
CHAPTER 6

FoxO Proteins and Cardiac Pathology
AlbertWongandElizabeth A. Woodcock*

Abstract

T he FoxO family of transcription factorsmediate a wide rangeof cellularresponses from
celldeath to cellsurvival,growthinhibition and glucose utilization.Thiscomplex arrayof
responses isregulatedbyanequallycomplex regulatorysystem, involvingphosphorylation,

ubiquitinization and acetylation, in addition to interactionswith other transcriptionfactorsand
transcriptionalmodifiers. In heart,FoxOproteinshavebeenshownto beinvolved indevelopment,
in limitinghypertrophicgrowthresponses and in cardioprotectionprovidedbysilentinformation
regulator 1 (Sirtl) . However, the rangeof responses mediatedbyFoxOproteinsand the clearevi­
dence for involvement ofFoxO regulatorsin cardiacpathology, suggest that further pathological
actionsofFoxO family membersremain to be elucidated.

TheFoxOFamily
FoxOproteinsaremembers of the forkhead family of transcription factors characterized bythe

presence ofa forkhead boxor Fox, whichbindsDNA at GTAAACAconsensus sequences.P Genes
encodingthe FoxO proteinswereinitially identified at chromosome breakpoints in tumour cells
and shownto behomologues ofthe Caenohabditis elegansDAF 16protein that regulates longevity.'
Thus,from their initialdiscovery, the FoxOproteinshavebeenassociated with cellsurvival and cell
death responses. Therearecurrently four FoxOproteinsknown to beexpressed in mammalian tis­
sues;FoxO1,Fox03, Fox04 andthemorerecentlydescribed Fox06.4.5The first3 FoxOproteinsare
expressed in heart,"showstrongsequence similarity and areregulated similarly. Fox06 is expressed
only in the centralnervous system and will not be discussed further here. While FoxOs 1,3 and 4
areexpressed in cardlornyocytes, there is relatively little informationabout their functionalroles in
the heart.However, a numberof factorsthat regulate FoxOactivity havebeenshownto have major
roles inprotectingtheheartunderpathological conditions orinsomecases incausingcardiac damage.
This chapterwill examine the evidence for an involvement of FoxOproteinsin cardiac pathology
and will also examine the roles of known FoxOeffectors and suggest ways in which their cardiac
responses maybe mediatedbyFoxOtranscription factors.

TheSpectrumofTranscriptional Responses Mediated
byFoxOFamily Members

FoxO proteinsare transcription factors that mediatea bewildering rangeof cellular responses,
whichin somecases appearto beopposing. In wormsand flies the FoxOhomologues,DAF 16and
dFoxOrespectively,extendlongevitybypromotingresistance tostressors, includinginfectious agents
and oxidative stress.I The functions of the FoxOs aremore complex in mammalian tissues. FoxO 1
and 3 arewidely expressed in mammalian celltypesand responses observed dependto an extenton
the celltypestudied.Expression ofFox04 ismorerestricted, but it isexpressed in the myocardium
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along with FoxOs 1 and 3. Evenwithin the one cell type, responses generally differ berween the
FoxOsubrypes.i" Furthermore,there isevidence that FoxOscan havedifferentfunctionsdepend­
ingon the nature or the magnitudeof the stimulus, aswellason the presence other transcriptional
effectors.9-14 In various mammalian cell types, FoxOscan promote resistance to oxidative stress by
transcriptionalactivation of catalase and Mn50D that serveto removereactive oxygen species.15.16

However, FoxOmembersarealsoableto initiateapoptosisviatranscriptionalincreases in apoptotic
effectors such as Fas-L and Bim.14.17.19 FoxO proteins increase DNA repairvia growth arrest and
DNA damage-inducible45 (GADD 45) and damagedDNA binding protein 1 (DDB1),20 cause
cellcycle arrestviap21, p27, p130 cyclin-dependenr kinase inhibitors,aswellascyclin G221.23and
regulateglucose and energyhomeostasis viaglucose 6-phosphatase, phosphoenolpyruvate carboxy
kinase, Agoutyrelatedpeptide (AgRP) and neuropeptideY (NPY).24-27

Regulation ofFoxO Proteins

Phosphorylation
In keepingwith the arrayof responses associatedwith FoxO transcription factors, their regu­

lation, both positive and negative, involves multiple mechanisms. Initially FoxO proteins were
shown to be phosphorylated by the protein kinaseAke(or protein kinaseB, PKB).28 Akt itselfis
activatedbyphosphorylationsubsequentto phosphatidylinositol3-kinase(PI 3-kinase) activation
followingstimulation with growth factors or G protein coupled receptor agonises." Akt phos­
phorylates FoxOs 1,3 and 4 at three specific sites,as outlined in Figure 1.This phosphorylation
resultsin nuclearexclusion and association with 14-3-3proteins" and therebyinhibitsFoxOfrom
functioning asa transcription factor. Asshown in Figure 1, one of the Akt phosphorylation sites
is in the DNA binding domain and the nuclear localization sequence. Phosphorylation of this
site (5253in mouse FoxO1) generally occursprior to phosphorylation occurringat the other two
sires," It is now alsoclear that phosphorylation of 5253displaces DNA-bound FoxO and thereby
directly inhibits transcriptional acrivlry," in addition to facilitatingexclusion from the nucleus.
Thus, there is a defined hierarchy between the Akt phosphorylation sites in FoxO. Removalof
phosphorylated FoxO from the nucleusisa complexprocessinvolvingboth the nuclearexclusion
sequence (NE5) exposed following phosphorylation and the 14-3-3 associarlon.f -" In heart,
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Figure 1. The structure of FoxO family members. FoxOl, Fox03 and Fox04 follow a similar
pattern of phosphorylation, ubiquitinization and acetylation sites. NLS, nuclear localization
sequence; NES, nuclear exclusion sequence; LxxLL is s sequence associated with binding of
nuclear hormone receptors.
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phosphorylation of FoxO by Akt has been demonsrrared'' and, under basal conditions, FoxO
proteins are largely cytoplasmic.

In markedcontrast,more recentstudies have revealed that FoxOfamily members can alsobe
activatedbyphosphorylation, although ondifferent sites fromthosephosphorylatedbyAkt,asshown
in Figure 1.Activating phosphorylation ismediatedbymammalian sterile 20 likekinase 1 (Mstl) a
homologueof theDrosophila sterile 20 kinase." Mst1 isa Ser, Thrdirectedproteinkinase activated
bystressors, includingoxidative stress.15,34ThebiologyofMstl remains to befully investigated. Mstl
isactivated byphosphorylation downstream ofK-Rassignalling" andK-Ras canbeactivated down­
streamofNADPH oxidase 1(Noxl).36 Mstl canalsobeactivated following cleavage bycaspase 3.37

Under thisscenario, activation bycaspase 3 cleavage couldserve to perpetuateMstl activation and
consequentcellular damage following initiationof apoptosls." Mstl phosphorylates FoxOfamily
members on Ser/Thrresidues withinthe DNA-bindingforkhead domainto enhance DNA binding
and therefore FoxOtranscriptional activity.39Mstl phosphorylation alsodisrupts association with
14-3-3 proteinsand thusfacilitates nuclear retention.

Ubiquitinization
FoxO proteins, phosphorylated by Akt and shunted into the cytoplasm, are subsequently

polyubiquitinated and degraded viathe proteosome sysrem," bya process that absolutely requires
phosphorylation of Aktphosphorylation sites.Theligase mostprominent in this response isSkp2
andoverexpression ofSkp2canreverse FoxOmediatedresponses.v Thus,polyubiquitinization and
proteosomal destruction isthe end point ofAktinitiatedFoxOinhibition (Fig. 2).
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Figure 2. Regulation of FoxO family members under conditions of ischemia and reperfusion.
FoxO proteins are phosphorylated by Akt and dephosphorylated by protein phosphatase 2A
(PP2A). Skp2 ubiquitinates Akt-phosphorylated, 14-3-3-bound FoxO and targets it for deg­
radation. E3 ubiquitin ligase activates FoxO and this is reversed by herpes virus-associated
ubiquitin specific protease (HAUSP or USP7).Mstl phosphorylation activates transcriptional
activity of FoxO. Additionally, FoxO activity is regulated by acetylation by cAMP response
element binding protein (CBP) and p300 histone acetyltransferase. Deacetylation is achieved
by silent information regulator 1 (Sirtl).
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In addition to this polyubiquitinization that is required for proteosomal degradation, FoxO
proteins can also be selectively ligated with monomers ofubiquitin. This mono-ubiquitinization,
(on K63in mouse FoxOl) mediated by ligases such as E3-ubiquitin ligase, enhances nuclear
localization and transcriptional activity. ? This increases nuclear localization and enhances
transcriptional activity of FoxO. 43 Removal of these ubiquitin residues is achieved by herpes
virus-associated ubiquitin specific protease (HAUSP).The balance between mono-ubiquinylated
and nonubiquinylated FoxO determines transcriptional activity and this balance is regulated by
reactive oxygen species.

Acetylation
In addition to regulation by phosphorylation and ubiquitinization, FoxO proteins are

regulated by acetylation. Acetylation is mediated by histone acetyl transferases including p300
and the cAMP response element binding protein (CBP) and involves critical lysine residues
(K242, K24

5, K262
, in mouse FoxO 1).44 Such acetylation reduces the positive charge on the FoxO

protein reducing DNA binding and thereby reducing transcriptional activity,'? Acetylation also
facilitates Akr phosphorylation ofS253, further limiting FoxO functioning, as described above."
Deacetylation is achieved primarily by class III histone deacetylases, particularly silent informa­
tion regulator 1 (Sirt l ), a homologue ofSir2 in C.elegans. Inhibition, rather than activation, of
FoxO activity by deacetylation has also been reported.45.46 The reason for the apparently opposing
effects of FoxO acetylation is not known. Given that acetylation of positively charged lysine
residues inhibits DNA binding, it is possible that increased transcriptional responses reflect
FoxO acting as a transcriptional partner rather than a direct DNA binding transcription factor
at those particular promoters.

Transcriptional Partners ofFoxO
FoxO family members have direct transcriptional activity by binding forkhead consensus se­

quences, but in addition these proteins also interact with other transcription factors and transcrip­
tion modifiers to regulate transcription. There are a number ofdifferent ways in which this can be
accomplished. In some cases,FoxO and its transcriptional partner both bind their respective DNA
sequences, as occurs for the interaction between FoxO and Smads." In other cases FoxO -DNA
interaction is not involved. This mechanism is exemplified by the inhibitory interaction with
myocardin, where Fox04 reduces the association between myocardin and serum response factor,"
There are also examples ofFoxO functioning by simply soaking up a transcriptional cofactor and
reducing its availability. The interaction between FoxO and l3-catenin removes l3-catenin from
another transcription factor (TCF) and reduces its activiry" (Fig. 3).

FoxOs interact stronglywith nuclear hormone receptors via its LxxLL domain (Fig. 1), resulting
in altered activity ofboth proteins,"Among these, interactions with peroxisome proliferator-ac­
tivatcd receptors (PPAR), PPARa and PPARy are likely to be important in heart, where these
transcription factors are protective.50S! FoxO proteins also interact with the PPARy co-activator
PGC-la; in this case the interaction enhances FoxO activiry" PGC-la is deacerylated by Sirt l,
This suggests a complex relationship between PPAR and FoxO family members.

The transcriptional modifier, myocardin, is active only in smooth and cardiac muscle where it
plays critical roles in development and in postnatal growth, via association with serum response
factor," Myocardin interacts with Fox04 in a mutually inhibitory manner," but this interaction
has not been reported in heart, to date.

The Smad family oftranscription factors is activated by phosphorylation downstream oftrans­
forming growth factor 13 (TGFI3) receptors. Phosphorylated Smad3 translocates to the nucleus
where it associates with Smad4 and the Smad3/4 complex is transcriptionally active. The Smad3/4
complex can form a larger complex with FoxO family members and this heightens responses to
both FoxO and Smad transcription factors. 9,54 As shown in Figure 3, both FoxO and Smad bind
to their respective consensus sequences, but with heightened activity. Thus some of the responses
initiated by FoxO family members may result from interaction with Smads.
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Figure 3. Transcriptional activity of FoxO transcription factors. A) FoxO family members can
bind DNA consensus sequences to activate transcription. B)FoxO proteins can associate with
other transcription factors, with both factors binding their respective consensus sequences, as
shown for the Smad family of transcription factors. C) FoxO proteins can interact with tran­
scriptional enhancers to reduce their activity, as shown for myocardin enhancement of serum
response factor (SRF) activity. D) FoxO can bind other transcriptional activators removing
them from other effectors , as shown for ~-catenin activation of TCF responses.

l3-catenin isanother factor that associates with FoxOfamily members, in this casein a mutually
inhibitory fashion.t? Underconditionsofcellstress, l3-catenin translocates fromthe plasmamem­
brane to the nucleusand initiatescellsurvival responses bybinding its parmer, the transcription
factor TCE FoxOinhibits these responses bysequestering l3-catenin away from TCp5 (Fig. 3).

FoxO Transcription Factors in Cardiac Pathology

Myocardial Ischemia andPost-Ischemic Reperfusion
Bydefinition, myocardial ischemia involves acritical reductionin thebloodsupply to themyocar­

dium.Clinically, thisgenerally involves blockage of the coronaryarteries supplying theventricle. In
theexperimental situation, isolated heartsaresubjected to reduced flow ofperfusatedeliveringoxygen
andnutrients.l'' or isolated cardiomyoeytes aresubjected to lowoxygen togetherwithchanges inmedia
composition.57Reperfusion isachieved byre-instating blood flow, or in the experimental situation,
by re-introducing oxygen.56•58While reperfusion is essential to prevent irreversible tissue damage,
it introducesfurther damage to the myocardium, mediated, in part, by the generation of reactive
oxygen species (ROS).Ischemia andpostischemic reperfusion aremajorinitiatorsofcardiac pathol­
ogy.Acutely, ischemic episodes cause arrhythmiaoftenleadingto suddencardiac death.59.60 Ischemic
episodes that arenot immediately fatalcause myocardial infarctionthat isfollowed bycompensatory
cardiomyocyte hypertrophy, leadingeventually to heart failure.61Damage to cardiomyocytes during
ischemia and subsequent reperfusion involves both necroticandapoptoticcelldeath62andat leastin
animalmodels, reductionin cardiomyoeyte apoptosis improves functionalourcomesf'

In modelsystems,ischemic injurycanbeamelioratedbyactivation ofPI 3-kinaseandsubsequent
activation of the proteinkinase Akt,a FoxOinhibitordescribed above.64.65Aktprotectionresults in
reducedinfarctsize, indicatingimproved cellsurvival, as wellas improved functionalrecovery.64.65
Aktphosphorylates anumberoftargets includingpro-apoptotic effectors.Importantamongtheseare
thepro-apoptoticproteinsBAD,Mstl , caspase 966and allof the FoxOproteinsexpressed in heart."
FoxOproteinspromoteapoptosis viatranscriptional activation ofapoptoticeffectors suchastumor
necrosis factorrelatedapoptosis inducingligand(TRAIL),Bimand Fasligand.67-69 Cardiomyocytes
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are relatively resistant to apoptosis and, in particular, the extrinsic pathway of apoptosis is though
to be only minimally involved in cardiomyocyte damage7o.71However, there havebeen reports of
Fasactivation and its possible involvement in ischemic injury.72.73 Cardiomyocyte apoptosis most
commonlyinvolves the mitochondrial, intrinsicpathways," Bim,a proapoptoticBcL-2 protein, is
a transcriptional targetof FoxOproteinsand thus increased Bimexpression, subsequent to FoxO
activation, is a possible contributor to Akt-reversible cardiomyocyte cell death. This, of course,
leaves open the questionof how FoxOs wouldbe activated by ischemia/reperfusion.This question
isdiscussed further below.

One possible mechanism bywhichFoxOproteinsmight be activated underconditionsof isch­
ernia/reperfusion involves the activating protein kinase Mstl , alludedto earlier. Mstl is activated
bystressors, includingoxidative stress,15.34 asoccursunder conditionsof ischemia/reperfusion." As
noted above, Mstl phosphorylates FoxOfamily members within the forkhead domain to enhance
DNA bindingand thereforeFoxOtranscriptional acrivity.'" Thus,Mstl phosphorylation ofFoxO
acts in opposition to the inhibitory phosphorylation mediated by Akt. Recently, Ste20/oxidant
stress response kinase-I (SOKl) , a close relative ofMstl, hasbeenshownto be directly activated by
interactionwith reactive oxygen species." However, thereareno similarreportsofdirectactivation
by ROS for Mstl itself. Overexpression ofMstl in heart in vivo (Tg-Mstl) causes severe dilated
cardiomyopathy," byinhibitinghypertrophy andautophagywhileactivatingapoptosis. Importantly,
inhibitingMst1activity byexpressing adominant negative Mst1mutant in heart reducedapoptosis
anddysfunction following myocardial infarction." Thissuggests thatMstl isan importantcontribu­
tor to heart failure followingischemic insult.

However, it is less clearthat FoxOfamily members are the mediators of Mstl-induced cardiac
pathology. Mst1 inhibits hypertrophyand autophagy, while increasing apoptosis. Inhibition of
hypertrophyby Fox03 hasbeendemonstratedin heart" and initiationof apoptosis byFoxOfam­
ilymembers hasbeendescribed in other tissues67.69.78Fox03, however, is associated with increased
autophagyin the myocardium.Y? seemingly opposite to responses initiated by Mstl. However, it
is clearthat transcriptional responses mediatedby the FoxOs varydependingon the celltype, the
natureof the stimulusand the intensityof the stimulus.Therefore, it ispossible that FoxOmembers
mediatetheapoptoticandantihypertrophic actions ofMstl,but not theinhibitionofautophagy.The
questionofFoxO mediationofMsrl-induced cardiac pathologywill onlybeanswered satisfactorily,
with FoxOknock-out animals, or byexpressing dominant negative FoxO.

As discussed earlier, FoxO family members are subject to acetylation/deacerylarion reactions
mediated by histone acetyl transferases (HATs) and class III histone deacetylases (HDACs),
respectively. In heart, Fox03 is acetylated by cAMP response elementbinding protein (CBP)81
and p300 acetylase"and deacerylated by silent information regulator-I (Sirrl , a homologueof
yeast Sir2).82.84 In mammalian heart, Sirtl isa cardioprotective factoractivated following oxidative
stress.1O,l6 Moderateincreases in Sirt1expression in heart areprotective underconditionsof patho­
logical growthor under ischemic challenge and thisis relatedto increased expression ofdetoxifying
enzymes suchascatalaseand manganese superoxide dismutase (MnSOD). Thisprotective response
waspreventedbydominant negative FoxO,pointingto a rolefor FoxOin ischemic prorection." As
dominant negative FoxOinhibits the activity ofallmembers of the FoxOfamily, the FoxOsubtype
responsible for this response wasnot identified in this study. This apparently protective action of
FoxOmembers isoppositeto whatwouldbe expected basedon effects of Aktand Mst1. However,
in addition to its transcriptional activation of potentiallyapoptoticfactors, FoxOproteinsincrease
transcription ofcatalase and MnSOD,lO factors that aidin removing ROSandwouldbeexpected to
ameliorate ischemic damage. Higherlevels ofexpression ofSirt1 in heartcaused rapiddevelopment
of hypertrophy, followed byheart failure."It isnot clearwhether this deleterious response to Sirtl
wasalsomediatedbyFoxOfamily members.

From these data, it appears that FoxO proteins can haveboth advantageous and disadvanta­
geouseffects on the heart during ischemic episodes. It should be noted that there arealsoreports
that deacetylation bySirtl caninhibit FoxO1andspecifically canreduceFoxO-mediated apoptosis,
althoughtheseobservations werenot madein cardiomyocytes.16.46.84.85
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FoxO proteins are regulatedpositivelyand negativelybyubiquitination. Ubiquitinization bySkp2
is essentially the end point ofAkt mediated FoxO inhibition, by targeting FoxO for proteosomal
degradation." On the other hand, ubiquitinization is also a mechanism of FoxO activation and
this process is enhanced under ischemic conditions." Bythis E3ligase mediated mechanism, FoxO
proteins are ubiquitinated on K63 in mouse FoxO 1,42 enhancing nuclear localization and transcrip­
tional activity.43 Removalofthese ubiquitin residues isachieved by herpes virus-associatedubiquitin
specificprotease (HAUSP).The balance between mono -ubiquinitated and nonubiquinitated FoxO
determines transcriptional activity and this balance is regulated by reactiveoxygenspeciesgenerated
under conditions ofischemia/ reperfusion.43

FoxO proteins interact with a number ofcritical factors, ofien in a mutually inhibitory fashion.
important among these is ~-catenin.49 ~-catenin translocates from the sarcolemma to the nucleus of
cardiomyocycesunder ischemicconditions and protects from cardiomyocyceapoptosis," Expression
of ~-catenin reduces infarct size following myocardial infarction and furthermore, inhibition of
~-cateninby cardiac-targeted knock-out or by expression ofa dominant negative mutant leads to
growth failurein responseto challengeand thus precipitates heart failure.87.88 The interaction between
~-catenin and FoxO is heightened under ischemic condidons." As this is a mutually inhibitory as­
sociation, FoxO would be expected to reduce the beneficial effectsof~-catenin. However, there are
also reports that ~-catenin is required for adaptive cardiac hypertrophy," but it is not certain that
this involvesFoxO family members.

Hypertrophy
Cardiomyocytes are terminally differentiated and do not undergo cell division to any signifi­

cant extent after birth. However, heart sizecan be induced to increase by a process ofhyper trophy
whereby the size of the individual cells increases without their undergoing mitosis. The heart
undergoes hypertrophic growth in response to increased work demand on the cardiomyocytes.
Essentially there are two apparently distinct types of hypertrophy; physiological hypertrophy
that accompanies exercise and pathological hypertrophy. Physiological hypertrophy results in a
larger more powerful heart that does not degenerate into heart failure ." Pathological hypertro­
phy, on the other hand, is initially a compensatory response to produce a larger more powerful
heart, but in this scenario, increased growth is associated with arrhythmia and sudden death and
in the longer term degenerates into heart failure .91.92Pathological hypertrophy follows loss of
myocytes due to infarction, as mentioned above, or when there is pressure or volume overload
exerted on the heart, e.g., by increased blood pressure or renal impairment, respectively. FoxO
transcription factors are associated with inhibition ofgrowth in many cell types. This involves
transcriptional activation ofthe cell cycle regulators, p21 and p27 , aswell asother intermediates
and this maintains cells in the Go state? In terminally differentiated cardiomyocyres, Fox03
has been shown to inhibit hypertrophic growth. Fox03 induces transcription ofatrogin-I," a
muscle F-box protein. Atrogin-I associates with calcineurin promoting its degradation via the
proteosorne," thereby inhibiting the calcineurin/nuclear factor of activated T-cells (NFAT)
response pathway that is pivotal in pathological hypertrophy. In addition, atrogin-I and E3
ubiquitin ligase cause ubiquitinization on K63 of FoxO I and Fox03, promoting nuclear local­
ization and transcriptional activity. This ubiquitinization serves to oppose the actions of Akt
and by this mechanism FoxO members can limit physiological hypertrophy,86.93.94 that depends
on PI 3-kinase and Akt activation."

Other anrihyperrrophic mechanisms involving FoxO have been reported also. Statins,
cholesterol-lowering drugs that inhibit HMG CoA reductase, have a direct action to limit
cardiac hypertrophy, in addition to their lipid lowering activity. Studies by Hauck et al (2007)96
show that statins facilitate the recruitment ofFox03 to the p21 promoter and thereby initiate
growth-suppression via p21 signaling pathways .

Fox04 interacts in a mutually inhibitory manner with myocardin" and myocardin is a
powerful activator of cardiac hypertrophy," However, the interaction between Fox04 and
myocardin has not been demonstrated in heart as yet .
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Development
Unlikepost natal growth, the fetaldevelopment of the heart requires cellgrowth and division

and FoxO family proteins are involved in this process. This wasdemonstrated in studieswhere
FoxOl, Fox03 and Fox04 wereexpressed under a ~-myosin heavychain promoter to initiate
expression duringfetaldevelopment." Overexpression ofFox03 caused death at embryonic day18
due to restrictedmitosis, whereas embryonicoverexpression of FoxO1 waslethalby 10.5. Fox04
overexpression wasnot lethalduringprenatalgrowth. Knockoutof the FoxO1 geneisembryonic
lethalat E 10.5due to restrictedvasculardevelopment. Deletionofeither Fox03 or Fox04 wasnot
lethalduringdevelopment."

As noted earlier, the transcriptional partner of serum response factor, myocardin, is a critical
regulatorof heart specificatlon,'?"In addition to beingnegatively regulatedby Fox04, myocardin
isa transcriptional targetofFoxO,which, in this case, actstogetherwith myocyte enhancerfactor2
(Mef'2) to activate myocardin genetranscription.Pl Thisbeingthe case, it isunclear whydeletionof
FoxOdoesnot preventearlyheart development. Theanswer may reside in functional redundancy
betweenfamily members.Thispossibility willonlybe addressed byexpressing adominantnegative
mutant FoxOin early embryos to interfere with the transcriptional activity of allfamily members.

Conclusion
TheFoxOfamily oftranscription factors clearlymediateawiderangeofcellular responses andthis

isachieved byan evenmorecomplex regulatory networkresponsible for FoxOactivity.Todate,the
onlycardiac effects definitively ascribed to FoxOaredevelopmental regulation and growthinhibi­
tion. However, given the number of cardiac effectors that are FoxOregulators, it seems inevitable
that further functionswillbe described for FoxOfamily members in the myocardium.
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