
CHAPTER 2

FOXP3 and Its Role
in the Immune System
ChangH. Kim*

Abstract

F
OXP3 is a member of the forkhead transcription factor family. Unlike other members, it
is mainly expressed in a subset ofCD4+ T-cells that playa suppressive role in the immune
system. A function ofFOXP3 is to suppress the function ofNFAT and NFKB and this leads

to suppression ofexpression ofmany genes including IL-2 and effector T-cell cytokines. FOXP3
acts also as a transcription activator for many genes including CD25, Cytotoxic T-Lymphocyte
Antigen 4 (CTLA4),glucocorticoid-induced TNF receptorfamilygene (GITR)andfolate receptor4.
FOXP3+ T-cells are made in the thymus and periphery. The FOXP3+ T-cells made in the thymus
migrate to secondary lymphoid tissues and suppress antigen priming of lymphocytes. Antigen
priming of naive FOXPY T-cells and naive FOXP3- T-cells leads to generation of memory
FOXP3+ T-cells which are efficient in migration to nonlymphoid tissues. Memory FOXP3+
T-cells are, therefore, effective in suppression of effector T-cell function, while naive FOXP3+
T-cells are adept at suppressing the early immune responses in lymphoid tissues. Both naive and
memory FOXP3+ T-cells are required for effective maintenance of tolerance and prevention of
autoimmune diseases throughout the body. Many factors such as cytokines and noncytokine
factors regulate the generation ofFOXP3+ T-cells. For example, retinoic acid, produced by the
dendritic cells and epithelial cells in the intestine, works together with TGF-~l and promotes
generation ofsmall intestine-homing FOXPY T-cells by upregulating the expression ofFOXP3
and gut homing receptors. FOXPY T-cells can be produced in vitro from autologous naive
T-cells and, therefore, have great therapeutic potentials in treating a number of inflammatory
diseases and graft rejection.

Introduction
FOXP3 is one of the most extensively studied members of the FOX family which is defined

by a common DNA-binding domain (DBD) termed the forkhead box or winged helix domain.'
FOXP3 receives a lot of attention because of its clear role in generation of immune suppressor
T-cells. The function ofFOXP3 in programming the gene expression to make suppressor T-cells
is attributed to its transcription regulation activity.' Its major targets include NFAT and NFKB,
key transcription factors that mediate antigen receptor signals. FOXP3 suppresses the function of
these transcription factors but induces expression ofmany other genes through mechanisms that
are incompletely understood at this stage. Our body is making FOXPY T-cells in both the thymus
and periphery. FOXPY T-cells play important roles in limiting the activation ofimmune cells in
response to infection.t" They play important roles also in prevention ofautoimmune diseases. It
appears that some pathogens and cancer cellshave been evolved to utilize FOXP3+ T-cells to avoid
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immuneresponses because FOXPY T-cells wouldeffectivelysuppress antipathogen andanticancer
cell-specific immuneresponses." While FOXP3 ismainlyexpressed byT-cells, it isalsoexpressed
byepithelialcells in certainorganssuchasthymusandmanunaryglands,"Intheseorgans, FOXP3
seems to playcompletely different roles.9•10Thismonographis to providegeneral informationon
the structure and function of the FOXP3 geneand protein and on the immunological rolesof
the cells expressing FOXP3.

Structure and Function ofFOXP3
Thehuman FOXP3geneiscomposedof11exons and ispresentin thep armoftheX chromo­

some (Xp11.23, Fig.1).11.12 The translationof the FOXP3 protein starts from the middleof the
secondexon.The mousegeneisat X 2.1 eM. a locationcomparable to that of the humangene.It
isalsocalled]M2 (human)or scurfin (mouse).FOXP3isa48 kD protein composed of431 amino
acids. The FOXP3 protein has four distinctive domains:forkhead(FH) domain, leucinezipper,
zinc-finger and the proline-rich repressor domain.i The C-terminal forkheaddomain consists of
-100 amino acidsand formsa DNA bindingdomain. FOXP3 binds genes containingthe fork­
head bindingmoti£l3.14The forkheaddomain isrequiredalsofor nuclearlocalization ofFOXP3.
The roleof the zinc-finger domain isunknown.Theleucinezipperdomain is thought to mediate
dimerizationor tetramerization of the transcription factor. 15The N-terminal repressor domain
(aminoacids1-193) iscomposedof two subdomains.The firstsubdomain(aminoacids1-105)is
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Figure 1. The structure of the FOXP3 gene and prote in. The human FOXP3 gene is located on
the p arm of chromosome X (Xpll.23). The FOXP3 gene is composed of 11 exons. There are
four identifiable domains in the FOXP3protein. The N-terminal proline-rich domain is involved
in suppression of NFKB and NFAT. The leucine zipper domain is required for dimerization or
tetramerization. The C-terminal forkhead domain has a nuclear localization sequence and
a DNA binding domain. FOXP3 functions to induce the expression of many genes such as
CTLA-4, FR4 (folate receptor 4),142 GITR and CD25 and to suppress the expression of other
genes such as IL-2,IL-4 and IFN-y. It has been reported that expression of 700-1000 genes is
regulated by FOXP3 either directly or indirectly.



FOXP3and ItsRolein theImmuneSystem 19

involved in generaltranscriptionalrepression byFOXP3 and the secondsubdomain(N-terminal
106- to 190-aaproline-rich region) is involved in suppression ofNFAT and NFKB-mediated
transcription.l'v'iThesecondhalfof the domain mediatesthe association of the FOXP3 protein
with keytranscriptionalregulators suchasTat-interactive protein 60 kDa (TIP60)17and class II
histone deacetylases (HDAC7) .18 Mutations havebeen found in the forkheaddomain, leucine
zipperdomain and repressor domain of the FOXP3 geneof human IPEX panenrs."?'

FOXP3 can bind forkhead DNA binding elementsin manygenesincluding IL-2,CTLA4 ,
GITRand CD2S.22FOXP3 decreases IL-2 expression but increases the expression ofCTLA4,
GITR and CD2S. Thus,FOXP3 acts asa transcriptional activator and repressor. Studiesusing
Chip-on-Chip (chromatin immunoprecipitation) revealed that 700-1100 genesare regulated
either positivelyor negatively by FOXP3.23,24 Most of the geneswould be indirectly regulated
as the result of T-cell differentiation rather than as the consequenceof direct FOXP3 bind­
ing. For suppression of NFAT, the N-terminal repressor domain is required." FOXP3 and
NFAT cooperatively bind to the antigen receptor responseelement (AREE2)within the IL-2
promoter in a manner similar to the binding of AP-l and NFAT.25Some amino acid residues
in the forkhead domain are important for this interaction. FOXP3 also interacts with NFKB
and suppresses its acriviry,"

Expression ofFOXP3
FOXP3 is mosthighlyexpressed bya subsetofCD4+T-cells, commonlycalledCD4+CD2S+

regulatoryT-cells.5.26 Expression of the FOXP3 gene is more tightly regulatedin mouseT-cells
comparedto human T-cellsY In humanT-cells, simpleT-cellactivationinducesFOXP3 at alow
but detectable level. Inaddition,someCD8+T-cells alsoexpress FOXP3andfunctionasregulatory
T-cells.28In the mousethymus, FOXP3expression isdetectedon asmallsubsetofCD4 and CD8
doublepositiveT-cells and CD4 single positive T_cells.29.31In humans,however, smallnumbersof
doublenegative thymocytes alsoexpress FOXP3.32Expression ofFOXP3 isimportant forT-cells
to gain the suppressive function. In mice, FOXP3 over-expression byretroviral genetransferwas
sufficient to generatesuppressive T-cellsY·34 Again, there isa species difference in this regardthat
enforced FOXP3 expression in human T-cells by itselfwasnot sufficient to turn regularT-cells
into suppressor T-cells.35

While normalT-cellreceptor (TCR) activationwouldnot efficiently induceFOXPY T-cells,
prematureterminationofTCRsignalingand inhibition ofphosphatidylinositol3-kinase(PI3K)
pllOa, pl IOd, protein kinaseB (Akr), or mammalian target of rapamycin (mTOR) effectively
induced FOXP3 expression.l" FOXP3 expression is regulated at both genetic and epigenetic
levels. NK-cells, for example, don't express FOXP3 but do express it when they are treated with
S-aza-2'-deoxycytidine,a DNA methylationInhibitor," Completedemethylation ofCpG motifs
aswell as histone modifications are found on the conserved region of the FOXP3 promoter in
FOXP3+ cells but not FOXP3- T-cells.38Methylation at the FOXP3 promoter can block the
bindingoftranscription factorssuchascyclic-AMP response elementbindingprotein (CREB)/
activating transcriptionfactor (ATF)which areinvolved in activation of the FOXP3 promoter;"
TGF-~1 induces FOXP3 expression in T-cells undergoing T-cell receptor activarion.w" The
transcription factors Smad3which mediates TGF-~1 signaling and NFAT which mediates the
T-cellreceptoractivationsignalare required to induce FOXP3 expression." Interestingly, these
TGF-~I-induced FOXPY T-cellsare not heavily methylatedon their FOXP3 promoter locus
comparedto naturalFOXP3+ T-cells.43However, anothergroupreportedmorecomplete methyla­
tion at the FOXP3promoter locusin inducedFOXP3+ T-cells,suggesting that the methylation in
the invitro-inducedFOXP3+T-cells varies dependingon theculturecondidon." InducedFOXP3+
cells, generatedin vivofrom naiveT-cells, exhibitedmore completemethylationon the FOXP3
locusand thus natural and fullydifferentiated-induced FOXPY T-cellsare indistinguishable in
methylationat the FOXP310cus.45

InadditiontoTGF-~1,IL-2promotesthegeneration ofinducedFOXP3+ T-cells. Consistently,
the intracellular signaling mediatorsofIL-2 such as STATSa and STATSb playpositiveroles in
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expression ofFOXP3.37.46 It hasbeenreportedthat IL-4suppressed, whileSTAT6 (amediatorof
IL-4signaling) genedeletionenhanced, theTGF~ I-inducedexpression ofFOXP3.47TGF-~ I can
enhanceFOXP3 expression but suppress the expression ofFOXP3 whenIL-6ispresent. Indeed,
TGF-~ I and IL-6inducedifferent effector T-cells called"ThI7 cells", whichcancharacteristically
produceIL-I7 .48.49 In linewith this,TGF-~ I treatmentincreases acetylaeed FOXP3on the chro­
matin but IL-6down-regulates FOXP3 bindingto the chromatinin the presence ofTGF-~1.50

Ontogeny and Migration ofFOXP3+ Cells
FOXPY T-cells aregeneratedin thymus asnaive FOXP3+ cells and in peripheryasinduced

FOXP3+ cells (Fig.2).Thenaive FOXP3+ T-cells,generated in thymus,express CD62LandCCR7
and migrateto secondary lymphoidtissues." CD62L would mediaterollingand CCR7 triggers
inregrin-mediated firmadhesion on endothelialcells.51.56This trafficking receptorphenotype is
retained as long as the FOXPY T-cells do not encounter antigens in the secondary lymphoid
tissues." Unlike the naive FOXP3+ T-cells, the induced FOXP3+ T-cells haveheterogeneous
memory/effector type trafficking receptors." It is thought that memory FOXP3+ T-cells and
induced FOXP3+ T-cells are similar to each other in trafficking receptor phenotype and sup­
pressive function. Someinduced FOXP3+ T-cells express gut homing receptors such as CCR9
and a4~7Y Thesereceptors allowthe migrationof the T-cells into the smallintestine.57-63 Some
FOXP3+ T-cells express CXCRS and migrateinto B-cell follicles includinggerminal centers.r'
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Figure 2. Generation and trafficking of FOXP3+ T-cells . FOXP3+T-cells are made in the thymus
at the double negative stage (human), double positive stage and single positive stage (human
and mice). The thymus emigrating FOXP3+ T-cells have the naive T-cell phenotype in traf­
ficking behavior and migrate to secondary lymphoid tissues. The migration of natural FOXP3+
T-cells into secondary lymphoid tissues is to regulate the antigen priming of lymphocytes and
to undergo antigen priming themselves . Antigenic stimulation of naive FOXP3+ T-cells changes
their hom ing behav ior for migration to various non lymphoid tissues. Antigen priming of naive
T-cells also drives the conversion of FOXP3-naive T-cells into FOXP3+ T-cells . Certain factors
such as TGF-~l and retinoic acid play important roles in promotion of this event.
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Someother FOXP3+T-cellsexpress CCR8 ,a skin-homing related receptor," In general,induced
or memory FOXPY T-cells highly express CD103, CCR4, CCR6, CXCR3, CXCR4 and
CXCR6.31.65CCR4 isrequired for successful suppressionofinflammation byFOXP3+T-cells.In
a heart transplantation model, recruitment ofFOXPY cellsto the allografttissueisdependent on
CCR4.66The CCR4-dependent recruitment ofFOXPY T-cellsis requiredfor effective induction
of tolerance with tolerizing strategiessuch as CD154 mAb therapy. Scurfy mice reconstituted
with CCR4-deficient FOXPY cellsdevelopsevereinflammatorydiseases in the skin and lungs.67

Another chemokine receptor CCR7 appears to be important for FOXPY T-cell migration to
the T-cell area oflymphoid tissues. CCR7-deficienc FOXPY cellsfail to migrate into the lymph
nodes and suppressantigen-induced T-cell responses.f

The induction mechanism of gut homing FOXPY T-cells has been elucidated. In 2007, six
groups reported that retinoic acid has the function of triggering the expression of FOXP3 in
T-cells undergoing activation.69.76Retinoic acid induces chromatin reorganization by inducing
histone acetylation in the FOXP3 promoter. Retinoic acid alone can generate human FOXP3+
T-cells but TGF-~1 is required at least at a suboptimal level to induce retinoid-induced mouse
FOXP3+T-cells," Retinoic acid is produced from retinol by dendritic cellsand epithelial cells
in the intestine." Therefore, the intestinal microenvironment provides the signal to induce gut
homing FOXP3+T-cells. This role of retinoic acid is thought to be important for inducing toler­
ance in the gut by generating FOXP3+T-cells that would suppresspotentially harmful immune
responsesin the intestine. It has been well-established that immune responsesto commensals can
causeinflammatory bowel diseases such as Crohns diseaseand ulcerativecolitis.79.8° It is thought
that retinoic acid functions to prevent inflammatory bowel diseases by promoting the immune
tolerance in the intestine. Another function of retinoic acid is to suppress the differentiation of
naiveT-cellsinto Th17cells invitro.Thiscouldalsopromote the immune tolerancein the intestine
by suppressingTh17 cells.69,73.74.81 However,the function of retinoic acid in suppressionofTh17
cellshas not been confirmed in vivo.This maybe becauseofthe fact that retinoic acidproduction
in vivo is tightly regulated that retinoic acid would not be available at the high concentrations
(100-1000 nM) used in vitro in demonstration of the suppressionofTh17 cells.

Another traffickingreceptor that is potentially important for FOXP3+ regulatory T-cells is
CD 103.65.82.83CD103 is the alpha subunit of the integrin aE~7, which servesas the ligand for
E-cadherin. It is unclear how CD 103 functions in terms of the suppressive function ofFOXP3+
T-cells.It wasproposed that CD 103+ FOXP3+T-cellsarememorycellsand theyaremore efficient
in suppressionofinflammationin the joints." One caveatwith this is that there aremanyCD 103­
memory FOXPY T-cellsaswell.Thus, CD 103 is not a universalmarker for allmemory FOXP3+
T-cells. In suppressionofgrafi-versus-hosc disease(GVHD), however, CD62L+ FOXP3+Tvcells
aremore efficient than CD62L- memoryFOXPY T_cells.84,85 Therefore, it isnot memoryFOXP3+
T-cellsthat are always more efficientthan naiveFOXP3+T-cellsin suppressionofinflammation.
Whether a FOXPY T-cell subset is effective or not effective in suppressionof inflammation in a
certain tissuewould be determined by the migration ability of the FOXP3+T-cells to the major
tissue site of initiation or amplification of the inflammation. In other words, naive FOXP3+
T-cells or their migration into lymphoid tissues is important if initiation and amplification of
the inflammatory diseaseoccur in the lymphoid tissues.Otherwise, memory FOXP3+T-cellsor
their migration to effector sites would be important for suppressionof inflammation at effector
sites (Fig. 3).

Mechanisms ofSuppression Mediated byFOXPY T-Cells
TGF-~1isimplicatedin the suppressive function ofFOXP3+ T-cells.Nakamuraet al reported

that spleenCD4+CD25+T-cellsproducesolubleTGF-~1.86In their study, theTGF-~1concentra­
tion in the culture supernatant ofCD4+CD25+T-cellsreached-2 ng!ml,which isa concentration
sufficientto suppresstarget T-cells.Moreover,CD4+CD25+T-cellsexpressed surfaceTGF-~1as
the latency associatedprotein. Neutralizing anti-TGF-~1 abrogated the suppressive activity of
CD4+CD25+T-cells. Piccirilloet al, however, reported that neutralization ofTGF-~1 was not
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Figure 3. Immune regulatory functions of FOXP3+ T-cells. Naive FOXP3+ T-cells have the tis­
sue tropism for secondary lymphoid tissues while memory FOXP3+ T-cells have diverse tissue
tropisms for nonlymphoid tissues (e.g., gut versus other tissues). Therefore, naive T-cells are
designed to suppress the immune responses in secondary lymphoid tissues perhaps to lim it
the activation of various immune cells . This would be important to prevent the generation
of autoimmune effector T- and B-cells . Memory FOXP3+ T-cells can migrate to nonlymphoid
tissues. Depending on the site of antigen priming, some can migrate to the gut, while others
migrate to different tissue sites. Therefore, memory FOXP3+ T-cells can suppress the potentially
inflammatory activity of effector lymphocytes in diverse peripheral tissues. It is thought that
FOXP3+ T-cells can suppress harmful autoimmune responses but can be utilized by tumors
and pathogens to delay beneficial immune responses.

able to abrogate the suppressive effectof CD4+CD2S+ Tvcells." Similarly, Smad3 (-/-) T-cells
and the T-cellsthat cannot receive theTGF-131signalingwere suppressed byCD4+CD2S+ Tvcells,
In their study,TGF-131 (-/-) CD4+CD2S+ T-cells wereableto suppress targetT-cells.1hisgroup
alsoperformed an in vivostudy through which they found that the suppression of autoimmune
gastritisbyCD4+CD2S+ T-cells wasnot reversed byanti-TGF-131. A caveat with this studyisthat
in vivoneutralizationwould not always work and thus this data doesnot provelackof a role for
TGF-131 in vivo.Mamuraet alprovides evidence that compromises the resultsof the two reports."
Adoptive transfer ofTGF-131 (-/-) splenocytes into TGF-131 (+/+) Rag2 (-/-) mice induced
an autoimmune inflammatory disease and cotransfer ofTGF-131 (-/-) CD4+CD2S+ T-cells
partiallyamelioratedthe disease. However, this suppression wasweakercomparedto that bywild
type CD4+CD2S+ T-cells, suggesting that CD4+CD2S+ cells maysuppress target T-cellsin both
TGF-131-dependent and independent manners. Usinga dextran sodium sulfate (DSS).induced
colitismousemodelin conjunctionwithamodelwith impairedTGF-131-signalingbyoverexpress­
inga truncatedversionof the TGF-13 TypeII receptorin T-cells, Huber et al reported that transfer
of wild-type but not transgenicCD4+CD2S+ T-cells wasfound to suppress colitis in wild-type
mice." UnlikeCD4+CD2S+T-cells fromwildtypemice,CD4+CD2S+T-cells fromTGF-131(-/-)
micedid not protect recipientmicefrom colitisin T-cellinduced SCID mice." In contrast,adif­
ferent group reported that CD4+CD2S+ cells from either TGF-131 (+/+) or TGF-131 (-/-) mice
cansuppress the incidenceand severity ofcolitis," Itwasnotable,however, that CD4+CD2S+ cells
from TGF-131 (+/+) micewerealways more efficient than the CD4+CD2S+ cells from TGF-131
(-/-) micein suppression ofinflammation.1hese authors observedthat anti-TGF-131 neutraliza­
tion exacerbated effecror-T cellinduced colitisand claimedthat CD4+CD2S+ T-cellsareableto

suppress intestinal inflammationby a mechanismnot requiringTregcell-derived TGF-l3l. One
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problem with this claim is that FOXPY T-cellscan be induced following naiveT-cell transfer.
Overall,it appearsthat TGF-~l has certain rolesin the suppressive function ofFOXP3+ T-cells
but the degreeof contribution maydepend on the type of disease and immune responses. This
impliesthat there areTGF-~l-independent mechanisms of suppression.

Indeed, there are a number of candidate mechanisms that could mediate the suppressive
function ofFOXP3+T-cells. FOXP3+ T-cellshighlyexpress CTLA-4 and CTLA-4 cansuppress
antigenpresentingcells through the cognateCTLA4-B7interaction.92.93TheCTLA4-B7interac­
tion triggers the expression of indoleamine2, 3-dioxygenase (IDO) . IDO converts tryptophan to
kynurenine, 3-hydroxyanthranilic acid,picolinicacid and quinolinic acidand thus is an enzyme
that depletes tryptophan requiredforproliferationand functionofimmune cells." Certain regula­
tory T-cells express cytotoxicmolecules suchasgranzyme A and granzyme B,whichcankill target
cells in perforin-dependent and independent rnechanisms.t ':" FOXP3+ T-cells express alsoheme
oxygenase (H 0 )-1, an enzymethat producescarbon monoxide.98.99The suppressive function of
human CD4+CD25+ T-cellswasblockedin the presenceof an HO-1 inhibitor, suggesting a role
of carbon monoxidein the suppressive function ofFOXP3+ Tvcells."

RoleofFOXP3+T-Cellsin Suppression ofDiseases
Immunedysregulation, polyadenopathy,enteropathyandX-linkedinheritance(IPEX) patients

developvariousclinicalsymptoms. Most patients suffer from systemic autoimmunediseases evi­
dencedbysevere acuteenteritis, TypeI diabetes,elevatedserumIgEand eczema.19'2IThe patients
variably havealsohypothyroidism, anemia,thrombocytopenia, neutropeniaand autoantibodies.
The exactphenotype is thought to be determined by the type of mutations in the FOXP3 gene
becausepartially functional FOXP3 can be made with certain types of mutations. Also, other
factorssuchasgeneticsand environmentalfactorscanaffectthe progression of the disease. Scurfy
micearea mouseversionof human IPEX.IOO.lOl Malescurfymicewith the scurfymutation in the
X chromosomedeveloprunting, exfoliative dermatitis,hypergammaglobulinemia and severe ane­
mia.lOO.lOl In a manner similarto IPEX patients, scurfymicedie youngat around 3 weeks of age.
The phenotypes ofIPEX patients and scurfymiceclearly showthat autoimmune responses play
centralrolesin developingthe disease. FOXP3 ismainlyexpressed byCD4+T-cells and therefore,
this suggests that FOXP3+ T-cells playimportant rolesin preventionof the autoimmunedisease.
The scurfy symptom can be preventedbyadoptivetransferof FOXP3+ T-cells,I02. 103further sup­
porting the role of thesecells in preventionof the disease.

Because FOXP3+ T-cellscansuppress manytypesofimmune cellsuchasCD4+T-cells, CDS+
Tvcells,CD Id-restricted NKT cells. monocytes/macrophages, naive/memory Bvcells, dendritic
cellsand NK cells,104·110 they havethe potential to suppressa wide spectrum of immunological
diseases. Thisisindeed true in animalmodelsthat FOXP3+ T-cells caneither preventor suppress
existing immunological diseases such as experimental autoimmune encephalomyelitis (EAE),
inflammatory bowel disease (IBD), diabetes, collagen-induced arthritis, lupus, autoimmune
gastritisand allergy.III.118Similarly, FOXP3+ T-cellscan effectively suppressallogeneicimmune
responses leading to graft rejection and graft-versus-host disease.'!"!" Infection is a type of
diseases that are different from autoimmune diseases and the suppressive function ofFOXPY
T-cellsmaybe disadvantageous for the hosts during infection. In infection, somepathogenscan
suppress immune responses by expanding FOXP3+T-cells.122' 12S FOXP3+ T-cells are perhaps
required to terminate immune responses and preventover-active immuneresponses which could
leadto autoimmunediseases. However, excessive expansionofFOXP3+T-cellscoulddeter clear­
ance ofpathogens by the immune system.Cancer is yet another class of diseases.Most tumor
typesincludingcolorectalcancer,head and neckcancer,hepatocellularcarcinoma,breastcancer,
pancreas adeno caricinoma, melanoma, cervicalcarcinoma, gastrointestinal tract cancer, lung
cancer,ovarian cancer, leukemia and lymphoma have increased numbers of tumor-infiltrating
FOXPY T-cells.126·137 It is unclear if these cells are induced within the tumor or immigrated
into tumors. What seemsclearisthat thesetumor-associatedFOXP3+ Tvcells havethe potential
to suppressantitumor immune responses.
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Functions ofFOXP3 in Nonhematopoietic Cells
FOXP3 appears to havea role in thymic epithelialcells. The scurfymutation in the FOXP3

gene causes diminished proliferation of double negative thymocytes and thymic atrophy,"
Interestingly, FOXP3 is expressed also by nonimmune cells such as epithelialcells in mammary
glands, prostate and lungs.1O•138 The function ofFOXP3 in the epithelialcellsis largely unknown
but FOXP3-deficientmammarygland cells are more prone to becomecancerous." It ispossible
that FOXP3 would regulate the expression of certain oncogenes in these cells. HER-2/ErbB2
oncogeneand S-phasekinase-associated protein 2 (SKP2,acomponent of the E3 ubiquitin ligase
SKPl-Cull-Fbox complex) aresuchoncogenes that areimplicatedin FOXP3-mediatedsuppres­
sion of cell proliferation in mammarygland cells.1O

•139 FOXP3 functions to down-regulate the
expression ofERB2 and SKP2.10 Therefore, FOXP3 appearsto playa potentiallyimportant role
in regulationof the proliferationofepithelialcells in certainorgans. Although the roleisunclear,
FOXP3 is expressed alsobysometumor cells.140.141

Concluding Remarks
The significance ofFOXP3 in regulationof the immune systemis well-established. FOXP3

functionsasa transcriptionactivatorand suppressor and programsthe geneexpression programin
T-cells in adirection to promote immunetolerance.Thedetailedmechanisms for the geneexpres­
sion regulation by FOXP3 remain to be determined but it appears to modulate the function of
majortranscriptionfactorsand to changethe chromosomalconformation.Aplethoraof informa­
tion is available regardingthe immune regulatoryfunction of FOXP3+ T-cells. The data clearly
support the clinicalapplicationpotential ofFOXPY T-cellsin suppression of inflammationand
preventionof immunological diseases. Control of immunological diseases can be achieved either
through increasing the numbersofFOXP3+T-cells for suppression of immunecellsor decreasing
the numbers for promoting immuneresponses. Autoimmunediseases can be treated by utilizing
the former method, whilecancerand control of infection can be achievedbyadopting the latter
method. FOXP3+ T-cellscan be prepared in vitro by culturing naiveCD4+T-cells in the pres­
enceofTGF-131 and IL-2 or variousother agentsthat can turn on the expression ofFOXP3. The
migratoryand functionalpropertiesof FOXP3+ T-cellscan be altered byusinghoming receptor
inducerssuch as retinoicacidor bygenetherapy. Thiswould makethem more efficient in migra­
tion to target tissues and to control diseases. It isexpectedthat FOXP3-basedtherapieswould be
actively utilized in treatinghuman patients in the near future.
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