CHAPTER 6

FoxO Proteins and Cardiac Pathology

Albert Wong and Elizabeth A. Woodcock*

Abstract

he FoxO family of transcription factors mediate a wide range of cellular responses from

cell death to cell survival, growth inhibition and glucose utilization. This complex array of

responses is regulated by an equally complex regulatory system, involving phosphorylation,
ubiquitinization and acetylation, in addition to interactions with other transcription factors and
transcriptional modifiers. In heart, FoxO proteins have been shown to be involved in development,
in limiting hypertrophic growth responses and in cardioprotection provided by silent information
regulator 1 (Sirt1). However, the range of responses mediated by FoxO proteins and the clear evi-
dence for involvement of FoxO regulators in cardiac pathology, suggest that further pathological
actions of FoxO family members remain to be elucidated.

The FoxO Family

FoxO proteins are members of the forkhead family of transcription factors characterized by the
presence of a forkhead box or Fox, which binds DNA at GTAAACA consensus sequences.? Genes
encoding the FoxO proteins were initially identified at chromosome break points in tumour cells
and shown to be homologues of the Caenobabditis elegans DAF 16 protein that regulates longevity.3
Thus, from their initial discovery, the FoxO proteins have been associated with cell survival and cell
death responses. There are currently four FoxO proteins known to be expressed in mammalian tis-
sues; FoxO1, FoxO3, FoxO4 and the more recently described FoxO6.%* The first 3 FoxO proteins are
expressed in heart,® show strong sequence similarity and are regulated similarly. FoxOG is expressed
only in the central nervous system and will not be discussed further here. While FoxOs 1, 3 and 4
are expressed in cardiomyocytes, there is relatively little information about their functional roles in
the heart. However, a number of factors that regulate FoxO activity have been shown to have major
rolesin protecting the heart under pathological conditions or in some cases in causing cardiac damage.
This chapter will examine the evidence for an involvement of FoxO proteins in cardiac pathology
and will also examine the roles of known FoxO effectors and suggest ways in which their cardiac
responses may be mediated by FoxO transcription factors.

The Spectrum of Transcriptional Responses Mediated
by FoxO Family Members

FoxO proteins are transcription factors that mediate a bewildering range of cellular responses,
which in some cases appear to be opposing. In worms and flies the FoxO homologues, DAF 16 and
dFoxO respectively, extend longevity by promoting resistance to stressors, including infectious agents
and oxidative stress.” The functions of the FoxOs are more complex in mammalian tissues. FoxO 1
and 3 are widely expressed in mammalian cell types and responses observed depend to an extent on
the cell type studied. Expression of FoxO4 is more restricted, but it is expressed in the myocardium
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along with FoxOs 1 and 3. Even within the one cell type, responses generally differ between the
FoxO subtypes.3® Furthermore, there is evidence that FoxOs can have different functions depend-
ing on the nature or the magnitude of the stimulus, as well as on the presence other transcriptional
effectors.'* In various mammalian cell types, FoxOs can promote resistance to oxidative stress by
transcriptional activation of catalase and MnSOD that serve to remove reactive oxygen species.!>'6
However, FoxO members are also able to initiate apoptosis via transcriptional increases in apoptotic
effectors such as Fas-L and Bim.'*'*? FoxO proteins increase DNA repair via growth arrest and
DNA damage-inducible 45 (GADD 45) and damaged DNA binding protein 1 (DDBI1),% cause
cell cycle arrest via p21, p27, p130 cyclin-dependent kinase inhibitors, as well as cyclin G2*% and
regulate glucose and energy homeostasis via glucose 6-phosphatase, phosphoenolpyruvate carboxy
kinase, Agouty related peptide (AgRP) and neuropeptide Y (NPY).2%

Regulation of FoxO Proteins

Phosphorylation

In keeping with the array of responses associated with FoxO transcription factors, their regu-
lation, both positive and negative, involves multiple mechanisms. Initially FoxO proteins were
shown to be phosphorylated by the protein kinase Akt (or protein kinase B, PKB).2® Akt itself is
activated by phosphorylation subsequent to phosphatidylinositol 3-kinase (PI 3-kinase) activation
following stimulation with growth factors or G protein coupled receptor agonists.”” Akt phos-
phorylates FoxOs 1, 3 and 4 at three specific sites, as outlined in Figure 1. This phosphorylation
results in nuclear exclusion and association with 14-3-3 proteins® and thereby inhibits FoxO from
functioning as a transcription factor. As shown in Figure 1, one of the Akt phosphorylation sites
is in the DNA binding domain and the nuclear localization sequence. Phosphorylation of this
site (§%2 in mouse FoxO1) generally occurs prior to phosphorylation occurring at the other two
sites.®! It is now also clear that phosphorylation of $* displaces DNA-bound FoxO and thereby
directly inhibits transcriptional activity,* in addition to facilitating exclusion from the nucleus.
Thus, there is a defined hierarchy between the Akt phosphorylation sites in FoxO. Removal of
phosphorylated FoxO from the nucleus is a complex process involving both the nuclear exclusion
sequence (NES) exposed following phosphorylation and the 14-3-3 association.?*** In heart,
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Figure 1. The structure of FoxO family members. FoxO1, FoxO3 and FoxO4 follow a similar
pattern of phosphorylation, ubiquitinization and acetylation sites. NLS, nuclear localization
sequence; NES, nuclear exclusion sequence; LxxLL is s sequence associated with binding of
nuclear hormone receptors.
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phosphorylation of FoxO by Akt has been demonstrated® and, under basal conditions, FoxO
proteins are largely cytoplasmic.

In marked contrast, more recent studies have revealed that FoxO family members can also be
activated by phosphorylation, although on different sites from those phosphorylated by Akt, as shown
in Figure 1. Activating phosphorylation is mediated by mammalian sterile 20 like kinase 1 (Mst1) a
homologue of the Drosophila sterile 20 kinase." Mst1 is a Ser, Thr directed protein kinase activated
by stressors, including oxidative stress.!>** The biology of Mst1 remains to be fully investigated. Mst1
isactivated by phosphorylation downstream of K-Ras signalling® and K-Ras can be activated down-
stream of NADPH oxidase 1 (Nox1).% Mst1 can also be activated following cleavage by caspase 3.
Under this scenario, activation by caspase 3 cleavage could serve to perpetuate Mst1 activation and
consequent cellular damage following initiation of apoptosis.® Mst1 phosphorylates FoxO family
members on Ser/Thr residues within the DNA-binding forkhead domain to enhance DNA binding
and therefore FoxO transcriptional activity.” Mst1 phosphorylation also disrupts association with
14-3-3 proteins and thus facilitates nuclear retention.

Ubiquitinization

FoxO proteins, phosphorylated by Akt and shunted into the cytoplasm, are subsequently
polyubiquitinated and degraded via the proteosome system,” by a process that absolutely requires
phosphorylation of Akt phosphorylation sites. The ligase most prominent in this response is Skp2
and overexpression of Skp2 can reverse FoxO mediated responses.* Thus, polyubiquitinization and
proteosomal destruction is the end point of Ake initiated FoxO inhibition (Fig. 2).
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Figure 2. Regulation of FoxO family members under conditions of ischemia and reperfusion.
FoxO proteins are phosphorylated by Akt and dephosphorylated by protein phosphatase 2A
(PP2A). Skp2 ubiquitinates Akt-phosphorylated, 14-3-3-bound FoxO and targets it for deg-
radation. E3 ubiquitin ligase activates FoxO and this is reversed by herpes virus-associated
ubiquitin specific protease (HAUSP or USP7). Mst1 phosphorylation activates transcriptional
activity of FoxO. Additionally, FoxO activity is regulated by acetylation by cAMP response
element binding protein (CBP) and p300 histone acetyltransferase. Deacetylation is achieved
by silent information regulator 1 (Sirt1).
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In addition to this polyubiquitinization that is required for proteosomal degradation, FoxO
proteins can also be selectively ligated with monomers of ubiquitin. This mono-ubiquitinization,
(on K% in mouse FoxO1) mediated by ligases such as E3-ubiquitin ligase, enhances nuclear
localization and transcriptional activity.”? This increases nuclear localization and enhances
transcriptional activity of FoxO.* Removal of these ubiquitin residues is achieved by herpes
virus-associated ubiquitin specific protease (HAUSP). The balance between mono-ubiquinylated
and nonubiquinylated FoxO determines transcriptional activity and this balance is regulated by
reactive oxygen species.

Acetylation

In addition to regulation by phosphorylation and ubiquitinization, FoxO proteins are
regulated by acetylation. Acetylation is mediated by histone acetyl transferases including p300
and the cAMP response element binding protein (CBP) and involves critical lysine residues
(K*2, K**, K*2, in mouse FoxO1).* Such acetylation reduces the positive charge on the FoxO
protein reducing DNA binding and thereby reducing transcriptional activity.*® Acetylation also
facilitates Akt phosphorylation of $?%, further limiting FoxO functioning, as described above.*
Deacetylation is achieved primarily by class III histone deacetylases, particularly silent informa-
tion regulator 1 (Sirt1), ahomologue of Sir2 in C. elegans. Inhibition, rather than activation, of
FoxO activity by deacetylation has also been reported. ¢ The reason for the apparently opposing
effects of FoxO acetylation is not known. Given that acetylation of positively charged lysine
residues inhibits DNA binding, it is possible that increased transcriptional responses reflect
FoxO actingas a transcriptional partner rather than a direct DNA binding transcription factor
at those particular promoters.

Transcriptional Partners of FoxO

FoxO family members have direct transcriptional activity by binding forkhead consensus se-
quences, but in addition these proteins also interact with other transcription factors and transcrip-
tion modifiers to regulate transcription. There are a number of different ways in which this can be
accomplished. In some cases, FoxO and its transcriptional partner both bind their respective DNA
sequences, as occurs for the interaction between FoxO and Smads.” In other cases FoxO-DNA
interaction is not involved. This mechanism is exemplified by the inhibitory interaction with
myocardin, where FoxO4 reduces the association between myocardin and serum response factor.*®
There are also examples of FoxO functioning by simply soaking up a transcriptional cofactor and
reducing its availability. The interaction between FoxO and B-catenin removes B-catenin from
another transcription factor (TCF) and reduces its activity® (Fig. 3).

FoxOs interact strongly with nuclear hormone receptors via its LxxLL domain (Fig. 1), resulting
in altered activity of both proteins.” Among these, interactions with peroxisome proliferator-ac-
tivated receptors (PPAR), PPARa and PPARY are likely to be important in heart, where these
transcription factors are protective.*>>! FoxO proteins also interact with the PPARY co-activator
PGC-1a; in this case the interaction enhances FoxO activity.’? PGC-1at is deacetylated by Sirt 1.
This suggests a complex relationship between PPAR and FoxO family members.

The transcriptional modifier, myocardin, is active only in smooth and cardiac muscle where it
plays critical roles in development and in postnatal growth, via association with serum response
factor.®* Myocardin interacts with FoxO4 in a mutually inhibitory manner,* but this interaction
has not been reported in heart, to date.

The Smad family of transcription factors is activated by phosphorylation downstream of trans-
forming growth factor § (TGFf) receptors. Phosphorylated Smad3 translocates to the nucleus
where it associates with Smad4 and the Smad3/4 complex is transcriptionally active. The Smad3/4
complex can form a larger complex with FoxO family members and this heightens responses to
both FoxO and Smad transcription factors.”** As shown in Figure 3, both FoxO and Smad bind
to their respective consensus sequences, but with heightened activity. Thus some of the responses
initiated by FoxO family members may result from interaction with Smads.
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Figure 3. Transcriptional activity of FoxO transcription factors. A) FoxO family members can
bind DNA consensus sequences to activate transcription. B) FoxO proteins can associate with
other transcription factors, with both factors binding their respective consensus sequences, as
shown for the Smad family of transcription factors. C) FoxO proteins can interact with tran-
scriptional enhancers to reduce their activity, as shown for myocardin enhancement of serum
response factor (SRF) activity. D) FoxO can bind other transcriptional activators removing
them from other effectors, as shown for B-catenin activation of TCF responses.

[3-catenin is another factor that associates with FoxO family members, in this case in a mutually
inhibitory fashion.* Under conditions of cell stress, B-catenin translocates from the plasma mem-
brane to the nucleus and initiates cell survival responses by binding its partner, the transcription
factor TCF. FoxO inhibits these responses by sequestering p-catenin away from TCF* (Fig. 3).

FoxO Transcription Factors in Cardiac Pathology

Mpyocardial Ischemia and Post-Ischemic Reperfusion

By definition, myocardial ischemia involves a critical reduction in the blood supply to the myocar-
dium. Clinically, this generally involves blockage of the coronary arteries supplying the ventricle. In
the experimental situation, isolated hearts are subjected to reduced flow of perfusate delivering oxygen
and nutrients,* orisolated cardiomyocytes are subjected to low oxygen together with changes in media
composition.” Reperfusion is achieved by re-instating blood flow, or in the experimental situation,
by re-introducing oxygen.’¢*® While reperfusion is essential to prevent irreversible tissue damage,
it introduces further damage to the myocardium, mediated, in part, by the generation of reactive
oxygen species (ROS). Ischemia and postischemic reperfusion are major initiators of cardiac pathol-
ogy. Acutely, ischemic episodes cause arrhythmia often leading to sudden cardiac death. % Ischemic
episodes that are not immediately fatal cause myocardial infarction that is followed by compensatory
cardiomyocyte hypertrophy, leading eventually to heart failure.® Damage to cardiomyocytes during
ischemia and subsequent reperfusion involves both necrotic and apoptotic cell death® and at least in
animal models, reduction in cardiomyocyte apoptosis improves functional outcomes.5

In model systems, ischemic injury can be ameliorated by activation of PI 3-kinase and subsequent
activation of the protein kinase Akt, a FoxO inhibitor described above.5*%> Akt protection results in
reduced infarct size, indicating improved cell survival, as well as improved functional recovery.5*¢5
Akt phosphorylates a number of targets including pro-apoptotic effectors. Inportant among these are
the pro-apoptotic proteins BAD, Mst1, caspase 9% and all of the FoxO proteins expressed in heart.®
FoxO proteins promote apoptosis via transcriptional activation of apoptotic effectors such as tumor
necrosis factor related apoptosis inducing ligand (TRAIL), Bim and Fas ligand.#%° Cardiomyocytes
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are relatively resistant to apoptosis and, in particular, the extrinsic pathway of apoptosis is though
to be only minimally involved in cardiomyocyte damage.”®”! However, there have been reports of
Fas activation and its possible involvement in ischemic injury.»”* Cardiomyocyte apoptosis most
commonly involves the mitochondrial, intrinsic pathways.” Bim, a proapoptotic BcL-2 protein, is
a transcriptional target of FoxO proteins and thus increased Bim expression, subsequent to FoxO
activation, is a possible contributor to Akt-reversible cardiomyocyte cell death. This, of course,
leaves open the question of how FoxOs would be activated by ischemia/reperfusion. This question
is discussed further below.

One possible mechanism by which FoxO proteins might be activated under conditions of isch-
emia/reperfusion involves the activating protein kinase Mst1, alluded to earlier. Mst1 is activated
by stressors, including oxidative stress,'>* as occurs under conditions of ischemia/reperfusion.” As
noted above, Mst1 phosphorylates FoxO family members within the forkhead domain to enhance
DNA binding and therefore FoxO transcriptional activity.’ Thus, Mst1 phosphorylation of FoxO
acts in opposition to the inhibitory phosphorylation mediated by Ake. Recently, Ste20/oxidant
stress response kinase-1 (SOK1), a close relative of Mst1, has been shown to be directly activated by
interaction with reactive oxygen species.* However, there are no similar reports of direct activation
by ROS for Mst1 itself. Overexpression of Mst1 in heart in vivo (Tg-Mst1) causes severe dilated
cardiomyopathy,” by inhibiting hypertrophy and autophagy while activating apoptosis. Importantly,
inhibiting Mst1 activity by expressing a dominant negative Mst1 mutant in heart reduced apoptosis
and dysfunction following myocardial infarction.” This suggests that Mst1 is an important contribu-
tor to heart failure following ischemic insult.

However, it is less clear that FoxO family members are the mediators of Mst1-induced cardiac
pathology. Mst1 inhibits hypertrophy and autophagy, while increasing apoptosis. Inhibition of
hypertrophy by FoxO3 has been demonstrated in heart” and initiation of apoptosis by FoxO fam-
ily members has been described in other tissues®”*”® FoxO3, however, is associated with increased
autophagy in the myocardium,”*® seemingly opposite to responses initiated by Mst1. However, it
is clear that transcriptional responses mediated by the FoxOs vary depending on the cell type, the
nature of the stimulus and the intensity of the stimulus. Therefore, it is possible that FoxO members
mediate the apoptotic and antihypertrophicactions of Mst1, but not the inhibition of autophagy. The
question of FoxO mediation of Mst1-induced cardiac pathology will only be answered satisfactorily,
with FoxO knock-out animals, or by expressing dominant negative FoxO.

As discussed earlier, FoxO family members are subject to acetylation/deacetylation reactions
mediated by histone acetyl transferases (HATs) and class 111 histone deacetylases (HDACs),
respectively. In heart, FoxO3 is acetylated by cAMP response element binding protein (CBP)*!
and p300 acetylase® and deacetylated by silent information regulator-1 (Sirt1, a homologue of
yeast Sir2).2% In mammalian heart, Sirt1 is a cardioprotective factor activated following oxidative
stress.'*!¢ Moderate increases in Sirt1 expression in heart are protective under conditions of patho-
logical growth or under ischemic challenge and this is related to increased expression of detoxifying
enzymes such as catalase and manganese superoxide dismutase (MnSOD). This protective response
was prevented by dominant negative FoxO, pointing to a role for FoxQO in ischemic protection.'® As
dominant negative FoxO inhibits the activity of all members of the FoxO family, the FoxO subtype
responsible for this response was not identified in this study. This apparently protective action of
FoxO members is opposite to what would be expected based on effects of Akt and Mst1. However,
in addition to its transcriptional activation of potentially apoptotic factors, FoxO proteins increase
transcription of catalase and MnSOD, ™ factors that aid in removing ROS and would be expected to
ameliorate ischemic damage. Higher levels of expression of Sirt1 in heart caused rapid development
of hypertrophy, followed by heart failure."® It is not clear whether this deleterious response to Sirt1
was also mediated by FoxO family members.

From these data, it appears that FoxO proteins can have both advantageous and disadvanta-
geous effects on the heart during ischemic episodes. It should be noted that there are also reports
that deacetylation by Sirt1 can inhibit FoxO1 and specifically can reduce FoxO-mediated apoptosis,

although these observations were not made in cardiomyocytes. 6468485
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FoxO proteinsare regulated positively and negatively by ubiquitination. Ubiquitinization by Skp2
is essentially the end point of Akt mediated FoxO inhibition, by targeting FoxO for proteosomal
degradation.” On the other hand, ubiquitinization is also a2 mechanism of FoxO activation and
this process is enhanced under ischemic conditions.® By this E3 ligase mediated mechanism, FoxO
proteins are ubiquitinated on K® in mouse FoxO1,*? enhancing nuclear localization and transcrip-
tional activity.® Removal of these ubiquitin residues is achieved by herpes virus-associated ubiquitin
specific protease (HAUSP). The balance between mono-ubiquinitated and nonubiquinitated FoxO
determines transcriptional activity and this balance is regulated by reactive oxygen species generated
under conditions of ischemia/reperfusion.®

FoxO proteins interact with a number of critical factors, often in a mutually inhibitory fashion.
Important among these is §-catenin.®” B-catenin translocates from the sarcolemma to the nucleus of
cardiomyocytes under ischemic conditions and protects from cardiomyocyte apoptosis.¥” Expression
of B-catenin reduces infarct size following myocardial infarction and furthermore, inhibition of
B-catenin by cardiac-targeted knock-out or by expression of a dominant negative mutant leads to
growth failure in response to challenge and thus precipitates heart failure.”® The interaction between
f-catenin and FoxO is heightened under ischemic conditions.® As this is a mutually inhibitory as-
sociation, FoxO would be expected to reduce the beneficial effects of -catenin. However, there are
also reports that (-catenin is required for adaptive cardiac hypertrophy® but it is not certain that
this involves FoxO family members.

Hypertrophy

Cardiomyocytes are terminally differentiated and do not undergo cell division to any signifi-
cant extent after birth. However, heart size can be induced to increase by a process of hypertrophy
whereby the size of the individual cells increases without their undergoing mitosis. The heart
undergoes hypertrophic growth in response to increased work demand on the cardiomyocytes.
Essentially there are two apparently distinct types of hypertrophy; physiological hypertrophy
that accompanies exercise and pathological hypertrophy. Physiological hypertrophy results in a
larger more powerful heart that does not degenerate into heart failure.”® Pathological hypertro-
phy, on the other hand, is initially a compensatory response to produce a larger more powerful
heart, but in this scenario, increased growth is associated with arrhythmia and sudden death and
in the longer term degenerates into heart failure.”*> Pathological hypertrophy follows loss of
myocytes due to infarction, as mentioned above, or when there is pressure or volume overload
exerted on the heart, e.g., by increased blood pressure or renal impairment, respectively. FoxO
transcription factors are associated with inhibition of growth in many cell types. This involves
transcriptional activation of the cell cycle regulators, p21 and p27, as well as other intermediates
and this maintains cells in the G, state.” In terminally differentiated cardiomyocytes, FoxO3
has been shown to inhibit hypertrophic growth. FoxO3 induces transcription of atrogin-1,” a
muscle F-box protein. Atrogin-1 associates with calcineurin promoting its degradation via the
proteosome,” thereby inhibiting the calcineurin/nuclear factor of activated T-cells (NFAT)
response pathway that is pivotal in pathological hypertrophy. In addition, atrogin-1 and E3
ubiquitin ligase cause ubiquitinization on K® of FoxO1 and FoxO3, promoting nuclear local-
ization and transcriptional activity. This ubiquitinization serves to oppose the actions of Akt
and by this mechanism FoxO members can limit physiological hypertrophy,%6*% that depends
on PI 3-kinase and Ake activation.”

Other antihypertrophic mechanisms involving FoxO have been reported also. Statins,
cholesterol-lowering drugs that inhibit HMG CoA reductase, have a direct action to limit
cardiac hypertrophy, in addition to their lipid lowering activity. Studies by Hauck et al (2007)%
show that statins facilitate the recruitment of FoxO3 to the p21 promoter and thereby initiate
growth-suppression via p21 signaling pathways.

FoxO#4 interacts in a mutually inhibitory manner with myocardin® and myocardin is a
powerful activator of cardiac hypertrophy.” However, the interaction between FoxO4 and
myocardin has not been demonstrated in heart as yet.
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Development

Unlike post natal growth, the fetal development of the heart requires cell growth and division
and FoxO family proteins are involved in this process. This was demonstrated in studies where
FoxO1, FoxO3 and FoxO4 were expressed under a f-myosin heavy chain promoter to initiate
expression during fetal development.”® Overexpression of FoxO3 caused death at embryonic day 18
due to restricted mitosis, whereas embryonic overexpression of FoxO1 was lethal by 10.5. FoxO4
overexpression was not lethal during prenatal growth. Knockout of the FoxO1 gene is embryonic
lethal at E 10.5 due to restricted vascular development. Deletion of either FoxO3 or FoxO4 was not
lethal during development.”

As noted earlier, the transcriptional partner of serum response factor, myocardin, is a critical
regulator of heart specification.'® In addition to being negatively regulated by FoxO4, myocardin
is a transcriptional target of FoxO, which, in this case, acts together with myocyte enhancer factor 2
(Mef2) to activate myocardin gene transcription.'® This being the case, it is unclear why deletion of
FoxO does not prevent early heart development. The answer may reside in functional redundancy
between family members. This possibility will only be addressed by expressing a dominant negative
mutant FoxO in early embryos to interfere with the transcriptional activity of all family members.

Conclusion

The FoxO family of transcription factors clearly mediate a wide range of cellular responses and this
isachieved by an even more complex regulatory network responsible for FoxO activity. To date, the
only cardiac effects definitively ascribed to FoxO are developmental regulation and growth inhibi-
tion. However, given the number of cardiac effectors that are FoxO regulators, it seems inevitable
that further functions will be described for FoxO family members in the myocardium.
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