-
r
0
+
r
1

r
s
<
-
>
r
0

r
0
<
-
r
0
*
r
0

r
0
<
-
.
5

r
0
<
-
-
r
0

r
1
<
-
r
1
+
r
i

r
0
<
-
r
0
*
r
0

r
1
<
-
-
r
1

r
1
<
-
1

r
1
<
-
r
1
+
r
i

r
s
<
-
>
r
0

r
0
<
-
r
0
*
r
1

r
s
<
-
>
r
0

r
1
<
-
.
1

r
1
<
-
1

r
0
<
-
r
0
+
r
1

r
1
<
-
0

r
0
<
-
r
0
*
r
0

r
1
<
-
-
r
1

r
s
<
-
>
r
1

r
0
<
-
-
r
0

r
1
<
-
1

r
1
<
-
0

r
0
<
-
r
0
+
r
1

r
1
<
-
-
r
1

r
s
<
-
>
r
1

r
0
<
-
-
r
0

r
1
<
-
1

r
0
<
-
r
0
+
r
1

r
1
<
-
1

r
s
<
-
>
r
1

r
1
<
-
r
1
+
r
i

r
0
<
-
r
0
*
r
1

r
1
<
-
.
1

r
0
<
-
0

r
1
<
-
-
.
5

r
0
<
-
-
r
0

r
1
<
-
0

r
0
<
-
-
r
0

r
0
<
-
r
0
+
r
1

r
0
<
-
-
r
0

r
1
<
-
r
1
+
r
i

r
1
<
-
-
.
5

r
0
<
-
r
0
+
r
1

r
1
<
-
r
0
+
r
1

r
0
<
-
r
0
*
r
1

r
1
<
-
-
.
5

r
0
<
-
.
5

r
0
<
-
-
.
1

r
s
<
-
>
r
0

r
1
<
-
-
.
5

r
0
<
-
-
.
1

r
0
<
-
r
0
*
r
1

r
1
<
-
r
0
*
r
1

r
0
<
-
r
0
+
r
i

r
1
<
-
0

r
1
<
-
r
0
*
r
1

r
1
<
-
r
1
+
r
i

r
1
<
-
r
1
+
r
i

r
0
<
-
-
r
0

r
1
<
-
.
1

r
1
<
-
r
0
*
r
1

r
1
<
-
r
1
*
r
1

r
1
<
-
0

r
1
<
-
1

r
1
<
-
-
.
5

r
1
<
-
r
1
+
r
i

r
0
<
-
r
0
+
r
i

r
1
<
-
-
r
1

r
s
<
-
>
r
1

r
0
<
-
r
0
*
r
0

r
1
<
-
0

r
0
<
-
-
.
1

r
1
<
-
.
1

r
0
<
-
.
5

r
s
<
-
>
r
1

r
0
<
-
r
0
*
r
0

r
1
<
-
1

r
0
<
-
-
r
0

r
s
<
-
>
r
0

r
0
<
-
r
0
*
r
0

r
0
<
-
-
1

r
1
<
-
r
0
+
r
1

r
0
<
-
-
.
1

r
1
<
-
-
r
1

r
1
<
-
0

r
0
<
-
-
.
1

r
0
<
-
-
.
1

r
0
<
-
.
5

r
1
<
-
0

r
0
<
-
r
0
+
r
i

r
0
<
-
r
0
+
r
1

r
0
<
-
-
1

r
0
<
-
r
0
*
r
0

r
1
<
-
r
0
*
r
1

r
0
<
-
0

r
0
<
-
.
5

r
1
<
-
r
1
+
r
i

r
0
<
-
-
.
1

r
0
<
-
r
0
+
r
i

r
1
<
-
0

r
1
<
-
-
.
5

r
1
<
-
-
r
1

r
0
<
-
-
1

r
0
<
-
r
0
+
r
1

r
1
<
-
.
1

r
0
<
-
0

r
0
<
-
r
0
+
r
1

r
0
<
-
0

r
1
<
-
-
r
1

r
0
<
-
-
r
0

r
1
<
-
r
0
*
r
1

r
1
<
-
r
1
+
r
i

r
s
<
-
>
r
0

r
0
<
-
r
0
+
r
i

r
0
<
-
0

r
0
<
-
-
.
1

r
0
<
-
-
r
0

r
1
<
-
-
.
5

r
0
<
-
.
5

r
1
<
-
r
0
+
r
1

r
0
<
-
r
0
+
r
i

r
0
<
-
r
0
+
r
1

r
0
<
-
-
1

r
1
<
-
1

r
1
<
-
.
1

r
s
<
-
>
r
0

r
0
<
-
-
r
0

r
1
<
-
.
1

r
0
<
-
r
0
+
r
i

r
0
<
-
r
0
+
r
1

r
0
<
-
.
5

r
1
<
-
r
1
*
r
1

r
1
<
-
r
0
+
r
1

r
1
<
-
r
1
*
r
1

r
1
<
-
1

r
1
<
-
r
0
+

r
1

r
1
<
-
-
.
5

r
1
<
-
r
1
+

r
i

r
0
<
-
r
0
*

r
1

r
1
<
-
r
0
+

r
1

r
1
<
-
r
0
+

r
1

r
0
<
-
r
0
*

r
0

r
1
<
-
1

r
0
<
-
0

r
0
<
-
-
1

r
0
<
-
r
0
*

r
0

r
0
<
-
.
5

r
0
<
-
r
0
+

r
i

r
0
<
-
r
0
*

r
0

r
1
<
-
r
1
+

r
i

r
1
<
-
-
r
1

r
0
<
-
-
.
1

r
0
<
-
-
.
1

r
1
<
-
r
1
*

r
1

r
0
<
-
r
0
+

r
i

r
0
<
-
0

r
1
<
-
1

r
1
<
-
1

r
0
<
-
r
0
+

r
1

r
0
<
-
0

r
0
<
-
-
r
0

r
1
<
-
.
1

r
1
<
-
-
r
1

r
0
<
-
-
r
0

r
1
<
-
r
1
*
r
1

r
1
<
-
0

r
0
<
-
.
5

r
0
<
-
r
0
*
r
1

r
1
<
-
r
0
+
r
1

r
1
<
-
1

r
1
<
-
r
1
*
r
1

r
0
<
-
r
0
*
r
1

r
1
<
-
r
1
+
r
i

r
0
<
-
-
r
0

r
1
<
-
r
0
+
r
1

r
s
<
-
>
r
1

r
0
<
-
-
1

r
1
<
-
-
.
5

r
0
<
-
r
0
+
r
1

r
0
<
-
.
5

r
0
<
-
r
0
*
r
0

r
0
<
-
-
1

r
0
<
-
.
5

r
1
<
-
r
1
*
r
1

r
1
<
-
-
r
1

r
1
<
-
r
0
+
r
1

r
0
<
-
r
0
*
r
0

r
0
<
-
-
r
0

r
1
<
-
r
0
+
r
1

r
s
<
-
>
r
1

r
s
<
-
>
r
0

r
s
<
-
>
r
1

High-significance ERP Averages via GP 153

The ERP averages produced by this solution are shown in Figure 9-4. For
reference we show the averages obtained with traditional rectangular bins in
Figure 9-5. As one can see the ERP averages for the middle bins are almost
identical to the full average in both cases. This is because both the reference
bin and the GP-evolved bin capture the median response time and surrounding
samples, which are representative of the central tendency of the whole distri-
bution. However, when comparing the ERP averages for bins 1 and 3 with
the corresponding reference averages, we see that the membership functions
evolved by GP are more selective in their choice of trials. This produces bigger
(and hence more statistically significant) variations between groups. Particu-
larly interesting is the case of bin 3, which, with the standard binning method,
is adjacent to bin 2 and is very broad. This led to averaging ERP components
having an excessively wide distribution of latencies, leading to an ERP average
where late endogenous components, which are typically associated with the
preparation of the response, are hardly discernible. Instead, GP has produced a
much narrower bin 3 and a large gap between bins 2 and 3. As one can see from
Figure 9-4, this yields a much clearer representation of such late potentials.

7. Conclusions

In this paper we used a multi-program form of register-based GP to dis-
cover probabilistic membership functions for the purpose of binning and then
averaging ERP trials based on response times. The objective was to evolve
membership functions which could significantly improve the mutual statistical
significance of bin averages thereby capturing more accurately true brain waves
than when using simple rectangular bins.

Our results are very encouraging. GP can consistently evolve membership
functions that almost double the statistical significance of the ERP bin averages
with respect to the standard binning method.

In future work we will test the generality of evolved solution, by applying
the bins found by GP to newly acquired (unseen) data. We also intend to make
use of our new bin averaging technique in BCIs. Indeed, the work presented
in this paper originated from the need to understand in exactly what ways
stimulus features and task complexity, as well as cognitive errors, modulate
ERP components in BCI (Cinel et al., 2004; Citi et al., 2004; Citi et al., 2008).
Our long term objective is to formally link quantitative psychological models of
feature binding and perceptual errors (Humphreys et al., 2000; Cinel et al., 2002;
Cinel and Humphreys, 2006) with the presence of specific ERP components and
the modulation of their latency and amplitude. This knowledge could then be
used to design a new generation of BCIs where the behaviour and features of
human cognitive systems are best exploited.

154 GENETIC PROGRAMMING THEORY AND PRACTICE VII

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-8

-6

-4

-2

0

2

4

6

8

10
all
gp_bin1

gp_bin2

gp_bin3

Figure 9-4. Averages obtained with the GP-evolved bin membership functions in Equations 9.3–
9.5 and shown in Figure 9-3.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-8

-6

-4

-2

0

2

4

6

8

10
all
ref_bin1

ref_bin2

ref_bin3

Figure 9-5. Averages obtained with traditional rectangular bins.

High-significance ERP Averages via GP 155

Acknowledgements

We would like to thank the Engineering and Physical Sciences Research
Council (grant EP/F033818/1) and by the Experimental Psychological Society
(UK) (grant “Binding Across the Senses”) for financial support and Francisco
Sepulveda for helpful comments and suggestions.

References

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B.,
Kübler, A., Perelmouter, J., Taub, E., and Flor, H. (1999). A spelling device
for the paralysed. Nature, 398(6725):297–298.

Bonala, B., Boutros, N.N., and Jansen, B.H. (2008). Target probability affects
the likelihood that a P300 will be generated in response to a target stimulus,
but not its amplitude. Psychophysiology, 45(1):93–99.

Bostanov, V. (2004). BCI competition 2003–data sets Ib and IIb: feature extrac-
tion from event-related brain potentials with the continuous wavelet trans-
form and the t-value scalogram. IEEE transactions on bio-medical engineer-
ing, 51(6):1057–1061.

Cinel, C. and Humphreys, G.W. (2006). On the relations between implicit and
explicit spatial binding: evidence from Balint’s syndrome. Cognitive, affec-
tive & behavioral neuroscience, 6(2):127–140.

Cinel, C., Humphreys, G.W., and Poli, R. (2002). Cross-modal illusory conjunc-
tions between vision and touch. Journal of experimental psychology. Human
perception and performance, 28(5):1243–1266.

Cinel, C., Poli, R., and Citi, L. (2004). Possible sources of perceptual errors in
P300-based speller paradigm. Biomedizinische Technik, 49:39–40. Proceed-
ings of 2nd International BCI workshop and Training Course.

Citi, L., Poli, R., Cinel, C., and Sepulveda, F. (2008). P300-based BCI mouse
with genetically-optimized analogue control. IEEE transactions on neural
systems and rehabilitation engineering, 16(1):51–61.

Citi, L., Poli, R., and Sepulveda, F. (2004). An evolutionary approach to fea-
ture selection and classification in P300-based BCI. Biomedizinische Tech-
nik, 49:41–42. Proceedings of 2nd International BCI workshop and Training
Course.

Donchin, E. and Coles, M.G.H. (1988). Is the P300 a manifestation of context
updating? Behavioral and Brain Sciences, 11:355–372.

Donchin, E. and Lindsley, D.B., editors (1968). Average Evoked Potentials:
Methods, Results, and Evaluations, number NASA SP-191, San Francisco,
California. NASA, NASA.

Esterman, M., Prinzmetal, W., and Robertson, L. (2004). Categorization influ-
ences illusory conjunctions. Psychonomic bulletin & review, 11(4):681–686.

156 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Farwell, L.A. and Donchin, E. (1988). Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials. Electroencephalog-
raphy and clinical neurophysiology, 70(6):510–523.

Furdea, A., Halder, S., Krusienski, D.J., Bross, D., Nijboer, F., Birbaumer, N.,
and Kübler, A. (2009). An auditory oddball (P300) spelling system for brain-
computer interfaces. Psychophysiology.

Handy, T.C., editor (2004). Event-related potentials. A Method Handbook. MIT
Press.

Humphreys, G. W., Cinel, C., Wolfe, J., Olson, A., and Klempen, N. (2000).
Fractionating the binding process: neuropsychological evidence distinguish-
ing binding of form from binding of surface features. Vision research, 40(10-
12):1569–1596.

Keus, I.M., Jenks, K.M., and Schwarz, W. (2005). Psychophysiological evi-
dence that the SNARC effect has its functional locus in a response selection
stage. Brain research. Cognitive brain research, 24(1):48–56.

Lindsley, D.B. (1968). Average evoked potentials – achievements, failures and
prospects. In Donchin, Emanuel and Lindsley, Donald B., editors, Average
Evoked Potentials: Methods, Results, and Evaluations, chapter 1. NASA.

Luck, S.J. (2005). An introduction to the event-related potential technique. MIT
Press, Cambridge, Massachusetts.

Luck, S.J. and Hillyard, S.A. (1990). Electrophysiological evidence for paral-
lel and serial processing during visual search. Perception & psychophysics,
48(6):603–617.

McPhee, N.F. and Poli, R. (2008). Memory with memory: Soft assignment in
genetic programming. In Keijzer, Maarten, Antoniol, Giuliano, Congdon,
Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Hansen, Nikolaus, Holmes,
John H., Hornby, Gregory S., Howard, Daniel, Kennedy, James, Kumar,
Sanjeev, Lobo, Fernando G., Miller, Julian Francis, Moore, Jason, Neumann,
Frank, Pelikan, Martin, Pollack, Jordan, Sastry, Kumara, Stanley, Kenneth,
Stoica, Adrian, Talbi, El-Ghazali, and Wegener, Ingo, editors, GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary
computation, pages 1235–1242, Atlanta, GA, USA. ACM.

Pfurtscheller, G., Flotzinger, D., and Kalcher, J. (1993). Brain-computer in-
terface: a new communication device for handicapped persons. Journal of
Microcomputer Applications, 16(3):293–299.

Poli, R., Cinel, C., Citi, L., and Sepulveda, F. (In Press). Reaction-time bin-
ning: a simple method for increasing the resolving power of erp averages.
Psychophysiology.

Poli, R., Langdon, W.B., and McPhee, N.F. (2008). A field guide to ge-
netic programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk. (With contributions by J. R.
Koza).

High-significance ERP Averages via GP 157

Polich, J. and Comerchero, M.D. (2003). P3a from visual stimuli: typicality,
task, and topography. Brain topography, 15(3):141–152.

Rakotomamonjy, A. and Guigue, V. (2008). BCI competition III: dataset II-
ensemble of SVMs for BCI P300 speller. IEEE transactions on bio-medical
engineering, 55(3):1147–1154.

Spencer, K.M. (2004). Averaging, detection and classification of single-trial
erps. In Handy, Todd C., editor, Event-related potentials. A Method Hand-
book, chapter 10. MIT Press.

Töllner, T., Gramann, K., Müller, H.J., Kiss, M., and Eimer, M. (2008). Electro-
physiological markers of visual dimension changes and response changes.
Journal of experimental psychology. Human perception and performance,
34(3):531–542.

Wagner, P., Röschke, J., Grözinger, M., and Mann, K. (2000). A replication
study on P300 single trial analysis in schizophrenia: confirmation of a re-
duced number of ’true positive’ P300 waves. Journal of psychiatric research,
34(3):255–259.

Wilcox, R.R. (2005). Introduction to Robust Estimation and Hypothesis Testing.
Academic Press, second edition.

Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H.,
Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., and Vaughan, T.M.
(2000). Brain-computer interface technology: a review of the first interna-
tional meeting. IEEE Transactions on Rehabilitation Engineering, 8(2):164–
173.

Wolpaw, J.R., McFarland, D.J., Neat, G.W., and Forneris, C.A. (1991). An EEG-
based brain-computer interface for cursor control. Electroencephalography
and Clinical Neurophysiology, 78(3):252–259.

Zhang, J. (1998). Decomposing stimulus and response component waveforms
in ERP. Journal of neuroscience methods, 80(1):49–63.

Chapter 10

USING MULTI-OBJECTIVE GENETIC
PROGRAMMING TO SYNTHESIZE
STOCHASTIC PROCESSES

Brian Ross1 and Janine Imada1

1Brock University, Department of Computer Science, St. Catharines, Ontario, Canada L2S 3A1.

Abstract Genetic programming is used to automatically construct stochastic processes
written in the stochastic π-calculus. Grammar-guided genetic programming con-
strains search to useful process algebra structures. The time-series behaviour of
a target process is denoted with a suitable selection of statistical feature tests.
Feature tests can permit complex process behaviours to be effectively evaluated.
However, they must be selected with care, in order to accurately characterize the
desired process behaviour. Multi-objective evaluation is shown to be appropri-
ate for this application, since it permits heterogeneous statistical feature tests to
reside as independent objectives. Multiple undominated solutions can be saved
and evaluated after a run, for determination of those that are most appropriate.
Since there can be a vast number of candidate solutions, however, strategies for
filtering and analyzing this set are required.

Keywords: genetic programming, stochastic processes, process algebra, time-series feature
tests, multi-objective gp

1. Introduction

Bionetwork modeling, for example, of gene expression networks and
metabolic reactions, is an active research area (Bower and Bolouri, 2001). Such
computer based models have been used for modeling gene expression networks
and metabolic reactions. There is an ongoing effort to automate the synthesis
of such process models (Markowetz and Spang, 2007). For example, given
time-series data obtained from gene microarrays in the laboratory, a goal is the
automatic generation of functional models that explain the genetic processes
behind that data.

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 159
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_10,

160 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Process models are characterized by being either deterministic or stochastic
in nature. Although deterministic models can exhibit noisy behaviours, they
benefit from the fact that they will behave predictably when started in a given
environment. On the other hand, stochastic process behaviours are determined
dynamically by stochastic factors, and they can behave unpredictably during
different simulations. These differences between deterministic and stochastic
processes impact machine learning. Deterministic process learning can often
use sums of errors between generated and target time series. Stochastic pro-
cesses, however, must often consider different strategies for characterizing and
evaluation behaviour.

Evolutionary computation has been applied to the deterministic process syn-
thesis problem. (Koza et al., 2003) use genetic programming to synthesize
metabolic networks. (Kitagawa and Iba, 2003) evolve Petri net models of
metabolic networks using genetic algorithms. Genetic algorithms have been
used to evolve nonlinear differential equation models of time series data (Cho
et al., 2006; Streichert et al., 2004). Research involving the evolution of models
for noisy time series is also relevant to the process modeling problem (Bor-
relli et al., 2006; Imada and Ross, 2008; Rodriguez-Vazquez and Fleming,
2005; Zhang et al., 2004).

In terms of stochastic process synthesis, (Leier et al., 2006) use GP to evolve
algebraic models of oscillating behaviour. (Ross and Imada, 2009) use GP to
evolve stochastic processes denoted by process algebra. (Imada, 2009) evolves
stochastic gene regulatory networks, using GP with a gene gate language that is
implemented in a stochastic process algebra. GAs are used to evolve stochastic
models for biological networks (Drennan and Beer, 2006; Chu, 2007).

This paper extends work in (Ross and Imada, 2009) by considering the use of
multi-objective optimization in the evolution of stochastic process models. The
formalism considered is a subset of the stochastic π-calculus (Priami, 1995;
Phillips and Cardelli, 2004). Feature-based evaluation of process behaviour is
employed. The goal is to evolve a process whose feature values are similar to
those of the target process. We posit that multi-objective optimization will be
an effective means for evaluating processes with different feature scores, since
heterogeneous features do not need to be artificially combined into a single
objective. Since stochastic processes can exhibit variable behaviours, multi-
objective ranking may be a means for accounting for variations of performance.

A secondary goal is to show the benefit of grammatical evolution in this
application. Syntactic constraints are shown to promote effective evolution.

A stochastic process algebra is reviewed in Section 2. Statistical feature
evaluation and time series analysis is discussed in Section 3. Grammar-guided
evolution is overviewed in Section 4. Experimental methodologies are ex-
plained in Section 5, and the processes being investigated are presented in

Multi-objective Genetic Programming and Stochastic Processes 161

Section 6. Results are shown in Section 7, and some concluding remarks are
given in Section 8.

2. A Stochastic Process Algebra

Table 10-1. Process Algebra Syntax

P ::= 0 ‖ P |P ‖ Repl(π : P) ‖ Σ
Σ ::= π.P ‖ delay(t).P ‖ Σ + Σ
π ::= ?c ‖ !c

Process algebra are mathematical systems for modeling and reasoning about
concurrent systems (Milner, 1999). Stochastic process algebra, such as the
stochastic π-calculus, incorporate a probabilistic component in their semantics,
which permits the modeling of complex chaotic behaviours that are probabilistic
in nature. The stochastic π-calculus is effective for modeling various natural
phenomena, for example, chemical reactions and gene regulatory processes
(Blossey et al., 2006; Priami et al., 2001; Phillips, 2008).

Many bionetwork models are reaction-based, in which elements in the model
define all the possible reactions. Such models explicitly encapsulate the com-
plexity of the process reactions, as no reaction is possible that is not accounted
for in the model (Koza et al., 2003; Kitagawa and Iba, 2003).

Conversely, stochastic π-calculus systems are component-based. The ac-
tual process definitions are simple to construct. However, they do not directly
encode the dynamic interactions and reactions that ensue when the processes
are combined together. This results in a rich and robust execution semantics,
stemming from fairly rudimentary process definitions. On the other hand, re-
actions can be difficult to predict, depending on the the contexts in which such
processes are placed.

The full stochastic π-calculus is a process algebra that models concurrency,
stochastic behaviour, and mobility (dynamic network changes) (Priami, 1995).
We consider here a subset of the stochastic π-calculus (Table 10-1), which
is similar in syntax to the CCS algebra (Milner, 1989). The main feature of
interest is its stochastic semantics, which permits many complex behaviours to
be modelled in a quantitative manner.

The operators used in Table 10-1 are as follows. A null process is 0. The
concurrent operator (“‖”) permits expressions to interact concurrently. The
replication operator (Repl) recursively defines an indefinite number of copies
of an expression. The choice operator (Σ or +) permits the stochastic selection
and execution of one or more behaviours. A term is an input (?x) or output
(!x) action (often called channels). Each channel c has a rate associated with

162 GENETIC PROGRAMMING THEORY AND PRACTICE VII

it. A delay term of time t, if selected, advances the clock by a stochastically-
determined duration. A notation K@P means P|P|...|P repeated K times.

The process algebra semantics are based on the Gillespie algorithm (Gille-
spie, 1977), which is used in chemical simulations. Consider the following
transition of an expression:

(?x.P1 + Σ1)|(!x.P2 + Σ2)|P3
rate(x)→ P1|P2|P3

Here, ?x and !x are active. If these terms are selected by the Gillespie process,
a handshake arises. The expression transforms by discarding these commu-
nications and alternate choice terms Σi. The Gillespie algorithm selects the
execution of x stochastically, by considering its probability in relation to the
probabilities of all other active communications. This is known in evolution-
ary computation as roulette wheel selection (Goldberg, 1989). A global time
counter is updated, by an amount inversely proportional to the probability of a
selected action. This reflects the higher frequency of more probable actions.

A higher-level characterization of process behaviour is possible, by record-
ing the plot of changing quantities of active channels over time. Behavioural
time plots can be unpredictable, however, and highly sensitive to the stochastic
effects arising from small details of expressions. For example, editing a chan-
nel rate or delay time can result in widely varying behaviours, and changing
a channel label can result in a deadlocked, inactive expression. This makes
process specification challenging, both for humans and GP.

3. Time Series and Statistical Features

The study of time series is a well-established research discipline (Chatfield,
2004). Time series can denote stock market activity, predator-prey relation-
ships, and gene expression rates. Since time series are often complex and
chaotic, significant effort in the field of statistics has been dedicated towards
defining suitable measurement techniques for such data. More recently, re-
search in data mining and machine learning has investigated the value of using
univariate feature tests for characterizing complex time series (Nanopoulos
et al., 2001; Wang et al., 2006). Besides offering the possibility of effective
characterization of data, being able to use few feature test scores is much more
efficient than examining the actual time series data itself.

Note that the characterization of generalized time series with feature tests
is intractable in general. Turing machine computations are encodable as time
series, and hence undecidability and complexity issues will immediately arise.

We characterize process behaviour by analyzing the generated time series
with a suite of univariate feature tests, taken from (Nanopoulos et al., 2001;
Wang et al., 2006). Experiments in this paper select from the following six tests:
(1) Raw mean: The mean of all vt is computed. (2) Raw standard deviation: The

Multi-objective Genetic Programming and Stochastic Processes 163

Table 10-2. A grammar for stochastic processes

Expr ::= Rates, Procs(in) ‖ Procs(out)
Rates ::= Float, F loat, ... (1 per channel)

Procs(dir) ::= Proci = Choice ‖ Procs(dir)|Procs(dir)
Choice ::= Term ‖ Choice + Choice
Term ::= Pi ‖ Pi.P i ‖ Pi.Call ‖ Pi.P i.Call ‖ Pi.(Call|Call)
Call ::= Proc Int

P i ::= ?Ch ‖ !Ch (if dir = in or out)
Ch ::= c (c ∈ channels)

Float ::= minf ≤ f ≤ maxf

Int ::= mini ≤ i ≤ maxi

standard deviation of vt is computed. (3) Skew: If the data values are put into
histogram bins, this measures the symmetry, or lack thereof, of the histogram.
(4) Serial correlation: This measures the degree of fit to a white noise model.
(5) Chaos: This measures the sensitivity to initial values. It calculates the rate
of divergence of nearby points, averaged over many measures. (6) Periodicity:
This denotes cyclic activity which might vary in frequency. The periodicity is
the time interval of the shortest detected cycle.

Given a process to be evolved with GP, the statistical feature values for its
output behaviour are computed. Hundreds of plots are generated, the feature
values of all the plots are determined, and the means and standard deviations
of these values are calculated. Next, a meaningful set of features must be
chosen that competently characterizes the time series. We first tabulate all the
feature tests scores and compute the stability for each: stability = µ/σ. A high
stability indicates that the standard deviation is low compared to the mean, and
hence this may be an accurate measurement. Next, we manually select from
the feature tests that are both stable, and seem reasonable for the behaviour at
hand. For example, an oscillating time series would likely require an account
of its periodicity.

4. Grammar-Guided Genetic Programming

Whigham showed that grammars can introduce positive bias in evolutionary
search (Whigham, 1996). By using a context-free grammar to encode possible
program structures, the program space can be constrained to enable reasonable,
higher level constructs to be considered. This also inhibits the consideration of
less useful, and often nonsensical, program forms.

164 GENETIC PROGRAMMING THEORY AND PRACTICE VII

It might seem controversial whether syntactically constraining the stochastic
π-calculus is warranted. The grammar in Table 10-1 is simple and elegant, and
constraining it may be counterproductive. We address this issue in one experi-
ment (NaCl), by evolving the natural “generic” algebra. It is worth considering
that different denotations of formal languages have their own particular linguis-
tic advantages and weaknesses. For example, a regular language denoted by a
finite automaton may require a complex, unwieldy regular expression (Hopcroft
and Ullman, 1979). The same effect may apply to process algebra.

Our grammar-guided GP system encodes the process algebra with a context-
free grammar (CFG). The grammar permits the inclusion of grammatical con-
straints for evolved expressions, and it can be tailored according to the com-
plexity of the process to evolve. The DCTG-GP system is used, in which
logic-based attribute grammars are used to specify GP languages (Ross, 2001).
The stochastic π-calculus interpreter is written in Prolog. It is based on an
efficient abstract machine definition in (Phillips and Cardelli, 2004).

A typical CFG used in this paper is in Table 10-2. This grammar evolves
channel rates, which is a list of floats. Two partitions of processes are defined,
each of which incorporates a direction (in or out) for channel terms. The
direction is passed to the channel actions in Ch (not shown). This reduces the
chances for deadlock. Process definitions are indexed with an integer value,
and calls to them use modulo arithmetic to resolve to a process definition. The
Choice rule defines the main body of expressions. The Term rule shows the
different kinds of expression sequences allowed. Terms are guarded so that
each recursive call to a sub-process involves at least one action Pi beforehand.

5. Methodology

Genetic programming evaluates processes by running simulations on them,
and comparing their resultant time series with the target process. The most
accurate analyses require multiple time plots. This is too computationally ex-
pensive to do for many processes, including some of those studied here. Our
point of view is that repeated process sampling happens implicitly via a pop-
ulation pool of related expressions evaluated over many generations. Weak
expressions that obtain strong time plot fitnesses by sheer luck will not likely
remain strong during subsequent generations.

Single-objective evaluation

Fitness evaluation follows a technique used for noisy symbolic regression
(Imada, 2009). The GP expression is interpreted by the stochastic π-calculus
interpreter, resulting in a time series for each channel of interest. Selected
feature values from Section 3 are computed for the time series. Then the sum of
Euclidean distances between them and the target feature values for all channels

Multi-objective Genetic Programming and Stochastic Processes 165

(ch) is determined:

Distance =
∑

j∈ch

√

√

√

√

∑

i∈features

(

(vij − tij)

σij

)2

where vi is the computed feature value, ti is the target value, and σi is the
standard deviation for that feature as exhibited by the target process.

An option is to interpret an expression multiple times during fitness evalu-
ation, and use the average of all the resulting distances. This may result in a
more accurate estimation of behaviour.

Multi-objective evaluation

Solutions from multi-objective runs are determined in the following manner.
We use dominance ranking, in which the rank of each individual is the number
of other individuals that dominate it (Coello et al., 2007). As is usual for multi-
objective evolution, the entire rank 1 set at the end of a run is saved as a set of
candidate solutions. The rank 1 sets from all the runs are processed as follows:

1. The rank 1 sets from each run are combined into a single set. The set is
re-ranked, yielding a new rank 1 set.

2. The new rank 1 set has duplicate expressions removed. This is done
by translating each CFG tree to its equivalent π-calculus expression, and
then deleting duplicates. Note that syntactic equivalence does not include
associativity and permutativity of terms.

3. The remaining rank 1 solutions are each interpreted 100 times, and their
feature scores as used in the fitness evaluation are determined. Then
the zscores are computed and compared to those of the target expression
features, which were predetermined by evaluating the target 100 times.
Whenever a match is found between candidate and target score having a
significance of p ≥ 90%, it is considered to be a feature match.

The final result of the above procedure is a set of usually unique process ex-
pressions, with zscore vectors indicating the proximity of feature matches with
those of the target process. This feature matching analysis may indicate fairly
precise matches with the target process behavior. Although behavioural equiva-
lence here is most often assured with exact syntactic matches between solutions
and target processes (including channel rates), often behavioural equivalence
can involve different process expressions. The degree of precision required is
dependent upon the particular process being considered.

Step 3 is also applied to the solutions from single-objective runs, in order to
evaluate behavioural matches.

166 GENETIC PROGRAMMING THEORY AND PRACTICE VII

6. Experiments

Process descriptions

A number of target processes were studied. All are taken from examples
included with the SPIM system (Phillips, 2008).

Na = !ionize.?deionize.Na
Cl = ?ionize.!deionize.Cl
NaCl = 100@Na | 100@Cl
rate(ionize) = 100.0
rate(deionize) = 10.0

Figure 10-1. NaCl: target process and plot.

A. NaCl: The process in Figure 10-1 models the ionization and deionization
of salt molecules: Na + Cl ⇐⇒ Na+ + Cl−. The target expressions are
the Na and Cl expressions, as well as the rates. The remaining expression is
given to the GP in a wrapper, and is not evolved. The example time plot in
Figure 10-1 shows the time series of the input terms only, for the ionize and
deionize channels. The output channels behave nearly identically to the input
channels. After running 100 simulations, the feature tests selected to represent
this plot are: (i) ?ionize: mean (µ=24.63, σ=0.505), sd (µ=5.52, σ=0.407); (ii)
?deionize: mean (µ=75.37, σ=0.506), sd (µ=6.12, σ=0.261).

A number of different runs were performed (see Table 10-4 for a summary).
(a) Grammatical constraints: To promote expressions with meaningful struc-
ture, a grammar is used that constrains process expressions, such as process
definitions and expression complexity. These runs were compared to ones using
the generic syntax from Table 10-1. (b) Single- and multi-objective evaluation:
The single objective runs use the Euclidean distance evalation in Section 5.0.
The multiobjective runs use 2 dimensions – one for the mean distance, and the
other for the standard deviation distance – summed for all channels of concern.
(c) Partially and fully specified behaviours: Target behaviours use either 2 (in-
put) or 4 (input, output) channels. The 2 channel case is an underspecification,
since the output channels are unconstrained.

B. Kna2Cl: The target process models the ionization and deionization of
the KNa2Cl cotransporter: K + Na + 2Cl ⇐⇒ K+ + Na+ + 2Cl−. This
process uses 4 channels, and the plots are similar to the ones in Figure 10-1,
except that there are 4 distinct curves. A portion of the Kna2CL process from
(Phillips, 2008) is to be evolved, with the remaining expression put in a wrapper.

Multi-objective Genetic Programming and Stochastic Processes 167

Processes are simulated to a time limit of 0.30 or 1000 ticks. The means and
standard deviations, as well as σ’s, were calculated for all channels.

Gene(a, b) = (delay(0.1).(Protein(a, b).0) | Gene(a, b))
+ (?a.delay(0.0001).Gene(a, b))

Protein(a, b) = !b.Protein(a, b) + delay(0.001)
Repressilator = Gene(x, y) | Gene(y, z) | Gene(z, x)
rate(x) = rate(y) = rate(z) = 1.0

Figure 10-2. Repressilator: target process and plot.

C. Repressilator: The repressilator circuit is a genetic regulatory circuit
that produces oscillating behaviour (Blossey et al., 2006). Figure 10-2 shows a
stochastic π-calculus repressilator gate, as well as the wrapper circuit Repres-
silator that drives the circuit. The resulting oscillation behaviour is included.

The goal is to evolve expressions with behaviours equivalent to that of the
Gene and Protein expressions in Figure 10-2. The features used are mean,
standard deviation, serial correlation, chaos, and periodicity. The features are
measured for !x, giving five dimensions for the multi-objective vector .

Other Genetic Programming Parameters

Table 10-3 shows GP parameters used for the experiments. A few parameters
require explanation. Populations contain syntactically unique grammar trees.
Lamarckian evolution (local search) is used in single-objective runs. First, a
fitness “boost” is given to the initial population, by performing local search on

168 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 10-3. GP Parameters

Parameter NaCl KNa2Cl Repress
Initial popn. 1500 4000 4000
Running popn. 1000 1500 1500
Generations 30 40 30
Init max tree depth 8 8 8
Max tree depth 12 10 12
Tournament (sing obj) 4 4 4
Tournament (mult obj) 3 2 2
Elite migration (sing obj) 5 5 5
Elite migration (mult obj) 0 5 5

Parameter Value
Unique popn yes
Runs/experiment 20
Prob. crossover 0.90
Prob. mutation 0.10
Lamarckian boost (sing obj) 0.33 initial popn.
Lamarckian evol. (sing obj) 0.05 popn. every 7 gens

the weakest 33% of the population. As soon as a random mutation improves
fitness, the stronger expression replaces the original. A total of 5 mutations are
attempted per individual. Local search is performed on 5% of the population
every 7 generations, by replacing trees with the best mutation found. Mutations
are applied until 6 non-improvements occur.

7. Results

A summary of results for the NaCl runs is in Table 10-4. The first columns
indicate standard grammar or generic syntax, the number of channels for evalu-
ation, and multi-objective evaluation. The next column is the size of the solution
set considered. Single-objective experiments use 20 runs, while multi-objective
set sizes are variable. H is the number of solutions whose textual expression
matches the target NaCl expression in Table 10-1 (not including channel rate val-
ues). For the single objective runs (1-4), the number of solutions falling within
the fitness range of the target solution are tallied. The target fitness range was
determined by interpreting the solution expression 100 times, and recording the
fitness values obtained. Tr is the fitness seen during evolution (training), while
Te is the fitness obtained after run completion (testing). The remaining columns
indicate the percentages of expression features that fall within the 90-percentile

Multi-objective Genetic Programming and Stochastic Processes 169

Table 10-4. NaCl Results

F range F match %
Gr Ch MO |S| H Tr Te 0 1-50 100

1 std 2 n 20 5 20 12 60 35 5
2 std 4 n 20 14 15 10 50 40 10
3 gen 2 n 20 0 20 2 80 20 0
4 gen 4 n 20 0 0 0 60 40 0
5 std 2 y 3 3 - - 33 66 0
6 std 4 y 2 1 - - 50 0 50
7 gen 2 y 11 0 - - 45 55 0
8 gen 4 y 16 0 - - 63 38 0

of the corresponding target process features. These are determined following
Section 5.0. The values given are percentages of the solutions who have the
given percentages of features in which either (i) no features are matched; (ii)
features match between 1% and 50% of the total features possible; and (iii) all
the features.

The standard grammar runs (1, 2) found exact target expressions. Exact
feature matches were found in both runs, meaning that both expressions and
channel rates from the target NaCl were synthesized. Note that Experiment 1
seems to outperform 2 according to the fitness range values. Because this run
was underspecified (2 channels), it is easier to satisfy the simpler specification.
The generic grammar experiments (3 and 4) did not result in any expression
hits, although some matched a few features.

Experiments 5 through 8 use multi-objective evaluation. The standard gram-
mar experiments (5, 6) both found solution expressions, although only the 4-
channel run also found an exact match with channel rates. The generic grammar
performance was similar to the single-objective cases.

Table 10-5. Kna2CL and Repressilator Results

F range F matches %
MO Ch F |S| H Tr Te 0 1-50 51-99 100

Kna2Cl n 8 2 20 6 17 16 40 30 10 20
y 8 2 21 6 - - 48 38 0 14

Repress n 1 5 20 0 20 19 55 35 10 0
y 1 5 251 - - - 31 62 7 <1

170 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 10-5 summarizes the Kna2Cl and repressilator runs. Both Kna2Cl
experiments resulted in exact target matches. In the multi-objective case, these
hits are “unique” expression instances (save for operator associativity, etc.),
since duplicates are removed when the rank 1 sets are combined and re-ranked.
In generaly, the single- and multi-objective runs show similar performance.

The repressilator resulted in a large number of rank 1 solutions (251 in total).
The higher dimensionality for the fitness vector (5) increases the likelihood of
solutions being undomininated. Note that the Hits values were not determined
for the multi-objective runs, due to the great number of solutions to examine.
It is unlikely many exact hits arose, given the few 100% feature matches.

Run 1 Run 2

Figure 10-3. Best repressilator solution plots

One solution matched the target process in all 5 objectives (p > 90%):

Gene(a, b) = ?a.delay(0.0001).Gene(a, b)
+ delay(0.1).(Protein(a, b) | Gene(a, b))

Protein(a, b) = !b + delay(0.001)

This expression is almost identical to the target in Figure 10-2, except for the
following boldfaced term:

Protein(a, b) = !b.Protein(a,b) + delay(0.001)

Two example plots of this near-solution are in Figure 10-3. The plots are almost
indistinguishable from the target plot, which suggests that the feature tests have
captured the essence of this process behaviour.

A few other plots from multi-objective repressilator solutions are in Figure
10-4. The process in (a) is one in which only 2 features matched (p > 90%),
those being chaos and periodicity. The process definition shows similarities to

Multi-objective Genetic Programming and Stochastic Processes 171

Gene(a, b) =?a.delay(0.001).Gene(a, b))
+delay(0.1).(Protein(a, b) | Gene(a, b))

Protein(a, b) =!b.!b.Protein(a, b)
+delay(0.001)

Gene(a, b) = delay(0.001).!a.Gene(a, b)
+delay(0.01).(Gene(a, b) | Gene(a, b))

Figure 10-4. Other repressilator solutions

the target. On the other hand, although the process in (b) matches 4 of the 5 fea-
tures, the feature not matched is periodicity. The Protein sub-process is not used,

172 GENETIC PROGRAMMING THEORY AND PRACTICE VII

and is omitted. The great majority of solutions having 3 or 4 feature matches,
but which does not include periodicity, generate plots similar to (b). Periodicity
is a difficult feature to match. When examining the 173 solutions with feature
matches (p > 90%), only 6% of them matched periodicity. In comparison,
standard deviation matched with 18%, chaos with 32%, serial correlation with
35%, and mean matched 54% of solutions. Periodicity is a challenging feature
to fulfil, which is unfortunate, because it is critical of the repressilator. Expres-
sions with a periodicity score somewhat in the desired range exhibit behaviour
that is at least superficially similar to the target repressilator plot. Lacking this
characteristic results in undesirable processes.

8. Conclusion

When dealing with stochastic systems, the use of statistical feature tests as
a means for characterizing behaviour is arguably the only sensible strategy.
Statistical features are also used by Leier et al., to evolve noisy oscillating
bionetworks similar to the repressilator (Leier et al., 2006). Their set-based
representation is similar to a process algebra, and their simulation environment
also uses the Gillespie algorithm that we employ.

The automatic synthesis of stochastic processes is less tractable than de-
terministic process synthesis (Koza et al., 2003; Kitagawa and Iba, 2003).
Deterministic process behaviours are defined by their start states, and this is
exploitable by fitness strategies. The variability of stochastic processes makes
them difficult to characterize, and which in turn results in a difficult search space
for evolution. Interpreting a process multiple times, and for longer durations,
will help in obtaining more accurate fitnesses (and possily flatter search spaces).
On the other hand, this can be prohibitively expensive.

Advantages of using multi-objective selection are that heterogeneous feature
scores do not need to be artificially combined, and a set of candidates are
generated for inspection after a run, hopefully producing a rich set of solutions.
This has been exploited by others in similar problem domains. For example,
Rodriguez-Vazquez and Fleming use multi-objective GP for evolving models
of chaotic time series (Rodriguez-Vazquez and Fleming, 2005).

However, higher-dimension problems such as the repressilator resulted in
too many outlier solutions. Statistical feature tests are not equal, as the period-
icity score is crucial for the repressilator. Since the multi-objective environment
treated all objectives democratically, periodicity was rarely dominant in solu-
tions, given its technical difficulty compared to other features. This resulted in
large numbers of useless solutions. Therefore, one cannot select features hap-
hazardly, in hopes that a behaviour of interest will be adequately characterized.
Search strategies such as multi-objective evaluation are effectively limited as
to the number of dimensions used, and so the selection of lots of tests in the

Multi-objective Genetic Programming and Stochastic Processes 173

hope of possibly including effective ones is not feasible. Future work will con-
sider more principled means for selecting features. Automatic feature selection
is an active research problem (Liu and Motoda, 1998), and developments in
those areas are of interest. The use of preference information in multi-objective
strategies is worth considering (Coello et al., 2007).

Grammar-guided evolution is a useful tool in this application domain. The
search space defined by stochastic π-calculus benefits with the use of syntactic
constraints to help guide search towards good solutions.

Acknowledgements: Research supported by NSERC Operating Grant
138467, and an NSERC PGS A award.

References

Blossey, R., Cardelli, L., and Phillips, A. (2006). A Compositional Approach
to the Stochastic Dynamics of Gene Networks. Trans. in Comp. Sys. Bio
(TCSB), 3939:99–122.

Borrelli, A., De Falco, I., Della Cioppa, A., Nicodemi, M., and Trautteura, G.
(2006). Performance of genetic programming to extract the trend in noisy
data series. Physica A: Statistical and Theoretical Physics, 370(1):104–108.

Bower, J.M. and Bolouri, H. (2001). Computational Modeling of Genetic and
Biochemical Networks. MIT Press Kaufmann.

Chatfield, C. (2004). The Analysis of Time Series: An Introduction. Chapman
and Hall/CRC.

Cho, D.-Y., Cho, K.-H., and Zhang, B.-T. (2006). Identification of bio-
chemical networks by S-tree based genetic programming. Bioinformatics,
22(13):1631–1640.

Chu, D. (2007). Evolving genetic regulatory networks for systems biology.
In Srinivasan, D. and Wang, L., editors, Proc. CEC 2007, pages 875–882,
Singapore. IEEE Press.

Coello, C.A. Coello, Lamont, G.B., and Veldhuizen, D.A. Van (2007). Evolu-
tionary Algorithms for Solving Multi-Objective Problems. Kluwer, 2 edition.

Drennan, B. and Beer, R.D. (2006). Evolution of repressilators using a
biologically-motivated model of gene expression. In et al., L.M. Rocha, edi-
tor, Artificial Life X: Proc. Tenth Intl. Conf. on the Simulation and Synthesis
of Living Systems, pages 22–27. MIT Press.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem, 81:2340–2361.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison Wesley.

Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley.

174 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Imada, J. (2009). Evolutionary synthesis of stochastic gene network models
using feature-based search spaces. Master’s thesis, Department of Computer
Science, Brock University.

Imada, J. and Ross, B.J. (2008). Using Feature-based Fitness Evaluation in Sym-
bolic Regression with Added Noise. In Proc. GECCO 2008 Late Breaking
Papers.

Kitagawa, J. and Iba, H. (2003). Identifying Metabolic Pathways and Gene Reg-
ulation Networks with Evolutionary Algorithms. In Fogel, G.F. and Corne,
D.W., editors, Evolutionary Computation in Bioinformatics, pages 255–278.
Morgan Kaufmann.

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., and Lanza,
G. (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Leier, A., Kuo, P.D., Banzhaf, W., and Burrage, K. (2006). Evolving noisy
oscillatory dynamics in genetic regulatory networks. In et al., P. Collet, editor,
EuroGP 2006, volume 3905 of LNCS, pages 290–299. Springer.

Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic Publishers.

Markowetz, F. and Spang, R. (2007). Inferring Cellular Networks - a Review.
MBC Bioinformatics, 8:1–17.

Milner, R. (1989). Communication and Concurrency. Prentice Hall.
Milner, R. (1999). Communicating and Mobile Systems: the Pi-calculus. Cam-

bridge University Press.
Nanopoulos, A., Alcock, R., and Manolopoulos, Y. (2001). Feature-based clas-

sification of time-series data. In Information processing and technology,
pages 49–61. Nova Science Publishers, Inc., Commack, NY, USA.

Phillips, A. (2008). The stochastic pi machine.
http://research.microsoft.com/ aphillip/spim/. Last accessed Dec 9, 2008.

Phillips, A. and Cardelli, L. (2004). A Correct Abstract Machine for the Stochas-
tic Pi-calculus. In Proc. Bioconcur’04.

Priami, C. (1995). Stochastic pi-Calculus. The Computer Journal, 38(7):579–
589.

Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a
stochastic name-passing calculus to representation and simulation of molec-
ular processes. Information Processing Letters, 80:25–31.

Rodriguez-Vazquez, K. and Fleming, P. J. (2005). Evolution of mathematical
models of chaotic systems based on multiobjective genetic programming.
Knowledge and Information Systems, 8(2):235–256.

Ross, B.J. (2001). Logic-based Genetic Programming with Definite Clause
Translation Grammars. New Generation Computing, 19(4):313–337.

Ross, B.J. and Imada, J. (2009). Evolving Stochastic Processes Using Feature
Tests and Genetic Programming. In Proc. GECCO 2009.

Multi-objective Genetic Programming and Stochastic Processes 175

Streichert, F., Planatscher, H., Spieth, C., Ulmer, H., and Zell, A. (2004). Com-
paring genetic programming and evolution strategies on inferring gene reg-
ulatory networks. In et al., K.Deb, editor, GECCO-2004, volume 3102 of
LNCS, pages 471–480, Seattle, WA. Springer-Verlag.

Wang, X., Smith, K., and Hyndman, R. (2006). Characteristic-based clustering
for time series data. Data Min. Knowl. Discov., 13(3):335–364.

Whigham, P.A. (1996). Grammatical Bias for Evolutionary Learning. PhD
thesis, School of Computer Science, University College, University of New
South Wales, Australian Defence Force Academy.

Zhang, W., Yang, G., and Z.Wu (2004). Genetic Programming-based Modeling
on Chaotic Time Series. In Proc. 3rd Intl Conf. on Machine Learning and
Cybernetics, pages 2347–2352. IEEE.

Chapter 11

GRAPH STRUCTURED PROGRAM EVOLUTION:
EVOLUTION OF LOOP STRUCTURES

Shinichi Shirakawa1 and Tomoharu Nagao1

1Graduate School of Environment and Information Sciences, Yokohama National University,
79-7, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan.

Abstract Recently, numerous automatic programming techniques have been developed
and applied in various fields. A typical example is genetic programming (GP),
and various extensions and representations of GP have been proposed thus far.
Complex programs and hand-written programs, however, may contain several
loops and handle multiple data types. In this chapter, we propose a new method
called Graph Structured Program Evolution (GRAPE). The representation of
GRAPE is a graph structure; therefore, it can represent branches and loops using
this structure. Each program is constructed as an arbitrary directed graph of nodes
and a data set. The GRAPE program handles multiple data types using the data
set for each type, and the genotype of GRAPE takes the form of a linear string
of integers. We apply GRAPE to three test problems, factorial, exponentiation,
and list sorting, and demonstrate that the optimum solution in each problem is
obtained by the GRAPE system.

Keywords: automatic programming, genetic programming, graph-based genetic program-
ming, genetic algorithm, factorial, exponentiation, list sorting

1. Introduction

This chapter introduces a new method for automatic programming. This
new method, named GRAph structured Program Evolution (GRAPE) , uses a
graph structure to represent programs.

In standard genetic programming (GP), programs are represented as trees
containing terminal and nonterminal nodes. Complex programs and hand-
written programs, however, may contain several branches and loops. We believe
that graph representation is the nearest representation to hand-written programs.
Therefore, we adopt the graph structure to represent programs. In GRAPE
programs, each program is constructed as an arbitrary directed graph of nodes

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 177
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_11,

178 GENETIC PROGRAMMING THEORY AND PRACTICE VII

and a data set (index memory). The GRAPE program handles multiple data
types using the data set for each type, and the genotype of GRAPE takes the
form of a linear string of integers.

In the next section of this chapter, an overview of several related studies is
presented. In Section 3, we describe our proposed method, GRAPE. Several
experiments and results are described in Section 4. Finally, in Section 5, we
describe our conclusions and future work.

2. Related Works

Automatic programming is the method for generating computer programs au-
tomatically. Genetic programming (GP) proposed by Koza (Koza, 1992; Koza,
1994) is a typical example of automatic programming. GP evolves computer
programs that usually have tree structures and searches for a desired program
using a genetic algorithm (GA). Numerous extensions and improvements of
GP have been introduced. Attempts were made to integrate modularity into the
GP paradigm using automatically defined functions (ADF) (Koza, 1994) and
module acquisition (Angeline and Pollack, 1993). Montana developed a strat-
egy for incorporating multiple data types called strongly typed GP (Montana,
1995). In this approach, the user is required to specify the types of all values,
function inputs, and function outputs, and the program generation, mutation,
and crossover algorithms are modified to obey these type restrictions. It affects
the shape of the program search space (e.g., by restricting crossover points).

Various representations for GP have been proposed thus far. GP with index
memory (Teller, 1994) was introduced by Teller, and it has been proven to be
Turing complete. This means that in theory, GP with indexed memory can be
used to evolve any algorithm. Linear genetic programming (LGP) (Brameier
and Banzhaf, 2001) uses a specific linear representation of computer programs.
Instead of the tree-based GP expressions of a functional programming language
(such as LISP), programs in an imperative language (such as C) are evolved.
An LGP individual is represented by a variable-length sequence of simple C
language instructions. Instructions operate on one or two indexed variables
(registers) r or on constants c from predefined sets. The result is assigned to a
destination register, e.g., ri = rj ∗c. Grammatical evolution (GE) (O’Neill and
Ryan, 2003) is an evolutionary algorithm that can evolve computer programs in
any language, and can be considered a form of grammar-based genetic program-
ming. GE uses a chromosome of numbers encoded using eight bits to indicate
which rule from the Backus-Naur form grammar to apply at each state of the
derivation sequence, starting from a defined start symbol. Huelsbergen used
machine language representation and evolved recursive sequences (sequences
of squares, cubes, factorials, and Fibonacci numbers) (Huelsbergen, 1997). Yu
and Clack proposed a structure of λ abstractions and implicit recursion with

Graph Structured Program Evolution: Evolution of Loop Structures 179

an effective mechanism to perform module creation and reuse for GP (Yu and
Clack, 1998).

Recently, two interesting automatic programming techniques were proposed,
PushGP (Spector and Robinson, 2002; Spector et al., 2005) and object oriented
genetic programming (OOGP) (Agapitos and Lucas, 2006b; Agapitos and Lu-
cas, 2006a). PushGP evolves programs using the Push language proposed by
Spector et al. Push is a stack-based programming language. OOGP evolves
object-oriented programs instead of programs in the form of a LISP parse tree.
Both methods tackled the problem of generating recursive programs (e.g., fac-
torial, Fibonacci sequence, exponentiation, list sorting, and so on) and obtained
these programs automatically.

Various representations use a graph. Evolutionary programming (Fogel et al.,
1995), which evolves a finite state machine, was first proposed by Fogel in
1960. Studies in the evolution of analog circuit and neural network topology
often treat the evolution of graph structure (Koza et al., 1999; Mattiussi and
Floreano, 2007; Gruau et al., 1996). Parallel algorithm discovery and orches-
tration (PADO) (Teller and Veloso, 1996) is a GP method based on graphs
rather than a tree structure. PADO uses stack and index memory, and there
are action and branch-decision nodes. It is executed from the start node to the
end node in the network. PADO was applied to object recognition problems.
Another graph-based GP is parallel distributed genetic programming (PDGP)
(Poli, 1997). In this approach, the tree is represented as a graph with function
and terminal nodes located over a grid. In this way, it is possible to directly
execute several nodes concurrently. Cartesian genetic programming (CGP)
(Miller and Thomson, 2000; Miller and Smith, 2006) was developed from a
representation that was used for the evolution of digital circuits, and it repre-
sents programs as graphs. In certain respects, it is similar to PDGP. However,
PDGP results were evolved without the use of genotype-phenotype mapping,
and various sophisticated crossover operators were defined. In CGP, the geno-
type is an integer string that denotes a list of node connections and functions.
This string is mapped into the phenotype of an index graph. Linear-Graph GP
(Kantschik and Banzhaf, 2002) is the extension of Linear GP and Linear-Tree
GP (Kantschik and Banzhaf, 2002). In Linear-Graph GP, each program is rep-
resented as a graph. Each node in the graph has two parts, a linear program
and a branching node. Genetic network programming (Katagiri et al., 2001),
which has a directed graph structure, is mainly applied to create the behavior
sequences of agents and shows better performance than GP.

180 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 11-1. Structure of GRAPE (phenotype) and the genotype, which denotes a list of node
types, connections, and arguments. No.6 is the inactive node.

3. Graph Structured Program Evolution (GRAPE)

Overview

Various extensions and representations for GP have been proposed thus far.
Complex programs and hand-written programs, however, may contain several
loops and handle multiple data types. GRAPE (Shirakawa et al., 2007; Shi-
rakawa and Nagao, 2007) constructs graph-structured programs automatically.
These programs are composed of an arbitrary directed graph of nodes and a
data set (index memory).

GRAPE’s representation is different from that of PDGP, CGP, and Linear-
Graph GP. These methods have some restrictions on connections (e.g., they
restrict loops and allow only feed-forward connectivity). GRAPE’s representa-
tion is an arbitrary directed graph of nodes. PADO is one of the methods similar
to GRAPE. PADO has stack memory and index memory, and it is executed from
the start node to the end node in the network. GRAPE is different from PADO
in that GRAPE handles multiple data types using the data set for each type and
adopts genotype-phenotype mapping.

The features of GRAPE are summarized as follows:

Arbitrary directed graph structures

Ability to handle multiple data types using a data set

Genotype consisting of an integer string

Graph Structured Program Evolution: Evolution of Loop Structures 181

Structure of GRAPE

Graph-structured programs are composed of an arbitrary directed graph of
nodes and a data set (index memory). The data set flows through the directed
graph and is processed at each node. Figure 11-1 illustrates an example of the
structure of GRAPE. In GRAPE, each node has two parts, one for processing
and the other for branching. The processing component executes several types
of processing using the data set, e.g., arithmetic and Boolean calculations. After
processing is complete, the next node is selected. The branching component
decides the next node according to the data set.

Examples of nodes in GRAPE are shown in Figure 11-2. No.1 adds data[0]
to data[1], substitutes it for data[0] using an integer data type, and selects No.2
as the next node. No.2 decides the next node using integer data[0] and data[1];
if data[0] is greater than data[1], connection 1 is chosen, else connection 2 is
chosen. Special nodes are shown in Figure 11-1. No.0 is the start node, which
is the equivalent of the root node in GP. It is the first node to be executed when
a GRAPE program runs. No.7 is the output node. When this node is reached,
the GRAPE program outputs data and the program terminates. In Figure 11-1,
No.7 outputs integer data[0]. Although the GRAPE program has only one start
node, it may have several output nodes.

Because GRAPE is represented by a graph structure, it can represent com-
plex programs (e.g., branches and loops). Several data types are available in
GRAPE programs, e.g., integer, Boolean, and list. The GRAPE program han-
dles multiple data types using the data set for each type.

To adopt an evolutionary method, GRAPE uses genotype-phenotype map-
ping. This genotype-phenotype mapping method is similar to CGP. The GRAPE
program is encoded in the form of a linear string of integers. The genotype is an
integer string, which denotes a list of node types, connections, and arguments.
The node connections are arbitrary, which is different from CGP. The length
of the genotype is fixed and equals N ∗ (nc + na + 1) + 1, where N is the
maximum number of nodes, nc is the maximum number of connections, and na

is the maximum number of arguments. Although the genotype in GRAPE is a
fixed-length representation, the number of nodes in the phenotype can vary but
is limited (not all nodes encoded in the genotype have to be connected). This
allows the existence of inactive nodes. In Figure 11-1, No.6 is inactive, and the
other nodes are active. In brief, GRAPE has neutrality (Harvey and Thompson,
1996; Miller and Thomson, 2000; Miller and Smith, 2006), as does CGP.

Genetic Operators and Generation Alternation Model in
GRAPE

To obtain the optimum structure in GRAPE, an evolutionary method is
adopted. The GRAPE genotype is a linear string of integers. Therefore, GRAPE

182 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 11-2. Examples of processing (left) and branching nodes (right).

is able to use a typical GA. GRAPE uses uniform crossover and mutation for a
string of integers as genetic operators. The uniform crossover operator affects
two individuals, as follows:

Select several genes randomly according to the uniform crossover rate
Pc for each gene.

The selected genes are swapped between two parents, and generate off-
spring.

We use a low value (e.g., 0.1) of Pc to prevent destructive crossover. The
mutation operator affects one individual, as follows:

Select several genes randomly according to the mutation rate Pm for each
gene.

The selected genes are changed randomly.

It uses the minimal generation gap (MGG) model (Deb et al., 2002; Satoh
et al., 1996; Tsutsui et al., 1999) as a generation alternation model. This is a
steady-state model proposed by Satoh et al., having a desirable convergence
property of being able to maintain the diversity of the population, and shows
higher performance than other conventional models in a wide range of applica-
tions (especially real parameter optimization). The MGG model is summarized
as follows:

1. Set the generation counter t = 0. Generate N individuals randomly as
the initial population P (t).

2. Select a set of two parents M by random sampling from the population
P (t).

3. Generate a set of m children C by applying the crossover and mutation
operations to M .

Graph Structured Program Evolution: Evolution of Loop Structures 183

Table 11-1. Parameters used in the experiments.

Parameter V alue

Number of evaluations 2500000 or 5000000 (list sorting)
Population size 500
Children size (for MGG) 50
Uniform crossover rate Pc 0.1
Crossover rate 0.9
Mutation rate Pm 0.02
Maximum number of nodes 10, 30, 50
Execution step limits 500 or 3000 (list sorting)

4. Select two individuals from set M + C . One is the elitist individual, and
the other is an individual chosen by roulette wheel selection. Then replace
M with the two individuals in population P (t) to obtain population P (t+
1).

5. Stop when a certain specified condition is satisfied; otherwise, set t =
t + 1 and go to step 2.

The MGG model localizes its selection pressure, not to the whole population as
a simple GA or steady state does, but only to the family (children and parents).

4. Experiments and Results

Several different problems have been tackled to verify GRAPE’s effective-
ness, including the computation of factorial (n!), exponentiation (ab), and list
sorting. Evolution of these programs is difficult for standard GP, which must
develop iterative or recursive mechanisms to solve these problems.

Experimental Settings

Table 11-1 lists the GRAPE parameters for the experiments. In our exper-
iment, the maximum number of nodes in GRAPE is set as 10, 30, or 50. To
avoid problems caused by nonterminating structures, we limited the execution
steps to 500 (factorial and exponentiation) and 3000 (list sorting). When a pro-
gram reaches the execution limit, the individual is assigned a fitness value of
0.0. These execution step limits are sufficient to solve the target problem. We
prepared a data set of sufficient size to compute the problems. Initially, we set
input and constant values of the data set. Therefore, GRAPE handles or creates
constants within its programs. Table 11-2 shows the GRAPE node functions
used in the experiments. We prepared simple node functions, arithmetic func-
tions, and functions to swap and compare the elements of a list. We did not
prepare special node functions such as iteration functions.

184 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 11-2. GRAPE node functions for the experiments.

Name # Connections Arg(s) Description

+ 1 x, y, z Use integer data type.
Add data[x] to data[y] and substitute for data[z].

− 1 x, y, z Use integer data type.
Subtract data[x] from data[y] and substitute for data[z].

∗ 1 x, y, z Use integer data type.
Multiply data[x] by data[y] and substitute for data[z].

/ 1 x, y, z Use integer data type.
Divide data[x] by data[y] and substitute for data[z].

= 2 x, y Use integer data type.
If data[x] is equal to data[y],
choose connection 1; else, choose connection 2.

> 2 x, y Use integer data type.
If data[x] is greater than data[y],
choose connection 1; else, choose connection 2.

< 2 x, y Use integer data type.
If data[x] is less than data[y],
choose connection 1; else, choose connection 2.

SwapList 1 x, y Use integer type and a list data.
Swap list[data[x]] for list[data[y]].

EqualList 2 x, y Use integer type and a list data.
If list[data[x]] equals list[data[y]],
choose connection 1; else, choose connection 2.

GreaterList 2 x, y Use integer type and a list data.
If list[data[x]] is greater than list[data[y]],
choose connection 1; else, choose connection 2.

LessList 2 x, y Use integer type and a list data.
If list[data[x]] is less than list[data[y]],
choose connection 1; else, choose connection 2.

OutputInt 0 x Output data[x] and terminate the program.
OutputList 0 - Output a list data and terminate the program.

Factorial

In this problem, we seek to evolve an implementation of the factorial func-
tion. We used integers from 0 to 5 to create a training set with the following
input/output pairs (a, b): (0, 1), (1, 1), (2, 2), (3, 6), (4, 24), and (5, 120). We
used the normalized absolute mean error of the training set as a fitness measure.
The fitness function F used in the experiments is

F = 1−

n
∑

i=1

|Correcti −Outi|
|Correcti|+ |Correcti −Outi|

n
(11.1)

where Correcti is the correct value for the training data i, Outi is the value
returned by the generated program for the training data i, and n is the size of
the training set. The range of this fitness function was [0.0, 1.0]. A higher
numerical value indicated better performance. If this fitness value is equal to
1.0, the program yields the perfect solution for the training set. If the fitness

Graph Structured Program Evolution: Evolution of Loop Structures 185

Figure 11-3. Example of factorial structure obtained by GRAPE (left) and transitions of the
number of successful runs over 100 runs (right).

value in Equation 11.1 reaches 1.0, the fitness is calculated as follows:

F = 1.0 +
1

Sexe
(11.2)

where Sexe is the total number of execution steps of the generated program. This
fitness function indicates that fewer execution steps provide a better solution.

In the factorial experiment, integer data were used, and the integer data size
in GRAPE was 10. Initially, we set the input value a for data[0] to data[4] and
a constant value of 1 for data[5] to data[9]. The node functions used in this
experiment are { +, −, ∗, =, >, <, OutputInt }, as shown in Table 11-2.

Results of 100 runs with the same parameter set are provided. Figure 11-3 is
an example of the obtained structure for factorial. This GRAPE program has a
loop structure, and it calculates the factorial completely. Figure 11-3 also shows
the transitions of the number of successful runs for the number of evaluations.
When an individual whose fitness value is equal to or greater than 1.0 is found,
the run is considered successful. We apply the most elite individual generated
by GRAPE to the test data set for each run. The integers from 6 to 12 are used
as the test set inputs. The number of correct programs for the test set appears
in Table 11-3. When the number of nodes is 50, it shows best performance
(training set: 69, test set: 59).

186 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 11-4. Example of exponentiation structure obtained by GRAPE (left) and transitions of
the number of successful runs over 100 runs (right).

Exponentiation

In this problem, we seek to evolve an implementation of the integer expo-
nential. The problem has two inputs. The training set (a, b, c) used in this
experiment is (2, 0, 1), (2, 1, 2), (2, 2, 4), (3, 3, 27), (3, 4, 81), (3, 5, 243), (4,
6, 4096), (4, 7, 16384), and (4, 8, 65536). We also used the fitness functions in
Equations 11.1 and 11.2 on the training set.

In the exponentiation experiment, the integer data type is used, and the integer
data size is 9. Initially, we set the input value a for data[0] to data[2], input
value b for data[3] to data[5], and the constant value of 1 for data[6] to data[8].
The node functions used in this experiment are { +, −, ∗, =, >, <, OutputInt
}, as shown in Table 11-2.

Results of 100 runs with the same parameter set are provided. Figure 11-
4 is an example of the obtained structure for exponentiation. This GRAPE
program also calculates exponentiation completely. Figure 11-4 also shows the
transitions of the number of successful runs for the number of evaluations. We
apply the most elite individual generated by GRAPE to the test data set for each
run. The test set inputs (a, b) are (5, 9), (5, 10), (5, 11), (4, 12), (4, 13), (4,
14), (3, 15) (3, 16), (3, 17), (2, 18), (2, 19), and (2, 20). The number of correct
programs for the test set appears in Table 11-3. When the number of nodes is
30, it shows the best performance (training set: 45, test set: 44).

Graph Structured Program Evolution: Evolution of Loop Structures 187

List Sorting

Several researchers have investigated the evolution of a general sorting algo-
rithm. Kinnear evolved a general iterative sorting algorithm using GP (Kinnear,
Jr., 1993b; Kinnear, Jr., 1993a). He prepared special functions for the sorting
problem, such as the iteration function, which is an iterative operator. Spector
et al. showed that PushGP evolved a general sorting algorithm (Spector et al.,
2005). OOGP evolved a general recursive sorting algorithm using its recursive
mechanism (Agapitos and Lucas, 2006a).

In this problem, we seek to evolve an implementation of the sorting algorithm.
We provide a list of integers as input. A correct program returns a sorted input
list of any length [e.g., input: (2, 1, 7, 5, 1), output: (1, 1, 2, 5, 7)]. The training
data set is 30 random lists with lengths between 10 and 20. List elements are
randomly chosen from the range of [0, 255]. The fitness function F used in
this experiment is given in Equation 11.3. The range of this fitness function is
[0.0, 1.0]. A higher numerical value indicates better performance. If this fitness
value is equal to 1.0, the program yields the perfect solution for the training set.

F = 1.0 −

n
∑

i=1

li
∑

j=0

(1− 1

2dij
)

li

n
(11.3)

where dij is the distance between the correct position and the return value posi-
tion for the training data i for element j. li is the list length for the training data
i, and n is the size of the training data set. If the fitness value in Equation 11.3
reaches 1.0, the fitness value is calculated using Equation 11.2. In this experi-
ment, a list of integers and an integer data type were used, and the integer data
size was 15. Initially, we set the size of the input list (the list length) for data[0]
to data[4], a constant value of 0 for data[5] to data[9], and a constant value of
1 for data[10] to data[14]. The node functions used in this experiment are {
+, −, ∗, /, =, >, <, SwapList, EqualList, GreaterList, LessList, OutputList }
from Table 11-2.

Results are given for 100 different runs with the same parameter set. Figure
11-5 shows the transitions of the number of successful runs for the number of
evaluations and an example of the obtained structure for list sorting, which
is a general sorting algorithm. Figure 11-6 provides the transitions of the
average fitness and the number of active nodes for the number of evaluations.
In Figure 11-5, the number of successful runs increases greatly after 2,000,000
fitness evaluations, and finally reaches 75 when the number of nodes is 30.
At the beginning of the evolution, the number of successful runs is 0 until
about 1,000,000 fitness evaluations. This shows that the evolution of a sorting

188 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 11-5. Example of list sorting structure obtained by GRAPE (left) and transitions of the
number of successful runs over 100 runs (right).

algorithm is very difficult. Although the number of successful runs is 0 at the
beginning of the evolution, the fitness increases gradually, as shown in Figure
11-6. Therefore, the evolutionary method is functionally effective. In Figure
11-6, the number of active nodes is about half of the maximum number of
nodes when the maximum number of nodes is 30 or 50. Thus, the evolution of
the GRAPE programs is efficient without bloat through the genotype of fixed
integer string.

We apply the most elite individual generated by GRAPE to the test data set
for each run. The test set is 500 random lists. We use lists between 20 and 50
items long as the test set. Table 11-3 provides the number of successful runs
for the training and test sets. The results show a high number of successful runs
(75 for “Node 30,” the value with a maximum of 30 nodes, and 73 for “Node
50”) for the training set, demonstrating that GRAPE is a powerful automatic
programming technique. For the test set, “Node 50” shows best performance
31, and “Node 30” is 25. We can consider that these programs, which were
successful for the test set, are a general sorting algorithm. When the number
of nodes is 10, the result is not good (the number of successful runs is 2 for

Graph Structured Program Evolution: Evolution of Loop Structures 189

Figure 11-6. Transitions of the average fitness (left) and the number of active nodes (right) over
100 runs by GRAPE with a maximum number of nodes of 10, 30, and 50.

Table 11-3. Comparison of the number of successful runs for the training set with that of the
test set.

Factorial Exponentiation List sorting
Training set Test set Training set Test set Training set Test set

Node 10 37 37 34 34 2 1
Node 30 63 57 45 44 75 25
Node 50 69 59 41 40 73 31

the training set and 1 for the test set). In the experiment, we use Equation 11.2
as the fitness function. For this fitness function, fewer execution steps mean a
better solution. For this reason, GRAPE tends to construct an exclusive sorting
algorithm for the training set. Thus, the fitness function and selection of the
training set are very important for program evolution.

The obtained sorting program in Figure 11-5 has two loop structures and
sorts any sequence of numbers. GRAPE successfully generates the sorting
algorithm automatically, and the obtained structure is unique and completely
solves the problem. This algorithm is similar to the selection sort.

Sorting algorithm programs can be represented using recursion. Several
elegant and efficient sorting algorithms (e.g., merge sort, quick sort) are best
expressed as recursive functions. Although we have not created a recursion
function in this experiment, GRAPE has constructed the best programs using
branches and loops. If we introduce recursion functions or modularity mecha-
nisms [such as ADF (Koza, 1994)] to GRAPE, its performance may improve.

190 GENETIC PROGRAMMING THEORY AND PRACTICE VII

5. Conclusions and Future Work

In this chapter, we propose a new method for automatic programming, Graph
Structured Program Evolution (GRAPE). The representation of GRAPE is a
graph structure. Each program is constructed as an arbitrary directed graph
of nodes and a data set. The data set flows through the directed graph and is
processed at each node. GRAPE adopts genotype-phenotype mapping. The
genotype is an integer string that denotes a list of node types, connections, and
arguments.

We applied GRAPE to three different problems, factorial, exponentiation,
and list sorting, and confirmed that it obtained the optimum solution for each
problem. As a result, we showed that the evolutionary method is functionally
effective, and a maximum number of nodes of 30 or 50 shows better perfor-
mance than a maximum number of 10. Therefore, we should prepare sufficient
number of nodes to represent the programs. In experiments of factorial and
exponentiation, the almost GRAPE programs that succeed with the training set
also solve the test set. The programs of these problems can be represented
simply using recursion. Although we have not prepared a recursion function in
this chapter, the GRAPE system has constructed the optimum programs using
branches and loops. If we introduce recursion functions or modularity mech-
anisms such as ADFs (Koza, 1994) to GRAPE, its performance may improve.
In future, we will introduce recursion functions or modularity mechanisms to
solve more complex problems.

The advantage of GRAPE compared to other automatic programming tech-
niques is its ease of understanding and implementation. The GRAPE algorithm
is relatively simple. It is easy to understand the evolved programs of GRAPE,
owing to the graph representation. GRAPE is not compared to other techniques
in this study. Several benchmark comparisons of performance, scalability, and
speed would be highly useful future study.

Because the test problems in this work seem a bit simple, we plan to apply
GRAPE to problems that are larger in scale and require more complex structures,
for example, signal processing and agent control. Currently, we propose a
method for evolving search algorithms using GRAPE (Shirakawa and Nagao,
2009). We apply GRAPE to construct search algorithms for benchmark function
optimization and template matching problems, and show that the constructed
search algorithms are effective for the utilized search spaces and also for several
other search spaces.

References

Agapitos, Alexandros and Lucas, Simon M. (2006a). Evolving efficient re-
cursive sorting algorithms. In Proceedings of the 2006 IEEE Congress on
Evolutionary Computation, pages 9227–9234, Vancouver. IEEE Press.

Graph Structured Program Evolution: Evolution of Loop Structures 191

Agapitos, Alexandros and Lucas, Simon M. (2006b). Learning recursive func-
tions with object oriented genetic programming. In Collet, Pierre, Tomassini,
Marco, Ebner, Marc, Gustafson, Steven, and Ekárt, Anikó, editors, Proceed-
ings of the 9th European Conference on Genetic Programming, volume 3905
of Lecture Notes in Computer Science, pages 166–177, Budapest, Hungary.
Springer.

Angeline, Peter J. and Pollack, Jordan (1993). Evolutionary module acquisi-
tion. In Fogel, D. and Atmar, W., editors, Proceedings of the Second Annual
Conference on Evolutionary Programming, pages 154–163, La Jolla, CA,
USA.

Brameier, Markus and Banzhaf, Wolfgang (2001). A comparison of linear ge-
netic programming and neural networks in medical data mining. IEEE Trans-
actions on Evolutionary Computation, 5(1):17–26.

Deb, Kalyanmoy, Anand, Ashish, and Joshi, Dhiraj (2002). A computationally
efficient evolutionary algorithm for real-parameter optimization. Evolution-
ary Computation, 10(4):371–395.

Fogel, David B., Angeline, Peter J., and Fogel, David B. (1995). An evolutionary
programming approach to self-adaptation on finite state machines. In Pro-
ceedings of the Fourth Annual Conference on Evolutionary Programming,
pages 355–365. MIT Press.

Gruau, Frederic, Whitley, Darrell, and Pyeatt, Larry (1996). A comparison be-
tween cellular encoding and direct encoding for genetic neural networks. In
Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.,
editors, Genetic Programming 1996: Proceedings of the First Annual Con-
ference, pages 81–89, Stanford University, CA, USA. MIT Press.

Harvey, Inman and Thompson, Adrian (1996). Through the labyrinth evolu-
tion finds a way: A silicon ridge. In Proceedings of the First International
Conference on Evolvable Systems: From Biology to Hardware (ICES ’96),
volume 1259 of LNCS, pages 406–422. Springer-Verlag.

Huelsbergen, Lorenz (1997). Learning recursive sequences via evolution of
machine-language programs. In Koza, John R., Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L., ed-
itors, Genetic Programming 1997: Proceedings of the Second Annual Con-
ference, pages 186–194, Stanford University, CA, USA. Morgan Kaufmann.

Kantschik, Wolfgang and Banzhaf, Wolfgang (2002). Linear-graph GP—A new
GP structure. In Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan,
Conor, and Tettamanzi, Andrea G. B., editors, Genetic Programming, Pro-
ceedings of the 5th European Conference, EuroGP 2002, volume 2278 of
LNCS, pages 83–92, Kinsale, Ireland. Springer-Verlag.

Katagiri, Hironobu, Hirasawa, Kotaro, Hu, Jinglu, and Murata, Junichi
(2001). Network structure oriented evolutionary model – genetic network
programming–and its comparison with. In Spector, Lee, Goodman, Erik D.,

192 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Wu, Annie, Langdon, W. B., Voigt, Hans-Michael, Gen, Mitsuo, Sen, Sandip,
Dorigo, Marco, Pezeshk, Shahram, Garzon, Max H., and Burke, Edmund,
editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), page 179, San Francisco, California, USA. Morgan
Kaufmann.

Kinnear, Jr., Kenneth E. (1993a). Evolving a sort: Lessons in genetic program-
ming. In Proceedings of the 1993 International Conference on Neural Net-
works, volume 2, pages 881–888, San Francisco, USA. IEEE Press.

Kinnear, Jr., Kenneth E. (1993b). Generality and difficulty in genetic program-
ming: Evolving a sort. In Forrest, Stephanie, editor, Proceedings of the 5th
International Conference on Genetic Algorithms, ICGA-93, pages 287–294,
University of Illinois at Urbana-Champaign. Morgan Kaufmann.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge Massachusetts.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Mattiussi, Claudio and Floreano, Dario (2007). Analog genetic encoding for
the evolution of circuits and networks. IEEE Transactions on Evolutionary
Computation, 11(5):596–607.

Miller, Julian F. and Smith, Stephen L. (2006). Redundancy and computational
efficiency in cartesian genetic programming. IEEE Transactions on Evolu-
tionary Computation, 10(2):167–174.

Miller, Julian F. and Thomson, Peter (2000). Cartesian genetic programming. In
Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian F.,
Nordin, Peter, and Fogarty, Terence C., editors, Genetic Programming, Pro-
ceedings of EuroGP’2000, volume 1802 of LNCS, pages 121–132, Edin-
burgh. Springer-Verlag.

Montana, David J. (1995). Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230.

O’Neill, Michael and Ryan, Conor (2003). Grammatical Evolution: Evolution-
ary Automatic Programming in a Arbitrary Language, volume 4 of Genetic
programming. Kluwer Academic Publishers.

Poli, Riccardo (1997). Evolution of graph-like programs with parallel dis-
tributed genetic programming. In Back, Thomas, editor, Genetic Algorithms:
Proceedings of the Seventh International Conference, pages 346–353, Michi-
gan State University, East Lansing, MI, USA. Morgan Kaufmann.

Satoh, Hiroshi, Yamamura, Masayuki, and Kobayashi, Shigenobu (1996). Mini-
mal generation gap model for considering both exploration and exploitations.
In Proceedings of the IIZUKA ’96, pages 494–497.

Graph Structured Program Evolution: Evolution of Loop Structures 193

Shirakawa, Shinichi and Nagao, Tomoharu (2007). Evolution of sorting algo-
rithm using graph structured program evolution. In Proceedings of the 2007
IEEE International Conference on Systems, Man and Cybernetics (SMC
2007), pages 1256–1261, Montreal, Canada. IEEE.

Shirakawa, Shinichi and Nagao, Tomoharu (2009). Evolution of search algo-
rithms using graph structured program evolution. In Vanneschi, Leonardo,
Gustafson, Steven, Moraglio, Alberto, De Falco, Ivanoe, and Ebner, Marc,
editors, Proceedings of the 12th European Conference on Genetic Program-
ming, EuroGP 2009, volume 5481 of LNCS, pages 109–120, Tuebingen.
Springer.

Shirakawa, Shinichi, Ogino, Shintaro, and Nagao, Tomoharu (2007). Graph
structured program evolution. In Thierens, Dirk, Beyer, Hans-Georg, Bon-
gard, Josh, Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Congdon,
Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs, Tim, Kumar, San-
jeev, Miller, Julian F., Moore, Jason, Neumann, Frank, Pelikan, Martin, Poli,
Riccardo, Sastry, Kumara, Stanley, Kenneth Owen, Stutzle, Thomas, Wat-
son, Richard A, and Wegener, Ingo, editors, GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary computation, volume 2,
pages 1686–1693, London. ACM Press.

Spector, Lee, Klein, Jon, and Keijzer, Maarten (2005). The push3 execution
stack and the evolution of control. In Beyer, Hans-Georg, O’Reilly, Una-May,
Arnold, Dirk V., Banzhaf, Wolfgang, Blum, Christian, Bonabeau, Eric W.,
Cantu-Paz, Erick, Dasgupta, Dipankar, Deb, Kalyanmoy, Foster, James A.,
de Jong, Edwin D., Lipson, Hod, Llora, Xavier, Mancoridis, Spiros, Pelikan,
Martin, Raidl, Guenther R., Soule, Terence, Tyrrell, Andy M., Watson, Jean-
Paul, and Zitzler, Eckart, editors, GECCO 2005: Proceedings of the 2005
conference on Genetic and evolutionary computation, volume 2, pages 1689–
1696, Washington DC, USA. ACM Press.

Spector, Lee and Robinson, Alan (2002). Genetic programming and autocon-
structive evolution with the push programming language. Genetic Program-
ming and Evolvable Machines, 3(1):7–40.

Teller, Astro (1994). Turing completeness in the language of genetic program-
ming with indexed memory. In Proceedings of the 1994 IEEE World Congress
on Computational Intelligence, volume 1, pages 136–141, Orlando, Florida,
USA. IEEE Press.

Teller, Astro and Veloso, Manuela (1996). PADO: A new learning architecture
for object recognition. In Ikeuchi, Katsushi and Veloso, Manuela, editors,
Symbolic Visual Learning, pages 81–116. Oxford University Press.

Tsutsui, Shigeyoshi, Yamamura, Masayuki, and Higuchi, Takahide (1999).
Multi-parent re-combination with simplex crossover in real coded genetic
algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 1999 (GECCO ’99), pages 657–664.

194 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Yu, Tina and Clack, Chris (1998). Recursion, lambda-abstractions and genetic
programming. In Poli, Riccardo, Langdon, W. B., Schoenauer, Marc, Fogarty,
Terry, and Banzhaf, Wolfgang, editors, Late Breaking Papers at EuroGP’98:
the First European Workshop on Genetic Programming, pages 26–30, Paris,
France. CSRP-98-10, The University of Birmingham, UK.

Chapter 12

A FUNCTIONAL CROSSOVER OPERATOR FOR
GENETIC PROGRAMMING

Josh Bongard1

1Department of Computer Science, University of Vermont.

Abstract Practitioners of evolutionary algorithms in general, and of genetic programming
in particular, have long sought to develop variation operators that automatically
preserve and combine useful genetic substructure. This is often pursued with
crossover operators that swap genetic material between genotypes that have sur-
vived the selection process. However in genetic programming, crossover often
has a large phenotypic effect, thereby drastically reducing the probability of a
beneficial crossover event. In this paper we introduce a new crossover operator,
Functional crossover (FXO), which swaps subtrees between parents based on the
subtrees’ functional rather than structural similarity. FXO is employed in a ge-
netic programming system identification task, where it is shown that FXO often
outperforms standard crossover on both simulated and physically-generated data
sets.

Keywords: homologous crossover, crossover operators, system identification

1. Introduction

Genetic programming (Koza, 1992) refers to a family of algorithms that em-
ploy various data structures to represent candidate solutions to a given problem.
These genotypes either produce behavior directly that is then selected, or are
directly or indirectly transformed into a phenotype that in turn exhibits behavior
which is subjugated to selection pressure. The choice of genetic encoding, the
genotype to phenotype mapping, and the variation operators have a significant
impact on the system’s evolvability (Wagner and Altenberg, 1996), or ability
to continually improve solutions.

The choice of variation operators is of particular interest in that they sig-
nificantly affect how the population moves through the search space. Muta-
tion operators are designed to discover better variants of a single genotype;

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 195
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_12,

196 GENETIC PROGRAMMING THEORY AND PRACTICE VII

crossover operators on the other hand should, when implemented properly,
combine useful genetic substructure from multiple genotypes. Because most
genetic programming instantiations are tree-based, crossover typically involves
swapping subtrees between two parent trees, and this structural change often
has a large phenotypic effect on the resulting genotypes. As originally artic-
ulated by Fischer (Fischer, 1930), the magnitude of the phenotypic effect of a
genetic perturbation is inversely proportional to the probability of that pertur-
bation being beneficial. For this reason it is often observed that random subtree
crossover can adversely affect the performance of a genetic programming sys-
tem. It may favor gradual increase in the size of genotypes over evolutionary
time without providing any fitness benefit, a problem known as bloat (Langdon
and Poli, 1997), and/or it may slow search by producing offspring that are less
fit than their parents.

Several crossover operators have been proposed in the GP literature to im-
prove their ability to combine useful genetic substructure from several parent
genotypes. Headless chicken crossover (Jones, 1995) crosses subtrees between
two GP trees in which one tree has survived selection while the second is created
randomly in an attempt to introduce fresh genetic material into the population.
Size fair crossover (Langdon, 1999) crosses subtrees between parent trees with
a probability that is proportional to the size similarity between the selected
subtrees. Homologous crossover refers to a family of crossover operators that
attempt to preserve the context of the two crossed subtrees within their parent
trees. D’haeseleer (D’haeseleer, 1994) has described deterministic and Lang-
don (Langdon, 1999) probabilistic homologous crossover operators that swap
subtrees based on the similarity of their positions within their parent trees.
Other homologous crossover operators based on syntactic similarity (Poli and
Langdon, 1998; Nordin et al., 1999) have met with limited success.

Several researchers have argued that genetic material should be combined
based on its semantic, rather than syntactic or structural similarity. Seman-
tic crossover (Beadle and Johnson, 2008) uses standard (random) crossover
between two trees and then retains the resulting trees only if they differ se-
mantically from their parents. In enzyme genetic programming (Lones and
Tyrrell, 2001), genotypes are composed of independent elements that attach to
one another based on their input and output characteristics. Crossover is ac-
complished by injecting elements from a donor into an existing genotype; the
donated components will only be incorporated into the new genotype if they
can connect to existing components.

In this paper we introduce a crossover operator that swaps subtrees based
on their functional (semantic) rather than structural (syntactic) similarity, in an
attempt to reduce the magnitude of the phenotypic effect of the cross. The next
section describes this functional crossover (FXO) operator and its application to

Functional Crossover 197

a system identification task. Section 3 contrasts FXO with standard crossover
and no crossover, and section 4 provides some concluding remarks.

2. GP-based system identification

In previous work (Bongard and Lipson, 2007) genetic programming was
applied to the problem of nonlinear system identification, in which coupled,
nonlinear systems composed of multiple state variables are modeled as sets of
ordinary differential equations. The system is composed of two components:
a modeling and testing component. The modeling component uses genetic
programming to evolve a population of models to describe a subset of time
series data extracted from the system under study. The testing component uses
the model population to derive a new set of initial conditions with which to
perturb the system, and thereby generate new useful training data.

The algorithm proceeds as follows. Initially, a random set of initial conditions
is provided to the target system, which generates a short tract of time series data
in response. The modeling phase then commences by creating 15 random
models and training them against this training data for 200 generations. A
model’s fitness is determined as its ability to reproduce as closely as possible
the behavior of the target system when integrated starting with the same set of
initial conditions.

Model evolution is then paused, and the testing component commences by
creating 15 random sets of initial conditions. Each initial condition is provided
to each of the current models, and the fitness of each set of initial conditions
is determined as the rate of divergence in the models’ predictions about how
the system would respond to these initial conditions. The initial conditions are
optimized for 200 generations, and the most fit set of initial conditions is pro-
vided to the target system, which generates a second tract of time series data in
response. This second tract is added to the training set, and the modeling com-
ponent recommences evolution with the current set of models, and re-optimizes
them against both time series tracts in the training set for 200 generations. This
cycle of system interrogation, modeling and testing is repeated a set number of
times during each experiment, and is summarized in Fig. 12-1.

During modeling, it was found previously that integrating all of the ODEs
describing each state variable together, and then computing the fitness of the
model as a whole has low evolvability: If there is coupling between a well-
modeled and a poorly-modeled state variable in a model, then that model will
obtain an overall low fitness because the poorly-modeled ODE will drag the
well-modeled state variable off course, and this well-modeled component will
be lost during evolution. In (Bongard and Lipson, 2007) a technique called
partitioning was introduced in which each ODE is integrated and evaluated
separately, even though there may be coupling between the variables. This is

198 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 12-1. Overview of the GP-based system identification approach.

accomplished as follows. During each time step of the integration of the ODE
describing a state variable, if there is a reference to another state variable in the
GP tree then the value of that state variable generated by the target system, at
that time step, is substituted into the terminal node. At the end of the modeling
phase, the newly-optimized ODEs for each model are integrated back together
to produce a full model. For more details about this methodology, please refer
to (Bongard and Lipson, 2007).

Functional crossover

In the initial experiments using this system (Bongard and Lipson, 2007),
crossover was not used as it was imperative to maintain variation in the pop-
ulation so that the testing component could induce disagreement amongst the
predictions of the models for a given set of initial conditions, and it is well-
known that crossover can reduce population hetereogeneity without necessarily

Functional Crossover 199

conferring increased evolvability (e.g. (Bongard, 2007)). In order to improve
the probability that crossover will incorporate useful genetic substructure into
the receiving GP tree, a crossover operator that relies on semantic similarity
between the two subtrees to be crossed was formulated and investigated here:
functional crossover (FXO).

Given n state variables and 15 models, the population contains a total of 15n
ODEs encoded as GP trees that are optimized. While each ODE is integrated, the
minimum and maximum value that is passed upward by each node is recorded
at that node. This process records the range of values experienced by each
node during integration. After integration, the fitness of an ODE is computed
as the error between the time series produced by the ODE and the time series
produced by the target system for the corresponding state variable. A copy
of each evaluated ODE is created, and the copy is mutated using standard GP
mutation operators. The child ODE is integrated and evaluated: if its fitness
is higher than its parent ODE, the parent is discarded and the child retained;
otherwise, the child is discarded and the parent retained.

This experimental regime without crossover was contrasted to a second
regime in which both mutation and standard GP crossover was employed. After
all 15n ODEs are evaluated, they are copied and mutated. Within each of the
n subgroups of 15 ODEs, a pair of the copies is chosen at random and crossed:
a node is chosen at random in both trees, and the subtrees with those nodes as
roots are swapped between trees. If either of the new trees is more fit than its
parent, it is retained; otherwise, the new tree is discarded.

In the third regime, functional crossover is employed. Within each of the
n subgroups of 15 ODEs, a pair of copies is chosen at random, and a node is
chosen at random within the first tree. The node in the second tree is found that
has the most similar range to that of the chosen node in the first tree, according
to

mint
j=1(
|imin − jmin|+ |imax − jmax|

2
)

where t is the number of nodes in the second tree, j is the index over the nodes
being tested in the second tree, i is the index of the node chosen from the first
tree, and imin and imax are the minimum and maximum values passed upward
by node i during integration, respectively. After finding the most similar node
in the second tree, the two subtrees are crossed. In all other respects the third
regime is identical to the first and second regimes. Functional crossover is
illustrated in Fig 12-2.

3. Results

The three regimes were used to model both synthetic and physical systems.
The first set of synthetic systems is shown in Table 12-1, and is composed
of eighteen coupled, nonlinear systems with from 2 to 7 state variables. For

200 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Figure 12-2. Functional crossover. While a GP tree is evaluated (a) the minimum and maximum
values that pass through each node are recorded (b). If a node in the tree is then selected for
crossover (b; dashed line), a second tree is chosen at random, and the node with the most similar
range is found (c; dashed line), and those subtrees are then crossed as in standard GP crossover.

Table 12-1. The eighteen coupled nonlinear systems used for initial modeling.
System 1 System 2 System 3
a b c

dx1/dt = −3x1 − 3x1x2 + 2x2x2 −3x1x1 + 3x1x2 + 3x2x2 3x1x1 − x1x2 − x2x2

dx2/dt = −x1x1 − 3x1x2 − 2x2x2 −3x1x1 − 2x1x2 + 2x2x2 x1x1 + 3x1x2 − x2x2

d e f
dx1/dt = −3x1x3 − 2x2x3 − 3x3x3 −x1x2 + x1x3 − x2x3 −3x1x2 + x1x3 − x3x3

dx2/dt = −3x1x2 + x1x3 − 3x2x3 x1x1 + 2x1x2 + 2x2x3 −2x1x3 + 3x2x3 + 3x3x3

dx3/dt = 3x1x2 + 3x1x3 − x2x3 −2x1x1 + x1x2 − 3x2x3 2x1x2 − 2x1x3 − 2x2x3

g h i
dx1/dt = −x1x1 + 2x2x3 + 2x3x3 x1x4 + x2x4 + x4x4 −3x1x1 + 3x1x2 + 3x2x4

dx2/dt = x1x2 − 3x1x3 − 3x2x3 −3x1x2 − 2x2x3 − 3x3x4 −x1x1 − 2x1x3 − 3x4x4

dx3/dt = −x1x1 − x2x4 + 3x4x4 2x1x2 − x1x3 + 2x2x2 −2x1x4 + x2x2 − 3x3x4

dx4/dt = −3x1x2 − 3x1x4 − 3x3x4 x1x3 + 3x2x3 − x3x4 −x1x2 + 2x1x4 − 3x3x4

j k l
dx1/dt = −3x1x5 + 3x2x3 − 3x2x5 −2x2x2 + 3x3x5 + 2x4x5 2x1x4 + 2x2x3 − x2x4

dx2/dt = −3x1x3 − 2x3x4 − x4x5 3x1x2 + x1x5 − 2x2x5 x1x3 + 3x1x4 + x2x4

dx3/dt = x1x1 − 3x1x4 + x2x4 x1x2 + 2x2x5 + 2x4x5 −2x1x1 + 2x1x2 − 3x1x3

dx4/dt = 3x1x3 − 3x1x4 + 2x2x2 2x1x2 + 3x1x5 − x4x5 −3x2x5 + 3x3x4 − x3x5

dx5/dt = 3x1x4 + 3x3x3 + 3x3x4 2x1x5 − x2x5 − 2x5x5 x1x1 + x1x5 + x2x3

m n o
dx1/dt = −2x1x6 + x2x4 − 2x2x6 −2x1x3 − 3x2x4 + 2x3x6 x1x5 + x1x6 + x4x5

dx2/dt = x1x4 − x1x5 − 2x4x4 −3x2x4 + x3x4 − x3x6 −2x2x5 − 2x2x6 + 2x3x6

dx3/dt = 2x2x5 − x3x4 + x5x5 −x1x2 − x1x3 + x4x6 −x1x5 − 2x3x4 + x4x4

dx4/dt = −3x4x5 − 2x4x6 + 2x5x5 −x1x4 + x3x5 − 2x4x6 3x1x2 + 3x2x3 − 2x4x5

dx5/dt = x3x6 − 2x4x4 − 3x4x5 3x1x2 − 3x1x6 − x5x5 −3x1x5 + x2x2 + 3x2x6

dx6/dt = x3x4 − x3x6 + 2x4x6 −3x1x3 − 2x1x6 − 3x4x6 −x2x5 − 2x3x5 − 3x5x6

p q r
dx1/dt = −x2x2 − x1x2 + 3x1x1 −2x2x3 − 3x1x3 − 3x3x3 −3x1x1 + 3x2x2 + 3x1x2

dx2/dt = 3x1x2 − x2x2 + x1x1 −3x1x2 − 3x2x3 + x1x3 −2x1x2 − 3x1x1 + 2x2x2

dx3/dt = 2x6x7 − 2x4x4 + 3x5x7 3x1x3 − x2x3 + 3x1x2 −3x4x7 − 3x3x7 + 3x4x5

dx4/dt = x3x7 + 3x3x4 − 2x4x7 2x5x6 − x4x4 + 2x6x6 −2x5x6 − x6x7 − 3x3x5

dx5/dt = 2x4x7 + 2x6x7 + x3x4 x4x5 − 3x5x6 − 3x4x6 x4x6 − 3x3x6 + x3x3

dx6/dt = 3x3x7 − x6x7 + 2x3x4 3x7x7 − x5x7 − x4x4 2x4x4 + 3x3x5 − 3x3x6

dx7/dt = 2x3x7 − 2x7x7 − x4x7 −3x6x7 − 3x4x5 − 3x4x7 3x3x6 + 3x5x5 + 3x5x6

each system, initial conditions for a state variable could range between zero
and unity. Two hundred independent trials of the first regime, 200 trials of the
second regime and 200 trials of the third regime were applied to each system.
Each experiment was conducted for 40 cycles. At the end of each pass through
the modeling component, the objective error of the best model was calcuated:
the physical system generates time series that the model was not trained on, and

Functional Crossover 201

0.0

0.08

2
 S

ta
te

 V
a
ri

a
b
le

s

a

0.01

0.1

O
b
je

ct
iv

e
 E

rr
o
r

b

0.01

0.1
c

0.03

0.1

3
 S

ta
te

 V
a
ri

a
b
le

s

d

0.02

0.1

O
b
je

ct
iv

e
 E

rr
o
r

e

0.05

0.1
f

0.06

0.1

4
 S

ta
te

 V
a
ri

a
b
le

s

g

0.01

0.1

O
b
je

ct
iv

e
 E

rr
o
r

h

0.09

0.1
i

0.44

0.62

5
 S

ta
te

 V
a
ri

a
b
le

s

j

0.95

1.0

O
b
je

ct
iv

e
 E

rr
o
r

k

0.87

0.99
l

0.49

0.96

6
 S

ta
te

 V
a
ri

a
b
le

s

m

0.12

0.21

O
b
je

ct
iv

e
 E

rr
o
r

n

0.16

0.26
o

0 5 10 15 20 25 30 35 40
Cycle

1.65

2.0

7
 S

ta
te

 V
a
ri

a
b
le

s

p

0 5 10 15 20 25 30 35 40
Cycle

0.14

0.23

O
b
je

ct
iv

e
 E

rr
o
r

q

0 5 10 15 20 25 30 35 40
Cycle

0.49

0.72
r

Figure 12-3. Relative modeling performance against the 18 synthetic systems using no crossover
(dotted), random crossover (dashed), and functional crossover (solid). Thick lines indicate mean
error; thin lines indicate one unit of standard error of the mean.

the error of the model is calculated. The relative errors of the models produced
by the three regimes is shown in Fig. 12-3, and the sizes of those models in
Fig. 12-4.

For 6 of the 18 systems, functional crossover led to signficantly more accurate
models than when either no crossover or standard crossover was employed
(Fig. 12-3a,b,d,g,i,j). It can be noted that for these systems, FXO also tended
to produce more compact models (Fig. 12-4a,b,d,g,i,j), despite the fact that

202 GENETIC PROGRAMMING THEORY AND PRACTICE VII

5

10

15

20

2
 S

ta
te

 V
a
ri

a
b
le

s
a

10
12
14
16
18
20
22
24

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E

b

6

8

10

12

14

16
c

14
15
16
17
18
19
20
21
22

3
 S

ta
te

 V
a
ri

a
b
le

s

d

8

10

12

14

16

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E

e

13
14
15
16
17
18
19
20

f

14

16

18

20

22

4
 S

ta
te

 V
a
ri

a
b
le

s

g

7

8

9

10

11

12

13

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E h

14

16

18

20

22

24

26
i

14

16

18

20

22

24

26

5
 S

ta
te

 V
a
ri

a
b
le

s

j

12
14
16
18
20
22
24
26

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E k

10

15

20

25

30

l

15

20

25

30

6
 S

ta
te

 V
a
ri

a
b
le

s

m

14

16

18

20

22

24

26

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E n

10
11
12
13
14
15
16
17

o

0 5 10 15 20 25 30 35 40
Cycle

13

14

15

16

17

18

7
 S

ta
te

 V
a
ri

a
b
le

s

p

0 5 10 15 20 25 30 35 40
Cycle

16

18

20

22

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E

q

0 5 10 15 20 25 30 35 40
Cycle

12

14

16

18

20

22

r

Figure 12-4. Relative model sizes resulting from the 18 synthetic systems using no crossover
(dotted), random crossover (dashed), and functional crossover (solid).

there is no explicit selection pressure for smaller models. It is hypothesized
that FXO produces more accurate and more compact models in these systems
because FXO is able to swap out a large subtree that is an approximation of
some function that can be expressed using fewer nodes, and therefore has a
higher probability of swapping in a subtree from another tree that represents
this function in a more compact way. For several of the other systems FXO

Functional Crossover 203

Table 12-2. The four synthetic target systems. a: A frictionless nondamped pendulum; b: two
species competing for a common resource; c: a synthetic system with high degree; and d: a
model of the Lac operon metabolic circuit in E. coli bacteria.

a: Pendulum b: Lotka-Volterra
dθ/dt = ω dx/dt = 3x− 2xy − x2

dω/dt = −9.8sin(θ) dy/dt = 2y − xy − y2

c: High Degree d: Lac operon
dx/dt = −x9y11 dG/dt = A2/(A2 + 1)− 0.01G + 0.001
dx/dt = −x11y9 dA/dt = G(L/(L + 1)−A/(A + 1))

dL/dt = −GL/(L + 1)

0.005

0.009

O
b
je

ct
iv

e
 E

rr
o
r

a: Pendulum

0.008

0.009
b: Lotka-Volterra

0 5 10 15 20 25 30 35 40
Cycle

0.0

0.008
c: High Degree

0 5 10 15 20 25 30 35 40
Cycle

0.005

0.009
d: Lac operon

Figure 12-5. Relative modeling performance against the four target systems using no crossover
(dotted), random crossover (dashed), and functional crossover (solid).

produced more accurate models but not significantly so (Fig. 12-3e,h,n,o,p,q),
and for no systems did the other two regimes signficantly outperform FXO.

The three regimes were also applied to four target systems that are manually-
derived models of nonlinear mechanical (Pendulum), ecological (Lotka-
Volterra) and biological (Lac operon) systems (Table 12-2). The initial values

204 GENETIC PROGRAMMING THEORY AND PRACTICE VII

8

10

12

14

16

18

20

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E

a: Pendulum

14

16

18

20

22

24

b: Lotka-Volterra

0 5 10 15 20 25 30 35 40
Cycle

15

20

25

30

35

40

45

c: High Degree

0 5 10 15 20 25 30 35 40
Cycle

10

12

14

16

18

d: Lac operon

Figure 12-6. Relative model sizes resulting from the four target systems using no crossover
(dotted), random crossover (dashed), and functional crossover (solid).

for each state variable in each system was restricted to the range [0, 1]. The mod-
els trained against the pendulum could be composed of algebraic and trigono-
metric functions; the Lotka-Volterra and high degree models were restricted to
algebraic operators; and the Lac operon models were allowed algebraic func-
tions and the Hill function (x/(x + 1)). Terminal nodes were restricted to state
variable references and floating-point constants. Fig. 12-5 reports the relative
errors of the best models from 200 independent trials run using each of the three
experimental regimes. Fig. 12-6 reports the relative sizes of these models.

As can be seen in Fig. 12-5, functional crossover signficantly outperforms the
other two regimes when employed for modeling the system of high degree and
the Lac operon (Fig. 12-5c,d), provides some advantage for the Lotka-Volterra
system (Fig. 12-5b), and provides a slight advantage for the pendulum, as does
standard crossover. Fig. 12-6 indicates that for two of the systems functional
crossover produces larger trees (Fig. 12-6a,c) while for the other two systems
produces more compact trees (Fig. 12-6b,d).

Finally, four physical systems were modeled by the three regimes. The first
three systems are modifications of a physical pendulum, as shown in Fig. 12-7.
Sensors in the pendulum’s base record the angle of the arm relative to gravity,

Functional Crossover 205

Figure 12-7. The pendulum was swung when it was in three different configurations, producing
the data sets reported in Fig. 12-8a-c.

and angular velocity. The pendulum was swung and data was recorded when
the base rested flat on a table (Fig. 12-7a); when the base was rotated 90 degrees
counterclockwise (Fig. 12-7b), and rotated 138 degrees counterclockwise (Fig.
12-7c). The resulting data from these systems are reported as phase diagrams
in Fig. 12-8a-c. The fourth physical system was a data set reflecting change
in population for the Canadian lynx and artic hare, as estimated by numbers
of pelts recorded per winter by the Hudsons Bay Company (Odum and Odum,
1971). The data set indicates oscillations in both populations over a 100-year
period (Fig. 12-8d).

Unlike the systems investigated so far, it is assumed that data has been previ-
ously generated by these systems, so the testing components cannot perturb the
system based on model disagreement. Rather, the testing component searches
for a time index within the existing data from the system for which, when the
values for the state variables at that index are supplied to the models and the
models are integrated, the models diverge in their predictions about future time
indices. After a short period of optimization, the time index that induces max-
imum model disagreement, and the subsequent four time indices, are added to
the training set.

For two of the data sets, crossover slows evolutionary search such that the
regime with no crossover produces more accurate models (Fig. 12-9b,d). For
the flat pendulum, there is no difference in model accuracy across the three
experimental regimes. However for the pendulum when rotated 138 degrees
counterclockwise, functional crossover significantly outperforms the other two
regimes. Unlike for the previous systems, functional crossover enlarges the
size of models, compared to the other two experimental regimes.

a b c

206 GENETIC PROGRAMMING THEORY AND PRACTICE VII

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Angle(
θ
)

-3

-2

-1

0

1

2

3
A
n
g
u
la
rV

el
o
ci
ty
(

ω) a: Pendulum (flat)

-14 -12 -10 -8 -6 -4 -2 0 2
Angle(θ)-10

-5

0

5

10

A
n
g
u
la
rV

el
o
ci
ty
(

ω) b: Pendulum (rotated 90deg)

1.5 2.0 2.5 3.0 3.5 4.0
Angle(θ)-6

-4

-2

0

2

4

6

A
n
g
u
la
rV

el
o
ci
ty
(

ω) c: Pendulum (rotated 138deg)

1845 1865 1885 1905 1925
Time (year)

0

20000

40000

60000

80000

100000

120000

140000

160000

E
st

im
a
te

d
 P

o
p
u
la

ti
o
n
 S

iz
e

d: Predator-Prey
Prey (arctic hare)
Predator (Canadian lynx)

Figure 12-8. The four data sets produced by the four modeled physical systems. The data sets
produced by the pendulum (a-c) are represented as phase diagrams; the ecological data set is
drawn as a raw time series.

4. Discussion and conclusions

In general, it was found that functional crossover helped to produce sig-
nificantly more accurate models across a total of 26 synthetic and physical
coupled, nonlinear systems. It is hypothesized that FXO confers an advantage
because the phenotypic effect of a cross is less severe than a random crossover
event. Because the two selected subtrees return values in a similar range, the
newly-grafted subtree will return values similar to those returned by the orig-
inal subtree, and will therefore impact the overall behavior of its parent tree
less than if random crossover is employed. As has been known for some time
(Fischer, 1930), a genetic perturbation has a higher probability of conferring an
advantage the more mild the phenotypic effect of that perturbation is. It seems
likely that this dynamic is the cause of the observed benefit of FXO, however
more detailed investigation is required to validate this hypothesis.

It was found that for the first set of 18 systems, FXO tended to produce more
accurate and more compact models. It is hypothesized that this is a result of
FXO’s ability to swap out a large subtree that approximates a function that can
be expressed with fewer nodes, and has a higher probability of swapping in a

Functional Crossover 207

0.09

0.096

O
b
je

ct
iv

e
 E

rr
o
r

a: Pendulum (flat)

0.497

0.539
b: Pendulum (rotated 90deg)

0 5 10 15 20 25 30 35 40
Cycle

0.239

0.27
c: Pendulum (rotated 138deg)

0 5 10 15 20 25 30 35 40
Cycle

95033

99129
d: Predator-prey data

Figure 12-9. Relative modeling performance against the four physical systems using no
crossover (dotted), random crossover (dashed), and functional crossover (solid).

subtree from another tree that encodes this function more compactly, compared
to random crossover. However, increased model accuracy was not accompanied
by model compactness in the other systems. In particular for the physical
systems, increased model accuracy (Fig. 12-9) was accompanied by an increase
in model size (Fig. 12-10). It is believed that for the physical pendulum, an
equation that would describe its friction may not be easily modelable, so the
trees grow in size in an attempt to account for this.

Despite this, FXO was able to significantly outperform the no crossover and
random crossover regimes for one of the pendulum arrangements (Fig. 12-
9c). It seems likely the reason for this is that more data was collected for this
arrangement compared to the data set associated with the flat pendulum (12-8a),
and there is less noise present than in the data set collected from the pendulum
rotated 90 degrees counterclockwise, which rotated over the top (12-8b).

Trees with similar structure may encode very different functions, which sug-
gests that structural crossover operators for genetic programming may be of
limited utility. Conversely, trees with very different structure may encode sim-
ilar functionality as neutral genetic structure tends to be prevalent in such sys-
tems, and the commutative properties of many operators admits to alternative

208 GENETIC PROGRAMMING THEORY AND PRACTICE VII

6

7

8

9

10

N
u
m

b
e
r

o
f

n
o
d
e
s

/
O

D
E

a: Pendulum (flat)

6

7

8

9

10

b: Pendulum (rotated 90deg)

0 5 10 15 20 25 30 35 40
Cycle

5

6

7

8

9

10

c: Pendulum (rotated 138deg)

0 5 10 15 20 25 30 35 40
Cycle

13

14

15

16

17

d: Predator-prey data

Figure 12-10. Relative model sizes resulting from the four physical systems using no crossover
(dotted), random crossover (dashed), and functional crossover (solid).

encoding possibilities. The one current limitation of semantics-based crossover
operators is that they are somewhat domain specific: tree structure tends to be
similar across GP implementations, but the behavior of those trees is domain
specific. That being said, FXO can still be employed in any GP system if trees
are employed to compute a numerical function. It would also be relatively
straightforward to develop semantic similarity metrics for other problem do-
mains. For example, in the Central Place Food Foraging problem (Koza, 1992),
a subtree describes a subset of an agent’s behavior. During the evaluation of a
tree, the area traversed by an agent as a result of each subtree may be recorded.
FXO may then cross subtrees based on geometric similarities between the areas
traversed by agents controlled by different trees.

Future work is planned in which this crossover operator will be compared
directly to existing syntactic and semantic crossover opeators. Also, a prob-
abilistic version of FXO (P-FXO) will be investigated in which subtrees are
chosen from the second parent probabilistically, rather than deterministically
based on nodes’ functional similarity. Finally, rather than comparing minimum
and maximum values experienced by nodes in different trees, probability dis-

Functional Crossover 209

tributions will be employed to better compare functional similarity between
genetic substructure from different members of the population.

Acknowledgment

This work is supported in part by a 2007 Microsoft New Faculty Fellowship,
and National Science Foundation grant EPS-0701410.

References

Beadle, Lawrence and Johnson, Colin (2008). Semantically driven crossover in
genetic programming. In Wang, Jun, editor, Proceedings of the IEEE World
Congress on Computational Intelligence, pages 111–116, Hong Kong. IEEE
Computational Intelligence Society, IEEE Press.

Bongard, J. (2007). Action-selection and crossover strategies for self-modeling
machines. In Proceedings of the 9th annual conference on Genetic and evo-
lutionary computation, pages 198–205. ACM New York, NY, USA.

Bongard, J. and Lipson, H. (2007). Automated reverse engineering of nonlin-
ear dynamical systems. Proceedings of the National Academy of Sciences,
104(24):9943.

D’haeseleer, Patrik (1994). Context preserving crossover in genetic program-
ming. In Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, volume 1, pages 256–261, Orlando, Florida, USA. IEEE Press.

Fischer, R.A. (1930). The Genetical Theory of Natural Selection. Clarendon.
Jones, T. (1995). Crossover, macromutation, and population-based search. In

Proceedings of the Sixth International Conference on Genetic Algorithms,
pages 73–80. Morgan Kaufmann.

Koza, John R. (1992). A genetic approach to the truck backer upper problem and
the inter-twined spiral problem. In Proceedings of IJCNN International Joint
Conference on Neural Networks, volume IV, pages 310–318. IEEE Press.

Langdon, W. B. (1999). Size fair and homologous tree genetic programming
crossovers. In Banzhaf, Wolfgang, Daida, Jason, Eiben, Agoston E., Gar-
zon, Max H., Honavar, Vasant, Jakiela, Mark, and Smith, Robert E., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, vol-
ume 2, pages 1092–1097, Orlando, Florida, USA. Morgan Kaufmann.

Langdon, W. B. and Poli, R. (1997). Fitness causes bloat. Technical Re-
port CSRP-97-09, University of Birmingham, School of Computer Science,
Birmingham, B15 2TT, UK.

Lones, Michael A. and Tyrrell, Andy M. (2001). Enzyme genetic programming.
In Proceedings of the 2001 Congress on Evolutionary Computation, CEC
2001, pages 1183–1190, COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea. IEEE Press.

210 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Nordin, Peter, Banzhaf, Wolfgang, and Francone, Frank D. (1999). Efficient
evolution of machine code for CISC architectures using instruction blocks
and homologous crossover. In Spector, Lee, Langdon, William B., O’Reilly,
Una-May, and Angeline, Peter J., editors, Advances in Genetic Programming
3, chapter 12, pages 275–299. MIT Press, Cambridge, MA, USA.

Odum, E.P. and Odum, H.T. (1971). Fundamentals of Ecology. Saunders
Philadelphia.

Poli, Riccardo and Langdon, William B. (1998). Schema theory for genetic
programming with one-point crossover and point mutation. Evolutionary
Computation, 6(3):231–252.

Wagner, G.P. and Altenberg, L. (1996). Complex adaptations and the evolution
of evolvability. Evolution, 50(3):967–976.

Chapter 13

SYMBOLIC REGRESSION OF CONDITIONAL
TARGET EXPRESSIONS

Michael F. Korns1
1Freeman Investment Management, 1 Plum Hollow, Henderson, Nevada, 89052 USA.

Abstract This chapter examines techniques for improving symbolic regression systems in
cases where the target expression contains conditionals. In three previous papers
we experimented with combining high performance techniques from the literature
to produce a large scale, industrial strength, symbolic regression-classification
system . Performance metrics across multiple problems show deterioration in
accuracy for problems where the target expression contains conditionals. The
techniques described herein are shown to improve accuracy on such conditional
problems. Nine base test cases, from the literature, are used to test the improve-
ment in accuracy. A previously published regression system combining standard
genetic programming with abstract expression grammars, particle swarm opti-
mization, differential evolution, context aware crossover and age-layered popu-
lations is tested on the nine base test cases. The regression system is enhanced
with these additional techniques: pessimal vertical slicing, splicing of uncorre-
lated champions via abstract conditional expressions, and abstract mutation and
crossover. The enhanced symbolic regression system is applied to the nine base
test cases and an improvement in accuracy is observed.

Keywords: Abstract Expression Grammars, Differential Evolution, Genetic Programming,
Particle Swarm, Symbolic Regression

1. Introduction

This chapter examines techniques for improving symbolic regression systems
in cases where the target expression contains conditionals. In three previous
papers (Korns, 2006; Korns, 2007; Korns and Nunez, 2008) our pursuit of
industrial scale performance with large-scale, symbolic regression problems,
required us to reexamine many commonly held beliefs and, of necessity, to
borrow a number of techniques from disparate schools of genetic programming
and "recombine" them in ways not normally seen in the published literature.

© Springer Science + Business Media, LLC 2010

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VII, 211
Genetic and Evolutionary Computation, DOI 10.1007/978-1-4419-1626-6_13,

212 GENETIC PROGRAMMING THEORY AND PRACTICE VII

The evolutionary techniques, as of the three previous papers, vetted for efficacy
in symbolic regression are as follows:

Standard tree-based genetic programming

Vertical slicing and out-of-sample scoring during training

Grammar template genetic programming

Abstract expression grammars utilizing swarm intelligence

Context aware cross over

Age-layered populations

Random noise terms for learning asymmetric noise

Bagging

While the above techniques, described in detail in (Korns and Nunez, 2008),
produce a symbolic regression system of breadth and strength, performance
metrics across multiple problems show deterioration in accuracy for problems
where the target expression contains conditionals. Using the nine base test
cases from (Korns, 2007) as a training set, to test for improvements in accuracy,
we enhanced our symbolic regression system with these additional techniques
which we will show improve accuracy:

Pessimal vertical slicing

Splicing

Abstract mutation and crossover

For purposes of comparison, all results in this paper were achieved on two
workstation computers, specifically an Intel Core 2 Duo Processor T7200
(2.00GHz/667MHz/4MB) and a Dual-Core AMD Opteron Processor 8214
(2.21GHz), running our Analytic Information Server software generating Lisp
agents that compile to use the on-board Intel registers and on-chip vector pro-
cessing capabilities so as to maximize execution speed, whose details can be
found at www.korns.com/Document Lisp Language Guide.html. Furthermore,
our Analytic Information Server is in the founding process of becoming an open
source software project.

Symbolic Regression of Conditional Target Expressions 213

Testing Regimen

Our testing regimen uses only statistical best practices out-of-sample testing
techniques. We test each of the nine test cases on matrices of 10000 rows
(samples) by 5 columns (input variables) with no noise, and on matrices of
10000 rows by 20 columns with 40% noise, before drawing any performance
conclusions. Taking all these combinations together, this creates a total of 18
separate test cases. For each test a training matrix is filled with random numbers
between -50 and +50. The target expression for the test case is applied to the
training matrix to compute the dependent variable and the required noise is
added. The symbolic regression system is trained on the training matrix to
produce the regression champion. Following training, a testing matrix is filled
with random numbers between -50 and +50. The target expression for the test
case is applied to the testing matrix to compute the dependent variable and the
required noise is added. The regression champion is evaluated on the testing
matrix for all scoring (i.e. out of sample testing).

Fitness Measure

Standard regression techniques often utilize least squares error (LSE) as a
fitness measure. In our case we normalize by dividing LSE by the standard
deviation of "Y" (dependent variable). This normalization allows us to mean-
ingfully compare the normalized least squared error (NLSE) between different
problems.

Of special interest is combining fitness functions to support both symbolic
regression and classification of common stocks into long and short candidates.
Specifically we would like to measure how successful we are at predicting the
future top 10% best performers (long candidates) and the future 10% worst
performers (short candidates).1

Briefly, let the dependent variable, Y, be the future profits of a set of securities,
and the variable, EY, be the estimates of Y. If we were prescient, we could
automatically select the best future performers actualBestLongs, ABL, and worst
future performers actualBestShorts, ABS, by sorting on Y and selecting an
equally weighted set of the top and bottom 10%. Since we are not prescient, we
can only select the best future estimated performers estimatedBestLongs, EBL,
and estimated worst future performers estimatedBestShorts, EBS, by sorting on
EY and selecting an equally weighted set of the top and bottom 10%. If we let
the function avgy represent the average y over the specified set of fitness cases,
then clearly the following will always be the case.

1The concept of long short tail classification is described in detail in (Korns, 2007).

214 GENETIC PROGRAMMING THEORY AND PRACTICE VII

-1 <= ((avgy(EBL)-avgy(EBS))/(avgy(ABL)-avgy(ABS))) <= 1

We can construct a fitness measure known as tail classification error, TCE,
such that

TCE = ((1-((avgy(EBL)-avgy(EBS))/(avgy(ABL)-avgy(ABS))))/2)

and therefore

0 <= TCE <= 1

A situation where TCE < 0.50 indicates we are making money speculating on
our short and long candidates. Obviously 0 is a perfect score (we might as well
have been prescient) and 1 is a perfectly imperfect score (other traders should
do the opposite of what we do). Clearly, considering our financial motivation,
we are interested in achieving superior regression fitness measures; but, we
are also interested in superior classification. In fact, even if the regression
fitness (NLSE) is poor but the classification (TCE) is good, we can still have an
advantage, in the financial markets, with our symbolic regression-classification
tool.

Since both the TCE and NLSE fitness measures are normalized, we can make
standard interpretations of results across a wide range of experiments. In the
case of NLSE, any score of 0.30 or less is very good (meaning the average least
squared error is less than 0.30 of the standard deviation of Y), while a score
of less than 0.50 is okay, NLSE scores greater than 0.50 indicate increasingly
poor regression results. Our system automatically averages the estimates of the
ten top champions (bagging) whenever the training NLSE of the top champion
is greater than 0.50. Finally, a TCE score of less than 0.20 is excellent. A TCE
score of less than 0.30 is good; while, a TCE of 0.30 or greater is poor.

2. Previous Results on Nine Base Problems

The previously published results (Korns and Nunez, 2008) of training on the
nine base training models on 10,000 rows and five columns with no random
noise and only 20 generations allowed, are shown in Table 1-1.2

In general, training time is very reasonable given the difficulty of some of
the problems and the limited number of training generations allowed. Average
percent error performance varies from excellent to poor with the linear and cubic
problems showing the best performance. Extreme differences between training
error and testing error in the mixed and ratio problems suggest over-fitting.

Surprisingly, long and short classification is fairly robust in most cases with
the exception of the ratio, and mixed test cases. The salient observation is the

2The nine base test cases are described in detail in (Korns, 2007).

Symbolic Regression of Conditional Target Expressions 215

Table 13-1. Result For 10K rows by 5 columns with 0% Random Noise

Test Minutes Train-NLSE Test-NLSE Test-TCE
linear 0 0.01 0.01 0.00
cubic 0 0.00 0.00 0.00
cross 107 0.37 0.39 0.02
elipse 0 0.00 0.00 0.00
hidden 3 0.00 0.05 0.00
cyclic 4 0.04 0.14 0.06
hyper 369 0.00 0.00 0.00
mixed 123 0.24 1.65 0.13
ratio 6 0.03 1.05 0.50

Table 13-2. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Test-NLSE Test-TCE
linear 10 0.11 0.11 0.00
cubic 10 0.11 0.11 0.00
cross 9 0.80 0.80 0.19
elipse 12 0.45 0.46 0.05
hidden 10 0.99 0.99 0.45
cyclic 8 0.39 0.91 0.18
hyper 9 0.96 0.96 0.36
mixed 12 0.69 1.85 0.07
ratio 26 0.95 1.18 0.46

relative ease of classification compared to regression even in problems with this
much noise. In some of the test cases, testing NLSE is either close to or exceeds
the standard deviation of Y (not very good); however, in many of the test cases
classification is below 0.20. (very good).

The previously published results (Korns and Nunez, 2008) of training on
the nine base training models on 10,000 rows and twenty columns with 40%
random noise and only 20 generations allowed, are shown in Table 1-2.

Clearly the symbolic regression system performs most poorly on the test
cases hidden, mixed and ratio with conditional target expressions. There is
evidence of over-fitting shown by the extreme differences between training
error and testing error. Plus, the testing TCE is very poor in both ratio test
cases. Taken together, these scores portray a symbolic regression system which
is not ready to handle industrial strength problems containing conditional target
expressions.

216 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Enhancements which will improve our regression scores on the two condi-
tional base test cases, without also greatly reducing the efficiency of the sym-
bolic regression system on the other test cases, is the subject of the remainder
of this chapter.

3. Pessimal Vertical Slicing

In (Korns, 2006) we describe an out-of-sample testing procedure we call
vertical slicing, wherein the rows (samples) in the training matrix X are sorted
in ascending order by the dependent values, Y. Then the sorted rows in X are
subdivided into S vertical slices by selecting every S-th row to be in each vertical
slice. Thus the first vertical slice is the set of training rows as follows X[0],
X[S], X[2*S],

Since Y represents the behavior of the system to be learned, sorting X by Y
insures that each vertical slice contains training examples equally distributed
across the range of behaviors of the system. We train on a single vertical slice,
but score across every fitness example in X.

Vertical slicing reduces training time (which in multiple regression and
swarm grammars can be time consuming); while simultaneously reducing over
fitting by scoring fitness over all slices (out-of-sample testing).3

Our normal vertical slicing sampling size is one out of every hundred train-
ing cases. Of course with difficult conditional target expressions, while this
sampling size reduces training time, it also reduces accuracy. So we face a
conundrum. Increasing the sampling rate increases accuracy; but, also greatly
increases the time to manage easier test cases.

One solution is to leave our normal sampling size as it is (one out of every
hundred training cases) until an emergency is declared. If we get to the end
of the first training epoch (currently set to ten generations) and the champion
NLSE is .50 or higher, then we declare an emergency. The emergency sampling
rate is one out of every four training cases. Increasing the emergency sampling
rate increases accuracy for the difficult problems; and, has no impact on the
easier test cases.

For complete training coverage, we intersperse randomly selected vertical
training slices with pessimally selected vertical training slices with respect to
the current best-of-breed champion. The pessimal vertical slice, with respect
to the current best-of-breed champion, is the vertical slice on which the current
champion has the worst fitness scores. Regardless of which vertical slice is
selected, as the training subset, we still score across every fitness example
in X. Choosing randomly selected training subsets forces complete training

3The implementation of Vertical Slicing is described in detail in (Korns, 2006).

Symbolic Regression of Conditional Target Expressions 217

coverage while still maintaining the out-of-sample scoring so important for
avoiding overfitting. Choosing the pessimal training subset forces the system
to learning those test cases which have been difficult for the current champion
while still maintaining the out-of-sample scoring.

4. Splicing Background

Our system uses a technique known as aged-layered population structure
(ALPS), devised to minimize premature population convergence.4 During the
course of an ALPS training run we keep track of an elitist pool of all-time
champions. As an enhancement, to support splicing, we simultaneously keep
track of a second elitist pool of all-time champions which are uncorrelated to
the champions in the elitist pool. Unfortunately managing the uncorrelated
champion pool requires that we perform a standard statistical correlation test
for every new champion above a certain NLSE. This process is not free, and
therefore it will degrade the performance on the easier test cases to some extent.
Nevertheless maintaining an uncorrelated champion pool will allow us to splice
uncorrelated champions together using conditional abstract expressions.

Before we can reasonably describe the splicing process in detail, we must
provide a brief background on abstract expression grammars as they are used
in this symbolic regression system.

In the literature, informal and formal grammars have been used in genetic
programming to enhance the representation and the efficiency of a number of ap-
plications including symbolic regression - see overviews in (O’Neill and Ryan,
2003) and (Poli et al., 2008). Using a hybrid combination of tree-based GP and
formal grammars, where the head of each s-expression is a grammar rule, the
standard genetic programming population operators of mutation and crossover
can be used without alteration. We use standard mutation and crossover opera-
tions (Koza, 1992) and support both simple regression and multiple regression.

A Concrete Expression Grammar

A simple concrete expression grammar suitable for use in most symbolic re-
gression systems would be a C-like grammar with the following basic elements.

Real Numbers: 3.45, -.0982, and 100.389

Row Features: x1, x2, and x5.

Operators: +, *, /, %, <, <=, ==, ! =, >=, >

Functions: sqrt(), log(), cube(), sin(), tan(), max(), etc.

4The implementation of age-layered population structure is described in detail in (Hornby, 2006).

218 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Conditional: (expr1 < expr2) ? expr3 : expr4

Our numeric expressions are JavaScript-like containing the variables x1
through xm (where m is the number of columns in the regression problem),
real constants such as 2.45 or -34.687, with the following operators +, -, /, %,
*, <, <=, ==, ! =, >=, >, and binary functions expt, max, min, and unary
operators abs, cos, cosh, cube, exp, log, sin, sinh, sqrt, square, tan, tanh, and
the ternary conditional expression operator (...) ? (...) : (...);

Our symbolic regression system creates its regression champion using mu-
tation, and cross over; but, the final regression champion will be a compilation
of a basic concrete expression such as:

(E1): f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

Computing an NLSE score for f requires only a single pass over every row of
X and results in an attribute being added to f by executing the “Score” method
compiled into f as follows.

f.NLSE = f.score(X,Y).

Abstract Constants

Suppose that we are satisfied with the form of the expression in (E1); but,
we are not sure that the real constant 45.3 is optimal. The standard genetic
programming algorithm does not provide a mechanism for optimizing the real
constant, 45.3, other than running the symbolic regression system for more
iterations; and, then we are not guaranteed of receiving an improved answer
in the same form as in (E1). We can enhance our symbolic regression system
with the ability to optimize individual real constants by adding abstract constant
rules to our built-in algebraic expression grammar.

Abstract Constants: c1, c2, and c10

Abstract constants represent placeholders for real numbers which are to be
optimized by the symbolic regression system. To further optimize f we would
alter the expression in (E1) as follows.

(E2): f = (log(x3)/sin(x2*c1))>x4 ? tan(x6) : cos(x3)

The compiler adds a new real number vector, C, attribute to f such that f.C
has as many elements as there are abstract constants in (E2). Optimizing this

Symbolic Regression of Conditional Target Expressions 219

version of f requires that the built-in Score method compiled into f be changed
from a single pass to a multiple pass algorithm in which the real number val-
ues in the abstract constant vector, f.C, are iterated until the expression in (E2)
produces an optimized NLSE. This new score method has the side effect that ex-
ecuting f.score(X,Y) also alters the abstract constant vector, f.C, to optimal real
number choices. Clearly the particle swarm (Eberhart et al., 2001) and differen-
tial evolution algorithms provide excellent candidate algorithms for optimizing
f.C and they can easily be compiled into f.score by common compilation tech-
niques currently in the main stream. Summarizing, we have a new grammar
term, c1, which is a reference to the 1st element of the real number vector, f.C
(in C language syntax c1 == f.C[1]). The f.C vector is optimized by scoring
f, then altering the values in f.C, then repeating the process iteratively until
an optimum NLSE is achieved. Two important features of abstract expression
grammars are worth mention here. The overall genetic programming algo-
rithms within the nonlinear regression system do not have to be altered because
the swarm and differential learning enhancements are hidden inside the Score
method by the abstract expression compiler when appropriate. Furthermore, as
Riccardo Poli (Poli et al., 2008) has pointed out, a new population operator can
be defined which converts abstract expressions into their concrete counterparts.
For instance, if the regression champion agent in (E2) is optimized with:

f.C == < 45.396 >

Then the optimized regression champion agent in (E2) has a concrete con-
version counterpart as follows:

f = (log(x3)/sin(x2*45.396))>x4 ? tan(x6) : cos(x3)

Since abstract expressions are not grammatically excessively different than
concrete expressions, the genetic programming logic in the symbolic regression
system will be able to apply the same type of operations (crossover, mutation,
etc.) on either type of expression. At different stages in the evolutionary process
population operators can be introduced which convert abstract expressions into
their optimized concrete counterparts, or even new mutation operators which
convert concrete expressions into abstract expressions.

Abstract Features

Suppose that we are satisfied with the form of the expression in (E1); but,
we are not sure that the features, x2, x3, and x6, are optimal choices. The
standard genetic programming algorithm does not provide a mechanism for
optimizing these features other than running the symbolic regression system

220 GENETIC PROGRAMMING THEORY AND PRACTICE VII

for more iterations; and, then we are not guaranteed of receiving an improved
answer in the same form as in (E1). We can enhance our symbolic regression
system with the ability to optimize individual features by adding abstract feature
rules to our built-in algebraic expression grammar.

Abstract Features: v1, v2, and v10

Abstract features represent placeholders for features which are to be opti-
mized by the nonlinear regression system. To further optimize f we would alter
the expression in (E1) as follows.

(E3): f = (log(v1)/sin(v2*45.3))>v3 ? tan(v4) : cos(v1)

The compiler adds a new integer vector, V, attribute to f such that f.V has as
many elements as there are abstract features in (E3). Each integer element in
the f.V vector is constrained between 1 and M, and represents a choice of fea-
ture (in x). Optimizing this version of f requires that the built-in Score method
compiled into f be changed from a single pass to a multiple pass algorithm in
which the integer values in the abstract feature vector, f.V, are iterated until the
expression in (E3) produces an optimized NLSE. This new score method has
the side effect that executing f.score(X,Y) also alters the abstract feature vector,
f.V, to integer choices selecting optimal features (in x). Clearly the genetic
algorithm (Man et al., 1999), discrete particle swarm (Eberhart et al., 2001),
and discrete differential evolution (Price et al., 2005) algorithms provide excel-
lent candidate algorithms for optimizing f.V and they can easily be compiled
into f.score by common compilation techniques currently in the main stream.
Summarizing, we have a new grammar term, v1, which is an indirect feature
reference thru to the 1st element of the integer vector, f.V (in C language syntax
v1 == x[f.V[1]]). The f.V vector is optimized by scoring f, then altering the
values in f.V, then repeating the process iteratively until an optimum NLSE is
achieved. For instance, the regression champion agent in (E3) is optimized
with:

f.V == < 2, 4, 1, 6 >

Then the optimized regression champion agent in (E3) has a concrete con-
version counterpart as follows:

f = (log(x2)/sin(x4*45.396))>x1 ? tan(x6) : cos(x2)

Symbolic Regression of Conditional Target Expressions 221

Abstract Functions

Similarly, we can enhance our nonlinear regression system with the ability
to optimize individual features by adding abstract functions rules to our built-in
algebraic expression grammar.

Abstract Functions: f1, f2, and f10

Abstract functions represent placeholders for built-in functions which are
to be optimized by the nonlinear regression system. To further optimize f we
would alter the expression in (E2) as follows.

(E4): f = (f1(x3)/f2(x2*45.3))>x4 ? f3(x6) : f4(x3)

The compiler adds a new integer vector, F, attribute to f such that f.F has as
many elements as there are abstract features in (E4). Each integer element in the
f.F vector is constrained between 1 and (number of built-in functions available
in the expression grammar), and represents a choice of built-in function. Opti-
mizing this version of f requires that the built-in Score method compiled into f
be changed from a single pass to a multiple pass algorithm in which the integer
values in the abstract function vector, f.F, are iterated until the expression in
(E4) produces an optimized NLSE. This new score method has the side effect
that executing f.score(X,Y) also alters the abstract function vector, f.F, to inte-
ger choices selecting optimal built-in functions. Clearly the genetic algorithm
(Man et al., 1999), discrete particle swarm (Eberhart et al., 2001), and discrete
differential evolution (Price et al., 2005) algorithms provide excellent candidate
algorithms for optimizing f.F and they can easily be compiled into f.score by
common compilation techniques currently in the main stream. Summarizing,
we have a new grammar term, f1, which is an indirect function reference thru
to the 1st element of the integer vector, f.F (in C language syntax f1 == fun-
tionList[f.F[1]]). The f.F vector is optimized by scoring f, then altering the
values in f.F, then repeating the process iteratively until an optimum NLSE is
achieved. For instance, if the valid function list in the expression grammar is

f.functionList = < log, sin, cos, tan, max, min, avg, cube, sqrt >

And the regression champion agent in (E4) is optimized with:

f.F = < 1, 8, 2, 4 >

Then the optimized regression champion agent in (E4) has a concrete con-
version counterpart as follows:

222 GENETIC PROGRAMMING THEORY AND PRACTICE VII

f = (log(x3)/cube(x2*45.3))>x4 ? sin(x6) : tan(x3)

The built-in function argument arity issue is easily resolved by having each
built-in function ignore any excess arguments and substitute defaults for any
missing arguments. Furthermore random noise functions, such as in (Schmidt
and Lipson, 2007), can easily be added to the list of available built-in functions
in the expression grammar.

5. Splicing Details

Assume that we have reached the end of the first training epoch and the best
of breed NLSE is so high that we declare an emergency. What action do we
take to address this declared emergency?

Our approach is to introduce an end-of-epoch splicing algorithm to fit to-
gether uncorrelated champions using abstract conditional expressions. Select-
ing the fittest champion, G, from the elitist all-time champion pool and selecting
the fittest champion, H, from the uncorrelated champion pool, we create several
new candidate champions by splicing together the well formed formulas G.wff
and H.wff via various predefined abstract conditional expressions as follows.

B1: y = (v1>c1) ? G.wff : H.wff

B2: y = (c1>v1) ? G.wff : H.wff

B3: y = (v1>v2) ? G.wff : H.wff

B4: y = (f1(v1,v2)>c1) ? G.wff : H.wff

B5: y = (f1(v1,v2)<c1) ? G.wff : H.wff

B6: y = (f1(v1,v2)>v3) ? G.wff : H.wff

B7: y = (f1(v1,v2)<v3) ? G.wff : H.wff

B8: y = (f1(v1,v2)<f2(v3,v4)) ? G.wff : H.wff

Finally, at the end of each epoch, the splicing algorithm introduces each
of the above abstract expressions into the evolutionary pool trying to improve
the NLSE over that of the current best of breed champion. Each of the above
splicings is optimized and their optimized concrete conversions are stored in
the appropriate population.

For example, suppose our target expression is shown in (E5) below, our
best of breed champion is such that G.wff = tan(x6), and our best uncorrelated
champion is such that H.wff = cos(x3), then we have final training situation as
follows.

Symbolic Regression of Conditional Target Expressions 223

(E5): f = (log(x3)>x4) ? tan(x6) : cos(x3)

G.wff = tan(x6)

H.wff = cos(x3)

Clearly, given the above situation, the splicing algorithm would attempt to
train the following several spliced abstract conditional champions.

B1: y = (v1>c1) ? tan(x6) : cos(x3)

B2: y = (c1>v1) ? tan(x6) : cos(x3)

B3: y = (v1>v2) ? tan(x6) : cos(x3)

B4: y = (f1(v1,v2)>c1) ? tan(x6) : cos(x3)

B5: y = (f1(v1,v2)<c1) ? tan(x6) : cos(x3)

B6: y = (f1(v1,v2)>v3) ? tan(x6) : cos(x3)

B7: y = (f1(v1,v2)<v3) ? tan(x6) : cos(x3)

B8: y = (f1(v1,v2)<f2(v3,v4)) ? tan(x6) : cos(x3)

If the splicing algorithm is behaving optimally, we would expect the final
concrete conversion of the fully trained (B6) to be as follows.

B6 (concrete): y = (log(x3)>x4) ? tan(x6) : cos(x3)

This is of course the correct answer.

6. Abstract Mutation and Crossover

In standard mutation and crossover, random segments of program code are
selected for mutation and swapping. In abstract mutation and crossover, these
randomly selected segments are abstracted. In both abstract mutation and
abstract crossover, a set of simple rules define the process of abstracting an
expression segment, as follows:

Real Numbers: 3.45, -.0982 are converted to c1, c2

Row Features: x1, x4 are converted to v1, v2

Operators: +, * are converted to f1(), f2()

Functions: sqrt(), log() are converted to f1(), f2()

224 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Using these simple rules, the abstract mutation population operator works as
in the following example:

f = (log(x3)/sin(x2*45.3))>x4 ? tan(x6) : cos(x3)

The selected segment sin(x2*45.3) is abstracted into f1(f2(v1,c1))

where f1 = sin, f2 = *, v1 = x2, and c1 = 45.3

which is then inserted below

f = (log(x3)/f1(f2(v1,c1)))>x4 ? tan(x6) : cos(x3)

Similarly, the abstract crossover population operator selects two random
segments from two expressions such as:

dad = (log(x3)/sin(x2*45.3))

mom = (tan(x3)/cube(x2*45.3))

The selected segments are first swapped and then "abstracted" as follows:

dad = (x2*45.3)/sin(x2*45.3)) abstracted as = (f1(v1,c1))/sin(x2*45.3))

mom = (tan(x3)/cube(log(x3))) abstracted as = (tan(x3)/cube(f1(v1)))

After abstract mutation or crossover, the new abstract expressions are op-
timized by the regression system. Only their optimized concrete conversions
are saved in the proper evolutionary populations. In the enhanced system, 5%
of all mutations are abstract mutations and 5% of all crossovers are abstract
crossovers.

From first principles, abstract mutation and crossover are compelling because
it is less likely that 45.3 will be optimal in a new mutation or location; and,
more likely that c1 will find a local optimum in the new mutation or location.
Similar arguments are put forward for v1, and f1.

7. Enhanced Results on Nine Base Problems

The enhanced results of training on the nine base training models on 10,000
rows and five columns with no random noise and only 20 generations allowed,
are shown in Table 1-3 in order of difficulty.

The enhanced results of training on the nine base training models on 10,000
rows and twenty columns with 40% random noise and only 20 generations
allowed, are shown in Table 1-4 in order as shown in Table 1-3.

Clearly, in time-constrained training (only 20 generations), the enhanced
symbolic regression system is an improvement over the previously published

Symbolic Regression of Conditional Target Expressions 225

Table 13-3. Result For 10K rows by 5 columns no Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 1 0.00 0.00 0.00 0.00
cubic 1 0.00 0.00 0.00 0.00
cross 145 0.00 0.00 0.00 0.00
elipse 1 0.00 0.00 0.00 0.00
hidden 3 0.00 0.00 0.00 0.00
cyclic 1 0.02 0.00 0.00 0.00
hyper 65 0.17 0.00 0.17 0.00
mixed 233 0.94 0.32 0.95 0.32
ratio 229 0.94 0.33 0.94 0.32

Table 13-4. Result for 10K rows by 20 columns with 40% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE
linear 82 0.11 0.00 0.11 0.00
cubic 59 0.11 0.00 0.11 0.00
cross 127 0.87 0.25 0.93 0.32
elipse 162 0.42 0.04 0.43 0.04
hidden 210 0.11 0.02 0.11 0.02
cyclic 233 0.39 0.11 0.35 0.12
hyper 163 0.48 0.06 0.50 0.07
mixed 206 0.90 0.27 0.94 0.32
ratio 224 0.90 0.26 0.95 0.33

226 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Table 13-5. Result for 10K rows by 5 columns with 0% Random Noise

Test Minutes Train-NLSE Train-TCE Test-NLSE Test-TCE Gens
mixed 233 0.94 0.32 0.95 0.32 20
mixed 9866 0.87 0.24 0.88 0.25 200
mixed 15148 0.85 0.23 0.87 0.26 400
ratio 229 0.94 0.33 0.94 0.32 20
ratio 10324 0.87 0.23 0.87 0.25 200
ratio 14406 0.82 0.19 0.82 0.20 400

results. While the enhanced system performs poorly on the two test cases
mixed and ratio with conditional target expressions, the obvious over fitting,
determined by the extreme differences between training error and testing er-
ror in the previously published results, has vanished. In addition, the testing
TCE scores indicate that we can perform some useful classification even in the
difficult conditional problems with noise added.

As an acid test of the value of the system enhancements, it would be helpful
to know how well the enhanced symbolic regression system performs on the two
test cases mixed and ratio with conditional target expressions when the training
is not time-constrained. For instance, do added training generations improve
the training NLSE and TCE scores? Does added training time also improve the
testing NLSE and TCE scores, or does the harmful over fitting reappear once
again?

The results of training on the two test cases mixed and ratio, with conditional
target expressions, on 10,000 rows and five columns with 0% random noise and
allocating additional training generations, are shown in Table 1-5.

Clearly removing the time constraint on training, by adding additional train-
ing generations, steadily improves the results. There is obvious incremental
improvement in the training NLSE and TCE scores for both problems as the
number of training generations increases. Furthermore, the testing NLSE and
TCE scores for both problems also improve steadily as the number of training
generations increases. There is no evidence of a limit on training improvement
nor any evidence of over fitting at least up to 400 training generations.

Taken together, these results portray a symbolic regression system which is
ready to handle some industrial strength problems containing conditional target
expressions.

Summary

Genetic Programming, from a corporate perspective, is ready for industrial
use on some large scale, symbolic regression-classification problems. Adapt-

Symbolic Regression of Conditional Target Expressions 227

ing the latest research results, has created a symbolic regression tool whose
efficiency is improving especially on the more difficult test cases.

Financial institutional interest in the field is growing while pure research con-
tinues at an aggressive pace. Further applied research in this field is absolutely
warranted. We are using our nonlinear regression system in the financial do-
main. But as new techniques are added and current ones improved, we believe
that the system has evolved to be a domain-independent tool that can provide
superior regression and classification results for industrial scale nonlinear re-
gression problems.

Clearly we need to experiment with even more techniques which will improve
our performance on the conditional test cases. Primary areas for future research
should include: experimenting with statistical and other types of analysis to help
build conditional WFFs for difficult conditional problems with large amounts
of noise; and experimenting with techniques to remove training time constraints
while increasing training generations, for instance parallelizing the system on
a cloud environment.

References

Eberhart, Russell, Shi, Yuhui, and Kennedy, James (2001). Swarm Intelligence.
The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann,
New York.

Hornby, Gregory S. (2006). ALPS: the age-layered population structure for
reducing the problem of premature convergence. In Keijzer, Maarten, Cat-
tolico, Mike, Arnold, Dirk, Babovic, Vladan, Blum, Christian, Bosman, Pe-
ter, Butz, Martin V., Coello Coello, Carlos, Dasgupta, Dipankar, Ficici, Se-
van G., Foster, James, Hernandez-Aguirre, Arturo, Hornby, Greg, Lipson,
Hod, McMinn, Phil, Moore, Jason, Raidl, Guenther, Rothlauf, Franz, Ryan,
Conor, and Thierens, Dirk, editors, GECCO 2006: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression.
In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Pro-
gramming Theory and Practice IV, volume 5 of Genetic and Evolutionary
Computation, chapter 16, pages –. Springer, Ann Arbor.

Korns, Michael F. (2007). Large-scale, time-constrained symbolic regression-
classification. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,
Genetic Programming Theory and Practice V, Genetic and Evolutionary
Computation, chapter 4, pages 53–68. Springer, Ann Arbor.

Korns, Michael F. and Nunez, Loryfel (2008). Profiling symbolic regression-
classification. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors,

228 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Genetic Programming Theory and Practice VI, Genetic and Evolutionary
Computation, chapter 14, pages 215–229. Springer, Ann Arbor.

Koza, John R. (1992). Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Man, Kim-Fung, Tang, Kit-Sang, and Kwong, Sam (1999).Genetic Algorithms:
Concepts and Designs. Advanced Textbooks in Control and Signal process-
ing. Springer Verlag, New York.

O’Neill, Michael and Ryan, Conor (2003). Grammatical Evolution: Evolution-
ary Automatic Programming in a Arbitrary Language, volume 4 of Genetic
programming. Kluwer Academic Publishers.

Poli, Riccardo, Langdon, William B., and McPhee, Nicholas Freitag (2008). A
field guide to genetic programming. Published via http://lulu.com and
freely available at http://www.gp-field-guide.org.uk. (With contri-
butions by J. R. Koza).

Price, Kenneth, Storn, Rainer, and Lampinen, Jouni (2005). Differential Evo-
lution: A Practical Approach to Global Optimization. Natural Computing
Series. Springer Verlag, New York.

Schmidt, Michael D. and Lipson, Hod (2007). Learning noise. In Thierens, Dirk,
Beyer, Hans-Georg, Bongard, Josh, Branke, Jurgen, Clark, John Andrew,
Cliff, Dave, Congdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Ko-
vacs, Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jason, Neumann, Frank,
Pelikan, Martin, Poli, Riccardo, Sastry, Kumara, Stanley, Kenneth Owen,
Stutzle, Thomas, Watson, Richard A, and Wegener, Ingo, editors, GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary
computation, volume 2, pages 1680–1685, London. ACM Press.

Index

3D solid objects, 95
Abstract

constants, 218
crossover, 212
expression grammars, 211
features, 219
functions, 221
mutation, 11, 212

Age, 90
layer, 90

Age-layered populations, 211
Age-Layered Population Structure (ALPS), 5–6, 87
Algebra, 5
Algorithmic trading, 119
Analog circuits, 104–105
Antenna, 11, 94
Antennae, 5
Application successes, 7
Attribute space, 39, 41, 44–45, 47, 49, 51
Averaging, 135, 137

errors, 138
response-locked, 138
stimulus-locked, 137

Banzhaf Wolfgang, 119
Becker Ying, 2
Behavior preserving operator, 7
Best-practice approach to enhanced reliability and

results quality, 6
Best practices

in design of GP fitness functions, 7
in general design of representations and

operators, 7
in representation and operator design on specific

problems, 7
Binning, 136

optimal, 143
response-time, 140

Biocomputing and Developmental Systems Group,
2

Biology, 5
Bongard Josh, 195
Boosted trees, 107
Boosting, 107
Bootstrapping, 107

Brain-Computer Interface, 135, 153
CAFFEINE, 107–109
CART, 107
Cinel Caterina, 135
Circuits, 104–105
Citi Luca, 135
Classification and regression trees, 107
Competitive coevolution, 40–43, 52
Computational Genetics Laboratory, 2
Conditional expressions

in symbolic regression, 11
Context aware crossover, 211
Cooperative behavior, 38–40, 43, 50–52
Co-operative co-evolution, 121
CountryData, 57
Crossover, 195
CSCS, 2
Data

analysis, 5, 58
balancing, 7, 9, 57, 59

Day trading, 11
Design and discovery, 5
Design of Graph-Based Structures, 11
Developmental GP, 119
Differential evolution, 211
Dimension reduction, 7
DNA analysis, 10
Doucette John, 37
Dynamical systems

reverse engineering, 9
Economic Resource Usage, 3
EEG time series classification, 9
Electroencephalography, 135

(EEG) signal classification, 7
Embedded classifier, 38–39, 45
Empirical research, 5
Ensemble learning, 38, 40, 51–52
Ensuring Quality Results, 4
Enzyme genetic programming, 196
Event-Related Potentials (ERPs), 9, 135
Evolved Analytics, 2
Feature

selection, 38, 45, 47, 49–50, 52
tests, 7, 162

230 GENETIC PROGRAMMING THEORY AND PRACTICE VII

Finance, 5
Financial

analysis, 120
applications, 10

Fitness
function design, 7
functions, 75
Kolmogorov-Smirnov test, 145
sharing, 42–43, 52

Fractional distance, 63
Freeman Investment Management, 2, 11
Functional crossover, 195

operator, 7
GDR, 107–109, 111
Generative representation, 94, 96
Genotype-phenotype mapping, 120, 180
GP

as a Discovery Engine, 8
challenges, 3
developmental, 119
expressions, 3
generative representations, 3
grammar guided, 164
grammars, 3
in Mathematica, 8
introduction, 2
linear, 145
looking forward, 12
multi-program representation, 146
progress, 5
register-based, 135, 145
search space, 3
symbolic regression system, 8
themes, 12
versus other EAs, 3

Gradient Directed Regularization, 107–109, 111
Grammar-guided GP, 164
Graph Structured Program Evolution (GRAPE), 11,

177
Greene Casey S., 19
Headless chicken crossover, 196
Heywood Malcom, 37
Hierarchical fair competition (HFC), 5
High-Dimensional

classification, 7
inputs, 103
Symbolic Regression and Classification, 9

Hill Douglas P., 19
Homologous crossover, 196
Hornby Gregory S., 87
Humies, 5
Imada Janine, 159
Implicit

derivatives, 78
equation, 74
equations, 76
functions, 7

systems, 75
Industrial scale modeling, 5
Integrated circuits, 104–105
Interday trading, 120
Investment Science Corporation, 11
Korns Michael F., 2, 211
Kotanchek Mark E., 2, 55
Koza John, 2
Latent

Variable Regression, 105, 109–116
variables, 105, 109–110
Variable Symbolic Regression, 105, 110–116

Lichodzijewski Peter, 37
Linear

genetic programming (LGP), 119, 145
regression, 107–109

Lipson Hod, 73
LISP functions, 3
L-systems, 96
LVR, 105, 109–116
LVSR, 105, 110–116
Manufacturing variations, 104, 106
McConaghy Trent, 1, 103
Membership functions, 146
Memory-with-Memory, 135, 145
Metaheuristic, 88
Moore Jason H., 2, xiv, 19
Multi-objective optimization, 160
Multi-program representation GP, 146
Multi-run EA, 88
Nagao Tomoharu, 177
NASA ST-5 mission, 94
Nelder-Mead Simplex algorithm, 111
Neural network, 110
Neutrality, 181
New directions, 12
Nonlinear sensitivity analysis, 104
O’Reilly Una-May, 1
Outlier, 56

detection, 8, 58
P2M, 110
PAM DGP, 7
Pareto

Front, 82
genetic programming, 68

Partial
derivatives, 78
least squares, 109

Particle swarm, 211
Pessimal vertical slicing, 11, 212
Piecewise-linear model, 110–111
PLS, 109
Poli Riccardo, 135
Premature convergence, 87
Primitive set, 145
Probabilistic Adaptive Mapping Developmental

Genetic Programming (PAM DGP), 119

INDEX 231

PROBE, 107–109
Problem

decomposition, 38, 40, 52
domains, 4

Process
algebra, 161
variations, 104, 106

Projection
pursuit, 109
vector, 109

Prototype data, 56
Psychophysiology, 136
PWL, 110–111
Quadratic modeling, 107–109
Radial basis functions, 109
Random Forests, 107–109, 111
RBF, 109
Register-based

GP, 135, 145
programs, 3
software programs, 7

Regularized linear regression, 107–109
Reliable convergence, 4
Response-time binning, 140
Reverse engineering

dynamical systems, 9
RF, 107–109, 111
Riolo Rick, 1
Robust design, 104
Root mean-squared error, 108
Ross Brian, 159
RTL benchmark circuit, 5
Ryan Conor, 2
Schmidt Michael, 73
Semantic crossover, 196

Sensitivity analysis, 104
SGB, 107–109
Shirakawa Shinichi, 177
Simulated annealing, 91
Size fair crossover, 196
Smits Guido F., 55
Splicing, 212
Sponsors, 2
Stability, 163
Stack-based programs, 3
State Street Global Advisors, 2
Stochastic

Gradient Boosting, 107–109
π-calculus, 161
process, 160
reaction processes, 9

Stock prediction, 120
Surfaces, 74
Symbiosis, 38, 40–42, 52
Symbolic regression, 67, 73, 103–104, 107–111

classification system, 211
targets with conditional expressions, 11

Syntactic similarity, 196
System identification, 197
Tail classification error (TCE), 214
Third Millenium, 2
Time-Domain Modeling, 9
Time series, 162

with many state variables, 9
Tozier Bill and Barbara, 2
Trading rules, 120
Trivial solution, 77
Unsupervised learning, 74
Vague Innovation, 2
Vertical slicing, 106, 212
Vladislavleva Ekaterina Y., 55
Wilson Garnett, 119

	Genetic Programming Theory and Practice VII
	Contents
	Contributing Authors
	Preface
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Index

