
Modeling and Security Analysis of a Commercial
Real-Time Operating System Kernel

Raymond J. Richards

1 Introduction

INTEGRITY-178B is a real-time operating system (RTOS) developed by Green
Hills Software [4]. Real-time operation implies that the operating system kernel will
schedule tasks as described by a predetermined schedule. System designers depend
on the kernel to reliably and faithfully schedule tasks according to the schedule.
This is to ensure that the tasks complete their necessary computations before sys-
tem imposed deadlines.

The initial market for INTEGRITY-178B was safety-critical systems, such as
avionics. The FAA accepts the use of DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification [10], as a means of certifying software
in avionics. DO-178B defines five levels of software to describe the impact to air-
craft safety should there be a failure. The criticality levels are denoted “A” through
“E,” “A” is the most critical, and “E” is the least critical.

INTEGRITY-178B is able to host multiple applications of mixed criticality
levels. It provides fault containment, preventing faults from cascading to other
applications. That is to say, a fault in one application is never noticeable in another
application. Recall that this is in a real-time operational environment, meaning that
the failure of an application cannot cause any other application to miss a deadline.
To achieve this level of fault containment, it is necessary for the kernel to strictly
partition not only the time allocated to each application, but also the system memory
between the various applications. This stringent time and space partitioning is often
referred to as “hard-partitioning.”

The high-assurance realms of safety-critical systems and security-critical
systems overlap in many interesting ways. In particular, the use of hard partitioning
is important in building high-assurance systems in both realms [11]. Mechanisms
that provide hard partitioning are often referred to as “separation kernels.” In the
safety critical realm, separation kernels can integrate functionality of various levels

R.J. Richards (�)
Rockwell Collins, Inc., Cedar Rapids, IA, USA
e-mail: rjricha1@rockwellcollins.com

D.S. Hardin (ed.), Design and Verification of Microprocessor Systems
for High-Assurance Applications, DOI 10.1007/978-1-4419-1539-9 10,
c� Springer Science+Business Media, LLC 2010

301

rjricha1@rockwellcollins.com

302 R.J. Richards

of criticality on a single computing platform. Separation provides fault isolation;
a fault in a less critical application cannot impact the execution of a more critical
function. In the security-critical realm, separation kernels can ensure that there is
no unauthorized flow of information between applications. This means that an ap-
plication cannot inadvertently or maliciously signal another application with which
it is not authorized to communicate. Since separation kernels are useful for both
safety-critical and security-critical systems, it is reasonable to take a separation
kernel that has been certified in one realm and attempt certification in the other
realm.

Information assurance products can be certified in accordance with the Common
Criteria for Information Technology Security Evaluation [2] or “Common Criteria”
for short. In USA, the National Information Assurance Partnership (NIAP) performs
Common Criteria evaluations. The Common Criteria defines seven evaluation as-
surance levels (EALs). The levels are labeled one through seven; EAL 7 is the most
stringent level. A study has compared the certification requirements of DO-178B
Level A and Common Criteria EAL 7 [1]. This study concluded that a product that
is used in a DO-178B certified system could achieve Common Criteria EAL 7 by
completing a few missing requirements. The most significant missing requirements
are those that pertain to formal analysis.

INTEGRITY-178B was designed to be, and has been used in, systems that have
been certified to DO-178B Level A; therefore, it was judged to be a good candi-
date to be the first separation kernel to obtain a Common Criteria certification. The
INTEGRITY-178B analysis effort supported an EAL 6 Augmented (EAL6C) eval-
uation. EAL6Cmeans that some of the evaluation requirements were more stringent
than prescribed by EAL6.

The Common Criteria defines three levels of rigor in analysis. These three
levels are informal, semiformal, and formal. In this context, formal means a pre-
cise mathematical treatment with machine-checked proofs. Informal is a natural
language-based justification of the security properties. Semiformal is something in
between. For the INTEGRITY-178B kernel, this means a mathematical treatment,
where some of the proofs are not machine checked.

The INTEGRITY-178B evaluation requirements for EAL 5 and above specify
five elements that are either formal or semiformal. These five elements are the
Security Policy Model, the Functional Specification, the High-Level Design, the
Low-Level Design, and the Representation Correspondence [9]. The level of rigor
that was applied to INTEGRITY-178B is as follows:

� Security Policy Model: A formal specification of the relevant security properties
of the system.

� Functional Specification: A formal representation of the functional interfaces of
the system.

� High-Level Design: A semiformal representation of the system. This representa-
tion may be somewhat abstract.

� Low-Level Design: A semiformal, but detailed representation of the system.
� Representation Correspondence: This element demonstrates the correspondence

between pairs of the other elements. The Representation Correspondence is

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 303

formal when it shows the correspondence between two formal elements; it is
semiformal otherwise. The Representation Correspondence shows that:

– The functional specification implements the security policy model.
– The high-level design implements the functional specification.
– The low-level design implements the high-level design.

The Common Criteria explicitly states that one entity may fulfill multiple
requirements. For example, a single design specification may fulfill the need for
both a high-level and a low-level design; in this case, the correspondence between
these two elements is trivial.

INTEGRITY-178B runs on a variety of microprocessors and motherboards.
A well-defined hardware abstraction layer with well-defined interfaces facili-
tates this portability. The formal (and semiformal) analysis was constrained to
the hardware-independent portions of the INTEGRIY-178B kernel. A methodi-
cal informal analysis was performed on the software in the hardware abstraction
layer. This approach allows the formal (and semiformal) analysis to be used as
certification evidence on multiple hardware platforms.

This chapter discusses details of the formal analysis approach taken for the
INTEGRITY-178B kernel, including:

� The generalization of the GWV theorem to capture the meaning of separation in
a dynamic system.

� A discussion on how the system was modeled including:

– System state
– Behavior
– Information flow

� The proof architecture used to demonstrate correspondence.
� The informal analysis of the hardware abstraction layer.

2 Separation Theorem

Existing formal specifications of separation properties were not expressive enough
to state anything meaningful about INTEGRITY-178B. The GWV theorem has been
shown to hold for the AAMP7G’s hardware-based separation kernel [12]. However,
the AAMP7G’s kernel is very static. Its execution schedule is set a priori; it is impos-
sible for user-level software to have an impact on the state of the kernel’s scheduler.
The original GWV theorem is only applicable to such strict static schedulers.

INTEGRITY-178B’s scheduling model is much more dynamic. A more general
GWV theorem was derived that captures the appropriate system level properties.
This theorem is known as GWVr2 [5].

For a GWVr2 proof, the system needs to be modeled as a state transition system
(Fig. 1). That is, it receives as inputs the current state of the system, as well as any
external inputs. It produces a new system state, as well as any external outputs.

304 R.J. Richards

Fig. 1 State transition
system State

Inputs

System
State’

Outputs

System*

State
Inputs

State’
Outputs

System
1

System
2

System
S

Fig. 2 Modified system model

System execution is a series of these state transitions. As a convenience, we
will assume that the external inputs and outputs are contained in the system state
structure. This state transition is expressed in the language of the ACL2 theorem
prover [7] as:

.let state0.system state//

The system state, inputs, and outputs can be decomposed into atomic elements.
Each of these elements is uniquely identifiable. Let the number of state elements
plus the number of output elements be denoted by the symbol S . The system can
be represented by S copies of the original system, each producing one element of
the next state or output. Each of these S systems can be fed with only the elements
of the current state and inputs that are necessary for it to compute its result. A system
that takes a current state and input elements, maps the appropriate inputs to S copies
of the system, and then maps the S resulting elements into the next state and external
outputs is denoted as system� (Fig. 2).

The ACL2 notation for system� is a function that has two inputs. One input is
a structure containing current state and external inputs. The other is a graph that
specifies how the current state and inputs elements are mapped to the S subsystems.
It produces the next system state, expressed in ACL2 as

.let state0.system� graph state//

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 305

If it can be proven that the system and system� produce identical results for all
inputs of interest, it implies that the graph used by system� completely captures the
information flow of the system. This is the GWVr2 theorem.

(equal
(system state)
(system� graph state))

A trivial graph that satisfies this theorem simply gives each subsystem all inputs
and state elements. Conversely, there is a minimal graph, for which removing any
element from the input of any subsystem causes the theorem to fail. Elements can
be added to the minimal graph, without impacting the correctness of the theorem.
This means that the input for one of the subsystems defines all of the data necessary
for computing one element of the next state or output.

The GWVr2 Theorem is the Common Criteria Security Policy Model for
INTGERITY-178B.

3 Modeling System State

To be consistent with the goal that the formal analysis be platform independent, the
model of system state is that of nested abstract data structures. Elements within a
data structure can either be a scalar or a nested data structure. A data structure that
contains other data structures may be a record of heterogeneous data items or an
array of homogenous data items. All elements in a data structure have names that
uniquely identify them and distinguish them from their peer elements. This is analo-
gous to a Unix file system containing directories and files. The directories represent
nested data structures and the files represent scalar data elements.

In such a file system, one can identify any directory or file resident within a
particular directory by specifying a path. The path contains the name of every sub-
directory that must be traversed in order to reach the item of interest. Similarly, in
the model of state, one can reach any piece of state that is resident in a data structure
by specifying a path. Arrays are represented in this model by using the array indices
as a specifier in the path.

Paths are considered scalar data items; they can be stored as part of state. This is
how C language pointers are modeled. Paths can be references to state locations and
can be dereferenced. Dereferencing a path produces the value stored at that location
in state.

An example data structure is shown in Fig. 3. Four scalar values are stored in
nested data structures. The paths to these for values and the data stored in this struc-
ture are shown in Table 1.

The ACL2 representation of a path is simply a list of identifiers. The head of
a path is the outermost data structure. The tail of a path represents a path that is
relative to the head. In this way, paths are analogous to a directory path in a Unix

306 R.J. Richards

Fig. 3 Example state
structure State

Struct1

A String

123

Struct2

7.5

Value4

State.Struct1.Value2

Value3

Value2

Value1

Table 1 Path examples Path Value Data type

State.Struct1.Value1 “A String” String
State.Struct1.Value2 123 Integer
State.Struct2.Value3 7.5 Float
State.Struct2.Value4 State.Struct1.Value2 Path

file system. Absolute paths are relative to the root of the file system; relative paths
are referenced from the current location.

Operators are defined to update and query the state. Both of these operators use
a path to specify which element of the state they are affecting. The query operator
“GP,” or Get from Path, returns the value stored at the specified location. Its im-
plementation is a recursive function that fetches the data specified by the identifier
at the head of the path and recursively calls itself using the tail of the path and the
fetched bit of state as the recursive arguments. The signature of the GP operator is:

(GP path st)

The update operator “SP,” or Set Path, returns a new state, where the element
specified by the given path is replaced with a new value. Its implementation is

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 307

also recursive. SP replaces the element specified by the head of the path with the
value returned by its recursive call. The arguments to this recursive call are the tail
of the given path and the value found in the state at the location specified by the
head of the path. The signature of the SP operator is:

(SP path value st)

4 Modeling Kernel Behavior

The hardware-independent portion of the INTEGRITY-178B kernel is implemented
in C code and formally modeled in ACL2. The Common Criteria explicitly forbids
the low-level design specification and the implementation representation (source
code) to be one and the same. Furthermore, establishing correspondence between
the low-level design specification and the implementation representation is typically
a manual, labor-intensive endeavor. This process is sometimes referred to as a “code-
to-spec” review.

One of the goals in modeling the system is to capture enough of the implementa-
tion details so that a clear and compelling argument can be made that the behavior
of the system is captured accurately. In an effort to facilitate that argument, it is use-
ful if the low-level design specification has a one-to-one correspondence with the
source code. That is to say, for every action in the source code there is a correspond-
ing action in the model, and for every action in the model there is a corresponding
action in the source code. In order to make the correspondences clear, it is useful to
make the model greatly resemble the source code.

Two areas where it is not possible to make the ACL2 model closely resemble the
C code implementation are in modeling loop constructs, as well as certain types of
recursion. Since the formal language (ACL2) used to model the system is a func-
tional language, and the INTEGRITTY-178B implementation Language (C) is an
imperative language, it is not always possible to directly represent constructs in the
system’s implementation in the model. For instance, ACL2 does not have looping
constructs. Loops are instead modeled by recursive functions.

ACL2 requires a proof of termination before admitting any function. This implies
that a certain style of recursion, known as reflexive recursion, cannot be directly
modeled [6]. Reflexive recursion occurs when two successive recursive calls are
made, the latter one taking as an argument something calculated by the first. The
following is an example of a reflexive recursive function:

int reflex (int i)f
int j;
<function body>
j=reflex(reflex(i-1));
<function body>
return j;

g

308 R.J. Richards

In this example, the outer call to the function reflex depends upon the results
of the inner call. This results in the proof of termination depending upon the termina-
tion of the function. When this occurs in the INTEGRITY-178B kernel, it is modeled
by unrolling the recursion. The recursion encountered in INTEGRITY-178B is con-
trolled by a simple counting variable; when that variable reaches a particular value,
the recursion is terminated.

4.1 Reader Macro

A set of ACL2 macros is used to allow the functional model to have an impera-
tive look and feel. These macros are known collectively has the reader macro. The
reader macro expands statements into a functional form. The reader macro is a form
that begins with the symbol “%.” This allows a syntax that closely resembles C to
expand into native ACL2. The native ACL2 uses the state operators “SP” and “GP”
to interact with the system state. The following types of statements are handled by
the reader macro:

� Global variable access
� Assignment
� Function invocation
� Conditional early exit from a function

4.1.1 Global Variable Access

In the functional language model, all state information, except for local variables,
is stored in the state structure that is passed throughout the model. Local, or stack,
variables are modeled by local variables in ACL2, as long as there is no address-
based accessing of the variable. A local variable that has its address passed to a
subordinate function must be modeled as a state element.

The C language’s use of variable identifiers does not distinguish between global
and local variables. Since global variables are elements in the state structure, syntax
was adopted to indicate when an identifier is an access to a global variable. Preced-
ing an identifier with the symbol “@” indicates that the identifier should be treated
as a path to a global variable. Preceding any path, including that of a local variable,
with the symbol “�” queries the value stored at that location pointed to by the path.

4.1.2 Assignment

Assignment statement syntax depends on the impact of the assignment. That is,
assignments to local variables have a different syntax than assignments that change
the persistent state.

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 309

Assignment statements can be generalized as an lvalue, an assignment operator,
and an rvalue.

lvalue assign_op rvalue

The lvalue denotes where the assigned value is stored. This can be a local vari-
able or a location in state. Local variables are modeled by local ACL2 variables.
This means when the scope in which the local variable has been declared is exited,
its value is lost. The syntax for local variable assignment uses the variable identifier
as the lvalue, followed by an equal sign “D,” followed by the rvalue.

lvalue = rvalue

Assignments to local variables are transformed into let bindings. The body of the
let binding is the scope where that assignment is valid.

In assignment statements that change state, the lvalue must evaluate to a path.
Rvalues are evaluated and the results are stored in the location indicated by the
lvalue. Assignments to state are transformed into state updates. The lvalue of an
assignment that impacts the state must evaluate to a path into the state. The syntax
for such statements is as follows:

(path) @= rvalue
global_var @= rvalue

4.1.3 Functions

C language functions may or may not return a value. When modeling in ACL2,
functions need to at least return the state that is a result of their invocation. The
reader macro transforms function invocations that appear to not return a value into a
function call that returns the new state, catching it in the appropriate variable. Model
functions are declared using a form called “defmodel,” which is similar to the ACL2
defun form.

Functions that return a value are modeled using a multivalued return. That is, it
returns a list of items. The return list has a length of two; the second item is always
the state returned from the function.

4.1.4 Conditional Early Exit

It is a common coding practice for functions to perform checks on the validity of
their inputs. If the input checks do not pass satisfactorily, the function is exited,
often returning an error code.

if (conditional)f
error handling;
return;

g
ACL2 functions only exit at the end of the function body. The reader macro rec-

ognizes conditional early exits, translating them into an if statement whose then

310 R.J. Richards

clause includes whatever error handling is needed. The else clause contains the re-
mainder of the function. The syntax for conditional early exist is:

(ifx (conditional)
error handling)

4.2 Model Example

The following example will be used to illustrate the various parts of this analysis.
The example is a function that operates on a circular, doubly linked list. This func-
tion removes one element from the list, maintaining a well-formed linked list. This
function is passed two arguments. The first is a pointer to a structure that contains a
pointer to the head of the list. The second is a pointer to the element that is removed
from the list. It is assumed that the element pointed to by the second argument is a
member of the list pointed to by the first argument. How this assumption is captured
in the analysis will be discussed later in this chapter. The example’s C language
implementation is:

void RemoveFromList (LIST *TheList, ELEMENT *Element){
ELEMENT *NextInList, *PrevInList;

NextInList = Element -> next;

if(NULL == NextInList)
return;

/* Update list */
if (Element == NextInList){

/* only element in the list */
TheList->First = NULL;

} else {
/* not only element in the list */
if (TheList->First == Element){

/* Element is first in list */
TheList->First) = NextInList;

}

PrevInList = Element->prev;
PrevInList->next = NextInList;
NextInList->prev = PrevInList;

}
/* clear this element’s links */
Element->next = NULL;
Element->prev = NULL;

}

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 311

The formal model for this function is defined as follows:

defmodel RemoveFromList (TheList Element st)
(%
(NextInList = (* Element -> next))

(ifx (NULLP NextInList)
st)

(if (equal Element NextInList)
(%

;; only element in the list
((TheList -> First) @= (NULL)))

;; else
(%
;; not only element in the list
(if (equal (* TheList -> First) Element)

;; Element is first in list
(%
((TheList -> First) @= NextInList))

;; else
st)

(PrevInList = (* Element -> prev))
((PrevInList -> next) @= NextInList)
((NextInList -> prev) @= PrevInList)))

;; clear this element’s links
((Element -> next) @= (NULL))
((Element -> prev) @= (NULL))))

4.3 Model Syntax Summary

The following table describes how various C language constructs are modeled
C ACL2 Lisp/ACL2 Notes

Variable reference

x
X Value of local variable x
(�@ x) Value of global variable x

�xp
(�xp) Value pointed to by local variable xp

(� (�@ xp)) Value pointed to by global variable xp

&x (@ x) Address of global y variable

312 R.J. Richards

Variable assignment
x D : : :; (% .. .x D : : :/ ..) Assign value of local variable x

(% .. (x @= . . .) ..) Assign value of global variable x

�xp D : : :;

(% .. ((xp) @D . . .) ..) Assign value pointed to by local
variable xp

(% .. ((�@ xp) @D . . .) ..) Assign value pointed to by global
variable xp

Simple structure references

x.y (� (@ x) j.j y) Value of field y of the structure
instance at global variable x

xp� > y
(� xp� > y) Value of field y of the structure

pointed to by local variable xp

(� (�@ xp)� > y) Value of field y of the structure
pointed to by global variable xp

x[y] (� (@ x) [y]) Value of element at index y in the
array instance at global variable x

xp[y]
(� xp [y]) Value of element at index y of the

array to which local variable xp

points
(� (�@ xp) [y]) Value of element at index y of the

array to which global variable xp

points
&x.y (& (@ x) j.j y) Address of field y of the structure

instance at global variable x

&xp� > y
(& xp� > y) Address of field y of the structure

pointed to by local variable xp

(& (�@ xp)� > y) Address of field y of the structure
pointed to by global variable xp

&x[y] (& (@ x) [y]) Address of element at index y in the
array instance at global variable x

&xp[y]
(& xp [y]) Address of element at index y of the

array to which local variable xp

points
(& (@�xp) [y]) Address of element at index y of the

array to which global variable xp

points
Complex structure references
�x.y (� (� (@ x) j.j y)) Value pointed to by field y of the

structure instance at global
variable x

�xp� > y
(� (�xp� > y)) Value pointed to by field y of the

structure pointed to by local
variable xp

(� (� (�@ xp)� > y)) Value pointed to by field y of the
structure pointed to by global
variable xp

�x[y] (� (� (@ x) [y])) Value pointed to by element at index y
in the array instance at local
variable x

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 313

�xp[y]
(� (�xp [y])) Value pointed to by element at index y of

the array to which local variable xp

points
(� (� (�@ xp) [y])) Value pointed to by element at index y of

the array to which global variable xp

points
Simple structure assignments
x.yD . . . ; (% .. (((@ x) j.j y) @D . . .) ..) Assign value of field y of the structure

instance at global variable x
xp� > y D : : :; (% .. ((xp� > y) @D . . .) ..) Assign value of field y of the structure

pointed to by local variable xp

(% .. (((�@ xp)� > y) @D . . .) ..) Assign value of field y of the structure
pointed to by global variable xp

x[y]D . . . ; (% .. (((@ x) [y]) @D . . .) ..) Assign value of element at index y in the
array instance at global variable x

xp[y]D . . . ;
(% .. ((xp [y]) @D . . .) ..) Assign value of element at index y of the

array to which local variable xp points
(% .. (((�@ xp) [y]) @D . . .) ..) Assign value of element at index y of the

array to which global variable xp

points
Complex structure assignments
�x.yD . . . ; (% .. (((� (@ x) j.j y)) @D . . .) ..) Assign value pointed to by field y of the

structure instance at global variable x

�xp� > y D : : :;
(% .. (((� xp� > y)) @D . . .) ..) Assign value pointed to by field y of the

structure pointed to by local variable
xp

(% .. (((�(�@ xp)� > y)) @D . . .) ..) Assign value pointed to by field y of the
structure pointed to by global variable
xp

�xŒy� D : : :; (% .. (((� (@ x) [y])) @D . . .) ..) Assign value pointed to by element at
index y in the array instance at global
variable x

�xpŒy�: : :;
(% .. (((� xp [y])) @D . . .) ..) Assign value pointed to by element at

index y of the array to which local
variable xp points

(% .. (((� (�@ xp) [y])) @D . . .) ..) Assign value pointed to by element at
index y of the array to which global
variable xp points

Arithmetic operators
XC y; (C x y) Addition
X – y; (� x y) Subtraction
x� y; (ACL2::� x y) Multiplication
x/y; (/ x y) Division

Logical operators
xDD y (equal x y) Equal
x !D y (not (equal x y)) Not-equal (Negation)
x < y (< x y) Less-than
x > y (> x y) Greater-than
x <D y (<D x y) Less-than or equal-to
xp DD NULL (NULLP xp) Null pointer test
!xp

314 R.J. Richards

xp DD 0

xp (NNULL xp) Non-Null pointer test

Conditional control structures
if (x) y; else z; (if x y z) If expression x is true do y

otherwise do z.
if (x) y; (if x y st) If expression x is true do y

otherwise to nothing. State (st)
as the else component is
analogous to do-nothing or the
absence of as else-component.

f: : :g (% . . .) Groups a series of sequential
statements into a single global
structure or block

If (x) fAstmt; Bstmt; g else f Cstmt; g (if x (% AstmtBstmt: : :)
(% (Cstmt) . . .))

If example with a code block.

x ? y : z (if x y z) C alternation

Function Declarations
type foo . . . (defun foo . . . Return type not specified in

function signature
. . . foo (int x) foo (x st) No parameter type declarations

State (st) parameter added for
access to global state

. . . foo (int �x) foo (xp st) No parameter type declarations
State (st) parameter added for

access to global state
return; (return st) Function return when function

application only changes state
return x; (return x) Function returns a single value x

when function application does
not change state

4.4 Kernel Boundaries

There are several important boundaries to the kernel model that could not be
modeled as a straightforward translation of the system source code. These bound-
aries include asynchronous interactions with the world outside of the kernel, includ-
ing interrupt processing and execution of application code. Another boundary is the
interaction with the portion of the kernel that is specific to the hardware platform.

4.4.1 Breaking the Kernel Loop

The GWVr2 theorem requires that steady-state operation be defined as a step that
can be performed repeatedly. Since the steady-state execution of most operating

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 315

systems is implemented with an infinite loop, it is a natural inclination to have one
step in the model represents a single iteration of this loop. We will refer to this as
the scheduling loop.

Great care needs to be taken to determine where this loop is broken. The cut point
of the loop must represent a well-defined state in the execution. This is the point
where the next entity to execute can be identified from the state, and the previous
entity has been removed from execution and its state saved. This is the point where
all assumptions about the state hold. These assumptions include well formedness
and necessary constraints on the data. We refer to the state between two steps as a
secure state. It is assumed that the system reaches a secure initial state as a result
of the system initialization. Evidence justifying this assumption has been generated
and is beyond the scope of this chapter. The generalization of the GWV theorem
to the GWVr2 theorem does allow for the execution of a previous system step to
influence which is the next entity to execute. The successive execution of steps is
shown in Fig. 4.

The INTEGRITY-178B scheduling loop picks which thread of the current
partition is to execute next and does not necessarily represent a context switch or a
change in the logical partition.

4.4.2 Hardware-Dependent Layer

As mentioned earlier, only the hardware-independent portion of the kernel is
formally modeled. The hardware-dependent portion of the kernel is present in the
formal model only in an abstract form. The functional interface to this portion
of the kernel is modeled by ACL2 encapsulations. In an encapsulation, the func-
tion signatures are defined, as well as key properties, but no implementations are
modeled. The properties given in these encapsulations are the properties necessary
to prove either termination of a higher level model function or the GWVr2 Theorem.

Secure Initial State

Load
Execute

Store

Time

Step

Secure States

Fig. 4 Dividing Kernel execution into discrete steps

316 R.J. Richards

Justification of these properties in the actual implementation occurred as part of the
rigorous manual analysis of that code. This analysis is discussed later in this chapter.

4.4.3 Interrupt Processing

Asynchronous events typically interact with INTEGRITY-178B via the interrupt
mechanism. Interrupt processing is implemented as functions that are invoked from
the platform-specific interrupt handling software. We model all such interrupt pro-
cessing at the level of the scheduling loop. That is, before the step concludes, it
processes all of the interrupts that occurred during execution of the step.

A logical mechanism known as an oracle is used to determine the number and
type of interrupts that have arrived. An oracle is modeled by an unspecified function
that produces the information that is needed. Properties may be stated about the
oracle function, which may be as simple as the type of information it produces. The
oracle function takes as an input an undefined piece of the system state. This gives
us a convenient way to reason about an arbitrary number of arbitrary events.

Interrupts are modeled by a loop whose number of iterations is controlled by one
oracle; in the body of the loop, a second oracle determines what type of interrupt
has arrived.

4.4.4 Application Software Execution

The purpose of a separation kernel is to orchestrate the execution of multiple
partitions. From time to time the kernel relinquishes control of the hardware to
application software. However, the actions of the application cannot be modeled,
since they are unknown. What is modeled are the application software’s interactions
with the kernel. These interactions come in the form of system calls. We model an
arbitrary number of arbitrary system calls in the same manner in which we model
interrupts. One oracle determines how many systems calls are going to be processed,
and a second oracle determines the type of each system call.

5 Modeling Information Flow

Information flows are modeled by defining for a given element in system state;
what are the state elements that can influence its next value. This can be thought
of as a graph with vertices representing state elements and edges representing
dependencies. For each function of the model, a new function is defined that
calculates its graph, given its set of inputs, including the input state. The naming
convention for these graph-computing functions (often referred to as graph func-
tions) is to append “-graph” to the model function’s name. The graph function’s
parameters are identical to that of the model function. The graph function returns
a data structure that contains all of the graph edges for each state element that is
updated by the model function.

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 317

5.1 Crawlers

In order to define a graph, it is necessary to be able to articulate what elements in
state belong to which data structures. That is to say, for an operation upon a data
structure, we need to be able to create sets of elements that may be updated by the
operation and sets of elements whose values are used to create the new values. To
do this, we have created a construct known as a crawler. Crawlers are used to create
collections of state elements. Each member of the collection is identified by its path.
Once a collection is created, it can be transformed into a collection of subelements
by appending the subelement identifier to each path. We call the action of appending
the same identifier to each path decorating the paths in the collection.

Let us consider the doubly linked circular list example. Each list element contains
a next and previous pointer in order to connect it to the list. A crawler over this
data structure might create a collection containing all elements in the list. That is, it
creates a set of paths, one representing each element in the list. A decorate operation
might refine these paths to refer to the next and previous fields of each element in
the list.

5.2 Graphs

A graph describes, for a set of state elements that may have their value changed by
an operation, what are the sources of information that are used in calculating the
new values. Using our circular linked list example, let us consider a graph for either
a sort or remove-element operation. In each case, the state elements that may be
changed are the previous and next fields of all of the elements of the list. The new
values that may be stored in these locations are the values that are stored in these
same locations before the operation. Therefore, the graph states that the new values
of the previous and next fields in the list depend upon what is currently stored in the
previous and next fields in the list. More precisely, the graph contains an entry for
each previous and next pointer as a location that may be updated. Each entry defines
a dependency on the set of previous and next pointers as the source of information
for the updated values.

Several functions and macros are defined to assist in developing graph functions.
Chief among these is “defgraph,” which takes four arguments. The first argument
is the name of the function whose graph is being defined. The second argument
is the list of names of the function’s parameters. Any parameter that is a pass-by-
value structure has its name in parentheses. The third argument is the list of variable
names whose values are returned by this function. Again, pass-by-value structures
have their names in parentheses. The last argument is the body of the graph defining
function.

The functions “du,” “du*,” and “merg-u2” are used to create dependencies or use
lists. The functions “su” and “su*” are used to associate a dependency set with an

318 R.J. Richards

element that has its value defined by the function. The function “mvg” returns the
graph and associates variables with returned values.

The graph for the RemoveFromList example function is defined as follows:

(defgraph RemoveFromList (:TheList :Element (:st))
((:st))

(%
;; determine the nodes in the list
(list-nodes = (crawl-list TheList st))

;; define the state elements whose values
;; might change
(list-ass =

‘(,@(decorate-list list-nodes
(ElementStruct_Kstr))

,@(decorate-list TheList
(ListStruct_Kstr))))

;; create the dependencies set for the things
;; that might change
(u2 = (merg-u2 :TheList :Element

(du* :st list-ass)))

;; define the dependencies for things that
;; might change
(g = (su* :st list-ass u2 g))

(mvg (:st) st)))

5.3 Graph Composition

In the formal analysis, graphs are created for each function in the kernel. A graph
for a function that calls other functions must be no smaller than the graphs of the
subordinate functions. That is, the dependencies defined by any graph of a called
function must exist in the graph of the calling function.

In the circular linked list example, consider an Add operation. The state elements
that may be updated are not only the previous and next fields of the existing list, but
also the previous and next fields of the element being added to the list. The sources
of new values for these elements are not only the previous and next pointers of the
existing list, but also the parameter to the function pointing to the new element.

The graph of any function calling the Add operation must relate the previous
and next fields of the current list members and the previous and next fields of any
elements that might be added to the list to the sources of possible new values. The

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 319

sources of possible new values are, of course, the previous and next fields of the
current members of the list and the locations that could supply the new elements to
the Add operation.

6 Proof of Separation

In order to prove the GWVr2 theorem, it is useful to first prove two lemmas with re-
spect to the function being analyzed. These lemmas are referred to as the Workhorse
Lemma and the ClearP Lemma. We will discuss these lemmas with respect to
the circular linked list example. Before we discuss these lemmas, we will define
functions needed to support them.

� RemoveFromList-Hyp. For every model function “foo” a function “foo-hyp” is
defined. This function states the hypothesis that is needed in order to have the
model function work appropriately. The hypothesis function takes the same ar-
guments as the model function. Recall that for the RemoveFromList function, it
was assumed that the element given to the function is a member of the list; the
RemoveFromList-Hyp function is where that assumption is stated.

� Keys. The Key function is passed a dependency graph and returns the set of state
elements that may be updated, according to the graph.

� DIA. The direct interaction allowed (DIA) function takes a state element and a
graph. It returns the set of state elements that the passed-in element has depen-
dencies on, as defined by the graph.

� CP-Set-Equal. CP-Set-Equal is a predicate that takes a set of state elements and
two states. It evaluates to True if the two states have the same value for each
member of the set. It does not say anything about portions of the state that are
not in the set. Therefore, the two states may be different in the parts of the state
not defined in the set.

� CLRP-Set. CLRP-Set takes a set of state elements and a state. It returns a state
that is a copy of the passed-in state, but the elements of the state specified in
the set have been cleared. In this case, cleared means that their values have been
replaced with nil.

6.1 Workhorse Lemma

The Workhorse Lemma states a relationship between the results of two invocations
of a function. These two invocations operate on different states, but on the same
parameters. For the circular linked list example, the two states satisfy the following
constraints:

� Both states satisfy the RemoveFromList-Hyp assumptions. This means we are
only considering invocations of this function, where the element to be removed
is a member of the list.

� The two states have the same values for all elements that are in one of the depen-
dency sets defined by the RemoveFromList graph.

320 R.J. Richards

These constrains are specified in ACL2 as:

(AND
(RemoveFromList-Hyp List Element St1)
(RemoveFromList-Hyp List Element St2)
(Member Path (Keys

(RemoveFromList-Graph List Element St1)))
(CP-Set-Equal

(DIA Path
(RemoveFromList-Graph List Element St1))
St1 St2))

This lemma concludes that having these criteria satisfied implies that the two
states resulting from the two RemoveFromList invocations have the same values
for all state elements that are defined by the RemoveFromList-Graph function. The
ACL2 statement of this lemma is:

(DEFTHM RemoveFromList-Workhorse
(IMPLIES

(AND
(RemoveFromList-Hyp List Element St1)
(RemoveFromList-Hyp List Element St2)
(Member Path

(Keys (RemoveFromList-Graph List
Element
St1)))

(CP-Set-Equal
(DIA Path

(RemoveFromList-Graph List
Element
St1))

St1
St2))

(IFF (EQUAL
(GP Path (RemoveFromList List Ele ment St1))

(GP Path (RemoveFromList List Element St2)))
T)))

The Workhorse lemma demonstrates that the function’s graph sufficiently cap-
tured the dependencies in the data flows of the function.

6.2 ClearP Lemma

The ClearP Lemma demonstrates that all of the changes to state performed by a
function are captured by the function’s graph. In the circular linked list example, for
a list, element, and a state that satisfy the function’s hypothesis function

Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 321

(RemoveFromList-Hyp List Element St1)

the ClearP lemma establishes that the operation of the function does not change state
in a manner that is not captured by its graph. The lemma considers two states, the
input state and the output state the function. If all elements that the graph says might
be updated are removed from both states, then satisfying ClearP means that the
remaining states are identical. This demonstrates that the footprint of state changed
by the function is captured by the graph.

Once these two lemmas are proven, it is straightforward to prove GWVr2 for the
function.

7 Hardware-Dependent Code Analysis

In the INTEGRITY-178B evaluation, the small layer of hardware-dependent code
was subjected to a rigorous by hand review. NIAP provided a list of source code
characteristics that when present tend to promote correctness, stability, and un-
derstandability. These characteristics were collected from industry’s best practices
for real-time high-assurance software. An example of these characteristics is the
absence of pointer arithmetic. Importantly, the assumptions stated in the abstract
model of the code are validated by this analysis.

All of the source code in this layer (C code and assembly language) was
examined to determine if it conformed to the characteristics list. For each func-
tion, justification for each characteristic was documented. This documentation was
provided as part of the certification evidence.

8 Conclusion

After a thorough review of all of the certification evidence, including the for-
mal, semiformal, and informal analysis described herein, NIAP granted a Com-
mon Criteria Certificate for the INTEGRITY-178B kernel at the EAL6C level on
September 1, 2008. The “home page” for the certification documentation can be
found online [8]; a summary of the formal verification activities can be found in the
Security Target document [3].

References

1. Alves-Foss J, Rinker B, Taylor C (2002) Towards common criteria certification for DO-178B
compliant airborne systems, Center for Secure and Dependable Systems, University of Idaho

2. Common Criteria for Information Technology Security Evaluation (CCITSE) (1999). Available
at http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html

http://www.radium.ncsc.mil/tpep/library/ccitse/ccitse.html

322 R.J. Richards

3. Common Criteria Testing Laboratory. Green Hills Software INTEGRITY-178B Security
Target, Version 1.0, May 30, 2008. http://www.niap-ccevs.org/cc-scheme/st/st vid10119-st.
pdf

4. Green Hills Software, Inc. INTEGRITY real-time operating system. http://www.ghs.com/
products/rtos/integrity.html

5. Greve D (2010) Information security modeling and analysis. In: Hardin D (ed) Design
and verification of microprocessor systems for high-assurance applications. Springer, Berlin,
pp 249–299

6. Greve D, Wilding M (2002) Dynamic data structures in ACL2: a challenge. Available at
http://www.hokiepokie.org/docs/festival02.txt

7. Kaufmann M, Manolios P, Moore JS (2000) Computer-aided reasoning: an approach. Kluwer,
Dordrecht

8. NIAP CCEVS. Validated Product – Green Hills Software INTEGRITY-178B Separation
Kernel. http://www.niap-ccevs.org/cc-scheme/st/vid10119/index.cfm

9. Richards R, Greve D, Wilding M, Vanfleet M (2004) The common criteria, formal methods,
and ACL2. In: Proceedings of ACL2’04, Austin, TX, November 2004

10. RTCA, Inc (1992) Software considerations in airborne systems and equipment certification,
RTCA/DO-178B, December 1, 1992

11. Rushby J (1981) Design and verification of secure systems. In: Proceedings of the eighth
symposium on operating systems principles, vol 15, December 1981

12. Wilding M, Greve D, Richards R, Hardin D (2010) Formal verification of partition management
for the AAMP7G microprocessor. In: Hardin D (ed) Design and verification of microprocessor
systems for high-assurance applications. Springer, Berlin, pp 175–191

http://www.niap-ccevs.org/cc-scheme/st/st{_}vid10119-st.pdf
http://www.niap-ccevs.org/cc-scheme/st/st{_}vid10119-st.pdf
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.hokiepokie.org/docs/festival02.txt
http://www.hokiepokie.org/docs/festival02.txt
http://www.niap-ccevs.org/cc-scheme/st/vid10119/index.cfm

	Design and Verificationof Microprocessor Systemsfor High-AssuranceApplications
	Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel
	1 Introduction
	2 Separation Theorem
	3 Modeling System State
	4 Modeling Kernel Behavior
	4.1 Reader Macro
	4.1.1 Global Variable Access
	4.1.2 Assignment
	4.1.3 Functions
	4.1.4 Conditional Early Exit

	4.2 Model Example
	4.3 Model Syntax Summary
	4.4 Kernel Boundaries
	4.4.1 Breaking the Kernel Loop
	4.4.2 Hardware-Dependent Layer
	4.4.3 Interrupt Processing
	4.4.4 Application Software Execution

	5 Modeling Information Flow
	5.1 Crawlers
	5.2 Graphs
	5.3 Graph Composition

	6 Proof of Separation
	6.1 Workhorse Lemma
	6.2 ClearP Lemma

	7 Hardware-Dependent Code Analysis
	8 Conclusion
	References

