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Preface

Microprocessors are the workhorses of modern high-assurance systems. New cars
typically utilize dozens of microprocessors, managing vital functions such as brak-
ing, ignition, traction control, and air bags. Most of the critical functions on modern
aircraft, including flight control, engine control, flight management, and pilot dis-
plays, are microprocessor based. Medical devices, transportation systems, power
grids, communications infrastructure, defense systems, and numerous other high-
confidence applications are all dependent on microprocessor control.

Over the last 30 years, the microprocessors deployed in high-assurance systems
have increased in sophistication from simple 8-bit chips with less than 10,000 tran-
sistors to 32- and 64-bit chips with millions of transistors, pipelining, floating point,
specialized functional units (e.g., for cryptography), memory management, cache
management, and so on. The system software for these systems has likewise in-
creased from simple interrupt handlers to full-fledged operating systems capable
of supporting multiple concurrent applications with space and time partitioning.
Finally, the application logic on these microprocessor systems has increased from
a few hundred lines of assembly code to millions of lines of high-level language
code. The means of expressing the application design has changed as well, progress-
ing from schematics and assembly code to high-level languages for both hardware
and software. Indeed, many high-assurance applications are now developed using
model-based development languages, with the final source code (which may be a
mixture of programming language and hardware description language source text)
autogenerated from the models.

This begs the question: how are we to trust this complex stack of microprocessor
hardware, microcode, operating system kernel, runtime libraries, and application
logic? Simulation and testing have shown to be inadequate, as several high-profile
design flaws have manifested themselves in the field. How do we even specify the
important safety and/or security properties for complex systems, much less assure
that implementations maintain them?

In this book, we examine several leading-edge design and verification tech-
nologies that have been successfully applied to microprocessor systems at various
levels — from arithmetic circuits to microcode to instruction sets to operating sys-
tems to applications. We focus on recent hardware, software, and system designs

vii



viii Preface

that have actually been built and deployed, and feature systems that have been cer-
tified at high Evaluation Assurance Levels, namely the Rockwell Collins AAMP7G
microprocessor (EAL7) and the Green Hills INTEGRITY-178B separation kernel
(EAL6+). The contributing authors to this book have endeavored to bring forth
compelling new material on significant, modern design and verification efforts;
many of the results described herein were obtained only within the past year.

This book is intended for practicing computer engineers, computer scientists,
professionals in related fields, as well as faculty and students, who have an interest
in the intersection of high-assurance design, microprocessor systems, and formal
verification, and wish to learn about current developments in the field. It is not in-
tended as a tutorial for any of the aforementioned subjects, for which excellent texts
already exist.

The approach we have taken is to treat each subject that we examine in depth.
Rather than presenting a mere summary of the work, we provide details: how ex-
actly the design is specified and implemented, how the design is formalized, what
the exact correctness properties are, and how the design is shown to meet its speci-
fication. Thus, for example, the text describes precisely how a radix-4 SRT divider
for a commercial microprocessor is implemented and proven correct. Another chap-
ter details how a complete AES-128 design is refined from an abstract specification
traceable back to the FIPS-197 document all the way down to a high-performance
hardware-based implementation that is provably equivalent to the FIPS-197 specifi-
cation. The contributors to this book have made an extraordinary effort to produce
descriptions of their work that are as complete and detailed as possible.

Just as important, this book takes the time to derive useful correctness statements
from basic principles. The text formally develops the “GWV” family of information
flow theorems used in the certifications of the AAMP7G as well as the INTEGRITY-
178B kernel, proceeding from a simple model of computing systems (expressed
in the language of the PVS theorem prover) called the “calculus of indices”, and
formally developing the GWVrl and GWVr2 information flow theorems. The text
presents a proof of how the GWV formulation maps to classical noninterference, as
well as a proof demonstrating that a system can be shown to uphold the GWVr1 in-
formation flow specification via model checking. Another example of development
from basic principles can be found in the chapter detailing the refinement frame-
works used in the verification of the seL.4 microkernel.

Along the way, we delve into a number of “tools of the trade” — theorem provers
(e.g., ACL2, HOLA, Isabelle/HOL, PVS), model checkers (BAT, NuSMV, Prover),
and equivalence checkers — and show how formal verification toolchains are increas-
ingly able to parse the actual engineering artifacts under analysis, with the result that
the formal models are much more detailed and accurate. Another tool trend noted
in several chapters is the combination of theorem proving, model checking, sym-
bolic simulation, etc., to produce a final verification result. A notable example of
this combination of techniques documented in the text is the process used by Cen-
taur Technology to verify their x86 compatible processors. The book also highlights
ways in which ideas from, for example, theorem proving and compiler design, are
being combined to produce novel and useful capabilities.
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We open with a description of the ACL2 theorem prover, utilized in a number
of the succeeding chapters, and then proceeds from the design and verification of
basic high-performance hardware found in modern microprocessors (e.g., a divider
circuit), to larger functional units (FPUs and cryptographic units), to pipelines, and
then on to microcoded functions. The book then addresses the microprocessor at the
instruction set level, focusing on machine code proofs, particularly the “decompila-
tion into logic” approach pioneered by users of the HOL4 system. After developing
some basic information flow theorems, the book turns its attention to operating sys-
tem verification, with chapters on recent successes in information flow verification
(INTEGRITY-178B) as well as functional correctness (seL4). We then progress to
the application level, with a chapter dealing with the specification and checking
of software contracts for conditional information flow, targeting the SPARK high-
assurance Ada language subset. The book concludes with a description of tools
and techniques for model checking information flow properties, applicable to both
hardware and software systems that have been implemented using model-based de-
velopment tools such as Simulink or SCADE.

Looking back over the year or so since I was first contacted by my superb ed-
itor at Springer, Charles Glaser, about the possibility of doing a book, I am both
surprised and pleased to see that the finished product is quite close to my origi-
nal, overly ambitious vision (as a colleague, perhaps rightly, called it at the time).
To the extent that this book succeeds in describing compelling new results in the
design and verification of high-assurance microprocessor systems, I have my con-
tributing authors to thank; conversely, I am solely to blame for any shortcomings in
reaching that goal. I would also like to thank my employer, Rockwell Collins, Inc.,
particularly John Borghese, Ray Kamin, Matt Wilding, and Ray Richards in the Ad-
vanced Technology Center, for providing me with time and facilities to work on the
book. Several farsighted US government employees also played a significant role in
the development of the technologies described herein, and I wish to especially ac-
knowledge the efforts of Bill Legato, Brad Martin, and Mark Vanfleet of DoD, Jahn
Luke and Dave Homan of AFRL, as well as Rick Butler and Paul Miner of NASA.
Finally, I wish to thank my family and friends for their patience and support.

Cedar Rapids, IA David S. Hardin
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ACL2 and Its Applications to Digital System
Verification

Matt Kaufmann and J Strother Moore

1 Introduction

Digital systems designs are growing in complexity, with huge state spaces and even
larger sets of possible execution paths through those spaces. Traditional simulation-
based testing for complex systems covers only relatively few of those execution
paths. One solution that is getting increased attention is formal verification: the ap-
plication of mechanized mathematical techniques to verify design properties for all
execution paths.

In this chapter, we introduce ACL2 — a programming language, logic, and proof
development environment — and explore its use in the formal verification of digital
systems. Section 2 explores the general problem of proving properties of digital
machines. Next, Sect. 3 introduces ACL2. Finally, in Sect. 4, we illustrate how to
apply ACL2 to reason about digital system models and programs running on them.

2 Some Basic Decisions

Suppose we wanted to describe an abstract digital machine and to prove properties
of it. In what language should we describe the machine? In what mathematical
system should we construct our proofs? Different researchers — and this is a topic of
ongoing research! — have different answers. In this section we give ours.

If asked “what is a digital system?” in a context requiring a mathematical an-
swer, many designers would think in terms of finite or infinite state machines, state
charts, programs, recursive functions, or any of the other equivalent formalization
of computational processes. We tend to use state machines or recursive functions
modeling some aspects of the system, e.g., functionality, timing, etc. The first ques-
tion confronting a person wishing to prove theorems about a digital system is in
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what language or languages does one operate? Most readers will immediately think
of several programming languages well suited to describing abstract state machines,
e.g., VHDL, C, Java, etc., as well as various modeling languages.

But we assume that most readers are less familiar with mathematical proof sys-
tems and so we explore that more closely here. A formal logic includes a syntax
describing all well-formed formulas together with some rules of inference that al-
low one to deduce “new” formulas from “old” ones. There are many formal logics:
propositional calculus, first-order predicate calculus, higher order logic, a plethora
of modal logics, etc. A logic can be turned into a theory by identifying some for-
mulas as axioms. It is conventional to assign meaning to formulas so that some are
considered valid with respect to the axioms and the rules of inference preserve va-
lidity: if the “old” formulas used by a rule are valid, so is the new formula produced
by the rule. The axioms characterize the properties of the primitive objects and the
rules of inference let us deduce additional properties. A proof is a derivation of a
formula from some axioms using the rules of inference. The new formula is called
a theorem (or, if it is just a stepping stone used to derive a more interesting formula,
a lemma) and it is valid. Thus, a way to determine that a formula is valid is to con-
struct a proof of the formula. A piece of software that checks that an alleged proof
is indeed a proof is called, naturally enough, a proof checker. A piece of software
that attempts to discover a proof given an alleged theorem is a theorem prover. If we
were talking about the game of chess, proof checking is akin to checking that every
move in a published game is legal and theorem proving is akin to playing the game
against an opponent (the alleged theorem).

Because numbers are so basic in digital machines — they are typically used as
data, as addresses, as instructions, etc. — our theory will have to have axioms char-
acterizing the numbers (especially the natural numbers including 0 and 1) and
possibly other “atomic” objects relevant to our machine or its description, such as
symbols and strings. In addition, our axioms should allow us to build composite
structures such as lists or vectors, tables, trees, graphs, etc., because these are typi-
cally used in machine descriptions.

All of these objects are inductively constructed in the sense that they can be built
up by repeatedly applying some basic functions. For example, the naturals are built
from 0 by adding 1. Vectors can be built from the empty vector by the operation
of adding an element. Tables can be built by adding a row or column (vector) to the
empty table, etc. To reason about inductive objects, one must have an inductive rule
of inference. The most familiar is: to prove that ¥ is valid for all natural numbers
n, (a) prove ¢ when n is 0, and (b) prove that if v holds for the natural number
n, then ¥ holds for n+1. Similar rules of inference can be formulated for vectors,
tables, etc.

Because no preexisting theory will contain all the concepts needed to describe
our machine, our logical theory must also support the notion of definition, allowing
us to define new functions and relations. For example, we might need to speak of
the “physical address,” if any, associated with a given “virtual address” in a cer-
tain table. The main idea behind a definitional principle is to add one or more
new axioms that characterize the properties of some previously undistinguished
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(“new”) symbol, e.g., virtual-address. This is called extending the theory.
It is not possible to add just any axiom to a sound theory while preserving sound-
ness, e.g., one cannot “define” the new function symbol bad by the new axiom
bad(x) = 1+ bad (x) and expect the new theory to be sound! But there are condi-
tions under which extensions are known to preserve soundness. One is that the new
axiom describes a function whose values on all inputs can be algorithmically com-
puted. So adding the axiom sg(x) = x X x to define the new symbol sqg (“square”) is
safe: it is just an abbreviation for something we could have written in the unextended
theory. Even recursive definitions can be shown to be safe, provided it is possible to
show that you could compute them out for any given values of the inputs. This fer-
mination requirement excludes our bad function; and while termination cannot be
decided for all possible rules, it is certainly possible to determine that certain rules
always terminate (e.g., those that decrease a natural number by 1 on every iteration
and stop when the number reaches 0).

Discouragingly, it is not possible to write a theorem prover that can prove all
the theorems (and only theorems) of any interesting theory. This result was estab-
lished by Godel in 1931 and was described in many textbooks on mathematical
logic, e.g., [55], but was proved for the first time mechanically by Shankar in 1985
[54] using ACL2’s predecessor Nqthm [2]. As soon as the theory is rich enough to
encompass the natural numbers, equality, addition, and multiplication, it is undecid-
able in two important senses: there are valid formulas for which proofs do not exist,
and no algorithm can always terminate and correctly announce whether a formula
has or does not have a proof. So while we can always build proof checkers, we can-
not build theorem provers that are in any sense complete. Sometimes our theorem
provers will run forever or stop and announce “I can’t prove the alleged theorem but
it might be a theorem nevertheless!”

Returning to the question of reasoning about microprocessor designs, if we
choose to describe our machine in a conventional hardware design or programming
language, e.g., VHDL or C, then we will need a way to convert machine descriptions
into logical terms. For example, we might provide a translator from our description
language into the logic. This allows the descriptions to be written in familiar terms
but can complicate our reasoning by the imposition of an extra layer of abstraction
or indirection.

An alternative is to describe the machine in logical terms in the first place. This
means we reason about the description itself, but invariably our formal descriptions
must be evaluated by engineers and designers who have in mind some actual artifact,
and when our descriptions are in unfamiliar terms that evaluation process can be
more difficult.

3 ACL2

The name “ACL2” is used to refer to three distinct systems: a functional (side-
effect free) programming language, a formal mathematical theory, and an interactive
mechanized theorem prover and proof development environment. ACL2 stands for



4 M. Kaufmann and J S. Moore

“A Computational Logic for Applicative Common Lisp” and hence might have been
written “ACL2

In this section, we introduce ACL2 and provide a few references, but much more
information is available about it. In particular, the reader is invited to visit the ACL2
home page [30], where one can find tutorials, demos, publications, mailing lists, and
an extensive hypertext user’s manual. The home page also links to home pages of
past ACL2 workshops, where one may find many dozens of papers and slide presen-
tations about ACL2 and its applications, many of which are on the topic of digital
system verification. Some of that work is also published in journals and conference
proceedings, but there are advantages to starting with the workshops Web sites (1)
ACL2 Workshop papers are freely available in full on the Web (other that those of
the first workshop; see [31]), (2) the Web site often provides supplemental mate-
rial in the form of ACL2 source material (e.g., “ACL2 books”) or exercises, and (3)
the reader will learn about the standards and activities of the ACL2 community by
browsing the workshop Web sites.

3.1 A Programming Language

As a programming language, ACL2 is an extension of a subset of applicative (side-
effect free) Common Lisp [56]. Like Lisp, ACL2 is syntactically untyped: any
type of object may be passed to any function. However, there are several runtime
types: various types of numbers, characters, strings, symbols, and ordered pairs
used to construct lists, trees, and other abstract structures. Predicates in the lan-
guage allow the programmer to determine, at runtime, what type of objects have
been passed to a function and to code accordingly. The “various types of num-
bers” (and the predicates recognizing them) are natural numbers (natp), integers
(integerp), rationals (rat ionalp), and complex rationals (acl2-numberp).
The last are complex numbers in which the two parts, real and imaginary, are both
rational. While Lisp provides floating point numbers, ACL2 does not. Each type in
the sequence above includes the numbers of the preceding type. Examples of each
successive type are 23, -245,22/7,and #c (5 3), the last being the Lisp way of
writing the complex number 5 + 3i.

Unlike Lisp, ACL2 is first order: functions are not objects. While Higher Order
Logics are common, we decided for reasons of efficiency and logical simplicity to
disallow functional objects.

The syntax of ACL2 is just the prefix syntax of Lisp and Scheme. For ex-

ample, (» n (fact (- n 1))) could be written more conventionally as
n x fact(n — 1). The value of (- n 1) is the difference between the value of
the variable n and 1. The value of (fact (- n 1)) is the value returned by
calling the function fact on the value of (- n 1). And the value of (x n
(fact (- n 1))) is the product of the value of n with the value returned by
fact on the value of (- n 1). We henceforth refrain from repeating “the value
of” and just say that (x n (fact (- n 1))) is “ntimes fact applied to n
minus 1.”
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Among the primitive data types supported by ACL2, aside from the numbers, are
characters (e.g., #\A, #\a, and #\Newline); strings (e.g., "Hello, world!");
the Boolean symbols t and nil denoting true and false, respectively; other symbols
(e.g., LOAD and X); and pairs of objects discussed at greater length below. Various
primitive functions allow us to manipulate, compare, and construct such objects. For
example, (+ n 1) isthe sum of n and 1, and (< x vy) is t if x is less than v,
and nil otherwise. The predicate equal takes two objects and returns t if they
are the same and nil otherwise.

The most basic “method” for constructing composite structures is cons, which
takes two objects and returns the ordered pair containing them. The car of such a
pair is the first object and the cdr is the second. The predicate consp returns t or
nil according to whether its argument is an ordered pair constructed by cons.

Because ACL2 is untyped, any object x can be treated as a /ist denoting a finite
sequence of objects. If x is a cons pair whose car is a and whose cdr is d, then
x denotes the sequence whose first element is a and whose remaining elements are
those denoted by the list d. If x is not a cons pair, it denotes the empty sequence.
It is conventional to use nil as the representative of the empty list, though any
non-cons will do. When a list is ni1-terminated it is said to be a “true-list.”

For example, the sequence containing the elements 1, 2, and 3 is denoted by the
object constructed by (cons 1 (cons 2 (cons 3 nil))). This object is
written (1 2 3) in ACL2.

Given any object v in ACL2, it is possible to write a literal constant in the lan-
guage that evaluates to that object, namely ’ v.

Suppose we wished to define the function sum-1ist which takes one argu-
ment, x, and treats it as a list of numbers, returning the sum of its elements. Then
we could define sum-1ist as follows:

(defun sum-1list (x)
(i1f (consp x)
(+ (car x)
(sum-list (cdr x)))
0))

In particular, if x is an ordered pair, then sum-1ist returns the sum of the car
(head) of x and the result of recursively summing the elements of the cdr (rest) of
x; otherwise, sum-1ist returns 0. Thus, (sum-1list ' (1 2 3)) is6.

The syntax of ACL2 may be extended by a powerful abbreviational facility called
“macros.” A macro is similar to a function except it operates on the syntax of the lan-
guage. For example, it is possible to define 1ist asamacrosothat (1ist x(+ y
1) (% y 2)) isjust an abbreviation for (cons x (cons (+ y 1) (cons

(» vy 2) nil))). The idea is that 1ist is defined (as a macro) so that when
given the list (x (+ y 1) (% y 2)) it returns the list (cons x (cons
(+ v 1) (cons (* y 2) nil))). The syntax of ACL2 is defined so that
if a macro is called in an alleged expression, the macro is evaluated on the argu-
ment list (not on the value of arguments) and the object returned is treated as the
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expression meant by the macro call. The process is repeated recursively until no
macros are called in the expression. It is beyond the scope of this chapter to explain
macros in greater detail. Macros allow the full power of recursive computation to be
exploited in the syntax; amazing abbreviations can be introduced.

3.2 A Logical Theory

When we refer to ACL2 as a logical theory, we essentially mean first-order predicate
calculus with equality, a set of axioms describing certain data types in Common
Lisp, a Definitional Principle, an Induction Principle, and several very useful derived
rules of inference. We only sketch the logic here. See [26,27,32,34].

The Common Lisp specification [56] describes a variety of data types and the
primitive operations on them. Following [56] we identified a set of axioms, some of
which are shown below.

Axioms

X # nil - (if xy z) =y

Xx =nil - (if xy z) = z

(car (cons x y)) = X

(cdr (cons x y)) =Yy

(consp x) = t — (cons (car x) (cdr x)) = x

The arrow, “—,” is logical implication. The first axiom above may be read “when x
is different from nil, then (1if x y z) isy,’ or, alternatively, “(if x y z)
is y, provided x is different from ni1.” The others should make sense now.

So that everything can be written in Lisp, the standard logical operators, “and,”
“or,” “not,” “implies,” and “iff,” are characterized by equality axioms defining the
logical symbols in terms of the primitive if-then—else. For example, (and p q)
is equivalent to (if p g nil) and is thus true (non-nil) if both p and g are
true and false (nil) otherwise.

In order to formulate both a Definitional Principle and an Induction Principle,
ACL2 includes the “ordinals.” The ordinals are an extension of the natural numbers
and can be compared, added, multiplied, and exponentiated. Informally, think of
w as the limit of the sequence 0, 1, 2, ..., i.e., @ is the “least infinite” ordinal.
One can imagine an ordinal 1 larger than w, written as w + 1, and start to build
up an infinite collection of such ordinals by algebraic addition, multiplication, and
exponentiation. The limit of all the ordinals one can construct that way is called
&0 and may be thought of as @®“ . In ACL2, we represent all the ordinals below
&o in terms of natural numbers and conses similar to the construction in [11] but
improved upon in [37]. We also define recursively the “less than” total order o< on
such ordinals. We assume the well foundedness of o< on ordinals, i.e., there is no
infinite strictly decreasing (according to o<) sequence of ordinals.

The ACL2 Definitional Principle permits one to define new function symbols
in terms of old ones, including recursive use of the new symbols, provided there

9 ¢
]
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is an ordinal measure that decreases according to o< in each recursive call. This
principle is logically conservative (nothing new can be proved in the extended logic
unless it involves the newly introduction symbol) and thus insures the soundness
of the extended theory. Informally, the Definitional Principle insures that every de-
fined function terminates. To use the principle, the user must exhibit an appropriate
measure of the size of the arguments, although by default the system uses an often-
convenient notion of the “size” of an object.

For example, here is a definition of a list concatenation function that takes two
lists, x and y, and returns a list containing all the elements of x followed by all the
elements of y, in sequence.

(defun app (x y)
(if (consp x)
(cons (car x) (app (cdr x) y))
y))

This definition terminates because the size of x decreases on each recursion. Once
accepted, it is executable: given two concrete lists x and y the answer can be com-
puted directly from the definitions and axioms. (app ‘(1 2 3) ‘(4 5 6))
evaluatesto (1 2 3 4 5 6).

In duality with the Definitional Principle, the ACL2 Induction Principle permits
one, in the induction step of a proof of V¥, to assume any number of instances each
of o<-smaller “size,” as determined by a user-supplied ordinal-valued measure on
the variables in ¥. To use the induction principle one must exhibit the measure,
prove that it is ordinal valued, and prove that it decreases under the case analysis
and variable substitutions used in the induction steps.

For example, using induction and axioms about the basic data types, ACL2 can
automatically prove the theorem

(equal (sum-list (app x Vy))
(+ (sum-list x) (sum-list y)))

by induction on x. The base case is the formula

(implies (not (consp x))
(equal (sum-1list (app x y))
(+ (sum-list x) (sum-list vy))))

and the induction step is the formula

(implies (and (consp x)
(equal (sum-list (app (cdr x) y))
(+ (sum-list (cdr x)) (sum-list vy))))
(equal (sum-list (app x y))
(+ (sum-list x) (sum-list y))))

Both follow easily from the definitions of sum-1ist and app and the axioms.
The Defchoose Principle permits one to introduce a function symbol that returns

an object satisfying a given property, if such an object exists. It is conservative.

Using it we can provide the power of full first-order quantification, e.g., it is possible
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to introduce a function that returns t or nil according to whether there exists an
object satisfying a given formula. This power is provided by a mechanism akin to
Skolemization and is called defun-sk. Of course, unlike the functions in [56],
the symbols introduced by the choose and Skolemization principles cannot be “run”
(i.e., applications of such function symbols to literal constants cannot necessarily be
reduced to literal constants using the axioms).

The Encapsulation Principle permits one to introduce undefined symbols that
are axiomatized to have given properties. To use the principle, one must exhibit
functions (“witnesses”) that have the given properties. Constrained functions cannot
be “run.”

Associated with the Encapsulation Principle is a derived rule of inference per-
mitting one to Functionally Instantiate any theorem to derive a new theorem, by
replacing the function symbols in the old theorem by other function symbols pro-
vided one can prove that the “other function symbols” satisfy the same constraints
as the replaced symbols. This gives ACL2 a “second-order” feel.

For example, one might introduce the notions of an abstract state and an ab-
stract state transition function, step, constrained to preserve abstract states. Then
one might define a function, run, that repeatedly steps a state n times. One
might prove that run preserves abstract states and enjoys certain commutativity
properties. These theorems follow inductively from the constraints on step. Then
one might define a concrete notion of state, a specific state transition function on
such concrete states, and a concrete “run” function. In particular, this concrete “run”
function might model a microprocessor and be “runnable” in the sense of being
executable on literal constants. Using functional instantiation one could then im-
mediately derive that the concrete “run” function preserves the concrete notion of
states and enjoys those commutativity properties, provided one can prove that the
concrete “step” function preserves the concrete notion of state.

3.3 A Mechanical Theorem Prover and Proof Environment

The ACL2 theorem prover accepts as input an alleged theorem and attempts to find
a proof. Also provided as input is a logical world which, roughly speaking, lists the
axioms, user-supplied definitions, and proved theorems of the session. Additional
arguments allow the user to provide hints and other pragmatic advice. The theo-
rem prover either terminates with a success or failure message or else runs until
interrupted by the user. When it reports failure, the meaning is simply that no proof
was found and not that the formula is not a theorem. However, the prover’s output
can help the user to find a counterexample if the formula is not valid or to formu-
late useful lemmas to assist in subsequent proof attempts [28]. ACL2 also includes
numerous proof debugging tools [24,29].

It tries to find proofs by applying a suite of standard proof techniques based
largely on the function symbols used in the goal formula. The most common tech-
nique is simplification, which replaces the goal formula by a set of supposedly
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simpler subgoals, e.g., by splitting apart conjoined formulas and by attempting to
normalize the terms in each subgoal. This normalization is done by rewriting with
axioms, definitions, and previously proved theorems.

For example, suppose earlier in the session the user issued the command:

(defthm app-right-id
(implies (true-listp x)
(equal (app x nil) x))
:rule-classes :rewrite)

and that the command succeeded. This command instructs ACL2 to prove the for-
mula (implies (true-listp x) (equal (app x nil) x)), which
may be read “if x is a true-list then concatenating a ni1 on the right of x (with app)
is the identity operation.” If a proof is found, the command will store into the logical
world a rewrite-rule derived from the formula, named app-right-id. Hence-
forth, whenever ACL2’s simplifier encounters a term of the form (app o« nil),
then provided the user has not somehow instructed the system not to use the rule, it
will replace the encountered term by «, provided it can prove (true-listp o).
It will also report that it used app-right-id.

Other proof techniques used by ACL?2 include induction, decision procedures
for propositional calculus, equality, and linear arithmetic, elimination of “destruc-
tor” function symbols [e.g., in conventional notation we might eliminate p/d and
mod(p, d) by replacing p by (¢ xd) + r, under suitable conditions on the variables,
so that p/d becomes g and mod(p, d) becomes r], heuristic use of equalities, gener-
alization, and elimination of irrelevance. In addition, the user can introduce entirely
new proof techniques via metafunctions [3,23] and clause-processors [33] provided
they can be proved sound by ACL2. As illustrated above with rewriting, almost all
of ACL2’s proof techniques are affected by the rules present in the logical world
and the user’s pragmatic advice given at the time an alleged theorem is presented.

Thus, the ACL2 user essentially programs the theorem prover by proving an
appropriate collection of theorems. This is why we say that ACL2 is both interactive
and automated.

ACL2 encourages users to share and reuse work by providing the “book” mech-
anism. A book is just a file of ACL2 commands, typically definitions and theorems.
To admit the function definitions in a book or to prove all the theorems in a book,
it is sometimes necessary to prove lemmas that are uninteresting to the ultimate
user of the book. The book mechanism allows the author to mark certain commands
within the book as local. When a book is included in a session, it is as though all the
nonlocal commands of the book were executed in that session.

Books are hierarchical: a book may include other books in its construction. This
raises a version control problem: What if the author of a subbook changes that book
so that it no longer logically implies the results obtained from it in the construction
of some superior book? To help prevent this, books may be certified, producing a
“certificate” file which contains the “fingerprints” of all concerned books and other
information meant both to detect version control problems as well as to make the
loading of books faster by avoiding proofs.
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The best designed books formalize a set of useful concepts and configure ACL2
to reason about those formal concepts effectively. ACL2’s home page provides ac-
cess to hundreds of user-developed books that attempt to provide convenient settings
for reasoning about arithmetic in its many forms (integer, rational, bit-vector, float-
ing point, etc.), list processing, and other more specialized domains. But virtually
every project introduces important concepts that are idiosyncratic to that project or
model and these become the standard books within that project.

The design of the ACL2 theorem prover — driven as it is by the available rules —
puts a great deal of burden on the user in one sense and relieves a great burden in
another. In the early- and mid-stages of a major project, ACL2 users are often less
worried about proving the particular goal theorem than they are about discovering
and codifying proof strategies in the form of books. This can make progress slow.
But once a suitable collection of books has been created allowing the “automatic”
proof of the main theorem, the investment pays off in the later stages of the project
where the verified artifact is repeatedly modified, elaborated, and improved. Each
such modification requires a proof of correctness. This is called proof maintenance.
If each modification required a “hand-made” proof, even if it is produced from an
explicitly described earlier proof, progress here would be much slower. But the
ACL2 user frequently finds that minor modifications to the artifact can be veri-
fied automatically, and that when that verification fails the problem is just in the
region changed, requiring the incremental formalization of the insight that justified
the modification to the artifact.

3.4 Efficiency

To use ACL2 in industrial projects has required a great deal of engineering aside
from the more obviously necessary attention to powerful proof techniques.

The ACL2 user highly values its capability as a programming language. This
makes well-designed ACL2 models doubly useful: as simulation engines and as for-
mal artifacts about which one can reason. But to be useful as a simulation platform,
the user must have the means to make them efficiently executable without compli-
cating their logical semantics. We give three examples.

It is possible to annotate Lisp code with declarations asserting the intended types
of the values of the variables at runtime. The Common Lisp compiler merely as-
sumes that these declarations are accurate and lay down suitably optimized code. To
see how this can produce much more efficient execution, consider the representation
of numbers in Lisp. To provide semantic cleanliness, every number is a first class
“Object,” a state of affairs that may be achieved by “boxing” every number, i.e., by
representing every number as an instance of some class with the actual magnitude
of the number somehow coded in the fields. Operationally, every number is then
a pointer to one or more memory locations containing the binary representation of
the number. But this would make common arithmetic exceedingly slow because,
naively, one would have to allocate memory to add two numbers. Most Lisp im-
plementations solve this by essentially preallocating all the “small” numbers, e.g.,
those representable in 30 bits, often by representing the small two’s complement
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integers by the corresponding binary addresses. Thus, if two small numbers are to
be added and their sum is known (or assumed) to be small, the compiler can generate
the native add instruction on the host processor. If one of these conditions is not met,
the compiler must lay down code that “unboxes,” sums, and “boxes” appropriately.

But it is logically dangerous to assume that the declarations are accurate. Thus,
ACL2 provides a mechanism (called guard verification) by which the user can not
only annotate functions and formulas without affecting their logical meanings, but
also prove mechanically the accuracy of those annotations. ACL2 will not execute
optimized code unless the declarations have been verified; in the absence of ver-
ification, ACL2 arranges for Common Lisp to execute code as it would have no
declarations present. Thus, the user can annotate code for efficiency; the annota-
tions do not complicate the proof obligations when reasoning about the functional
properties of the code, and if those annotations are subsequently verified, the user
will observe his or her functions executing much faster.

A second example is the mbe (“must be equal”) facility, described at length in
[17]. This mechanism allows the user to provide, for example, two entirely different
definitions for a function, one to use in logical reasoning and one to use in execution,
but produces the obligation to prove the two definitions equivalent. For example, it
may be easiest to reason about a function defined in a natural, recursive style but
more efficient to compute it with an iterative (tail-recursive) scheme eliminating
the need for a stack at the expense of some clever invariant among some auxiliary
variables.

A third example is support for single-threaded objects, also called stobjs [5].
Semantically, these objects are just list structures. But “under the hood,” they use
destructive operations such as updating an array at a given index. Syntactic restric-
tions are imposed and enforced so that the user cannot detect the difference between
the functional semantics alleged by the axioms and the imperative implementation.
With stobjs one can attain execution that approaches the efficiency of C (e.g., 90%
of the speed of C on a small microprocessor model is reported by Hardin et al.
in [18]).

Other efficiency issues that have required careful engineering attention include
manipulating and even printing large formulas and constants [25], implementing
proof techniques efficient enough to deal with industrial-scale definitions and for-
mulas, being able to load deep hierarchies of books into the session in a reasonable
amount of time, and being able to recertify deep and broad hierarchies of books in
parallel fast enough to allow overnight rebuilding of recently modified systems.

4 A Simple Microprocessor Model

What does a microprocessor model look like in ACL2? Below we show a complete
description of a very simple machine akin to the Java Virtual Machine. To save
space, we use a slightly small font in our displays. The state of the machine is a list
of four items, a program counter (here called ipc because the name pc is already
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defined in ACL2), a list of local variable values (Locals), a list (stack) of values
pushed (stack), and a list of instructions (code). Below we define make-state
to construct a state and the four accessor functions to return the corresponding
components. A semicolon (; ) delimits a comment to the end of the line.

(defun make-state (ipc locals stack code)
(list ipc locals stack code))

(defun ipc (s) (nth 0 s))
(defun locals (s) (nth 1 s))
(defun stack (s) (nth 2 s))

(defun code (s) (nth 3 s))
(defun next-inst (s) ; fetch instruction at ipc in code
(nth (ipc s) (code s)))

Macros can be written that make it easy to describe the shape of a state and have the
appropriate functions defined automatically.

Instructions are represented by lists, where the Oth element of the list (i.e., the
car, but below written (nth 0 inst)) is the symbolic name of the opcode
and the remaining elements are the operands. For example, an ICONST instruc-
tion, which will cause the machine to push a literal constant onto the stack, will be
represented (ICONST c), where ¢ (i.e., (nth 1 inst)) is the literal constant
to push. The list of local variable values is also accessed with nth; a new list of
values may be obtained from an old one by update-nth, which “replaces” the
item at a given location in a list by another item. Stacks will be represented here
as lists, with the car being the top-most element and the cdr being the rest of the
stack, i.e., the result of popping the stack. The code is the analog of an execute-only
memory and is just a list of instructions.

Clearly we are describing this little machine at a very high level of abstraction.
It will be possible to refine our description. For example, instructions and opcodes
could be integers instead of lists and symbols; the opcode and operands could be
obtained by arithmetic shifting and masking. The code could be refined into a list of
integers representing the contents of successive machine addresses and would most
likely become a read—write memory. The stack could be an integer address into a
writable region of memory, etc. We return to this imagined lower level description
below, but for now we continue to describe the machine at the abstract level.

For each opcode we define a function that executes the instructions with that
opcode, i.e., the function takes an instruction (of the given opcode) and a state and
returns the next state. Such functions are called semantic functions because they give
the semantics of our instructions. The semantic function must define the program
counter, locals, stack, and code of the next state.

(defun execute-ICONST (inst s) ; (ICONST c¢): push ¢ onto stack
(make-state (+ 1 (ipc s))
locals s)

(
(cons (nth 1 inst) (stack s))
(code s)))
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(defun execute-ILOAD (inst s) ; (ILOAD n): push locals[n] onto stack
(make-state (+ 1 (ipc s))
(locals s)
(cons (nth (nth 1 inst)
(locals s))
(stack s))
(code s)))

(defun execute-IADD (inst s) ; (IADD) : pop first two items on stack
(declare (ignore inst)) ; and push their sum
(make-state (+ 1 (ipc s))

(locals s)

(cons (+ (nth 1 (stack s))
(nth 0 (stack s)))
(cdr (cdr (stack s))))

(code s)))
(defun execute-ISTORE (inst s) ; (ISTORE n): pop stack into local [n]
(make-state (+ 1 (ipc s))
(update-nth (nth 1 inst)
(nth 0 (stack s))
(locals s))
(cdr (stack s))
(code s)))

(defun execute-ISUB (inst s) ; (ISUB): pop first two items on stack
(declare (ignore inst)) ; and push their difference
(make-state (+ 1 (ipc s))

(locals s)
(cons (- (nth 1 (stack s))

(nth 0 (stack s)))
(cdr (cdr (stack s))))

(code s)))

(defun execute-IMUL (inst s) ; (IMUL) : pop first two items on stack
(declare (ignore inst)) ; and push their product
(make-state (+ 1 (ipc s))

(locals s)

(cons (x (nth 1 (stack s))
(nth 0 (stack s)))
(cdr (cdr (stack s))))

(code s)))
(defun execute-GOTO (inst s) ; (GOTO k): Jjump by k, i.e., add k to
(make-state (+ (nth 1 inst) (ipc s)) ; program counter
locals s)

(
(stack s)
(code s)))
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(defun execute-IFLE (inst s) ; (IFLE k) : if top item on stack
(make-state (if (<= (nth 1 (stack s)) 0) ; 1s less than or equal to 0
(+ (nth 1 inst) (ipc s)) ; Jjump by k
(+ 1 (ipc s))) ; else skip
(locals s)
(cdr (stack s)) ;  always pop stack
(code s)))

It should be obvious how to add other instructions and other state components to
this machine. When the semantic functions for all instructions have been defined, we
introduce, below, a single function which takes an arbitrary instruction and steps the
state accordingly, by simply doing a “big switch” on the opcode of the instruction
and invoking the appropriate semantic function. Note below that if an unknown
instruction is encountered, its semantics is a no-op: the new state is the old state.

(defun do-inst (inst s)
(case (nth 0 inst)

(ICONST (execute-ICONST inst s))
(ILOAD (execute-ILOAD inst s))
(ISTORE (execute-ISTORE inst s))
(IADD (execute-IADD inst s))
(ISUB (execute-ISUB inst s))
(IMUL (execute-IMUL inst s))
(GOTO (execute-GOTO inst s))
(IFLE (execute-IFLE inst s))
(

otherwise s)))

We finally define the single-step state transition function simply to fetch the next
instruction and “do” it.

(defun istep (s)
(do-inst (next-inst s) s))

We conclude by defining the function run that takes a “schedule” and a state
and runs the state according to the schedule. Here, we just step the state once for
every element of the schedule, but in general the schedule provides additional input
to the istep function and may indicate signals received at that step on external
pins, which “thread” in a multithreaded state to step, etc.

(defun run (sched s)
(if (endp sched)
s
(run (cdr sched) (istep s))))

Recall our earlier hints of a lower level machine modeled mainly with integers.
If we had such a lower level model we could proceed to formalize and prove the
relation between it and this one, e.g., a commuting diagram or bisimulation between
the two machines. This has been done many times in ACL2 (and its predecessor
Ngthm [4]) for complex and realistic models, including some pipelined machines
[1,7,20,22,38,40,50,52].
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The abstract model above may be executed on concrete data. For example, con-
sider the code produced by a straightforward compilation of the pseudocode for
factorial:

a = 1;

while (n > 0)
a=mnx a;
n = n-1;;

return a;

If we allocate local variable n to 1locals [0] and local variable a to locals[1],
the resulting code is as shown below. We define the ACL2 constant xfact -codex
to be this code snippet.

(defconst xfact-codex

" ((ICONST 1) ] 0
(ISTORE 1) ;i 1l a=1;
(ILOAD 0) ;13 2 while ; loop: ipc=2
(IFLE 10) iii 3 (n > 0)
(ILOAD 0) i 4
(ILOAD 1) ;ii 5
(IMUL) iii 6
(ISTORE 1) i 7 a=n % a;
(ILOAD 0) ii: 8
(ICONST 1) i 9
(ISUB) iii 10
(ISTORE 0) ;i 11 n =n-1;
(GOTO -10) i 12 ; jump to loop
(ILOAD 1) ;i 13
(HALT) ;i: 14 return a;

))

Note that the unknown HALT instruction at program counter 14 halts the machine
since stepping that instruction is a no-op.

The following expression evaluates a state by taking 100 steps. The term
(repeat 'TICK 100) just returns a list of 100 repetitions of the symbol
TICK and is used as a schedule here. The make-state below constructs the
initial state: the program counter is 0; we have two locals, the Oth (called n
in our pseudocode) having the value 5 and the 1st (called a) having the value 0;
the stack is empty; and the code is our code constant. Note that this example
illustrates running the code snippet with n= 5.

(run
(repeat ’'TICK 100) ; 100 clock ticks
(make-state
0 ; ipc
(5 0) ; locals: n=5, a=0
nil ; stack

*1fact-codex* ; code

))
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The answer computed by ACL2 is:

(14 ; final ipc
(0 120) ; final locals: n=0, a=120
(120) ; final stack
((ICONST 1) ; our code, again
(ISTORE 1)
(HALT) ))

Note that the program counter points to the HALT instruction at location 14 and
the value 120 is on top of the stack. This aspect of ACL2, that models can serve
as simulation engines for the artifact, is highly valued and much engineering work
has been done, both by the implementors of ACL2 and by its user community, in
making these executions efficient [5, 13, 17, 18,48].

Given an ACL2 semantics for the “pseudocode,” e.g., an interpreter for that lan-
guage, and a compiler modeled in ACL2, it is possible to state and prove (if true)
that the compiler is correct in the sense of preserving the semantics of the high-level
language when the object code is run on the machine. This has been done many
times in ACL2 and Nqthm [2, 8, 10,40, 58]. It is also possible to prove general the-
orems about such machines. For example, in [35], Liu gives a realistic model of the
Java Virtual Machine and proves that class loading preserves certain invariants on
the heap and class table. At Rockwell Collins, security properties of microprocessor
and operating system models have been verified using this approach [12, 14-16].

It is possible to configure ACL2 to prove theorems about the behavior of code
when run on a given machine model. For example, here is an easily proved theorem
about the code above — “easy” when the appropriate books are loaded into ACL2.

(defthm ifact-correct
(implies (natp n)
(equal (run (ifact-sched n)
(make-state 0
(cons n (cons a nil))
stack
xifact-codex))
(make-state 14

(cons 0 (cons (! n) nil))

(cons (! n) stack)

xifact-codex))))

The two make-state expressions above are the initial and final states of a run of
our code. In the initial state, the program counter is set to 0 and the local variables
have the unknown symbolic values n and a. In the final state, obtained by running
the initial state some number of steps determined by the function ifact-sched,
the program counter is 14 (i.e., points to the HALT) and we find the factorial of
n pushed on the stack. This equivalence holds provided n is a natural number.
This theorem is proved by induction and establishes the correctness of the facto-
rial snippet.

In [41], we present this same machine as well as a compiler for the pseudocode
used, and we describe the methodology used to configure ACL2 to do proofs about
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code. Code is often verified with ACL2 and Nqthm this way, e.g., the binary code
produced by gcc for the Berkeley C String Library is verified against a model of
the Motorola 68020 in [6], a game of Nim is verified in [57] for the fabricated and
verified microprocessor described in [22], and JVM bytecode is verified against a
detailed model of the JVM in [35]. In [7], a commercially designed digital signal
microprocessor is modeled and verified to implement a given ISA. The machine, the
Motorola CAP, included a three-stage pipeline that exposed many programmer vis-
ible hazards. A tutorial on pipelined machine verification in ACL2 may be found in
[50]. In [53], a pipelined microarchitecture with speculative execution, exceptions,
and program modification capability is verified.

Because ACL2 is a general purpose mathematical logic, many different proof
styles and strategies can be brought to bear on the problem of verifying properties
of systems described in it [36,43,45]. These include commuting diagrams, bisim-
ulation and stuttering bisimulation, direct proofs of functional equivalence, and a
variety of methods related to inductive assertions. Different proof styles may be
mixed.

5 Variations on the Theme

We have used a simple example to illustrate a methodology for using ACL2 to verify
correctness properties for digital system models. But there are many ways to use
ACL2 for digital system verification.

Another common approach to code verification in ACL2 skips the problem of
formalizing the entire microprocessor and instead models the code as an ACL2
function. This is akin to modeling our factorial code with the expression (ifact
n 0), where

(defun ifact (n a)

(if (zp n) ; if n <=0
a ; return a
(ifact (- n 1) ; else loop with a:=n*a, n:=n-1
*noa))))

The production of functions like i fact is sometimes done by hand and other times
is automated by tools that embed the semantics of the code. For example, the cor-
rectness of the floating-point division algorithm on the AMD K5 microprocessor
was proved using the former approach (in which the semantics of the relevant mi-
crocode was modeled as an ACL2 function) [42]. The correctness of divide and
square root on the IBM Power4 was also proved that way [51]. At Rockwell Collins,
the AAMP7G cryptoprocessor was modeled this way and a security-critical separa-
tion property was proved, allowing Rockwell to obtain NSA MILS certification[19].
Such certification requires a comparison of the model to the actual design (if they
are different) and it behooves the modeler to produce a model with as much fidelity
to the actual design as possible.
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For this reason, or when code proofs are to be done repeatedly, it is more of-
ten worthwhile to build mechanical translators or to formalize the actual design
language so that fidelity is assured — or at least has to be checked just once at the
“metalevel.” This methodology has been used many times in the verification of float-
ing point designs at the register-transfer level (RTL) at AMD [9,48,49] and is similar
to the use by Rockwell Collins [13] of “reader macros” that allow near-isomorphism
between models written in ACL2 and in a very simple subset of C. Another approach
is to formalize the hardware description language itself [21,22,46, 50].

Other chapters in this volume describe applications of ACL2 in more detail. In
particular, the chapter by Hunt et al. describes research at Centaur Technology using
an extension of ACL2 that supports a formalized hardware design language and
efficient symbolic simulation to reason about RTL.

Traditional formal software verification often uses a verification condition gen-
erator (VCG) to take code annotated with assertions and produce proof obligations,
so that the provability of those obligations implies that the assertions always hold.
The “interpreter” approach of Sect. 4, by contrast, formalizes execution of the code
so that properties can be proved directly against the semantics. However, the VCG
approach can be emulated using the interpreter approach, see [39,44].

In all ACL2 work, the problem arises of what to do when the theorem prover fails
to find a proof. As noted, it is the responsibility of the user to determine whether the
original goal formula was not a theorem (perhaps by constructing a counterexample
from the failed proof) or to formulate lemmas and hints to lead ACL2 to a proof.
Mechanizing the construction of counterexamples for ACL2 formulas is a topic of
ongoing work in the ACL2 community, e.g., Reeber and Hunt [47] describe a system
that unrolls a certain class of ACL2 formulas and attempts to prove them with a SAT
solver, converting any counterexample produced by SAT into an ACL2 counterex-
ample. Chamarthi, Dillinger, Kaufmann, and Manolios are working on an approach
using failed proofs and testing (private communication 2009).

6 Summary

Because ACL2 is a functional programming language with a proof development en-
vironment, it can be used in a wide variety of ways to model digital systems and,
once modeled in ACL2, system properties may be proved using a wide variety of
proof styles and strategies. On the other hand, because ACL2 is a general-purpose
system, albeit one with a computational orientation, much infrastructure often has
to be built in it to analyze systems described in conventional design languages. Be-
cause the proof environment is rule-driven and heavily influenced by the database
of previously proved or included results, ACL2 has a fairly steep learning curve. It
is not enough to know what the language means and how to prove a given theorem:
getting ACL2 to prove a theorem often requires learning how to program ACL2
effectively with lemmas. This upfront cost is often repaid in two ways. First, sys-
tems of large size can be tackled because the “automatic” strategy is carried out
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mechanically. Second, modifications to the system can often be verified with an in-
cremental amount of effort on the part of the user. Nevertheless, in order to lead
ACL2 to proofs about industrial-scale designs the user must be tenacious and must
apply talent in mathematics, programming, and pattern recognition.
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A Mechanically Verified Commercial SRT
Divider

David M. Russinoff

1 Introduction

The Sweeney—Robertson—Tocher (SRT) division algorithm [8, 13], owing to its
susceptibility to efficient hardware implementation, is ubiquitous in contempo-
rary microprocessor designs. It is also notoriously prone to implementation error.
Analysis of the algorithm’s most celebrated incarnation, the defective FDIV cir-
cuitry of the original Intel Pentium floating-point unit [7], suggests that thorough
verification of an SRT divider by testing alone is a practical impossibility.

This development has been a boon to the enterprise of formal hardware verifi-
cation. One early response to the 1994 revelation of the Pentium bug was Bryant’s
BDD-based analysis [2], which established a critical invariant of an SRT circuit
but was limited by the practical constraints of the model-theoretic approach. More
complete results were subsequently achieved with the use of mechanical theorem
provers by Kapur and Subramanian [5], Ruess et al. [9], and Clarke et al. [3]. All
of these efforts shared the goal of demonstrating the effectiveness of a particular
prover in exposing a specific bug and consequently focused on the relevant aspects
of the underlying algorithm. Moreover, although developed independently, all the
three were coincidentally based on the same execution model, a high-level circuit
design proposed in 1981 by Taylor [12].

A different objective is pursued in the work reported here: a comprehensive
machine-checked proof of correctness of a commercial hardware design. The object
of investigation is a register-transfer logic (RTL) model of a radix-4 SRT integer
divider, to be implemented as a component of the AMD processor code-named
“Llano.” The theorem prover used in this project is ACL2 [1].

The required behavior of the module is concisely specified in terms of the integer
values X and Y (divisor and dividend) represented by the primary data inputs and
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the corresponding values Q and R (quotient and remainder) of the data outputs.
Under suitable input constraints, the following relations must be satisfied:

1.Y=0X+R
2. |R| < |X|
3. Either R = 0 or R and X have the same sign.

Regrettably (from a verification perspective), the simplicity of this behavioral
specification is not reflected in the design. In contrast to Taylor’s circuit, which uses
only five state-holding registers, the divider of the Llano processor uses 56. In order
to address this complexity, the proof is divided into four parts, which model the
design at successively lower levels of abstraction.

At the highest level, as discussed in Sect. 2, we establish the essential properties
of the underlying SRT algorithm. Our description of the algorithm is based on an
unspecified radix, 2". In the case of interest, we have r = 2, which means that
two quotient bits are generated per cycle. The main result of this section pertains
to the iterative phase of the computation, which generates the sequences of partial
remainders po, ..., pn, quotient digits m, ..., m,, and resulting partial quotients
Qo, ..., On. We also address several relevant issues that are ignored in the proofs
cited above (1) prescaling of the divisor and dividend and postscaling of the re-
mainder; (2) determination of the required number n of iterations, which depend
on the relative magnitudes of the operands; (3) incremental (“on-the-fly””) computa-
tion of the quotient, which involves the integration of positive and negative quotient
digits; and (4) derivation of the final remainder and quotient R and Q, as speci-
fied above, from the results R’ and Q’ of the iteration, which are characterized by
Y =0'X + R and |R'| < |X]|.

In the radix-4 case, the quotient digits are confined to the range —3 < my; < 3.
Each my, is read from a table of 4 x 32 = 128 entries according to indices derived
from the normalized divisor d and the previous partial remainder py_; and is used to
compute the next partial remainder by the recurrence formula py = 4pg_; —myd.
At the second level of abstraction, in Sect.3, we present the actual table used in
our implementation, which was adapted from the IBM z990 [4], and prove that it
preserves the invariant |pg| < |d|.

At the third level, the algorithm is implemented in XFL, a simple formal language
developed at AMD for the specification of the AMD64 instruction set architecture.
XFL is based on unbounded integer and arbitrary precision rational data types and
combines the basic constructs of C with the logical bit vector operations of Verilog
in which AMD RTL designs are coded. The XFL encodings of the lookup table
and the divider are displayed in Appendices 1 and 2. Like most XFL programs, this
code was automatically generated from a hand-coded C++ program, which has been
subjected to testing for the purpose of validating the model.

The XFL model is significantly smaller than the RTL, which consists of some
150 kilobytes of Verilog code, but it is designed to perform the same sequence
of register-transfer-level operations while avoiding low-level implementation con-
cerns. Thus, much of the complexity of the design is captured at this third level,
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including several essential features that are absent from higher-level models such as
Taylor’s circuit specification:

1. A hardware implementation of Taylor’s model, which computes an explicit
representation of the partial remainder on each iteration, would require a
time-consuming full-width carry-propagate adder, resulting in a prohibitively
long cycle time. In contrast, a typical contemporary commercial implementation
such as the Llano divider stores the remainder in a redundant form, which may
be computed by a much faster carry-save adder. A single full-width addition is
then performed at the end of the iterative phase.

2. The derivation of the final results R and Q from the intermediate values R’ and
Q' involves consideration of the special cases R” = 0 and R’ = +X. Tim-
ing considerations dictate that these conditions be detected in advance of the
full-width addition that produces R’. This requires special logic for predicting
cancellation.

3. The module is also responsible for detecting overflow, i.e., a quotient that is too
large to be represented in the target format. This involves an analysis that is
performed concurrently with the final computation of the quotient.

Each of these complications introduces a possible source of design error that cannot
be ignored. In Sect. 4, we present a complete proof of the claim that the algorithm
is correctly implemented by the XFL model.

The lowest level of abstraction to be considered is that of the RTL itself. The
proof of equivalence between the RTL and XFL models represents a significant
portion of the overall effort, involving the analysis of a complex state machine,
innumerable timing and scheduling issues, and various other implementation con-
cerns. However, this part of the proof would be of relatively little interest to a
general readership; moreover, neither space nor proprietary confidentiality allows
its inclusion here.

Thus, the purpose of this paper is an exposition of the proof of correctness of
the Llano divider as represented by the XFL model. The presentation is confined to
standard mathematical notation, avoiding any obscure special-purpose formalism,
but assumes familiarity with the general theory of bit vectors and logical oper-
ations, making implicit use of the results found in [10]. Otherwise, the proof is
self-contained and surveyable, with one exception: Lemma 6, which provides a set
of inequalities that are satisfied by the entries of the lookup table, involves machine-
checked computation that is too extensive to be carried out by hand.

We emphasize, however, that a comprehensive statement of correctness of the
RTL module itself has been formalized in the logic of ACL2 and its proof has
been thoroughly checked with the ACL2 prover. This includes a formalization of
the proof presented here, along with a detailed proof of equivalence between the
XFL and RTL models. For this purpose, the XFL model was recoded directly in
ACL2 and the RTL module was translated to ACL2 by a tool that was developed
for this purpose [11]. Thus, the validity of the proof depends only on the semantic
correctness of the Verilog—ACL2 translator and the soundness of the ACL2 prover,
both of which have been widely tested.
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While the ultimate objective of formal verification is a proof of correctness, its
utility may best be demonstrated through the exposure of bugs that might other-
wise have gone undetected. In the present case, three bugs that had already survived
extensive directed testing were found through our analysis, at three distinct levels of
abstraction. Once identified, all the three were readily corrected.

First, an entry of the lookup table (the one in the upper right corner of Fig. 1) was
missing from the original design. This was strikingly similar to the original Pentium
bug insofar as the entry was thought to be inaccessible. The error was not exposed
by initial directed testing, which was designed to hit all accessible table entries on
the first iteration. Subsequent analysis and testing revealed that the entry can be
reached, but only after nine iterations.

A second problem was detected in connection with the same table entry. If the
partial remainder is close to —2, it appears to be possible (although no test case has
yet been constructed to confirm this possibility), as a result of the two’s complement
encoding scheme, for the approximation derived from the redundant representation
to be close to +2 instead. The original design did not account for this occurrence,
which would have resulted in a quotient digit with the wrong sign.

Finally, a timing problem was detected in the RTL implementation, related to the
possible cancellation and retransmission of the divisor input. This issue, which of
course is not reflected in the algorithm or the XFL encoding, illustrates the inade-
quacy of a correctness proof based solely on a high-level design model.

2 SRT Division

The description of a division algorithm is typically simplified by interpreting its
parameters as fractions. Thus, our presentation begins with a normalized represen-

tation of the divisor X,
d = 2—€xXpox) X,

where expo(X) is the integer defined by
zexpo(X) < |X| < zexpo(X)+1,

and consequently, 1 < |d| < 2. The dividend Y is similarly shifted to produce the

initial partial remainder,
Po = 2—exp0(X)—rn Y,

where 2" is the underlying radix of the computation and 7, the number of iterations
to be performed, is chosen to ensure that |po| < |d|.

On each iteration, the current partial remainder pg_; is shifted by r bits and an
appropriate multiple of d is subtracted to form the next partial remainder,

Pk = 2" pr—1 —myd,
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where the multiplier my contributes the accumulated quotient. The invariant | pg| <
|d| is guaranteed by selecting mj from the interval

2" pr—1
d

.
2Pk

—1=<=m =< + 1.

For further motivation, refer to [6].

Lemma 1. Let X, Y, r, and n be integers such that X # 0, r > 0, n
Y| < 2| X|. Let d = 27¢POX X, po = 27POX)=rny and Qo
k=1,...,n, let

|1V
oo
SRS
SR

Pk =2 pr—1 —myd
and
Ok =2"Qr—1 + my,

where my, is an integer such that if |px—1| < |d|, then |pr| < |d|. Let R =
26XP0X) . and Q = Q,. Then Y = QX + Rand |R| < |X|.

Proof. Clearly, 1 < |d| < 2, and

|p0| — Z—EXPO(X)—rn|Y| < Z—EXPO(X)|X| — |d|

It follows by induction that | pg| < |d| for all k < n. We shall also show by induc-
tion that

Pk =2"%po — Qud.
The claim clearly holds for k = 0, and for 0 < k < n,

Pk = 2" pr—1 —mpd
=27 (27* D py — Q4 1d) — mid

=2 po — (2" Q—1 + mi)d
=2 po — Ord.
In particular,
Pn=2"po— Qnd

and
Y = 2exp0(X)2rnp0 _ 2exp0(X)(Qnd + pn) = OX + R,

where |R| = |[26P0X) p | < [26XPOX) g | = |X]|. ]

A quotient and remainder that satisfy the conclusion of Lemma | may be easily
adjusted to satisfy the specification stated in Sect. 1.
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Lemma 2. Let X, Y, Q’, and R’ be integers such that X # 0, |R'| < |X|, and
Y = Q'X + R'. Let R and Q be defined as follows:

(a) If |R'| < |X| and either R" = 0 or sgn(R') = sgn(Y), then R = R’ and
0=0"

(b) If (a)does not apply and sgn(R’) = sgn(X),then R = R'—X and Q = Q' +1;

(c) If (a) does not apply and sgn(R') # sgn(X), then R = R"+X and Q = Q'—1.

Then Y = QX + R, |R| < |X|, and either R = 0 or sgn(R) = sgn(Y).
Proof. We consider the three cases separately:

(a) In this case, the conclusion holds trivially.
(b) In this case,

Y=0X+R=Q +D)X+ (R —-X)=0X +R

and sgn(R’) = sgn(X). If |[R’| = |X]|, then R” = X and R = 0. Otherwise,
we must have Y # 0 and sgn(R’) # sgn(Y). Since |R'| < |X|, |R| = |R —
X| = |X|—|R| < |X]|. Moreover, sgn(R) # sgn(R’), which implies sgn(R) =
sgn(Y).

(c) Here we have

Y=0X+R =(Q -DX+([R +X)=0X +R

and sgn(R’) # sgn(X).If |R'| = |X|, then R" = —X and R = 0. Otherwise,
Y # 0and sgn(R’) # sgn(Y).Since |R'| < |X|,|R| = |R'+X| = |X|—|R| <
| X|. Moreover, sgn(R) # sgn(R’), which implies sgn(R) = sgn(Y). O

In an SRT implementation, the multiplier m of Lemma | represents a sequence
of r bits that are appended to the quotient during the kth iteration. Although not
required for the proof of the lemma, it may be assumed that in practice, |my| < 2".
In particular, in our radix-4 implementation, we have —3 < my < 3. This provides
a bound on the partial quotients.

Lemma3. Let Q9 = O and fork = 1,...,n, let Qr = 4Qr—1 + my, where
—3 < my < 3. Then |Qg| < 4F.

Proof. By induction,
Okl = 40kt + mi < [40k-a| + |mi| <4 (#71=1) +4=45 O

If we could guarantee that mj > 0, then we could maintain a bit vector encoding
of the quotient simply by shifting in two bits at each step. In order to accommodate
my < 0 without resorting to a full subtraction and simultaneously to provide an
efficient implementation of Lemma 2, we adopt a scheme that involves three sep-
arate bit vectors representing the values Qx, Qx — 1, and Q + 1. The following
lemma will be used in Sect. 4 to compute the final quotient. Note that each step in
the computation may be implemented as a simple two-bit shift.
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Lemmad. Let Q9 = O and fork = 1,...,n, let Qx = 4Qk—_1 + my, where
—3 < my < 3. Let N > 0. We define three sequences of bit vectors, E, Ek_,
and E;, all of width N, as follows: Eq = 0, E; = 2N — 1, Ef = 1, and for
k=1,...,n,

(4Ex—1 + mg)[N —1:0] ifmg >0

E, =
k %(4Ek__l+mk—|—4)[N—1:0] ifmg <0,

g — | 4B +me = DIN —1:0] if me >0
T VAEL, +me +3)N = 1:0ifmg <0,

and

BEr—1+mp+DIN—=1:0]if =1 <my <2
Ef = (4E_, +mi + 5N —1:0]ifmy < —1
4EDIN —1:0] if m = 3,
Then fork =0,...,n,
Ex = Q[N —1:0],

Ef = (Qx—DIN —1:0],

and

Ef = (Qk+ D[N —1:0].

Proof. The claim holds trivially for & = 0. In the inductive step, there are seven
equations to consider. For example, if m; < —1, then

Ef = (4E_; +mg +5)[N —1:0]
= (4(Qk_1 — D[N —1:0] + mg +5)[N —1:0]
= 4 Qk-1— 1D +mg +35)[N—-1:0]
= (4Qk—1 +mr + 1[N —1:0]
=(Qr + D[N =1:0].

The other six cases are handled similarly. O

The implementation is also responsible for supplying the integer » of Lemma 1,
which is required to satisfy |Y| < 22"|X| and represents the number of iterations
to be performed. This may be accomplished by establishing an upper bound on the
difference expo(Y) — expo(X):

Lemma 5. Let X, Y, and B be integers such that X # 0 and expo(Y) —
expo(X) < B. Let

2] +1i#B=>0
0 if B <0.

n =
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Then |Y| < 227 |X|.

Proof. If B > 0, then

B B -1
(| B 1) =2 (55 )=

so that 2n 4 expo(X) = B + 1 + expo(X) > expo(Y) + 1 and

22n|X| > 22n+exp0(X) > zexpo(Y)+1 > |Y|

Butif B < 0, then expo(Y') < expo(X) and
|Y| < zexpo(Y)+1 < zexpo(X) < |X| — 22n|X|' 0

The most intensive computation performed in the execution of the algorithm is
that of the partial remainder, px = 4 pg—1+myd. In order for this to be completed in
a single cycle, pi is represented in a redundant form consisting of two bit vectors.
Since |my| < 3, the term myd is conveniently represented by up to two vectors
corresponding to +d and £2d, depending on my. Thus, the computation of pi
is implemented as a two-bit shift (multiplication by 4) of px—_; followed by a 4-2
compression. The details are deferred to Sect. 4.

The most challenging task is the computation of the quotient digit my. This is
the subject of Sect. 3.

3 Quotient Digit Selection

In this section, we define a process for computing the quotient bits m; of Lemma 1
and prove that the invariant | pg | < |d| is preserved. The problem may be formulated
as follows:

Given rational numbers d and p such that 1 < |d| < 2 and |p| < |d|, find an integer m
such that =3 < m < 3 and |[4p — dm| < |d|.

We may restrict our attention to the case d > 0, since the inequalities in the above
objective are unaffected by reversing the signs of both d and m. Thus, we have 1 <
d < 2 and —2 < p < 2. These constraints determine a rectangle in the dp-plane as
displayed in Fig. 1, which is adapted from [4]. The rectangle is partitioned into an
array of rectangles of width % and height %. The columns and rows of the array are
numbered with indices i and j, respectively, where 0 < i < 4and 0 < j < 32.
Let R;; denote the rectangle in column i and row j, and let (8;, ;) be its lower left
vertex. Thus,

1 1
Rj=13(d.p) |6 =d <8+ Jandm; < p<m+g
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The numbering scheme is designed so that if (d, p) € Rj, then i comprises the
leading two bits of the fractional part of d and j comprises the leading 5 bits of the
two’s complement representation of p.

The contents of the rectangles of Fig. | represent a function

m=¢(i.j),

which is defined formally in Appendix 1 and may be implemented as a table of
4 x 32 = 128 entries. For a given pair (d, p), we derive an approximation (J;, ),
which determines the arguments of ¢ to be used to compute the corresponding value
of m. Ideally, this approximation would be simply determined by the rectangle R;;
that contains (d, p), i.e., i and j would be derived by extracting the appropriate
bits of d and p. Since our implementation generates the encoding of d explicitly, d
may indeed be approximated in this manner. Thus, i = d[—1: =2] = |4(d — 1)],
which yields

1
6 <d<é + Z
On the other hand, as noted in Sect.2, p is represented redundantly as a sum
of two vectors. The index j may be derived by adding the high-order bits of these

vectors, but as a consequence of this scheme, as we shall see in Sect. 4, instead of
the optimal range of %, the accuracy of r; is given by

1
ﬂj§p<ﬂj+z.

Thus, in geometric terms, we may assume that (d, p) is known to lie within the
square S;; formed as the union of the rectangle R;; and the rectangle directly above it:

1 1
Sj=1(d.p) 8 =d <8 + Jandm; < p <7+ 7

We would like to show that if (d, p) € Sandm = ¢ (i, j),then [4p—dm| < d,
or, equivalently,

m—1 p m+1
<L <
4 —d~ 4
We first present an informal argument, which will then be formalized and proved
analytically.
The definition of ¢ is driven by the following observations:

1. Since |p| < d, (d, p) lies between the lines p = d and p = —d. Therefore, if
S;j lies entirely above the line p = d or entirely below the line p = —d, then m
is inconsequential and left undefined. In all other cases, m is defined.

2. Since p < d, the upper bound

3
+

Ul
A
N~



A Mechanically Verified Commercial SRT Divider 33

is satisfied trivially if m = 3. In order to guarantee that this bound holds
generally, it suffices to ensure that if m # 3, then S; lies below the line
_ (m+Dd
pP="—7
3. Similarly, since p > —d, the lower bound
p_m- 1
d~ 4
is satisfied trivially if m = —3. In order to guarantee that this bound holds
generally, it suffices to ensure that if m # —3, then Sj lies above the line
p= (m—1)d
= L

It is easily verified by inspection of Fig. 1 that in all cases in which m is defined,
the conditions specified by (2) and (3) are satisfied and, consequently, the desired
inequality holds. It should also be noted that in some cases, there is a choice between
two acceptable values of m. If Sj; lies within the region bounded by p = 7d and
p = mTHd , where —3 < m < 2, then the inequality is satisfied by both m and
m + 1. For example, although we have assigned 3 as the value of ¢(11b, 01000b),
since S11,01000 lies between p = %d and p = %d , we could have chosen 2 instead.

The first step toward formalization is to express the conditions listed above in
precise analytical terms:

1. §j lies entirely above the line p = d if and only if its lower right vertex, (8; +
%, 7 ), lies on or above that line, a condition expressed by the inequality

1
T 28i+1.

The condition that S;; lies entirely below the line p = —d is similarly determined
by the location of its upper right vertex, (&; + %, w;+ %), and is expressed by

the inequality
1 1 1
JTJ' _—(8i+z)—z=—8i—5.

Thus,m = ¢ (i, j) is defined if and only if neither of these inequalities holds, i.e.,

1 1
—Si—§<ﬂj<8i+z.

2. The maximum value of the quotient % in S;; occurs at either the upper left or the

upper right vertex, depending on the sign of their common p-coordinate, 7 ; + 1

g
Thus, S;; lies below the line p = W if and only if both vertices lie on or
below the line, i.e,
i+ % dr; +1 m+1
= <

8; 46; - 4
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and .
JTj+Z=47T_/+1<m+1
Si+1 4&+1 7 4

3. The minimum value of % in §j; occurs at either the lower left or the lower right

(m—1)d if

vertex, depending on the sign of 7. Thus, Sj; lies above the line p = =

and only if both vertices lie on or above the line, i.e.,

m—1
4

T
>
8
and

T 47Tj m—1
= >

We shall also require analytical expressions for §; and 7; as functions of i and j.
The definition of §; is trivial.

Definition 1. For each integer i such that 0 <i < 4,

i
5,'=1+Z.

Since j is the five-bit two’s complement representation of the signed integer 8,
we have the following definition, in which the function SgndIntVal(w, x) computes
the value represented by a bit vector x with respect to a signed integer format of
width w:

Definition 2. For each integer j such that 0 < j < 32,

if j <16
n; = SgndIntVal(5, j) =

00 |~.00|~.

—32ifj > 16.

The formal statement of correctness of ¢ appears below as Lemma 7. The
constraints on ¢ that were derived above are required in the proof. These are sum-
marized in Lemma 6, which is proved by straightforward exhaustive computation.

Lemma 6. Let i and j be integers, 0 < i < 4and 0 < j < 32. Assume that
8 — % <m; <8 + Yandletm = $(i, j).

4ri+1 4mji+1 +1.
(a) If m # 3, then max (‘(T’ W) < "=,

(b) Ifm # 3, then min (”f 4 ) > m-1

8 48 +1 4
Lemma 7. Let d and p be rational numbers, 1 < d < 2 and |p| < d. Let i and
j be integers, 0 < i < 4and 0 < j < 32, such that §; < d < 8; + ‘1_‘ and
i <p<mi+ %. Letm = ¢(i, j). Then |[4p —dm| < d.
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Proof. First note that since
1
T §p§d<5,’+z

and
] 1 N\ 1 ]
. e d——> &)= =5 — -,
Tz PT = 1~ (’+4) 4 T3

we may apply Lemma 6.
We must show that —d < 4p —dm < d,i.e.,

m—1 p m+1
<Z < )
4 —d~ 4
First we establish the upper bound. Since
£ <1= ﬂ’
d — 4

1
we may assume m # 3. If 7; > — 7 then

< < =

Tty _mity _4mitl_m+l
d 8; 48; - 4

AUl

On the other hand, if 7; < —%, then

n_/+l<ﬁ_/+1_4ﬂj+l<m+1
d S+1 45 +1 - 47

As for the lower bound, since

£>_1:—3—1’
d— 4
we may assume m 7# —3.If 7; > 0, then
P T o_ dm; >m—l
d~=d ~&+% 45+17 4
Butif 7; < 0, then
Pt T M
d~d ~—d~ 4

35
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4 Implementation

The results of this section refer to the values assumed by variables during a
hypothetical execution of the XFL function SRT, defined in Appendix 2. With the
exception of the loop variables b and k, each variable of SRT belongs to one of the
two classes:

e Some variables assume at most one value during an execution. The value of such
a variable will be denoted by the name of the variable in italics, e.g., X, dEnc,
and YNB.

e Variables that are assigned inside the main for loop may assume only one value
during each iteration and may or may not be assigned an initial value before the
loop is entered. The value assigned to such a variable during the kth iteration will
be denoted with the subscript k, e.g., pg, mAbsy, and addAy. If such a variable
is assigned to an initial value outside of the loop, it will be denoted with the
subscript 0, e.g., po and QPart,. When convenient, the subscript may be omitted
and understood to have the value k. When replaced with an accent ('), it will be
understood to have the value k — 1. For example, in the statement of Lemma 14,
m and p’ represent my and pj_p, respectively.

SRT has four input parameters:

e isSigned is a boolean indication of a signed or unsigned integer format
e w is the format width, which is assumed to be 8, 16, 32, or 64

e XEnc is the signed or unsigned w-bit encoding of the divisor

e YEnc is the signed or unsigned 2w-bit encoding of the dividend

Three values are returned:

e A boolean indication of whether the computation completed successfully
e The signed or unsigned w-bit encoding of the quotient
o The signed or unsigned w-bit encoding of the remainder

The last two values are of interest only when the first is true, in which case they are
the values of the variables QOut and ROut, respectively.

Some of the variables of SRT do not contribute to the outputs, but are used only
in our analysis and in embedded assertions. Of these (listed in a preamble to the
function), X and Y are the integer values represented by XEnc and YEnc, and Q
and R are the quotient and remainder, which, unless X = 0, satisfy Y = QX + R,
|R| < |X]|, and either R = 0 or sgn(R) = sgn(Y).

Our objective is to show that success is indicated if and only if X # 0 and Q is
representable with respect to the indicated format, in which case Q and R are the
integer values of QOut and ROut. Since this obviously holds when X = 0, we shall
assume X # 0 in the following. The main result is the theorem at the end of this
section.

The computation is naturally partitioned into three phases, which are described
in the following three subsections.
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4.1 Analysis of Operands

In the first phase, the operands are analyzed and normalized in preparation for the
iterative computation of the quotient and remainder, and the number 7 of iterations
is established.

The variable XNB represents the “number of bits” of X, derived by counting the
leading zeroes or ones:

Lemma 8. XNB = expo(X) + 1.

Proof. If X > 0, then X = XEnc and XNB — 1 is the index of the leading 1 of X,
which implies 2XNB-1 <X < 2XNB , and the claim follows.

If XNegPower2 = 1, then XEnc[b] = 1 if and only if w > b > XNB — 1. It
follows that XEnc = 2" — 2XNB—1 3pq

X = XEnc— 2" = 2w _pXNB=1 _ yw _ _»XNB-1

In the remaining case, X < 0, XNB — 1 is the index of the leading 0 of XEnc, and
XEnc[XNB — 2 : 0] # 0. It follows that

2 — 2XNB < XEnc < 2v — 2XNB-1
which implies —2XNB < x < —2XNB—1 j o 2XNB-1 |y | < pXNB O
The variable dEnc is an encoding of d = 2~¢P0X) x .
Lemma 9. dEnc = (29°d)[67 : 0] = d[2 : —65].

Proof. Since d = 27¢POX) X and expo(X) < 63, 2%3d = 203-€XPOX) X is an
integer and

X = zexpo(X)d — 2XNB—1d'

Clearly,

dEnc[65 : 66 — XNB] = XEnc[XNB — 1 : 0]
= X[w—1:0][XNB—1:0]
— X[XNB —1: 0]

and since | X | < 2XNB

dEnc[66] = dEnc[67] = XSign = X[XNB] = X[XNB + 1].
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Thus, dEnc[67 : 66 — XNB] = X[XNB + 1 : 0], and hence

dEnc = 26 XNBX[XNB + 1 : 0]

= 2% NBx)[67 : 0]
— (2XNB—1+66—XNBd)[67 . 0]

= (2%d)[67 : 0]
=d[2:—65]. O

Lemma 10 gives an expression for 7, the first argument of the table access func-
tion ¢:

Lemma 10. i = [4(|d|—1)].
Proof. If X > 0, then since 4 < 4d < 8,

i =dEnc[64:63] =d[-1:-2] =mod(|4d],4) = |4d] —4 = |4(d — 1)].
If XNegPower2 = 1, then X = —26P0X) g = 1, and
i =0=[4(ld|—-D].

In the remaining case, X < 0, dEnc[66] = 1, dEnc[65] = 0, and dEnc[64 : 0]
#£ 0. Since 20°d = 205-¢XPOX) X is an integer and 2°°d < 2°°,

295d = SgndIntVal(67, (2%°d)[66 : 0])
= SgndIntVal(67, dEnc[66 : 0])
= dEnc[64 : 0] — 2°6.

Thus, |d| = —d =2 —27%dEnc[64 : 0] and
|4(|d]| —1)] = |4—27%3dEnc[64 : 0]] = |4 — dEnc[64 : 63] —2%3dEnc[62 : 0]].

Suppose that dEnc[62 : 0] = 0. Then dEnc[64 : 63] # 0 and

[4(Jd| —1)] = 4 — dEnc[64 : 63].
An exhaustive case analysis (dEnc[64 : 63] = 1, 2, or 3) shows that
4 — dEnc[64 : 63] = (("dEnc[64] | ~dEnc[63]) << 1) | dEnc[63] =i.
Finally, suppose that dEnc[62 : 0] # 0. Then
14(|d| = 1)] = 3 — dEnc[64 : 63] = ~dEnc[64 : 63] = i. O

YNB is the “number of bits” of Y, including, in the negative case, the final trailing
sign bit.
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Lemma 11. IfY > 0, then

2YNB—1 <Y < 2YNB’

and if Y <0, then
2YNB=2 _ |y| < 2YNB-1.

Consequently, in either case, YNB > expo(Y') + 1.

Proof. If Y > 0, then YNB — 1 is the index of the leading 1 of YEnc =Y, ie.,
expo(Y) = YNB — 1.

If Y = —1, then YNB = 1 and

1
HYNB-2 _ S < Y| =1=2"NB-1

In the remaining case, Y < —1, YNB — 2 is the index of the leading 0 of YEnc,
which implies
2W _ 2YNB—1 S YE}’lC < 2W _ 2YNB—2'
But since Y = YEnc — 2%,

_QYNB-1 oy _ _pYNB-2

and
2YNB—2 < |Y| < 2YNB—1_ 0

The number of iterations, n, satisfies the requirement of Lemma 1.

Lemma 12. |Y| < 22"|X|.

Proof. This is an immediate consequence of Lemmas 8, 11, and 5. O
The bit vector pEnc is an encoding of py = 2-¢POX)—2ny .

Lemma 13.

(a) If n = 0, then

(264-YNBy))[67 : 0] if YNB[0] = XNB[0]

pEncHiy = (265-YNBy)[67 : 0] if YNB[0] # XNB[O].

(b) If n > 0, then 212° py is an integer and

pEnc = (2'% po)[131 : 0] = po[2 : —129].
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Proof. First consider the case YNB[0] = XNB[0]. We may assume YNB > O0;
otherwise, ¥ = 0 and the lemma is trivial.

Note that YNB < 128 and
pEnc[127 : 128 — YNB] = YEnc[YNB —1:0] = Y[YNB —1: 0].
Therefore,
pEnc[127 : 0] = 2128 "NBy [yng — 1 : 0] = (2"~ YNBy)[127 : 0].
Since Y < 2YNB for ¢ = 128,...,131,
pEncll] = YSign = (22 "NBy)[g).

Thus,
pEnc = pEnc[131 : 0] = (2" YNBy)[131 : 0).

If n = 0, then YNB < XNB < 64 and
pEnc = (21287 YNBy)[131 : 0] = 264 (254 "By )[67 : 0],

which implies pEncHi, = (264-YNBy)[67 : 0].
On the other hand, if n > 0, then

YNB — XNB
2n = Z(LTJ + 1) = YNB — XNB + 2 = YNB — expo(X) + 1

and

Po = 2—exp0(X)—2nY — 2—YNB—1Y'

Thus, 212 py = 2128-YNBy i5 an integer and
pEnc = (2'28-YNBy)[131 : 0] = (212° po)[131 : 0].

The proof for the case YNB[0] # XNB[0] is similar, with every occurrence of 127
or 128 replaced by 128 or 129. Thus, we have

pEnc = (2'2~YNBy)[131 : 0],
which, in the n = 0 case, leads to

pEncHiy = 25~ YVBy)[67 : 0]. u]
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4.2 Iteration

The second phase is the iteration loop in which the quotient digits are selected
and the partial remainder and quotient are updated accordingly. The main re-
sults pertaining to the iterative computation of the partial remainder are given by
Lemmas 14 and 16:

1. The quotient digit m is correctly computed as the value of ¢ (i, j), as stated in
Lemma 14.

2. The partial remainder py = 4pg_; — md is encoded by pEncHi, carryHi, and
pEncLo, as stated in Lemma 16.

The proof of (2) depends on (1), and that of (1) requires the assumption that (2)
holds on the preceding iteration.

Lemma 14. Let 0 < k < n. Suppose that |p'| < |d| < 2, 2'?° p’ is an integer, and
(2122 p")[131 : 0] = 2%*(pEncHi + carryHi)[67 : 0] + pEncLo’.

Then

{66 #X=0
WM=\ 296, j) i X <0;
(b)m; <p <mj+ %.

Proof. First suppose pEncHi' + carryHi' > 2°8. Then pTop = 63; otherwise,

pEncHi' + carryHi' = 2%?pTop + pEncHi'[61 : 0] + carryHi’
<2562 +262 — 1422 -1
< 28,

Consequently, j = plndex = pTop[4 : 0] = 31, which implies m = ¢(i, j) = 0,
and (a) follows. To prove (b), we note that

(2'2° p')[131 : 64] = (pEncHi' + carryHi')[67 : 0]
= pEncHi' + carryHi' — 258
< 268 + 262 _ 268
— 262

and therefore,
(2122 p")[131 : 0] < 284(2%2 — 1) 4 262 < 2126,
Since [2129 p’| < 2131,

2129 " = SgndIntVal(132, (2'%° p')[131 : 0]) = (2!2° p")[131 : 0]
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and thus, 0 < 2129 p’ < 2126 and

! 0<p < ! + !
Tp=—=< — =7 + -.
J 3 =p 3 Iy
We may assume, therefore, that pEncHi' + carryHi' < 2°% and hence

(212 p")[131 : 0] = 2%*(pEncHi' + carryHi')[67 : 0] + pEncLo’
= 2064 (pEncHi' + carryHi') + pEncLo
= 2'25pTop + 2% (pEncHi'[61 : 0] + carryHi') + pEncLo
< 2126, Tpp + 264262 — | 4 262 _ ) 4 264
< 212%(pTop + 2).

Suppose p’ > 0. Then 2!2° p’ = (212 p")[131 : 0] and

1 1 1
—=pTop < p’ < <pTop + —.
ghlor = P < gplop +

Since pTop < 8p’ < 16, j = pIndex = pTop and pSign = 0. Thus,
Im| = mAbs = SRTLookup(i. j) = |¢ (i, j)| = ¢(i. j)
and mSign = XSign, which implies (a). To prove (b), we need only observe that
SgndIntVal(5, j) = SgndIntVal(5, pTop) = pTop.

Now suppose p’ < 0. Then 2'2p" = (2129p/)[131 : 0] — 2!32 and the above
estimate yields

1 1 1
g(pTop— 64) < p' < g(pTop— 64) + e

Thus, pTop > 8p’ + 62 > —16 + 62 = 46, so pTop > 47. Let us assume that
pTop > 48. Then j = pIndex and |m| = |¢(i, j)| = —¢ (i, j). Thus, to establish
(a), we need only show that m and X have opposite signs. But this follows from
mSign = XSign =~ pSign and pSign = 1. To prove (b), it suffices to show that
pTop = SgndIntVal(5, j)+64. Butin this case, j = pTop[4: 0] = pTop—32 > 16,
so SgndIntVal(5, j) = j — 32 = pTop — 64.

There remains the special case pTop = 47. Since

1 1 17 1 15
P« (pTop—64) 4+ - = —— = 2
Pregplop =69+ g ==+ 3="3
2> |d| = 1|p'| > %, which implies

dindex =i = |4(|ld|—1)] = 3.
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Thus,

|m| = mAbs = SRTLookup(3,15) = 3.
On the other hand, ¢ (i, j) = ¢ (3, 16) = —3. But again, since pSign = 1, m and X
have opposite signs and (a) follows. To prove (b), note that SgndiIntVal(5, j) = —16;

hence,

2<p' < 17+1< +1 o
Ty == ——+ <7+ -
/ P § 4 /a4

The computation of the partial remainder, as described in Lemma 16, involves
a “compression” that reduces four addends to two. This is performed by the serial
operation of two carry-save adders, as described by the following basic result, taken
from [10]:

Lemma 15. Given n-bit vectors x, y, and z, let

and
b=2(x&y |x&z|y&2).

Then
x+y+z=a+b

Lemma 16. Ifn > 0and 0 < k < n, then |p| < |d| < 2, 2'2° p is an integer, and
(2% p)[131 : 0] = p[2 : —129] = 2%*(pEncHi + carryHi)[67 : 0] + pEncLo.

Proof. The proof is by induction on k.

For k = 0, we have
Ip| = e X)=2ny | < pmenoX) x| = |4
by Lemma 12, and since
2%%(pEncHi 4 carryHi)[67 : 0] 4+ pEncLo = pEnc,

the other two claims follow from Lemma 13.

In the inductive case, we shall derive the bound on |p| from Lemma 7. By
Lemma 10, since |d| < 1,0 <i <4and$; <|d| <& + %. Clearly, j < 32, and
by Lemma 13, n; < p <m; + % and

() fX>0
"Z=6G, )it X <o.

Thus, applying Lemma 7, with the signs of d and m reversed if d < 0, we have
lpl=14p" —md| < d.
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By induction,
2129p _ 2131p/ _129,,4

is an integer. The computation of (2!2° p)[131 : 0] involves a 4-2 compressor with
inputs addA, addB, addC, addD. We shall show that

(addA + addB + addC + addD)[67 : 0] = (2'%° p)[131 : 64].

The first two terms, addA and addB, if not 0, represent £2d and +d, respectively,
depending on the value of m. However, in the negative case, in order to avoid a full
67-bit addition, the simple complement of 2d or d is used in place of its negation,
and the missing 1 is recorded in the variable inject, which is more conveniently
combined later with addD. Thus, our first goal is to prove that

(addA + addB + inject)[67 : 0] = (—2%°dm)[67 : 0].
If mSign = 1, then
addA = mAbs[1] - (2 - dEnc)[67 : 0] = (2 - mAbs[1] - dEnc)[67 : 0],

addB = mAbs|0] - dEnc,

and inject = 0. Hence,

(addA + addB + inject)[67 : 0] = (2 - mAbs[1] - dEnc + m Abs|[0] - dEnc)[67 : 0]
= ((2-mAbs[1] + mAbs[0]) - dEnc)[67 : O]
= (mAbs - dEnc)[67 : 0]
= (—dEnc - m)[67 : 0])
= (=2%%dm)[67 : 0]).

On the other hand, if mSign = 0, then

addA = addA[67 : 0]

= mAbs[1] - 2("dEnc[66 : 0]) + 1)[67 : 0]

= mAbs[1] - (2(—dEnc — 1)[66 : 0]) + 1)[67 : 0]
mAbs[1] - (—2dEnc — 2)[67 : 0]) + 1)[67 : 0]
mAbs[1] - (=2 - dEnc — 1)[67 : 0]
= (=2 - mAbs[1] - dEnc — mAbs[1])[67 : 0],

addB = mAbs[0] - “dEnc[67 : 0]
= mAbs[0] - (—dEnc — 1)[67 : 0]
= (—mAbs|0] - dEnc — mAbs[0])[67 : 0],
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and inject = mAbs[0] + mAbs[1], so that

(addA + addB + inject)[67 : 0]

= (=2 - mAbs[1] - dEnc — mAbs[1] — mAbs|0] - dEnc
—mAbs[0] + mAbs[0] + mAbs[1])[67 : 0]

= (—(2 - mAbs[1] + mAbs[0]) - dEnc)[67 : 0]

= (—m - dEnc)[67 : 0]

= (—2%dm)[67 : 0])

= (—2'2dm)[131 : 64]).

The remaining two terms, addC and addD, represent the shifted result of the
previous iteration, 4 p’. Thus,

addC = 4 - pEncHi + pEncLo[63 : 62],

addD = 2 - carryHi + inject,

and

(addC + addD — inject)[67 : 0]

= (4-pEncHi+ pEncLo[63 : 62] + 4 - carryHi + inject — inject)[67 : O]
= (4(pEncHi + carryHi)[67 : 0] 4+ pEncLo[63 : 62])[67 : 0]

= (4(2%*(pEncHi + carryHi)[67 : 0] + 2°2 - pEncLo[63 : 62]))[131 : 64]
= 4(2%*(pEncHi + carryHi)[67 : 0] + 2°2 - pEncLo[63 : 62])[129 : 62]

= 4(2%* (pEncHi + carryHi)[67 : 0] + pEncLo)[129 : 62]

= 42" p"[131 : 0][129 : 62]

=421 p"[129 : 62]

= (4-2'2°p")[131 : 64].

Combining these last two results, we have

(addA + addB + addC + addD)[67 : 0]
= ((addA + addB + inject)[67 : 0] + (addC + addD — inject)[67 : 0])[67 : 0]
= ((2'°4p")[131 : 64] + (=2'2°dm)[131 : 64])[67 : 0].

Since (—2'2°dm)[63 : 0] = 0, this may be reduced to

(" (4p’ —dm))[131 : 64] = 2'% p)[131 : 64].
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Two applications of Lemma 15 yield
addA 4 addB + addC + addD = suml + carryl + addD = sum2 + carry2,
and therefore,

(2% p)[131 : 64]

= (sum2 + carry2)[67 : 0]

= ((2%2(sum2[67 : 62] + carry2[67 : 62]))[67 : 0]
+sum2[61 : 0] + carry2[61 : 0])[67 : 0]

= (252 (sum2[67 : 62] + carry2[67 : 62])[5 : 0]
+sum2[61 : 0] 4+ carry2[61 : 0])[67 : 0]

= (pEncHi + carryHi)[67 : 0].

But by Lemma 9,
(2122 p)[63 : 0] = 2'*°(4p’ — md))[63 : 0]
= ((212°4p")[63 : 0] + (—2%*m25°d)[63 : 0])[63 : 0]
= (212%4p")[63 : 0]

= (4- pEncL0’)[63 : 0]
= pEncLo,

and thus,

(212 p)[131 : 0] = 254 (2122 p)[131 : 64] + (2'%° p)[63 : 0]
= 2%*(pEncHi + carryHi)[67 : 0] + pEncLo. O
As a result of the iterative shifting of the partial remainder, pEncLo = 0 upon
exiting the loop. This is proved recursively:
Lemma 17. Ifn > 0 and 0 < k < n, then pEncLo[63 —2(n — k) : 0] = 0).

Proof. The proof is by induction on k. For k = 0, since pEncLo[127—YNB : 0] =
0, we need only show that 127 — YNB > 63 — 2n, or 2n > YNB — 64. But

YNB — XNB
2n = Z(LTJ + 1) > YNB — XNB + 1 > YNB — 63.

Fork > 0,

pEncLo[63 —2(n — k) : 0] = (4 - pEncLo’)[63 —2(n — k) : 0]
= 4-pEncLo'[63 —2(n —k + 1) : 0]
=0. O
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The partial quotient QPart is encoded by QOEnc. Its computation, as described
in Lemma 4, is facilitated by simultaneously maintaining encodings of QPart & 1:

Lemma 18. For0 <k <n,
QOEnc = QPart[66 : 0],

OMEnc = (QPart — 1)[66 : 0],

and
QPEnc = (QPart + 1)[66 : 0].

Proof. We shall invoke Lemma 4 with N = 67 and Qy = QPart. We need only
show that Q0Enc = Ey, OMEnc = E;, and OPEnc = E ,j' . The claim is trivial
for k = 0. For k > 0, it may be readily verified by examining each value of m,
—3 < m < 3. For example, if m = —1, then mSign = 1, mAbs = 1,

QOEnc=(4 - Q0Enc')[66 : 0]=(4Ex—1)[66 : 0]=(4Ex_1 + mj — 1)[66 : O]=E

OMEnc = (4 - QOEnc')[66 : 0] | 2
= (4E_,)[66: 0] |2
= (4E;_, 1 2)[66: 0]
= (4E,_, +2)[66 : 0]
= (4E,_, + mi + 3)[66 : 0]
= E;.

and

QPEnc = (4 - Q0Enc)[66 : 0] | 3
= (4EL_)[66: 0] | 3
= 4E__, |3)[66:0]
= (4E,_, +3)[66:0]
= 4E,_; +mg +4)[66: 0]
=E}. O

4.3 Final Computation

In the final phase of the computation, a full addition is performed to generate an
explicit (nonredundant) representation of the remainder. This result is then adjusted,
along with the quotient, to produce the final results as specified by Lemma 25.
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Lemma 19 refers to the quotient and remainder before the correction step:
Lemma 19. Y = QPre- X + RPre and |RPre| < | X|.

Proof. This is an immediate consequence of Lemma 1, with r = 2, Oy = QParty,
R = RPre, and Q = QPre. We need only note that the condition |pg| < |d] is
ensured by Lemma 16. O

RPre is encoded by REncPre:
Lemma 20.

(266~ XNBRPre)[66 : 0] if n > 0
REncPre = { (24" YNBRPre)[66 : 0] if n = 0 and YNB[0] = XNBI[0]
(265-YNBRPre)[66 : 0] if n = 0 and YNB[0] # XNBI0].

Proof. If n > 0, then by Lemmas 16 and 8§,

REncPre = (pEncHi, + carryHi,)[66 : 0]
= (2'%p,)[130 : 64]
= (204205-XPOX) RPre)[130 : 64]
= (2697 POX)RPre)[66 : 0]
= (2% XNBRPre)[66 : 0].

On the other hand, if n = 0, then REncPre = pEncHiy[66 : 0] and the lemma
follows from Lemma 13. O

The encoding REnc of the final remainder, which is derived from REncPre, de-
pends on the signs of RPre and Y and the special cases RPre is 0 or =X . Timing
considerations dictate that these conditions must be detected before the full addition
that produces REncPre is actually performed. This requires a technique for predict-
ing cancellation, which is provided by the following result, found in [10]:

Lemma 21. Given n-bit vectors a and b and a one-bit vector ¢, let
t=a”b "~ Q2| b)+o).
If0 < k < n, then
(@+b+c)k:00=0<tlk:0]=0.
Lemma 21 is used in the proofs of the following three lemmas:

Lemma 22. RIs0 is true if and only if RPre = 0.
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Proof. By Lemma 21, RIs0 is true if and only if REncPre = 0.If n > 0, then by
Lemma 20, REncPre = (285~¢POX)RPre)[66 : 0]. But by Lemma 19,
|265—€xp0(X)Rpre| < |265—€XPO(X)X| < 266’

and it follows that REncPre = 0 if and only if RPre = 0.

Now suppose 7 = 0. Then RPre = 26%P0X) po — y and |Y| < 2YNB <
2XNB=1 < | X|. By Lemma 20, REncPre = (26" YNBRPre)[66 : 0], where e = 64
or 65. Thus,

|26—YNBRPre| < |265—YNBy| < |264—exp0(Y)Y| < 265’
and again, REncPre = 0 if and only if RPre = 0. O

Lemma 23. RNegX is true if and only if RPre = —X.

Proof. First note that by Lemma 9,
dEncl66 : 0] = (255d)[66 : 0] = (265-¢Po(X) x)[66 : 0].
Now by Lemma 15,

(RNegXSum + RNegXCarry)[66 : 0] = (pEncHi + CarryHi + dEnc)[66 : 0]
= (REncPre 4 dEnc)[66 : 0];

hence, by Lemma 21,

RNegX =1 < (RNegXSum + RNegXCarry)[66 : 0] = 0
& (REncPre + dEnc))[66 : 0] = 0
& (REncPre + 265-¢P0(X) x)[66 : 0] = 0.

If n > 0, then we have
RNegX = 1 & (255-¢PO(X)(Rpre 4+ X))[66 : 0] = 0,
where
|265_exP0(X)(RPre+X)| . |265—expo(X)(2X)| < |265—€xp0(X)2expa(X)+2| =267,

and the result follows.

If n = 0, then since |RPre| = |Y| < |X|, we must show that RNegX = 0. By
Lemma 22, REncPre = (2°7YNBY)[66 : 0], where ¢ < 65 and as noted above,
2¢=YNBy | < 265 If RNegX=1, then (2¢"YNBYy 4 265-€xpo(X) x)(66 : 0]=0. But
since
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|2e—YNBY+265—expo(X)X| . 2|265—expo(X)X| . 2|265—€xp0(X)2expo(X)+l|:267,

this implies 2¢7YNBy 4 265-expo(X) y — 0, which is impossible. O
Lemma 24. RPosX is true if and only if RPre = X.

Proof. By Lemma 15,

(RPosXSum + RPosXCarry)[66 : 0] = (pEncHi 4+ CarryHi + ~dEnc + 1)[66 : 0]
= (REncPre — dEnc — 1 + 1)[66 : 0]
= (REncPre — dEnc)[66 : 0],

and hence, by Lemma 21,

RPosX =1 & (RPosXSum + RPosXCarry)[66 : 0] =0
< (REncPre — dEnc)[66 : 0] = 0.

The rest of the proof is similar to that of Lemma 23. O

Lemma 25. Y = QX + R, where |R| < |X| and either R = 0 or sgn(R) =
sgn(Y).

Proof. This is an immediate consequence of Lemmas 2, 19, and 22. O
The final remainder is encoded by REnc.

Lemma 26.

(264=XNBR)[63 : 0] if n > O
REnc = | (262-YNBR)[63 : 0] if n = 0 and YNB[0] = XNBI0]
(263-YNBR)[63 : 0] if n = 0 and YNB[0] # XNBJ0].

Proof. 1f fixupNeeded is false, then R = RPre, REnc = REncPre[66 : 2], and the
lemma follows from Lemma 20. If n = 0, then as noted in the proof of Lemma 22,
RPre = Y and |Y| < |X|, from which it follows that fixupNeeded is false. Thus,
we may assume that fixupNeeded is true and n > 0. We may further assume that
RIsX = 0; otherwise, REnc = R = 0. If RSign = XSign, then

REnc = (REncPre + ~dEnc[66 : 0] + 1)[65 : 2]
= (206 XNBRpyre 4 267 — 265-€XpO(X) x _ | 4 1)[65 : 2]
= (2°6~XNB(RPre — X))[65 : 2]
= (200~ XNBR)[65 : 2]
= (254 XNBR)[63 : 0].
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The case RSign # XSign is similar. O
Our main result follows:

Theorem 1. If Q is representable in the integer format determined by isSigned
and w, then QTooLarge = false and QOut and ROut are the encodings of Q and
R, respectively. Otherwise, QTooLarge = true.

Proof. We shall first prove that QTooLarge is false if and only if Q is representable.
We begin with the case YNB — XNB > w in which we must show that Q is not
representable. If ¥ > 0, then by Lemmas 8 and 11, | X| < 2XNB and Y > 2YNB—1,
and hence,

N 2YNB—1—XNB > v,

H
which implies

Y -R Y R
=l > | —| = |—
2= [ = x|

and |Q] > 2".

Now suppose ¥ < 0. Then |X| < 2XNBand |Y| > 2YNB=2_ Since the format is
signed, it will suffice to show that |Q| > 2"~! or |§| > 2wl 4 1. If XNB = w,
then |X| > 2¥~1 and we must have X = —2"~! and

2YNB—2

_ HYNB-XNB-1 - w
> JXNB1 2 = 2"%

Y
X

We may assume, therefore, that XNB < w. Since | X | < 2XNB _ |

>

Y 2YNB—2 2XNB+W—1
‘}‘ Z 5XNB_| = oXNB _{°

and we need only show that

2XNB+W—1
ZXNB 1 > 2w—l + 1’

or, equivalently,
2XNB+w—l > (2XNB _ 1)(2w—1 + 1) — 2XNB+w—1 + 2XNB _ 2w—1 1
which follows from XNB < w.
In the case n < 1, QTooLarge is false and we must show that Q is representable.

But this is trivially true, since YNB — XNB < 1, |[Y| < 2YNB and X > 2XNB-1
imply
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Y

X

In the remaining case, YNB — XNB < w and n > 1. The first of these conditions
implies that

< 2YNB—XNB+1 <4,

10| <

2n§2(gJ+1)§w+2;

thus, by Lemma 3,
|QPre| = |QPart,| < otz

from which we conclude that |Q| < 2"*2.
The second condition implies that YNB — XNB > 2, so

|Y| = 2YNB—2 > 2XNB > |X|,

from which we conclude that Q # 0. Thus, if YSign = XSign, then Q > 0, and if
YSign # XSign, then Q < 0.

Suppose Q > 0. Then since Q < 2"*2, Q0 = Q[w + 2 :0] = QEnc[w + 2 : 0].
If the format is unsigned, then

Q is representable & Q < 2" & QEnclw + 2 :w] = 0 & QTooLarge = 0,
while if the format is signed, then
Q is representable < Q < 2""! & QFEnclw+2:w—1] =0 & QTooLarge = 0.

Finally, suppose Q < 0. Then Q > —2"*2 and

QEnclw+1:0] = Qw4+ 1:0] = mod(Q,2"?) = Q +2"*2.

Since the format must be signed,

Q is representable & Q > —2"!
& QEnc[w +1:0] > 2v*t2 w1
& QEnclw+1:w—1]=7
& QTooLarge = 0. ]
Next, we show that if Q is representable, then QOut and ROut are the encodings
of Q and R. Clearly, QOut = QEnclw — 1 : 0] = Q[w — 1 : 0], which is the
encoding of Q. We must also show that ROut = R[w — 1 : 0].
Consider the case n > 0. By Lemma 26,

REnc[63 : 64 — XNB] = (2°*~XNBR)[63 : 0][63 : 64 — XNB] = R[XNB — 1 : 0].

Since |R| < |X| < 2XNB,
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0 ifR>0

Rlw—1:XNB] = -

v NBI = pv=XNB _ i g <0
and in either case, R[w — 1 : XNB] = ROut[w — 1 : XNB].
Suppose n = 0 and YNB[0] = XNBJ[0]. By Lemma 26,

REnc[63 : 62 — YNB] = (252~ YNBR)[63 : 0][63 : 62 — YNB]
= (2927 YNBR)[63 : 62 — YNB]
= R[YNB +1:0].

Since |R| = |Y| < 2YNB,

0 ifR>0

and in either case, R[w — 1 : YNB + 1] = ROut[w — 1 : YNB + 1].
The case YNB[0] # XNBJ0] is similar. O
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Appendix 1: XFL Definition of ¢

int phi(nat i, nat j) {
switch (i) {
case 0:
switch (3) {
case 0x09: case 0x08: case 0x07: case 0x06: case 0x05:
return 3;
case 0x04: case 0x03:
return 2;
case 0x02: case 0x01:
return 1;
case 0x00: case 0x1lF: case Ox1E:
return 0;
case 0x1D: case 0x1C:
return -1;
case 0x1B: case Ox1A:
return -2;
case 0x19: case 0x18: case 0x1l7: case 0x16: case 0x15:
return -3;
default: assert(false) ;

}

case 1:
switch (3) {
case 0x0B: case 0x0A: case 0x09: case 0x08: case 0x07: case 0x06:
return 3;

case 0x05: case 0x04: case 0x03:
return 2;

case 0x02: case 0x01:
return 1;

case 0x00: case 0x1F: case Ox1E:
return 0;

case 0x1D: case 0x1C:
return -1;

case 0x1B: case 0x1A: case 0x19:
return -2;

case 0x18: case 0x17: case 0x1l6: case 0x15: case 0x1l4: case 0x13:
return -3;

default: assert(false) ;

}
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case 2:
switch (3)
case 0x0D:

return 3;
case 0x07:
return 2;
case 0x04:
return 1;
case 0x00:
return 0;
case 0x1D:
return
case 0x1A:
return
case 0x16:
return
default:
}

case 3:
switch (3)
case 0x0F:
case 0xO0B:

return 3;
case 0x07:
return 2;
case 0x04:
return 1;
case 0x00:
return 0;
case 0x1D:
return
case 0x1A:
return
case 0x16:
case 0x12:
return
default:
}
default:
}
}

{

case
case
case
case

case

_1’-

case

_2’-

case

_3’-
assert (false)

{

case
case

case
case
case

case

_1;

case

_2;

case
case

-3;
assert (false) ;

0x0C:

0x06:

0x03:

Ox1F:

0x1C:

0x19:

0x15:

0x0E:
O0xO0A:

0x06:

0x03:

Ox1F:

0x1C:

0x19:

0x15:
0x11:

assert (false) ;

case

case

case

case

case

case

case

case
case

case

case

case

case

case

case
case

// The table that is actually

nat SRTLookup (nat i,

return abs (phi (i,

}

3))

nat j) {

0x0B:

0x05:

0x02:

Ox1E:

0x1B:

0x18:

0x14:

0x0D:
0x009:

0x05:

0x02:

O0x1E:

0x1B:

0x18:

0x14:
0x10:

case

case

case

case

case
case

case

case

case

0x0A:

0x01:

0x17:

0x13:

0x0C:
0x08:

0x01:

0x17:

0x13:

case 0x009:

case 0x12:
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case 0x08:

case 0x11l:

used by the implementation contains
// only non-negative entries; the sign is computed separately:
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Appendix 2: XFL Model of the Implementation

// The function SRT is an XFL model of the Llano integer divider.

// It has four input parameters:

// (1) isSigned: a boolean indication of whether the dividend,
// divisor, quotient, and remainder are represented as

// signed or unsigned integers.

// (2) w: the width of the divisor, quotient, and remainder,
// which may be 8, 16, 32, or 64; the width of the

// dividend is 2#w.

// (3) XEnc: the encoding of the divisor.

// (4) YEnc: the encoding of the dividend.

// Three values are returned:

// (1) A boolean indication of successful completion, which is
// false if either the divisor is zero or the quotient is
// too large to be represented in the indicated format.

// The other two values are invalid in this event.

// (2) The encoding of the quotient.

// (3) The encoding of the remainder.

<bool, nat, nat> SRT(nat YEnc, nat XEnc, nat w, bool isSigned)
assert((w == 8) || (w == 16) || (w == 32) || (w == 64));

// Division by 0 signals an error:
if (XEnc == 0) {
return <false, 0, 0>;

}

// The following variables appear in assertions but are not
// involved in the computation of the function values:
int Y; // value of dividend

int X; // value of divisor
int QPart; // value of quotient during iteration
int QPre; // value of quotient before fix-up

int RPre; // value of remainder before fix-up

int Q; // value of quotient after fix-up

int R; // value of remainder after fix-up

int m; // value derived from table, -3 <= m <= 3
rat d; // shifted divisor, 1 <= abs(d) < 2

rat p; // partial remainder, abs(p) <= abs(d)

nat i; // first argument of phi

nat j; // second argument of phi

// Decode operands:
if (isSigned) {
Y = SgndIntVal (2w, YEnc[2xw-1:0]);
X SgndIntVal (w, XEnc[w-1:01);
}
else {
Y = YEnc[2%w-1:0];
X = XEnc[w-1:0];
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// Compute the number of divisor bits that follow the leading sign
// bits. In the case of the negative of a power of 2, the trailing
// sign bit is included as a divisor bit:

bool XSign = isSigned ? XEnc[w-1] : false;

nat b = w;

while ((b > 0) && (XEnc[b-1] == XSign)) ({
b--;
}
bool XNegPower2 = XSign && ((b == 0) || (XEnc[b-1:0] == 0));
nat XNB = XNegPower2 ? b+l : b;
assert (XNB == expo(X) + 1);

// Compute dEnc, a bit vector encoding of d = X >> expo(X):
nat dEnc = 0;
dEnc[67] = XSign;
dEnc [66] = XSign;
dEnc [65:66-XNB] = XEnc[XNB-1:0];
d = X >> expo(X);
assert (dEnc == [2:-65]1) ;
// Compute leading 2 bits of fractional part of d:
nat dIndex;
if (XSign == 0) {
dIndex = dEnc([64:63];

}

else if (XNegPower2) ({

dIndex = 0;
}
else if (dEnc[62:0] == 0) {
dIndex = (("dEnc[64] | “dEnc([63]) << 1) | dEnc[63];
}
else {

dIndex = “dEnc([64:63];
}
i = dIndex; // first argument of phi
assert (i == fl(4x(abs(d) - 1)));

// Compute the number of dividend bits that follow the leading sign
// bits. In the negative case, the trailing sign bit is
// included as a dividend bit.
bool YSign = isSigned ? YEnc[2xw-1] : false;
b = 2xw;
while ((b > 0) && (YEnc[b-1] == ¥YSign)) ({
b--;
}
nat YNB = YSign ? b + 1 : b;
if (Y > 0) {
assert (1l << (YNB - 1) <= Y && Y < 1 << YNB);
}
else if (Y < 0) {
assert (1l << (YNB - 2) < abs(Y) && abs(Y) <= 1 << (YNB - 1));
Vi

assert (Y == 0 || YNB >= expo(Y)+1);
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// Compute number of iterations:
nat n;
if (YNB >= XNB) {

n = f1((YNB - XNB)/2) + 1;

assert (abs (Y) <= abs(X) << 2xn);

// Initialize pEncHi, pEnclLo, and carryHi, which form a
// redundant representation of the partial remainder:
nat pEnc = 0;

pEnc[131] = YSign;

pEnc[130] = YSign;

pEnc[129] = YSign;

if (YNB != 0) {
if (YNB[0] == XNB[0]) ({
pEnc[128] = YSign;
pPEnc[127:128-YNB] = YEnc [YNB-1:0];
}
else {
PEnc[128:129-YNB] = YEnc [YNB-1:0];

}
}

nat pEncHi = pEnc[131:64];

nat pEncLo = pEnc[63:0];

nat carryHi = 0;

assert(n »>= 32 || pEncLo[63-2%n:0] == 0);

p =Y >> (expo(X) + 2%n); // initial partial remainder
if (YNB >= XNB) {

assert ( ((pEncHi << 64) | pEnclo) == pl[2:-129]);
}
else if (YNB[0] == XNB[0]) {
assert (pEncHi == (Y << (64 - YNB)) [67:0]);
}
else {
assert (pEncHi == (Y << (65 - ¥YNB)) [67:0]);

}

// Initialize the quotient:

QPart = 0; // partial quotient

nat QOEnc 0; // encoding of QPart

nat QPEnc = 1; // encoding of QPart+1l

nat QMEnc = Ox7FFFFFFFFFFFFFFFF; // encoding of QPart-1

// On each iteration, the next partial remainder is computed
// and the quotient is updated:
for (nat k=1; k<=n; k++) {

// Table lookup:

nat pTop = pEncHi[67:62];

bool pSign = pTopl[5];

nat pIndex = pTop[4:0]; // second argument of SRTLookup
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nat mAbs = SRTLookup (dIndex, pIndex) ;
bool mSign = XSign ~ pSign;
m = mSign ? -mAbs : mAbs;
if (pTop == 0x2F) {
j = 0x10;
}

else {
j = pIndex;
}

assert (m == (XSign ? -phi(i, j) : phi(i, 3)));
assert (SgndIntval(5, j)/8 <= p && p < SgndIntVal
(5, 3)/8 + 1/4);

// 4%xp - dm is computed as a sum of four terms.
// The first two, addA and addB, represent -dsm:
nat adda;
if (mAbs[1] == 0) {

adda = 0;
}

else if (mSign) {

addA = dEnc[66:0] << 1;
!
else {
addA = ("dEnc[66:0] << 1) | 1;
1
nat addB;
if (mAbs[0] == 0) {
addB = 0;

}

else if (mSign) {
addB = dEnc;
}

else {
addB = “dEnc[67:0];
}

// A correction term is required to complete the 2’'s
// complement in case m > 0:
nat inject = 0;
if (!mSign)
if (mAbs[0] ~ mAbs[1]) ({
inject = 1;
1
else if (mAbs[0] & mAbs[1])
inject = 2;
1
}

assert ((addA + addB + inject) [67:0] == (-d*m) [2:-65]1);
// addC and addD represent the upper bits of 4xp:

nat addC = (pEncHi << 2) | pEncLol63:62];

nat addD = (carryHi << 2) | inject;

assert ((addC + addD - inject) [67:0] == (4xp) [2:-65]);

// The next partial remainder:
P = 4*p - m*xd;
assert (abs (p) <= abs(d));
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assert ((addA + addB + addC + addD) [67:0] == p[2:-65]);

// 4-2 compression:
nat suml = addA = addB ~ addcC;

nat carryl = (addA & addB | addB & addC | addA & addC) << 1;

nat sum2 = suml " carryl "~ addD;

nat carry2 = (suml & carryl | carryl & addD | suml & addD) << 1;
assert ((sum2 + carry2) [67:0] == p[2:-65]);

// Update the redundant representation of p:

pEncHi = ((sum2[67:62] + carry2[67:62]) [5:0] << 62) | sum2[61:0];
pEnclLo = (pEnclo << 2) [63:0];

carryHi = carry2[61:0];

assert ( (( (pEncHi + carryHi) [67:0] << 64) | pEncLo) == pl[2:-129]);
assert(n >= k + 32 || pEncLo[63-2x(n-k):0] == 0);

// Update quotient:
QPart = 4xQPart + m;
assert (abs (QPart) < (1 << 2%k));

if (mAbs == 0) {
QPEnc = (QOEnc << 2) [66:0] | 1;
OMEnc = (QMEnc << 2) [66:0] | 3;

(
QO0Enc = (

QOEnc << 2) [66:0];
}
else if (mSign =

= 0) {
switch (mAbs)

case 1:
QPEnc = (QOEnc << 2) [66:0] | 2;
QMEnc = (QOEnc << 2) [66:0];
QOEnc = (QOEnc << 2) [66:0] | 1;
break;

case 2:
QPEnc = (QOEnc << 2)[66:0] | 3;
OMEnc = (QOEnc << 2) [66:0] | 1;
QOEnc = (QOEnc << 2)[66:0] | 2;
break;

case 3:
QPEnc = (QPEnc << 2) [66:0];
QMEnc = (QOEnc << 2)[66:0] | 2;
QOEnc = (QOEnc << 2) [66:0] | 3;
break;

default: assert (false);

}
}

else { // mSign == 1

switch (mAbs)

case 1:
QPEnc = (QOEnc << 2) [66:0];
QO0Enc = (QMEnc << 2)[66:0] | 3;
OMEnc = (QMEnc << 2) [66:0] | 2;
break;

case 2:
QPEnc = (QMEnc << 2) [66:0] | 3;

QOEnc = (QMEnc << 2) [66:0] | 2;
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OMEnc = (QMEnc << 2) [66:0] | 1;
break;

case 3:
QPEnc = (QMEnc << 2)[66:0] | 2;
QOEnc = (QMEnc << 2) [66:0] | 1;
QMEnc = (QMEnc << 2) [66:0];
break;

default: assert(false);

}
}

assert (QOEnc == QPart[66:0]) ;
assert (QMEnc == (QPart - 1) [66:0]) ;
assert (QPEnc == (QPart + 1) [66:0]) ;

}

// Remainder and quotient before fix-up:
RPre = p << expo (X);

QPre = QPart;

assert (Y == RPre + QPrexX);
assert (abs (RPre) <= abs (X)) ;

// Encoding of remainder:

nat REncPre = (pEncHi + carryHi) [66:0];
if (YNB >= XNB) {

assert (REncPre == (RPre << (66 - XNB)) [66:0]);
}
else if (YNB[0] == XNB[0]) {

assert (REncPre == (RPre << (64 - YNB)) [66:0]);
}
else {

assert (REncPre == (RPre << (65 - YNB)) [66:0]);

// Fix-up is required if either the remainder and the dividend have
// opposite signs or the absolute value of the remainder is the same
// as that of the divisor. The signals RIsO, RPosX, and RNegX, which
// indicate whether the remainder is 0, X, or -X, are computed in

// parallel with the addition and may not refer to the sum:

bool RSignPre = REncPre[66];
bool RIsO (pEncHi [66:0] ~ carryHi " ((pEncHi[65:0] | carryHi)
<< 1)) ==
assert (RIs
nat RPosXSum = pEncHi[66:0] ~ carryHi "~ “dEnc[66:0];
nat RPosXCarry = (pEncHi[66:0] & carryHi |
PEncHi [66:0] & ~“dEnc[66:0] |
carryHi & “dEnc[66:0]) << 1;

bool RPosX = (RPosXSum RPosXCarry
(((RPosXSum[65:0] | RPosXCarry[65:0]) << 1) | 1))
== 0;;

assert (RPosX == (RPre == X));

nat RNegXSum = pEncHi[66:0] carryHi © dEnc[66:0];
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nat RNegXCarry = (pEncHi[66:0] & carryHi |
PEncHi[66:0] & dEnc[66:0] |
carryHi & dEnc[66:0]) << 1;
bool RNegX = (RNegXSum ~ RNegXCarry ~
((RNegXSum[65:0] | RNegXCarry[65:0]) << 1)) == 0;;
assert (RNegX == (RPre == -X));
bool RIsX = RPosX | RNegX;
assert (RIsX == (abs(RPre) == abs(X)));
bool fixupNeeded = RIsX || (!RIsO) && (RSignPre != YSign);
nat REnc; // final encoding of remainder
if (!fixupNeeded) ({
REnc = REncPre[65:2];
R = RPre;
}
else if (RIsX) {
REnc = 0;
R = 0;
}
else if (RSignPre == XSign) {
REnc = ((REncPre[65:2] << 2) + “dEnc[65:0] + 1) [65:2];
R = RPre - X;
}
else {
REnc = ((REncPre[65:2] << 2) + dEnc[65:0]) [65:2];

R = RPre + X;

}
bool RSign = YSign & “RIsO[0] & “RIsX[O0];
if (YNB >= XNB) {

assert (REnc == (R << (64 - XNB)) [63:0]) ;
}
else if (YNB[0] == XNB[0]) f{

assert (REnc == (R << (62 - YNB)) [63:0]);
}
else {

assert (REnc == (R << (63 - YNB)) [63:0]);

}

nat QEnc; // final encoding of quotient
if (!fixupNeeded) ({
QEnc = QOEnc;
Q = QPre;
}
else if (RSignPre == XSign) {
QEnc = QPEnc;
Q = QPre + 1;
}
else {
QEnc = QMEnc;
Q = QPre - 1;
}
assert (Y == R + Q*X);
assert (abs (R) < abs (X)) ;
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assert ((R == 0) || ((R < 0) == (Y < 0)));
assert(n > 33 || QEnc == Q[66:0]);

// Determine whether the quotient is representable:
bool QTooLarge;
if (YNB > XNB + w) {
QTooLarge = true;
}

else if (n <= 1) {
QTooLarge = false;
}

else if (YSign == XSign) ({
QTooLarge = (QEnc([w+2:w] != 0) || isSigned && (QEnc[w-1]
1= 0);

}

else {
QTooLarge = (QEnc[w+l:w-1] != 7);

}
if (isSigned) {
assert (QTooLarge == ((Q > MaxSgndIntVal(w)) ||
(Q < MinSgndIntval (w)))) ;
1
else {
assert (QTooLarge == (Q >= 1 << w));
}

if (QTooLarge) {
return <false, 0, 0>;
}

// Compute the final results:
nat QOut = QEnc[w-1:0];

nat ROut;
if (YNB >= XNB) {
ROut = ((RSign << w) - (RSign << XNB)) | REnc[63:64-XNB];
}
else if (YNB[0] == XNB[0]) {
ROut = ((RSign << w) - (RSign << (YNB+2))) | REnc [63:62-YNB] ;
}
else {
ROut = ((RSign << w) - (RSign << (YNB+1))) | REnc [63:63-YNB] ;
}
assert (QOut == Q[w-1:0]);
assert (ROut == R[w-1:0]);

return <true, QOut, ROuts>;

}



Use of Formal Verification at Centaur
Technology

Warren A. Hunt, Jr., Sol Swords, Jared Davis, and Anna Slobodova

1 Introduction

We have developed a formal-methods-based hardware verification toolflow to help
ensure the correctness of our x86-compatible microprocessors. Our toolflow uses
the ACL2 theorem-proving system as a design database and a verification engine.
We verify Verilog designs by first translating them into a formally defined hardware
description language and then using a variety of automated verification algorithms
controlled by theorem-proving scripts.

In this chapter, we describe our approach to verifying components of VIA
Centaur’s 64-bit Nano x86-compatible microprocessor (referred to herein as CN).
We have successfully verified a number of media-unit operations, such as the packed
addition/subtraction instructions. We have verified the integer multiplication unit,
and we are in the process of verifying microcode sequences that perform arithmetic
operations.

1.1 Overview of Verification Methodology

In our verification process, we first translate the Verilog RTL source code of
Centaur’s design into EMOD, a formally defined HDL. This process captures a de-
sign as an ACL2 object that can be interpreted by an ACL2-based HDL simulator.
The HDL simulator is used both to run concrete test cases and to extract symbolic
representations of the circuit logic of blocks of interest. We then use a combina-
tion of theorem proving and equivalence checking to prove that the functionality
of the circuit in question is equivalent to a higher-level specification. A completed
verification yields an ACL?2 theorem that precisely states what we have proven.

We have developed a deep embedding of our hardware description language,
EMOD [12], in the ACL2 logic. We describe the EMOD language in Sect.4.1. Our
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implementation includes a syntax checker for well-formed EMOD modules and an
interpreter that gives meaning to such modules. The EMOD interpreter can operate in
several different modes to perform concrete or symbolic simulations, analyze depen-
dencies, and estimate delays. Simulations may use either a Boolean or four-valued
logic mode, and symbolic simulations may use either binary-decision diagrams
(BDDs) [6] or and-inverter graphs (AIGs) as the representation for symbolic bits.
We believe our approach to representing the hardware design reduces the risk of
translation errors, since we may perform cosimulation between Verilog and EMOD
to ensure the veracity of the translation. We can also translate the design as repre-
sented in the EMOD language back to Verilog.

Our Verilog translator consists of a parser and a series of code transformations
that simplify the design until it can be easily translated into the EMOD language,
which lacks features such as continuous assignments and always blocks. We de-
scribe the translator in Sect. 2.

To prove that output from a hardware simulation is equivalent to that produced
by a specification function, we produce BDDs representing both the hardware and
the specification outputs and compare them for equivalence. We use case splitting
to avoid certain BDD-size explosions. We sometimes use AIGs as an intermediate
form before creating the BDDs to avoid size explosions. To produce ACL2 theorems
using these methods, we have created a verified symbolic execution framework that
uses these procedures. We describe our proof methodology in Sect. 3.

1.2 Timeline

The integration of formal methods into Centaur’s design methodology has been on-
going for several years. Hunt first met with Centaur representatives in April 2007.
This led Hunt and Swords to join Centaur in June 2007 to see if our existing (ACL2-
based) tools could be usefully deployed on Centaur verification problems. Our use
of formal methods is not new, and AMD [19] has been using ACL2 for many
years for floating-point hardware verification. However, there are several things that
differentiate our effort from all others: the Centaur design is converted into our
EMOD-formalized hardware description language (described later), our verification
(BDD and AIG) algorithms are themselves verified, and all of our claims are all
checked as ACL2 theorems.

The use of formal methods to aid hardware design has been ongoing for many
years. Possibly the earliest adopter was IBM with equivalence checking mechanisms
that they developed in the early 1980s; IBM protected these mechanisms as trade
secrets. With the development of simple microprocessor verification examples, such
as the FM8501 [9] and the VIPER [5], and introduction of BDDs [6], commercial
organizations started integrating some use of formal methods into their design flow.
A big impetus for the use of formal methods came from the Intel FDIV bug [18].

Work that allowed us to get an immediate start was just being finished when
our Centaur-based effort began. Boyer and Hunt had implemented BDDs [3, 4]
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with an extended version of ACL2 that included unique object representation and
function memoization [3]. Separately, Hunt and Reeber had previously embedded
the DE2 HDL into ACL2 [10], and this greatly influenced the development of the
EMOD HDL.

Our initial efforts were directed along two fronts: analyzing microcode for integer
division and verifying the floating-point addition/subtraction hardware. Our analy-
sis of the microcode for the integer divide algorithm involved creating an abstraction
of the microcode with ACL2 functions and then using the ACL2 theorem-prover to
mechanically check that our model of the divide microcode computes the correct
answer. This effort discovered an anomaly that was subsequently corrected.

Our work on the verification of the floating-point addition/subtraction hardware
was much more involved. Because of the size of the design — some 34,000 lines of
Verilog — it was necessary for us to create a translator from Verilog into our EMOD
hardware description language. We enhanced a Verilog parser, written by Terry
Parks (of Centaur), so that it emitted an EMOD-language version of the floating-
point hardware design; this translator created an EMOD-language representation of
the entire module hierarchy, including all interface and wire names. The semantics
of the EMOD language are given by the EMOD simulator which allows an EMOD-
language-based design to be simulated or symbolically simulated with a variety
(e.g., BDDs and AIGs) of mechanisms. Simultaneously, we developed an extension
to ACL2 that provides a symbolic simulator for the entire ACL2 logic; this system
was called G. Given these components, we were able to attempt the verification of
Centaur’s designs; this was done by comparing the symbolic equations produced
by the EMOD HDL symbolic simulator to the equations produced by the G-based
symbolic simulation of our ACL?2 floating-point specifications.

Our verification of Centaur’s floating-point addition/subtraction instructions led
to the discovery of two design flaws: for two of the four floating-point adders, the
floating-point control flag inputs arrived one cycle early and for one pair of 80-bit
numbers (described more fully later), the sum/difference was incorrect. Both of
these very subtle problems were fixed. This work was completed within the first
year of our efforts at Centaur. This effort strained our Verilog translator and illumi-
nated areas where we wanted to better integrate symbolic simulation into the ACL2
system.

In the summer of 2008, Davis arrived and began developing a more capable
Verilog translator named VL. The new translator was itself written in ACL2, and
it was designed with simplicity and assurance in mind. The translator has provi-
sions for translating Verilog annotations and property specifications into the EMOD
language.

Starting in the summer of 2008, Swords began an effort to build a verified version
of the ACL2 G symbolic simulator, called GL (for G in the Logic). This new system
represents symbolic ACL2 expressions as ACL2 data objects, which allows proofs
to be carried out which show that such objects are manipulated correctly.

In the fall of 2008, Slobodova joined Centaur as manager of the formal veri-
fication team and began using these tools to verify a number of different(integer
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and floating-point) multiplier implementations. These multipliers are actually quite
complicated as they can be reconfigured on a clock-by-clock basis to create different
(e.g., four 32 x 32-bit or one 64 x 64-bit) multipliers. The verification of the multi-
pliers has stressed the capacity of our tools in a variety of ways and this effort has
led to many improvements in capacity and speed.

By the spring of 2009, the outcome of the two efforts mentioned above resulted
in the replacement of our original prototype Verilog translator with VL, and the
replacement of the G system with GL, a verified symbolic simulator for ACL2
functions. All of our proofs are now carried out using these new tools.

1.3 Centaur Media Unit

As an example to illustrate our methodology, we will discuss our verification of the
floating-point addition instructions implemented in the media unit of Centaur’s CPU
design. The part of the media unit that handles floating-point addition and subtrac-
tion is called the fadd unit; this unit is highly optimized for low latency arithmetic
operations and implements SIMD 32- and 64-bit floating-point additions as well as
scalar x87 80-bit floating point additions. All floating-point addition operations are
performed with a two-cycle latency; the fadd unit can also forward results internally
so that operations may be chained.

The fadd RTL-level design is composed of 680 modules, which we convert
from Verilog into our EMOD hardware description language; it is this EMOD form
of Centaur’s design that we subject to analysis. The physical implementation is
composed of 432,322 transistors, almost evenly split between PMOS and NMOS
devices. This represents less than 5% of the total transistors in the implementation,
but its 33,700 line Verilog description represents more than 6% of the CN design
specification. The fadd unit has 374 output signals and 1,074 inputs including 26
clock inputs. Multiple clock inputs are used to manage power usage.

The fadd unit is composed of four adders: two 32-bit units, one 64-bit unit, and
one 80-bit unit (see Fig. 1). When a 32-bit packed addition is requested, all four
units are used, and the 64-bit and 80-bit adders each takes 32-bit operands and pro-
duces a 32-bit result. When a 64-bit packed addition is requested, the 64-bit and
80-bit adders each takes 64-bit operands and produces a 64-bit result. The fadd unit
can only add one pair of 80-bit operands per clock cycle. Other combinations are
possible when a memory-resident operand is added to a register-resident, x87-style,
80-bit operand; the fadd unit also manages such x87-mode, mixed-size addition
requests.

There are multiple paths through the addition logic that operate in parallel. The
relevant path for a particular pair of operands is determined by characteristics such
as the operand types (NaN, zero, denormal, etc.) and their sign and exponent bits,
and the result from that path is selected as the result of the addition.
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Fig. 1 Adder units inside of fadd

2 Modeling Effort

The specification of the CN processor consists of over half a million lines of Verilog;
this Verilog is frequently updated by the logic designers. To bring this design into
our EMOD HDL, we have developed a translator named VL. This is a challenge since
Verilog is such a large language with no formal semantics. Our work is based on the
IEEE Verilog 1364-2005 standard [13], and we do not yet support the System Verilog
extensions. This standard usually explains things well, but sometimes it is vague; in
these cases, we have carried out thousands of tests and attempted to emulate the
behavior of Cadence’s Verilog simulator.

VL needs to produce a “sound” translation or our verification results may be
meaningless. Because of this, we have written VL in the purely functional program-
ming language of the ACL2 theorem prover, and our emphasis from the start has
been on correctness rather than performance. For instance, our parser is written in
a particularly naive way: to begin, each source file is read, in its entirety, into a
simple list of extended characters, which associate each character with its filename
and position. This makes the remaining steps in the parsing process ordinary list-
transforming functions:

read : filename — echar list

preprocess : echar list — echar list

lex : echar list — token list

eat-comments : token list — token list x comment map
parse : token list — module list
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The parser itself is written in a conventional, recursive-descent style, which is a
good match for Verilog since keywords like module, assign, etc. usually say
what comes next. Since the entire list of tokens has been computed before parsing
begins, we can take advantage of arbitrary look-ahead, and backtracking is com-
pletely straightforward.

This simple-minded approach lends itself well to informal validation. For in-
stance, since we actually construct each intermediate list, we can add assertions
relating them to one another, e.g., we can test that flattening the parsed input is
equal to the original input. Since our functions operate on lists, instead of files, it is
very easy to write unit tests directly in our source code, and we have developed a
number of these tests. Furthermore, since these routines are written in the ACL2 the-
orem prover, we can actually prove some theorems about the parser, e.g., on success
it produces a list of syntactically well-formed modules.

2.1 Conversion to the EMOD Language

To implement the translation into EMOD, we adopt a program-transformation-
like [23] style: to begin with, the entire parse tree for the Verilog sources is
constructed; we then apply a number of rewriting passes to the tree which result
in simpler Verilog versions of each module. The final conversion into EMOD is
really almost incidental, with the resulting EMOD modules differing from our most-
simplified Verilog modules only in syntax.

Each transformation tends to be fairly short and easy to understand and can be
studied in isolation, either informally or with the theorem prover. Since each rewrit-
ing pass produces well-formed Verilog modules, we can simulate the original and
simplified Verilog modules against each other, either at the end of the simplification
process or at some intermediate point.

We can also run a number of common sanity checks after each rewrite to catch
any gross errors. These sorts of checks serve to answer questions such as:

Are only supported constructs used?

Are only defined modules instanced?

Is each module’s namespace free of collisions?

Are the ports compatible with the port declarations?

Are the port and wire declarations compatible?

Have we determined the size of every declaration?

Have the widths and signs of all expressions been determined?
Are the widths of the arguments to every submodule correct?
Are the indices for every bit- and part-select in bounds?

These sorts of checks are often useful as “guards” (preconditions) for our trans-
formation steps. In few cases, we also prove, using ACL2, that some of these
properties will be satisfied after a certain transformation is run. But usually we do
not try to do this because it is easier to just run the checks after each transformation.

We now present an overview of our transformation sequence.
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2.1.1 Unparameterization

Verilog modules can have parameters, e.g., an adder module might take
input wires of some arbitrary width, and other modules can then instantiate
adder with different widths, say 8, 16, and 32. Our first transformation is to
eliminate parametrized modules, e.g., we would introduce three new modules,
adderswidth=8, adderswidth=16, and adderswidth=32, and change
the instances of adder to point to these new modules as appropriate.

2.1.2 Declaring Implicit and Port Wires

Verilog permits undeclared identifiers to be used as one-bit wires. We would like
to prohibit this to reduce the chance of typos (a la Perl’s use strict), but this idea
is unpopular so we only issue warnings. In this transformation, we add a wire
declaration for each undeclared wire and each port, which has been declared to be
an input or output but which has not also been declared as a wire.

2.1.3 Standardizing Argument Lists

Modules may be instantiated using either positional or named argument lists. For
instance, given a module M with ports a, b, and ¢, the following instances of M are
equivalent:

M my_-instance(1l, 2, 3);
M my_instance(.b(2), .c(3), .a(l));

In this transformation, we convert all instances to the positional style and annotate
the arguments as inputs or outputs.

2.1.4 Resolving Ranges

Wires and registers in Verilog can have widths. For instance,

wire [3:0] w;
declares a four-bit wire, w, whose bits are w [3] through w [0] . Unparameterization
sometimes leaves us with expressions here, e.g., in the adder module, we might
have

wire [width-1:0] a;
which, in adders$width=8, will become

wire [8-1:0] a;
We now resolve these expressions to constants. The specification seems vague
about how these expressions are to be evaluated (e.g., with respect to widths and

signedness), so we are quite careful and only allow signed, 32-bit, overflow-free
computations of +, -, and *.
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2.1.5 Operator Rewriting

We can reduce the variety of operators we need to deal with by simply rewriting
some operators away. In particular, we perform rewrites such as

a & b— (la) & (|b),
a!=b—|(a " b),and
a < b—>~(a >= b).

This process eliminates all logical operators (&&, | |, and !), equality comparisons
(== and ! =), negated reduction operators (~&, ~ |, and ~"), and standardizes all
inequality comparisons (<, >, <=, and >=) to the >= format. We have a considerable
simulation test suite to validate these rewrites.

2.1.6 Sign and Width Computation

We now annotate every expression with its type (sign) and width. This is tricky.
The rules for determining widths are quite complicated, and if they are not properly
implemented then, for instance, carries might be inappropriately kept or dropped. It
took a lot of experimenting with Cadence and many readings of the standard to be
sure that we had it right.

2.1.7 Expression Splitting

After the widths have been computed, we introduce explicit wires to hold the inter-
mediate values in expressions,
assign w = (a + b) - c;
—
wire [width:0] newname;
assign newname = a + b;
assign w = newname - C;
We also split inputs to module and gate instances
my_mod my_inst(a + b, ...);
ﬁ
wire [width:0] newname;
assign newname = a + b;
my_mod my_inst (newname, ...);

2.1.8 Making Truncation Explicit

Verilog allows for implicit truncations in assignment statements; for instance,
one can assign the result of a five-bit addition a + b to a three-bit bus
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(collection of wires), w. We now make these truncations explicit by introducing
a new wire for the intermediate result, for example,

wire [4:0] newname;
assign newname = a + b;
assign w = newname[2:0];

We print warnings about such truncations since they are not good form and may
point to problems.

2.1.9 Eliminating Assignments

We now replace all assignments with module instances. First, we develop a way to
generate modules to perform each operation at a given width, and we write these
modules using only gates and submodule instances. Next, we replace each assign-
ment with an instance of the appropriate module, e.g.,

assign w = a + b;
RN
VL_13_BIT_PLUS newname (w, a, b);

This is one of our more complicated transformations, so we have developed a
test suite which, for instance, uses Cadence to exhaustively test VL._4 BIT_PLUS
against an ordinary addition operation. We are careful to handle the X and Z behav-
ior appropriately. We go out of our way so that all of w’s bits become X if any bit of
a or b is X or Z, even though this makes our generated adders more complex.

2.1.10 Eliminating Instance Arrays

Gate and module instances can be put into arrays,
and foo [13:0] (o, a, Db);

declares 14 and-gates. We now convert such arrays into explicit instances, such as,
foo0, ..., fool3. The rules for partitioning the bits of the arguments are not too
difficult.

2.1.11 Eliminating Higher-Arity Gates

Primitive gate instances in Verilog can use variable-length argument lists;
not multinot(oy, ..., On, 1);

represents a not gate with one input, i, and n outputs, oy, ..., o,. We now split
these into lists of gates,

not multinot_1(oy, 1i);

not multinotnm (o,, 1i);

Afterward, each not and buf gate has one input and output, and each and, or,
nand, nor, xor, and xnor gate has two inputs and one output.
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We have left out a few other rewrites like naming any unnamed instances, elimi-
nating supply wires, and some minor optimizations. But the basic idea is that, taken
all together, our simplifications leave us with a new list of modules where only
simple gate and module instances are used. This design lets us focus on each task
separately instead of needing to consider all of Verilog at once.

2.2 Modeling Flow

It takes around 20 min to run our full translation process on the whole of CN. A lot of
memory is needed, and we ordinarily use a machine with 64 GB of physical memory
to do the translation. Not all modules can be translated successfully (e.g., because
they use constructs which are not yet supported). However, a large portion of the
chip is fully supported.

The translator is run against multiple versions of the chip each night, and the
resulting EMOD modules are stored on disk into files that can be loaded into an
ACL2 executable in seconds. This process also results in internal Web pages that
allow the original source code, translated source code, and warnings about each
module to be easily viewed and some other Lint-like reports for the benefit of the
logic designers and verification engineers.

3 Verification Method

Our verification efforts so far have concentrated on proving the functional correct-
ness of instructions running on certain execution units; that is, showing that they
operate equivalently to a high-level specification. However, we believe our method-
ology would also be useful for proving nonfunctional properties of the design.

Our specifications are functions written in ACL2. They are executable and can
therefore be used to run tests against the hardware model or a known implemen-
tation. In most cases, we write specifications that operate at the integer level on
vectors of signals. Often these specifications are simple enough that we are satisfied
that they are correct by examination; by comparison with the RTL designs of the cor-
responding hardware units, they are very small indeed. For floating-point addition,
we use a low-level integer-based specification that is somewhat optimized for sym-
bolic execution performance and is relatively complicated compared to our other
specifications. However, this specification has been separately proven equivalent to
a high-level, rational-number-based specification. Before this proof was completed,
we had also tested the specification by running it on millions of inputs and com-
paring the results to those produced by running the same floating-point operations
directly on the local CPU.

Figure 2 shows the verification methodology we used in proving the correct-
ness of the fadd unit’s floating-point addition instructions. We compare the result
of symbolic simulations of an instruction specification and our model of the fadd
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Fig. 2 Verification method

hardware. To obtain our model of the hardware, we translate the fadd unit’s Verilog
design into our EMOD hardware description language. We then run an AIG-based
symbolic simulation of the fadd model using the EMOD symbolic simulator; the re-
sults of this simulation describe the outputs of the fadd unit as four-valued functions
of the inputs, and we represent these functions with AIGs. We then specialize these
functions by setting input control bits to values appropriate for the desired instruc-
tion. To compare these functions with those produced by the specification, we then
convert these AIGs into BDDs.

For many instructions, it is feasible to simply construct BDDs representing the
outputs as functions of the inputs, and we therefore may verify these instructions
directly using symbolic simulation. For the case of floating-point addition, however,
there is a capacity problem due to the shifted addition of mantissas. We therefore use
case splitting via BDD parametrization [1, 16] to restrict the analysis to subsets of
the input space. This allows us to choose a BDD variable ordering specially for each
input subset, which is essential to avoid this blowup. For each case split, we run a
symbolic simulation of the instruction specification and an AIG-to-BDD conversion
of the specialized AIGs for the instruction. If corresponding BDDs from these re-
sults are equal, this shows that the fadd unit operates identically to the specification
function on the subset of the input space covered by the case split; otherwise, we
can generate counterexamples by analyzing the differences in the outputs.

For each instruction, we produce a theorem stating that evaluation of the
instruction-specialized AIGs yields the same result as the instruction’s specification
function. This theorem is proven using the GL symbolic simulation framework
[4], which automates the process of proving theorems by BDD-based symbolic
execution, optionally with parametrized case splitting. Much of the complexity
of the flow is hidden from the user by the automation provided by GL; the user
provides the statement of the desired theorem and high-level descriptions of the
case split, symbolic simulation inputs, and suitable BDD variable orderings. BDD
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parametrization and the AIG to BDD conversion algorithm are used automatically
based on these parameters. The statement of the theorem is independent of the sym-
bolic execution mechanism; it is stated in terms of universally quantified variables
which collectively represent a (concrete) input vector for the design.

In the following subsections, we will describe in more detail the case-splitting
mechanism, the process of translating the Verilog design into an EMOD description,
and the methods of symbolic simulation used for the fadd unit model and the in-
struction specification.

3.1 Case-Splitting and Parametrization

For verifying the floating-point addition instructions, we use case splitting to avoid
BDD blowup that occurs due to a nonconstant shift of the operand mantissas based
on the difference in their exponents. By choosing case-splitting boundaries appropri-
ately, the shift amount can be reduced to a constant. The strategy for choosing these
boundaries is documented by others [1, 7, 15,20], and we believe it to be reusable
for new designs.

In total, we split into 138 cases for single, 298 for double, and 858 for extended
precision. Most of these cases cover input subsets over which the exponent dif-
ference of the two operands is constant and either all input vectors are effective
additions or all are effective subtractions. Exponent differences greater than the
maximum shift amount are considered as a block. Special inputs such as NaNs and
infinities are considered separately. For performance reasons, we use a finer-grained
case-split for extended precision than for single or double precision.

For each case split, we restrict the simulation coverage to the chosen subset of
the input space using BDD parametrization. This generates a symbolic input vector
(a BDD for each input bit) that covers exactly and only the appropriate set of inputs;
we describe BDD parametrization in more detail in Sect.4.3. Each such symbolic
input vector is used in both an AIG-to-BDD conversion and a symbolic simulation
of the specification. The BDD variable ordering is chosen specifically for each case
split, thereby reducing the overall size of the intermediate BDDs. No knowledge of
the design was used to determine the case-splitting approach.

3.2 Symbolic Simulation of the Hardware Model

We use the EMOD symbolic simulator to obtain Boolean formulas (AIGs) repre-
senting the outputs of a unit in terms of its inputs. In such simulations, we use
a four-valued logic in which each signal may take values 1 (true), O (false), X
(unknown), or Z (floating). This is encoded using two AIGs (onset and offset) per
signal. The Boolean values taken by each AIG determine the value taken by the
signal as in Fig. 3.
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The fadd unit is mainly a pipeline, where each instruction is bounded by a fixed
latency. To verify its instructions, we set all bits of the initial state to unknown (X)
values — the onsets and offsets of all nonclock inputs are set to free Boolean variables
at each cycle, so that every input signal but the clocks can take any of the four values.
We then symbolically simulate it for a fixed number of cycles. This results in a fully
general formula for each output in terms of the inputs at each clock cycle.

To obtain symbolic outputs for a particular instruction, we restrict the fully gen-
eral output formulas by setting control signals to the values required for performing
the given instruction and any signals we know to be irrelevant to unknown (X)) input
values. This reduces the number of variables present in these functions and keeps
our result as general as possible. Constant propagation with these specified values
restricts the AIGs to formulas in terms of only the inputs relevant to the instruction
we are considering. For the floating-point addition instructions of the fadd unit, the
remaining inputs are the operands and the status register, which are the same as the
inputs to the specification function.

The theorems produced by our verifications typically say that for any well-
formed input vector, the evaluation of the instruction-specialized AIGs using the
variable assignment generated from the input vector is equivalent to the output of the
specification function on that input vector. Such a theorem may often be proven au-
tomatically, given appropriate BDD ordering and case splitting, by the GL symbolic
execution framework. GL has built in the notion of symbolically evaluating an AIG
using BDDs, effectively converting the Boolean function representation from one
form to the other. It uses the procedure AIG2BDD described in Sect. 4.4 for this
process; this algorithm avoids computing certain intermediate-value BDDs that are
irrelevant to the final outputs, which helps to solve some BDD size explosions.

3.3 Symbolic Simulation of Specification

The specification for an instruction is generally an ACL2 function that takes inte-
gers or Booleans representing some of the inputs to a block and produces integers
or Booleans representing the relevant outputs. Such functions are usually defined in
terms of word-level primitives such as shifts, bit-wise logical operations, plus, and
minus. For the floating-point addition instructions, the function takes integers repre-
senting the operands and the control register and produces integers representing the
result and the flag register. It is optimized for symbolic simulation performance
rather than referential clarity; however, it has separately been proven equivalent
to a high-level, rational arithmetic-based specification of the IEEE floating-point
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standard [14]. Additionally, it has been tested against floating-point instructions run-
ning on Intel and AMD CPUs on many millions of input operand pairs, including a
test suite designed to detect floating-point corner-cases [22] as well as random tests.

To support symbolic simulation of our specifications, we developed the GL sym-
bolic execution framework for ACL2 [4]. The GL framework allows user-provided
ACL2 code to be symbolically executed using a BDD-based symbolic object rep-
resentation. The symbolic execution engine is itself verified in ACL2 so that its
results provably reflect the behavior of the function that was symbolically executed.
GL also provides automation for proving theorems based on such symbolic execu-
tions. Since these theorems do not depend on any unverified routines, they offer the
same degree of assurance as any proof in ACL2: that is, they can be trusted if ACL2
itself can be trusted.

GL automates several of the steps in our verification methodology. For a theo-
rem in which we show that the evaluation of an AIG representation of the circuit
produces results equivalent to a specification function, the GL symbolic execution
encompasses the AIG-to-BDD transformation and the comparison of the results, as
well as the counterexample generation if there is a bug. If the proof requires case
splitting, the parametrization mechanism is also handled by GL. The user specifies
the BDD variable ordering used to construct the symbolic input vectors, as well as
the case split. To specify the case split, the user provides a predicate which deter-
mines whether an input vector is covered by a given case; like the theorem itself,
this predicate is written at the level of concrete objects. Typically, all computations
at the symbolic (BDD) level are performed by GL; the user programs only at the
concrete level.

3.4 Comparison of Specification to Hardware Model

For each case split in which the results from the symbolic simulations of the
specification and the hardware model are equal, this serves to prove that for any con-
crete input vector drawn from the coverage set of the case, a simulation of the fadd
model will produce the same result as the instruction specification. If the results are
not equal, we can generate a counterexample by finding a satisfying assignment for
the XOR of two corresponding output BDDs.

To prove the top-level theorem that the fadd unit produces the same result as the
specification for all legal concrete inputs, we must also prove that the union of all
such input subsets covers the entire set of legal inputs. This is handled automatically
by the GL framework. For each case, GL produces a BDD representing the indicator
function of the coverage set (the function which is true on inputs that are elements of
the set and false on inputs that are not.) As in [7], the OR of all such BDDs is shown
to be implied by the indicator function BDD of the set of legal inputs; therefore, if
an input vector is legal then it is in one or more of the coverage sets of the case split.
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4 Mechanisms Used to Achieve the Verification

4.1 EMOD Symbolic Simulator

The EMOD interpreter is capable of running various simulations and analyses on
a hardware model; examples include concrete-value simulations in two- or four-
value mode, symbolic simulations in two- or four-value mode using AIGs or BDDs
as the Boolean function representations, and delay and dependency analyses. The
interpreter can also easily be extended with new analyses. The language supports
multiple clocks with different timing behavior, clock gating, and both latch- and
flip-flop-based sequential designs as well as implicitly clocked finite state machines
(FSMs). Its language for representing hardware models is a hierarchical, gate-level
HDL. A hardware model in the EMOD language is either a primitive module (such
as basic logic gates, latches, and flip-flops), or a hierarchically defined module,
containing a list of submodules and a description of their interconnections. The
semantics of primitive modules are built into the EMOD interpreter, whereas hierar-
chical modules are simulated by recursively simulating submodules.

A pair of small example modules, *half-adder-module* and *one-bit-cntr*, are
shown in Fig. 4. Both are hierarchically defined since they each have a list of oc-
currences labeled : occs. Connectivity between submodules, inputs, and outputs is
defined by the : i (input) and : o (output) fields of the modules and the occurrences.
We translate the Verilog RTL design unit into this format for our analysis.

A novel feature of our approach is that we can actually print the theorem we are
checking; thus, we have an explicit, circuit-model representation that includes all of
the original hierarchy, annotations, and wire names. This is different than all other
approaches of which we are aware; for instance, the Forte tool reads Intel design
descriptions and builds a FSM in its memory image. Our representation allows us
to search the design using database-like commands to inspect our representation of
Centaur’s design; this explicit representation also enables easy tool construction for
users as they can write ACL2 programs to investigate the design in a manner of their
choosing.

(defm *half-adder-module*

‘(:1 (a b)
:0 (sum carry)
:occs
((:u o0 (sum) :op ,*xor2*¥ :i (a b))

10
(:u 01 :0 (carry) :o0p ,*and2* :i (a b)))))

(defm *one-bit-cntr*
‘(:1 (c-in reset-)

:0 (out ¢)

:occs

((:u 02 :0 out :op ,¥f* :1 (sum-reset))

(:u o0 :0 (sum c) :op , *half-adder-module* :i (c-in out))
(:u 01 :0 (sum-reset) :op ,*and2* :i (sum reset-)))))

Fig. 4 EMOD examples
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4.2 BDDs and AIGs

BDDs and AIGs both are data objects that represent Boolean-valued functions of
Boolean variables. We have defined evaluators for both BDDs and AIGs in ACL2.
The BDD (resp. AIG) evaluator, given a BDD (AIG) and an assignment of Boolean
values to the relevant variables, produces the Boolean value of the function it repre-
sents at that variable assignment. Here, for brevity, we use the notation (x)pgq (env)
or {X)aig (env) for the evaluation of x with variable assignment env. We use the
same notation when x is a list to denote the mapping of (_)pqq (env) over the
elements of x.

The BDD and AIG logical operators are defined in the ACL?2 logic and proven
correct relative to the evaluator functions. For example, the following theorem
shows the correctness of the BDD AND operator (written Apgq); Similar theorems
are proven for every basic BDD and AIG operator such as NOT, OR, XOR, and ITE:

{a Avdd b)bad (env) = {(a)pdda (env) A (b)paa (env)

4.3 Parametrization

BDD parametrization is also implemented in ACL2. The parametrization algorithm
is described in [1]; we describe its interface here. Assume that a hardware model
has n input bits. To run a symbolic simulation over all 2" possible input vectors, one
possible set of symbolic inputs is # distinct BDD variables — say, v = [vo, ..., Vy—1]-
This provides complete coverage because (V)paa (env) may equal any list of n
Booleans. (In fact, if env has length n, then (v)pqq (env) = env.) However, to avoid
BDD blowups, we sometimes run symbolic simulations that each cover only a sub-
set of the well-formed inputs. For each such case, we first represent the desired
coverage set as a BDD p, so that an input vector w is in the coverage set if and only
if (p)vda (W). We then parametrize v by predicate p and use the resulting BDDs
v, as the symbolic inputs. These parametrized BDDs have the following important
properties, which have been proven in ACL2:

e The parametrized BDDs v, evaluate under every environment to a list of
Booleans satisfying the parametrization predicate p:

YW . (P)bad ((Vp)baa (W)

Therefore, a concrete input vector is only covered by a symbolic simulation of
v if it satisfies p.

e Any input vector u that does satisfy p is covered by v,; that is, there is some
environment under which v, evaluates to u:

(p)baa (u) = Hu/'<vp)bdd (u/) =u.
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Therefore, any concrete input vector satisfying p will be covered by a symbolic
simulation of v .

It can be nontrivial to produce “by hand” a BDD p that correctly represents a
particular subset of the input space. Instead, this is handled by the GL symbolic
execution framework. The user defines an ACL2 function that takes an input vector
and determines whether or not that input vector is in a particular desired subset;
GL then symbolically executes this function on (unparametrized) symbolic inputs,
yielding a symbolic Boolean value (represented as a BDD) that exactly represents
the accepted subset of the inputs.

4.4 AIG-to-BDD Translation

In the symbolic simulation process for the fadd unit, we obtain AIGs representing
the outputs as a function of the primary inputs and subsequently assign parametrized
input BDDs to each primary input, computing BDDs representing the function
composition of the AIG with the input BDDs. A straightforward (but inefficient)
method to obtain this composition is an algorithm that recursively computes the
BDD corresponding to each AIG node: at a primary input, look up the assigned
BDD; at an AND node, compute the BDD AND of the BDDs corresponding to the
child nodes; and at a NOT node, compute the BDD NOT of the BDD correspond-
ing to the negated node. This method proves to be impractical for our purpose; we
describe here the algorithm ATIG2BDD that we use instead.

To improve the efficiency of the straightforward recursive algorithm, one nec-
essary modification is to memoize it so as to traverse the AIG as a DAG (without
examining the same node twice) rather than as a tree: due to multiple fanouts in
the hardware model, most AIGs produced would take time exponential in the logic
depth if traversed as a tree. The second important improvement is to attempt to avoid
computing the full BDD translation of nodes that are not relevant to the primary out-
puts. For example, if there is a multiplexer present in the circuit and its selector is set
to 1 for all settings of the inputs possible under the current parametrization, then the
value of the unselected input is irrelevant unless it has another fanout that is relevant.
In AIGs, such irrelevant branches appear as fanins to ANDs in which the other fanin
is unconditionally false. More generally, an AND of two child AIGs a and b can be
reduced to a if it can be shown that @ = b (though the most common occurrence
of this is when a is unconditionally false.) The ATG2BDD algorithm applies in iter-
ative stages of two methods that can each detect certain of these situations without
fully translating b to a BDD. In both methods, we calculate exact BDD translations
for nodes, beginning at the leaves and moving toward the root, until some node’s
translation exceeds a BDD size limit. We replace the over-sized BDD with a new
representation that loses some information but allows the computation to continue
while avoiding blowup. When the primary outputs are computed, we check to see
whether or not they are exact BDD translations. If so, we are done; if not, we in-
crease the size limit and try again. During each iteration of the translation, we check
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each AND node for an irrelevant branch; if a branch is irrelevant it is removed from
the AIG so that it will be ignored in subsequent iterations. We use the weaker of
the two methods first with small size limits, then switch to the stronger method at a
larger size limit.

In the weaker method, the translated value of each AIG node is two BDDs that
are upper and lower bounds for its exact BDD translation, in the sense that the
lower-bound BDD implies the exact BDD and the exact BDD implies the upper-
bound BDD. If the upper and lower bound BDDs for a node are equal, then they
both represent the exact BDD translation for the node. When a BDD larger than the
size limit is produced, it is thrown away and the constant-frue and constant-false
BDDs are instead used for its upper and lower bounds. If an AND node a A b is
encountered for which the upper bound for a implies the lower bound for b, then
we have a = b; therefore we may replace the AND node with a. Thus using the
weak method we can, for example, replace an AIG representing a A (a V b) with a
whenever the BDD translation of a is known exactly, without computing the exact
translation for b.

In the stronger method, instead of approximating BDDs by an upper and
lower bound, fresh BDD variables are introduced to replace over-sized BDDs.
(We necessarily take care that these variables are not reused.) The BDD associated
with a node is its exact translation if it references only the variables used in the
primary input assignments. This catches certain additional pruning opportunities
that the weaker method might miss, such as b # (a # b) — a.

These two AIG-to-BDD translation methods, as well as the combined method
ATIG2BDD that uses both in stages, have been proven in ACL2 to be equivalent,
when they produce an exact result, to the naive AIG-to-BDD translation algorithm
described above.

When symbolically simulating the fadd unit, using input parametrization in con-
junction with the ATG2BDD procedure works around the problem that BDD variable
orderings that are efficient for one execution path are inefficient for another. Input
parametrization allows cases where one execution path is selected to be analyzed
separately from cases where others are used. However, a naive method of building
BDDs from the hardware model might still construct the BDDs of the intermediate
signals produced by multiple paths, leading to blowups. The AIG2BDD procedure
ensures that unused paths do not cause a blowup.

4.5 GL Symbolic Execution Framework

The GL framework is designed to allow proof by symbolic execution within ACL?2,
particularly targeted at hardware verification. A typical theorem to be proven by GL
consists of some hypotheses, which restrict our consideration to a finite (but often
large) set of input vectors, and a conclusion, which states some desired property
that should hold on every input vector within this set. For example, to prove the
correctness of a 16-bit adder circuit, we could hypothesize that inputs x and y are
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both 16-bit natural numbers, and we conclude that when x and y are given as inputs
to the circuit, the result produced is x + y. To prove this, the user specifies what
shape of input objects should be used for symbolic execution (in this case, 16-bit
natural numbers). This shape specification also gives the BDD ordering for the bits
of x and y. From the shape specification, GL constructs symbolic objects represent-
ing x and y. It then symbolically executes the conclusion. Ideally, the result of this
symbolic execution will be a symbolic object that can syntactically be determined
to always represent true. If not, GL will extract counterexamples from the resulting
symbolic object, giving concrete values of x and y that falsify the conjecture. When
the symbolic execution produces a true result, the final step in proving this theorem
is to show that the symbolic objects used as inputs to the simulation cover the finite
set of concrete inputs recognized by the hypothesis. In this example, 16-bit sym-
bolic natural numbers suffice to cover the input space provided all the bits are free,
independent variables; smaller symbolic naturals would not be adequate.

Symbolic objects are structures that describe functions over Booleans. Depend-
ing on the shape of such objects, they may take as their values any object in the
ACL2 universe. For example, we represent symbolic integers as the pairing of a tag,
which distinguishes such an object from other symbolic types such as Booleans and
ordered pairs, and a list of BDDs, which represents the two’s-complement digits of
the integer. We define an evaluator function for symbolic objects, which gives the
concrete value represented by an object under an assignment of Booleans to each
variable. For the integer example, the evaluator recognizes the tag and evaluates
each BDD in the representation under the given assignment. Then it produces the
integer whose two’s-complement representation matches the resulting list of bits.

To perform a symbolic execution, we employ two methods. We may create a
symbolic counterpart fom for a user-specified function f. fm is an executable
ACL2 function that operates on symbolic objects in the same way as f operates on
concrete objects. It is defined by examining the definition of f, creating symbolic
counterparts recursively for all its subfunctions and nesting them in the same man-
ner as in the definition. Alternatively, we may symbolically interpret an ACL2 term
under an assignment of symbolic objects to that term’s free variables. In this case,
we walk over the given term. At each function call, we either call that function’s
symbolic counterpart if it exists or else look up the function’s definition and recur-
sively symbolically interpret it under an assignment that pairs its formals with the
corresponding symbolic values produced by the given actual parameters.

In both methods of symbolic execution, it is necessary for any ACL2 primi-
tives to have predefined symbolic counterparts, since they do not have definitions.
We have defined many of these functions manually and proven the correctness of
their symbolic counterparts. For example, the symbolic counterpart of + is defined
such that on symbolic integers, it performs a BDD-level ripple-carry algorithm,
producing a new symbolic integer that provably always evaluates to the sum of
the evaluations of the inputs. We have also manually defined symbolic counter-
parts for certain functions for which symbolic interpretation of the ACL2 definitions
would be inefficient. For example, the bit-wise negation function lognot is defined
as lognot(x) = (—x) — 1, but for symbolic execution it is more efficient to per-
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form the bit-wise negation directly by negating the BDDs in the symbolic integer
representation; in fact, we define the negation operator in terms of lognot, rather
than the reverse.

The correctness condition for a symbolic counterpart fqy, states a correspon-
dence between the operation of fy;, on symbolic objects and the operation of f on
concrete objects. Namely, the evaluation of the (symbolic) result of fim on some
symbolic inputs is the same as the (concrete) result of running f on the evaluations
of those inputs:

ev (fuym (5).a) = f (ev(s.a)).

The following diagram illustrates the correspondence:

Symbolic Inputs ﬂ» Symbolic Results

Concrete Inputs Concrete Results

Each primitive symbolic counterpart we have defined is proven (using standard
ACL2 proof methodology) to provide this correctness condition. The correctness of
symbolic counterparts of functions defined in terms of these primitives follows from
this; the correctness proofs are automated in the routine that creates symbolic coun-
terparts. The symbolic interpreter is also itself verified; its correctness condition is
similar. Suppose we symbolically interpret a term x with a binding of its variables
v; to symbolic objects s;, yielding a symbolic result. We have proven that the eval-
uation of this result under assignment a equals the result of running the term x with
its variables v; each bound to ev(s;, a).

These correctness conditions allow theorems to be proven using symbolic execu-
tion. Consider our previous example of the 16-bit adder. Suppose we symbolically
execute the conclusion of our theorem on symbolic inputs sy, s, and the result is an
object that evaluates to frue under every variable assignment:

Ya . ev (conceym (sx.sy) .a).
By the symbolic execution correctness condition, this commutes to:
Va . conc (ev(sx,a),ev(sy,a)).
That is, the conclusion holds of any pair of values x and y such that sy and s, eval-
uate to that pair under some assignment. The coverage side condition then requires
us to show that sy and s, are general enough to cover any pair that satisfies the the-

orem’s hypothesis. Once this is proven, the proof of the theorem (hypotheses imply
conclusion) is complete.
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5 Verification Results and Observations

We have used our ACL2-based verification methodology to prove the correctness
of several instructions in Centaur’s execution cluster, including packed floating-
point addition/subtractions and comparisons, format conversions, logical opera-
tions, shuffles, and integer and packed-integer multiplication. We have also verified
the one-cycle invariant for the divider and proven the correctness of several mi-
crocode routines.

Our floating-point addition verification was performed using a machine with four
Intel Xeon X7350 processors running at 2.93 GHz with 128 GB of system memory.
However, each of our verification runs is a single-threaded procedure, and we limit
our memory usage to 35 GB for each process so that we can run single, double,
and extended-precision verifications concurrently on this machine without swap-
ping. The symbolic simulations run in 8 min 40s for single precision, 36 min for
double precision, and 48 min for extended precision. Proof scripts required to com-
plete the three theorems take an additional 10 min of real time when using multiple
processors, totaling 25 min of CPU time. The process of reading the Verilog design
into ACL2, which is done as part of a process that additionally reads in a number of
other units, takes about 17 min. In total it takes about 75 min of real time (125 min
of CPU time) to reread the design from Verilog sources and complete verifications
of all the three instructions.

We found two bugs with our verification process, which began after the floating-
point addition instructions had been thoroughly checked using a testing-based
methodology. The first bug was a timing anomaly affecting SSE addition instruc-
tions, which we found during our initial investigation of the media unit. Later, a bug
in the extended precision instruction was detected by symbolic simulation. This bug
affected a total of four pairs of input operands out of the 2160 possible, producing
a denormal result of twice the correct magnitude. Because of the small number of
inputs affected, it is unlikely that random testing would have encountered the bug;
directed testing had also not detected it. Both bugs have been fixed in the current
design.

Working in an industrial environment forced us to be able to respond to design
changes quickly. Every night, we run our Verilog translator on the entire 570,000
lines of Verilog that comprise the Centaur CN and produce output for all of the
Verilog that we can translate. We build a new copy of ACL2 with our EMOD rep-
resentation of the design already included so when we sit down in the morning,
we are ready to work with the current version of the design. Also, each night, we
rerun many of the verifications that have been done previously to make sure that
recent changes are safe. Each week, we attempt to rerun our entire regression suite
of previously proven results.

Our major challenges involved getting our toolsuite to be sufficiently robust,
getting the specification correct, dealing with the complicated clocking and power-
saving schemes employed, and creating a suitable circuit input environment. It
is difficult for us to provide a meaningful labor estimate for this verification be-
cause we were developing the translator, flow, our tools, our understanding of
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floating-point arithmetic, and our specification style simultaneously. Now, we could
likely check another IEEE-compatible floating-point design in the time it would
take us to understand the clocking and input requirements. Centaur will certainly
be using this methodology in the future; it is much faster, cheaper, and more thor-
ough than nonexhaustive simulation. Although our verification approach is currently
dependent on BDDs, we have considered what would be required to have an AIG-
and-SAT flow.

The improvements in ACL2 that permitted this verification will be included in
future ACL2 releases. The specifics of Centaur’s two-cycle, floating-point design
are considered proprietary. We plan to publish our ACL2-checked proof that our
integer-level specification is equal to our IEEE floating-point specification; this level
of proof is similar to work by Harrison[8].

6 Related Work

Several groups have completed floating-point addition and other related
verifications. Notably, Intel has largely supplanted testing-based validation of the
execution unit, instead using full formal verification based on symbolic trajectory
evaluation in the Forte/reFLect system [17]. Also, IBM has integrated formal veri-
fication based on model checking and equivalence checking into their mainstream
verification flow [2]. Our formal verification has only covered a small fraction of the
instructions that run on Centaur’s execution unit; we hope to expand this coverage
in the future. However, we differ from previous verifications in that we obtained our
result using verified automated methods within a general-purpose theorem prover
and in that we base our verification on a formally defined HDL operating on a data
representation mechanically translated from the RTL design.

An AMD floating-point addition design was verified using ACL2. It was proven
to comply with the primary requirement of the IEEE 754 floating-point addition
specification, namely that the result of the addition operation must equal the re-
sult obtained by performing the addition at infinite precision and subsequently
rounding to the required precision [19]. The design was represented in ACL2 by
mechanically translating the RTL design into ACL2 functions. A top-level function
representing the full addition unit was proven to always compute a result satisfying
the specification. This theorem was proved in ACL2 by the usual method of mechan-
ical theorem proving, wherein numerous human-crafted lemmas are proven until
they suffice to prove the final theorem. A drawback to this method is that even small
changes to the RTL design may require the proof script to be updated. We avoid this
pitfall by using a symbolic simulation-based methodology. Our method also differs
in that we use a deep-embedding scheme, translating the RTL design to be verified
into a data object in an HDL rather than a set of special-purpose functions.

We described our floating-point addition verification previously [11]. Among bit-
level symbolic simulation-based floating-point addition verifications, many have
used a similar case splitting and BDD parametrization scheme as ours [I, 15,
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20, 21]. The symbolic simulation frameworks used in all of these verifications,
including the symbolic trajectory evaluation implementation in Intel’s Forte prover,
are themselves unverified programs. Similarly, the floating-point verification de-
scribed in [7] uses the SMV model checker and a separate argument that its case
split provides full coverage. To obtain more confidence in our results, we construct
our symbolic simulation mechanisms within the theorem prover and prove that they
yield sound results. Combining tool verifications with the results of our symbolic
simulations yields a theorem showing that the instruction implementation equals its
specification.

7 Conclusion

In the verification methodology used at Centaur, we use a combination of symbolic
simulation and conventional theorem proving to verify equivalences between hard-
ware models and specifications written as ACL2 functions. Because our toolflow
consists, to a large extent, of programs that have been verified by the ACL2 theorem
prover, we are able to obtain ACL2 theorems reflecting our verification results even
though the proofs are done in large part through symbolic simulation.

We model the design using a deep embedding in the EMOD formal HDL, which
we obtain by automatic translation of the Verilog RTL design. We run a new trans-
lation nightly so as to keep current on the design effort, because we primarily use
“black box” verification methods on the design. We rarely need to update proof
scripts in response to design changes.

Our verification efforts have yielded correctness proofs for several instructions
including floating-point addition, subtraction, and integer multiplication, conver-
sions between integer and float formats, and comparisons. These proof efforts
resulted in the discovery of two flaws in floating-point addition instructions that had
escaped extensive simulation; these flaws have been corrected in Centaur’s current
design.
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Designing Tunable, Verifiable Cryptographic
Hardware Using Cryptol

Sally Browning and Philip Weaver

1 Introduction

Cryptographic functional units are increasingly being incorporated into
microprocessor designs. Since producing a flawed implementation can have grave
financial, as well as security, implications, it is highly desirable to be able to design
efficient, high-performance hardware implementations of cryptographic algorithms
that are provably equivalent to their high-level specifications.

Cryptol®' is a domain-specific language that is well suited for expressing cryp-
tographic algorithms, as well as other data-flow algorithms. Cryptol’s types and
language constructs also provide an appropriate abstraction of hardware. As we shall
see in the course of this chapter, the Cryptol toolchain provides a framework for pro-
ducing verified hardware implementations that can be “tuned” for performance or
for area.

Cryptol is a pure, declarative, functional language. A pure function depends only
on its inputs, not I/O or any internal state, and does not produce any side effects.
Cryptol functions naturally model combinatorial circuits in hardware, because any
combinatorial circuit is just a pure mapping from inputs to outputs. Cryptol supports
homogeneous fixed-length sequences, which naturally model bit-vectors in hard-
ware description languages, and supports mapping sequences over time in order to
model sequential circuits.

This chapter is intended to teach the reader how to design hardware circuits
in Cryptol and uses the Cryptol toolchain to produce efficient, pipelined, high-
assurance circuits (for more detailed documentation on this topic, see [3]). This
document is not an appropriate resource for learning the Cryptol language itself;
such a resource is available in [2]. It is intended for Computer Scientists, Engineers,
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and Mathematicians with some knowledge of functional programming. A basic
understanding of hardware is recommended. Some experience with hardware de-
sign is recommended, but not required.

1.1 Outline

The remainder of this document is organized into the following sections:

2

Cryptol overview. This provides an introduction to the Cryptol language and in-
terpreter, describes the modes relevant to the design and verification of hardware
circuits, and explains how to use some of the basic features of these modes.
Cryptol for hardware design. This describes how to use the Cryptol language for
hardware design; discusses limitations of the language, including features that are
not supported by the hardware compiler; and provides examples of using features
in the language to make space—time tradeoffs, including how to use Block RAMs,
how to reuse circuits over time, and how to pipeline a circuit.

AES specification. This describes the AES algorithm and provides a high-level
specification written in Cryptol.

AES implementations. This specializes the reference specification to two different
and efficient implementations of 128- and 256-bit AES encryption; rewrites the
second implementation into two different implementations, one that is optimized
for area and one that is pipelined for high throughput; and refines the second
implementation to use a T-Box and pipelines it to obtain a very high throughput.
Conclusion. This concludes with a discussion of summary of the tutorial and
future work on Cryptol.

Cryptol Overview

2.1 Language Features

This section briefly mentions some of Cryptol’s useful features, including available
primitives, features of the type system, and other constructs.

2.1.1 Function Values and Anonymous Functions

In

a functional language, functions have values just like any other expressions. For

example, f where f x = x + 1 isa function that increments its argument. It
can be bound to variable, which can be applied:

9
Y

= f where £ x = x + 1;
= g 10;
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Or, it can be applied in place:

y = (f where £ x = x + 1) 10;

Cryptol supports anonymous functions, also known as lambda abstractions, func-
tions that are defined without any name. The £ function above can be defined as a
lambda abstraction: \x -> x + 1. We can bind g to this function just as we did
above when it was called £:

g=\x ->x + 1;
y = g 10;

Or, we can apply the anonymous function in place:

y = (\x -> x + 1) 10;

In Cryptol, \arg -> body is simply syntactic sugar for £ where f arg =
body.
2.1.2 Types and Polymorphism

Cryptol supports two interesting polymorphic terms: zero and undef ined. Both
of these have the following type:

{a} a

This means they can be of any type. When zero is a sequence of bits, then each
element in the sequence is False. Otherwise, each element in zerois itself zero.
For example, zero : [4] [3] is the same as:

[ [False False False
[False False False
[False False False
[False False False

]
]
]
]

Or simply this:

[0b000 0000 0b000 0b00O0]

Cryptol supports polymorphism and type-level constraints. The type of a func-
tion can be parameterized over other types, and these types can be constrained. For
example, consider the following function that gets the fourth element of a sequence:
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Note that Cryptol utilizes 0-based array indices. The type of this function can be
as generic as:

f : {a b} [alb -> b;

This can be read as “for any types a and b, the function f takes a sequence of width
a, where each element of the sequence is of type b, and returns a single element of
type b.” However, to ensure that we do not try to index outside the sequence, we
should constrain a to be at least 4:

£ : {ab} (a >=4) => [alb -> b;

This says that, for any types a and b where a is at least 4, the function takes in a
sequence of width a, where each element of the sequence is of type b, and returns a
single element of type b. The type variable b could itself be Bit or some sequence
of arbitrary length.

Type ascriptions can appear almost anywhere within Cryptol code, not just on a
line of their own. This is especially useful to prevent Cryptol from inferring a width
that is too small. For example, at the Cryptol interpreter prompt, we can observe the
following behavior:

Cryptol> 1+1
0x0

interpreter

This is because 1 defaults to a width of 1, the smallest width necessary to repre-
sent the value. The type of + is:

+ : {a b} (lalb, [alb) -> [alb

Therefore, the result is the same as the widths of the inputs, so 0x2 overflows to
0x0. To prevent this, we can ascribe a type to either argument to +, which causes
Cryptol to infer the type of the other argument and the result:

Cryptol> (1:[4]) + 1
0x2

interpreter

All polymorphic types must be specialized to monomorphic (i.e., specific) types
at compile time. Cryptol will infer types as much as possible, including defaulting
to the minimum width possibly needed to represent a sequence. If it cannot reduce
a function to a monomorphic type, it will refuse to apply or compile it.

The way to force an expression to a monomorphic type is to ascribe a type, either
directly to the expression or somewhere else that causes the compiler to infer the
type of that expression. For example, consider a polymorphic function that incre-
ments its argument:

inc : {a} (a >= 1) => [a] -> [al;
inc x = x + 1;
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In the expression inc x, the compiler must be able to infer either the type of
x or the type of inc x in order to know the type of this particular instantiation
of inc. We can explicitly ascribe either of these types using inc x :: [10] or
inc (x :: [10]),or we can place an ascription elsewhere in our code that will
cause the compiler to infer one of these types.

Cryptol allows constant terms to be used as types. So, we could define a and the
type of £ as follows:

a = 16;
£ : {b} [alb -> b;

Note that, in this case, the type of £ is no longer parameterized over the type
variable a.

Cryptol supports a primitive called width that can be used at both the expression
level and the type level. At the expression level, width x isthe number of elements
in X, and it must be known at compile time; if x is a sequence of bits, then width x
is the number of bits needed to represent x. At the type level, width can be used
in a constraint.

So, we can write polymorphic functions whose behavior depends on the width
of the inputs, as in the following example that outputs the least significant bit of xs
when xs has more than 10 bits and otherwise outputs the most significant bit. (See
Sect. 2.1.5 for more about the indexing operators @ and !.)

£ : {a} [a]l] -> Bit;
fxs = (w>10 & xs @ 0) | xs ! 0
where w = width xs;

2.1.3 Type Aliases and Records

Cryptol supports type aliases and records. One can define a new type as an alias
to existing types, and it can be parameterized over other types. For example, the
following defines a type Complex x as an aliasto (x, x).

type Complex x = (x, X);

We can use the type alias to define a function that multiplies two complex
numbers.

multC : {n} (Complex [n], Complex [n]) -> Complex [n];
multC ((a, b), (x, y)) = (ax*xx - bxy, a*y + bxx);

A record contains named fields. We can define a record for complex numbers that
names the real and imaginary fields:
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type Complex x = { real : x;
imag : x;
}i

Then, the mul t C function can be defined as follows:

multC : {n} (Complex [n], Complex [n]) -> Complex [n];
multC (x, y) = { real = x.real % y.real - x.imag * y.imag;
imag = x.real x y.imag + x.imag * y.real;

}i

2.1.4 Enumerations

Cryptol supports finite and infinite enumerations. Following are some examples:

[1..10] == [1 23 456 7 8 9 10]
[1 3..10] == [1 3 5 7 9]

[1..1] == [1 234567 ..1]
[10--1] == [10 9 8 7 6 5 4 3 2 1]
[10 6--0] == [10 6 2]

[10--] == [10 9 8 7 6 ...]

2.1.5 Index Operators

Cryptol supports the following index operators: @ @@ ! ! !. The @ operator indexes
from the least significant element and ! operator indexes from the most significant
element. The least significant element is the rightmost for sequences of bits and the
leftmost for other sequences.” The operators @@ and ! ! lookup a range of indices.
So, the following equalities hold:

([01 23456 7] [8]1 [3]) @@ [1..3] == [1 2 3]
([01 23 45 6 7] [8] [3]) @@ [3--1] == [3 2 1]
([01 23 45 6 7] [8]1[3]) 't [1..3] == [6 5 4]
([01 23456 7] [81[3]) !! [3--1] == [4 5 6]
(0b00011100 : [8]) @@ [1..3] == 0bllO
(0b00011100 : [8]) @@ [3--1] == 0bO1l1l
(0b00011100 : [8]) !! [1..3] == 0b1l00O
(0b00011100 : [8]) !! [3--1] == 0b0OO1

2 This is different in Cryptol 2.0.
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All sequence widths are fixed and therefore must be known at compile time. The

width of the result of @@ and ! ! depends on the value of the second argument;
therefore, the value of the second argument must be known at compile time.

2.1.6 Sequence Operations and Transformations

Cryptol provides the take and drop primitives:

(a, [a+blc) -> [alc
(a, [a+b]lc) -> [blc

take : {a b ¢} (fin a,b >= 0) =

>
drop : {a b ¢} (fin a,a >= 0) =>

As their names imply, they take or drop a certain number of elements from the be-
ginning of a sequence. Because the width of the result depends on the first argument
(number of elements that are taken or dropped), this argument must be constant. For
example, we cannot define the following function, because n is not known:

f n=take(n, [1 23 456 7 8 9 10]);

Cryptol supports several primitives for splitting and combining sequences:

split : {a b ¢} [axblc -> [a] [blc
splitBy : {a b ¢} (a, [axblc) -> [a] [blc
groupBy : {a b c} (b, [axblc) -> [a] [blc
join : {a b c} [a][blc -> [axblc
transpose : {a b c} [a]l [blc -> [b][alc

The split, splitBy, and groupBy functions each convert a sequence into
a two-dimensional sequence. Their inverse is the join function. split and
splitBy behave the same; the splitBy function is provided as an alternative
to split because it allows the user to explicitly choose the size of the first dimen-
sion, rather than forcing the compiler to infer it.

The following equalities show how splitBy, groupBy, join, and
transpose behave.

splitBy (3, [1 2 3 4 5 6 7 8 9 10 11 12]) ==
[[1 2 3 4] [5 6 7 8] [9 10 11 12]]

groupBy (3, [1 2 3 456 7 8 9 10 11 12]) ==
[[1 2 3] [4 5 6] [7 8 9] [10 11 12]]

join [[1 2 3 4] [5 6 7 8] [9 10 11 12]] ==
[1 23456 78 9 10 11 12]

join [[1 2 3] [4 5 6] [7 8 9] [10 11 12]] ==
[1 23456 789 10 11 12]

transpose [[1 2 3 4] [5 6 7 8]] ==

[[1 51 [2 6] [3 7] [4 8]]

transpose [[1 2 3] [4 5 6] [7 8 9]] ==

[[1 4 7] [2 5 8] [3 6 9]]




96 S. Browning and P. Weaver

Furthermore, for all n and x, the following equalities hold:

join (split x) == x

join (splitBy (n, x)) ==
join (groupBy (n, x)) =
transpose (transpose x) == X

wow

2.2 Cryptol Interpreter

One enters the Cryptol interpreter by typing “cryptol” at the shell command prompt.
The interpreter provides a typical command-line interface (a read—eval—print loop).

One can execute a shell command from within the interpreter by placing a ! at
the beginning of the command:

Cryptols> !ls

interpreter

The Cryptol interpreter supports a number of commands, each of which begins
with a colon (:). Following are the most common commands used in the Cryptol
interpreter. For a more detailed discussion of these and other commands, see the
reference manual.

:load <path>
Load all definitions from a . cry file, bringing them into scope.

:set <mode>
Switch to a given mode. Each mode supports a different set of options and per-
forms evaluation on a different intermediate form that is translated from the Abstract
Syntax Tree (AST). See Sect. 2.3 for a discussion of the modes that are useful for
hardware design.

:translate <functions> [<path>]

Compile a function to the intermediate form associated with the current mode (see
Sect. 2.3). This function is known as the top-level function. The optional <path>
argument is relative to the current working directory, or can be written as an absolute
path, and should include the desired extension. If <path> is not provided, then
Cryptol uses the out £ 11e setting, saves the file in out dir, and adds the extension
automatically.

:fm <function> [<path>]

Generate a formal model from a function. The path is optional and will be chosen
automatically unless provided by the user. All modes that support the generation of
formal models produce the same format, so functions can be checked for equiva-
lence across modes.

:eq <function or path> <function or paths>
Determines whether two functions are equivalent. Requires two arguments, each of
which is either a Cryptol expression in parentheses or the path to a formal model in
quotes.
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The <path> argument to any command above must be surrounded in
quotes and may include variables from the interpreter’s environment, each
proceeded by a dollar sign. For example, to translate a function £ to a file
foo.vhdl in the current output directory, issue the following command:
:translate £ "Soutdir/foo.vhdl".

2.3 Cryptol Interpreter Modes for Hardware Design

This section discusses the Cryptol modes that are relevant to hardware design and
verification. Enter a mode by typing : set <mode>, where <mode> is one of the
following modes, at the Cryptol interpreter prompt. When an expression is entered
at the interpreter prompt, it is translated to the intermediate form associated with
the current mode and then evaluated. The translate command produces the in-
termediate form for an expression in the current mode, but does not evaluate it.
Regardless of the mode, all concrete syntax is first translated into an abstract syntax
tree called the IR (intermediate representation). For some modes, the IR is their in-
termediate form, while other modes translate from the IR to their own intermediate
form.

The relevant Cryptol modes are as follows:

symbolic: This performs symbolic interpretation on the IR. This is useful for
prototyping circuits and supports equivalence checking.

LLSPIR: This compiles the IR to Low Level Signal Processing Intermediate
Representation (LLSPIR), inlining all function calls into the top-level function and
performing timing transformations that optimize the circuit. This provides rough
profiling information of the final circuit, including longest path, estimated clockrate,
output rate, latency, and size of circuit. This supports equivalence checking. Rather
than output LLSPIR, the translate command produces a . dot file, a graph of
the LLSPIR circuit that can be viewed graphically.

VHDL: This compiles to LLSPIR and then translates to VHDL. Evaluation is
performed by using external tools to compile the VHDL to a simulation executable
and then running the executable. This is useful for generating VHDL that is
manually integrated into another design, rather than directly synthesizing the result.

FPGA: This compiles to LLSPIR, translates to VHDL, and uses external tools to
synthesize the VHDL to an architecture-dependent netlist. There are several options
in this mode that control what the external tools should do next, and they are most
easily accessed via the following aliases:

e FSIM: This compiles the netlist to a low-level structural VHDL netlist suitable
for simulation only. Evaluation is performed by compiling the VHDL to a simula-
tion executable and running the executable. This produces profiling information
that does not take into account routing delays. This reports the maximum theo-
retical clockrate.
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e TSIM: This is similar to FSIM, but performs map and place-and-route when
generating the VHDL netlist. This process can increase compilation time signifi-
cantly, but produces very accurate profiling, including a true obtainable clockrate.

e FPGA _Board: This compiles the architecture-dependent netlist to a bitstream
suitable for loading onto a particular FPGA board.

The : eq command is supported in FSIM and TSIM modes. It changes the syn-
thesis target to a Verilog netlist suitable for equivalence checking and compiles this
netlist to a formal model.

The top-level function is compiled to a single VHDL entity whose interface is
determined by the type of the function. The top-level function always has some
variation of the following type:

[infla -> [inflb;

For each of a and b, if the type is a tuple, then each element of that tuple becomes
a port in VHDL,; otherwise the type becomes a bit or bit-vector in VHDL. Tuples
nested inside a top-level tuple are appended into single bit-vectors. For example, if
the type of the top-level function is

[inf] (Bit, [4],([8],[12])) -> [inf] (Bit, [10]);

then the VHDL entity will have the following interface:

port (inputl : in std logic;
input2 : in std logic vector (3 downto 0) ;
input3 : in std logic vector (19 downto 0);
outputl : out std logic;
output2 : out std logic vector (9 downto 0);
restart : in std logic;
clk : in std logic);

2.4 Equivalence Checking

The following modes support equivalence checking: symbolic, LLSPIR, and FPGA
(FSIM and TSIM). The user can generate a formal model of a function in any of
these modes using the : fm command and check a function for equivalence to a
formal model using : eq. Two formal models generated in two different modes may
also be compared using : eq.

There are two main uses of equivalence checking: (1) to verify that an implemen-
tation is correct with respect to a specification and (2) to verify that Cryptol compiles
a particular function correctly, by comparing a function in LLSPIR or FPGA mode
to the same function symbolic mode.
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Cryptol supports three specific equivalence checkers: jaig, eaig, and abc. The
equivalence checker outputs True if two functions are equivalent and otherwise
outputs False along with a counterexample.

3 Cryptol for Hardware Design

This section discusses the Cryptol language with respect to hardware design. First,
it discusses features in the language that are not supported by the compiler and
other issues that may make it difficult to generate efficient circuits. It also describes
techniques for making space—time tradeoffs and applies these techniques to several
concrete and simple examples. These techniques are the same that are used to ma-
nipulate the AES implementations in Sect. 5.

3.1 Issues and Limitations

This section discusses some of the limitations of the Cryptol hardware compiler,
including some techniques for avoiding them.

3.1.1 Supported Subset

The hardware compiler only supports division by powers of 2. This is a limitation
of the backend tools.

The hardware compiler does not support primitive recursion. Most recursive
functions can be easily rewritten using value recursion (i.e., stream recursion),
which the compiler supports. For example, consider a recursive implementation of
factorial:

fact n = if n == 0 then 1 else n x fact(n-1);

We can reimplement this using a value that is defined recursively:

fact2 n = facts @ n
where facts = [1] # [

The hardware compiler only partially supports higher-order functions (functions
as first-class values). Specifically, it does not allow functions to return functions, but
it does allow functions to take another function as input as long as that function can

be inlined away at compile time. For example, consider the following function that
takes in a function and applies it to each element of a tuple:

| 1 * prev
| i <- [1..]
| prev <- facts |];
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app tup : {a b} (a -> b, (a, a)) -> (b, b);
app_tup (£, (x, y)) = (£ x, £ y);

This function itself cannot be compiled to hardware. However, we can apply
app_tup to a known function as follows:

inc_tup : {a} (a >= 1) => ([al,[al) -> ([al, [al)
inc _tup t = app tup (inc, t) where inc x = x + 1;

Then, the compiler inlines inc into app_tup to obtain code that no longer
contains higher-order functions:

inc tup t = (inc x, inc y) where inc x = x + 1;

However, the hardware compiler does not support functions that return nonclosed
functions, such as the following:

[8] -> ([8] -> [8]);

f
f x =g where gy =x + vy;

In this definition, g is not closed because it relies on the variable x.

3.1.2 Inefficient Sequence Comprehensions

Hardware performance can vary drastically based on subtle changes in how se-
quence comprehensions are written. This section explains how to generate efficient
circuits from sequence comprehensions.

Although the following two expressions are semantically equivalent, they com-
pile to significantly different circuits:

take (N, [1..]1)

[1..N]

The first one generates code to calculate a sequence of numbers at run time.
Furthermore, because the sequence is infinite, it is mapped across time, so each
element is calculated in a different clock cycle. The second expression generates the
enumeration at compile time. When used in larger circuits, this subtle difference can
cause drastic changes in performance.

Consider a function that takes in some fixed number of bytes, N, and pair-wise
multiplies each byte by 1 through N, respectively. A naive implementation might
look like this:
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prods : {N} [N][8] -> [N][8];
prods xs = [| x « 1 || 1 <- [1..]
|| x <- xs |1;

However, the infinite sequence [1..] will force the sequence comprehension
to take N cycles to complete. It is possible that the user wants to reuse a single
multiplier over N cycles, but that is not what happens. To correctly lay this sequence
out over multiple clock cycles and reuse a single multiplier, the user should use the
seq pragma (see Sect. 3.4).

The correct way of implementing this function is to force the sequence that i
draws from to be finite:

prods’ xs = [| x % 1

This will instantiate width xs multipliers (actually one less, since the multipli-
cation by 1 is optimized away) in parallel. A single multiplier can be reused over
multiple clock cycles by using the seq pragma (see Sect. 3.4).

3.2 Combinatorial and Sequential Circuits in Cryptol

A combinatorial circuit is one whose output is a pure function of its input, so it is no
surprise that Cryptol functions model combinatorial circuits very well. Associated
with any combinatorial circuit is a propagation delay, the amount of time it takes
for the circuit to complete its function and output a value. Cryptol can report the
estimated propagation delay of any combinatorial circuit. Combinatorial circuits
are basic building blocks for designing complex circuits.

Combinatorial circuits themselves are not clocked,® but they may be used as
building blocks in a clocked circuit. The various combinatorial components of a
circuit can be synchronized by placing clocked registers between them, so that each
one operates as one stage in a pipeline (see Sect. 3.5).

A sequential circuit depends on past input and/or internal state. The state itself is
a function of the initial state and past inputs; thus, the difference between a combina-
torial circuit and a sequential circuit in Cryptol is that the output of a combinatorial
circuit may only depend on the most recent input, whereas the output of a sequential
circuit may depend on multiple inputs across time.

There are two fundamental ways to model a sequential circuit in Cryptol (1) the
clocked stream model and (2) the unclocked step model. A circuit may be defined
using either model, or some combination of them, though all circuits modeled in the
step model must eventually be lifted to the stream model.

3Some pure Cryptol functions, which look like combinatorial circuits, may actually map to
clocked, sequential FPGA primitives, such as a Block RAM. In this case, they may have a latency
of several clock cycles.
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In the stream model, sequential circuits are modeled using infinite sequences over
time, so a function in the stream model has some variation of the following type:

[inf]linput -> [inf]output;

Each element in the input or output corresponds to some number of clock cycles,
which is the latency of the circuit. To manage state, the user may define a stream
within the circuit that holds the state, as in the definition of 1ift step below.

One can lift a combinational circuit into the stream model using the following
function. It takes in the function for a combinational circuit and an infinite stream
and maps the function across all elements in the stream.

lift : {a b} (a -> b, [infla) -> [inflb;
lift (£, ins) = [| £ x || x <- ins |];

Note that this may not cause the circuit to become clocked, especially if there is
no stateful information passed from one cycle to the next. It is important that circuits
generated by Cryptol always be clocked, otherwise the synthesis tools cannot make
use of clock constraints to produce useful timing analyses. In general, it is good to
latch onto the inputs and outputs of a circuit by inserting registers after the inputs,
before the outputs, or both. The following function lifts a combinatorial function
into the stream model and places those registers:

lift and latch : {a b} (a -> b, [infla) -> [inflb;
lift and latch (f, ins) = [undefined] #
[|] £ x || x <- [undefined]
# ins [1;

See Sects. 3.3 and 3.5 to learn how to use registers in Cryptol.

In the step model, sequential circuits are modeled as combinatorial circuits that
are later lifted into the stream model. A function in the step model is defined as a
pure mapping from input and current state to output and next state, so it has some
variation of the following type:

(input, state) -> (output, state)

The top-level function (the argument to the : translate command) must be
defined in the stream model. One can easily lift a function from the step model to
the stream model. The following function lifts any step function £ step into the
stream model:

lift step : {in out state}
((in,state) -> (out,state), state,
[inflin) -> [inf]out;
lift step (f step, init state, inputs) =
[| out || (out, state) <- xs |]
where xs = [(undefined, init state)] #
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[| £ step (in, state)
|| in <- inputs
||

(out, state) <- xs |[];

Like the 1ift function, this function applies a combinational function £ step to
each element in an infinite stream, inputs. However, it also starts with an initial
state, init state, and propagates the state as it folds £ step over the inputs.

In this example, a local stream has been defined that carries both the states and
the outputs. The final output is simply the contents of the stream after discarding
the states. xs must be prepended with an initial output-state pair because it is de-
fined recursively; it needs an initial value on which to base all further computations.
init state should be chosen according to the step function being used.

3.3 Delays and Undelays

Consider a sequence, s, in the stream model, so s is infinite and mapped over time.
Assuming an output rate of one element per cycle, we can delay the stream by n
cycles by appending n elements to the beginning of the stream. For example, the
following function outputs its inputs unmodified, but each output is delayed by 1
cycle:

delay : {a} [infla -> [infla;
delay ins = [undefined] # ins;

And this function delays the output by 2 cycles:

delay2 : {a} [infla -> [infla;
delay2 ins = [undefined undefined] # ins;

Alternatively, we could define delay2 by applying delay to the input twice:
delay (delay ins).

Note that using zero instead of unde f ined adds latency to the circuit because
it takes some time to initialize it.

While a “delay” causes its output to occur some number of cycles after the input,
an “undelay” causes its output to occur before the input. One can cause an undelay
to occur using the drop construct:

undelay : {a} [infla -> [infla;
undelay ins = drop(l, ins);

Undelays are not synthesizable. During an optimization pass, the compiler
pushes delays and undelays around in the circuit, introducing new ones and cancel-
ing delays with adjacent undelays.

Delays and undelays can be used to synchronize data across time. For exam-
ple, the following Fibonacci implementation uses drop to look back in time in the
stream so that we can add the previous two values together:
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| x + v || x <- fib
|| v <- drop(1, £ib) |1;

One can also use delays to produce pipelines. A delay synthesizes to a
register/latch. Section 3.5 shows how to use registers to pipeline circuits.

3.4 Space-Time Tradeoffs via par and seq Pragmas

Cryptol supports two simple but very powerful pragmas that control space-time
tradeoffs in the compiler. The par pragma causes circuitry to be replicated, whereas
the seq pragma causes circuitry to be reused over multiple clock cycles. By default
the compiler replicates circuitry as much as possible in exchange for performance,
and the user overrides this behavior using seq; the par pragma is only useful for
switching back to the default behavior within an instance of seq.

Semantically, both seq and par are the identity, because the types and semantics
of Cryptol have no notion of time:

seq : {n t} [nlt -> [nlt;
seq x = X;

par : {n t} [nlt -> [nlt;
par X = X;

To understand the basic behavior of the seq pragma, consider some combina-
torial circuit, £, which is implemented as a sequence comprehension and has the
following type:

f : [nla -> [nla;

By default, the compiler will unroll and parallelize the sequence comprehension
as much as possible. However, seq (£ xs) requests that the circuitry within £
be reused over n cycles. This requires extra flip-flops to synchronize each reuse
of the circuitry within the comprehension, but can reduce overall logic utilization,
resulting in a smaller circuit.

For example, the prods’ function from Sect. 3.1.2 can be defined to reuse one
multiplier over multiple clock cycles:

- [1..(width xs)]

prods’ xs = seq [| x 1 ||
|| - xs |];

Sequence comprehensions can be performed either in sequence or in parallel. If
the sequence is infinite or if each element depends on the previous element, then it
must be implemented sequentially. Otherwise, it may be implemented in parallel.
This section provides two examples, one involving a sequence comprehension that
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can be performed in parallel and one involving a sequence comprehension that must
be performed sequentially. In both examples, the seq pragma is used to map the
sequence over multiple clock cycles, and the performance advantages and disadvan-
tages of doing so are discussed.

For both examples, we assume that there is some function £ of type a->b or
b->b. The advantages of using seq are greater when £ consumes more area, be-
cause reusing £ will then have a greater impact on logic utilization.

3.4.1 Example 1: Parallel Sequence Comprehension

Consider the map function that applies some function to every element in a finite
sequence:

map : {n a b} (fin n) => (a -> b, [nla) -> [nlb;
map (£, xs) = [| £ x || x <- xs |];

By default, £ will be instantiated n times and applied in parallel to each of the
n inputs. A definition and graph of this function are provided in Fig. 1, in which n
is set to 4. Once lifted into the stream model, this circuit will accept n elements of
type a every cycle and output n elements of type b every cycle. To translate this in
LLSPIR mode and view profiling information, we lift the function into the stream
model:

:translate (\x -> lift(map f1, x))
interpreter

This is ideal if £ is a relatively small circuit. However, if duplicating £ violates a
size constraint, then we should trade time for space by instantiating £ only once and
applying it in sequence using the seq pragma. In this case, the output rate is every
4 cycles. The definition and graph of this function are provided in Fig. 2. There is
extra logic needed to facilitate the sequencing of £ over multiple cycles, since the
input comes in all at once and the output must be produced all at once. Clearly,
defining the circuit this way can be beneficial only if £ is large.

We can also define this function using a combination of parallel and sequential
computations. For example, we may want to instantiate £ exactly two times. Since

Project 0 > f

Z:rojed 16 —88 ™ f k‘b

\ / Append OUTPUT
\P:oject 2 — > f

Project4g —————————————> f

INPUT

map f1 : [4]a -> [4]b;
map fl xs = map(f, xs);

Fig. 1 Map f in parallel
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map f2 : [4]a -> [4]b;
map_f2 xs = seq(map(f, xs));

Fig. 2 Map f in sequence
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map f3 : [4]a -> [4]b;

map_ f3 xs = join [xs0’ xsl’]
where {
xs0, xsl1 : [2]a;
[xs0 xs1] = split xs;
xs0’ = seg(map(f, xs0));
xsl’ = seqg(map(f, xsl1));
}i

Fig. 3 Map f, two in sequence and two in parallel

n is 4, this would cause each instantiation of £ to operate on two sequential inputs
to obtain an output rate of every 2 cycles. Such a circuit would provide a balance
between space utilization and speed. Figure 3 provides the definition and graph of a
function that implements this functionality.

Note that the number of elements in each input (currently 4) can be increased

without changing the algorithm for map £3. This function will always generate
two instantiations of f.
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3.4.2 Example 2: Sequential Sequence Comprehension

Suppose we want to apply the function £ : b -> b an arbitrary number of times
to an input, where this number of times is k. We can construct the following se-
quence, where the element at index k-1 is the one that results from k applications
of f:

[ £(x) £(f(x)) £(£(£(x))) ... ]

The following function constructs this sequence:

iterate : b -> [klb;
iterate x = outs
where outs = [(f x)] # [| £ prev
i

However, £ appears twice in this function. We want £ to only appear once (inside
the comprehension), so that when we use the seq pragma f is only instantiated
once. So, we define 1terate as follows, where the element at index k is the one
that results from k applications of f:

iterate : b -> [(k+1l)]b;
iterate x = outs
where outs = [x] # [

|

|
Note that each element depends on the previous, so the sequence will be evaluated
sequentially. Rather than instantiating £ in parallel, as in the previous section, the
sequence comprehension will be unrolled.

We define two hardware implementations; in the graphs of these implementations
below, k is fixed at 4. The first implementation simply returns the last element in the
sequence produced by iterate. Its definition and graph are provided in Fig. 4. It
uses k copies of £ and chains them together sequentially in one clock cycle.

iterate2 uses the seq pragma to request that £ be reused each of k clock
cycles. Its definition and graph are provided in Fig. 5.

The result is that iteratel will have a lower clockrate and will take up more
area, but will have an input/output rate of one element per clockcycle. iterate2

| £ prev
| i <= [1..k]
| prev <- outs |];

INPUT » f »f —»f —p» f ——»OUTPUT

iteratel : b -> b;
iteratel x = iterate x ! 0;

Fig.4 iterate (unrolled)
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iterate2 : b -> b;
iterate2 x = seq (iterate x) ! 0;

Fig.5 iterate (reused over time)

will have a higher clockrate and will take up less area, but it will have an input/output
rate of one element every k cycles and will require extra flip-flops to latch onto the
output of £ each cycle.

We can verify that the two implementations are equivalent, using iteratel as
the reference spec:

:set symbolic
:fm iteratel "iteratel.fm"

:set LLSPIR
:eq iteratel "iteratel.fm"

:eq iterate2 "iteratel.fm"
interpreter

3.5 Pipelining

Sequential circuits in the stream model can be pipelined to increase clockrate and
throughput. One separates a function into several smaller computational units, each
of which is a stage in the pipeline that consumes output from the previous stage and
produces output for the next stage. The stages are synchronized by placing registers
between them.

Pipelining an implementation typically increases the overall latency and area of
a circuit, but can increase the clockrate and total throughput dramatically. Each
stage is a relatively small circuit with some propagation delay. The clockrate is
limited by the stage in the pipeline with the highest propagation delay, whereas the
un-pipelined implementation would be limited by the sum of the propagation delays
of all stages. So, rather than performing one large computation on one input during
a very long clock cycle, an n-stage pipeline performs n parallel computations on
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n partial results, each corresponding to a different input to the pipeline. Sequences
provide an appropriate abstraction for representing pipeline stages. Each stage can
be represented as one or more parallel infinite streams across time.

Recall from Sect. 3.3 that one can insert delays and undelays by adding and re-
moving elements from an infinite stream. We can also use delays to explicitly insert
registers in a pipeline and undelays to drop the initially undefined output from a
pipeline. A delay in Cryptol maps directly to a register (also known as a flip-flop or
latch) in hardware.

This section introduces pipelining in Cryptol by defining and comparing many
different pipelined implementations of two generic reference specifications. The
first specification is a simple combinatorial circuit that takes two inputs, applies
two arbitrary arithmetic functions to the respective inputs, and sums the result. The
second specification uses stream comprehension to apply a function to the input
an arbitrary number of times. Finally, a new reg pragma is introduced which can
be used to produce pipelined designs more easily and that more closely resemble
their high-level specifications. We show how each of the examples in the following
sections can be rewritten much more simply by using the reg pragma.

3.5.1 Example 1: Combinatorial Circuit

Consider the following combinatorial circuit, where g and h are arbitrary combina-
torial circuits of type a -> a. This will be our reference specification.

add g h spec : ([c], [c]) -> [cl;
add_g h spec (a, b) = g(a) + h(b);

The definitions of g and h are not revealed here, because they are irrelevant to
implementing the pipeline unless we want to split g and h themselves into multiple
stages (see add_g h 4 below). The functions g and h can be polymorphic, but
for simplicity we fix the width:

c = 8;

Below are five separate implementations of add_g_h in the stream model. The
first simply lifts the original spec into the stream model. The remaining are pipelined
implementations. These functions all share the same type:

add g h 1, add g h 2, add g h 3, add g h 4
[inf] ([c], [c]) -> [inf] [c];

The definitions and graphs of each implementation are provided in the figures
below.

First, we implement the spec in the stream model as a circuit that consumes
input and produces output on every clock cycle. In this case, g (a) and h (b) are
performed in parallel, but the addition operation cannot be performed until g (a)
and h (b) both finish. Thus, the total propagation delay is the maximum delay of g
and h plus the delay of the addition. See Fig. 6 for the definition and graph of this
circuit.
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INPUT 1 ——» g

ADD —»| OQUTPUT

INPUT2 —— h

add g h 1 ins = [| g(a) + h(b) || (a,b) <- ins |];

Fig. 6 add_g_h_1 (unpipelined)

INPUT 1 —— g —»

ADD —{OUTPUT

INPUT 2 —— h —»

add g h 2 ins = stage2

where {
stagel as = [undefined] # [| g(a) || (a, b) <- ins |];
stagel bs = [undefined] # [| h(b) || (a, b) <- ins |];
stage2 = [| ga+ hb || ga <- stagel as || h b

<- stagel bs |];

}i

Fig.7 add_-g-h_2 (pipelining at the stream level)

We can pipeline this circuit by identifying two distinct stages that can execute in
parallel (1) the applications of g and h and (2) the addition operation. To implement
the pipeline, we evaluate g (a) and h (b) in parallel and store the results in a state
in 1 cycle. On the next cycle, we add the two elements of the state together and
make that the output of the circuit. This adds an extra clock cycle of latency so that
it now takes 2 cycles to perform the entire computation. However, the clockrate is
only limited by maximum delay of g, h, and the addition, whereas in the previous
implementation it was the maximum delay of g and h plus the delay of the addition.
Therefore, each stage of the computation can execute faster, and the throughput
increases.

Note that during any given clock cycle, a pipelined implementation operates on
data associated with two consecutive and unrelated inputs; it applies h and g to the
most recent inputs, and it applies addition to the state which stores h (a) and h (b)
associated with the inputs of the previous cycle.

Our first pipelined implementation, add_g_h_2, is provided in Fig. 7.

In each pipelined implementation above, the second stage only performs a single
addition operation. Therefore, if either g or h has a propagation delay of more than
one addition operation, then the first stage is the bottleneck of the pipeline and
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Const O\XOS Const 0x06
8 \3
\ N
2 2
| X
INPUT 1 — 8 -1 & ADD — 8 —»CDelay >— 8 — 1 # MULT —s->
[N
Const 0x07 'S
\ Const 0x01 ADD —»[OUTPUT
\ 8 2 ol
2 2 g8~

\ A > Doy >
INPUT 2 -8 - 1  MULT -8 —»C_Delay >—8 — 1 —» ADD — 8 Delay >

add g h 3 ins = stage3

where {
stagel as = [undefined] # [| a + 5 || (a, b) <- ins |];
stagel bs = [undefined] # [| b * 7 || (a, b) <- ins |];
stage2 as = [undefined] # [| a * 6 || a <- stagel as |[];
stage2 bs = [undefined] # [| b + 1 || b <- stagel bs |];
stage3 = [| a + b || a <- stage2_as || b <- stage2 bs |];

}i

Fig. 8 add_g_h_3 (three-stage pipeline)

should be split into multiple stages if possible. Suppose g and h are defined as
follows:

g a (a+5) =~ 6;
hb=D»bx7 + 1;

We can implement g and h each as a two-stage pipeline, so our entire circuit has
three stages (1) perform a+5 and b 7; (2) apply multiplication by 6 and addition
by 1 to the results from stage 1; and (3) add the results from stage 2. This three-stage
pipeline, add_g h 3, is defined in Fig. 8.

We can define a utility function that lifts any combinatorial circuit into a stage of
a pipeline in the stream model:

stage : {a b} (a -> b, [infla) -> [inflb;
stage (f, ins) = [undefined] # [| £ x || x <- ins |];

Equivalence checking is not possible on infinite streams, so we cannot verify
that a sequential circuit is equivalent to its spec for all time. However, we can still
provide some level of assurance that the circuit is correct. First, we verify that the
function always produces the correct output for the first input. For example, to test
add_g h 1 above, use a function like the following:

test_add g h : ([cl,[c]l) -> [cl;
test add g h input = add g h 1 ([input] # zero) @ 0;

This function should be equivalent to the spec, which we can verify with the
following command:
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:eq add g h spec test add g h
— —_ inferpreter

One may substitute add_g_h_1 with any pipelined implementation above and
change the index operand to account for circuit latency.

Next, we can verify that for some fixed number of inputs, the circuit generates the
correct outputs. The following function asks this question, returning True if any n
inputs can be found for which the implementation is not equivalent to the spec. The
value of n can be adjusted as desired.

check add g h inputs = reference != result
where {
reference = [| add g h spec x || x <- inputs |];
result = take (n, add g h 1 (inputs # zero));
n = 1000;

}i

The sat solver determines whether any inputs satisfy the query. The circuit is
correct if this function is not satisfiable.

:sat check add g h

interpreter

Again, one may substitute add g h 1 with any pipelined implementation
above, but account for latency by dropping the initial undefined outputs from
result using the drop construct.

3.5.2 Pipelining via the reg Pragma

In order to pipeline the above examples, we had to lift each circuit into the stream
model. This is because we need to have access to a stream that is mapped over time
in order to delay it.

In this section, we introduce a new pragma that allows the user to pipeline com-
binational code without lifting code into the stream model, and show how it can be
applied to the examples above. This allows the user to pipeline code without chang-
ing the structure, yielding a pipelined implementation that more closely resembles
the original spec.

When used as intended, this reg pragma causes a combinational circuit to be
divided into smaller combinational circuits with registers between. Each applica-
tion of reg generates a Delay—Undelay pair in the SPIR AST, so the net delay
through the circuit is exactly 0. This allows us and the compiler to treat the circuit as
combinational and without any notion of time. During the translation from SPIR to
LLSPIR, the circuit becomes sequential as the compiler uses specific rewrite rules
to move the Delays and Undelays around while keeping the circuit synchronized
with respect to time.

Unlike when the user pipelines by appending [undefined], the compiler is
aware of the latency that the reg pragma introduces. The compiler will report the
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correct latency of the circuit, and when we lift the circuit into the stream model, we
do not have to drop the undefined outputs from the beginning of the stream; the first
element will be the first valid output.

Using the reg pragma, we can pipeline g and h as combinational circuits
without changing the definition of add_g h spec:

reg(reg (x+5) x 6);
reg(reg(yx7) + 1);

g X
hy

Using these definitions of g and h, when add_g h spec is lifted into the
stream model, it will be identical to the add_g h 4 circuit that was manually
pipelined above.

We can also use the reg pragma to pipeline the iterate function introduced
in Sect. 3.4.2:

iterate : b -> [(k+1l)]b;
iterate x = outs
where outs = # [| reg(f prev)
||1<— [1..k]
|| prev <- outs |];

iterate pipe’ : b -> b;
iterate pipe’ x = iterate x ! 0;

4 AES Specification

This section develops AES from the description in FIPS-197 [4] while using
Cryptol’s advanced features to make the specification clear and amenable to ver-
ification techniques. While in many respects the correspondence between the spec-
ification and the Cryptol code is easily seen, we have made one major departure.
Namely, while the specification is defined in terms of successively applying permu-
tations to the plaintext to yield the ciphertext, this implementation uses higher-order
functions to compute a single key-dependent pair of permutations that encrypt and
decrypt. The advantage of this is that the decryption function is, by construction,
manifestly the inverse of the encryption function.

Most of the sections and subsections herein are numbered as they are in FIPS-
197. The intent is that this document be read in tandem with that one.

4.1 API

Within FIPS-197 there are three key sizes (128, 192, and 256) and a common block
size (128). These three key sizes correspond to encryption/decryption primitives
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aptly named as AES-128, AES-192, and AES-256. It is intended that programs
needing these primitives would access them via the following API:

AES128.encrypt (keyl28,plaintext)
AES128.decrypt (keyl28, ciphertext)
AES192.encrypt (keyl92,plaintext)
AES192.decrypt (keyl92, ciphertext)
AES256.encrypt (key256,plaintext)
AES256 .decrypt (key256, ciphertext)

where plaintext and ciphertext are 128-bit blocks and key128, key192,
and key256 are 128-, 192-, and 256-bit keys. The return value for all six primitives
has type [128]. Naturally the encrypt and decrypt functions for a given size and
key are inverses of each other.

The Cryptol code for the API follows:

AES128 : {encrypt : (Key(4),Block) -> Block;
decrypt : (Key(4),Block) -> Block};
AES128 = {encrypt = Cipher; decrypt = InvCipher};

AES192 : {encrypt : (Key(6),Block) -> Block;
decrypt : (Key(6),Block) -> Block};

AES192 {encrypt = Cipher; decrypt = InvCipher};

AES256 : {encrypt : (Key(8),Block) -> Block;
decrypt : (Key(8),Block) -> Block};

AES256 {encrypt = Cipher; decrypt = InvCipher};

4.2 Types

This section loosely corresponds to FIPS-197 §3 for concrete types like byte and
word. Cryptol’s more advanced types facilitate more appropriate signatures for
many of the functions defined in FIPS-197.

AES has the familiar data structures byte ([8]) and word ([321). It also has
bkmk4([128])andsunaziﬁmpbbiuPInmﬂxofbyms([4][4][8])

In code these are:

8;
32;

type BitsPerByte
type BitsPerWord

4 While AES insists that the block size is 128, Rijndael [1], on which AES was based, allows block
sizes of 128, 160, 192, 224, and 256.

5 If AES had block sizes other than 128, the number of columns would differ from 4.
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type BitsPerBlock = 128;
type BytesPerColumn = 4;
type ColumnsPerState = 4;

type Byte = [BitsPerByte];
type Word = [BitsPerWord];
type Block = [BitsPerBlock];

type Column = [BytesPerColumn]Byte;
type State = [ColumnsPerState] Column;
type RoundKey = State;

The type Column is alluded to in FIPS-197 §3.5, but it proves useful enough
that we had made it explicit. Also while RoundKey is the same type as State, for
documentation purposes we use it as appropriate.

The key is measured in the number of words, Nk, so a key has type:

type Key(nk) = [nk * BitsPerWord];

AES mandates® that nk must be 4, 6, or 8.
Some uses of keys regard them as a collection of words, so we also have:

type KeyAsWords (nk) = [nk]Word;
In addition, depending on Nk, there is a number of per-round keys:
type RoundKeys (nr) = [nr + 1]RoundKey;

Oddly, while the number of rounds, Nr, is 10, 12, or 14 (depending on the
key size), there are, respectively, 11, 13, or 15 round keys. (This accounts for the
[nr+1] on the right-hand side above.)

Many of the steps in the cryptoalgorithm are permutations from State to
State, so we define:

type Permutation = State -> State;
Some permutations are also their own inverses so we define:

type Involution = State -> State;

to document those situations.
Finally, so that the decryption function can be easily seen to be the inverse of the
encryption function, we define a type that holds a permutation and its inverse

type Duo = {function : Permutation; inverse
Permutation};

and build the encryption and decryption functions by composing these.

6 Rijndael allows for key sizes of 128, 160, 192, 224, and 256 which correspond to values of 4, 5,
6,7, and 8 for Nk. AES insists that the key size be one of 128, 192, and 256.
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4.3 Conversions Between Types

Following are some useful definitions for converting between types.

blockToState : Block -> State;
blockToState (x) = transpose(split (reverse(split(x))));

stateToBlock : State -> Block;
stateToBlock (x) = join(reverse (join(transpose(x)))) ;

keyToWords :{nk} (fin nk) => Key(nk) ->KeyAsWords (nk) ;
keyToWords (key) = reverse(split(key));

4.4 Constructors for the Duo Type

Functions to construct duos from permutations and involutions are given by:

makeDuo : (Permutation,Permutation) -> Duo;
makeDuo (t,u) = {function = t; inverse = u};
makeDuoFromInvolution : {a} Involution -> Duo;
makeDuoFromInvolution (i) = makeDuo (i, i) ;

Since code in the sequel is predicated on the components of a Duo being inverses
of each other, ideally we would enforce that somehow in code. The brute force ap-
proach of ensuring that both compositions of the duo’s function and inverse behave
as the identity on the 24*4*® = 340282366 920938463463 374607 431768211
456 inputs is impractical. While we lack a general approach, there are some efforts
to be made in the following as many of the permutations have a structure that allows
for decomposition of the inverse test onto substructures having smaller domains.

4.5 Mathematical Preliminaries

This section implements the necessary functions described in FIPS-197 §4. An
attempt is made to follow the section numbering for a strong correspondence be-
tween that section and this one. Since Cryptol has Galois field primitives and much
of that section deals with arithmetic in GF(2®), much of this is brief.

4.5.1 Addition

As is well known, addition in GF(2%) may be implemented via exclusive or which is
the ~ operator in Cryptol, so the few instances where addition in GF(28) is needed
are simply coded via ~. It is handy to have a n-ary addition, so that is defined via:
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gSum {a} (fin a) => [alByte -> Byte;
gSum(xs) = sums ! O
where {
sums = [zero] # [| x " v || x <- xs || vy <- sums |];

}i

4.6 Multiplication

Multiplication in GF(28) is easily defined in Cryptol via:

gTimes : (Byte,Byte) -> Byte;
gTimes (x,y) = pmod(pmult (x,y),<| x"8 + x74 + x73
+x + 1 |>);

4.6.1 Multiplication by x

Cryptol’s ease of defining gTimes above means we do not need the xtime ()
function defined in the corresponding section of FIPS-197.

4.7 Polynomials with Coefficients in GF(2%)

Multiplying by a(x) from FIPS-197 §4.3 corresponds to the function:

mixColumn : Column -> Column;
mixColumn (column) = gMatrixVectorProduct
(aMatrix, column) ;

aMatrix : State;
aMatrix = transpose (columns)
where {
columns = [| [ 0x02 0x01 0x01 0x03 ] >>> i ||
i<- [0 .. 31 |1;
}i

And multiplying by a~!(x) from FIPS-197 §4.3 corresponds to the function:

invMixColumn : Column -> Column;
invMixColumn (column) = gMatrixVectorProduct
(aInverseMatrix, column) ;

aInverseMatrix : State;
alnverseMatrix = transpose (columns)
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where {

columns = [| [ 0x0e 0x09 0x0d 0x0b ] >>> i ||
i<- [0 .. 3] [1;

Vi

The routines for performing the matrix-vector product follow:

gMatrixVectorProduct : (State,Column) -> Column;
gMatrixVectorProduct (matrix, column) =
join (gMatrixProduct (matrix, split (column))) ;

gMatrixProduct : {a b ¢} (fin a,fin b,fin c) =>
([a] [b]Byte, [b] [c]Byte) -> [al] [c]Byte;
gMatrixProduct (xss,yss) = [| [| gDotProduct (row,col)
|| col <- transpose(yss) |]

|| row <- xss |]1;

gbotProduct : {a} (fin a) => ([a]lByte, [a]Byte) -> Byte;
gDotProduct (xs,ys) =
gSum([| gTimes(x,y) || x <- xs || v <- ys |1);

4.8 Algorithm Specification

In this section, we follow the development of the AES algorithm in FIPS-197 §5.
Although the more abstract types State, Permutation, and Duo are used
throughout, all the functions with capitalized names have essentially the same func-
tionality as those in FIPS-197.

The implementation is quite different in that it focuses on composing permuta-
tions to compute a permutation that corresponds to encryption and then applying
that composed permutation to the plaintext to get the ciphertext rather than succes-
sively applying permutations to get intermediate results whose culmination is the
ciphertext. The advantage to composing the permutations is that the Duo type car-
ries the inverse through those permutations, so that it is readily apparent that the
decryption permutation is inverse of the encryption permutation.

4.9 Cipher

The main function for encryption follows:

Cipher : {nk} (fin nk,8 >= width(nk),nk >= 1) =>
(Key (nk) ,Block) -> Block;

Cipher (key,plaintext) = stateToBlock (out)

where {
in = blockToState (plaintext) ;
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roundKeys = KeyExpansion (keyToWords (key)) ;
duos = duosByRound (roundKeys) ;
out = applyPermutation (composeDuos (duos),in) ;

}i

In it the duos (permutations paired with their inverses) by round are computed,
composed, and applied to the suitably processed plaintext.

duosByRound : {nr} (fin nr,nr >= 1) => RoundKeys(nr) ->
[nr + 1]Duo;

duosByRound (roundKeys)
= [ (initialRoundDuo (roundKeys @ 0)) 1

# [| (medialRoundDuo (roundKey))

|| roundKey <- roundKeys @@ [1 .. width(roundKeys) - 2] |]
# [ (finalRoundDuo (roundKeys ! 0)) 1;

The structure of the Cipher function is most visible in the following:

initialRoundDuo : RoundKey -> Duo;
initialRoundDuo (roundKey) = makeAddRoundKeyDuo (roundKey) ;

medialRoundDuo : RoundKey -> Duo;
medialRoundDuo (roundKey)
= composeDuos ([ subBytesDuo shiftRowsDuo
mixColumnsDuo (makeAddRoundKeyDuo
(roundKey) ) 1) ;
finalRoundDuo : RoundKey -> Duo;
finalRoundDuo (roundKey)
= composeDuos ( [subBytesDuo
shiftRowsDuo (makeAddRoundKeyDuo
(roundKey) ) 1) ;

4.9.1 SubBytes () Transformation

Following the style of FIPS-197, we define sBoxS1ow from mathematical princi-
ples and use the equivalent SBox for the sake of speed.

sBoxSlow : [256]Byte;

sBoxSlow = [| £(b) || b <- [ 0 .. 2551 |]
where {
f(x) =b " (b >>>4) © (b >>>5) © (b >>> 6)
(b >>> 7) T ¢
where

b = gQuasiInverse (x);
c = 0x63;
}i

}i
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SubBytes : Permutation;
SubBytes (state) = mapBytes (f, state)

where {
f(b) = SBox @ b;
}i
SBox : [256]Byte;
SBox = [

0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5 0x30 0x01 0x67 0x2b
Oxfe 0xd7 Oxab 0x76 Oxca 0x82 0xc9 0x7d Oxfa 0x59 0x47 0xfO0
Oxad 0xd4 0xa2 Oxaf 0x9c 0Oxa4 0x72 0xc0O0 0xb7 0xfd 0x93 0x26
0x36 0x3f 0xf7 Oxcc 0x34 0xa5 0xe5 Oxfl 0x71 0xd8 0x31 0x15
0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a 0x07 0x1l2 0x80 0Oxe2
0xeb 0x27 0xb2 0x75 0x09 0x83 0x2c Oxla Oxlb 0x6e 0x5a 0xal
0x52 0x3b 0xdé6 0xb3 0x29 0xe3 0x2f 0x84 0x53 0xdl 0x00 Oxed
0x20 Oxfc 0xbl 0x5b Ox6a Oxcb 0xbe 0x39 0x4a 0x4c 0x58 Oxcf
0xd0 Oxef Oxaa O0xfb 0x43 0x4d 0x33 0x85 0x45 0xf9 0x02 O0x7f
0x50 O0x3c 0x9f 0xa8 0x51 0xa3 0x40 O0x8f 0x92 0x9d 0x38 O0xf5
Oxbc 0xb6 0xda 0x21 0x10 Oxff 0xf3 0xd2 Oxcd 0x0c 0x13 Oxec
0x5f 0x97 0x44 0x17 Oxc4 0Oxa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
0x60 0x81 0x4f 0Oxdc 0x22 0x2a 0x90 0x88 0x46 Oxee 0xb8 0x1l4
Oxde 0x5e 0x0b 0xdb 0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c
0xc2 0xd3 Oxac 0x62 0x91 0x95 0xe4 0x79 0xe7 0xc8 0x37 0x6d
0x8d 0xd5 0x4e 0xa9 0x6c 0x56 0xf4 Oxea 0x65 0x7a Oxae 0x08
Oxba 0x78 0x25 0x2e 0Oxlc 0xa6 0xb4 Oxc6 0xe8 0xdd 0x74 Ox1f
0x4b O0xbd 0x8b 0x8a 0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e
0x61 0x35 0x57 0xb9 0x86 0xcl 0xld 0x9e Oxel 0xf8 0x98 0x11l
0x69 0xd9 0x8e 0x94 0x9b 0Oxle 0x87 0xe9 Oxce 0x55 0x28 O0xdf
0x8c Oxal 0x89 0x0d Oxbf 0Oxe6 0x42 0x68 0x41l 0x99 0x2d O0x0f
0xb0 0x54 Oxbb 0x16 ];

Naturally, the expression sBoxSlow == SBox evaluates to True.

4.9.2 shiftRows () Transformation

This definition is straightforward from the corresponding section of FIPS-197.

ShiftRows : Permutation;
ShiftRows state = [| row <<< i || row <- state ||
i <- [0 .. 3] |]7

4.9.3 MixColumns () Transformation

This definition is straightforward from the corresponding section of FIPS-197.

MixColumns : Permutation;
MixColumns (state) = mapColumns (mixColumn, state) ;
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494 AddRoundKey () Transformation

Pedantically speaking, AddRoundKey is not a permutation as are SubBytes,
ShiftRows, and MixColumns, as it takes an additional parameter of type
RoundKey. (This is reflected in the type.) In the compositions of permutations
elsewhere, we partially apply AddRoundKey to a round key to get a function of
type Involution. (Involutions are self-inverse Permutations.)

AddRoundKey : (RoundKey,State) -> State;
AddRoundKey (roundKey, state) = roundKey ~ state;

4.10 Key Expansion

In FIPS-197, KeyExpansionreturns an array of Words, but it is clearer in Cryptol
to give the result as an array of RoundKeys.

KeyExpansion : {nk} (fin nk,8 >= width(nk),nk >= 1) =>
KeyAsWords (nk) -> RoundKeys((nk + 6));

KeyExpansion (keyAsWords) = [| (transpose s)||s <- ss|]
where {

Nk = width (keyAsWords) ;

ss = groupBy (4, [| (reverse(splitBy(4,w)))
|| w <- take(4 « (Nk + 7),ws) [1);
ws = keyAsWords # [| nextWord(Nk,i,w,w’)
|| 1 <- [Nk .. ]
|| w <- ws
|| w' <- drop(Nk - 1,ws) |1;
nextWord : ([8], [8],Word,Word) -> Word;
nextWord (Nk,i,w,w’) = w ~ temp
where {
temp = if 0 == 1 % Nk
then SubWord (RotWord(w’)) ~ Rcon(i / Nk)
else if (Nk > 6) & (4 == 1 % NKk)
then SubWord (w')
else w';
}i
Vi

Nk is one of 4, 6, or 8, which implies that i is drawn from 4-43, 6-51, or 8-59,
respectively. This in turn implies that the call to Rcon has a parameter that ranges
from 1-10, 1-8, or 1-7. So we defined Rcon via:

Rcon : [8] -> Word;
Rcon(i) = rcon @ (i - 1);
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rcon : [10]Word;
rcon = [| zero # p || p <- take(10,ps) |]
where {
ps = [ 0x01 ] # [| gTimes(p,0x02) || p <- ps |];

}i
The other functions needed by KeyExpansion are straightforward:

SubWord : Word -> Word;
SubWord (w) = join([| (SBox @ b) || b <- split(w) [1);

RotWord : Word -> Word;
RotWord(w) = w <<< 8;

4.11 Inverse Cipher

Due to the Duo data structure, the InvCipher function below reads almost exactly
like the Cipher function of §4.9.

InvCipher : {nk} (fin nk,8 >= width(nk),nk >= 1) =>
(Key (nk) ,Block) -> Block;
InvCipher (key, ciphertext) = stateToBlock (out)
where {
in = blockToState (ciphertext) ;
roundKeys = KeyExpansion (keyToWords (key)) ;
duos = duosByRound (roundKeys) ;
out = applyInversePermutation (composeDuos (duos),in) ;

}i

4.11.1 InvshiftRows () Transformation

This definition is straightforward from the corresponding section of FIPS-197.

InvShiftRows : Permutation;
InvShiftRows (state) =
[| row >>> i || row <- state || 1 <- [ 0 .. 31 |1;

4.11.2 InvSubBytes () Transformation

This definition is straightforward from the corresponding section of FIPS-197.

InvSubBytes : Permutation;
InvSubBytes (state) = mapBytes(f, state)
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where {

f(b) = InverseSBox @ b;
InverseSBox : [256]Byte;
InverseSBox = [

0x52 0x09 0x6a 0xd5 0x30 0x36 0xa5 0x38 Oxbf 0x40 0xa3 0x9e
0x81 O0xf3 0xd7 0xfb 0x7c 0xe3 0x39 0x82 0x9b 0x2f Oxff 0x87
0x34 0x8e 0x43 0x44 0Oxc4 Oxde 0xe9 Oxcb 0x54 0x7b 0x94 0x32
0xa6 0xc2 0x23 0x3d Oxee 0x4c 0x95 0x0b 0x42 0xfa O0xc3 Ox4de
0x08 0x2e 0xal 0x66 0x28 0xd9 0x24 0xb2 0x76 0x5b 0xa2 0x49
0x6d 0x8b 0xdl 0x25 0x72 0xf8 0xf6 0x64 0x86 0x68 0x98 0x16
0xd4 0Oxa4 0x5c 0Oxcc 0x5d 0x65 0xb6 0x92 0x6c 0x70 0x48 0x50
0xfd Oxed 0xb9 0xda O0x5e 0x15 0x46 0x57 0xa7 0x8d 0x9d 0x84
0x90 0xd8 0Oxab 0x00 0x8c Oxbc 0xd3 0x0a 0xf7 0xed4 0x58 0x05
0xb8 O0xb3 0x45 0x06 0xd0 0x2c 0xle 0x8f Oxca 0x3f 0x0f 0x02
Oxcl Oxaf 0xbd 0x03 0x01 0x13 0x8a 0x6b 0x3a 0x91 0x11 0x41
0x4f 0x67 Oxdc Oxea 0x97 0xf2 0xcf Oxce 0xf0 0xb4 Oxe6 0x73
0x96 Oxac 0x74 0x22 0xe7 Oxad 0x35 0x85 0xe2 0xf9 0x37 0xe8
0xlc 0x75 Oxdf 0x6e 0x47 0xfl 0xla 0x71 0xld 0x29 Oxc5 0x89
0x6f 0xb7 0x62 0x0e Oxaa 0x18 O0xbe 0xlb Oxfc 0x56 0x3e 0x4b
0xc6 0xd2 0x79 0x20 0x9a Oxdb 0xcO Oxfe 0x78 0Oxcd Ox5a 0xf4
O0x1f Oxdd 0xa8 0x33 0x88 0x07 0xc7 0x31 0xbl 0x12 0x10 0x59
0x27 0x80 Oxec 0x5f 0x60 0x51 0x7f 0xa9 0x19 0xb5 0Ox4a 0x0d
0x2d Oxe5 0x7a 0x9f 0x93 0xc9 0x9c Oxef 0xa0 0xeO0 O0x3b 0x4d
Oxae 0x2a 0xf5 0xb0 0xc8 0Oxeb 0xbb 0x3c 0x83 0x53 0x99 0x61
0x17 0x2b 0x04 0x7e Oxba 0x77 0xd6 0x26 Oxel 0x69 0x14 0x63
0x55 0x21 0x0c 0x7d 1;

4.11.3 InvMixColumns () Transformation

This definition is straightforward from the corresponding section of FIPS-197.

InvMixColumns : Permutation;
InvMixColumns (state) = mapColumns (invMixColumn, state) ;

4.11.4 Equivalent Inverse Cipher

Expressing EgInvCipher in terms of the Duo structures requires only a little
manipulation.

EqInvCipher : {nk} (fin nk,8 >= width(nk),nk >= 1) =>
(Key (nk) ,Block) -> Block;
EgqInvCipher (key, ciphertext) = stateToBlock (out)
where {
in = blockToState (ciphertext) ;
roundKeys = KeyExpansion (keyToWords (key)) ;
duos = egDuosByRound (roundKeys) ;
out = applyInversePermutation (composeDuos (duos),in) ;

}i
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The expression InvMixColumns (roundKey) in the following definition
corresponds to the modified key schedule used by EqInvCipher in FIPS-197.

eqgDuosByRound : {nr} (fin nr,nr >= 1) =>
RoundKeys (nr) -> [nr + 1]Duo;

egDuosByRound (roundKeys)
= [ (egInitialRoundDuo (roundKeys @ 0)) 1]
# [ | (egMedialRoundDuo (InvMixColumns (roundKey) ) )

|| roundKey <- roundKeys @@ [1 .. width (roundKeys) - 2]]]
# [ (egFinalRoundDuo (roundKeys ! 0)) 1;

The definition style below is encrypt rather than decrypt biased, but the symmetry
of the Duos, the shrewd use of reverse, and the ordering of the statements make
the algorithm of EqInvCipher presented in FIPS-197 readily apparent.

egFinalRoundDuo : RoundKey -> Duo;
egFinalRoundDuo (roundKey) =makeAddRoundKeyDuo (roundKey) ;

egMedialRoundDuo : RoundKey -> Duo;
egMedialRoundDuo (roundKey)
= composeDuos (reverse ([ subBytesDuo shiftRowsDuo
mixColumnsDuo (makeAddRoundKeyDuo (roundKey)) 1)) ;

egqInitialRoundDuo : RoundKey -> Duo;
egInitialRoundDuo (roundKey)
= composeDuos (reverse ([ subBytesDuo
shiftRowsDuo (makeAddRoundKeyDuo (roundKey)) 1)) ;

FIPS-197 does not define EgCipher, but since the Duo style makes it so easy,
we define it for completeness.

eqgCipher : {nk} (fin nk,8 >= width(nk),nk >= 1) =>
(Key (nk) ,Block) -> Block;
eqCipher (key, ciphertext) = stateToBlock (out)
where {
in = blockToState (ciphertext) ;
roundKeys = KeyExpansion (keyToWords (key)) ;
duos = egDuosByRound (roundKeys) ;
out = applyPermutation (composeDuos (duos) ,in) ;

}i

4.12 Auxiliary Definitions

Following are some convenience functions for operating on data of type State in
a Byte-by-Byte or Column-by-Column fashion.
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mapBytes : (Byte -> Byte,State) -> State;
mapBytes (f, state) =
[| [|] £(byte) || byte <- row |] || row <- state |];
mapColumns : (Column -> Column,State) -> State;
mapColumns (f, state) = transpose([| £ (column)
|| column <- transpose
(state) [1);

The various Duos are constructed from transformations via:

mixColumnsDuo : Duo;
mixColumnsDuo = makeDuo (MixColumns, InvMixColumns) ;

shiftRowsDuo : Duo;
shiftRowsDuo = makeDuo (ShiftRows, InvShiftRows) ;

subBytesDuo : Duo;
subBytesDuo = makeDuo (SubBytes, InvSubBytes) ;

makeAddRoundKeyDuo : RoundKey -> Duo;
makeAddRoundKeyDuo (roundKey) =
makeDuoFromInvolution (makeAddRoundKeyInvolution
(roundKey) ) ;

makeAddRoundKeyInvolution : RoundKey -> Involution;

makeAddRoundKeyInvolution (roundKey) = £
where {
f (state) = AddRoundKey (roundKey, state) ;

}i

Composition of Duos is defined via:

composeDuos : {a} (fin a) => [alDuo -> Duo;
composeDuos (duos) = compositions ! 0
where {

compositions = [ identityDuo ] # [| compose(c,d)

c <- compositions
d <- duos |];
identityInvolution : Involution;
identityInvolution (state) = state;
identityDuo : Duo;
identityDuo=makeDuoFromInvolution (identityInvolution) ;
compose : (Duo,Duo) -> Duo;
compose (p, q) ={function (x) =

g.function(p.function(x)) ;

inverse (x) = p.inverse(q.inverse(x)) };

}i
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Applying a permutation or its inverse is defined via:

applyPermutation : (Duo,State) -> State;
applyPermutation (duo, state) = duo.function(state);
applyInversePermutation : (Duo,State) -> State;

applyInversePermutation (duo, state)=duo.inverse (state) ;

The following two functions are used for verifying the SBox table. The cyclicity
of the multiplicative group of GF(2%) is employed by gQuasiInverse in that for
nonzero x in GF(28) x2%5 = 1, so x™! = x2>4. (Happily, that definition gives the
desired result for zero as well.)

gQuasilInverse : Byte -> Byte;
gQuasiInverse (x) = gPower (x,254) ;

gpower : {a} (fin a) => (Byte, [al) -> Byte;
gPower (x,n) = rs ! 0

where {
ss = [x] # [| gTimes(s,s) || s <- ss |];
rs = [1] # [| if b then gTimes(r,s) else r
|| b <- n
|| r <- rs
|| s <- ss |1;
Vi

4.13 Key Expansion Example: 128-bit Cipher Key

al test : Bit;
al test = ws == ws’

where {
roundKeys : RoundKeys (10) ;
roundKeys =

KeyExpansion (keyToWords
(0x2b7el51628aed2a6abf7158809cf4f3c)) ;
ws’ = join([| [| join(reverse (row))
| | row <- transpose (roundKey) |]
| | roundKey <- roundKeys |]);
ws : [44]Word;
ws = [ 0x2b7el516 0x28aed2a6 0xabf71588 0x09cf4f3c
Oxa0fafel7 0x88542cbl 0x23a33939 0x2a6c7605
0xf2c295f2 0x7a96b943 0x5935807a 0x7359f67f
0x3d80477d 0x4716fe3e 0xle237e44 0x6d7a883b
0xef44a541 0xa8525b7f 0xb671253b 0xdb0bad0o0
0xd4dlc6£f8 0x7c¢c839d87 Oxcaf2b8bc 0x11£915bc
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0x6d88a37a
0x4e54f70e
Oxead27321
0xac7766£3
0xd014f9a8

0x110b3efd
0x5f5fc9f3
0xb58dbad2
0x19fadc21
0xc9ee2589

0xdbf98641
0x84a64fb2
0x312bf560
0x28d12941
0xel3f0cc8

0xca0093fd
Ox4eabdc4f
0x7£8d292f
0x575c006e

127

0xb6630ca6 1] ;

}i

As expected, evaluating al _test returns True.

4.14 Test and Verification

The permutation composition style used herein does not lend itself to verifying the
intermediate steps as in FIPS-197 Appendix B. We content ourselves with the end-
to-end test:

b test
b test =
where {
key
key =
plaintext
plaintext =
ciphertext Block;
ciphertext = AES128.encrypt (key,plaintext) ;
output’ State;
output’ = blockToState (ciphertext) ;
output State;
output = [ [ 0x39 0x02
0x25 0xdc
0x84 0x09
0x1ld 0xfb

Bit;
output == output’

Key (4) ;
0x2b7el51628aed2a6abf7158809cf4f3c;
Block;
0x3243f6a8885a308d313198a2e0370734;

0xdc
0x11
0x85
0x97

0x19
Ox6a
0x0b
0x32

— —
— e

—

1
Vi

Evaluatingb_test returns True as one would expect.

4.14.1 Example Vectors

Again the permutation composition style used herein does not lend itself to verifying
the intermediate steps as in FIPS-197 Appendix C. We content ourselves with the
following end-to-end tests.
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AES-128 (Nk=4, Nr=10)

cl test 1: Bit;
cl_test_ 1= AES128.encrypt (0x000102030405060708090a0b0c0d0e0f,
0x00112233445566778899%aabbccddeeff)
== 0x69c4e0d86a7b0430d8cdb78070b4c55a;

cl_test_2: Bit;
cl_test 2= AES128.decrypt (0x000102030405060708090a0b0c0d0e0f,
0x69c4e0d86a7b0430d8cdb78070b4c55a)
== 0x00112233445566778899%aabbccddeeff;

cl test 3: Bit;
cl_test 3= EqInvCipher (0x000102030405060708090a0b0c0d0e0f : [128],
0x69c4e0d86a7b0430d8cdb78070b4c55a)
== 0x00112233445566778899%aabbccddeeff;

Evaluating (c1 test 1,cl test 2,cl test 3) returns the expression
(True, True, True).

4.14.2 Formal Verification

Formal models of this specification can be generated as follows:

:set symbolic

:fm (KeyExpansion : [4][32] -> [11] [4][4][8])
"keyexpl28-spec.fm"

:fm (KeyExpansion : [6][32] -> [13]([4][4]1I[8])
"keyexpl92-spec.fm"

:fm (KeyExpansion : [8][32] -> [15] [4][4][8])

"keyexp256-spec.fm"

:fm (Cipher : ([128],[128]) -> [128]) "aesl28-spec.fm"
:fm (Cipher : ([192],[128]) -> [128]) "aesl92-spec.fm"

:fm (Cipher : ([256],[128]) -> [128]) "aes256-spec.fm"
interpreter

Each implementation in Sect.5 is checked for equivalence against this formal
model.

5 AES Implementations

This section documents the process of refining the AES specification described in
Sect. 4 into synthesizable implementations of AES-128 and AES-256. First, we re-
move constructs that are unsupported in the hardware compiler, replace many of
the functions with more efficient versions, and specialize the algorithm to two im-
plementations, one for AES-128 and one for AES-256. Then, we define a second
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pair of implementations by defining a function that performs one round of key ex-
pansion and encryption for each algorithm and using this function to combine the
KeyExpansion and Cipher functions into one top-level function.

We adjust the second pair of implementations to meet space and time require-
ments. We provide two specific implementations of each algorithm (1) a smaller
implementation that uses the seq pragma to reuse the same key expansion and en-
cryption circuitry over multiple clock cycles and (2) a high-throughput pipelined
implementation.

We then improve the AES-128 implementation by replacing the round of encryp-
tion with an equivalent and more efficient T-Box implementation and use the seq
pragma again to produce a small circuit from the T-Box implementation.

In Sect. 5.2.2, we show how to use the new reg pragma to pipeline the AES-128
implementations in this section.

The resulting implementations are checked for equivalence with the original spec
in symbolic, LLSPIR, and FPGA modes. We also present performance results with
and without Block RAMs in both LLSPIR mode and TSIM mode.

5.1 Implementation #1

In this section, we replace many of the functions from the reference specification
with much more efficient versions and specialize the encryption algorithm. Specifi-
cally, we perform the following changes:

e Replace gTimes with a more efficient implementation from the Rijndael spec,
then rewrite using stream recursion

¢ FEliminate gPower, replacing with specialized gPower?2
Eliminate gTimes, replacing with specialized gTimes2 and gTimes3
Replace mixColumn with much more efficient implementation, through inlin-
ing and static evaluation

e Specialize KeyExpansion to AES-128 and AES-256 (only AES-128 is
shown)

These changes result in an AES implementation with very reasonable perfor-
mance (see Sect. 5.5).

The following are not supported by the Cryptol hardware compiler and therefore
should be removed when producing an implementation from the spec:

e Recursive functions, which can usually be replaced by stream recursion
¢ Functions that return nonclosed functions

There are no recursive functions in the spec. However, the Cipher Duo record
contains higher-order functions. We can remove the use of higher-order func-
tions and inline into Cipher the functions that use Duo, yielding the following
definition:
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Cipher : {nk} (fin nk,8 >= width nk,nk >= 1) =»
(Key (nk) ,Block) -> Block;
Cipher (key,plaintext) = stateToBlock(finalRound) where {
in = blockToState (plaintext) ;
roundKeys = KeyExpansion (keyToWords (key)) ;
initialRound = AddRoundKey (in, roundKeys @ 0) ;
medialRounds = [initialRound] #
[| AddRoundKey
(MixColumns
(ShiftRows (SubBytes (state)) ), roundKey)
|| state <- medialRounds
|| roundKey <- roundKeys @@

[1 .. width(roundKeys)-2] |];
finalRound = AddRoundKey
(ShiftRows

(SubBytes (medialRounds ! 0)), roundKeys ! 0);

Vi

We will specialize this function to Cipher128 below.

One can inline the use of gMatrixVectorProduct, gMatrixProduct,
gDhotProduct, and gSum into the definition of mixColumn, yielding a simpler
and much more efficient implementation. Note that the value of aMatrix is known
statically as:

[[0x2 0x3 0x1 O0x1] [0x1 Ox2 O0x3 Ox1l] [0x1 Ox1l 0x2 0x3]
[0x3 0x1 0x1 0x2]]

Given that the argument to mixColumnis [y0 y1 y2 y3], then the matrix
product of the above aMatrix and this column argument is simply:

~ ~ ~

[ (gTimes(2,y0

( gTimes (3,y1
gTimes (1,y0

(

(

( gTimes (1,y2
"~ gTimes (2,y1l

(

(

( gTimes (1,y3
" gTimes (3,y2

(

(

(

"~ gTimes (1,y3
gTimes (1,y0 (
gTimes (3,y0 (

~ gTimes(1,yl
"~ gTimes (1,yl

~ gTimes(2,y2
" gTimes (1,y2

" gTimes (3,y3

(
(
(
( "~ gTimes (2,y3

)
)
)
)

) ))
) ))
) ))
) ))

In every call to gTimes, the first argument is either 1, 2, or 3. We can replace
gTimes (1,x) withx,gTimes (2,x) withgTimes2 (x),andgTimes (3, x)
with gTimes3 (x), where gTimes2 and gTimes3 are defined as follows:

gTimes2 : [8] -> [8];
gTimes2 x = (x << 1)
else zero);

~

(if x ! 0 then <| x™4 + x™3 + x + 1 |>

gTimes3 : [8] -> [8];
gTimes3 (b) = gTimes2(b) ~ b;
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Thus, mixColumn can be rewritten as follows:

mixColumn’ : [4][8] -> [4][8];

mixColumn’ ([y0 y1 y2 y3]) = [ (gTimes2(y0) ~ gTimes3(yl) ~
y2 ~y3)
(y0 ~ gTimes2 (y1l) *
gTimes3 (y2) " y3)
(y0 Tyl -
gTimes2 (y2) ~ gTimes3(y3))
(gTimes3 (y0) ~ vyl B
y2 " gTimes2 (y3))

1

The original gTimes is now used only by gPower. However, gPower is called
only by Rcon and always with a constant first argument, 2. Therefore, we could
rewrite gPower as gPower2:

gbPower2 : {a} ([al) -> [8];
gPower2 (i) = ps @ 1
where ps = [1] # [| gTimes2(p) || p <- ps |1;

However, the latency of this implementation is 2%, where a is the width of the
input. This is because Cryptol implements synchronous circuits whose latency must
be known statically; therefore, the latency of this circuit is equal to the worst-case
latency. We can be more efficient by implementing it as a static lookup table. The
following expression generates the sequence for the table:

[| gPower(2,x) || x <- [0..15] |]
interpreier

gPower takes 8-bit inputs and therefore we would need a 256-element lookup
table to represent its entire range. However, the argument to Rcon is a 4-bit round
number, so only the first 16 elements of the table will ever be accessed. (In fact,
because the round number never goes above 11, we could shorten the table even
more.) Thus, we write gPower2 table as follows:

gPower2 table : [16] [8];
gPower2 table = [0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80
Ox1lb 0x36 0x6c 0xd8 Oxab 0x4d 0x9%9a 0x2f];

Some utility functions must be rewritten to use mixColumn’ and gPower2
table:

Rcon’ : [4] -> [32];

Rcon’ (i) = zero # (gPower2 table @ (i-1));
MixColumns’ : [4][4][8] -> [4][4]I[8];

MixColumns’ (state) = transpose([| mixColumn’ column

|| column <- transpose(state) |]);
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For each replaced function above, we can use the equivalence checker to verify
that the new version is equivalent to the original. For example, the following com-
mands can be used to verify that gTimes2 and gTimes3 are correct with respect
to the spec for gTimes:

:set symbolic
:eq (\x -> gTimes(2,x)) gTimes2

:eq (\x -> gTimes (3,x)) gTimes3
interpreter

To produce a more efficient implementation of KeyExpansion, we specialize
it to a 128-bit key size by making two minor changes. First, we replace nextWord
with nextWord_ 128, which does not have to check if the key size is more than
6. Second, we replace the infinite intermediate sequences, ws and [Nk ..] with
finite sequences.

In the specification, KeyExpansion is implemented using an infinite sequence
of words, ws, that is defined by drawing i from an infinite sequence, [Nk ..].
KeyExpansion then draws a finite number of elements from that sequence using
take. The hardware compiler can produce a more efficient implementation if we
draw i from [4..43], so that its contents can be evaluated at compile time, and
implement ws as a finite sequence. The new implementation is defined in Fig. 9.
The same technique is used to define key expansion for AES-256.

Finally, Cipher128 is written to use the new definitions (see Fig. 10), and we
lift this definition into the stream model as follows:

Cipherl128 stream : [inf] ([128],[128]) -> [inf] [128];

Cipher128 stream ins = [| Cipherl28 in || in <- ins |[];
KeyExpansionl28 : [4][32] -> [11] [4] [4][8];
KeyExpansionl28 keyAsWords = [| transpose s || s <- ss |]
where {
ss = groupBy (4, [| reverse(splitBy(4,w)) || w <- ws |]);
ws = keyAsWords # ([| nextWord 128 (i,w,w’)
i<- [4 .. 43]

N
|| w<- ws

|| w' <- drop(3,ws)
1)

}i

nextWord_128 : ([8],[32],[32]) -> [32];
nextWord 128(i,w,w’) = w = temp
where {
temp = 1if 1 % 4 ==
then SubWord (RotWord(w’)) ~ Rcon’ (take (4, i / 4))
else w';

}i

Fig. 9 KeyExpansionl28
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Cipheri28 : ([128],[128]) -> [128];
Cipherl28 (key,plaintext) = stateToBlock (finalRound) where {
in = blockToState (plaintext) ;
roundKeys = KeyExpansionl28 (keyToWords (key)) ;
initialRound = AddRoundKey (in, roundKeys @ 0) ;
medialRounds = [initialRound] #
[| AddRoundKey (MixColumns’ (ShiftRows (SubBytes
(state)) ), roundKey)
|| state <- medialRounds
|| roundKey <- roundKeys @@ [1 .. width
(roundkeys) - 2] |1;
finalRound = AddRoundKey (ShiftRows (SubBytes (medialRounds ! 0)),
roundKeys ! 0);
i

Fig. 10 Cipher128

nextKeyl128 : ([4],[4][32]) -> [4][32];
nextKeyl28 (rnd, [w0 wl w2 w3]) = [w0’ wl’ w2’ w3’]
where {
w0’ = SubWord (RotWord w3) ~ (Rcon’ rnd) =~ woO;
wl’ = w0’ = wl;
w2' = wl’ T w2;
w3’ = w2’ ~ w3;

}i
Fig. 11 Next key for AES-128

5.2 Implementation #2

In this section, we design functions that perform a single round of AES-128
and AES-256 (only the AES-128 implementation is shown), and we combine the
KeyExpansion and Cipher functions into one. This implementation of AES
makes it easier to apply the seq pragma, and is simpler to pipeline than the previ-
ous implementation.

Because the KeyExpansion function will be eliminated, some of the opera-
tions that it performed are moved into a new AddRoundKey’ function:

AddRoundKey’ : ([4] [4][8]1,[4]([32]) -> [4][4]I[8];
AddRoundKey'’ (state, keyAsWords) = state ~ roundKey

where roundKey = transpose [| reverse (splitBy (4, word))
|| word <- keyAsWords
[1;

Rather than use nextWord to produce one word at a time, we can write a func-
tion that produces four words at a time. This function is specialized to AES-128 in

Fig. 11 and is equivalent to four sequential applications of nextWord.
It is important to note that the SubWord and RotWord operations can be ex-
changed. This can be checked as follows:

:eq (\x -> SubWord (RotWord x)) (\x -> RotWord (SubWord x))
interpreter
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oneRoundl28 : ([4], ([4]([4]1[8]1,([4]11[32])) -> ([4]11[4]11[8],1[4]11[32]);
oneRoundl28 (round, (state, key)) = (next state, next key)
where {
state’ = 1if round == 1 then state
else if round == 11 then ShiftRows (SubBytes (state))

else MixColumns’ (ShiftRows (SubBytes (state))) ;
next state = AddRoundKey’ (state’, key);
next key = nextKeyl28(round, key);

}i
Fig. 12 One round of AES-128

Cipheri128’ : ([128],[128]) -> [128];
Cipherl28’ (key, pt) = stateToBlock final state
where {

init = (blockToState pt, keyToWords key) ;

rounds = [init] #
[| oneRoundl128 (round, state_and key)
|| state_and key <- rounds
|| round <- [1..11]
[1;
(final state, dont care) = rounds ! 0

Vi

Fig. 13 Cipher128’

When pipelining AES in the following sections, exchanging these operations may
produce a faster implementation.

We can now implement the oneRound128 function that performs a single
round of encryption and key expansion. It takes in the previous state and the key
for this round and produces the key for the next round and a new state that uses that
key from this round. This function is provided in Fig. 12.

Our new Cipher function simply applies the appropriate “oneRound” function
for each of the 11 rounds. This is defined in Fig. 13.

To prevent the Cipher function from being laid out over time, we lift it into the
stream world:

Cipherl28’ stream: [inf] ([128],[128]) -> [inf] [128];
Cipher128’ stream ins= [| Cipherl28’ in || in <- ins|];

This sort of function should be used whenever translating to a hardware imple-
mentation.

5.2.1 Implementation #2 Optimized for Area
In this section, we optimize the implementation from Sect. 5.2 for area by reusing

one round over multiple clock cycles. Cipher128’ was written with this goal in
mind, so we can reuse the oneRound128 function and all we have to do is insert
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Cipherl28 seq : ([128],[128]) -> [128];
Cipherl28 seq (key, pt) = stateToBlock final state
where {

init state = blockToState pt;
init key = keyToWords key;

rounds = [(init state, init key)] #
seq [| oneRoundl28 (round, state_ and key)
|| state_and key <- rounds
|| round <- [1..11] |1;
(final_ state, bla) = rounds ! 0

}i

Fig. 14 Cipherl28_seq

Cipherl28 reg : ([128],[128]) -> [128];
Cipherl28 reg (key, pt) = stateToBlock final state
where {

init state = blockToState pt;
init key = keyToWords key;

rounds = [(init state, init key)] #
[| add reg(round, oneRoundl28 (round,
state_and key))
|| state_and key <- rounds
|| round <- [1..11]1 |]1;
(final_ state, bla) = rounds ! 0

}i

Fig. 15 Cipherl28_reg

the seq pragma as shown in Fig. 14. The seq pragma has the same effect here as
it did in Sect. 3.4.
To implement in hardware, this function should be lifted into the stream model:

Cipherl28 seq stream : [inf] ([128],[128]) -> [inf] [128];
Cipherl28 seqg stream ins = [| Cipherl28 seqg in || in <- ins |];

5.2.2 Implementation #2 Pipelined Using the reg Pragma

In this section, we use the reg pragma to pipeline the implementation from
Sect.5.2. All we do is apply the reg pragma to each round. The function is de-
fined in Fig. 15.

We use the same method as before to conditionally insert registers after each
stage:

add reg (i, x) = if check stage i then (reg x) else x;

check stage : {a} (fin a, a >= 4) => [a] -> Bit;
i .

check stage i = True; // (i
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To implement this in hardware, it should be lifted into the stream model:

Cipherl28 reg stream : [inf] ([128],[128]) -> [inf] [128];
Cipher128 reg stream ins = [| Cipherl28 reg in || in <- ins |];

5.3 T-Box Implementation

In this section, we replace oneRound128 with an equivalent T-Box implemen-
tation that is more efficient. In the next section, we will use the reg pragma to
produce a very high throughput pipeline from this implementation.

One round is defined in Fig. 16; it is a drop-in replacement for oneRound128.
The implementation uses the following utility functions:

TO, T1, T2, T3 : [8] -> [4]1[8];

TO(a) = TO_table @ a;

Tl(a) = TO(a) >>> 1;

T2 (a) = TO(a) >>> 2;

T3 (a) = TO(a) >>> 3;

TO table = const [| TO func(a) || a <- [0..255] |];

TO_func : [8] -> [4][8];

TO0 func(a) = [(gTimes2 s) s s (gTimes3 s)] where
s = SBox @ a;
oneRound128_Tbox : ([4], ([4][4][8],[4]([32])) -> ([4][4]][8],
(41 [32]);
oneRoundl28 Tbox (round, (state, key)) = (next state, next key)
where {
state’ = if round == 1 then state

else transpose d;
next state = AddRoundKey’ (state’, key);
next key = nextKeyl28 (round, key);

d = [| if (round == 11)
then [(t0@l) (tle2) (t2@3) (t3@0)]
else t0O ~ tl1 ~ t2 © t3

where {
t0 = TO (state @ 0 @ (j+0));
tl = Tl (state @ 1 @ (j+1));
t2 = T2 (state @ 2 @ (j+2));
t3 = T3 (state @ 3 @ (j+3));
}
[l 3 <- [0 .. 3] |1;

7

Fig. 16 One round of AES-128, using T-Box
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The top-level “Cipher” function is the same as before, but we use
oneRoundl128 Tbox instead of oneRound128. It is defined in Fig. 17.

This T-Box implementation does not realize a very impressive increase in perfor-
mance, because key expansion is the bottleneck in the algorithm. To obtain a high
clockrate from this T-Box implementation, we can pipeline both the key expansion
and encryption rounds using the reg pragma (see Sect. 5.3.2).

These functions should be used whenever translating to a hardware implementa-
tion:

Cipherl128 Tbox stream : [inf] ([128],[128]) -> [inf] [128];
Cipher128 Tbox stream ins = [| Cipher128 Tbox in || in <- ins |];

5.3.1 T-Box Implementation Optimized for Area

In this section, we use the seq pragma to optimize the T-Box implementation for
area, reusing the round each cycle. We use the same technique as in Sects. 3.4 and
5.2.1.

The implementation reuses the oneRound128_ Tbox function from the previ-
ous section and is defined in Fig. 18.

Cipherl28 Tbox : ([128],[128]) -> [128];
Cipherl28 Tbox (key, pt) = stateToBlock final state
where {
init = (blockToState pt, keyToWords key) ;
rounds = [init] #

[| oneRoundl28 Tbox (round, state and key)
|| state_and key <- rounds
|| round <- [1..11] |1;

(final state, dont care) = rounds ! 0

}i
Fig. 17 AES-128, using T-Box

Cipherl28 Tbox seq : ([128],[128]) -> [128];
Cipherl28 Tbox seqg (key, pt) = stateToBlock final state
where {
init = (blockToState pt, keyToWords key) ;

rounds = [init] #
seq [| oneRoundl128 Tbox (round, state and key)
|| state_and key <- rounds
|| round <- [1..11]1 |]1;
(final state, dont care) = rounds ! 0

}i
Fig. 18 AES-128, using T-Box, reused over time
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These functions should be used whenever translating to a hardware
implementation:

Cipherl128 Tbox seqg stream : [inf] ([128],[128]) -> [inf] [128];
Cipher128 Tbox seq stream ins = [| Cipherl128 Tbox_seq in
|| in <- ins |]1;

5.3.2 T-Box Implementation Pipelined Using the reg Pragma

In this section, we use the reg pragma to pipeline the AES-128 T-Box implemen-
tation. We have decided to pipeline each round to five stages and target a clockrate
of about 400 MHz (2.5 ns).

We should attempt to implement the same number of stages for both “nextKey”
and “oneRound,” because they execute in parallel. If we do not use the same number
of stages in each function, the compiler will simply insert registers to keep the cir-
cuits synchronized, but the registers will not be optimally placed. Also, we should
use Block RAMs with 2-cycle latency; they have a higher clockrate, and the extra
latency simply allows us to do more in parallel with the Block RAM. Therefore, to
obtain five stages per round we should insert three more registers into both “nex-
tKey” and “oneRound.”

Each Block RAM behaves as a register, so the SBox and Thox operations al-
ready define some of the pipeline stages. We are defining a pipeline with many small
stages, so the latency of Block RAMs will dominate. Therefore, the input to a Block
RAM should never be calculated in the same stage as the Block RAM because this
would increase the delay of that stage. For example, we should place a register
between the Rot Word and SubWord operations so that they are performed in sep-
arate stages. Alternatively, we can exchange these operations as this may result in a
more balanced pipeline.

Because compiling to LLSPIR is relatively quick and provides us with an
estimated clockrate, one can experiment with many different combinations and
placements of reg in search of the fastest possible clockrate.

The “nextKey” circuit performs the following, sequentially:

1. The following, in parallel:

(a) SubWord and RotWord
(b) Rcon and xor with w0

Xor the previous two results
Xor with wl
Xor with w2
Xor with w3

Al

Because it is implemented using a Block RAM, the SubWord operation will take
2 cycles. We can check the propagation delay of the other operations by executing
the following commands in LLSPIR mode:
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nextKeyl28 reg : ([4],[4][32]) -> [4][32];
nextKeyl28 reg(rnd, [w0 wl w2 w3]) = [w0’ wl’ w2’ w3']
where {
w0’ = RotWord (SubWord w3) ~ (Rcon’ rnd) "~ wo0;
wl’ = reg(w0’ "~ wl);
w2’ = (wl’' ©~ w2);
w3’ = reg(w2’' = w3);
}i

Fig. 19 Pipelined key expansion for AES-128

:translate (\(x rnd) -> Rcon’ rnd ~ x)

:translate (\(X v,z) -> (x:[32]) ~ vy " z)

:translate (\(x, y,z w) -> (x:[32]1) v Tz " w)

:translate (\(x,y,z) -> (RotWord x) "~y "~ z)
interpreter

From this we find that 1(b) can fit within 2 cycles and therefore can execute in
parallel with SubWord. We also discover that two xor operations can fit within
1 cycle, RotWord and two xor operations can, but three xor operations cannot.
Therefore, we should implement the “nextKey” stages as follows:

1. SubWord in parallel with Rcon’ rnd ~ woO (this takes 2 cycles)
2. RotWord and two xor operations
3. Two more xor operations

This pipeline is implemented in Fig. 19.
Pipelining one round of encryption is fairly straightforward. We define the fol-
lowing stages:

1. Four parallel T-Box lookups
2. t0 ©~ tlinparallel with t2 ~ t3, then xor the results
3. AddRoundKey’

The function in Fig. 20 implements this pipeline.

Our top-level function is defined in Fig. 21; it is identical to the one in the pre-
vious section, except that it uses oneRound128 Tbox_reg for the “oneRound”
function.

In TSIM mode (after place-and-route), this implementation yields a circuit with
a rate of one element per cycle that can be clocked between 350 MHz (44.8 Gbps)
and 450 MHz (57.6 Gbps), depending on the implementation technology.

To implement this in hardware, it should be lifted into the stream model:

Cipherl28 Tbox reg stream ins = [| Cipherl28 Tbox reg in

Cipherl28 Tbox reg stream : [inf] ([128],[128]) -> [inf] [128];
|
|| in <- ins |];
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oneRound128 Tbox reg : ([4], ([4]1[4]1[8]1,1[4]11[32]1)) -> ([4]I[4]I8],
[41032]1);
oneRoundl28 Tbox reg(round, (state, key))= (next state, next key)
where {
state’ = if round== 1 then state

else transpose d;
next state = reg(AddRoundKey’ (state’, key));
next key = nextKeyl28 reg(round, key);

d = [| reg(if (round == 11)
then [(toel) (tle2) (t2@3) (t3@0)]
else reg(t0 ~ tl) ~ reg(t2 © t3))

where {
t0 = TO (state @ 0 @ (j+0));
tl = Tl (state @ 1 @ (j+1));
t2 = T2 (state @ 2 @ (j+2));
t3 = T3 (state @ 3 @ (j+3));
}
[| 3 <- [0 .. 31 |I;

}i
Fig. 20 Heavily pipelined round of AES-128, using T-box

Cipherl28 Tbox reg : ([128],[128]) -> [128];
Cipherl28 Tbox reg (key, pt) = stateToBlock final state
where {
init = (blockToState pt, keyToWords key) ;
rounds = [init] #

[| oneRoundl128 Tbox reg (round, state and key)
|| state_and key <- rounds
|| round <- [1..11] |1;

(final state, dont care) = rounds ! 0

}i
Fig. 21 Heavily pipelined AES-128, using T-box

5.4 Testing and Verification

In this section, we verify that the implementations in Sects. 5.1 and 5.2 are equiva-
lent to the reference specifications for AES-128 and AES-256.

First, we generate formal models of the reference specification in symbolic
mode:

:1 AES Revisited.tex

:set symbolic
:fm (Cipher : ([128],[128]) -> [128]) "aesl28-spec.fm"

:fm (Cipher : ([256],[128]) -> [128]) "aes256-spec.fm"
interpreter
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Then, we generate formal models for the first implementation in symbolic
mode and check them against the reference specification. Because the implementa-
tion is much more efficient than the spec, we will check all further implementations
against the first implementation, rather than against the reference spec.

:1 aes-impl.tex

:set symbolic
:fm Cipherl28 "aesl28-impl.fm"
:fm Cipher256 "aes256-impl.fm"

:eq "aesl28-impl.fm" "aesl28-spec.fm"

:eq "aes256-impl.fm" "aes256-spec.fm"
interpreter

We also check that the implementation is correct in LLSPIR, FSIM, and TSIM
modes by issuing the following commands in each of these modes:

:eq Cipherl28 "aesl28-impl.fm"

:eq Cipher256 "aes256-impl.fm"
interpreter

And we check all other implementations against the first one in symbolic, LL-
SPIR, FSIM, and TSIM modes:

:eq Cipherl28’ "aesl28-impl.fm"

:eq Cipher256’ "aes256-impl.fm"
interpreter

:eq Cipherl28 seq "aesl28-impl.fm"

:eq Cipher256 seq "aes256-impl.fm"
- interpreter

5.5 Performance

This section summarizes the performance obtained by the AES implementations
presented previously in this section. We present numerical results for logic utiliza-
tion, latency, clockrate, and throughput.

The following implementations have been provided in this paper:

1. Section 5.1: aes-imp1l. tex — Unrolled; when using Block RAMs, automati-
cally pipelined to one pipeline stage per round

2. Section 5.2: aes-imp2.tex — Using a “oneRound” function, combined key
expansion and cipher functions; unrolled; and pipelined when using Block RAMs

(a) Section5.2.1: aes-seq.tex — Using the seq pragma to reuse one round
(b) Section 5.2.2: aes-reg. tex — Pipelined using the reg pragma
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Version Logic utilization Performance

LUTs|Flip-flops|BRAMs|Latency| Rate| Clockrate | Throughput
(cycles) [(cycles) (MHz) (Gbps)

FSIM | TSIM [FSIM | TSIM
(1) 128 52158 0 0 1 1| 26.0 X| 33 X
4530 1280 100 11 1/203.0| 144.4| 26.0| 18.5
(1) 256 50343 0 0 1 1| 20.0 X| 26 X
6132 3456 138 15 1/208.1]150.0| 26.6| 19.2
(2a) 128 10565 498 0 11 11{109.21100.3| 1.3 1.2
1405 457 10 12 11{168.5|110.2| 2.0 1.3
(2a) 256 10919 670 0 15 15(110.6/100.2] 0.9 0.9
1565 457 10 16 15(168.5|150.9| 14| 1.3
(3) 128 | 4096 1280 100 11 1/213.2]156.0| 27.3| 20.0
(3a) 128 1134 461 10 12 11{179.2|143.5| 2.09| 1.67
(3b) 128| 6336 12576 100 53 1/385.5(370.0| 49.3| 47.4

Fig. 22 Performance results for AES implementations

3. Section 5.3: aes-tbox. tex — Replacing each round of encryption from
aes-imp2.tex with a T-Box implementation (AES-128 only); unrolled; and
pipelined when using Block RAMs

(a) Section5.3.1: aes-tbox-seq. tex— Using the seq pragma to reuse one
round

(b) Section5.3.2: aes-tbox-reg. tex—Pipelining the T-Box implementation
using the reg pragma

The performance results for some of these implementations are provided in
Fig.22.

When not using Block RAMs in an unrolled AES, the backend tools sometimes
run out of memory during synthesis and always crash before finishing place-and-
route. This is indicated by “X” in the results in the table.

Both FSIM (synthesis only) and TSIM (synthesis with place-and-route) results
are presented. All performance results are obtained by synthesizing for a specific
FPGA part. This part has 63,168 slices, each with two LUTs and two flip-flops, for
a total of 126,336 LUTs and 126,336 flip-flops, and 552 Block RAMs. This choice
greatly influences the results. Some other FPGA parts yield smaller and/or faster
implementations. The effort level (fpga optlevel) is at its default, minimal
setting. A higher effort level could yield better performance in TSIM mode.

6 Conclusion

We have introduced the types and constructs of the Cryptol language, as well
as the Cryptol interpreter, and in Sect.3 we have provided several examples of
how to use the language and toolchain to specify, implement, refine, and verify
hardware circuits. We then used these techniques to produce and refine several
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implementations of AES, including implementations with very little resource
utilization and pipelined implementations with very high throughput.

The LLSPIR compiler allows us to view the results of optimizations, includ-
ing the latency, rate, estimated area utilization, and estimated clockrate, without
performing lengthy synthesis. This greatly reduces the time to produce new refine-
ments.

Once the user has formulated a circuit the right way — as an appropriate sequence
comprehension — the seq, par, and reg pragmas provide simple, effective ways
of making space—time tradeoffs and implementing pipelines without sacrificing the
high-level, readable format of the source code.

In the future, the Cryptol team plans to increase the accuracy of profiling
in LLSPIR, support more hardware architectures, and implement automated and
guided pipelining.
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Verifying Pipelines with BAT

Panagiotis Manolios and Sudarshan K. Srinivasan

1 Introduction

In this chapter, we show how to use the Bit-level Analysis Tool (BAT) [4,20-22]
for hardware verification. The BAT system has been used in the analysis of systems
ranging from cryptographic hash functions to machine code to biological systems
to large component-based software systems [18,23,24], but here we focus on one
application: verification of pipelined hardware systems. This chapter brings together
results from previous work in a self-contained way, and is intended as a starting
point for someone who is interested in using automatic formal verification tools to
prove the correctness of hardware or low-level software. The structure and examples
in this chapter are based on previous work by the authors that showed how to use
the ACL2 theorem proving system [8] to model and verify pipelined machines [12].

Hardware systems are ubiquitous and are an integral part of safety-critical and
security-critical systems. Ensuring the correct functioning of hardware is therefore
of paramount importance as failure of deployed systems can lead to loss of life
and treasure. A well known example is the bug that was found in the floating point
division (FDIV) unit of the Intel Pentium processor and that led to a 475 million
dollar write-off by Intel. Estimates show that a similar bug in the current generation
of Intel processors would cost the processor company about 12 billion dollars [1].

One of the key optimizations used in hardware systems is pipelining. Pipelining
is used extensively in hardware designs, including both mainstream and embedded
microprocessor designs, multi-core systems, cache coherence protocols, memory
interfaces, etc. Therefore, the verification of pipelines is an important, ubiquitous
problem in hardware verification and has received a lot of attention from the research
community.
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Pipelines are essentially assembly lines. Just like it is much more efficient to
build cars using an assembly line, it is also much more efficient to break up the
execution of processor instructions into well-defined stages, e.g., fetch, decode, and
execute. In this way, at any point in time there can be multiple instructions being ex-
ecuted simultaneously, in parallel and in various stages of completion. Furthermore,
in order to extract maximum performance from pipelines, synchronization between
the various instructions being executed in parallel is required. This synchronization
between instructions, memories, and register files is provided by complex pipeline
controllers. This added complexity makes the design and verification of pipelines a
challenging problem.

We use the BAT system [22] for pipelined machine verification for several rea-
sons. The BAT specification language [21] is designed as a synthesizable HDL with
formal semantics and can therefore be used to construct bit-level pipelined machine
models amenable to formal analysis. The decision procedure incorporated in BAT
includes a memory abstraction algorithm and memory rewriting techniques and can
therefore deal with verification problems that involve large memories [20]. Also, the
BAT decision procedure uses an efficient circuit to CNF compiler, which drastically
improves efficiency [4, 19].

The notion of correctness that we use for pipelined machines is based on Well-
founded Equivalence Bisimulation (WEB) refinement [10, 11]. There are several
attractive properties of refinement. The instruction set architecture (IS2) is used as
the specification. Both safety and liveness are accounted for. The refinement map
(a function used to relate states of the pipelined machine with states of its ISA) is a
parameter of the framework and can therefore be studied and optimized to improve
efficiency [7, 13, 15, 16]. Refinement is a compositional notion, a property that can
be exploited to deal with scalability issues [14].

The rest of the chapter is organized as follows. Section 2 describes the BAT
system, including the BAT specification language and the BAT decision procedure.
Section 3 describes a three-stage pipelined machine example and its ISA, and also
shows how to model these machines using BAT. In Sect. 4, we provide an overview
of the notion of correctness we use, which is based on refinement. Section 5 shows
how to verify pipelines with the BAT system, using the example of the three-stage
pipeline. Section 6 provides an overview of techniques to cope with the efficiency
and scalability issues that arise when reasoning about more complex pipelined sys-
tems. Conclusions are given in Sect. 7.

2 Bit-Level Analysis Tool

The BAT is a system for solving verification problems arising from hardware,
software, and security. BAT is designed to be used as a bounded model checker
and k-induction engine for register transfer level (RTL) models. At the core of
the system is a decision procedure for quantifier-free formulas over the exten-
sional theory of fixed-size bit-vectors and fixed-size bit-vector arrays (memories).
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BAT also incorporates a specification language that can be used to model hardware
designs at the word-level and to express linear temporal logic (LTL) properties.
In this section, we describe the BAT specification language and provide a brief
overview of the BAT decision procedure.

2.1 BAT Specification Language

The BAT specification language is strongly typed and includes a type inference
algorithm. BAT takes as input a machine description and LTL specification, and tries
to either find a counterexample requiring no more steps than a user provided upper
bound, or tries to prove no such counterexample exists. While BAT accepts various
file formats, a commonly used format for the machine specification requires the
following four sections: :vars, :init, :trans, and : spec. These correspond
to the declaration of the variables making up the machine state, a Boolean formula
describing valid initial states, a Boolean formula describing the transition relation,
and an LTL formula giving the desired formula, respectively. In this section, we
describe the main features of the language. For a complete description, see the BAT
Web page [21].

2.1.1 Data Types

The BAT language is strongly typed. Variables are either bit-vectors or memories.
The :vars section is a list of variable declarations that specify the types of each
variable. Each variable declaration is either (1) A symbol corresponding to the vari-
able name, in which case the variable is a bit-vector of one bit (e.g., x). (2) A list
with two elements, a variable name and a positive integer, in which case the variable
is a bit-vector of the given number of bits (e.g., (x 4) is a bit-vector of 4 bits). (3)
A list with three elements, a variable name and two positive integers, specifying
that the variable is a memory with the given word size and number of words (e.g.,
(x 8 4) is amemory with eight 4-bit words).

A :vars section then looks like this: (:vars (x 2) y (z 8 16)).In
addition to variables, there are bit-vectors and integer constants. Bit-vectors can be
given in binary, hex, or octal. For example, numbers in binary start with 0b and are
followed by an arbitrary sequence of Os and 1s.

Integers are represented by signed bit-vectors. The size of the bit-vector is deter-
mined by BAT’s type-inferencing mechanism. The appropriate size is determined
by the context in which the integer is used. For example, if x is a 4-bit bit-vector,
then if we bitwise-and it with 3, it is written as (and x 3). Then in this context,
3 is represented by the bit-vector 0b0011, since bit-vectors that are bitwise-anded
together must be of the same type. The only restriction in this case is that the integer
must be representable in signed binary notation (2’s complement) in the number of
bits dictated by the context.



148 P. Manolios and S.K. Srinivasan

2.1.2 Primitives

BAT supports primitives for Boolean, arithmetic, and memory operations. All the
basic bitwise Boolean functions are provided. The functions and, or, and xor
all take an arbitrary number of arguments and perform the appropriate operations.
In addition, - > (implication), and <- > (iff) take exactly two arguments. The not
function takes exactly one argument. All of these functions take bit-vectors of the
same size, and return a bit-vector of that size.

Arithmetic operations include =, <, >, <= (less than or equal to), >= (greater than
or equal to), add, sub, inc, and dec. BAT contains bit-vector related functions
as well. These include different kind of shift and rotate operations, concatenation,
and (signed) extension. For example, the cat function concatenates bit-vectors,
returning a bit-vector with size equal to the sum of the inputs to the cat function.
The most significant bits are to the left so the earlier arguments to the cat formula
are more significant than the later arguments.

Memories have to be treated with care because the obvious translation that con-
verts formulas involving memories to propositional logic leads to an exponential
blow-up. The BAT system introduced a decision procedure for memories that leads
to greatly reduced SAT problems [20]. The memory-specific BAT functions are get
and set. The get function takes a memory and a bit-vector and returns the word
of the memory addressed by the bit-vector. The set function takes a memory and
two bit-vectors. It returns a memory equivalent to the original memory except that
the word addressed by the first bit-vector is set to the value of the second bit-vector.
In both cases the size of the addresses must be equal to the ceiling of the log of
the number of words in the memory, and in the case of the set the size of the last
argument must be equal to the words size of the memory. Memories can be directly
compared for equality using = (type checking makes sure that they have the same
type, i.e., that they have the same word size and the same number of elements). In a
similar way, they type of an i £ can be a memory (type checking again checks that
the then and else cases have the same type).

2.1.3 Expressions

BAT supports several constructs to build bit-vector and bit-vector memory expres-
sions. Conditional statements include i f and cond. The if statement takes three
arguments: the first is the test and must be a 1-bit bit-vector. The second and third
arguments are the then and else clauses respectively and must be the same type.
Cond statements are convenient for expressing a series of if statements. For ex-
ample, a cond statement that returns -1 if x <y, 1 if x > y and O otherwise is
shown below:

(cond ((< x y) -1)
((>xy) 1)
(0b1 0))
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BAT provides a way to return multiple values from an expression (this becomes
helpful in conjunction with user-defined functions). This is done simply by wrap-
ping a sequence of values in an mv form:

(mv (+ a b) (set m x y))

This returns both the sum and the result of the set form.

The most complex construct of the BAT language is local. In its simplest form,
it operates like a 1et+ in Lisp. The following implementation of an ALU slice
demonstrates one of the more complex abilities of the local.

(local ((nb (xor bnegate b))

(resO0 (and a nb))

(resl (or a nb))

(((cout 1) (res2 1)) (fa a nb cin)))

(cat cout (mux-4 resO resl res2 1lu op))))

Here, the last binding binds variables cout and res2 simultaneously. It declares
each to be 1 bit, and binds them to the 2-bit output of the £a function (a user-
defined function). This splits up the output of the f£a function between cout and
res?2 according to their sizes. Another feature of the 1ocal is illustrated by the
following.

(local ((c 2))
(((t0 (c 0))
(alu-slice (a 0) (b 0) bnegate bnegate op))
((e1 (c 1))
(alu-slice (a 1) (b 1) tO0 bnegate op))
(zero (= c 0)))
(cat tl c zero))

Here an extra argument appears at the beginning of the 1ocal. This is a list of
bit-vector variable declarations. The idea is that these variables can be bound by bits
and pieces through the bindings. The first binding binds several values, as in the last
example. However, in this example the second value being bound is not a variable,
but a bit of the variable, ¢, declared in the first argument to the 1ocal. Likewise,
the other bit of c is set in the second binding. It is also possible to set a sequence of
bits in a similar way by giving two integers: ((c 0 1) (and a b)).

Finally, it is possible to set multiple values to the result of an mv form:

(local ((aa mm) (mv (inc a) (set m a b)))
(set mm c aa))

Here the types of the variables being bound are inferred from the type of the
mv form.



150 P. Manolios and S.K. Srinivasan

2.1.4 User-Defined Functions

In addition to the : vars, : init, : trans, and : spec sections of a specification,
the user can define his or her own functions in the : functions section. Consider
the following example.

(:functions
(alu-output
(32)
((op 4) (vall 32) (val2 32))
(cond ((= op 0) (bits (+ wvall val2) 0 31))
((= op 1) (bits (- wvall val2) 0 31))
(1bl (bits (and vall wval2) 0 31)))))

The functions section takes a list of function definitions. In this example, we
define one function. A function definition starts with the function name. Our func-
tion is called alu-output. The second element in the definition is the type. This
is a list containing one positive integer for a bit-vector function (alu-output,
for example returns a 32-bit bit-vector), two positive integers if the return type is
a memory, and a list of one integer list and two integer lists if multiple values are
returned. For example ( (1) (8 4)) would specify that the function returns a
1-bit bit-vector and a memory with eight 4-bit words. The third part of a function
definition is a list of its arguments. This is just a list of variable definitions just like
the ones in the :vars section. In the case of alu-output, the inputs are op (a
4-bit bit-vector), vall (a 32-bit bit-vector), and val2 (another 32-bit bit-vector).
The final element of a function definition is the function body. Its return type must
be compatible with that of the function.

2.1.5 Specification Formats

BAT takes specifications in one of the three formats. The first is a machine descrip-
tion for bounded model checking. A file in this format contains three items. The first
is the keyword “:machine” (without the quotes). The second is the machine descrip-
tion (described above). The third is a natural number which represents the number
of steps you want BAT to check the property for.

The other two formats are very similar. They are used to check if a formula holds
for some values of the variables (existential), or if a formula holds for all values of
the variables (universal). These files contain four items. The first is either “:exists”
or “:forall” (without the quotes). The next is a list of variable declarations for the
formula. The third is a list of function definitions for use in the formula (this can be
() if there are no functions). The final argument is the formula itself, which is over
the variables and functions declared earlier in the file.

For examples of all these formats, see the BAT Web page [21].



Verifying Pipelines with BAT 151

2.1.6 Other Language Features

Since the BAT language is an s-expression based language implemented in Lisp, it
is easy to develop parametrized models. We routinely use Lisp functions that take
in a set of input parameters and generate BAT models.

BAT also has support for defining constants, LTL temporal operators, and a num-
ber of other primitive operators not discussed here. We point the reader to the BAT
Web page for detailed documentation on the BAT specification language [21].

2.2 BAT Decision Procedure

As we saw in the earlier section, a BAT specification includes a model and a property
about the model that BAT attempts to verify. The BAT decision procedure translates
the input specification to a Boolean formula in conjunctive normal form (CNF). The
CNF formula is then checked using a SAT solver. In the common case, where we are
checking validity, if the CNF formula is found to be unsatisfiable, then this corre-
sponds to a formal proof that the user-provided property is valid. If the CNF formula
is satisfiable, then the satisfying assignment is used to construct a counterexample
for the input property.

The translation from the input specification to CNF is performed using four
high-level compilation steps and is based on a novel data structure for represent-
ing circuits known as the NICE dag, because it is a dag that contains Negations,
Ites (If-Then—Else operators), Conjunctions, and Equivalences [4]. In the first step,
functions are inlined, constants are propagated, and a range of other simplifications
are performed. The output of the first step is a NICE dag that also includes next
operators, memory variables, and memory operators. In the second step, the tran-
sition relation is unrolled for as many steps as specified by the specification. This
eliminates the next operators, resulting in a NICE dag with memory variables and
memory operators. In the third step, BAT uses its own decision procedure for the
extensional theory of arrays to reduce memories [20], which are then eliminated by
replacing memory variables and memory operators with Boolean circuits, resulting
in a NICE dag. In the fourth step, the NICE dag is translated to a SAT problem in
CNF format.

2.2.1 Memory Abstraction

BAT incorporates an automatic, sound, and complete memory abstraction algo-
rithm [20]. The algorithm allows BAT to handle verification problems that involve
models with large memories, but with correctness properties that include only a
small number of memory references. The verification of pipelined microprocessor
models is an example of such verification problems.
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The key idea of the abstraction algorithm is to reduce the size of a memory to a
size that is comparable to the number of unique accesses (both read and write) to
that memory. The insight here is that if in a correctness property, there are only 10
unique accesses to a memory with say 232 words, it is enough to reason about a re-
duced version of the memory whose resulting size is just larger than 10, to check the
property. Therefore, the original memory size can be drastically reduced. Note how-
ever that care has to taken when performing the reduction because a memory access
could be a symbolic reference, i.e., an access that could reference any one of a large
number of words in the memory. Another complication is that we allow memories to
be directly compared in any context, i.e., we have to support an extensional theory
of arrays.

The efficiency of memory abstraction depends on the size of the reduced mem-
ories, which in turn depends on the number of unique memory access. However,
because of nested memory operations, it is often hard to determine if two different
memory references correspond to the same symbolic reference. To improve the ef-
ficiency of the abstraction, BAT incorporates automated term-rewriting techniques
employing a number of rewrite rules that are used to simplify expressions with mem-
ory operators. The simplifications performed by rewriting help to identify equivalent
memory references thereby improving the efficiency of memory abstraction.

2.2.2 Efficient Translation To CNF

CNF generation can significantly affect SAT solving times. BAT introduced a new
linear-time CNF generation algorithm, and extensive experiments, have shown that
our algorithm leads to faster SAT solving times and smaller CNF than existing ap-
proaches. Our CNF generation algorithm is based on NICE dags, which subsume
and-inverter graphs (AIGs) and are designed to provide better normal forms at lin-
ear complexity. The details are beyond the scope of this chapter, but are described
in detail elsewhere [4].

3 ISA and Pipelined Machine Models

In this section, we show how to model a simple instruction set architecture and a
three-stage pipelined implementation of this instruction set architecture using the
BAT specification language. We start by defining ISA, a sequential machine that di-
rectly implements the instruction set architecture. We then define MA, a three-stage
pipelined implementation (the microarchitecture machine). As stated previously,
the models are based on our previous work on using ACL2 for hardware verifi-
cation [12]. Those models in turn are based on Sawada’s simple machine [27] and
our subsequent related machines [9].

The instructions in the TSA have four components, including an opcode, a des-
tination register, and two source registers. The pipelined MA machine is shown
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Fig. 1 Our simple
three-stage pipelined machine PC Register
File
Memory Latch Latch
1 2

in Fig. 1. The functionality of the ISA is split into three stages so that each of the
stages can operate in parallel on different instructions. Registers, known as pipeline
latches, are used to separate the stages. The pipeline latches hold the intermediate
results generated in a stage. The MA machine has two pipeline latches, latch 1 and
latch 2 as shown in the figure. The three stages of our MA machine are fetch, set
up, and write. In the fetch stage, an instruction is fetched from memory using the
program counter as the address, and is stored in latch 1. In the set-up stage, the
source operands are retrieved from the register file and stored in latch 2, along with
the rest of the instruction. In the write stage, the appropriate operation is performed
by the ALU (arithmetic and logic unit), and the result of the ALU operation is stored
in the destination register specified by the destination address of the instruction.
Consider a simple example, where the contents of the memory is as follows.

Inst
0 add rb ra ra
1 add ra rb ra

The following traces are obtained when the two-line code segment is executed
on the ISA and MA machines. Note that we only show the values of the program
counter and the contents of registers ra and rb.

The rows correspond to steps of the machines, e.g., row Clock O corresponds to
the initial state, Clock 1 to the next state, and so on. The ISA and MA columns con-
tain the relevant parts of the state of the machines: a pair consisting of the Program
Counter (PC) and the register file (itself a pair consisting of registers ra and rb). The
final two columns indicate what stage the instructions are in (only applicable to the
MA machine).

The PC in the initial state (in row Clock 0) of the ISA machine is 0. The values
of the registers ra and rb are 1. The next state of the ISA machine (row Clock 1)
is obtained after executing instruction “Inst 0.” In this state, the PC is incremented
to 1, and the sum of the values stored in registers ra and rb (2) is computed and
stored in rb. In the second clock cycle, instruction “Inst 1 is executed. The PC is
again incremented to 2. The sum of the values stored in registers ra and rb (3) is
computed and stored in ra.

In the initial state of the MA machine, the PC is 0. We assume that the two latches
are initially empty. In the first clock cycle, “Inst 0” is fetched and the PC is incre-
mented. In the second clock cycle, “Inst 17 is fetched, the PC is incremented again,
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Clock ISA MA Inst 0 Inst 1
0 O, (1,1)) (0, (1,1))

1 (1, (1,2)) (1,(1,1))  Fetch

2 (2,(3,2) (@2,(1,1)) Set-up Fetch
3 (2, (1,2)) Write Stall

4 (-, (1,2)) Set—up
5 (-, (3,2) Write

and “Inst 0” proceeds to the set-up stage. In the third clock cycle, “Inst 0” com-
pletes and updates register rb with the correct value (as can be seen from the MA
column). However, during this cycle, “Inst 1” cannot proceed, as it requires the rb
value computed by “Inst 0,” and therefore is stalled and remains in the fetch stage.
In the next clock cycle, “Inst 1” moves to set-up, as it can obtain the the rb value it
requires from the register file, which has now been updated by “Inst 0.” In the fifth
clock cycle, “Inst 1” completes and updates register ra.

3.1 ISA Definition

We now consider how to define the ISA and MA machines using BAT. The first
machine we define is a 32-bit IS4, i.e., the data path is 32 bits. The main function
is isa-step, a function that steps the ISA machine, i.e., it takes an ISA state and
returns the next I SA state. The definition of 1sa-step follows.

(isa-step
((32) (4294967296 32)
(4294967296 100) (4294967296 32))
((pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(local
((inst (get imem pc))
(op (opcode inst))
(rc (dest-c inst))
(ra (src-a inst))
(rb (src-b inst)))
cond ((= op 0) (isa-add rc ra rb pc regs imem dmem))

(

;i REGS[rc] := REGS[ral + REGS|[rb]
((= op 1) (isa-sub rc ra rb pc regs imem dmem))
;; REGS[rc] := REGS[ra] - REGS|[rb]
((= op 2) (isa-and rc ra rb pc regs imem dmem))
;i REGS[rc] := REGS[ra] and REGS[rb]
((= op 3) (isa-load rc ra pc regs imem dmem))

; REGS[rc] := MEM|[ra]

—
e
-~

op 4) (isa-loadi rc ra pc regs imem dmem))
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;7 REGS[rc] := MEM[REGS[ral]

((= op 5) (isa-store ra rb pc regs imem dmem))
;; MEM[REGS[rall := REGS[rb]

((= op 6) (isa-bez ra rb pc regs imem dmem))
;7 REGS[ral]=0 -> pc:=pc+REGS [rb]

((= op 7) (isa-jump ra pc regs imem dmem))

;i Pc:=REGS [ral

(1bl (isa-default pc regs imem dmem)))))

In the above function regs refers to the register file, imem is the instruc-
tion memory, and dmem is the data memory. The function fetches the instruction
from the instruction memory, which is a bit-vector. Then it uses decode functions
opcode, dest-c, src-a, and src-b to decode the instruction. The opcode
is then used to figure out what action to take. For example, in the case of an
add instruction, the next ISA state is (isa-add rc ra rb pc regs imem
dmem) , where isa-add provides the semantics of add instructions. The definition
of isa-addis given below.

(isa-add

((32) (4294967296 32)
(4294967296 100) (4294967296 32))

((rc 32) (ra 32) (rb 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)
(add-rc ra rb rc regs)
imem
dmem) )

(add-rc (4294967296 32)
((ra 32) (rb 32) (rc 32) (regs 4294967296 32))
(set regs
rc
(bits (+ (get regs ra) (get regs rb)) 0 31)))

Notice that the program counter is incremented and the register file is updated by
setting the value of register rc to the sum of the values in registers ra and rb. This
happens in function add-rc.

The other ALU instructions are similarly defined. We now show how to define
the semantics of the rest of the instructions. The semantics of the load instructions
are shown next.

(isa-loadi

((32) (4294967296 32)
(4294967296 100) (4294967296 32))

((rc 32) (ra 32) (pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
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(mv (bits (+ pc 1) 0 31)
(load-rc (get regs ra) rc regs dmem)
imem
dmem) )

(load-rc

(4294967296 32)

((ad 32) (rc 32) (regs 4294967296 32)
(dmem 4294967296 32))

(set regs rc (get dmem ad)))

(isa-load
((32) (4294967296 32)
(4294967296 100) (4294967296 32))
((re 32) (ad 32) (pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv (bits (+ pc 1) 0 31)
(load-rc ad rc regs dmem)
imem
dmem) )

The semantics of the store instruction is given by isa-store

(isa-store
((32) (4294967296 32)
(4294967296 100) (4294967296 32))
((ra 32) (rb 32) (pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv (bits (+ pc 1) 0 31)
regs
imem
(store ra rb regs dmem)))

(store

(4294967296 32)

((ra 32) (rb 32) (regs 4294967296 32)
(dmem 4294967296 32))

(set dmem (get regs ra) (get regs rb)))

Jump and branch instructions follow.

(isa-jump
((32) (4294967296 32)
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(4294967296 100) (4294967296 32))
((ra 32) (pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv (bits (get regs ra) 0 31)
regs
imem
dmem) )
(isa-bez ((32) (4294967296 32)
(4294967296 100) (4294967296 32))
((ra 32) (rb 32) (pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv (bez ra rb regs pc)
regs
imem
dmem) )

(bez

(32)

((ra 32) (rb 32) (regs 4294967296 32) (pc 32))

(cond ((= (get regs ra) O0)
(bits (+ pc (bits (get regs rb) 0 31)) 0 31))
(1bl (bits (+ pc 1) 0 31))))

No-ops are handled by isa-default.

(isa-default
((32) (4294967296 32)
(4294967296 100) (4294967296 32))
((pc 32) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv (bits (+ pc 1) 0 31)
regs
imem
dmem) )

3.2 MA Definition

The MA machine is a pipelined machine with three stages that implements the in-
struction set architecture of the I SA machine. Therefore, the ISA machine can be
thought of as a specification of the MA machine. The MA machine contains a PC, a
register file, a memory, and two pipeline latches. The latches are used to implement



158 P. Manolios and S.K. Srinivasan

pipelining and stores intermediate results generated in each stage. The first latch
contains a flag which indicates if the latch is valid, an opcode, the target register, and
two source registers. The second latch contains a flag as before, an opcode, the tar-
get register, and the values of the two source registers. The definition of ma-step
follows.

(ma-step
((298) (4294967296 32)
(4294967296 100) (4294967296 32))
((ma 298) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(mv
(cat
(step-latch2 ma regs)
(step-latchl ma imem)
(step-pc ma regs imem))
(step-regs ma regs dmem)
imem
(step-dmem ma dmem)))

The ma-step function works by calling functions that given one of the MA
components return the next state value of that component. Note that this is very
different from isa-step, which calls functions, based on the type of the next
instruction, that return the complete next i sa state.

Below, we show how the register file is updated. If latch?2 is valid, then if we have
an ALU instruction, the output of the ALU is used to update register rc. Otherwise,
if we have a load instruction, then we update register rc with the appropriate word
from memory

(step-regs
(4294967296 32)
((ma 298) (regs 4294967296 32) (dmem 4294967296 32))
(local
((validp (getvalidp2 ma))
(op (getop2 ma))
(rc (getrc2 ma))
(ra-val (getra-val2 ma))
(rb-val (getrb-val2 ma)))
cond ((and validp (alu-opp op))
(set regs rc (alu-output op ra-val rb-val)))
((and validp (load-opp op))
(set regs rc (get dmem ra-val)))
(1bl regs))))

(
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(alu-opp

(1)

((op 4))

(or (= op 0) (= op 1) (= op 2)))

(load-opp
(1)
((op 4))
(or (= op 3) (= op 4)))

(alu-output

(32)

((op 4) (vall 32) (val2 32))

(cond (( 0) (bits (+ wvall val2) 0 31))
(( op 1) (bits (- wvall val2) 0 31))
(1 (bit

s (and wvall wval2) 0 31))))

bl

Next, we describe how latch 2 is updated. Latch 2 is invalidated if latch 1 will be
stalled or if latch 1 is not valid. Otherwise, we copy the opcode and rc fields from
latch1 and read the contents of registers rb and ra, except for load instructions. We
use a field pch2 to record the value of the PC value corresponding to the instruction
in latch 2. A similar field, pchl, is used in latch 1 to record the PC value correspond-
ing to the instruction in latch 1. Note that the fields pch1 and pch2 do not affect the
computation of the machine. They are used as history variables to primarily to aid
the proof process.

(step-latch2
(133)
((ma 298) (regs 4294967296 32))
(local ((llop (getopl ma)))
(cond ((= (or (not (getvalidpl ma))
(stall-1llp ma)) 1bil)
(cat (getpch2 ma)
(getrb-val2 ma)
(getra-val2 ma)
(getrc2 ma)
(getop2 ma)
1b0))
(1b1
(cat (getpchl ma)
(get regs (getrbl ma))
(cond ((= llop 3) (getral ma))
(1bl (get regs (getral ma))))
(getrcl ma)
llop
1b1)))))
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Latch 1 is updated as follows. If it is stalled, it retains its previous contents. If
it is invalidated, its flag is set to false. Otherwise, the next instruction is fetched
from memory and stored in latch 1. The PC of the instruction is stored in pchl.
Latch 1 is stalled when the instruction in latch 1 requires a value computed by the
instruction in latch 2. Latch 1 is invalidated if it contains any branch instruction
(because the jump address cannot be determined yet) or if latch 2 contains a bez
instruction (again, the jump address cannot be determined for bez instructions until
the instruction has made its way through the pipeline, whereas the jump address for
jump instructions can be computed during the second stage of the machine).

(step-latchl (133) ((ma 298) (imem 4294967296 100))
(local
((latchl (getlatchl ma))
(inst (get imem (getppc ma))))

(cond ((= (stall-1llp ma) 1bl) latchl)

((= (invalidate-11lp ma) 1bl)
(cat (getpchl ma)

(getrbl ma)

(getral ma)

(getrcl ma)

(getopl ma)

1b0))
(1b1

(cat (getppc ma)

(src-b inst)
(src-a inst)
(dest-c inst)
(opcode inst)

1b1)))))

The function stall-11p determines when to stall latch 1.

(stall-11p (1) ((ma 298))
(local
((llvalidp (getvalidpl ma))
(llop (getopl ma))
(120p (getop2 ma))
(12validp (getvalidp2 ma))
(12rc (getrc2 ma))
(l11lra (getral ma))
(l11rb (getrbl ma)))
(and 12validp llvalidp (rc-activep 1l2op)
(or (= llra 12rc)
(and (uses-rbp llop) (= 1llrb 12rc))))))
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(rc-activep (1) ((op 4))
(or (alu-opp op) (load-opp op)))

(uses-rbp (1) ((op 4))
(or (alu-opp op) (= op 5) (= op 6)))

The function invalidate-11p determines when latch 1 should be invalidated.

(invalidate-11p (1) ((ma 298))
(local
((llvalidp (getvalidpl ma))
(llop (getopl ma))
(120p (getop2 ma))
(12validp (getvalidp2 ma)))
(or (and llvalidp (or (= llop 6) (= llop 7)))
(and 12validp (= 120p 6)))))

Memory is updated only when we have a store instruction, in which case we
update the memory appropriately.

(step-dmem
(4294967296 32)
((ma 298) (dmem 4294967296 32))
(local
((1l2validp (getvalidp2 ma))
(l20p (getop2 ma))
(l12ra-val (getra-val2 ma))
(l12rb-val (getrb-val2 ma)))
(cond ((= (and 1l2validp (= 1l2op 5)) 1bl)
(set dmem l2ra-val 1l2rb-val))
(1b1 dmem))))

Finally, the PC is updated as follows. If latch 1 stalls, then the PC is not modified.
Otherwise, if latch 1 is invalidated, then if this is due to a bez instruction in latch2,
the jump address can be now be determined, so the program counter is updated as
per the semantics of the bez instruction. Otherwise, if the invalidation is due to a
jump instruction in latch 1, the jump address can be computed and the program
counter is set to this address. The only other possibility is that the invalidation is
due to a bez instruction in latch 1; in this case the jump address has not yet been
determined, so the pc is not modified. Note, this simple machine does not have
a branch predictor. If the invalidate signal does not hold, then we increment the
program counter unless we are fetching a branch instruction.

(step-pc (32)
((ma 298) (regs 4294967296 32) (imem 4294967296 100))
(local
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((pc (getppc ma))
(1nst (get imem pc))
(op (opcode inst))
(llop (getopl ma))
(120p (getop2 ma))
(12validp (getvalidp2 ma))
(l12ra-val (getra-val2 ma))
(12rb-val (getrb-val2 ma)))
cond ((stall-1lp ma) pc)
((invalidate-11p ma)
(cond
((and 12validp (= 1l20p 6))
(cond
((= 12ra-val 0)
(bits (alu-output 0 pc 1l2rb-val) 0 31))
(1bl (bits (+ pc 1) 0 31))))
((= 1llop 7)
(bits (get regs (getral ma)) 0 31))

(

(1bl pc)))
((or (= op 6) (= op 7)) pc)
(1bl (bits (+ pc 1) 0 31)))))

4 Refinement

In the previous section, we saw how one can model a pipelined machine and its
instruction set architecture in BAT. We now discuss how to verify such machines.
Consider the partial traces of the ISA and MA machines on the simple two-line code
fragment from the previous section (add rb ra ra followed by add ra rb ra). We
are only showing the value of the program counter and the contents of registers ra
and rb.

ISA MA MA MA
0, (1,1)) (0, (1,1)) (0, (L,1)) (0, (L,1))
1, @2y d.d.1n — O (@) — {A,(12)
2, 32) (2,(1,1)) Commit (0, (1,1)) Remove (2, (3,2))

(2, (1,2)) PC (1, (1,2)) Stutter
(= (1.2) (1, (1,2))
(= 3.2) 2, (3,2)

Notice that the PC differs in the two traces and this occurs because the pipeline,
initially empty, is being filled and the PC points to the next instruction to fetch.
If the PC were to point to the next instruction to commit (i.e., the next instruction to
complete), then we would get the trace shown in column 3. Notice that in column 3,
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the PC does not change from O to 1 until Inst 0 is committed in which case the next
instruction to commit is Inst 1. We now have a trace that is the same as the ISA
trace except for stuttering; after removing the stuttering we have, in column 4, the
ISA trace.

We now formalize the above and start with the notion of a refinement map, a
function that maps MA states to ISA states. In the above example we mapped MA
states to ISA states by transforming the PC. Proving correctness amounts to relating
MA states with the ISA states they map to under the refinement map and proving a
WEB. Proving a WEB guarantees that MA states and related I SA states have related
computations up to finite stuttering. This is a strong notion of equivalence, e.g., a
consequence is that the two machines satisfy the same CTL* \ X.! This includes the
class of next-time free safety and liveness (including fairness) properties, e.g., one
such property is that the MA machine cannot deadlock (because the ISA machine
cannot deadlock).

Why “up to finite stuttering”? Because we are comparing machines at differ-
ent levels of abstraction: the pipelined machine is a low-level implementation of
the high-level ISA specification. When comparing systems at different levels of ab-
straction, it is often the case that the low-level system requires several steps to match
a single step of the high-level system.

Why use a refinement map? Because there may be components in one system that
do not appear in the other, e.g., the MA machine has latches but the ISA machine
does not. In addition, data can be represented in different ways, e.g., a pipelined
machine might use binary numbers whereas its instruction set architecture might
use a decimal representation. Yet another reason is that components present in both
systems may have different behaviors, as is the case with the PC above. Notice that
the refinement map affects how MA and ISA states are related, not the behavior of
the MA machine. The theory of refinement we present is based on transition systems
(TSs). ATS, 4, is a triple (S, -->, L), consisting of a set of states, S, a left-total
transition relation, -->< S2, and a labeling function L whose domain is S and
where L.s (we sometimes use an infix dot to denote function application) corre-
sponds to what is “visible” at state s. Clearly, the ISA and MA machines can be
thought of as transition systems (TS).

Our notion of refinement is based on the following definition of stuttering bisim-
ulation [2], where by fp(o, s) we mean that o is a fullpath (infinite path) starting at s,
and by match(B, o, §) we mean that the fullpaths o and § are equivalent sequences
up to finite stuttering (repetition of states).

Definition 1. B C §x .S is a stuttering bisimulation (STB)on TS .# = (S, -->, L)
iff B is an equivalence relation and for all s, w such that sBw:

(Stb1) Ls=Lw
(Stb2) (Vo : fp(o,s) : (36 : fp(§,w) : match(B, o, §)))

I'CTL™* is a branching-time temporal logic; CTL* \ X is CTL™ without the next-time operator X .
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Browne et al. have shown that states that are stuttering bisimilar satisfy the same
next-time-free temporal logic formulas [2].

Lemma 1. Let B be an STB on # and let sBw. For any CTL* \ X formula f,
Mow = fiff s E T

We note that stuttering bisimulation differs from weak bisimulation [25] in that
weak bisimulation allows infinite stuttering. Stuttering is a common phenomenon
when comparing systems at different levels of abstraction, e.g., if the pipeline is
empty, MA will require several steps to complete an instruction, whereas ISA com-
pletes an instruction during every step. Distinguishing between infinite and finite
stuttering is important, because (among other things) we want to distinguish dead-
lock from stutter.

When we say that MA refines ISA, we mean that in the disjoint union (&) of the
two systems, there is an STB that relates every pair of states w, s such that w is an
MA state and r(w) = s.

Definition 2. (STB Refinement) Let . = (S,-->,L ), . #' = (S’ ,-->', L’ ), and
r:S — S’. We say that .# is a STB refinement of .2’ with respect to refinement
map r, written .# ~, .#4’, if there exists a relation, B, such that (Vs € S :: sBr.s)
and B is an STB on the TS (S W §/,--> W --»', %), where £.s = L’.s for s an
S’ state and .Z.s = L’(r.s) otherwise.

STB refinement is a generally applicable notion. However, since it is based
on bisimulation, it is often too strong a notion and in this case refinement based
on stuttering simulation should be used (see [10, 11]). The reader may be sur-
prised that STB refinement theorems can be proved in the context of pipelined
machine verification; after all, features such as branch prediction can lead to non-
deterministic pipelined machines, whereas the ISA is deterministic. While this is
true, the pipelined machine is related to the ISA via a refinement map that hides
the pipeline; when viewed in this way, the nondeterminism is masked and we can
prove that the two systems are stuttering bisimilar (with respect to the ISA visible
components).

A major shortcoming of the above formulation of refinement is that it requires
reasoning about infinite paths, something that is difficult to automate [26]. In [10],
WEB-refinement, an equivalent formulation is given that requires only local reason-
ing, involving only MA states, the I SA states they map to under the refinement map,
and their successor states.

Definition 3. B C S x SisaWEBonTS .# = (S, --», L) iff:

(1) B is an equivalence relation on S; and
(2) (Vs,we S :sBw = L(s) = L(w)); and
(3) There exist functions erankl : S x S — N, erankt : S — W,
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such that (W, <) is well-founded, and
(Vs,u,we S :sBw A s-->u =
@ (veiw-->v A uBv) v
(b) (uBw A erankt(u) < erankt(s)) Vv
() (viiw-->v A sBv A erankl(v,u) < erankl(w, u)))

We call a pair (rank, (W, <)) satisfying condition 3 in the above definition, a
well-founded witness. The third WEB condition guarantees that related states have
the same computations up to stuttering. If states s and w are in the same class and s
can transit to u, then one of the following holds:

1. The transition can be matched with no stutter, in which case, u is matched by a
step from w.

2. The transition can be matched but there is stutter on the left (from s), in which
case, u and w are in the same class and the rank function decreases (to guarantee
that w is forced to take a step eventually).

3. The transition can be matched but there is stutter on the right (from w), in which
case, there is some successor v of w in the same class as s and the rank function
decreases (to guarantee that u is eventually matched).

To prove a relation is a WEB, note that reasoning about single steps of --»> suf-
fices. In addition, we can often get by with a rank function of one argument.

Note that the notion of WEB refinement is independent of the refinement map
used. For example, we can use the standard flushing refinement map [3], where MA
states are mapped to ISA states by executing all partially completed instructions
without fetching any new instructions, and then projecting out the I SA visible com-
ponents. In previous work, we have explored the use of other refinement maps, e.g.,
in [7, 15, 16], we present new classes of refinement maps that can provide several
orders of magnitude improvements in verification times over the standard flushing-
based refinement maps. In this paper, however, we use the commitment refinement
map, introduced in [9].

A very important property of WEB refinement is that it is compositional, some-
thing that we have exploited in several different contexts [14, 17].

Theorem 1. (Composition) If M =~ M' and M' ~q M" then M =y.q M.

Above, r; ¢ denotes composition, i.e., (r; g)(s) = q(r.s).
From the above theorem we can derive several other composition results; for
example:

Theorem 2. (Composition)

MA =5 --- &4 ISA
ISA||P F ¢
MA| P F ¢
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In this form, the above rule exactly matches the compositional proof rules in [5].
The above theorem states that to prove MA | P F ¢ (that MA, the pipelined ma-
chine, executing program P satisfies property ¢, a property over the ISA visible
state), it suffices to prove MA &~ ISA and ISA || P I ¢: that MA refines ISA
(which can be done using a sequence of refinement proofs) and that ISA, executing
P, satisfies ¢. That is, we can prove that code running on the pipelined machine is
correct, by first proving that the pipelined machine refines the instruction set archi-
tecture and then proving that the software running on the instruction set — not on the
pipelined machine — is correct.

5 Verification

This section describes how BAT is used to verify the three-stage pipelined machine
given in Sect. 3. Note that the definition of WEBs given in Sect.4 cannot be di-
rectly expressed in the BAT specification language. Therefore, we first strengthen
the WEB refinement proof obligation such that we obtain a statement that is express-
ible as a quantifier-free formula over the extensional theory of fixed-size bit-vectors
and fixed-size bit-vector arrays (memories), the kind of formulas that BAT decides.

We first define the equivalence classes of B to consist of an ISA state and all
the MA states whose image under the refinement map r is the ISA state. As a re-
sult, condition 2 of the WEB refinement definition clearly holds. Since an ISA
machine never stutters with respect to the MA machine, the second disjunct of the
third condition in the WEB definition can be ignored. Also, the ISA machine is
deterministic, and the MA machine if not deterministic, can be transformed to a de-
terministic machine using oracle variables [11]. Using these simplifications and after
some symbolic manipulation, Condition 3 of the WEB definition can be strength-
ened to the following core refinement-based correctness formula, where rank is a
function that maps states of MA into the natural numbers.

(VweMA :: (Vs,u,v:: s=r(w) A u=ISA-step(s) A
MA-step(w) A u#r)
r(v) A rank(v) < rank(w)))

1%
= s

The correctness formula shown above is also depicted in Fig. 2. In the formula
above, if MA is the set of all reachable MA states, MA-step is a step of the MA
machine, and ISA-step is a step of the ISA machine, then proving the above
formula guarantees that the MA machine refines the ISA machine. In the formula
above, w is an MA state and v (also an MA state) is a successor of w. s is an ISA
state obtained by applying the refinement map r to w and u (also an ISA state)
is a successor of s. The formula states that if applying the refinement map r to v
does not result in the ISA state u, then r(v) must be equal to s and the rank of v
should decrease w.r.t. the rank of w. Also, the proof obligation relating s and v can
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Fig. 2 Diagram shows
the core theorem

rank(v) < rank(w)

- - -» MA-Step —= Compare states for equality
————— » ISA-Step % Compare states for inequality

—— Refinement map

be thought of as the safety component, and the proof obligation rank(v) < rank(w)
can be thought of as the liveness component.
If the ISA and MA models are described at the bit-level, then the core refinement-

based correctness formula relating these models is in fact expressible in the logic
that BAT decides.

5.1 Refinement Map Definitions

To check the core refinement-based correctness formula using BAT, two witness
functions are required, a refinement map and a rank function. There are many dif-
ferent ways in which these witness functions can be defined. In this section, we
describe one approach.

The following function is a recognizer for “good” MA states.

(good-ma (1)
((ma 298) (regs 4294967296 32) (imem 4294967296 100)
(dmem 4294967296 32))
(local
(((nma nregs nimem ndmem)
committed-ma ma regs imem dmem))
nmal nregsl nimeml ndmeml)
ma-step nma nregs nimem ndmem))
nma2 nregs2 nimem2 ndmem2)
(ma-step nmal nregsl nimeml ndmeml)))
(cond ((getvalidp2 ma)
(equiv-ma nma2 nregs2 nimem2 ndmem2
ma regs imem dmem))
((getvalidpl ma)
(equiv-ma nmal nregsl nimeml ndmeml
ma regs imem dmem))
(1b1 1bl1))))

(

—~ o~ o~ —~

(
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The “good” MA states (also known as reachable states) are states that are reach-
able from the reset states (states in which the pipeline latches are empty). The reason
for using a recognizer for reachable states is that unreachable states can be inconsis-
tent and interfere with verification by raising spurious counterexamples. A state in
which a pipeline latch has an add instruction, when there are no add instructions in
memory is an example of an inconsistent unreachable state. We check for reachable
states by stepping the committed state, the state obtained by invalidating all partially
completed instructions and altering the program counter so that it points to the next
instruction to commit.

(committed-ma
((298) (4294967296 32)
(4294967296 100) (4294967296 32))
((ma 298) (regs 4294967296 32) (imem 4294967296 100)
(dmem 4294967296 32))
(local ((inst (get imem (getppc ma))))
(v
(cat
(getpch2 ma) (getrb-val2 ma)
(getra-val2 ma) (getrc2 ma)
(getop2 ma) 1b0
(getppc ma) (src-b inst)
(src-a inst) (dest-c inst)
(opcode inst) 1bo0
(committed-pc ma))
regs imem dmem)))

The program counter (PC) of the committed state is the PC of the instruction
in the first valid latch. Each latch has a history variable that stores the PC value
corresponding to the instruction in that latch. Therefore, the PC of the committed
state can be obtained from the history variables.

(committed-pc (32) ((ma 298))

(cond ((getvalidp2 ma) (getpch2 ma))
((getvalidpl ma) (getpchl ma))
(1bl (getppc ma))))

The equiv-MA function is used to check if two MA states are equal. Note how-
ever that if latch 1 in both states are invalid, then the contents of latch 1 in both
states are not compared for equality. Latch 2 is also compared similarly.

The committed-MA function invalidates partially executed instructions in the
pipeline and essentially rolls back the program counter to correspond with the next
instruction to be committed. The consistent states of MA are determined by checking
that they are reachable from the committed states within two steps. The refinement
map is defined as follows.

(ma-to-isa
((32) (4294967296 32)
(4294967296 100) (4294967296 32))
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((ma 298) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(local (((nma nregs nimem ndmem)
(committed-ma ma regs imem dmem)))

(mv (getppc nma) nregs nimem ndmem)))

We also need a rank function to check for liveness, which is given by the
ma-rank function. Note that this rank function is designed to work with the re-
finement map we defined. If another refinement map is used, then another rank may
be required. ma-rank defines the rank of an MA state as the number of steps re-
quired to reach a state in which MA is ready to commit an instruction. If latch 2 is
valid, an instruction will be committed in the next step. If latch 2 is invalid and latch
1 is valid, MA will commit an in two steps. If both latches are invalid, then then MA
should commit an instruction in three steps.

(ma-rank (3) ((ma 298))

(cond ((getvalidp2 ma) 0)
((getvalidpl ma) 1)
(1b1 2)))

Now, we can state the core theorem for the 3-stage pipelined machine, which is
given by the function commitment -theorem.

(commitment-theorem (1)
((w-ma 298) (w-regs 4294967296 32)
(w-imem 4294967296 100) (w-dmem 4294967296 32))
(local
(((s-pc s-regs s-imem s-dmem)
(ma-to-isa w-ma w-regs w-imem w-dmem))
((v-ma v-regs v-imem v-dmem)
(ma-step w-ma w-regs w-imem w-dmem))
((u-pc u-regs u-imem u-dmem)
(isa-step s-pc s-regs s-imem s-dmem))
((rv-pc rv-regs rv-imem rv-dmem)
(ma-to-isa v-ma v-regs v-imem v-dmem)))
(-> (good-ma w-ma w-regs w-imem w-dmem)
and (good-ma v-ma v-regs v-imem v-dmem)
(or (and (= rv-pc u-pc)
rv-regs u-regs)
rv-imem u-imem)
rv-dmem u-dmem) )
rv-pc s-pc)
rv-regs s-regs)
rv-imem s-imem)
rv-dmem s-dmem)
(ma-rank v-ma)
(ma-rank w-ma)))))))))

(and

~ o~~~ o~~~ —~
Il

A
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Table 1 Veri.ﬁ(?ation times Verification CNF

and CNF statistics Processor  times (s) statistics
model MiniSat Total (BAT) Variables Clauses Literals
DLxX3-2 0.10 0.32 363 1,862 9,914
DLX3-4 0.20 0.49 790 3,972 23,743
DLX3-8 047 1.01 1,486 7,536 46,599
DLX3-16 2.04 3.20 2,878 14,664 93,559
DLX3-32 6.03 8.63 5,662 28,920 192,471

The commitment theorem also includes an inductive proof for the “good” MA
invariant, i.e., we check that if we step MA from any good state, then the succes-
sor of that state will also be good. Next, the property that we ask BAT to check is
shown below. We declare a symbolic MA state in the (:vars) section. The sym-
bolic state essentially corresponds to the set of all syntactically possible MA states.
Inthe (:spec) section, we ask BAT to check if the commitment -theorem for
all the MA states, which corresponds to the core theorem applied to the “good” MA
states and an inductive invariance proof for the “good” MA invariant.

(:vars (mastate 298) (regs 4294967296 32)
(imem 4294967296 100) (dmem 4294967296 32))
(:spec (commitment-theorem mastate regs imem dmem)))

Table 1 shows the verification times and CNF statistics for the verification of five
three-stage processor models using BAT. The models are obtained by varying the
size of the data path and the number of words in the register file and memories. Note
that the original three-stage model was parametrized, and the models for the exper-
iments were generated by varying the parameters. The models are given the name
“DLX3-n,” where “n” indicates the size of the data path and the size of the program
counter. The instruction memory, the data memory, and the register file each have
2" words. The experiments were conducted on a 1.8-GHz Intel (R) Core(TM) Duo
CPU, with an L1 cache size of 2,048 KB. The SAT problems generated by BAT
were checked using version 1.14 of the MiniSat SAT solver [6].

6 Scaling to More Complex Designs

The formal proof of correctness for the three-stage pipelined machine required
stating the refinement correctness formula in the BAT specification language. BAT
was then able to automatically prove the refinement theorem relating the three-stage
pipelined machine and its ISA. However, a big challenge in verifying pipelined ma-
chines using decision procedures is that as the complexity of the machine increases,
the verification times are known to increase exponentially [18]. An alternate ap-
proach to verifying pipelined machines is based on using general-purpose theorem
provers. More complex designs can be handled using theorem provers, but a
heroic effort is typically required on the part of the expert user effort to carry



Verifying Pipelines with BAT 171

out refinement-based correctness proofs for pipelined machines [17]. In this sec-
tion, we discuss some techniques for handling the scalability issues when using
decision procedures for pipelined machine verification.

6.1 Efficient Refinement Maps

One of the advantages of using the WEB refinement framework is that the re-
finement map is factored out and can be studied independently. In Sect.5, the
commitment refinement map was described. There are other approaches to define
the refinement map as well. Another well-known approach to define the refinement
map is based on flushing, the idea being that partially executed instructions in the
pipeline latches of a pipelined machine state are forced to complete without fetch-
ing any new instructions. Projecting out the programmer-visible components in the
resulting state gives the ISA state.

There are several more approaches to define the refinement map that have been
found to be computationally more efficient. One approach is the Greatest Fixpoint
invariant based commitment [15]. The idea here is to define the invariant that charac-
terizes the set of reachable states in a computationally more efficient way. A second
approach is collapsed flushing, which is an optimization of the flushing refinement
map [7]. A third approach is intermediate refinement maps, that combine both flush-
ing and commitment by choosing a point midway in the pipeline and committing all
the latches before that point and flushing all the latches after that point [16]. This
approach is also known to improve scalability and efficiency.

6.2 Compositional Reasoning

Refinement is a compositional notion as described in Sect.4. The idea with com-
positional reasoning is to decompose the refinement correctness proof into smaller
manageable pieces that can be efficiently handled using a decision procedure such
as BAT. Another advantage of compositional reasoning is that the counter exam-
ples generated are smaller and more localized, making it easier to debug the design.
A method for decomposing refinement proofs for pipelined machines has been de-
veloped in [14]. Proof rules are also provided to combine the smaller decomposed
proofs to construct the refinement proof for the pipelined machine being verified.

6.3 Combining Theorem Proving and Decision Procedures

The BAT decision procedures directly handles the verification problem at the RTL.
One approach to handle scalability issues to to abstract and verify the pipelined
machine at the term-level. The drawback however is that the final correctness result
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is only about the abstract model and the formal connection with the RTL model is
lost. Hybrid approaches that exploit the refinement framework and use both theorem
proving and decision procedures have been developed to address this problem [17].
The idea is to use the theorem prover to formally reduce the verification problem at
the RTL to an abstract verification problem, which can then be handled by a decision
procedure. The approach scales better for some complex machines, but is much less
automatic than using a decision procedure like BAT.

6.4 Parametrization

An advantage of using BAT is that the models can be easily parametrized. This pro-
vides an effective debugging mechanism. The idea is based on the fact that models
with smaller data path widths lead to computationally more tractable verification
problems. For example, the verification of a 32-bit pipelined machine with many
pipeline stages may not be tractable, but BAT could probably verify a 2-bit or 4-bit
version of the model. While verifying a 4-bit version of the model does not guaran-
tee correctness, a majority of the bugs (for example, control bugs that do not depend
on the width of the data path) will be exposed. Generating a 4-bit version of a 32-bit
model is easy to accomplish if the model is parametrized.

7 Conclusions

In this chapter, we described how to use the BAT system to verify that pipelined
machines refine their instruction set architectures. The notion of correctness that
we used is based on WEB refinement. We showed how to strengthen the WEB
refinement condition to obtain a statement in the BAT specification language, for
which BAT includes a decision procedure. This allows us to automatically check
that the pipelined machine satisfies the same safety and liveness properties as its
specification, the instruction set architecture. If there is a bug, then BAT will provide
a counterexample. We also discussed various techniques to deal with more complex
designs.

While much of the focus of pipelined machine verification has been in verifying
microprocessor pipelines, these techniques can also be used to reason about other
domains in which pipelines occur. Examples include cache coherence protocols and
memory interfaces that use load and store buffers.

BAT is not limited to proving properties of pipelines. Any system that can be
modeled using BAT’s synthesizable hardware description language can be analyzed
using BAT. This includes verification problems arising in both hardware and soft-
ware, embedded systems, cryptographic hash functions, biological systems, and the
assembly of large component-based software systems.
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Formal Verification of Partition Management
for the AAMP7G Microprocessor

Matthew M. Wilding, David A. Greve, Raymond J. Richards,
and David S. Hardin

1 Introduction

Hardware designed for use in high-assurance applications must be developed
according to rigorous standards [3, 19]. For example, security-critical applica-
tions at the highest Evaluation Assurance Level (EAL) of the Common Criteria
require formal proofs of correctness in order to achieve certification [3]. At the
highest EAL, EAL 7, the application must be formally specified, and the applica-
tion must be proven to implement its specification. This can be a very expensive
and time-consuming process. One of the main goals for our research group at
Rockwell Collins is to improve secure system evaluation — measured in terms of
completeness, human effort required, time, and cost — through the use of highly
automated formal methods. In support of this goal, we have developed practical
techniques for creating executable formal computing platform models that can both
be proved correct and function as high-speed simulators [6, 9]. This allows us to
both verify the correctness of the models and also validate that the formalizations
accurately model what was actually designed and built.

The AAMP7G microprocessor [17], currently in use in Rockwell Collins high-
assurance system products, supports strict time and space partitioning in hardware
and has received an NSA certificate based in part of a formal proof of correct-
ness of its separation kernel microcode [18]. The partitioning mechanisms in the
AAMP7G’s microarchitecture are implemented in a relatively straightforward man-
ner since a design goal for the microprocessor was to support verification and cer-
tification activities associated with critical systems developed using the AAMP7G
device. In the sections that follow, we present an overview of the AAMP7G verifi-
cation, built upon a formal model of the AAMP7G microcode written in ACL2 [11].
We begin by describing the formally verified partitioning features of the AAMP7G.
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2 The AAMP7G Microprocessor

The AAMP7G is the latest in the line of Collins Adaptive Processing System
(CAPS) processors and AAMP microprocessors developed by Rockwell Collins for
use in military and civil avionics since the early 1970s [2]. AAMP designs have his-
torically been tailored to embedded avionics product requirements, accruing size,
weight, power, cost, and specialized feature advantage over alternate solutions. Each
new AAMP makes use of the same multitasking stack-based instruction set while
adding state-of-the-art technology in the design of each new CPU and peripheral set.
AAMP7G adds built-in partitioning technology among other improvements.
AAMP processors feature a stack-based architecture with 32-bit segmented, as
well as linear, addressing. AAMP supports 16/32-bit integer and fractional and
32/48-bit floating point operations. The lack of user-visible registers improves code
density (many instructions are a single byte), which is significant in embedded ap-
plications where code typically executes directly from slow Read-Only Memory.
The AAMP provides a unified call and operand stack, and the architecture defines
both user and executive modes, with separate stacks for each user “thread,” as well
as a separate stack for executive mode operation. The transition from user to exec-
utive mode occurs via traps; these traps may be programmed or may occur as the
result of erroneous execution (illegal instruction, stack overflow, etc.). The AAMP
architecture also provides for exception handlers that are automatically invoked in
the context of the current stack for certain computational errors (divide by zero,
arithmetic overflow). The AAMP instruction set is of the CISC variety, with over
200 instructions, supporting a rich set of memory data types and addressing modes.

2.1 AAMP7G Intrinsic Partitioning

The AAMP7G provides a feature called “Intrinsic Partitioning” that allows it to host
several safety-critical or security-critical applications on the same CPU. The inten-
tion is to provide a system developer an architectural approach that will simplify the
overall complexity of an integrated system, such as is described in [22]. The transi-
tion from multiple CPUs to a single multifunction CPU is shown in Fig. 1. On the
left, three federated processors provide three separate functions, A, B, and C. It is
straightforward to show that these three functions have no unintended interaction.

On the right of Fig. 1, an integrated processor provides for all three functions.
The processor executes code from A, B, and C; its memory contains all data and
I/0O for A, B, and C. A partition is a container for each function on a multifunction
partitioned CPU like the AAMP7G. AAMP7G follows two rules to ensure partition
independence:

1. Time partitioning. Each partition must be allowed sufficient time to execute the
intended function.
2. Space partitioning. Each partition must have exclusive-use space for storage.
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Fig. 1 Transition to multifunction CPU

2.1.1 Time Partitioning

Each partition must be allowed sufficient time to execute the intended function. The
AAMP7G uses strict time partitioning to ensure this requirement. Each partition is
allotted certain time slices during which time the active function has exclusive use
and control of the CPU and related hardware.

For the most secure systems, time slices are allocated at system design time
and not allowed to change. For dynamic reconfiguration, a “privileged” partition
may be allowed to set time slices. AAMP7G supports both of these approaches as
determined by the system designer.

The asynchronous nature of interrupts poses interesting challenges for time-
partitioned systems. AAMP7G has partition-aware interrupt capture logic. Each
interrupt is assigned to a partition; the interrupt is only recognized during its
partition’s time slice. Of course, multiple interrupts may be assigned to a partition.
In addition, an interrupt may be shared by more than one partition if needed.

System-wide interrupts, such as power loss eminent or tamper detect, also need
to be addressed in a partitioned processor. In these cases, AAMP7G will suspend
current execution, abandon the current list of partition control, and start up a list
of partition interrupt handlers. Each partition’s interrupt handler will then run, per-
forming finalization or zeroization as required by the application.

2.1.2 Space Partitioning

Each partition must have exclusive-use space for storage. The AAMP7G uses mem-
ory management to enforce space partitioning. Each partition is assigned areas in
memory that it may access. Each data and code transfer for that partition is checked
to see if the address of the transfer is legal for the current partition. If the transfer is
legal, it is allowed to complete. If the transfer is not legal, the AAMP7G Partition
Management Unit (PMU) disallows the CPU from accessing read data or code fetch
data; the PMU also preempts write control to the addressed memory device.
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Memory address ranges may overlap, in order to enable interpartition
communication. In this case, interaction between partitions is allowed since it
is intended by system design. For maximum partition independence, overlapping
access ranges should be kept to a minimum.

As with time slices, memory ranges may be allocated at system design time and
not allowed to change. Or, for dynamic reconfiguration, a “privileged” partition may
be allowed to set memory ranges. AAMP7G supports both of these approaches as
determined by the system designer who employs the AAMP7G.

2.2 Partition Control

Only a small amount of memory is needed for the AAMP7G partition control struc-
tures (summarized in Fig. 2). This data space is typically not intended to be included
in any partition’s memory access ranges. The partition control structures include
each partition’s control includes time allotment, memory space rights, initial state,
and test access key stored in ROM. Each partition’s saved state is stored in RAM.
Partition control blocks are linked together defining a partition activation sched-
ule. AAMP7G partition initialization and partition switching are defined entirely by
these structures.

The partition control structures are interpreted entirely in microcode, so no soft-
ware access is needed to the AAMP7G partitioning structures. This limits the
verification of AAMP7G partitioning to proving that the partitioning microcode per-
forms the expected function and that no other microcode accesses the partitioning
structures.

Init Table
Virtual Virtual Virtual
Machine Machine Machine
Control . Control oxt Control .
) Element | | Element " 'XA Element m)x‘
I I I
| | |
A 4 A 4 A 4
Virtual Virtual Virtual
Machine Machine Machine
State State State
Block Block Block

Fig.2 AAMP7G patrtition control data structure overview
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3 AAMP7G Formal Processing Model

The AAMP7G formal processing model is shown in Fig. 3. Actual AAMP7G pro-
cessing layers are shown in nonitalic text, while layers introduced for the sake of
formal reasoning are shown in italics.

We generally prove correspondence between a concrete model at a given level
and a more abstract model. Sequences of microcode implement a given instruction;
sequences of abstract instruction steps form basic blocks; a machine code subroutine
is made up of a collection of basic blocks. Subroutine invocations are performed in
the context of an AAMP thread, and multiple user threads plus the executive mode
constitute an AAMP7G partition. Our model supports the entire context switching
machinery defined by the AAMP architecture, including traps, outer procedure re-
turns, executive mode error handlers, and so on.

Some aspects of the AAMP7G model are useful for general comprehension
of the AAMP7G architecture and for organizing the proof effort. In particular,
the correctness theorem we proved about the AAMP7G partitioning mechanism
relates the behavior of the microcode of the microprocessor to an abstract notion of
AAMP7G partitioning operation, so understanding many of the layers of the model
is not strictly necessary to understanding what has been proved about the AAMP7G.

Rockwell Collins has performed a formal verification of the AAMP7G partition-
ing system using the ACL2 theorem prover [11]. This work was part of an evaluation
effort which led the AAMP7G to receive a certification from NSA, enabling a sin-
gle AAMP7G to concurrently process Unclassified through Top Secret codeword
information. We first established a formal security specification, as described in
[8], and summarized in Sect. 5. We produced an abstract model of the AAMP7G’s
partitioning system as well as a low-level model that directly corresponded to the
AAMP7G microcode. We then used ACL?2 to automatically produce the following:

START STATE END STATE

Partition Step >9
Thread Context Switches
0 >0 - 50

Subroutine Invocations

BasicBlocks

Abstract Insr;ruction Steps

A : A 4
Concrete Instryction Steps

Abstract Microcade Steps :
. WHRPOPOPPPOPPPOSROPPEOPOPP> »Q
Fig.3 AAMP7G formal Concrete Microcode Steps
processing model O»OBOPOPOPOPOPOPOPOPOPOPOPO> »0O



180 M.M. Wilding et al.

1. Proofs validating the security model
2. Proof that the abstract model enforces the security specification
3. Proof that the low-level model corresponds to the abstract model.

The use of ACL2 to meet high-assurance Common Criteria requirements at EAL
7 is discussed in [16]. One interpretation of the requirement for a low-level design
model is that the low-level design model be sufficiently detailed and concrete so that
an implementation can be derived from it with no further design decisions. Because
there are no design decisions remaining, one can easily validate the model against
the implementation. Note that this low level of abstraction of such a model can
make a proof about it challenging. In Sect. 4, we develop the abstract information
flow correctness theorem that we proved about the AAMP7G.

4 A Formal Security Specification

High-assurance product evaluation requires precise, unambiguous specifications.
For high-assurance products that are relied upon to process information containing
military or commercial secrets, it is important to ensure that no unauthorized in-
terference or eavesdropping can occur. A formal security specification prescribes
what the system allows and guards against. The construction of a formal security
specification that describes the desired behavior of a security-critical system under
evaluation is now commonly required for high-level certification.

A computing system that supports multiple independent levels of security
(MILS) provides protections to guarantee that information at different security
levels is handled appropriately. The design of MILS systems that must perform
correctly with respect to a formal security specification is a daunting challenge.

The goal in building a partitioning mechanism is to limit what must be evaluated
during the certification process. For example, secure systems can be developed that
use partitions to enforce separation between processes at different security levels.
A small, trusted “separation kernel” mediates all communication between parti-
tions, thereby assuring that unauthorized communication does not occur. Assuming
that the partitioning system is implemented properly and that the communication
policy between partitions is loaded correctly, there is no need to evaluate the ap-
plications running in different partitions to show that the communication policy is
enforced. Safety-critical applications can also exploit intrinsic partitioning: by host-
ing different applications in separate partitions, it is possible to architect a system so
that applications need be evaluated at only the required level of rigor. This system
architecting philosophy is described by John Rushby in [20,21].

The correct implementation of the partitioning mechanism is of course vital to
assure the correctness of a larger system that depends upon it. Furthermore, some
of the applications of the AAMP7G are security applications that are architected
to exploit intrinsic partitioning and require stringent evaluation of all mechanisms
being relied upon to separate data at different classification levels.
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Architecting a MILS system using a separation kernel breaks the security
challenge into two smaller challenges:

1. Building and verifying a dependable separation kernel
2. Building applications that, relying upon protections afforded by the separation
kernel, enforce sensible system security policies.

A good specification of a system component has two characteristics. First, it can
be mapped to concrete component implementations using convenient and reliable
methods. That is, the specification can be proved about a particular system compo-
nent. Second, a good specification encapsulates needed behavior so that the larger
system can benefit from an assurance that the specification holds of the component.
In other words, the specification can be used in the larger system that contains the
component about which the specification has been proved.

Section4.1 presents a security property that has both of these desired properties
and which has been proved as part of the AAMP7G MILS certification.

4.1 The Formal Security Specification in ACL2

We have chosen the ACL2 logic, an enhancement of the Common Lisp program-
ming language [11], to describe our security specification. ACL2 is a good choice
for this work because of its usefulness in modeling and reasoning about computing
systems [6, 9] as well as the substantial automation afforded by the ACL2 theorem
proving system.

The formal security specification describes abstractly what a separation kernel
does. The machine being modeled supports a number of partitions whose names
are provided by the constant function allparts. We use the notation of ACL2’s
encapsulate command to indicate a function of no arguments that returns a single
value.

((allparts)=>x*)

One of the partitions is designated the “current” partition. The function current
calculates the current partition given a machine state.

((current *)=>x%)

We use the notation of ACL2’s defthm command, which presents a theorem
expressed in Common Lisp notation, to indicate a property about the functions
current and allparts.

(defthm current-is-partition
(member (current st) (allparts)))

Associated with partitions are memory segments. Memory segments have names
and are intended to model portions of the machine state. The names of the memory
segments associated with a particular partition are available from the function segs,
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which takes as an argument the name of the partition. (Note that since segs is a
function only of partition name and not, for example, a function of machine state,
the assignment of segments to partitions is implicitly invariant.)

((segs *)=>%)

The values in a machine state that are associated with a memory segment are
extracted by the function select. select takes two arguments: the name of
the memory segment and the machine state.

((select % %)=>%)

The separation kernel enforces a communication policy on the memory seg-
ments. This policy is modeled with the function dia (for Direct Interaction
Allowed), which represents the pairs of memory segments for which direct in-
teraction is allowed. The function takes as an argument a memory segment name
and returns a list of memory segments that are allowed to affect it. (Note that
since dia is a function only of the memory segment name, the formalization here
implicitly requires that the communication policy is invariant.)

((dia *)=>%)

The last function constrained in the security specification is next, which mod-
els one step of computation of the machine state. The function next takes as an
argument a machine state and returns a machine state that represents the effect of
the single step.

((next *)=>%)

The aforementioned constrained functions are used to construct several
additional functions. selectlist takes a list of segments and returns a list
of segment values; segslist takes a list of partition names and returns the list of
memory segments associated with the partitions; and run takes an initial machine
state and number of steps and returns an initial machine state updated by executing
the number of steps indicated.

(defun selectlist (segs st)
(if (consp segs)
(cons
(select (car segs) st)
(selectlist (cdr segs) st))
nil))

(defun segslist (partnamelist)
(if (consp partnamelist)
(append
(segs (car partnamelist))
(segslist (cdr partnamelist)))
nil))
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(let ((segs (intersection-equal (dia seg)
(segs (current stl)))))
(implies

(and
(equal (selectlist segs stl) (selectlist segs st2))
(equal (current stl) (current st2))
(equal (select seg stl) (select seg st2)))

(equal
(select seg (next stl))
(select seg (next st2)))))

Fig. 4 The formal security specification

(defun run (st n)
(if (zp n) st
(run (next st) (1- n))))

The formal security specification theorem, now referred to as “GWV” after its
authors, is shown in Fig.4. The GWV theorem utilizes a “two worlds” formula-
tion, in which two arbitrary states of the system (in this case, st1 and st2) are
both hypothesized to satisfy some predicate(s). The two states are both stepped, and
some predicate is shown to hold on the two resulting states. In particular, the GWV
theorem says that the effect of a single step on the system state on an arbitrary seg-
ment of the state, seg, is a function only of the segments associated with the current
partition that are allowed to interact with seg.

We have established the utility of this formal security specification by stating the
policy as an axiom and then attempting to prove several well-known security-related
theorems using the axiom. In this way, we have proved exfiltration, infiltration,
and mediation theorems, as well as proved the functional correctness of a simple
firewall, all using the ACL2 system. Subsequently, we have formally shown how
GWY relates to classical noninterference [5].

Alves-Foss and Taylor in [1] point out that it is possible to thwart the intent of
proving the GWV specification about a particular system by improperly defining
the functions of the theorem for that system. Specific instances cited in [1] include
omitting relevant system state from the model and modeling the system step with
less time resolution than that is appropriate.

Improper instantiation of the specification is indeed important to avoid not only
for the functions mentioned explicitly in [1], but also for all the functions in the
specification. It is not just those instances of poor modeling that need be avoided.
Effective use of GWV as a specification requires care to insure that the system of
interest is modeled appropriately. In Sect. 4.2, we present GWYV instantiated for the
AAMP7G. Fidelity of the functions that instantiate this theorem for the AAMP7G
was checked through a process of inspection and review. Work to formalize the
notion of appropriate “properties functions” is discussed in [5].
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4.2 An AAMP7G Instantiation of GWV

Figure 5 shows the theorem proved about the AAMP7G, which is an instance of the
abstract security specification of Fig. 4, made concrete so as to show that the abstract
notion of separation holds of a concretely described model of the AAMP7G. The
reification of the theorem in Fig. 4 to the AAMP7G theorem in Fig. 5 is not obvious,
not the least because the theorem includes an operational model of the AAMP7G,
which must be relatable to the actual device in order for the correctness proof to
have practical usefulness as part of a certification process.

Recall the different levels of AAMP7G models described in Fig. 3. The correct-
ness theorem involves models of the AAMP7G at two levels, at both the functional
level and abstract level. The functional model closely corresponds with the actual
AAMP7G microarchitecture implementation. For example, in the functional model,
RAM is modeled as an array of values. The abstract model represents the data of the
AAMP7G in a manner more convenient for describing properties. For example, the

(implies
(and
(secure-configuration spex)
(spex-hyp spex fun::stl)
(spex-hyp spex fun::st2))
(implies
(let ((abs::stl (lift-raw spex fun::stl))
(abs::st2 (lift-raw spex fun::st2)))

(and
(let ((segs
(intersection-equal
(dia-fs seg abs::stl)
(segs-fs (current abs::stl) abs::stl))))
(equal (raw-selectlist segs abs::stl)
(raw-selectlist segs abs::st2)))
(equal (current abs::stl)
(current abs::st2))
(equal (raw-select seg abs::stl)
(raw-select seg abs::st2))))
(equal

(raw-select seg
(lift-raw spex (fun::next spex fun::stl)))
(raw-select seg

(lift-raw spex (fun::next spex fun::st2))))))

Fig. 5 Theorem that the AAMP7G implements the security specification
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list of partitions in the partition execution schedule is represented as a list. The
theorem is about the behavior of the functional model, but we express the theorem
about an abstract model of the AAMP7G that has been “lifted” from a functional
model. In this way, we simplify the expression of the theorem (since the abstract
model functions are simpler) but we instantiate the theorem with the behavior of the
most concrete model of the AAMP7G to help ensure that the theorem is about the
“real” AAMP7G.

Each function of the correctness theorem is defined precisely using the ACL2
defthm command and its function result is summarized below.

secure-configuration- Data structures expected during nominal AAMP7G
execution are described symbolically by the list spex. For example, spex includes
a description of the data structure summarized in Fig. 2.

spex-hyp — An AAMP7G state description includes all the data structures
described by spex. Also, a number of other elements of the state have the cor-
rect type, and relevant microarchitectural registers have expected values.

lift-raw— A functional AAMP7G state is lifted to an abstract state with respect
to the data structures of spex.

dia-fs — The elements of the state that can effect seg given the configuration
of state st. This function is defined by recursively searching the partition schedule
list in order to detect possible authorized information flow. For example, if seg is
an interrupt i, and the partition schedule includes a partition p that is permitted to
change interrupt i’s value, and partition p is permitted to read a RAM location r,
then RAM location r is returned by this function. Additionally, elements of the
control data structures of the AAMP7G, such as the partition schedule itself, are
returned by this function for all segments.

segs-fs — All the segs are associated with a partition. This includes its RAM
memory, interrupt values, and all partitioning system relevant registers.

current — The currently executing element of the partition schedule.
raw-select — The value of a segment seg in AAMP7G state st.
raw-selectlist — The values of a list of segments in st.

next — The state of the AAMP7G after one execution step starting from processor
State st.

Note that the notion of “segs” in the AAMP7G includes all the states relevant
to the AAMP7G’s execution. Note also that segs-fs and dia- f£s are functions
not only of a segment as might be expected from a review of the specification in
Fig. 4, but also of the state of the machine. We have proved that these functions are
invariant with respect to the next function in order to justify their use in applying
GWYV to the AAMP7G.

The next function is by far the most complex function used in the correctness
theorem in the AAMP7G theorem. It represents in entirety the low-level design of
the partitioning-relevant trusted operation of the AAMP7G. “Trusted” microcode
is microcode that operates with memory protection turned off, thereby provid-
ing access to the data structures maintained by the AAMP7G to support intrinsic
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partitioning. All the partitioning-relevant microcode runs in this trusted mode, and
the low-level design model of the AAMP7G models all the microcode that runs in
trusted mode.

Considerable thought was put into defining the “step” of the AAMP7G micro-
processor for the purpose of formalizing it in the next function. Broadly speaking,
a step is a high-level partition step indicated at the highest level of Fig. 3. For ex-
ample, in the nominal case (where there is no unusual event such as a power-down
warning), a step is the loading of a partition including relevant protections, an exe-
cution of a user partition, and the saving of the state of that partition.

While the notion of “step” implemented by the next function is abstract, its
definition in ACL2 is most assuredly not. It corresponds to the most concrete, low-
est level of Fig. 3. This is because another crucial consideration when developing
the model of the AAMP7G contained in the next function is how to validate this
hand-written model against the actual AAMP7G. The AAMP7G is a microcoded
microprocessor, and much of the functionality of the machine is encoded in its mi-
crocode. The low-level design model is written specifically to make a code-to-spec
review that relates the model to the actual implementation relatively straightforward.
An ACL2 macro allows an imperative-style description that eases comparison with
microcode. Also, very importantly, the model is written with the model of mem-
ory that the microcode programmer uses. That is, memory has only two operations:
read and write. The simplicity of the memory model makes the code-to-spec review
easier but adds a great deal of complexity to the proof. Since the proof is machine
checked while the model validation process requires evaluation, this is a good trade-
off. It provides a high level of assurance with a reasonable level of evaluation. Much
of the effort on the project was spent constructing the proofs, but the proofs were
reviewed relatively easily by the evaluators because they could be replayed using
ACL2.

Figure 6 presents an example fragment of the low-level functional design model.
It is typical of the ACL2 microcode model in that each line of microcode is modeled
by how it updates the state of the partition-relevant machine. A small program
was written that identifies all microcode that can be run in trusted mode, and the
results were used to check informally that the ACL2 model in fact models every
line of microcode that runs in trusted mode. An additional manual check was per-
formed to insure that the output of this tool correctly identified entry/exit points of
the trusted microcode. The entire AAMP7G model is approximately 3,000 lines of
ACL2 definitions.

4.3 Proof of the AAMP7G Instantiation of GWV

The AAMP7G GWYV theorem was proved using ACL2. The proof architecture
decomposes the proof into three main pieces:

1. Proofs validating the correctness theorem (as described in [7])
2. Proof that the abstract model meets the security specification
3. Proof that the low-level model corresponds with the abstract model.
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;=== ADDR: 052F

(st. ie = nil)

(Tx = (read32 (vce reg st) (VCE.VM Number)))
;=== ADDR: 0530

(st. Partition = Tx)

;=== ADDR: 0531
(TimeCount = (read32 (vce_reg st) (VCE.TimeCount)))
;=== ADDR: 0532

(PSL[0]= TimeCount st)

Fig. 6 A fragment of the AAMP7G formal microcode-level model

In addition to libraries provided in the standard ACL2 release, several libraries
of ACL2 lemmas were developed for the AAMP7G partitioning proofs. As pre-
viously discussed, an important challenge of this proof was developing a method
for reasoning about read and write operations over a linear address space. The
partitioning-relevant data structures of the AAMP7G, summarized in Fig. 2, have
nodes containing dozens of elements representing status and protection informa-
tion, and the list structures are of arbitrary length. Pointer-laden data structure
reasoning requires considerable automation, and most of the effort required to prove
the correctness theorems about the AAMP7G involved developing an approach for
modeling and analyzing operations on such data structures.

The approach used to reason about the AAMP7G data structures, termed GACC
for Generalized Accessor, provides a systematic approach for describing data struc-
tures and a template for proving a few helpful facts about each operation. The
version of GACC used for the AAMP7G proofs is described in [4]. This reasoning
infrastructure continues to evolve, and a later version of this capability was used
in [15].

5 Use of Formal Analysis in a Certification

The analysis described in Sects. 3 and 4 was part of the evaluation that led to the
AAMP7’s certification [18]. Machine checking provides a high level of confidence
that the theorem was in fact a theorem. But how to ensure that proving the theorem
really means that the AAMP7G has the appropriate behavior? An important step in
the process was to conduct a code-to-spec review with a National Security Agency
evaluation team. This review validated the theorem. Each of the functions in the
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formal specification was reviewed. The most complex of these functions is the rep-
resentation of the AAMP7G’s design, as the link between the model of the design
and the actual implementation must be established. As discussed earlier, the model
was designed specifically to facilitate this kind of scrutiny.

The documentation package that was created for this review included:

e Material explaining the semantics of ACL2 and AAMP7G microcode

o Listings of the AAMP7G microcode and the ACL2 low-level model

e The source code listing of a tool that identifies trusted-mode microcode se-
quences, and a listing of such sequences in the AAMP7G microcode

e Cross-references between microcode line numbers, addresses, and formal model
line numbers

e The ACL2-checkable proofs in electronic form.

The exhaustive review accounted for each line of trusted microcode and each model
of a line of trusted microcode, ensuring that there was nothing left unmodeled, that
there was nothing in the model that was not in the actual device, and that each line
of the model represented the actual behavior of the microcode.

This review was made possible because the model of the AAMP7G was designed
to correspond to the actual device, in particular its concrete microprocessor model
that maintained line-for-line correspondence with the microcode and employed a
linear address space model. Although the proof was considerably more challenging
to construct because this approach was taken, the proofs were all machine checked
so little of that effort was borne by the evaluators. The machine-checked formal
analysis allowed the evaluators to focus on validation that the security policy and
model described what they were interested in — operation of a separation kernel and
the AAMP7G - rather than trying to determine through inspection or testing that
the device implementation always did the right thing.

6 Formalization within a Partition: The AAMP7G Instruction
Set Model

Having established the correctness of the AAMP7G’s partitioning system by
proving a theorem that relates an abstract security specification to a concrete model
of microcode, we next wished to provide a formal model of the instruction set pro-
cessing that occurs within a partition’s time slice. This model is not relevant to the
proof of the partitioning mechanism; as previously explained, software running in
a partition cannot effect the operation of the partitioning system. However, having
such a model enables us to perform machine code proofs of correctness that can be
used in high-assurance evaluations. We therefore describe this model in this section
and outline one method for machine code proof based on symbolic simulation.

The instruction set model and all the necessary support books consist of some
100,000 lines of ACL2 code [10]. The AAMP7G instruction set model is shown
in the architectural context in Fig. 3. We begin with a concrete instruction model,
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written in a sequential manner that is reflective of how the machine actually
operates. The AAMP memory model is based on the GACC linear address space
library previously used in the AAMP7G partitioning proofs [4]. The AAMP7G ma-
chine state, including the architecturally defined registers, is represented as an ACL2
single-threaded object (stobj) [14] for simulator performance reasons.

6.1 Instruction Set Model Validation

Since we model the AAMP7G instruction set in its entirety, we can analyze
AAMP7G machine code from any source, including compilers and assemblers.
Additionally, since we directly model memory, we merely translate the binary file
for a given AAMP7G machine code program into a list of (address, data) pairs that
can be loaded into ACL2. We load the code, reset the model, and the execution of
the machine code then proceeds, under the control of an eclipse-based user interface
that was originally written to control the actual AAMP7G.

We then validate the AAMP7G instruction set model by executing instruction
set diagnostics on the model that are used for AAMP processor acceptance testing.
A typical diagnostic exercises each instruction, plus context switching, exception
handling, etc.

6.2 Abstract Instruction Set Modeling and Symbolic Simulation

For a given AAMP instruction X, the “abstract” function OP-X-PRECONDITIONS
collects those conditions that need to hold for “normal” execution of the instruc-
tion. VM-X-EXPECTED-RESULT gives the expected output state as a modification
of the input state. As this function is an abstraction of the concrete instruction set
execution, it does not characterize the steps of the computation, but rather the result
in a very compact and readable form.

Finally, proving the theorem VM-X-REWRITE establishes that stepping the
AAMP instruction set model on this instruction will yield exactly the expected
result as the abstract formulation, assuming that the preconditions are satisfied. If the
instruction semantics involves interesting exceptions, such as overflow or divide-by-
zero, these are characterized by additional expected result functions and additional
branches in the right-hand side of this rewrite rule.

We have provided similar treatment for each of the AAMP7G instructions.
Assuming that we can relieve the preconditions at each step, this allows us ef-
ficiently to symbolically step through even very long sequences of AAMP7G
instructions. After each step, the rewriter effectively canonicalizes the result into
a very compact and readable form. This is practical within the context of a theorem
prover only because the ACL2 rewriter can be constrained to be quite fast. A more
detailed description of the AAMP7G instruction set modeling process can be found
in [10].
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6.3 Compositional Code Proof

Our verification of AAMP7G programs is done compositionally. That is, we ver-
ify programs in one subroutine at a time. We try to ensure that, after we verify a
subroutine, we never have to analyze it again. To prove the correctness theorem for
a subroutine we have used a proof methodology called “compositional cutpoints.”
Our method borrows parts of the method put forth in [12]; both methods are inspired
by observations first made by Moore [13].

Cutpoint proofs require annotating the subroutine to be verified by placing asser-
tions at some of its program locations; those locations are called “cutpoints.” Every
cutpoint has a corresponding assertion which is taken to apply to those states that
arise just before the instruction at a given program location is executed. The result-
ing full set of cutpoints is sufficient if it “cuts every loop,” that is, if every cycle in
the routine’s control flow graph contains a cutpoint. We need not consider cycles
in the code of called subroutines; any subroutine call should either be a call to an
already-verified routine or be a recursive call (which we handle specially).

The “cutpoint to cutpoint” proof for a routine involves symbolic simulation of
the machine model. The simulation starts at a cutpoint and assumes that the asser-
tion for that cutpoint holds. We simulate the machine until it either reaches another
cutpoint or exits by executing a return instruction. At the resulting state, we must
show that its corresponding assertion holds. Thus, functional proofs of correctness
of AAMP7G machine code can proceed largely automatically once the necessary
cutpoint assertions have been introduced. Details of this method can be found
in [10].

7 Conclusion

We have presented a summary of the formal modeling and verification that led to
a MILS certificate for the AAMP7G microprocessor, enabling a single AAMP7G
to concurrently process Unclassified through Top Secret codeword information. We
discussed the formal model architecture of the AAMP7G at several levels, includ-
ing the microcode and instruction set levels. We described how the ACL2 theorem
prover was used to develop a formal security specification, the GWV theorem, and
outlined a mathematical proof (machine-checked using ACL2) which established
that the AAMP7G trusted microcode implemented that security specification, in
accordance with EAL 7 requirements. We discussed the evaluation process that val-
idated the formal verification evidence through a code-to-spec review. Finally, we
detailed a technique for compositional reasoning at the instruction set level, using a
symbolic simulation based technique.
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Compiling Higher Order Logic by Proof

Konrad Slind, Guodong Li, and Scott Owens

1 Compilation and Logic

There has recently been a surge of research on verified compilers for languages like
C and Java, conducted with the aid of proof assistants [22, 24, 25]. In work of this
kind, the syntax and semantics of the levels of translation — from the source language
to various intermediate representations and finally to the object code — are defined
explicitly by datatypes and inductively defined evaluation relations. Verification of a
program transformation is then typically performed by proving semantics preserva-
tion, e.g. by proving that a simulation relation holds, usually by rule induction over
the evaluation relation modelling the operational semantics. This deep-embedding
approach, in which the compiler under study is a logical function from a source
datatype to a target datatype, both represented in the logic, is a by-now classi-
cal methodology, which advances in proof environments support increasingly well.
A major benefit of such a formalized compiler is that all datatypes and algorithms
comprising the compiler are explicitly represented in the logic and are therefore
available for a range of formal analyses and manipulations. For example, compila-
tion algorithms are being re-scrutinized from the perspective of formal verification,
with the result that some are being precisely specified for the first time [41] and are
even being simplified. Finally, the technique applies to a wide range of functional
and imperative programming languages.'

! There are a couple of choices when it comes to the deployment of such a verified compiler.
Since it is a deep embedding, an actual working compiler exists in the logic and deductive steps
can be used to compile and execute programs. This is not apt to scale, so it is much more likely
that the formalized compiler is automatically written out into the concrete syntax of an existing
programming language, compiled, and subsequently deployed in a standard fashion.
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However, deep embeddings have some drawbacks. Transformations performed
by a compiler may be hard to isolate, to verify, and to re-verify: a slight modifi-
cation of the compilation algorithm can lead to a heavy burden on the revision of
previously enacted proofs. As a result, quite often only simple compilers are verified
or only parts of a compiler are verified (the recent work on CompCert [26] stands
in contrast to this trend). Moreover, to even determine the operational semantics for
realistic high-level languages can be an experimental task [36]; in this regard, the
semantics of assembly languages is arguably more precise. Finally, a deeply embed-
ded compiler cannot directly access support provided in the implementation of the
host logic. For example, operations such as substitution and automatic renaming of
bound variables are heavily used components in a compiler — and must be formal-
ized in a deep embedding — but they are usually already available in the host theorem
prover. To have to implement and verify this functionality can be seen as an unin-
teresting and time-consuming chore. Indeed, the use of higher order abstract syntax
[39] in reasoning about the meta-theory of programming languages is motivated by
just this observation.

1.1 A Gap Between Program Verification and Compiler
Verification

A common formal modelling technique is to translate programs to mathematical
functions, which can be formally expressed in a logic. Since the majority of algo-
rithms can be directly represented as logical functions,” the properties of which
can be transparently stated and proved correct using ordinary mathematics and
contemporary proof assistants, e.g. ACL2, HOL4, PVS, Coq, and Isabelle/HOL
[5,21,33,37,45], are often used as highly automated tools for reasoning about such
programs. This identification of programs with functions is routinely exploited in
verifications using these systems.

However, a gap occurs: the issue is how to formally connect a property proved
about a particular logical function to the code generated by a verified compiler. For
example, suppose one has proved that a logical function f : num list — num list
sorts lists of numbers, i.e. that f terminates and returns a sorted permutation of its
input. One can map f to an abstract syntax tree (AST) and compile it with a verified
compiler. We would then know that the compiled code executes in accordance to the
operational semantics given to the AST, but any connection with the properties of
f is only informal. So even in a setting where we have a trusted compiler, proving
properties of the code generated from a program may not be eased, even if properties
of the corresponding function are already established! Similarly, analyses of source
code do not immediately apply to the compiled machine code; see [2] for discussion.

2 There are some exceptions; for example, to the authors’ knowledge, no efficient purely func-
tional Union-Find algorithm has yet been found. However, see [10] for an imperative Union-Find
implementation that can be used in a purely functional manner.
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There are a variety of solutions to this problem. For example, one could prove
an equivalence between f and the operational semantics applied to the AST corre-
sponding to f, or one could attempt to prove the desired functional properties of
the AST using the operational semantics directly [42]. We will not investigate these
paths. Instead, we will avoid the verified compiler and compile the logical functions.

1.2 Compilation by Proof

We have been pursuing an approach, based on the use of verified rewrite rules, to
construct a verifying compiler for the functional programming language inherent
in a general-purpose logical framework. In particular, a subset of the term language
dwelling within higher order logic (HOL) is taken as the source language; thus, there
is no AST type in our approach. Intermediate languages introduced during compi-
lation are not embodied in new types, only as particular kinds of terms. This means
that source programs and intermediate forms are simply functions in HOL enjoying
exactly the same semantics. Thus, a major novelty of our compiler is that pro-
gram syntax and operational semantics need not be formalized. In addition, program
transformations are isolated clearly and specified declaratively, as term rewrites; a
different order of applying rewrites can lead to a different certifying compiler. For a
rewriting step, a theorem that establishes the equality for the input and result of the
transformation is given as by-product. We call this technique compilation by proof,
and it can be seen as a fine-grained version of translation validation [40] in which
the much of the validation is conducted offline, when proving the rewrite rules.

Each intermediate language is derived from the source language by restricting
its syntax to certain formats and introducing new administrative terms to facilitate
compilation and validation. Thus, an intermediate language is a restricted instance of
the source language. One advantage of this approach is that intermediate forms can
be reasoned about using ordinary facilities supplied by the logic implementation,
e.g. B-conversion. Our compiler applies translations such as normalization, inline
expansion, closure conversion, polymorphism elimination, register allocation and
structured assembly generation in order to translate a source program into a form
that is suitable for machine code generation. Before examining these more closely,
we first provide a self-contained discussion of the HOL logic and its implementation
in the HOL4 system [45].

2 Higher Order Logic

The logic implemented by HOL systems [12] (there are several mature implementa-
tions besides HOL4, including ProofPower and HOL Light)? is a typed higher order
predicate calculus derived from Church’s Simple Theory of Types [9]. HOL is a

3 Isabelle/HOL is a similar system; it extends the HOL logic with a Haskell-like type-class system.
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classical logic and has a set theoretic semantics, in which types denote non-empty
sets and the function space denotes total functions. Formulas are built on a lambda
calculus with an ML-style system of types with polymorphic type variables.

Formally, the syntax is based on signatures for types (£2) and terms (X ). The
type signature assigns arities to type operators, while the term signature assigns
constants their types. These signatures are extended by principle of definition for
types and terms, as discussed later.

Definition 1 (HOL types). The set of types is the least set closed under the follow-
ing rules:

Type variable. There is a countable set of type variables, which are represented with
Greek letters, e.g. o, B, etc..

Compound type. If op in §2 has arity n, and each of tyy,...,ty, is a type, then
(ty1,...,tyn)opis atype.
A type constant is represented by a 0-ary compound type. Types are definitionally

constructed in HOL, building on the initial types found in £2: truth values (bool),
function space (written « — $), and an infinite set of individuals (ind).

Definition 2 (HOL terms). The set of terms is the least set closed under the fol-
lowing rules:

Variable. if v is a string and ¢y is a type built from §2, then v : 7y is a term.
Constant. (c : ty)isatermif ¢ : v isin Y and ty is an instance of 7, i.e. there
exists a substitution for type variables 6, such that each element of the range of 0 is
atypein £2 and 6(7) = ty.

Combination. (M N) is a term of type B if M is a term of typew — B and N is a
term of type .

Abstraction. (Av. M) is a term of type o« — f if v is a variable of type & and M 1is
a term of type B.

Initially, ¥'; contains constants denoting equality, implication, and an indefinite
description operator ¢:

Operator Type Concrete syntax
= o — o — bool p A=B
= bool — bool — bool A= B
& (¢ = bool) = « ex. P x

Types and terms form the basis of the prelogic, in which basic algorithmic ma-
nipulations on types and terms are defined: e.g. the free variables of a type or term,
a-convertibility, substitution, and B-conversion. For describing substitution in the
following, the notation [M; + M3] N is used to represent the term N where all
free occurrences of M; have been replaced by M;. Of course, M and M, must
have the same type in this operation. During substitution, every binding occurrence
of a variable in N that would capture a free variable in M, is renamed to avoid the
capture taking place.
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2.1 Deductive System

In Fig. 1, a mostly conventional set of predicate logic inference rules is outlined,
along with the axioms of the HOL logic. The derivable theorems in HOL are just
those that can be generated by using the axioms and inference rules of Fig. 1.
More parsimonious presentations of this deductive system can be found in [12]
or Appendix A of [19], but the rules presented here provide a familiar basis on
which to work.

= -intro o 'tP=0Q AFP = -elim
I—{PIFP=0 TUAF O
A-intro r=p ARQ 'EPAQ A-elim
TUAFPAOQ I'tpP I'Fo
V-intro r+rp rn+-pPvo V-elim
TFPVO.TFOVP DPHM I3,OFM
NULULFM
V-intro* rerp r'EVx. P V-elim
TFVx. P I'Fx—>N|P
J-intro*® rerp r3x. p J-elim*
I'F3x. [N — x]P A [x=>v|PFQ
TUAFQ
Assume PEP FM=M Refl
Sym I'M=N I'EM =N, AFN=P Trans
T'EN=M ruaArmMm=r
Comb 'EM=N, ALP=Q r-M=N Abs*
TUAFMP=NQ T F@wM)=@Rv.N)
tyInst™ M FAv.M)N =[v— NIM  B-conv
o)+ o(M)
Bool FpPv=—P
Eta F@v.Mv)y=M
Select F Px = P(ex. Px)
Infinity F 3/ :ind—ind. (Vx y. (fx = fy) = (x = y)) Ady.Vx. =(y = fx)

Fig. 1 HOL deductive system




198 K. Slind et al.

A theorem with hypotheses Py, ..., Pr and conclusion Q (all of type bool) is
written [Py, ..., Px] F Q. In the presentation of some rules, e.g. V-elim, the fol-
lowing idiom is used: I, P I Q. This denotes a theorem where P occurs as a
hypothesis. A later reference to I" then actually means I" — { P}, i.e. had P already
been among the elements of I", it would now be removed.

Some rules, noted by use of the asterisk in Fig. 1, have restrictions on their use
or require special comment:

e V-intro. The rule application fails if x occurs free in I".

e d-intro. The rule application fails if N does not occur free in P. Moreover, only
some designated occurrences of N need be replaced by x. The details of how
occurrences are designated vary from implementation to implementation.

e 3-elim. The rule application fails if the variable v occurs free in I’ U AU{P, Q}.

e Abs. The rule application fails if v occurs free in I".

e tylnst. A substitution 6 mapping type variables to types is applied to each hy-
pothesis and also to the conclusion.

An important feature of the HOL logic is ¢ : (¢ — bool) — «, Hilbert’s indef-
inite description operator. A description term ex : t. Px is interpreted as follows:
it represents an element e of type t such that Pe holds. If there is no object that P
holds of, then ex : 7. Px denotes an arbitrary element of . This is summarized in
the Select axiom - Px = P(ex. Px).

2.2 Definitions

One of the most influential methodological developments in verification has been
the adoption of principles of definition as logical prophylaxis, and implementa-
tions of HOL therefore tend to eschew the assertion of axioms in favour of making
soundness-preserving definitions.

Definition 3 (Principle of Constant Definition). Given terms x : 7 and M : 7 in
signature X', check that

1. x is a variable and the name of x is not the name of a constant in X¢.
2. M is aterm in Yo with no free variables.
3. Every type variable occurring in M occurs in t.

If all these checks are passed, a constant X : 7 is added to X' and an axiom - X =
M is asserted. [l

Invocation of the principle of definition with ¢ and M meeting the above require-
ments introduces C as an abbreviation for M . There is also a closely related principle
of constant specification which we shall not discuss. There is also a principle of def-
inition for types. Given a witness theorem showing that a subset P of an existing
type is non-empty, the principle of type definition adds a new type constant to the
signature and asserts the existence of a bijection between the new type and P.
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Definition 4 (Principle of Type Definition). Given string op and theorem
dx:7. Px in signature X', check that

1. op is not the name of a type in £2.
2. P isatermin Yo with no free variables.
3. Every type variable occurring in P occurs in 7.

If these requirements are satisfied, a type operator (¢, . .., oty )op, Where oy, . .., oty
are the distinct type variables occurring in 3x : t. Px, is added to §2 and an axiom
stating the existence of a bijection between (¢, . .., ®,)op and the subset of 7 de-
noted by P is asserted. We omit the details of the axiom. a

This concludes the formal description of the basic HOL logic. For more extensive
discussion, see [35].

2.3 The HOL4 Proof Environment

HOLA4 is an implementation of the logic described above. It is the latest in a sequence
of implementations going back to the mid-1980s. It conforms to a characterizing
theme in HOL systems: adherence to the derivation judgement of the logic. In order
to ensure this, only the few simple axioms and rules of inference enumerated above
are encapsulated in the abstract type of theorems implemented in the logic kernel. As
a consequence of this design decision, all theorems have to be obtained by actually
performing proofs in HOL.*

Given such a primitive basis, serious verification efforts would be impossible
were it not for the fact that SML is a programmable meta-language for the proof
system. Effectively, the theorems provable in HOL are the closure of the base
logic under SML programming! Thus, both derived inference rules that take bigger
steps and high-level definition principles that introduce powerful abstractions are
achieved by programming: the required complex logical derivations are reduced to
a sequence of kernel inferences. For example, packages supporting various kind of
high-level type definition facilities, e.g. quotient types or ML-style datatypes, have
been programmed over the years. Datatypes can be mutually and nested recursive
and may also use record notation; thus, they are quite similar to those of SML. For
example, a type of polymorphic lists can be defined by invoking the following:

Hol datatype ‘list = Nil | Cons of 'a => list®

which introduces the type ‘a list plus the constructors Nil and Cons. Many other
consequences are automatically derived from this invocation as well: induction, case
analysis, and primitive recursion theorems, theorems proving the uniqueness and

4 However, in some cases, it is practical to allow external proof tools to be treated as oracles deliv-
ering HOL theorems sans proof. Such theorems are tagged in such a way that the provenance of
subsequent theorems can be ascertained.
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injectivity of the constructors, plus definitions supporting ML-style case constructs
and pattern matching. The soundness of the results of making such a definition is
ensured since the package can only use mechanisms that ultimately use the primitive
inferences and definition principles.

At the term level, a number of definitional packages are heavily used. For ex-
ample, an inductive definition package [18] (by John Harrison) defines inductively
specified predicates and relations; mutual recursion and infinitary premises are al-
lowed. Another package supports the definition of total recursive functions specified
as recursion equations in ML pattern-matching style [44]. This package manipulates
its input into terms that are used to instantiate formally proven well-founded induc-
tion and recursion theorems. Mutual and nested recursions are supported. Simple
termination proofs have been automated; however, more serious termination proofs
have of course to be performed interactively. We discuss this further in Sect. 3.

2.3.1 Proof Techniques

The view of proof in HOLA4 is that the user interactively develops the proof at a high
level, leaving subsidiary proofs to automated reasoners. Towards this, the system
provides an underlying database of theorems (case analysis, induction, etc.) which
supports user control of decisive proof steps. In combination with a few ‘declarative
proof” facilities, this allows many proofs to be conducted at a high level.

HOLA4 provides a suite of automated reasoners. All produce HOL proofs. Propo-
sitional logic formulas can be sent off to external SAT tools and the resulting
resolution-style proofs are backtranslated into HOL proofs. For formulas involv-
ing N, Z, or R, decision procedures for linear arithmetic may be used. A decision
procedure for n-bit words has recently been released. For formulas falling (roughly)
into first-order logic, a robust implementation of ordered resolution, implemented
by Joe Hurd, is commonly used.

Finally, probably the most commonly used proof technique in HOL (in common
with other proof systems) is simplification. There are several simplification proof
tools. For example, there is a call-by-value evaluation mechanism which reduces
ground, and some symbolic, terms to normal form [3]. A more general, and more
heavily used, tool — the simplifier — provides conditional and contextual ordered
rewriting, using matching for higher order patterns. The simplifier may be extended
with arbitrary context-aware decision procedures.

2.3.2 Custom Proof Procedures

As mentioned, most simple proofs in HOL can be accomplished via a small amount
of interactive guidance (specifying induction or case-analysis, for example) fol-
lowed by application of the simplifier and first-order proof search. However, it is
common for proof tool developers to write their own inference procedures, special-
ized to the task at hand. Such work is typically based on tactics and conversions.
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Tactics are a goal-directed decomposition technique invented by Milner in the
original LCF system [13]. Conversions are due to Paulson [38] and provide a use-
ful set of combinators for making custom simplification tools. Both tactics and
conversions are commonly used in order to build specialized proof tools in HOL.
Because of the so-called ‘LCF-style’ design adopted by HOL systems, such spe-
cialized extensions to the prover are completely safe in that they cannot introduce
inconsistency. Many of the transformations discussed in the following can be seen
as applications of the technique of conversions.

2.3.3 Theories and Libraries

The HOL4 system provides a wide collection of theories on which to base further
verifications: booleans, pairs, sums, options, numbers (N, Z, Q, R, fixed point,
floating point, and 7n-bit words), lists, lazy lists, character strings, partial orders,
monad instances, predicate sets, multi-sets, finite maps, polynomials, probability,
abstract algebra, elliptic curves, lambda calculus, program logics (Hoare logic,
separation logic), machine models (ARM, PPC, and IA32), temporal logics (w-
automata, CTL, p-calculus, and PSL), and so on. All theories have been built up
definitionally and together represent hundreds of man-years of effort by researchers
and students.

HOLA4 also has an informal notion of a library, which is a collection of theo-
ries, APIs, and proof procedures supporting a particular domain. For example, the
library for N provides theories formalizing Peano Arithmetic and extensions (nu-
merals, gcd, and simple number theory), a decision procedure, simplification sets
for arithmetic expressions, and an extensive collection of syntactic procedures for
manipulating arithmetic terms. Loading a library extends the logical context with
the types, constants, definitions, and theorems of the comprised theories; it also
automatically extends general proof tools, such as the simplifier and the evaluator,
with library-specific contributions.

Both theories and libraries are persistent: this is achieved by representing them
as separately compiled ML structures. A ‘make’-like dependency maintenance
tool is used to automatically rebuild formalizations involving disparate collections
of HOL4 libraries and theories, as well as ML or external source code in other
programming languages.

2.3.4 External Interfaces

There is a variety of ways for a logic implementation to interface with external
tools. On the input side, purported theorems coming from external tools need to be
accompanied with enough information to reconstruct a HOL proof of the theorem.
An example of this is the interface with SAT solvers, such as minisat, which can
supply proof objects.
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Another approach is illustrated by the integration of a BDD library into HOL.
This has been used to support the formalization and application of model-checking
algorithms for temporal logic. Since HOL theorems are eventually derived from op-
erations on BDDs representing HOL terms, the oracle mechanism mentioned earlier
is used to tag such theorems as having been constructed extra-logically.

On the output side, HOL formalizations confining themselves to the ‘func-
tional programming’ subset of HOL may be exported to ML. This gives a pathway
from formalizations to executables. The generated code is exported as separately
compilable ML (SML or OCaml) source with no dependencies on the HOL4 im-
plementation. Thus, the theory hierarchy of HOL4 is paralleled by a hierarchy of
ML modules containing exported definitions of datatypes and computable functions
formalized in HOL.

Finally, HOL can be used as a meta-logic to formalize another logic; such has
been done for ACL2 [15, 16]. In this work, HOL4 was used to show that ACL2 is
sound. This justifies a connection between the two systems in which a HOL for-
malization may be translated to the HOL theory of ACL2; this formalization is then
transported to the ACL2 system and processed in some way (e.g. reduced using the
powerful ACL2 evaluation engine) and then the result is transported back to HOL4
and backtranslated to the original HOL theory.

2.3.5 Applications

Peter Sewell and colleagues have used HOL4 to give the first detailed formal spec-
ifications of commonly used network infrastructure (UDP, TCP) [6]. This work has
heavily used the tools available in HOL4 for operational semantics. They also imple-
mented a derived inference rule which tested the conformance of real-world traces
with their semantics.

As an application of the HOL4 backend of the Ott tool [43], Scott Owens
has formalized the operational semantics of a large subset of OCaml and proved
type soundness [36]. The formalization heavily relied upon the definition packages
for datatypes, inductive relations, and recursive functions. Most of the proofs pro-
ceeded by rule induction, case analysis, simplification, and first-order proof search
with user-selected lemmas. In recent work, Norrish has formalized the semantics of
C++ [34].

An extremely detailed formalization of the ARM due to Anthony Fox sits at the
centre of much current work in HOL4 focusing on the verification of low-level soft-
ware. The development is based on a proof that a micro-architecture implements the
ARM instruction set architecture. In turn, the ISA has been extended with so-called
“Thumb’ instructions (which support compact code) and co-processor instructions.
On top of the ISA semantics, Myreen has built a separation logic for the ARM and
provided proof automation [31].
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3 Source Language: TFL

The source language for our compiler is a subset of the HOL term language. This
subset, called TFL in [44], amounts to a polymorphic, simply typed, higher order,
pure functional programming language supporting pattern matching over algebraic
datatypes. A ‘program’ in this language is simply a (total) mathematical function,
and its semantics are obtained by applying the semantics of classical HOL [12].
Thus, notions of program execution, including evaluation order, are absent. This
approach has several benefits:

1. Proofs about TFL programs may be conducted in the ordinary mathematics
supported by HOL. Reasoning about a TFL program is typically based on the
induction theorem arising from the recursion structure of the program, rather
than induction along the evaluation relation of an operational semantics.

2. Many front end tasks in a compiler are already provided by HOLA4: lexical anal-
ysis, parsing, type inference, overloading resolution, function definition, and
termination proof.

3. The syntax of the language resembles the pure core subset of widely used func-
tional programming languages such as SML and OCAML. Thus, our results can
be easily extended to these practical languages.

The syntax of TFL is shown in Fig. 2, where [term]separaior means a sequence of
terms separated by the separator.

For example, Quicksort can be defined by the following invocations of a package
implementing the automatic definition of TFL functions:

T w=T|t|tD primitive type, type variable and algebraic type
| t#t|t—>1 tuple type and arrow(function) type
at. =id|id of [t]= algebraic datatype clause
at = datatype id = [at.] algebraic datatype
| [at]. mutually recursive datatype
pat =v|C ﬁ; pattern
e v=i:T|v:t constant and variable
| © tuple, i.e.[e].
| p & primitive application
| C e constructor application
| fia function identifier
| ee composite application
| if e then e else e conditional
| case e of [(c ¢) = €]; case analysis
| letv = eine let binding
| Av.e anonymous function
Jaeer = fia ([pat]) =e pattern matching clause
| [faectIn function declaration
lv=oe top level variable declaration

Fig. 2 Syntax of TFL
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Define
“(PART P [] 11 12 = (11,12)) /\
(PART P (h::rst) 11 12 =
if P h then PART P rst (h::11) 12
else PART P rst 11 (h::12))";
tDefine
"QSORT"

*(QSORT ord [1 = [1) /\
(QSORT ord (h::t) =
let (11,12) = PART (\y. ord y h) t [] I[I
in
QSORT ord 11 ++ [h] ++ QSORT ord 12)‘
(WF_REL TAC ‘measure (LENGTH o SND)‘' THEN
< ... rest of termination proof ... >);

The definition of the partition function PART is by primitive recursion, using pat-
tern matching over Nil and Cons’ Similarly, the definition of QSORT is recursive;
however, an explicit termination proof (mostly elided) is needed in this case. Thus,
Define automatically performs a simple but useful class of termination proofs while
tDefine has the termination argument explicitly supplied as a tactic. Reasoning
about QsoRT is performed by using an induction theorem automatically derived af-
ter termination is proved.

In the following, we will sometimes not distinguish between fun and Define
or between datatype and Hol_datatype. As well, we use some ASCII renderings
of mathematical symbols. For example Av.M is replaced by \v. M and A is ren-
dered as /\.

4 Compilation by Rewriting

The compilation process performs transformations that are familiar from exist-
ing functional language compilers except that transformations are implemented by
deductive steps. TFL’s high-level features such as polymorphism, higher order func-
tions, pattern matching, and composite expressions need to be expressed in terms of
much lower level structures. Briefly, the translator

o Converts pattern matching first into nested case expressions and eventually into
explicit conditional expressions

e Removes polymorphism from TFL programs by making duplications of poly-
morphic datatype declarations and functions for each distinct combination of
instantiating types

e Names intermediate computation results and imposes an evaluation order in the
course of performing a continuation-passing-style (CPS) transformation

3> The ML-like notation [] and infix : : is surface syntax for Nil and Cons.
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e Applies defunctionalization to remove higher order functions by creating alge-
braic datatypes to represent function closures and type-based dispatch functions
to direct the control to top-level function definitions

e Allocates registers using a naming convention in order to express the status (e.g.
spilled or not) of variables representing machine registers

The transformations in our compiler are specified by formally proven rewrite
rules the application of which is guided by programs written in the meta-language
(Standard ML) used to implement the host logic. Generally, decisions of when and
where to apply rewrites is syntax directed. Each rewrite rule has been formally
proven so a rewriting step ensures that the transformed code is equivalent to the
source. However, we can distinguish two different notions of a transformation:

1. Prove beforehand. The correctness of a rewrite rule is proven once and for all:
a single object logic theorem establishes that all successful applications of this
rule always generates a result that is equivalent to original program. Such a rule
is applied in a local manner, and the necessary applicability checks are phrased
as antecedents of the theorem.

2. Prove dynamically. A per-run correctness check is performed. The result of a
rewrite is verified each time it is applied to a program. Rules of this form are
necessary when the transformation and its applicability checks are not express-
ible in a single theorem.

4.1 Pattern Matching

The conversion of a function described by ML-style pattern matching to nested
case expressions is based on Augustsson’s original work [1], which was adapted
by the first author [44] to support pattern-matching function definitions in logic.
A pre-processing pass is first performed to deal with incomplete and overlap-
ping patterns: incomplete patterns are made complete by iteratively adding rows
for all missing constructors; overlapping patterns are handled by replacing a
value with possible constructors. Note that this approach may make the pat-
tern exponentially larger because no heuristics are used to choose the ‘best’
order in which sub-terms of any term are to be examined. In fact, recent work
by Krauss has shown that heuristics may be the best that one can do: pattern
minimization is a computationally difficult task, being as hard as QSAT for
example [23].

The translation depends on the fact that for the declaration of a logical datatype
ty with constructors Cq, . .., C,, a ty_case function of the form

rycase fi... fuc X)) = fi X

tycase fi... fuc, )= f, X



206 K. Slind et al.

z i stack stack
Al : pats) = rhsy, —A patsy = rhs[z < vy],
vy it pats, = rhs, pats, = rhs,[z < v,]
z i stack
Cy P11 it patsyy = rhsyy,
A\ C, P, it patsiy, = rhsy, | = tycase (Avi.M;) ... (Av,.M,) z
Cy, Pn1 3 patsy; = rhsyy,

C, Dik, it patsni, = rhs,,

v; i stack
Pil @ patsy = rhsy,

where M; = A fori =1,...,n

Dik; @ patsiy, = rhs,
Fig. 3 Pattern matching

is defined. For example, the case expression for the natural numbers is defined as
(numcaseb f 0=b) A (num_case b f (SUCn) = f n).

Case expressions form the target of the pattern-matching translation. The algo-
rithm A shown in Fig. 3 converts a sequence of clauses of the form [pat; = rhs;],
into a nested case expression. A takes two arguments: a stack of subterms that are
yet to be matched and a matrix whose rows correspond to the clauses in the pat-
tern. All rows are of equal length, and the elements in a column should have the
same type.

Conversion A proceeds from left to right, column by column. At each step the
first column is examined. If each element in this column is a variable, then the head
variable z in the stack is substituted for the corresponding v; for the right-hand side
of each clause. If each element in the column is the application of a constructor for
type T and t contains constructor Cy, ..., Cy,, then the rows are partitioned into n
groups of size k1, ..., k, according to the constructors. After partitioning, a row
(c(p) :: pats; rhs) has its lead constructor discarded, resulting in a row expression
(p @ pats; rhs). Here :: is the list constructor, and @ appends the second list to
the first one. If constructor c; has type 1y — --- — t; — 7, then new variables
Vi = V1 :7T1,...,V; : 7; are pushed onto the stack. Finally the results for all groups
are combined into a case expression for the specified type.

Example 1 (Greatest Common Divisor).
The Greatest Common Divisor algorithm gcd can be specified by pattern matching
as follows

Define

‘(ged (0, y) =vy) /\
(ged (x, 0) = x) /\
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(gecd (%, y) =
if yv <= x then gcd (x - vy, y)
else gcd (x, y - x))°

After the pattern-matching transformation is used to define the function and ter-
mination is proved, we obtain the theorem (the irregularly named variables are an
artefact of the pattern-matching translation)

|- gcd a =
pair case (\v vl.
num_case
(num_case 0 (\v7. SUC v7) V1)
(\v4. num case (SUC v4)
(\v9. if SUC v4 >= SUC v9
then ged (SUC v4 - SUC v9,SUC v9)
else gcd (SUC v4,SUC v9 - SUC v4))
vl)
v) a

Then case expressions may be converted to conditional expressions based on the
following theorem scheme mapping case expressions to their ‘destructor’ counter-
parts:

Fry_case fi... f, ob =
ifisC; ob then f; (destC; ob) ... (destCy, ob) else
if isC, ob then f, (destCy; ob) ... (destCy, ob) else...

where operator iSC; tells whether a variable matches the ith constructor C;, i.e.
isC; (C; X) = Tiffi = j; and operator destC;; is the jth projection func-
tion for constructor C;. These operations are automatically defined when a datatype
is declared. In addition, an optimization is performed to tuple variables: if an ar-
gument variable x has type ti#...#t,, then it is replaced by a tuple of new
variables (X1, ..., x,). Superfluous branches and ‘let’ bindings are removed and
some generally useful rewrites are applied. In this manner, the gcd equations are
converted to

|- ged (nl,n2) =
if nl1 = 0 then
if n2 = 0 then 0 else n2
else
if n2 = 0 then nl
else
if nl >= n2
then gcd (nl - n2, n2)
else gcd (nl, n2 - nl)

4.2 Polymorphism

The monomorphization transformation eliminates polymorphism and produces a
simply typed program that enables good data representations. The basic idea is to
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duplicate polymorphic datatype declarations at each ground type used and a function
declaration at each type used, resulting in multiple monomorphic clones of polymor-
phic datatypes and functions. This step paves the way for subsequent conversions
such as type-based defunctionalization. Although this approach would seem to lead
to code explosion, it is manageable in practice. For example, MLton, a high-quality
compiler for Standard ML, uses similar techniques and reports maximum increase
of 30% in code size.

The first step is to build an instantiation map that enumerates, for each datatype
and function declaration, the full set of instantiations for each polymorphic type. As
mentioned above, a TFL program will be type checked by the HOL system and be
decorated with polymorphic type variables such as «, §, ... when it is defined. In
particular, type inference is done for (mutually) recursive function definitions. The
remaining task is then to instantiate the generic types of a function with the actual
types of arguments at its call sites, and this is also achieved by type inference.

The notation used in this section is as follows. A substitution rule R = (¢t —
{T}) maps a parameterized type ¢ to a set of its type instantiations; an instantiation
set S = {R} is a set of substitution rules; and an instantiation map M = {z — S}
maps a datatype or a function z to its instantiation set S. We write M.y for the value
at field y in the map M ;if y ¢ Dom M then M.y returns an empty set. The union of
two substitution sets S7 Ug S5 is {t <— (S1.£ U S5.t) | t € Dom S; UDom S,}. We
write |, {S} for the union of a set of substitution rules. The union of two instantia-
tion maps M, |J,,, M> is defined similarly. The composition of two instantiation sets
S and Sy, denoted as S; o, S2,i8{z <> |J{S2.t |t € Dom S1} | z € Dom S1}.
Finally, the composition of an instantiation map M and a set S is defined as
M o, S={z—> Mzo,S|zeDom M}.

The instantiation information of each occurrence of a polymorphic function and
datatype is gathered into an instantiation map during a syntax-directed bottom-up
traversal. The main conversion rules I" and A shown in Fig. 4 build the instantia-
tion map by investigating types and expressions respectively. The rule for a single
variable/function declaration is trivial and omitted here: we just need to walk over
the right-hand side of its definition. If a top-level function f is called in the body of
another function g, then g must be visited first to generate an instantiation map M,
and then f is visited to generate M s; finally these two maps are combined to a new
one,i.e. (Myf o Mg.f) Uy Mg). The clauses in mutually recursive functions can
be visited in an arbitrary order.

This algorithm makes use of a couple of auxiliary functions provided by the
HOL system. Function con2tp(c) maps a constructor C to the datatype to which it
belongs; at_tp D returns o if there is a datatype definition datatype o = D of .. ;
when x is either a function name or a constructor, and match_tp x t matches
the original type of x (i.e. the type when x is defined) with t and returns a
substitution set.

After the final instantiation map is obtained, we duplicate each polymorphic
datatype and function declaration for all combinations of its type instantiations and
replace each call of the polymorphic function with the call to its monomorphic clone
with respect to the type. The automatic correctness proof for the transformation is
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I'(7) ={}, forte{Tl, t}
I'(t D) = {D <> match_tp (at_tp D) t}
I'(t1 op; ©2) = I'(t1) Uy I'(r2), forop, € {#,—}
A(i) ={}
Av:t) = I'(7)
A(lel) = U, {r}
A(pe) = Ae)
A((c: 1) e) = {con2tp ¢ < match_tp (con2tp ¢) t}
U I'(7) Uy Ale)
A(f 1) e) = {fia = matchtp fiy t} Uy T'(x) Uy Ale)

Aer) Uy Alea) Uy, Ales)

A(er) Uy, U, {{con2tp ¢ — match_tp (con2tp c) 7}
Um A(EZ) Um A(€3)}

A(Ietv = € in 62) = (A(el) Om A(€2).V) Um A(EZ)

A([Av]%e) = A(e)

A(if e; then e, else e3)
A(case e; of [((c : T) e2) ~> e3]))

Fig. 4 Instantiation map construction for polymorphic components

trivial: each duplication of a polymorphic function computes the same function on
the arguments of the instantiating types.

Example 2. Consider the following specification, in ML notation:

datatype (o, 8)ty =cof a#p

funf(x o) =x

fung (x : B,y :0) =leth(z) =c(f(x), f(z)) in h(y)
j=(g (1:num,F), ¢ (F.T))

In this definition, 4 has the inferred type © — (8, o) ty. The algorithm builds the
following instantiation maps:

Investigate j : M; = {g < {'c < {bool,num},d — {bool}}}
Investigate g : Mg = {f — {{a — {¢,/d}},0 = {a — {c},/b — {'d}}}
Compose Mg and M;: Mgo; = MgoM;.g =

{ f = {a < {bool,num}}, 0 < {'a < {bool,num},'b — {bool}} }
Union Mg and Mgo;: Mg jy = Mg Uy, M =

{ f = {a < {bool,num}}, g — {'c — {bool,num},’'d — {bool}},

o < {'a < {bool,num}, 'b — {bool}} }

Investigate f : no changes, Mg iy = Mg j)

Then for datatype o, function f, and function g, a monomorphic clone is cre-
ated for each combination of instantiating types. Calls to the original functions are
replaced with the appropriate copies of the right type. For example, expression j is
converted to (gnum#bool (1» F)7 bool#bool (F» T))7 where Onumitbool and Obool#bool
are the two cloned definitions of g. The correctness of the conversion is proved
based on the theorems showing that g’s clones compute the same function as g



210 K. Slind et al.

with respect to the instantiating types: = (g : num#bool) = Qnumsbool N (9 :
bool#bool) = Obool#bool -

4.3 Sequentialization via CPS

This transformation bridges the gap between the form of expressions and control
flow structures in TFL and assembly. A TFL program is converted to a simpler
form such that (1) the arguments to function and constructor applications are atoms
like variables or constants; (2) discriminators in case expressions are also simple
expressions; (3) compound expressions nested in an expression are lifted to make
new ‘let’ bindings; and (4) curried functions are uncurried to a sequence of simple
functions that take a single tupled argument.

To achieve this, a CPS transformation is performed. The effect is to sequential-
ize the computation of TFL expressions by introducing variables for intermediate
results, and the control flow is pinned down into a sequence of elementary steps. It
extends the one in our software compiler [27] by addressing higher level structures
specific to TFL. Since there is no AST of programs in our approach, the CPS trans-
lation cannot be defined over a particular type; instead, it comprises a generic set of
rewrite rules applicable to any HOL term. The basis is the following definition of
the suspended application of a continuation parameter:

cek = ke .

To CPS an expression e we create the term C e (Ax.x) and then exhaustively apply
the following rewrite rules, which are easy to prove since they are just rearrange-
ments of simple facts about lambda calculus (Fig. 5).

Application of these rules pushes occurrences of C deeper into the term. After this
phase of rewriting finishes, we rewrite with the theoremtce k =letx =eink x
and B-reduce to obtain a readable ‘let’-based normal form.

Fc(e) k =k e, when e isa primitive expression
Fc(AV.e) =A7V.Ak.c(e) k
Fc(e.ex) k =ce (Ax.ces (Ay.k (x,Y)))
Fc(ope)k =c(e) (Ax.k (op x)) whenop € {p,c, fia}
kG (e1 e2) k = (e1) (Ax.c (€2) (Ay.k (x 1))
Fc(etv=e iney) k =c(e) (Ax.c (e2) (Ay.k y))
Fc (if e; then e; else e3) k =

¢ (e1) (Ax.k (if x then ¢ (e;) (Ax.x) else ¢ (e3) (Ax.x)))
Fc(casee  ofcer =3 |cey —e3,|..) k=

¢ (e1) (Ax. (€ (€3,) (Ay1.€ (€2,) (Ays. ..

k (case x of ¢ y1 = € (e3,) (Ax.x) | ¢ y2 = C (e3,) (Ax.x) | ...)))))

Fig. 5 CPS conversion



Compiling Higher Order Logic by Proof 211

Example 3. As a simple example with no control flow, consider the following oper-
ation found in the TEA block cipher [47]:

ShiftXor (x, s, ko, k1) = (x < 4 + ko) ® (x +5) ® (x < 5+ k1)

All operations are on 32-bit machine words. In HOL4’s ASCII representation this is

|- ShiftXor (x,s,k0,kl) =
((x << 4) + kO0) ?? (x+s8) ?? ((x >> 5) + k1)

The CPS rewriting pass flattens this to the equal form

|- ShiftXor (v1,v2,v3,v4) =

let v5 = vl << 4 in
let v6 = v5 + v3 in
let v7 = vl + v2 in
let v8 = v6 ?? v7 in
let v9 = vl << 5 in
let v10 = v9 + v4 in
let v1l = v8 ?? v10

in v11l

4.4 Defunctionalization

In the next phase of compilation, we convert higher order functions into equivalent
first-order functions and hoist nested functions to the top level. This is achieved
through a type-based closure conversion. After the conversion, no nested functions
exist; and function call is made by dispatching on the closure tag followed by a
top-level call.

Function closures are represented as algebraic data types in a way that, for each
function definition, a constructor taking the free variables of this function is created.
For each arrow type, we create a dispatch function, which converts the definition of
a function of this arrow type into a closure constructor application. A nested func-
tion is hoisted to the top level with its free variables to be passed as extra arguments.
After that, the calling to the original function is replaced by a calling to the rel-
evant dispatch function passing a closure containing the values of this function’s
free variables. The dispatch function examines the closure tag and passes control
to the appropriate hoisted function. Thus, higher order operations on functions are
replaced by equivalent operations on first-order closure values.

As an optimization, we first run a pass to identify all ‘targeted’ functions which
appear in the arguments or outputs of other functions and record them in a side effect
variable Targeted. Non-targeted functions need not to be closure converted, and
calls to them are made as usual. During this pass we also find out the functions to be
defined at the top level and record them in Hoisted. Finally Hoisted contains
all top-level functions and nested function to be hoisted.

The conversion works on simple typed functions obtained by monomorphisation.
We create a closure datatype and a dispatch function for each of the arrow types that
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targeted functions may have. A function definition is replaced by a binding to an
application of the corresponding closure constructor to this function’s free variables.
Suppose the set of targeted functions of type tis { f; x; = e¢; | i = 1,2,...}, then
the following algebraic datatype and dispatch function are created, where tp_of and
fv return the type and free variables of a term, respectively (and the type builder I”
will be described below):

clos, = cons’fl of I'(tp_of (fv f1)) | cons’f2 of I'(tp_of (fv f2)) | ...
(dispatch,(consT . x1.y1) = (f1:1'(7)) (x1.y1)) A
(dispatch,(cons™, . x3.2) = (fo: () (¥2.72)) A

As shown in Fig. 6, the main translation algorithm inspects the references and
applications of targeted functions and replaces them with the corresponding clo-
sures and dispatch functions. Function I" returns the new types of variables. When
walking over expressions, A replaces calls to unknown functions (i.e. those not
presented in Hoisted) with calls to the appropriate dispatch function and calls
to known functions with calls to hoisted functions. In this case, the values of free
variables are passed as extra arguments. Function references are also replaced with
appropriate closures. Finally Redefn contains all converted functions, which will
be renamed and redefined in HOL at the top level.

Now we show the technique to prove the equivalence of a source function f to
its converted form f’. We say that a variable v/ : t/ corresponds v : T iff (1) v = V' if
both 7 and t’ are closure type or neither of them is. (2) VxVx'. dispatch (v, x') =
v x if V' is a closure type and v is an arrow type, and x’ corresponds to x; or vice

Ir'ov:T) =T

r(vitg — n) = if v € Targeted then clos; -, else 11 —> 1

I'(v:t D) =TI (t) D

r) = [ro)

A :T) = if v € Targeted then cons; else v : clos,

A(le]) = [A@)]

A(pe) = p (4A(e)

Alc e) = ¢ (A(e))

A((f 1) e) = if f € Hoisted then (new_name_of f) (A(e),fv f)
else dispatch, (f : clos,, A(e))

Al(if e; then e, else e3) = if A(e;) then A(e,) else A(es)

A(case e of [c e; ~> e3]]) = case A(ey) of [(A(c e2)) ~> A(e3)];
Allet f = A7V .e; iney) (@F T =e1); Aler))
Aletv = e iney) letv = A(ey) in A(e;) when e is not a A expression
P(fia (Vit)=e) =

lete’ = A(e) in

Redefn := Redefn + (fiq <> Redefn. fiqy U{(fiq : T — (tpofe’)) ¥ =¢'}
D([SaeetIn) = [P(faee))]:

Fig. 6 Closure conversion
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versa. Then f’ is equivalent to f iff they correspond to each other. The proof pro-
cess is simple, as it suffices to simply rewrite with the old and new definitions of the
functions.

Example 4. The following higher order program

funf(x :num) =x*%x2<x+10
fun g (s : num — bool, x : num) =

lethy = Ay.y +xinifs x then hy elselet hy = Ay.hy y x x in hy
funk (x : num) =if x =0thenlelse g (f,x) (k (x — 1))

is closure converted to

datatype clos;, = cons’

datatype clos,, = cons,:z1 of num | cons,?2 of num

fun dispatchy, (cons? : close, x inum) = f'x A f'x=x%2<x+10

fun dispatch,, (conszz1 y : closg,, x :num) = by (y,x)) A

fun dispatch,, (cons;f2 y i close,, x :num) =y (y,x)) A

funh) (y,x) =y+x A funhl (y,x) =hj(y,x) *x

fun g’ (s : closy, . x : num)=if dispatch,, (s, x) then cons;fl x else consl?2 X

fun k' (x : num) =if x = 0then 1 else g (cons}‘,x), (K" (x =1))

where 77 and 7, stand for arrow types num — bool and num — num respectively.
The following theorems (which are proved automatically) justify the correctness of
this conversion:

Ff=f Fk'=k
F (Yx.dispatch, (s',x) = s x) = VxVy.dispatch,, (g’ (s',x),y)
=(g(s.x)y

4.5 Register Allocation

One of the most sophisticated algorithms in a compiler is register allocation, which
supports the fiction of an unbounded number of variables with a fixed number of reg-
isters. Although many register allocation algorithms exist for imperative languages,
we find them unnecessarily complicated for our purely functional language because
variables are never destructively updated, obviating the standard notion of def-use
chains. Operating over the SSA format, our algorithm is a simple greedy algorithm
with backtracking for early spilling.

The basic policy of register allocation is to avoid registers already assigned to live
variables. Variables live at the same time should not be allocated to the same register.
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In this section, the naming convention is: variables yet to be allocated begin with v,
variables spilled begin with m (memory variable), and those in registers begin with
r (register variable). Notation ‘.’ matches a variable of any of these kinds. v, 7,
and m stand for a fresh variable, an unused register, and a new memory location,
respectively. Predicate r <— v specifies that variable v is assigned to register r; by
definition Vr € Spach.” < r and Vr €, SpachVi.r <~ m (where Syach is the
set of machine registers). Notation avail e returns the set of available registers after
allocating e, i.e. avail ¢ = Spach — {7 | YW.w € e A r < w}. Administrative terms
app, save and restore are all defined as Ax.x; and loc (v,/) = [ indicates that
variable v is allocated to location / (where [ = r or m). A function application is
denoted by app.

When variable v in expression let v = e; in ex[v] is to be assigned a register, the
live variables to be considered are just the free variables in e;, excluding v. If live
variables do not use up all the machine registers, then we pick an available register
and assign v to it by applying rule assgn. Otherwise, we spill to the memory a
variable consuming a register and assign this register to v. In some cases, we prefer
to spill a variable as early as possible: in the early_spill rule variable w’s value is
spilled from r for future use; r may not be allocated to v in the subsequent allocation.
When encountering a memory variable in later phases, we need to generate code
that will restore its value from the memory to a register (the ¥ in rule restore will
be assigned a register by the subsequent application of rule assgn).

The allocation can be viewed as being implemented by rewriting with the following
set of rules.

[assign] letv =-ejinex[v] «— let7 =ej inezfloc(v, 7)] < avail e; # ¢
[spill] letv =ej inez[v,loc(w,r)] «<—
let m = save r let r = ey in ez[loc(v, r), loc(w, m)] < avail e; = ¢
[early_spill] letv =eqines[v,loc(w,r)] «—
let i = save rinletv = e; in ez[v,loc(w,m)] < avail e; = ¢
[restore] e[loc(v,m)] «<— letv = restore m in ¢[V]
[caller.save] let_=app f ine[-,loc(w,r)] «—
letm = save rinlet _=app f ine[_,loc(w, m)]
[spill_if] let _ = if e; then ey [loc(w, r1)] else es[loc(w, rp)] in e4qfloc(w, rg)] «—
let . = save rg in let - = if e; then ex[loc(w, 1m1)] else es[loc(w,m)] in
esfloc(w, m)] < —(ro =r1 =r2)

The format of a rule
[name] redex <— contractum < P

specifies that an expression matching redex can be replaced with the instantiated
contractum provided that side condition P over the redex holds. The declarative
part of the rule, redex <— contractum, is a HOL theorem that characterizes the
transformation to be performed; the control part, P, specifies in what cases the
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rewrite should be applied. Notation e[v] stands for an expression that has free
occurrences of expression v; and e[vy,...,v,] <— e[wi,...,w,] indicates that,
for Vi.1 <i < n, all occurrences of v; in e are replaced with w;.

Saving is necessary not only when registers are spilled, but also when functions
are called. Our compiler adopts the caller-save convention, so every function call is
assumed to destroy the values of all registers. Therefore, we need to save the values
of all registers that are live at that point, as implemented in the caller_save rule. In
addition, as we allocate the two branches of a conditional expression separately, a
variable may be assigned different registers by the branches. This will contradict the
convention that a variable should be assigned only one register. In this case, we just
need to early spill it through the spill_if rule.

In the final step, all save, store, and loc in an expression are eliminated. This
results in an equivalent expression containing only register variables and memory
variables.

[elim_save] letm = saver ine[m] «<— e[r]
[elim_store] let r = store m in e[r] <— e[m]

In practice, in order to improve the performance we do not have to perform
equivalence check for every rewrite step. Instead, after all the rewrites are done, by
applying the following rules to the produced expression, we will obtain an expres-
sion that is a-equivalent to the original expression, thus validating that the register
allocation on the entire expression is correct. This ease of verification of the cor-
rectness of the allocation is a definite ‘win’ for the translation validation approach
over the verified compiler approach, especially when one considers the difficulty
of verifying a register allocator. The technique here was discovered by Hickey and
Nogin [20] and has also been exploited by Leroy [25].

Example 5. A round of encryption in TEA can be defined as follows

|- Round ((y,z),(k 0,k 1,k 2,k 3),s8) =
let s’ = s + 2654435769w in
let y’ = y + ShiftXor (z,s’,k_0,k 1)
in ((y’, z + ShiftXor (y’,s’,k 2,k 3)),
(k_ 0,k 1,k 2,k 3),s’)

Sequentialization yields the intermediate result

|- Round ((vl1,v2), (v3,v4,v5,v6),v7) =
let v8 = v7 + 2654435769w in
let v9 = ShiftXor (v2,v8,v3,v4) in
let v10 = vl + v9 in

let vl1l = ShiftXor (v10,v8,v5,vé6) in
let v12 = v2 + v1l
in

((vio0,v12), (v3,v4,v5,v6) ,Vv8)
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and with four available registers, we obtain the allocation

|- Round ((xr0,rl), (r2,r3,ml,m2),m3) =
let m4 = r2 in
let r2 = m3 in
let ¥2 = r2 + 2654435769w in
let m3 = r3 in
let r3 = ShiftXor (rl,r2,m4,m3) in
let ¥O = r0 + r3 in

let r3 = ShiftXor (r0,r2,ml,m2) in
let vl = rl + r3
in

((r0,r1), (m4,m3,ml,m2),r2)

S Engaging with the Machine

Up to now, we have operated purely in logic, deriving ever-more assembly like
presentations of high-level functions, preserving equality all the while. We have
gone surprisingly far down the path to machine code. However, eventually the real
operational behaviour of the target machine and its limitations due to finite available
memory and word size have to be dealt with. We will not do so in this chapter.
However, Myreen has implemented a proof-producing compiler [30, 32] for a low-
level language which takes up approximately where our development here stops.
His compiler produces a theorem asserting that the logical function taken as input
is faithfully executed by the machine. The final gap between these two compilers is
one that we intend to bridge in future work. Among other things, we will have to
map to a uniform representation for datatypes and also deal with the allocation and
collection of garbage generated by our programs. The garbage collector verified by
Myreen in his thesis work will probably play a key role.

6 Related Work

Compiler verification is a venerable topic with many publications [11]. There
has also been a huge amount of research on translating functional languages;
one of the most influential on us has been the paper of Tolmach and Oliva [46]
which developed a translation from an SML-like functional language to Ada. Our
monomorphisation and closure conversion methods are similar to theirs, i.e. remov-
ing polymorphism by code specialization and higher order functions through closure
conversion. However, we target logic specification languages and perform correct-
ness proofs on the transformations. Our work can be regarded as an extension of
theirs by now verifying the correctness of these two conversions in a translation-
validation style.

Hickey and Nogin [20] worked in MetaPRL to construct a compiler from a full
higher order, untyped, functional language to Intel x86 code, based almost entirely
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on higher order rewrite rules. A set of unverified rewriting rules are used to convert a
higher level program to a lower level program. They use higher order abstract syntax
to represent programs and do not define the semantics of these programs. Thus, no
formal verification of the rewriting rules is done.

Proof producing compilation for smaller subsets of logic has already been in-
vestigated in a prototype hardware compiler, which synthesizes Verilog netlists
[14], and a software compiler [28], which produced low-level code from first-order
HOL functions.

Hannan and Pfenning [17] constructed a verified compiler in LF for the untyped
A-calculus. The target machine is a variant of the CAM runtime and differs greatly
from real machines. In their work, programs are associated with operational seman-
tics; and both compiler transformation and verifications are modeled as deductive
systems. Chlipala [8] further considered compiling a simply typed A-calculus to
assembly language. He proved semantics preservation based on denotational se-
mantics assigned to the intermediate languages. Type preservation for each compiler
pass was also verified. The source language in these works is the bare lambda cal-
culus and is thus much simpler than TFL; thus, their compilers only begin to deal
with the high-level issues, which we discuss in this paper.

Compared with Chlipala [8] who gives intermediate languages dependent types,
Benton and Zarfaty [4] interpret types as binary relations. They proved semantic
type soundness for a compiler from a simple imperative language with heap-
allocated data into an idealized assembly language.

Leroy [7,25] verified a compiler from a subset of C, i.e. Clight, to PowerPC as-
sembly code in the Coq system. The semantics of Clight is completely deterministic
and specified as a big-step operational semantics. Several intermediate languages
are introduced, and translations between them are verified. The proof of semantics
preservation for the translation proceeds by induction over the Clight evaluation
derivation and case analysis on the last evaluation rule used; in contrast, our proofs
proceed by verifying the rewriting steps.

A purely operational semantics-based development is that of Klein and Nipkow
[22] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
The Isabelle/HOL theorem prover is also used to verify the compilation from a
type-safe subset of C to DLX assembly code [24], where a big step semantics and
a small step semantics for this language are defined. Meyer and Wolff [29] de-
rive in Isabelle/HOL a verified compilation of a lazy language called MiniHaskell
to a strict language called MiniML based on the denotational semantics of these
languages.

7 Conclusions and Future Work

We are in the midst of a change in perspective on compilers. In the past, a compiler
was expected to generate correct and efficient code; in the future, a compiler will
still be expected to generate good code, but it must also utilize and contribute to



218 K. Slind et al.

a range of program analyses, some of which may be done by the compiler itself,
but some of which are external. Among the most important of these analyses is
program verification. In a setting where program properties are important enough to
be formally proved, the following are desirable:

e A source language with clear semantics and a good program logic.

e A compilation path, the result of which is machine code with a guarantee that
executing that code on the target platform yields a result equal to that specified
by the source program.

The approach taken in this paper satisfies the above criteria. Since the source lan-
guage is a subset of HOL functions, the semantics are clear and the program logic
is just HOL. We have also shown how compilation of a program can produce lower
level programs as an integral part of proving the compilation run correct.

In future work, we want to scale up the compilation algorithms and investigate
wider application of the technique. In particular, what applications formalize easily
in pure functional programming and are important enough to warrant full functional
verification and correctness of compilation?

Acknowledgement Thanks to David Hardin, Mike Gordon, Magnus Myreen, and Thomas Tiirk
for help, encouragement, and advice.
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Specification and Verification of ARM Hardware
and Software

Anthony C. J. Fox, Michael J. C. Gordon, and Magnus O. Myreen

1 Introduction and Overview

This introductory section provides a high-level summary of the history and evolving
goals of the ARM verification project. Section 2, by Anthony Fox, is a more detailed
look into the modelling and verification of ARM processors. Section 3, by Magnus
Myreen, is more detailed than the others and introduces a new method for creating
trustworthy software implementations directly on bare metal. This approach uses
the Fox processor model for the semantics of a machine code programming logic
that borrows some ideas from separation logic.

In the late 1990s, Graham Birtwistle, at the University of Leeds, was investi-
gating the use of the Standard ML (SML) functional programming language for
modelling ARM processors. He approached Mike Gordon, a longtime collabora-
tor, about the possibility of a joint project to extend the Leeds modelling work to
formal verification. Birtwistle and Gordon, together with contacts at ARM Ltd in
Cambridge, submitted a research proposal to the UK Engineering and Physical Sci-
ences Research Council (EPSRC) entitled “Formal Specification and Verification of
ARMBG6”. This application was initially turned down on the grounds that the ARM6
processor was obsolete. However, following a strong letter from ARM pointing out
that they could not place more modern designs in the public domain, the project was
funded on resubmission.

The EPSRC project supported two PhD students at Leeds: Dominic Pajak and
Daniel Schostak and a postdoctoral researcher at Cambridge: Anthony Fox. Pajak
and Schostak developed SML models of the ARMv3 ISA and ARM6 micro-
architecture, respectively. They both had summer internships at ARM in Cambridge,
and this enabled them to talk to ARM engineers to find out details, especially
concerning the ARM6 micro-architecture, that were not easily available. Fox took
details from Pajack and Schostak’s models, and public ARM documentation, and
developed formal specifications in higher order logic (HOL) suitable for formal
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verification. An overview of this work is in Sect. 2. Pajak and Schostak subsequently
completed their PhDs at Leeds and took jobs at ARM in Cambridge.

The formal verification that a model of the ARM6 micro-architecture corre-
sponded to the ARMv3 ISA was completed by Fox within a couple of years (much
of which were spent developing general proof infrastructure for the HOL4 proof
assistant, which was used for the verification). This demonstrated proof-of-concept
for the verification of a simple commercial off-the-shelf (COTS) processor. More
complex processors, like those implementing the x86 ISA, are widely considered
to be too complex for complete formal verification, although very impressive work
has been done by Intel, AMD and VIA (Centaur) on the formal verification of parts
of implementations x86 processors and by Rockwell Collins on the AAMP7G spe-
cialised processor [15]. Many critical systems use simple processors comparable to
ARM, and the Leeds-Cambridge project showed that the complete formal verifica-
tion of these is within the current state-of-the-art.

Following the successful first project, Gordon and Fox applied for continued
support and eventually got a new EPSRC grant entitled “Formal Specification and
Verification of ARM-based Systems”. The aim here was to go beyond the processor
to surrounding system components and accurately model things like input/output,
coprocessors, bus protocols, etc. with the goal of conducting case studies involving
these. We also proposed to upgrade our formal ISA models to match more recent
versions of ARM. It was decided not to upgrade the micro-architecture verifica-
tion for two reasons (1) we would be unable to get access to more recent designs
(processor implementations are confidential ARM IP, but ISA specifications are
largely in the public domain) and (2) we felt that re-verifying new implementations
would be a lot of detailed work without much research value. Current ARM ISAs
are a lot more complex than ARM6, having, for example, instructions for floating
point, vector processing, virtual addressing, etc. Current ARM micro-architecture
implementations have complex pipelines that are much more complicated than that
used in ARMS6; this makes the relationship between micro-architecture and ISA
computations harder to relate formally. The concepts needed for verifying complex
(e.g. superscalar) implementations are reasonably well understood (it was the topic
of Fox’s PhD and several academic projects [3, 27]), but the actual verifications
have significantly more work than those needed for the ARM®6 three-stage pipeline.
Despite this increased complexity, our feeling is that with modern theorem proving
infrastructure (including that developed for the ARM6 verification), the complete
formal verification of a modern ARM implementation would be similar in kind to
the ARM6 proof. The ARM9 micro-architecture, which is still widely used in mo-
bile devices, would be relatively straightforward, but the latest Cortex designs would
be of very much more effort (e.g. at least 10x more). The academic research bene-
fits of doing such micro-architecture verifications (e.g. the potential for publication)
would not be commensurate with the effort required.

The second EPSRC project was significantly more challenging and the work is
still continuing even though the end date of the project has passed. This is possi-
ble because the initial ARM research attracted some positive attention and we were
offered additional funding from a US Government agency to continue the work
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and to extend it to explore high assurance cryptographic implementations. We were
joined in this work by Konrad Slind and students at Utah, who concentrated on for-
mal compilation of HOL specifications directly to a code representation close to
ARM assembler. This is described in Slind’s chapter in this book, so we will not say
more here. At Cambridge, Joe Hurd joined the project to work on formalising the
mathematics underlying elliptic curve cryptography (ECC). Our goal was to ensure,
by machine checked formal proof, that ARM machine code, with a semantics pro-
vided by a high-fidelity processor model, correctly implemented ECC algorithms
that were specified using the mathematical concepts of elliptic curves. To this end,
Hurd developed HOL formalisations of the textbook level mathematical theory un-
derlying ECC in the version of HOL supported by the HOL4 system [18, 19]. This
lead to difficult proof challenges, such as mechanically proving the associativity of
addition on elliptic curves [30].

In parallel with Hurd’s investigation of elliptic curve mathematics, Magnus
Myreen, then a PhD student at Cambridge, was developing a method of directly
verifying ARM assembler. He verified example ARM code implementing some of
the operations needed for ECC (e.g. Montgomery multiplication). The overall flow
we envisaged was as follows:

1. Start with the textbook level mathematical specifications of ECC applications in
HOL (Hurd)

2. Use a proof-producing compiler to translate the HOL specifications to ARM as-
sembler (Slind)

3. Link compiled ARM code to verified runtime code (Myreen)

Although significant progress has been made on all these three steps, we have still
(2009) to join everything up into a seamless flow.

One issue that arose as we upgraded to current ARM ISA specifications was the
challenge of accurately modelling the communication between an ARM CPU and
its environment, which might include a variety of memories, coprocessors, etc. This
impacts especially on systems code (see Point 3 above). As described in Sect. 2,
the current ARM model separates memory and coprocessors from the main CPU,
reflecting how systems are configured. We thus represent an ARM system as a struc-
ture containing separately modelled CPUs, various memories and other hardware.
An executable model — i.e. a next-state function — is derived by deduction from
such a system structure, and it is this that provides the semantics of code. Since the
ARM ISA model is complex, the first step in deriving verification infrastructure is
to derive higher level rules for reasoning about code that hides the details of the
derived next-state function from the verifier. The abstraction methods used for this
are described in Myreen’s section (Sect. 3). It turns out that these methods can also
be used to validate synthesis from low-level HOL, which provides a way of linking
the output of Slind’s compiler to the Fox processor model. This is also outlined in
Sect. 3.
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2 Specification and Verification of ARM Architectures

2.1 The Swansea Methodology

Before coming to work at the University of Cambridge Computer Lab, Anthony
Fox completed his PhD at the computer science department of the University of
Wales, Swansea. His supervisor, Neal Harman, and the then head of the department,
John Tucker, had written a series of papers examining algebraic correctness models
for formally verifying computer hardware. For example, this included examining
Mike Gordon’s micro-programmed case study, see [12, 16]. Fox took Harman and
Tucker’s work further, adapting their approach to cover pipelined and superscalar
micro-architectures. The key features of the Swansea approach are as follows:

e Modelling systems at identified levels of abstraction, with particular attention
given to formally defining precise classes of data and temporal abstraction.'
Correctness is expressed as a commutativity statement that formally relates two
abstraction levels.

e When establishing the correctness of microprocessor designs, two key levels are
considered: the programmer’s model (PM) level and the abstract circuit (AC)
level.

e Formal modelling is based on the use of equational specification, defining the
operational semantics for a given system at established levels of abstraction. In
particular, primitive recursion is the principle definition mechanism. This means
that the formal specifications can be run or symbolically evaluated. Systems with
and without I/O were considered.

e A verification approach based on the use of a series of single-step theorems was
developed. This provides a way to verify systems by principally using case split-
ting and equational term rewriting. That is to say, without the need to carry out
an explicit temporal induction or to define top-level invariant predicates. Instead,
initialisation functions are used to specify the reachable state-space.

e The approach was designed to be tool neutral, enabling it to be implemented by
a wide variety of proof assistants.

In Fox’s thesis, a toy architecture with a pipelined implementation was defined and
a pen-and-paper proof of correctness was also presented, see [4]. A superscalar im-
plementation was also defined, together with a formal statement of correctness.”

! For example, the class of temporal abstraction maps required for superscalar designs is necessar-
ily more general than that needed for conventional pipelined processors.

2 At the time, a pen-and-paper proof of correctness was not feasible/attempted for the superscalar
design. Since then some bugs have been identified.
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2.2 Starting at Cambridge

In the latter half of 2000, Fox moved to Cambridge to start working on the ARM6
project. Work had already begun at Leeds; however, their ARM6 model had not
been completed yet. This meant that Fox, who had no previous experience in using
theorem provers, could gradually start learning HOL4 (then at version Taupo-4).
Getting to know HOL can be challenging but fortunately he shared an office with
Michael Norrish and there were various other HOL gurus around, including Kon-
rad Slind. As an initial project, the Swansea approach was formalised in HOL. This
involved defining predicates that characterised the various classes of state systems
and abstraction maps (for example, state-dependent immersions); formalising the
definition of correctness (one general enough to cover conventional pipelined pro-
cessors); and proving the 1-step theorems. Then the framework was given a test run
with the formal verification of a tiny micro-programmed CPU, see [5]. This was
followed by the formal verification of the pipelined design from Fox’s thesis.’

2.3 Modelling the ARM Instruction Set Architecture

Work on specifying the ARM instruction set architecture (ISA) in HOL began in
2001, see [6]. In this context, the ISA is taken to correspond with the assembly
programmer’s view of an architecture. In general, programmers have access to a
fixed set of registers (contained in a CPU) and to a much larger main memory —
this is usually connected to the processor via a memory bus.* To write code, the
assembly programmer has at their disposal a set of low-level instructions — these all
update the registers and memory in various precisely defined ways. For example,
typically there will be a set of data processing instructions, which use an arithmetic
logic unit (ALU) to perform primitive operations — such as addition, multiplica-
tion or bitwise logic — on registers.’ There will also be a set of memory access
instructions for loading data from memory to registers and for storing registers to
memory. The overall set of instruction is often extended with the introduction of
new architecture generations. The number and variety of registers and instructions
can vary considerably across platforms but there will normally be at least a handful
of registers and few dozen or soinstructions. Instructions are encoded as a sequence

3 A minor bug was found in the pen-and-paper proof.

“#1In practice, memory may be implemented with a series of caches, firmware, RAM and sometimes
with virtual memory e.g. a hard disk or a solid-state drive (SSD). However, memory details are
invariably implementation dependent and are mostly hidden from the programmer. In some cases,
the actual behaviour can be somewhat counter-intuitive, see [1].

3 In CISC architectures, these instructions may address the memory as well as just registers.
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of bits (machine code) to be stored in the main memory. In the x86 architecture,
instructions have a variable length® but with the ARM architecture all instructions
are 32-bits long.

The official descriptions of ISAs need to be relatively precise. This is invariably
achieved through the use of pseudo-code and in some cases the descriptions are
semi-formal. To define an operational semantics for the ARM architecture in HOL,
Fox used the specifications produced by Birtwistle’s group at Leeds, in conjunction
with Steve Furber’s book [10] and the official ARM610 data sheet. The objective
was to accurately declare a type S, corresponding with the programmer’s model
state space (registers and memory), and to define a next state function next : § — S
that specifies the operational semantics of the ARM instructions i.e. the effect of
the instructions on the registers and memory. Fortunately, HOL provides excellent
support for modelling systems in a functional style, thanks to its “type base” tools,’
and by virtue of Slind’s TFL environment, see [29]. The specification was structured
according to instruction classes i.e. groups of similar instructions were specified as
a whole. To begin with I/O was not considered, in particular, hardware interrupts
were not modelled.

2.3.1 The State Space

The ARM architecture provides 16 user-accessible registers and a program status
register, each 32-bit words — some of these are then shadowed with versions that are
accessible only in privileged or system modes. These modes are used when running
operating system and exception handling code. The main memory is effectively an
array of bytes with a 32-bit address space. Thus, the overall state space is:

S = (RName — word32) x (word32 — word8),

where RName represents the complete set of register names e.g. r8_usr and CPSR.
Although HOL has good support for working with algebraic types, there was a slight
problem with regards to modelling machine words. At the time, HOL had a theory
of words developed by Wai Wong, see [31]; however, this theory was list based and
made heavy use of restricted quantifiers, with predicates used to restrict the scope
of universal quantifiers.® It was decided that this theory would be too cumbersome
to use in the context of the ARMG6 verification effort, particularly with regards to
symbolic evaluation. This started the winding road to developing HOL’s current

® This is mainly because the x86 architectures has its origins in 8-bit and 16-bit computing.
Although this variable instruction length can greatly complicate the hardware needed to decode
instructions, it can give excellent code density. ARM added a set of 16-bit (Thumb) instructions in
order to improve code density.

7 It is possible to define and work with types in HOL that correspond with algebraic data types.

8 HOL is based on simple type theory and does not directly support predicate sub-typing.
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theory of n-bit words, with the latest version using an idea from John Harrison
(see [17]) in order to get around the perceived need for restricted quantifiers.

2.4 Modelling the ARM6 Micro-Architecture

In 2002, the ARM6 micro-architecture was modelled in HOL, see [7], and in 2003
a formal verification was completed, see [8]. The ARM6 microprocessor dates from
around 1994 and was widely deployed in a number of low-powered devices, such as
the Apple Newton PDA. The processor’s micro-architecture is relatively simple, em-
ploying a three-stage pipeline with fetch, decode and execute stages. As with other
commercial designs, details of the processor’s implementation are not in the public
domain. It was only through collaboration with ARM Ltd, and Daniel Schostak’s
internship there, that it was possible to develop the formal model. The ARM6 pro-
cessor is no longer in production, which was a factor in us gaining permission to
carry out this research. However, it is worth noting that the ARM9 (circa 2004 and
used in the Nokia N-Gage) is not a superscalar design and has a five-stage pipeline.
It can be argued therefore that the verification of the ARMG6 is still pertinent with
respect to some more modern designs.

Daniel Schostak produced a very detailed model of the ARM6 for his thesis,
see [28]. He only introduced a limited amount of abstraction, modelling the RTL
(register transfer level) with a two-phase clock model. A limited amount of data
abstraction was applied when producing the cycle accurate HOL model. One of the
most useful resources in achieving this was Schostak’s tabular style paper specifi-
cation.’ For example, his tabular description of the DIN latch (which stores input
from the data bus) is shown below.

DIN
IcC IS
* *
data_proc ty IREG
mrs_msr t) IREG
Idr ty IREG
Idr ty DATA
str ty IREG
ldm ty DATA
ldm t, DATA
SWp ty DATA
br ty IREG
mrc ty DATA
Idc ty IREG
stc t IREG
X X X

9 Schostak produced extensive paper specifications of the ARM6 using various styles. He also
produced a high-fidelity implementation in ML and now works full time at ARM Ltd.
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This was translated into the following HOL definition:

F Vic is ireg data.
DIN ic is ireg data =

if
((ic = 1dr) V (ic = 1ldm) V (ic = swp) V (ic = mrc)) A
(is = t4) V (ic = 1ldm) A (is = tn)
then
data
else
ireg

Here ic represents the instruction class and is is the instruction step, for example,
t 3 is the first cycle of the pipeline execute stage and tn represents an iterated phase.
By defining the next-state behaviour of all of the processor’s latches and buses, it
was possible to define a next-state function for the entire ARM6 core. Formal veri-
fication was proceeded by case splitting over the instruction class — the final version
had 17 such classes. Inevitably, a small number of bugs were found in all of the
specifications. Ultimately the ARM6 can be regarded as a reference implementation
and so the formal verification can be seen as an exercise in developing an ISA model
that is a verified abstraction of the processor.

2.4.1 Coverage

Somewhat confusingly, the ARM6 processor implements version three of the ARM
architecture, written as ARMv3. To begin with, all of the ARMV3 instructions were
modelled at the ISA level but some “hard” features were not included in the first
ARM6 model — accordingly they were dropped from the ISA model prior to carry-
ing out the initial verification attempt. The omissions included the mul, 1dm and
stminstructions, which all have relatively complex low-level behaviour (an iterated
phase).'” To complete, the formal proof invariants were constructed for these cases.
The coprocessor instructions and hardware interrupts required models with input
and output and this is discussed below. A feature complete formal verification was
finished in 2005, see [9].

2.4.2 Input and Output

To accommodate input and output (I/O) features, the HOL formalisation of the
Swansea approach was extended. It was also necessary to make significant changes
to the ISA and micro-architecture models, and the formal verification required a fair
amount of reworking. More sophisticated reasoning is required when verifying the
correctness of coprocessor instructions and hardware interrupts. For example, the

10 The ARM6 ALU does not contain a multiplier, so instead the processor’s adder and shifter are
used to implement Booth’s algorithm over a number of clock cycles.
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communication between the ARM core and coprocessor happens through a busy-
wait loop, which has to be assumed to terminate after some indeterminate interval.
It is also necessary to reason about the priority and timing of interrupts and, added
to this mix, a reset signal can abort instructions at any cycle.

In the process of adding I/O, the memory was removed from the state-space of
the ISA and micro-architecture specifications. At the ISA level, this meant that the
state-space consisted of just the programmer’s model registers, together with an
instruction register (the op-code of the instruction to be run) and a exception status
field, that is:

S = (RName — word32) x word32 x Exception.

The next-state function is then of the form next : S x I — S, where [ represents a
set of input values i.e. data from memory and coprocessors, together with hardware
interrupts. There is also an output function out : S — O that models data being
passed from the processor to the memory and coprocessors. One consequence of
these changes is that the resulting next-state functions no longer provide a direct
means to run programs i.e. there is no longer a prescriptive model of memory, just
an interface.

2.5 Beyond the ARMG6

Following the formal verification of 2005, it was decided to extend the ISA model
and focus on machine code verification, forgoing the considerable overhead associ-
ated with further extending and re-verifying the ARM6 model. It was at about this
time that Magnus Myreen started his PhD at Cambridge. To begin with ARMv3M
was supported (with the inclusion of long [64-bit] multiplies) and then ARMv4 was
covered (through the addition of half-word and signed load and store instructions).
At the time of writing this article, the ARMv4 architecture is still very much in use
— it is implemented by a selection of processors in the ARM7, ARMS8 and ARM9
families (as used in the Nintendo DS and Apple iPod).

After making these extensions, the next step was to provide support for reason-
ing about assembly code. In particular, it is not especially practical to work directly
with 32-bit machine-code values. To this end, a HOL type was added to represent
decoded ARM instructions; a parser/assembler was written;!!; there was also sup-
port for pretty-printing instructions i.e. providing disassembly of machine code.

A new top-level next-state function was defined (using the existing definitions as
sub-functions) and this reintroduced the main memory as part of the state-space.
Consequently it was again possible to run code using the model and one could

' This was originally done using mosmllex and mosmlyac and later ported to mllex and
mlyacc, so as to generate Standard ML.
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also start reasoning about the semantics of programs. A pure memory model was
assumed, that is to say, the memory was treated as a simple array with read and
write accesses that never fail. A fast method for running code (useful in testing
the model) was provided through the use of Konrad Slind’s EmitML tool — this
converted the HOL definitions into Standard ML. This ML code was compiled with
MLton, resulting in an instruction throughput performance of approximately 10,000
instructions-per-second (10 kips).

It was then necessary to address the problem that the formal model some-
what obfuscates the behaviour of particular instruction instances. For example,
one cannot read the specification and immediately see the effect of the instruc-
tion add r1l,r2, r3. The reasons for this are: the underlying model is based
on machine code; the specification is structuring according to instructions classes
(not instruction instances); the overall semantics is expressed through one mono-
lithic, top-level next-state function. To address this, a collection of single-step
theorems of the following form are generated:

P(s) = (next(s) = 5') .

Here the antecedent predicate P represents the context (showing exactly
whichinstruction instance is to be run) and s’ is the result of symbolically eval-
uating the model in this context. These theorems are generated using forward-proof
(as opposed to goal-directed proof) and simplifications are applied to make the
results as user-friendly as possible. The resulting theorems make the specification
more accessible and usable. The term representing s’ can be examined to see which
registers and memory locations have been read and/or updated, and this is pertinent
to Magnus Myreen’s code verification work.

2.5.1 Further Refinements

With the addition of the 16-bit Thumb instructions, the ARMv4 model was later
extended to ARMv4T. A more advanced mechanism for constructing a complete
system was also examined i.e. building a system composed of ISA, memory and
coprocessors models. A compositional, circuit-based style was adopted, wherein
the output from one unit is connected to the input of another. This means that one
can more easily consider different system configurations, for example, “plugging-
in” different memory models. This contrasts with the previous approach wherein the
memory was more hard-wired into the ISA specification.

2.6 Going Monadic

In addition to his work with the ARM architecture, Myreen has also worked with
formal models of the x86 and PowerPC architectures. The x86 model initially came
from collaborating with Susmit Sarkar, who has been working with Peter Sewell and
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others in the field of relaxed memory models, see [1]. This group made enquiries
as to the suitability of the ARM model with respect to their research. However, a
single-step operational semantics was not what they are after — they needed to know
the precise order of all memory and register accesses. In collaboration with Myreen,
they had developed a monadic approach to ISA specification and, inspired by this,
Fox agreed to completely re-specify the entire ARM ISA using this approach. This
would provide an event-based semantics for work on relaxed memory models and
an operational semantics for work on code verification.

In their monadic approach, three principle operators are used: sequencing
(segT or >>=), parallel composition (parT or |||) and returning a constant
value (constT or return). For example, in

(£ ||| 9) >>= (A(x,y). return (x +y + 1))

the operations £ and g are performed in parallel and the results are then combined
in a summation and returned. The overall type of this term is num M and the pre-
cise details of this type are hidden underneath a HOL-type abbreviation on M. For
example, in the standard ARM operational semantics, we have:

’a M = arm_state — (’a, arm.state) error_option

Here arm_state is the state-space and error_option is just like the standard
functional option type, except that the “none” case is tagged with a string, which
provides a useful mechanism for reporting erroneous behaviour. In this sequential
operational semantics, the parT operator is evaluated sequentially with a left-to-
right ordering e.g. £ is applied before g in the example above.

There are many advantages to working in this monadic style, these include:

e The ability to modify the underlying semantics by simply changing the monad’s
type and the definitions of the monadic operators.

e The ability to avoid excessive parameter passing and to hide details of the state-
space. In some cases, there might not even be a state-space.

e Itprovidesaclean way to handle erroneous cases. In particular, it is easy to model
behaviour that the ARM architecture classifies as Unpredictable.

e With some pretty-printing support, the definitions look more like imperative
code. This makes the specifications more readable to those unfamiliar with func-
tional programming and it also provides a more visible link with pseudo-code
from reference manuals.

For example, consider the following pseudo-code from the ARM architectural ref-
erence manual:

// BranchWritePC()
Y ——

BranchWritePC(bits(32) address)
if CurrentinstrSet() == InstrSet_ARM then
if ArchVersion() < 6 && address<1:0> != '00" then UNPREDICTABLE;
BranchTo(address<31:2>:'00") ;
else
BranchTo(address<31:1>:'0");
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With pretty-printing turned on this corresponds with the following HOL code:

F Vii address.
branch.write_pc ii address =
do
iset <« current_instr_set ii;
if iset = InstrSet_ARM then
do
version < arch_version 1i;
if version < 6 A (1 >< 0) address <> Ow then
errorT "branch write_pc: unpredictable"

else
branch_to ii ((31 <> 2) address)
od
else
branch_to ii ((31 <> 1) address)

od

Although the translation is not literal, there is clearly a connection between the
two specifications. The function branch write_pc hasreturntype unit M, that
is to say, it is similar to a procedure (or void function in C). The HOL model
introduces a variable 11i, which is used to uniquely identify the source of all read
and write operations — this becomes significant in multi-core systems with shared
memory. The operator errorT is used to handle the unpredictable case. The word
extract and slice operations (>< and <>) are used to implement the bit operations
shown in the ARM reference. Inequality is overloaded to be <>, which corresponds
with ! = in the pseudo-code. Observe that the HOL specification does not explicitly
refer to state components; such details are hidden by the monad, and the operations
arch_version and current_instr_set automatically have access to all the
data that they need. In the sequential model, the state actually contains a component
that identifies the specific version of the architecture being modelled e.g. ARMv4 or
ARMv4T, both of which give a version number of four. This makes it possible to
simultaneously support multiple architecture versions. Further refinement has also
been made in the process of producing the new specification, especially with regard
to instruction decoding and the representation of instructions.

2.6.1 Coverage

The monadic specification covers all of the currently supported ARM architec-
ture versions, that is to say: ARMv4, ARMv4T, ARMv5T, ARMV5TE, ARMv6,
ARMvV6K, ARMV6T2, ARMv7-A, ARMv7-R and ARMv7-M. A significant num-
ber of new instruction were introduced with ARMv6, which was introduced with
the ARM11 family of processors. The latest generation (ARMv7) has only a small
number of extra ARM instructions but these versions do all support Thumb2 — this
provides a large number of double-width Thumb instructions, which cover nearly all
of the functionality of the standard ARM instructions. In fact, the latest Cortex-M
processors only run Thumb?2 instructions and are designed to be used as microcon-
trollers. The Cortex-A8 processor (as found in the Apple iPhone 3GS and Palm Pre)
implements ARMv7-A.
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The HOL model also covers the Security and Multiprocessor extensions. It does
not support Jazelle, which provides hardware support for running Java bytecode.
Technical details about Jazelle and its implementations are restricted to ARM li-
censees only, see [2]. Consequently, a HOL specification of Jazelle is very unlikely.
Documentation is available for the ThumbEE, VFP (vector floating-point) and
Advanced SIMD extensions, but they have not been specified yet — the SIMD ex-
tensions were introduced with ARMv7 and the associated infrastructure is referred
to as NEON™ technology.

2.6.2 Single-Step Theorems

Recently a tool for generating single-step theorems for the monadic model has been
developed. These theorems are now generated entirely on-the-fly for specific op-
codes.'? This contrasts with the previous approach whereby a collection of pre-
generated theorems (effectively templates) are stored and then specialised prior to
use. The old approach is not practical in the context of the much larger number of
instructions and range of contexts. The single-step theorems are generated entirely
through forward proof and so the process is not especially fast. Consequently, it
may prove necessary to store some of the resulting theorems in order to improve
runtimes further down the line.
The function call

arm_stepLib.arm step "v6T2,be,thumb,sys" "FBO2F103";

produces the following theorem

F V state.
(ARM_ARCH state = ARMv6T2) A (ARM_EXTENSIONS state = {}) VAN
(ARM_MODE state = 31w) A aligned (ARM-READ_REG 15w state,2) A
(ARM_READ_MEM (ARM_READ_REG 15w state + 3w) state = SOME 3w) A
(ARM_READ_MEM (ARM_READ_REG 15w state + 2w) state = SOME 241w) A
(ARM_READ_MEM (ARM_READ_REG 15w state + 1lw) state = SOME 2w) A
(ARM_READ_MEM (ARM_READ_REG 15w state) state = SOME 251w) =
(ARM_NEXT state =

SOME

(ARM_WRITE_REG 1w

(ARM_READ_REG 2w state % ARM_READ_REG 3w state)
(ARM_WRITE_.-REG 15w (ARM_READ_REG 15w state + 4w) state)))

For brevity/clarity, some parts of the antecedent have been omitted. The first
argument to arm_step is a string containing configuration options e.g. the archi-
tecture version and the byte ordering. The second string is the instruction op-code.
In the example above, 0xFB02F103 is the machine code for the Thumb2 instruc-
tionmul r1, r2, r3."® The four instruction bytes are read from memory using the
program-counter, which is register 15.

12 This tool makes heavy use of the HOL conversion EVAL.

13 At the moment op-codes are being generated using GNU’s binuti1ls tools. FBO2F103 breaks
up into 251w, 2w, 241w and 3w, which are used in the theorem.
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The next-step theorem shown above bears little or no visible resemblance to the
underlying monadic specification. The functions in uppercase are defined in post
hoc manner, so as to present a more conventional state-oriented semantics. The top-
level next-state function ARM_NEXT returns an option type — if an error occurred
(e.g. with an unpredictable case), then the result would be NONE, but in practice the
tool raises an ML exception for such cases.

2.6.3 Active and Future Work

Current work includes focusing on updating the parser, assembler and pretty-
printing support. The instruction parser has been completely rewritten in ML,
abandoning the use of m11ex and mlyacc. This provides greater flexibility in sup-
porting multiple architectures and encoding schemes. It should also facilitate better
code portability. It would have been possible to avoid writing an assembler and in-
stead interface with GNU’s binutils but this would require users to specifically
install these tools, configuring them as an ARM cross-compiler. Also, only the very
latest version of the GNU assembler supports Thumb?2, and it does appear to have a
small number of teething problems (bugs) in that area. The parser is nearly complete
— generating op-codes is the next stage.

Another future area of work will be in handling I/O. It should be relatively
straightforward to add hardware interrupts. Readers may have observed that the se-
quential version of the monadic model again includes the memory as part of the
state-space. This could be considered to be a regressive step in comparison with
the approach discussed at the end of Sect.2.5. However, the monadic approach
does make it easier to modify the underlying memory model.'* It is expected that
memory-mapped I/O (MMIO) can be supported by interleaving calls to next-state
functions i.e. the ISA next-state function would be interleaved with a MMIO next-
state function.

3 High-Assurance Software Engineering

In 2005, Myreen started his PhD which came to focus on theories and tools for
proving ARM machine code correct on top of Fox’s formal specification of the
ARM ISA. This section presents the current state of the resulting framework which
has come to support both formal verification of existing ARM machine code and
synthesis of new ARM code from functional specifications. The three layers of this
framework are as follows:

1. Hoare logic for machine code is used for making concise and composable formal
specifications about ARM code (Sect. 3.1).

14 Although at the moment, the arm_step tool does make some assumptions about the memory
model.
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2. A decompiler aids verification by automatically extracting functional descrip-
tions of ARM code from Fox’s detailed ISA specification (Sect. 3.2).

3. A compiler is used for synthesis of new ARM code from, possibly partial, func-
tional specifications (Sect. 3.3).

Our to-date largest case study, synthesis of a formally verified LISP interpreter, is
outlined in Sect. 3.4.

3.1 Machine-Code Hoare Logic

Machine-code programs operate over a heterogeneous state consisting of register,
memory locations and various status bits. As a result, keeping track of which re-
sources might have been altered by some ARM code can easily become tedious.
In order to avoid always explicitly stating “...and nothing else changed” (a frame
property), we write our theorems in terms of a machine-code Hoare triple {p} ¢ {q}
which implicitly formalise a frame property (from separation logic [26]):

{p} ¢ {q} is true if any state of an ARM processor s which satisfies precondition p, can
through execution of code ¢ on the ARM ISA reach a state s which satisfies postcondi-
tion ¢; and, furthermore, all resources not mentioned in p will remain unchanged in the
transition from s to s’

A formal definition of this Hoare triple will be given later, also see [22].

The frame property manifests itself in practice as a proof rule called the frame
rule (again borrowed from separation logic). The frame rules allows an arbitrary as-
sertion r to be added to any Hoare triple { p} ¢ {¢} using the separating conjunction
* (defined later):

triclql = VYr{pxricigxr}

The frame property of our Hoare triples allows us to only mention locally rel-
evant resources, e.g. a theorem describing the ARM instruction, add r4,r3,r4
(encoded as 0xE0834004), need only mention resources register 3, 4 and 15 (the
program counter). For example the following Hoare-triple theorem states, if register
3 has value a, register 4 has value b and the program counter is p, then the code
E0834004 at location p will reach a state where register 3 has value a, register 4
holds a + b and the program counter is set to p + 4:

{r@axrdbxpcp}
p E0834004
{r3axrd(a+b)xpc(p+4);}

The frame rule allows us to infer that the value of register 5 is left unchanged by
the above ARM instruction, since we can instantiate r in the frame rule above with
an assertion saying that register 5 holds value ¢, i.e. r5 c.
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{rBaxrdbxpcpxr5c}
p :E0834004
{rBaxrd(a+b)xpc(p+4)xr5c}

All user-level ARM instructions satisfy specification in this style. Memory reads
and writes are not much different, e.g. Hoare-triple theorem describing the in-
struction swp r4,r4, [r3] (E1034094) for swapping the content of memory
location a given in register 3 with that of register 4 is given as follows. Here m m
states that a function m, a partial mapping from addresses (32-bit words) to values
(32-bit words), correctly represents a portion of memory (addresses domain m),
address a must be in the memory portion covered by m and for tidiness needs to be
word-aligned, i.e. a & 3 = 0; we write m[a > b] for m updated to map a to b.

a&3=0Aae€domainm =

{r8Baxrdbxmm=x*pc p}
p E1034094
{r3axr4d (m(a)) *m (mla+ b]) xpc (p +4)}

The following subsections will present the definition of our machine-code Hoare
triple and some proof rules (HOL theorems) that have been derived from the defini-
tion of the Hoare triple and are hence sound.

3.1.1 Set-Based Separating Conjunction

The definition of our machine-code Hoare triple uses the separating conjunction,
which we define unconventionally to split sets rather than partial functions. Our
definition of the set-based separating conjunction states that (p * ¢) s whenever s
can be split into two disjoint sets u and v such that p holds for # and ¢ holds for v:

(pxq)s = uv.purgvAa@Uv=s)Amnv=1{})

In order to make use of this set-based separating conjunction, we need to translate
ARM states into sets of state components. We define the type of an ARM state
elements as a data-type with constructors:

Reg : words — wordz, — arm_state_element

Status : status_names — boolean — arm_state_element
Memory : wordsy — words, — arm_state_element

Undef : bool — arm_state_element

We define a function arm2set for translating states representation used in the
ARM ISA specification into sets of ARM state elements, using read functions
arm_read_reg, arm_read_-mem, arm_read._status and arm_read_undefined,
which, respectively, read a register, memory location, status bit and undefined flag.
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Hererange f ={y|3x. fx =y }.

arm2set state =
range (Ar. Reg r (arm_read._reg r state)) U
range (Aa. Mem a (arm_read_mem a state)) U
range (As. Status s (arm_read_status s state)) U
{ Undef (arm_read_undefined state) }

Some basic assertions are defined over sets of ARM state elements as follows.
We often write r1 a, r2 b, etc. as abbreviations for reg 1 a, reg 2 b, etc.

(regia)s =(s={Regia})
(memaw)s =(s={Memaw})

These assertions have their intended meaning when used with arm2set:

Vps. (memawx p)(arm2sets) = (arm_read_-mema s = w)
Vps. (regi vk p)(arm2sets) = (arm_read_regi s =v)

The separating conjunction separates assertions:
Vps. (mema xxmem b yxreg i uxreg j vkp) (arm2sets) = a#bAi # j

Other assertions used in this text are:

aligneda = (¢ &3 =0)

emps = (s ={})
(b)s =(s={)Ab

(codec)s = (s = {Mem (a[31—2])i | (a,i) € c})
(mm)s = (s = {Mem (a[31—2]) (m a) | a € domain m A aligned a })

(pc p) s = (s = {Reg 15 p,Undef F}) A aligned p
(s (n,z,¢c,v)) s = (s = {Status N n, Status Z z, Status C ¢, Status Vv })
3.1.2 Definition of Hoare Triple

Let run(n, s) be a function which applies the next-state function from our ARM
ISA specification n times to ARM state s.

run(0,s) = s
run(n+1,s) = run(n, arm_next_state(s))

Our machine-code Hoare triple has the following definition: any state s which sat-
isfies p separately from code ¢ and some frame r (written p * code ¢ * r) will
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{r7x*r8y%pcp} p:E2878001 {r7 x *r8 (x+1) *pc (p+4) }
Vstate. (arm_read._reg 7 state = x) A

(arm_read_reg 8 state = y) A

(arm_read_reg 15 state = p) A aligned p A

(arm_read_undefined 15 state = F) A

(arm_read_-mem p state = E2878001) =

dn state’. (state’ = run(n, state)) A
(arm_read_reg 7 state’ = x) A
(arm_read_reg 8 state’ = x+1) A
(arm_read_reg 15 stare’ = p+4) A aligned (p+4) A
(arm_read_undefined 15 state’ = F) A
(arm_read_mem p state’ = E2878001) A
(arm2set state — Frame = arm2set state’ — Frame)

where Frame = range (Aw. Reg 7 w) U range (Aw. Reg 8 w) U range (Aw. Reg 15 w)

Fig. 1 A machine-code Hoare triple expanded

reach (after some k applications of the next-state function) a state which satisfies ¢
separately from the code ¢ and frame r (written g * code ¢ * r).

{p}tc{q} =Vsr. (pxcodecxr)(arm2set(s)) =
Jk. (g * code ¢ * r) (arm2set(run(k, s)))

As a convention, we write concrete code sets ¢ = {(p,i),(q,j),...} as “p :
i, q:j,...” in order to avoid confusion with the curly brackets used when writing
Hoare triples.

An example of what a machine-code Hoare triple means in terms of the basic
read functions is shown in Fig. 1. The last line which relates arm2set szate to
arm2set state’ states that nothing (observable through the read functions) changed
other than registers 7, 8 and 15. This fact that nothing outside of the foot-print of
the specification was affected, comes from the universally quantified frame r in the
definition of the machine-code Hoare triple.

3.1.3 Proof Rules

Below we list some theorems proved from the definition of our Hoare triple. These
theorems are cumbersome to use in manual proofs, but easy to use in building proof
automation, which is the topic of the next two sections.

Frame: {p}c{q} = Vr.{p*xr}c{gx*r}
The frame rule allows any assertions to be added to the pre- and postconditions of a Hoare
triple, often applied before composition.
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Composition:  {p} c1 {g} AN{q} 2 {r} = {p} c1Uc, {r}
The composition rule composes two specifications and takes the union of the two code sets
(the code sets may overlap, happens for loops).

Precondition strengthening: {p} ¢ {qg} A (Vs.rs = ps) = {r} c{q}
Postcondition weakening: {p}c{g} A (¥Vs.qs = rs)= {p}c{r}

Preconditions can be strengthened, postconditions can be weakened.
Precondition exists: {3x. p x}c {q} <= Vx.{p x}c{q}

Existential quantifiers in the precondition are equivalent to universal quantifiers outside of
the specification.

Move pure condition: {p * (b)} ¢ {qg} <= (b= {p}c{q})

Pure stateless assertions, written (b}, can be pulled out of the precondition. Here b has type
bool.

Code extension: {p} c{q} = Ve.{p}cUe {q}

The code can be extended arbitrarily. This rule highlights that {p} ¢ {g} states that ¢ is
sufficient to transform any state satisfying p into a state satisfying ¢. Thus any larger set
¢ U e is also sufficient.

3.2 Decompilation of ARM Code

To aid verification of machine code, we have developed a novel verification tech-
nique [24] which is based on decompiling machine code into functions in the logic
of a theorem prover, in this case the HOL4 theorem prover.

3.2.1 Example

Given some ARM code, which calculates the length of a linked list,

0: E3A00000 mov r0, #0 ; setreg0to0

4: E3510000 L: cmp rl, #0 ; compare reg 1 with O

8: 12800001 addne r0, r0, #1 ; ifnotequal:addltoreg 1
12: 15911000 ldrne rl, I[ril] ; load mem([reg 1] into reg 1
16: 1AFFFFFB bne L ; jump to compare

the decompiler reads the hexadecimal numbers, extracts a function f and a safety
condition fpre Which describe the data-update performed by the ARM code:

f(ro,r1,m) = fore(ro, r1,m) =
let ro = 01in g(ro,r1,m) let ro = 0in Gpre(ro, 71, m)
9(ro,r1,m) = Qpre (ro, 71.m) =
if r1 = Othen (rg, r1,m) else if r1 = O then T else
letro = ro+1in let ro = ro+1in
let ry = m(ry) in let cond=r; € domain m A aligned r; in
g(ro,rl,m) let ry :m(rl) in

Qpre(ro. r1,m) A cond
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The decompiler also proves the following theorem which state that f is accu-
rate with respect to the ARM model, for input values that satisfy fye. Here
(k1,ka,..., ky) is (x1,x2,...,x,) abbreviates ky x1 % kp xp * - x k X,
i.e. expression (r0, r1,m) is (ro, r1,m) states that register O has value rg, register 1
is r; and part of memory is described by m.

{(rov r17m) is (r()vrl;m) * 8 % pC p * (fpre("O»rl,m))}
p :E3A00000,E3510000,12800001,15911000, 1AFFFFFB (1)
{(0,r1,m) is (f (ro,r1,m)) xS *pc (p + 20)}

The user can then prove that the original machine code indeed calculates the
length of a linked-list by simply proving that the extracted function f does that. Let
list state that abstract list / is stored in memory m from address a onwards.

list (nil,ba,m) = a=0
list (x::l,a,m) = 3a’. m@a) =d Am@a+4) =xra#0A
list (/,a’, m) A aligned a

Let length [ be the length of an abstract list /, e.g. length (4::5::nil) = 2. Tt is
easy (15 lines of HOL4) to prove, by induction on the abstract list /, that the func-
tion f, from above, calculates the length of a linked list and also that list implies the
precondition fpre.

Vxlam. list(l,a,m) = f(x,a,m) = (length [,0,m) 2)
Vxlam. list(l,a,m) = fye(x,a,m) 3)

Given (2) and (3), it follows immediately from (1) that the ARM code calculates the
length of a linked-list correctly:

{(r0,r1,m) is (ro,r1,m) x Sxpc p * (list (I,r;,m)) }
p E3A00000,E3510000,12800001,15911000, 1AFFFFFB
{(r0,r1,m) is (length [,0,m) * s x pc (p + 20) }

3.2.2 Implementation

The following loop-introduction rule is the key idea behind our decompiler imple-
mentation. This rule can introduce any tail-recursive function tailrec, with safety
condition tailrec_pre, of the form:

tailrec x = if G x then tailrec (F x) else (D x)
tailrec_pre x = Q x A (G x = tailrec_pre (F x))
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Given a theorem for the step case, {r(x)} ¢ {r(F x)}, and one for the base case,
{r(x)} ¢ {r'(D x)}, the loop rule can introduce tailrec:

Vir c. Vx. Qx AG x = {r(x)} c{r(F x)}) A
(Vx. 0 x A=G x = {r(x)} ¢ {r'(D x)})
= (Vx. tailrec_pre x = {r(x)} ¢ {r'(tailrec x)})

Parameters F, D, G, Q, r, r’ were instantiated as follows for introduction of g in
our example above.

F =D A(ro,r1,m). if ry = 0then (ro,r1,m) else (ro+1,m(ry), m)
G = Aro,r;.m).ifry =0thenFelse T
QO = A(ro,r1,m).ifry =0then T else (r; € domain m A aligned r;)
r = Aro,ri,m). (r0,r1,m)is (ro,r1,m) * S* pC p
r' = Aro,r1,m). (r0,r1,m) is (ro,r1,m) * S * pc (p + 20)

The loop rule can be derived from the rule for composition of Hoare triples given
in Sect. 3.1. For details of decompilation, see [22,24].

3.3 Extensible Proof-Producing Compilation

It is often the case that we prefer to synthesise ARM code from specifications rather
than apply post hoc verification to existing ARM code. For this purpose, we have
developed a proof-producing compiler [25] which maps tail-recursive functions in
HOL4, i.e. functional specifications, to ARM machine code and proves that the
ARM code is a valid implementation of the original HOL4 functions.

3.3.1 Example 1

Given a function f,

f(ry) = if r1 <10 then r; else letr; = ry — 10in f(ry)

the compiler produces machine code,

0: E351000A L: cmp rl,#10 ; compare reg 1 with 10
4: 2241100A subcs rl,rl,#10 ; if less: subtract 10 from reg 1
8: 2AFFFFFC bcs L ; jump to compare

and proves that the generated code calculates f:

{r1 ry*pC p*S} p:E351000A,2241100A, 2AFFFFFC {r1 f(r1)*pc (p+12)*s}
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In case we have manually proved that f calculates unsigned-word modulus of 10, i.e.
Vx. f(x) = x mod 10, then we immediately know that the ARM code calculates
modulus of 10:

{r1 ry *pC p %S} p:E351000A,2241100A, 2AFFFFFC {r1 (r; mod 10)
*pC (p+12) x s}

3.3.2 Example 2

An important feature of this compiler is its support for extensions. If the
compiler is supplied with the above theorem which states that ARM code
E351000A 2241100A 2AFFFFFC assigns r; mod 10 to rj. Subsequent compila-
tions can make use of this verified code. For example,

f(ri,ra,r3) =letrp =r; +r2in
letri=r1+r3in
letri =ry mod 10in
1

will compile successfully into a theorem which makes use of the previously verified
code (the last three instructions in the code below):

{r1ry «r2ry *xr3r3 *pc p * S}
p :E0811002,E0811003,E351000A,2241100A, 2AFFFFFC
{r1 (f(r1,72,73)) * 12 rp xr3 r3 x pc (p+20) * s}

3.3.3 Implementation

The compiler is implemented using translation validation based on the decompiler
from above; for each function f, the compiler will:

1. Generate machine code for input function f with an unverified algorithm
2. Decompile the generated code into a function '
3. Automatically prove f = f'

The compiler returns to the user, the theorem certificate produced in step 2, but with
f' replaced by f using the rewrite theorem produced in step 3.

The compiler’s separation between code generation (step 1) and certification
(steps 2 and 3) has two useful consequences: code generation need not be proof-
producing, and multiple lightweight optimisations can be made in step 1 with
practically no added proof burden for steps 2 and 3. Step 1 is allowed to produce
any code for step 3 will be able to prove f = f'. For example, just doing expansion of
let expressions in step 3 immediately makes optimisation such as register renaming,
some instruction reordering and dead-code removal unobservable.
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Extensions are implemented by making the decompiler use the theorems pro-
vided when constructing the step- and base-theorems for instantiating its loop rule,
as explained in Sect. 3.2.

3.4 Case Study: Verified LISP Interpreter

The construction of a verified LISP interpreter [23] is the, to date, largest case study
conducted on top of the ARM model. This case study included producing and veri-
fying implementations for:

e A copying garbage collector
e An implementation of basic LISP evaluation
e A parser and printer for s-expressions

These components were combined to produce an end-to-end implementation of a
LISP-like language, similar to the core of the original LISP 1.5 by McCarthy [20].

3.4.1 Example

For a flavour of what we have implemented and proved, consider an example: if our
implementation is supplied with the following call to function pascal-triangle,

(pascal-triangle ' ((1)) ’6)
it parses the string, evaluates the expression and prints a string,

( 6 15 20 15 6 1)
5 10 10 5 1)

4 6 4 1)

3 3 1)

2 1)

1)

)

PR R RRRPR

)

where pascal-triangle had been supplied to it as

(label pascal-triangle
(lambda (rest n)
(cond ((equal n '0) rest)
("t (pascal-triangle
(cons (pascal-next ‘0 (car rest)) rest)

(-n "1))))))
with auxiliary function:

(label pascal-next
(lambda (p xs)
(cond ((atomp xs) (
("t (cons (+
(cdr xs))

cons p ’'nil))
p (car xs)) (pascal-next (car xs)
)

)))))
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The theorem we have proved about our LISP implementation can be used to show
e.g. that running pascal-triangle will terminate and print the first n 4- 1 rows of
Pascal’s triangle, without a premature exit due to lack of heap space. One can use
our theorem to derive sufficient conditions on the inputs to guarantee that there will
be enough heap space.

3.4.2 LISP Evaluation

The most interesting part of this case study is possibly the construction of verified
code for LISP evaluation. For this we used our extensible compiler, described above.

First, the compiler’s input language was extended with theorems that provide
ARM code that performs LISP primitives, car, cdr, cons, equal, etc. These theo-
rems make use of an assertion lisp, which states that a heap of s-expressions vy . .. v
is present in memory. For car of s-expressions v;, we have the theorem:

is_pair v, =

{lisp (v1,v2,v3,v4,v5,v6,0) xPC p }

p :E5933000

{ lisp (car vi,v2,v3,v4,vs,v6.0) xpC (p +4) }

The cons primitive was the hardest one to construct and prove correct, since the im-
plementation of cons contains the garbage collector: cons is guaranteed to succeed
whenever the size of all live s-expressions is less than the heap limit /.

size vy + size v, + size v3 + Size v4 + Size v5 + SizE v < =

{lisp (v1,v2,v3,v4,vs5,V6,1) xPC p }

p :E50A3018 E50A4014 ES50A5010 E50A600C ... E51A8004 E51A7008
{ lisp (cons vy v, v2,v3,v4,vs5,v6,1) x pC (p + 332) }

The above-mentioned theorems extend the compiler input language with:
let vi =car vy in and let vi = cons vy v, in

Once the compiler understood enough LISP primitives, we defined lisp_eval as
a lengthy tail-recursive function and used the compiler to synthesise ARM code for
implementing lisp_eval.

In order to verify the correctness of lisp_eval, we proved that lisp_eval will al-
ways evaluate s to r in environment p whenever a clean relation semantics for LISP
evaluation, which had been developed in unrelated previous work [11], evaluates s
to r in environment p, written (s, p) —>¢,q; r. Here s-expression nil initialises vari-
ables v, v3, v4 and vg; functions ¢ and u are translation functions from one form of
s-expression into another.

Vspr. (s,0) et ¥ = fst(lisp_eval (¢ s, nil, nil, nil,u p,nil, 1)) =t r
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3.4.3 Parsing and Printing

The heap of s-expressions defined within the lisp assertion used above is non-trivial
to set up. Therefore we constructed verified code for setting up and tearing down a
heap of s-expressions. The set-up code also parses s-expressions stored as a string
in memory and sets up a heap containing that s-expression. The tear down code
prints into a buffer in memory, the string representation of an s-expression from the
heap. The code for set-up/tear-down, parsing/printing, was again synthesised from
functions in the HOL4 logic.

3.4.4 Final Correctness Theorem

By composing theorems for parsing, evaluation and printing, we get the final cor-
rectness theorem: if —,,4; relates s with r under the empty environment (i.e.
(s,[]) —evai 1), no illegal symbols are used (i.e. sSexp_ok (¢ s)), running lisp_eval
on ¢ s will not run out of memory (i.e. lisp_eval_pre(t s, nil, nil, nil, nil, nil, 7)), the
string representation of ¢ s is in memory (i.e. string a (sexp2string (¢ s)))
and there is enough space to parse ¢ s and set up a heap of size / (i.e.
enough_space (¢ s) /), then the code will execute successfully and terminate with
the string representation of ¢ r stored in memory (i.e. String a (sexp2string (¢ r))).
The ARM code expects the address of the input string to be in register 3, i.e. 3 a.

Vsrlp.
(s, []) =eval ¥ A SEXP-OK (t 5) A lisp_eval_pre(t s, nil, nil, nil, nil, nil, /) =
{ Ja. r3 a x string a (sexp2string (¢ s)) * enough_space (¢ s) / *pc p }
p : ... code not shown ...
{ Ja. r3 a * string a (sexp2string (¢ r)) * enough_space’ (¢ s) [
*pC (p+10404) }

We have also proved this result for similar x86 and PowerPC code. Our verified
LISP implementations run can be run on ARM, x86 and PowerPC hardware.

4 Conclusions and Future Research

The ARM verification project has been a fairly modest scale effort: one person
full-time specifying and verifying the hardware (Fox) and one to two part time
researchers looking at software and the background mathematical theories (Hurd,
Myreen). In addition, some students have spent time assisting the research, namely
Scott Owens, Guodong Li and Thomas Tuerk.

The project aims to verify systems built out of COTS components where ev-
erything — micro-architecture up to abstract mathematics — is formalised within a
single framework. The research is still in progress and, unlike the celebrated CLI
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Stack [21], we have not yet completely joined up the various levels of modelling,
but this remains our goal. Unlike most other work, we have used a COTS processor
and have tried (and are still trying) to formally specify as much as possible, includ-
ing difficult features like input/output and interrupts. The closest work we know of is
the verification of security properties of the Rockwell Collins AAMP7G processor
[13, 14]. More on AAMP7G can be found in other chapters of this book.

Even though the ARM ISA is relatively simple, the low-level details can over-
whelm verification attempts. During the project we have found that it is important
to abstract as much as possible so that proofs are not cluttered with such details.
A key tool for this has been the derivation of a next-state function for CPU-memory
combinations which then can be used to derive clean semantic specifications for in-
struction uses-cases and then support a further abstraction to Hoare-like rules for
machine code segments, with the frame problem managed via a separating conjunc-
tion. Some of the technical details pertaining to this abstraction methodology are
sketched in the preceding two sections.

Although our formal specifications include input/output, interrupts and facili-
ties for modelling complex memory models, we have yet (2009) to demonstrate
significant verification case studies that utilize them. Our current work aims to cre-
ate a complete functional programming platform on bare metal, with high-fidelity
modelling of system level timing and communication with the environment. We ex-
pect that achieving this will take several more years of research at the current level
of effort.
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Information Security Modeling and Analysis

David A. Greve

1 Introduction

The focus of our information security research is on how information is protected
within the context of computing systems. In particular, our concern is for how
information may or may not be communicated within computing systems. The ob-
jective of our research is to develop formal information security specifications for
computing system components that can be mathematically verified against the im-
plementation of those components and then used to reason about the information
security properties of systems that use those components. The goal is to enable
formal proofs that our high-assurance secure information processing systems sat-
isfy their system-level security policies. Developing formal security specifications
requires reasonable formal models of computing system components, information,
and communication.

1.1 Formal PVS Specifications

Throughout this chapter we will present concrete formalizations of selected top-
ics in the language of PVS [14]. PVS is a mechanized reasoning environment for
formal specification and verification. The specification language of PVS is based
on classical, typed higher order logic. Specifications are organized into (potentially
parameterized) theories, which are collections of type and function definitions, as-
sumptions, axioms, and theorems. The proof language of PVS is composed of a
variety of primitive inference procedures that may be combined to construct more
powerful proof strategies. Proofs in PVS are normally associated with theories but
are hidden from the casual observer. In some of our examples, an extension to PVS
called ProofLite [9] has been used that enables a literate-proof style, reminiscent of
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Coq, in which proof scripts are stored as special comments within PVS theories.
Many of the theories we present here have been edited for the sake of brevity,
but a Web site containing the complete proof scripts can be found by visiting
http://extras.springer.com and entering the ISBN for this book.

While many of the concepts in this chapter were first formalized in the logic
of ACL2, PVS provides a convenient, generally accessible mathematical frame-
work for presenting high-level concepts involving sets, quantifiers, and first-class
functions not available in ACL2. These formalizations also act as a sanity check,
helping to ensure that our understanding of the concepts is consistent and portable
across different formalizations. The theories presented here were developed using
PVS 4.2 and ProofLite 4.0.

2 A Formal Model of Computing Systems

In our framework, sequential computing systems that interact with the external envi-
ronment are generally modeled as state machines. A state machine model suggests a
state transition (or step) function that operates over a set of inputs and an initial state
to produce a set of outputs and a next state. This function can be applied iteratively
to successive inputs and states to simulate the evolution of the system state and its
outputs over time.

State machine models are significant in our analysis because they allow us to
decompose our analysis into both the single-step and the multistep (trace) behavior
of the system. Many security properties are best stated as single-step properties.
Some properties, however, must be analyzed over an entire execution trace. State
machine models support the analysis of both.

State transition operations in our framework are modeled functionally. A func-
tional model is one in which an output is computed only from the inputs with no
hidden side-effects. State transition functions must therefore accept as input an ini-
tial state plus inputs, all state changes and outputs must be computed relative to the
initial state and the inputs, and the updated state plus outputs must be returned by
the function. By eliminating side-effects, functional models require that all compu-
tations be explicit. This is important in a security context, where it is essential to be
able to account for all system behavior.

2.1 A Formal Model of Information

There are many obvious and effective techniques for formally modeling computing
systems. This seems not to be the case for the information processed by comput-
ing systems. This is not to say that there are no useful mathematical models of
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information. Information entropy (or Shannon entropy) is a very useful model of
information used in information theory that has yielded many remarkable results,
both in theory and in practice [13]. However, the formal analysis of a computing
system in which information is modeled as a property of its value (or expected
value) seems overwhelming. While such an undertaking might be appropriate in
such specialized fields as cryptoanalysis, it is overkill for many of the properties
that one typically encounters in the broader context of information security.

Our approach to modeling information in computing systems, while somewhat
indirect, is one that focuses the location of information in the system, rather than
the value of that information. In our model, the concept of information is defined
relative to the system processing the information. We say things such as, “these
inputs (the inputs located here) are classified as SECRET while these other inputs
(located over there) are not.” Much of the focus of our research is in formalizing
what we mean by “locations” and then connecting that model to our formal model
of computation.

2.1.1 The Calculus of Indices

In our model, the location of a piece of information is represented as an index. An
index is a value in the logic that is associated with a specific portion of the system
state. Implicitly associated with an index is a means of extracting (or inserting) the
portion of system state associated with that index. A basis is a collection of distinct
index values, each of which is associated with a portion of the system state. Index
values and the functions used to manipulate and reason about them are all part of
what we call the calculus of indices.

The calculus of indices is characterized within the logic, not the metalogic. In-
dices can be expressed, manipulated, quantified over, and computed' (possibly from
other portions of the system state), all within the logic. For example, in the Lisp
expression (let* ((x 3) (y 3))..),“x”and “y” (as they appear in the ex-
pression) are in the metalogic (of Lisp) and thus are not a part of our calculus. It is,
for example, not possible to quantify over “x” and “y” or to express the fact that
“x” and “y” are different (their values in this fragment are, after all, the same!) in
the sense that the act of binding a value to “y” does not interfere with the value
bound to “x.” The fact that “x” and “y” are 1ndependent follows from the fact that
“x” and “y” are syntactically distinct symbols in the metalogic.” Similarly, in the
Hoare—style statement {P [x/E]} x: = E {P}, the syntactic expression “x” is
in the metalogic and thus would not be considered part of a calculus.

! Because index values are computed, analysis in our model is, in general, undecidable.

2 Note that such metalogical conclusions often disguise pointer aliasing issues: the faulty intuition
being that syntactically unique symbols must point to unique address locations.
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Every indexing scheme is associated with a specific type of object, though each
type of object may have many indexing schemes. Most common data structures
suggest obvious indexing schemes. The set of field names is a natural choice for
records. Tuples might be well served by a natural number basis that maps to each
tuple position. The contents of a list could be described by their position in the list
and the contents of an association by the keys of the association. Arrays suggest a
very natural indexing scheme: each index value is simply an index into the array.
The fact that array indices are generally computable within the logic highlights the
need to support computation within the calculus. Arguments to functions may also
be indexed, either by name or position, as they may return values.

Sets of index values are important in our formalizations. The PVS theory we use
to model index sets introduces many common set operations as well as short-hand
(infix) notations set insertion, deletion, and union.

IndexSet [index: TYPE]: THEORY
BEGIN

IMPORTING sets lemmas [index]
set: TYPE = [ index -> bool ]
Empty: set = (lambda (i: index): false)

insert (a: index, x: set): set =
(lambda (i: index): (i = a) OR x(i))

union(x,y: set): set =
(lambda (i: index): x(i) OR y(1));

remove (sl,s2: set): set =
(LAMBDA (i: index): sl1(i) & not(s2(i)));

intersection(sl,s2: set): set =
(LAMBDA (i: index): s1(i) & s2(i));

not (s: set): set = (LAMBDA (i: index) : (not(s(i))));
+(s: set, a: index): set = insert(a,s);

+(a,b: index): set

ingert (a, singleton (b)) ;

+(s8l,s82: set): set union(sl, s2);

-(s1,s2: set): set = remove(sgl,s2);

-(sl: set, a:index): set = remove(sl,singleton(a));
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&(sl,s2: set): set = intersection(sl, s2);

intersects(sl,s2: set): bool =
(EXISTS (i: index): member (i,sl) AND member (i, s2))

disjoint (sl,s2: set): bool = not(intersects(sl,s2))

END IndexSet

2.1.2 Paths

A hierarchical indexing scheme is a useful generalization providing intuitive rep-
resentations for locations within hierarchical data structures. Paths, as commonly
used in operating systems to describe specific locations in hierarchical file systems,
are a sequence of directory names. We define a path as a sequence of index values
used to identify a specific location in a hierarchical data structure. For example, if
the third argument to a function is a record structure that contains an array in a field
named “x,” the path specifying the location of the 5th element of that array might
be represented as the sequence (3 “x” 5).

While paths are exceptionally useful in modeling computing systems, the con-
cepts we wish to convey are independent of the index representation. To simplify our
presentation, we consider only simple (nonhierarchical) indexing systems. Suffice
it to say that a useful calculus that employs paths must consider a rich set of binary
relations between paths (including subsumption) that will impact the formulation of
the theory.

2.1.3 A Simple Calculus in PVS

An indexing scheme is always formalized relative to the type of the underlying
data. Of particular importance is the function that projects from the state the value
associated with each index value. This function is the interpretation of the basis set
relative to the state. Here we formalize an indexing scheme for a specific record
type in PVS. The projection function in this example is called get. Note the hoops
required to work around the strong type system.

IndexingExample : THEORY
BEGIN
enum: TYPE = {red, green, blue}

%% An Example Record State




254 D.A. Greve

state: TYPE = [# a: int, b: bool, c: enum #]
%% An Example Index Set

index: TYPE = { a, b, c }

polyvalue: TYPE = [ int + bool + enum ]

index predicate(i: index, v: polyvalue): bool =
COND
a? (i) -> IN? 1(v),
b? (i) -> IN? 2(v),
c? (i) -> IN? 3(v)
ENDCOND

valuetype (i: index): TYPE =
{v: polyvalue | index predicate(i,v) }

%% The projection function

get (i: index, s: state): valuetype(i) =
COND
a? (i) -> IN 1[polyvaluel] (a(s)),
b? (i) -> IN 2[polyvalue] (b(s)),
c? (i) -> IN_3[polyvalue] (c(s))
ENDCOND

END IndexingExample

2.1.4 Properties of Basis Sets

Just as with basis sets in linear algebra, a variety of bases may be capable of
accurately modeling a given system. However, unlike basis sets in linear algebra,
it is not always possible to translate models expressed in one basis set into an equiv-
alent model expressed in another basis set. Some care is thus needed in the choice
of a basis set to ensure that it is useful for expressing interesting properties about
the system.

Conversely, the choice of basis set will influence the meaning of the information
flow properties expressed in terms of that basis. It is possible, for example, to choose
a degenerate basis set that would render nearly any information flow theorem vac-
uous. To help guard against such deception, it may be useful to consider several
properties that different basis sets might exhibit:

e PolyValued. It is possible for the value projected by each index to assume at least
two unique values. This property ensures that the projection functions are not
constant.
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e Divisive. It is possible for the value projected at two unique index values to vary
independently of each other. This property ensures that no projection function
simply returns the entire state.

e Orthogonal. The portion of state associated with each index value is independent
of the portions associated with every other index. A nonorthogonal basis gives
the illusion of separation (between two index values) when, in fact, those index
values overlap and are therefore dependent.

o Complete. If the values projected at every index are equal, then the states are
equal. If a basis set is incomplete, then there is some portion of the state that is
not observable using that set, and that portion of the state could potentially be
used as a covert channel.

Here we formalize these and additional concepts as predicates over projection
functions.

Ideal [state: TYPE+, index,value: TYPE] : THEORY
BEGIN
projection: TYPE = [[index,state] -> value]

gettablevalue? (g: projection,
i: index,
v:value) : bool =
EXISTS (st: state): v = g(i,st)

gettablevalue(g: projection, i: index): TYPE =
{ v: value | gettablevalue?(g,i,v)}

PolyTypeIndex: bool =
(EXISTS (i,j: index): (3 /= 1))

PolyValued(g: projection): bool =
FORALL (i: index):
EXISTS (stl,st2: state):
g(i,stl) /= g(i,st2)

Divisive(g: projection): bool =
FORALL (i: index):
(FORALL (j: index) :
(3 /= 1) =>
EXISTS (stl,st2: state):
g(i,stl) = g(i,st2) AND
g(j,stl) /= g(j,st2))
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Reasonable(g: projection): bool =
PolyValued(g) & Divisive(g)

Orthogonal (g: projection): bool
FORALL (i: index,
v: gettablevalue(g,i),
stl: state):
EXISTS (st2: state):
FORALL (j: index):

g(j,st2) = IF (i = j) THEN v
ELSE g(j,stl)
ENDIF

o\°
o\°

OrthogonalSet should follow from Orthogonal
for finite index types.

o
)

o\°

OrthogonalSet (g: projection): bool =
FORALL (s: set[index],
ps: [i:index -> gettablevalue(g,i)],
stl: state):
EXISTS (st2: state):
FORALL (j: index):

g(j,st2) = IF member(j,s) THEN ps(j)
ELSE g(j,stl)
ENDIF

Complete (g: projection): bool =
FORALL (stl,st2: state):
(stl = st2) =
(FORALL (i: index): g(i,stl) = g(i,st2))

Injectable(g: projection): bool =
FORALL (ps: [i:index -> gettablevalue(g,i)]):
EXISTS (st2: state):
FORALL (j: index): g(j,st2) = ps(3)

OrthogonalSet implies Injectable: LEMMA
FORALL (g: projection):
OrthogonalSet (g) => Injectable(g)

Ideal (g: projection): bool =
Reasonable (g) & OrthogonalSet (g) & Complete(g)

END Ideal
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A Reasonable basis set is both PolyValued and Divisive.
Any alternative would be egregiously degenerate. An Ideal basis set will also be
Orthogonal and Complete. We recognize, however, that compelling arguments
exist that justify the use of nonideal basis sets under appropriate circumstances. The
basis set for the example record state described above is provably Ideal.

IndexingExampleProperties: THEORY
BEGIN
IMPORTING IndexingExample
IMPORTING Ideal [state, index,polyvaluel

ExampleIsIdeal: LEMMA
Ideal (get)

END IndexingExampleProperties

2.2 A Formal Model of Communication

Communication is a dynamic process involving the movement of information from
one location to another. Our model of communication focuses on the location of
information, rather than its actual movement. Additionally, a mathematical descrip-
tion of when communication does not take place is much simpler to reason about
than a description of when it does. The absence of communication is called non-
interference, and noninterference forms the basis upon which all of our analysis is
built. Consequently, when we speak of communication taking place between loca-
tion A and location B, what we are really saying is that we have not proven that
communication does not take place. Communication is therefore a weak property in
our model while noninterference is a strong property. Fortunately, from a security
perspective, the logical separation provided by a noninterference guarantee is often
more important than the quality of service provided by a communication guarantee.

Because communication within a computing system is dynamic, it must be
associated with some actions in that system. In our model of computation, com-
munication is carried out by the functions used to model the system. We say that
a function is partially characterized by the kind of communications it performs.
Mathematically we model communication properties of functions as congruence
relations [5]. A congruence relation is a property of a function that says that the
outputs from two different applications instances of the same function will satisfy a
particular equivalence if the two input instances to those functions satisfy an equiv-
alence, not necessarily the same equivalence.

The equivalence relations we use in our formalisms are typically parameterized
by index values and are defined in terms of the basis’ projection function. We say
that two objects are equivalent modulo a selected index value if the values projected
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from the two objects agree at that index. It is straightforward to extend the notion of
equivalence modulo an index to equivalence modulo a set of indices.

Equiv[index, state, value: TYPE,
get: [[index, state] -> wvaluel]: THEORY
BEGIN

IMPORTING IndexSet [index]

equiv(i: index, stl,st2: state): bool =
(get (i,stl) = get(i,st2) )

equivSet (S: set, stl,st2: state): bool =
(FORALL (i: index):

member (1,S) => equiv(i,stl,st2))

END Equiv

2.2.1 Congruences in PVS

The kind of congruence relation we use to model communication says: given two
arbitrary application instances of a specific function (next), the value at a selected
index® (seg) in the range of the output of the two application instances will be the
same if the values of the input domains (st1, st2) within a set (DIA) of index
locations are the same.

equivSet (DIA,stl,st2) =>
equiv (seg,next (stl) ,next (st2))

A setof index values (DIA) satisfying this assertion is called the interferes set of
the index (seg), since it contains every index location that might interfere with (or
influence or communicate with) the final value of the selected output. This set could
also be called the use set of the index, since it must contain every input index value
used* in computing the specified output. Every input index that does not appear in

3 In our original formulation, an index value was referred to as a seg, which is to say, a segment of
the state.

“41In this context, the term “used” is potentially too broad, since not every index value referenced in
the course of computation needs to be included if they can be shown to be functionally irrelevant.
However, the term “required” is perhaps too narrow, as we allow the use set to be an overapproxi-
mation. A more precise description would be those index values which have not been shown to be
irrelevant.
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this set satisfies a “noninterference” property with respect to the selected output:
it is impossible for such input indices to interfere (communicate) with the selected
output.

The GWV theorem was our earliest formulation of this congruence [7]. The the-
orem was motivated by and specifically targeted toward separation kernels. The
original theorem formulation broke the equivalence relation in the hypothesis into
three components: one similar to the hypothesis shown above, one targeting the cur-
rently active partition, and one that required that the value of seg be equivalent in
the initial state. While the theorem was sufficient for simple, static separation ker-
nels like the AAMP7G, it suffered from some expressive limitations which spurred
development of two more expressive and more general formulations [1, 8].

In the original GWV theorem, DIA (the name was chosen as an acronym for
direct interaction allowed) was expressed as a function of the output index. In that
formulation, next was the transition function of a state machine model, speci-
fying what the system can do in a single step of its operation. The designation
“Direct,” therefore, emphasized the single-step nature of the characterization and
distinguished it from what may take place transitively over multiple steps of the
system.

Origin notwithstanding, this congruence may be used to characterize any func-
tion, not just state transition functions. In subsequent revisions of the theorem, the
computation of the interferes set has become more dynamic. It is now computed in
its full generality as a function of state. For representational convenience, however,
this computation has been decomposed into two steps: the computation of a com-
prehensive information flow model encompassing the behavior of the entire function
and the extraction of a specific interferes set based on the output index being con-
sidered. The comprehensive information flow model is called the information flow
graph. The function that extracts from the graph the interferes set associated with a
specific output index is now referred to as the DIA function.

2.2.2 Information Flow as a Graph

When describing the high-level information flow of a system, it is often convenient
to use “circle and arrow” diagrams in which circles represent information domains
and arrows represent flows between those domains. Such informal representations
can be modeled mathematically as graphs. In mathematics, a graph is an object with
nodes (circles) connected by edges (arrows). We have adopted graphs as a means
of expressing information flows. The nodes in the graph represent index values and
the edges (which are directed) represent information flows from one index location
to another. Given a graph, the interferes set of a particular output index can be com-
puted by a function that searches the graph and returns the set of nodes with an edge
leading to that index.

Graph data structures provide an abstract representation of the information flow
behavior of computational systems. Certain information flow properties, properties
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such as noninterference, can actually be directly expressed as (or deduced from)
properties of those flow graphs, without the need to appeal to the computational
model.

2.2.3 Graphsin PVS

Our model of graphs in PVS has two types of edges: one that maps an index value
to a set of index values (a Compute edge) and one that maps an index value into
a single index value (a Copy edge). One model of information flow utilizes Copy
edges to model “frame conditions,” locations that remain unchanged following the
execution of a function. Index values associated with Computed edges are locations
in the state that may have in some way been changed during the course of function
execution.

GraphEdge [index: TYPE]: DATATYPE

BEGIN
IMPORTING IndexSet [index]
Compute (UseSet: Set[index]) : Computed?
Copy (CopyIndex: index) : Copied?

END GraphEdge

Note that a graph models the information flow of a function and that the type of
the output of a function may differ from the type of its input. This means that, in
general, the type of the index value used to index the graph will differ from the type
of the index value found in the set returned by the graph. The strong typing in PVS
helps to make this explicit. Our GWV _Graph theory, therefore, is parameterized by
both the input and the output index types.

GWV_Graph [INindex,OUTindex: TYPE] : THEORY
BEGIN

IMPORTING IndexSet [INindex]
IMPORTING IndexSet [OUTindex]

OSet: TYPE
ISet: TYPE

Set [OUTindex]
Set [INindex]

IMPORTING GraphEdge [INindex]

graph: TYPE = [ OUTindex -> GraphEdge [INindex] ]

The DIA function, defined over graphs, computes the interferes set for a specific
output index by mapping the output index to the set of input index values upon
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which it depends. The DIASet function extends the behavior of DIA to apply to sets
of output indices. DIASet is simply the union of the DIA values for each member
of the set.

DIA(i: OUTindex, g: graph): ISet =
CASES g(i) OF
Compute (s) : s,
Copy (3) : singleton(7j)
ENDCASES

DIASet (S: OSet, g: graph): ISet =
(LAMBDA (i: INindex)
(EXISTS (x: OUTindex)
member (x,S) AND DIA(x,g) (1)))

The overall define set (or defSet) of a function, the set of locations modified
by the function, can be computed from the graph. The same is true of the set of
locations upon which the define set depends, the use set (or useSet). The inverse
DIA function, a function that computes the set of outputs that depend upon a given
input, is also provided as it is useful for expressing certain graph properties.

defSet (g: graph): Oset =
(LAMBDA (out: OUTindex) : Computed? (g(out)))

useSet (g: graph) : Iset =
(LAMBDA (i: INindex):
EXISTS (out: OUTindex) :
Computed? (g(out)) &
member (i, Useset (g(out))))

invDIA(i: INindex, g: graph): Oset =
(LAMBDA (out: OUTindex) : member (i,DIA(out,g)))

END GWV_Graph

2.2.4 Graph Functions

As an obligation, a more comprehensive (or larger) interferes set makes the
congruence theorem easier to verify. If it is possible to verify that a particular
set characterizes a specific system output, any superset will also characterizes that
output. Consequently, it is always conservative to add inputs to the use set. However,
to say that a system output depends upon every system input is not a particularly
useful specification. As a system contract, therefore, a more precise (or smaller)
description is generally more useful.
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One way to increase the precision of information flow description is to allow
them to be conditional. A conditional flow description is one that suggests different
interferes sets under different conditions. This is particularly useful when the con-
dition reflects radically different operational modes of the system. For example, the
expression (1f a b c¢) depends upon b only when a is true and on ¢ only when
a is false. Note, however, that the expression always depends upon a.

Conceptually, conditions can be viewed as labels on the edges of an information
flow graph, much like we might find in a labeled transition system.> The label in this
case identifies a specific condition under which the edge relationship exists. Such
conditions are implicitly functions of the state of the system. The information flow
characteristics of a function, therefore, are not necessarily static and may, in fact,
depend upon the inputs to that function. Precise characteristic graphs for functions
must, in general, be computed from the function inputs. Functions that compute in-
formation flow graphs are called graph functions, although we often simply refer to
such functions as graphs. A graph function can provide the most precise characteri-
zation of information flow possible for a given function.

2.2.5 GWVrlinPVS

Having formalized graphs in PVS, we are now in a position to formalize our exten-
sions of the original GWYV information flow theorem, extensions expressed in terms
of information flow graphs. Our ability to quantify over functions in PVS allows us
to express these extensions in their full generality.

GWVrl [INindex, INState, INvalue: TYPE,
getIN: [[INindex, INState] -> INvaluel,
OUTindex, OUTState, OUTvalue: TYPE,
getOUT: [[OUTindex, OUTState] -> OUTvalue]
] : THEORY

BEGIN

IMPORTING GWV_Graph [INindex, OUTindex]

IMPORTING Equiv [INindex, INState, INvalue, getIN]
AS Input

IMPORTING Equiv [OUTindex,OUTState, OUTvalue, getOUT]
AS Output

StepFunction: TYPE = [ INState -> OUTState ]
GraphFunction: TYPE = [ INState -> graph ]
PreCondition: TYPE = [ INState -> bool ]

> The representational similarity between models of information flow graphs and models of tran-
sition systems is partially responsible for inspiring subsequent work on model checking transitive
information flow properties.
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We define GW'Vrl as predicate over a step function, a precondition, and a graph
(more precisely: a graph function) that expresses a specific congruence relation. The
congruence relation says that the outputs of two unique applications of the function
are equivalent modulo a specific output index if the input instances of those two
functions satisfy the preconditions and are equivalent modulo the set of input index
values that may, according to the graph, directly influence the output index. For a
given function, we say that any graph function satisfying this predicate characterizes
the information flow of that function under the preconditions.

GWVrl (Next: StepFunction)
(Hyps: PreCondition,
Graph: GraphFunction): bool =
FORALL (x: OUTindex, inl,in2: INState) :
Input.equivSet (DIA(x,Graph(inl)),inl, in2) &
Hyps (inl) & Hyps (in2) =>
Output.equiv (x,Next (inl) ,Next (in2))

It is useful to generalize GWVrl to apply to sets of output index values and it is
easy to prove that GWVrl implies GW VrlSet.

GWVrlSet (Next: StepFunction)
(Hyps: PreCondition,
Graph: GraphFunction): bool =
FORALL (x: set[OUTindex], inl,in2: INState):
Input.equivSet (DIAset (x,Graph(inl)), inl,in2) &
Hyps (inl) & Hyps (in2) =>
Output.equivSet (x,Next (inl) ,Next (in2))

GWVrl implies GWVrlSet: LEMMA
FORALL (Next: StepFunction,
Hyps: PreCondition,
Graph: GraphFunction) :
GWVrl (Next) (Hyps,Graph) =>
GWVrlSet (Next) (Hyps, Graph)

|- GWVrl implies GWVrlSet: PROOF
|- (grind)
|- QED

END GWVrl

It is interesting to note that there is a witnessing graph satisfying GWVr1 for any
function (assuming a Complete basis set). In particular, it is easy to show that the
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graph that says that every output depends upon every input characterizes any func-
tion, not that such a graph is a particularly useful characterization of any function.

IMPORTING Ideal [INState, INindex, INvalue]

CompleteGraph (inl: INState): graph =
(LAMBDA (i: OUTindex) :
Compute ( (LAMBDA (i: INindex): true)))

GWVrlExistence: LEMMA
Complete (getIN) =>
FORALL (F: StepFunction,H: PreCondition) :
EXISTS (G: GraphFunction) :
GWvrl (F) (H,G)

- GWVrlExistence : PROOF
then (ground) (skosimp) (inst 1 "CompleteGraph")

|

|- (
%|- (expand "GWVrl") (skosimp) (expand "Output.equiv")
%|- (expand "Complete") (inst -1 "inl!l" "in2!1")
%|- (expand "Input.egquivSet")
%|- (expand "CompleteGraph") (expand "DIA")
%|- (expand "member") (expand "equiv") (iff) (ground))
%|- QED

END GWVrlExistence

2.3 Examples of Applying GWVrl

For further insight on how GWVr1 works, it is illustrative to consider how it could
be applied to some simple examples. Consider a state data structure modeled as
a mapping from natural numbers to integers. We define a projection function for
this state (get), as well as a function that allows us to selectively modify specific
portions of the state (set). With these definitions in hand, we import the GWVrl
theory.

GWVrlTest: THEORY
BEGIN

state: TYPE = [ nat -> int ]

get (i:nat,st:state): int = st (i)
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set(i:nat, v: int, st:state) (j:nat): int =
IF (i = j) THEN v ELSE get(j,st) ENDIF

IMPORTING GWVrl [nat, state, int, get,
nat, state, int, get]

The proofs we will consider require no special preconditions, so we define a
precondition function that is always true. For representational convenience, all of
our information flow graphs begin as the identity graph, which says that each output
location depends only on its initial value. We then define a function that allows us
to incrementally add dependencies to the graph for specific output locations.

Hyps (st: state): bool = true
ID : graph = (LAMBDA (i: Index): Copy(i))

addDIA(i:nat,d:nat,g:graph): graph =
(LAMBDA (n:nat) :
IF (n = i) THEN
Compute (DIA(i,g) + 4)
ELSE
g(n)
ENDIF)

Our first example is a function that modifies two locations of our state data
structure. twoAssignment updates location 0 with the value obtained by read-
ing location 1 and it updates location 2 with the sum of the values from locations
3 and 4.

twoAssignment (st: state): state =
LET vO0: int = get(1l,st) IN
LET v2: int = get(3,st) + get(4,st) IN
set (0,v0,set (2,v2,st))

AUTO REWRITE+ twoAssignment!

Most of the locations in our data structure are unmodified by twoAssignment.
Consequently the identity graph is a reasonable baseline for our information flow
model. We also expect location O to depend upon location 1 and location 2 to depend
upon locations 3 and 4. We can use addDIA to express these dependencies.
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twoAssignmentGraph (st:state) : graph =
addDIA(0,1,addDIA(2,3,addDIA(2,4,1ID)))

AUTO_REWRITE+ twoAssignmentGraph!

Assuming that we have covered all of the cases, we should now be able to prove
our GWVrl theorem for twoAssignment. And, in fact, we can.

twoAssignmentGWVrl: LEMMA
GWVrl (twoAssignment) (Hyps, twoAssignmentGraph)

- twoAssignmentGWVrl : PROOF
(then
(auto-rewrite "GWVrl")
(auto-rewrite! "DIA" "defSet")
(auto-rewrite! "addDIA" "defSet" "get" "set")
(auto-rewrite "ID")
(auto-rewrite "member")
(
(
(

o o oP°
I | | | I I

o® o° o o oP°

auto-rewrite "equiv")
auto-rewrite "copy")
auto-rewrite-theory
"EquivSetRules [nat, state, int,get]")
(apply (repeats (thenx
(1ift-if) (ground) (skosimp)))))

o o° o° o° o° o

l
0
=
g

But what if we had not covered all of the cases? Would the theorem catch our
mistakes? Consider what would happen if we failed to account for one of the writes
performed by twoAssignment. The following graph fails to account for the write to
location 2. Consider what happens when we try to prove that this new graph still
characterizes our original function. Note that we employ the same proof tactics.

missedUpdateGraph(st: state): graph =
addDIA (0,1, ID)

AUTO_REWRITE+ missedUpdateGraph!

missedUpdateGWVrlFails: LEMMA
GWVrl (twoAssignment) (Hyps,missedUpdateGraph)

| - missedUpdateGWVrlFails : PROOF
|- (then
|- (auto-rewrite "GWVrl")

o° o

o\°
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(auto-rewrite! "DIA" "defSet")
(auto-rewrite! "addDIA" "defSet" "get" "get")
(auto-rewrite "ID")
- (auto-rewrite "member")
(auto-rewrite "equiv")
(auto-rewrite "copy")
(auto-rewrite-theory
- "EquivSetRules [nat, state, int,get]")
-  (apply (repeats* (thenx
- (lift-if) (ground) (skosimp)))))

In this case, the proof fails. The failed subgoal is included below. Note that the
remaining proof obligation is to show that the sum of locations 3 and 4 for the two
different instances is the same. However, the only hypothesis we have is that the
instances agree at location 2 (x!1 = 2). This failed proof typifies proof attempts for
graphs that do not account for all state updates.

missedUpdateGWVrlFails

{-1} (2 = x!1)

{-2} (inl!1(x!1) = in2!1(x!1))
{-3} Hyps(in1!1)

{-4} Hyps(in21!1)

(in1!1(3) + inl!1(4) = in2!1(3) + in2!1(4))

Now consider what happens if we fail to appropriately account for all uses of
a location. The following graph fails to account for the use of location 4 in the
computation of location 2. Again we employ the same basic proof strategy.

missedUseGraph (st:state): graph =
addDIA(0,1,addDIA(2,3,1ID))

AUTO_REWRITE+ missedUseGraph!

missedUseGWVrlFails: LEMMA
GWVrl (twoAssignment) (Hyps,missedUseGraph)
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Again the proof fails. In the failed subgoal for this proof, we see that we know
that locations 2 and 3 are the same. However, in order to complete the proof we need
to know that location 4 is also the same in both instances. This failed proof typifies
proof attempts for graphs that do not account for all uses of state locations.

missedUseGWVrlFails

2 = x!1)
x!1l = 2)
inl!1(3) in211(3))

in211(2))

—~ o~ o~ —

inl!1(2) =
Hyps (inl!1)
Hyps (in21!1)

(in1!1(3) + inl!1(4) = in2!1(3) + in2!1(4))

As a general rule, the dependencies of conditionals must be unconditionally in-
cluded in the dependencies of the assignments they guard. The following function
updates location 4 with the value from location 7 if location 0 is equal to 3, otherwise
it does nothing.

conditionalUpdates (st: state): state =
IF get(0,st) = 3 THEN
set (4,get (7,st), st)
ELSE
st
ENDIF
AUTO REWRITE+ conditionalUpdates!

The following graph accurately reflects a precise information flow model of the
function conditionalUpdates. Note that location 4 depends upon location 7
only if the test succeeds. However, it depends upon location O regardless of the
outcome of the test. The GWVr1 proof for this graph succeeds.

conditionalUpdatesGraph(st: state): graph =
IF get(0,st) = 3 THEN
addDIA(4,7,add(4,0,1ID))
ELSE
addDIA(4,0,1ID))
ENDIF
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AUTO_REWRITE+ conditionalUpdatesGraph!

conditionalUpdatesGWVrl: LEMMA
GWVrl (conditionalUpdates)
(Hyps, conditionalUpdatesGraph)

If, however, the conditional dependency is omitted from one (or both) of the
branches, the proof fails.

missedConditionalGraph(st: state): graph =
IF get(0,st) = 3 THEN
addDIA (4,7, 1ID)
ELSE
ID
ENDIF

AUTO REWRITE+ missedConditionalGraph!
missedConditionalGWVrlFails: LEMMA

GWVrl (conditionalUpdates)
(Hyps,missedConditionalGraph)

In the failed subgoal below, we are trying to prove that location 4 is the
same in both instances. Observe, however, that the conditional expression
get (0,st) = 3 has produced different outcomes for the two different input
instances ({—2} and {1}). This is possible because location 0 is not known to be the
same in those instances. This failed proof typifies proof attempts for graphs that do
not accurately account for the dependencies of conditional assignments.

missedConditionalGWVrlFails.1

{-1} (4 = x!1)
{-2} in1t1(0) = 3

{-3} (x!1 = 4)

{-4} (in111(7) = in21!1(7))
{-5} (inl!1(4) = in2!1(4))

{-6} Hyps(inl!'l)

{-7} Hyps(in2!1)

| _______

1} in21!11(0) = 3

} (in1!1(7) = in2!1(x!1))
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2.4 Graph Composition

We have shown how graphs can be used to model the information flow properties of
individual functions. We now explore the transitive information flow relationships
that result from function composition. That is to say, if A depends upon B in a
first function and B depends upon C in a second function, it should be possible
to conclude that A depends upon C when those two functions are combined. The
combination of two functions is called function composition. The combination of
two graphs is called graph composition. Graph composition, when properly defined,
models function composition. That is to say, given two graphs characterizing the
information flow of two functions, the composition of the graphs is a model of the
information flow of the composition of the two functions.

2.4.1 Graph Composition in PVS

In PVS, we denote graph composition using the infix “o” operator and we define it
as follows. We also provide the function GraphComposition for use when the
infix operator may be ambiguous.

GraphComposition[indexl, index2, index3: TYPE] :
THEORY BEGIN

IMPORTING GWV_Graph[indexl, index2] AS T12
IMPORTING GWV_Graph[index2,index3] AS T23
IMPORTING GWV_Graph[indexl, index3] AS T13

gl2: TYPE T1l2.graph
g23: TYPE T23 .graph
gl3: TYPE = T13.graph
o(g23: g23, gl2: gl2): gl3 =
(LAMBDA (j3: index3):
CASES g23(j3) OF
Compute (S) : Compute (DIAset (S,gl2)),
Copy (3) :
CASES gl2(j) OF
Compute (S) : Compute (S),
Copy (k) : Copy (k)
ENDCASES
ENDCASES)

GraphComposition(g23: g23, gl2: gl2): gl3 =
(g23 o gl2)

END GraphComposition
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Note that, in order to compose two graphs, the input index type of the left graph
must agree with the output index type of the right graph. Graph composition is not
commutative, but it is associative.

GraphCompositionProperties[indexl, index2, index3,
index4: TYPE] :
THEORY BEGIN

IMPORTING GraphComposition[indexl, index2, index3]
IMPORTING GraphComposition[index2, index3, index4]
IMPORTING GraphComposition[indexl, index2, index4]
IMPORTING GraphComposition[indexl, index3, index4]

graphl2: TYPE = graph[indexl, index2]
graph23: TYPE graph [index2, index3]
graph34: TYPE graph [index3, index4]

compose is associative: LEMMA
FORALL (gl2: graphl2,
g23: graph23,
g34: graph34) :
((g34 o g23) o gl2) =
(934 o (g23 o gl2))

| - compose is associative : PROOF
|- (grind-with-ext)

|- QED
END GraphCompositionProperties

o® o oP

When the input and output index types are the same, we can define an identity
graph. The identity graph maps each index into its own singleton set. The DIASet
of any set, when applied to an identity graph, is the original set. Likewise, any graph
composed with the identity graph (either from the left or from the right) remains
unchanged.

GraphID[Index: TYPE]: THEORY
BEGIN

IMPORTING GWV_Graph [Index, Index]
IMPORTING GraphComposition [Index, Index, Index]

ID : graph = (LAMBDA (i: Index): Copy(i))

DIAset ID: LEMMA
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FORALL (x: set):
DIAset (x,ID) = x

compose ID 1: LEMMA
FORALL (g: graph) :
IDo g=g

compose ID 2: LEMMA
FORALL (g: graph) :
go ID =g

END GraphID

Recall that a graph is intended to model the information flow properties of a
function. Likewise, graph composition is intended to model the information flow
properties of function composition. We demonstrate this fact in the following the-
ory. The composition theorem says that if Graph12 is a characterization of Next12
and Graph23 is a characterization of Next23, then the functional composition of
Graph23 and Next12, when graphically composed with Graph12, is a characteriza-
tion of the functional composition of Next23 and Nextl2. The awkward function
composition between Graph23 and Next12 is a result of the fact that graphs are, in
general, functions of the state and the state seen by Graph23 is computed by Next12.

GWVrl Composition[Indexl, Index2, Index3,
Statel, State2,State3,
Valuel,Value2,Value3: TYPE,
Getl: [[Indexl,Statel]->Valuel],
Get2: [[Index2,State2]->Value2],
Get3: [[Index3,State3]->Value3]]:

THEORY BEGIN

IMPORTING GWVrl [Indexl,Statel,Valuel, Getl,
Index2,State2,Value2,Get2] AS P12
IMPORTING GWVrl [Index2,State2,Value2, Get2,
Index3,State3,Value3,Get3] AS P23
IMPORTING GWVrl [Indexl,Statel,Valuel, Getl,
Index3,State3,Value3,Get3] AS P13
IMPORTING GraphComposition[Indexl, Index2, Index3]
AS G
IMPORTING Equiv[Indexl,Statel,Valuel,Getl] AS ST1
IMPORTING Equiv[Index2,State2,Value2,Get2] AS ST2
IMPORTING Equiv[Index3,State3,Value3,Get3] AS ST3
IMPORTING function props[Statel,State2,State3] AS F
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GWVrl Composition Theorem: LEMMA

FORALL (Nextl2 : P12.StepFunction,
Graphl2 : P12.GraphFunction,
Hypl : P12.PreCondition,
Next23 : P23.StepFunction,
Graph23 : P23.GraphFunction,
Hyp?2 : P23 .PreCondition) :

(P12.GWVrl (Next12) (Hypl,Graphl2) AND
P23 .GWVrl (Next23) (Hyp2,Graph23)) =>
P13 .GWVrl (Next23 o Nextl2)
((lambda (inl: Statel):
(Hyp2 (Next12 (inl)) & Hypl(inl))),
(lambda (inl: Statel):
(GraphComposition ( (Graph23 o Nextl2) (inl),
Graphl2 (inl)))))
END GWVrl Composition

2.5 Graph Abstraction

Given a concrete graph describing the information flow of a system, it may be pos-
sible to construct a more abstract graph of the same system containing less detail
that preserves the essential information flow properties of the system. A graph ab-
straction associates groups of concrete index values with abstract index names. Such
abstractions can substantially reduce the complexity of a graph, especially when it
serves to partition a large basis set into a small number of security domains.

An abstraction has three components: a lifting graph that transforms concrete
input indices into abstract input indices, a lifting graph that transforms concrete
output indices into abstract output indices, and an abstract graph that models the ab-
stract information flow relation between abstract input and output indices. We
say that an abstraction is conservative if the interferes set of each concrete in-
dex is preserved (or extended) by the abstraction. With a conservative abstraction,
noninterference questions about concrete index values can be translated into nonin-
terference questions about the abstract index values. Because abstract graphs may
be more concise than concrete graphs, such questions may be easier to answer in
the abstract domain.

GraphAbstractionProperty [CiIndex, CoIndex,AiIndex,AoIndex: TYPE]
THEORY BEGIN

IMPORTING GWV_Graph[CiIndex,CoIndex] AS C
IMPORTING GWV_Graph[CiIndex,AiIndex] AS Li
IMPORTING GWV_Graph[CoIndex,AoIndex] AS Lo
IMPORTING GWV_Graph[AiIndex,AoIndex] AS A
IMPORTING GraphComposition[CiIndex,CoIndex,AoIndex]
IMPORTING GraphComposition[CiIndex,AiIndex,AoIndex]
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IMPORTING IndexSet [CiIndex]
IMPORTING IndexSet [CoIndex]
IMPORTING IndexSet [AiIndex]

ConservativeAbstraction (GCStep: C.graph,
GLi : Li.graph,
GLo : Lo.graph)
(AStep : A.graph): bool =
FORALL (Ao: AoIndex, Ci: CiIndex) :
member (Ci,DIA(Ao,GLo o GCStep)) =>
member (Ci,DIA(Ao,AStep o GLi))

AbstractNonInterference: LEMMA

FORALL (Ci : CiIndex,
Co : CoIndex,
Ao : AoIndex,
GCStep: C.graph,
GLi : Li.graph,
GLo : Lo.graph,

AStep : A.graph):
(ConservativeAbstraction (GCStep,GLi,GLo) (AStep) &
disjoint (invDIA(Ci,GLi),DIA (Ao,AStep)) &
member (Co,DIA (Ao,GLoO)))
=>
not (member (Ci,DIA(Co,GCStep)))

END GraphAbstractionProperty

The composition of two conservative abstract graphs results in a new abstract
graph that is a conservative abstraction of the composition of the underlying con-
crete graphs. We express this property in its full generality, allowing for a third graph
to map between the input and output domains of the two abstract graphs. Numbers
in the names of graphs in this example represent domains, where each graph maps
information flow between two domains. Graphs S12 and S23 represent the two un-
derlying system information flow graphs being composed, ultimately describing
information flow between domain 1 and domain 3 via domain 2. A45 represents
an abstraction of the information flow of S12. A67 represents an abstraction of the
information flow of S23. The graph B56 is a bridging graph that maps index values
in abstract domain 5 to index values in abstract domain 6. The final theorem says
that, if A45 is a conservative abstraction of S12 modulo the lifting graphs L.14 and
L25 and A67 is a conservative abstraction of S23 modulo the lifting graphs L26 and
L37, and if B56 is a conservative abstraction of the identity graph modulo the lifting
graphs L.25 and L26, then the composition of A45, B56, and A67 is a conservative
abstraction of the composition of S12 and S23.

AbstractGraphComposition[T1,T2,T3,T4,T5,T6,T7: TYPE]: THEORY
BEGIN

IMPORTING GraphAbstractionProperty[T1,T2,T4,T5]
IMPORTING GraphAbstractionProperty [T2,T3,T6,T7]
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IMPORTING
IMPORTING
IMPORTING
IMPORTING
IMPORTING
IMPORTING

IMPORTING
IMPORTING
IMPORTING
IMPORTING

IMPORTING

IMPORTING

GraphAbstractionProperty [T1,T3,T4,T7]
GraphAbstractionProperty [T2,T2,T5,T6]
GWV_Graph [T5, T6]
GraphComposition[T1,T2,T3] AS P13
GraphComposition[T4,T5,T6] AS P46
GraphComposition[T4,T6,T7] AS P47

AbstractGraphComposition2 [T1,T2,T2,T4,T5,T6] AS
AbstractGraphComposition2 [T2,T2,T3,T5,T6,T7] AS
AbstractGraphComposition2 [T1,T2,T3,T4,T6,T7] AS
AbstractGraphComposition2 [T1,T2,T3,T4,T5,T7] AS

GraphID[T2]

I22: graph([T2,T2] = IDI[T2]

GraphID2 [T1,T2]

Composition: LEMMA
FORALL

(S12: graph[T1,T2],
Ll4: graph[T1,T4],
L25: graph[T2,T5],
A45: graph[T4,T5],
S23: graph[T2,T3],
L26: graph[T2,Te],
L37: graph([T3,T7],
A67: graph[Te,T7],
B56: graph[T5,Té]) :

ConservativeAbstraction (S12,L14,L25) (A45)
ConservativeAbstraction (I22,L25,L26) (B56)
ConservativeAbstraction (S23,L26,L37) (A67)

ConservativeAbstraction (P13.0(S23,812),L14,L37)

&
&

=>
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P456
P567
P467
P457

(P47.0(A67, (P46.0(B56,A45))))

END AbstractGraphComposition

2.6 GWVrl and Guarded Domains

While GWVrl has been shown to be effective at modeling information flow proper-
ties of functions, there are example of functions for which GWVr1 requires the use
of an information flow graph that seems to overapproximate the information flow of

the function.

Recall our illustrative state data structure modeled as a mapping from natural
numbers to integers, the associated get projection function, and the set function
that allows us to selectively modify specific portions of the state.

state:

TYPE = [ nat -> int ]

get (i:nat,st:state): int = st(i)
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set(i:nat, v: int, st:state) (j:nat): int =
IF (i = j) THEN v ELSE get(j,st) ENDIF

Consider a function containing a guarded assignment in which the condition
of the guard reflects a domain restriction on the assignment. In other words, the
location being updated is in the domain of the system when the condition is true,
otherwise it is not. In the guardedDomain function, the nat? test ensures that
the assignment statement is type correct.

nat? (x: int): bool = (0 <= x)

guardedDomain (st: state): state =
LET index:int = get(0,st) IN
IF nat? (index) THEN
set (index, 1, st)
ELSE st
ENDIF

AUTO REWRITE+ guardedDomain!

While this example is similar to the conditionalUpdates example consid-
ered previously, it has one important distinction. Specifically, it is impossible for
the assigned location to unconditionally include the dependency of the condition
because doing so would result in a type violation in our graph specification, exactly
the type violation that the condition is there to avoid in the original function
definition.

We might specify the following type-safe graph and hope that it works.

guardedDomainGraph (st: state): graph =
LET index:int = get(0,st) IN
IF nat? (index) THEN
addDIA (index, 0, ID)
ELSE ID
ENDIF

AUTO_REWRITE+ guardedDomainGraph!

guardedDomainGWVrlFails: LEMMA
GWVrl (guardedDomain) (Hyps, guardedDomainGraph)

Of course, this fails in the same way our naive missedConditionalGraph
failed, except that in this case it is the nat? test that differs for the two input
instances.
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guardedDomainGWVrlFails.2

{-1} (in2!1(0) = x!1)
{-2} nat?(in2!1(0)
{-3} (inl!1(x!1) = in2!1(x!1))
{-4} Hyps(in1!1)
{-5} Hyps(in2!1)

| _______
{1} (in1!1(x!1) =
{2}  nat?(in1!1(0))
{3} nat?(ini!1(0))

1)

There is a graph that characterizes this function. However, in this graph every

index location depends upon location 0.

overkillGraph(st: state): graph =
LET g:graph = (lambda (n: nat): Compute (0+n))
LET index:int = get(0,st) IN
IF nat? (index) THEN
addDIA (index, index, g)
ELSE g ENDIF;

AUTO REWRITE+ overkillGraph!

overkillGWVrl: LEMMA
GWVrl (guardedDomain) (Hyps,overkillGraph)

IN

We call this graph overkillGraph, because it seems like overkill for every
index to have to depend upon this condition. Domain guards turn out to be very
common in dynamic systems. For example, null pointer checks on heap resident
data structures are one kind of domain guard. If every part of the state of a dynamic
system must depend upon every domain guard in the system, pretty soon every-
thing depends upon everything and the information flow graph becomes useless as
a specification. Our efforts to model the Green Hills INTEGRITY-178B operat-
ing system, with its many heap resident (dynamic) data structures and null pointer
checks, brought this issue to a head [10]. It was precisely that modeling experience

that motivated our development of GWVr2.
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3 GWVr2

The development of GWVr2 was motivated by the difficulty of modeling guarded
domains in GWVrl. The two state representation of the congruence relation was
assumed to be the culprit, so a single state model of information flow was sought.
While the two state congruence theorem is, in fact, the issue, GWVr2 turns out to be
the long way around to a satisfactory solution. Because the development of GWVr2
has never been described in its entirety, we document it here. GWVr2, however, has
never been used directly in practice. In subsequent sections, we show that GWVr2
can be reformulated in a form much more amenable to automated proof.

In GWVr2, the congruence theorem of GWVrl is transformed into a simple
equality between the original function and another function which interprets the
graph data structure relative to the initial state. For each index value in the define
set of the graph, the interpreter function constructs a new state object in such a way
as to guarantee that the only similarity between the new state object and the original
state object is that they satisfy equivSet over the DIA of the index. It then applies the
step function to this new object and extracts from the result the value at the index
of interest and returns a state object in which the index is bound to that computed
value. For each index value not in the define set of the graph, the interpreter simply
copies the value at that index from the input to the output.

In addition to the index, state and value types, and the projection function pa-
rameters, GWVr2 is also parameterized by a copy function. The theory construction
we present is valid only for copy functions that produce values of the right type and
basis sets that are orthogonal and complete.

GWVr2 [INindex:TYPE, INState: TYPE+, INvalue: TYPE,
getIN: [[INindex, INState] -> INvalue]l,
OUTindex: TYPE, OUTState: TYPE+, OUTvalue: TYPE,
getOUT: [[OUTindex, OUTState] -> OUTvalue],
copy: [ [INindex,OUTindex] ->

[INvalue -> OUTvaluelll]:
THEORY BEGIN

ASSUMING
IMPORTING Ideal [OUTState,OUTindex,OUTvalue]
copy right: ASSUMPTION
FORALL (i: INindex, o: OUTindex, ival: INvalue) :

gettablevalue (getOUT, o, copy (i,0) (ival))

OrthogonalSet And Complete: ASSUMPTION
OrthogonalSet (getOUT) & Complete (getOUT)
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ENDASSUMING

The basic theory types are similar to those found in GWVrl.

IMPORTING GWV_Graph[INindex, OUTindex]

IMPORTING Equiv [INindex, INState, INvalue, getIN]
AS Input

IMPORTING Equiv [OUTindex,OUTState, OUTvalue, getOUT]
AS Output

StepFunction: TYPE [ INState -> OUTState ]
GraphFunction: TYPE = [ INState -> graph ]
PreCondition: TYPE [ INState -> bool ]

The construction of the new state object is complicated by the fact that we want
GWVr2 to be as strong as GWVr1 under appropriate conditions. This leads us to
choose (via epsilon, representing an axiom of choice) a value for the new state that
is, in a sense, the one most likely to cause our efforts to fail. We call this condition
the “bad boy” condition and the resulting state the “bad state” (bad_st). If, however,
despite the odds, we succeed in proving equivalence using this malicious state, it
ensures that we will be able to prove a similar equivalence with any other state. This
claim is reminiscent of GWVrl1, which gives us some hope that GWVr2 will at least
be similar to GWVrl.

The process begins by defining appropriate types and predicates and articulating
exactly how we would recognize a bad boy state: the result of applying Next to that
state would differ at the index of interest from an application of Next to our original
state. We then use epsilon to choose our malicious state: st _bad.

PreState (Hyp: PreCondition): TYPE =
{s: INState | Hyp(s)}

use equiv (Hyp: PreCondition,
u: set [INindex],
stl: PreState (Hyp))
(stx: INState): bool =
equivSet (u,stl, stx) & Hyp (stx)

use equiv_state(Hyp: PreCondition,
u: set[INindex],
stl: PreState(Hyp)): TYPE =
{ s: INState | use equiv(Hyp,u,stl) (s) }

bad boy (Hyp: PreCondition, i: OUTindex,
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Next: StepFunction,u: set [INindex],

stl: PreState (Hyp))

(stx: use equiv_state(Hyp,u,stl)): bools
not (equiv (i,Next (stl) ,Next (stx)))

st bad(Hyp: PreCondition, i: OUTindex,
Next: StepFunction, u: set[INindex],
stl: PreState(Hyp)): INState =
epsilon[use equiv_state (Hyp,u,stl)]
(bad_boy (Hyp, i,Next,u,stl))

st_bad, because of its base type, has several useful properties. It satisfies the
Hyp precondition and it is equivalent to its st 1 argument at every index location in
the set u. If possible, it would also satisfy the bad_boy predicate. However, if that is
not possible, we get a very nice property: one that mirrors GWVrl.

st _bad next equiv: LEMMA
FORALL (Hyp: PreCondition, i: OUTindex,
Next: StepFunction, u: set [INindex],
stl: INState):
Hyp(stl) &
equiv (i, Next (stl),
Next (st_bad(Hyp,i,Next,u,stl))) =>
FORALL (st2: INState):
equivSet (u,stl,st2) & Hyp(stl) & Hyp(st2) =3
equiv (i,Next (stl),h Next (st2))

Our construction of GWVr2 continues with the introduction of a pstate
(“projected state”) type. Such an object represents a collection of every possible
projection of the state. The ability of pst2st to reconstruct a state object from a
pstate is made possible by the Orthogonality and Completeness of the
basis set.

pstate: TYPE =
[ 1:0UTindex -> gettablevalue (getOUT,i) ]

pstPredicate (pst: pstate) (st: OUTState): bool =
FORALL (i: OUTindex) :
getOoUT (i,st) = pst (i)

pst2st (pst: pstate): OUTState =
epsilon [OUTState] (pstPredicate (pst))
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The function NextGpst interprets the graph to construct a pstate output. For
a computed index, the result is the projection at that index of the Next function
applied to a state that is equivalent (via st _bad) to the input state st at every index
location dictated by DIA (i, G) . For a copied index, on the other hand, the result is

a direct copy of that input. The function NextG simply converts NextGpst back
into a state object.

NextGpst (Hyp: PreCondition, Next: StepFunction)
(G: graph, st: PreState(Hyp)): pstate =
(LAMBDA (i: OUTindex) :

IF Computed? (G(i)) THEN

getOUT (i,Next (st_bad (Hyp,i,Next,DIA(i,G),st)))
ELSE

copy (CopyIndex (G(i)),1)

(getIN (CopyIndex(G(i)),st))

ENDIF)

NextG (Hyp: PreCondition, Next: StepFunction)
(G: graph, st: PreState(Hyp)): OUTState =
pst2st (NextGpst (Hyp, Next) (G, st))

GWVr2 is expressed simply as equality between Next and NextG under the ap-
propriate preconditions.

GWVr2 (Next: StepFunction)
(Hyp: PreCondition,
Graph: GraphFunction): bool =
FORALL (st: INState):
Hyp(st) =>
Next (st) = NextG (Hyp,Next) (Graph(st), st)

3.1 GWVr2 Reduction

In GWVr2, the congruence theorem of GWVrl is transformed into a simple equality
between the original function and another function, which interprets the graph data
structure relative to the initial state. But it is still not clear how this helps to address
the original issue with GWVrl. To explain this, it is helpful to retrace our steps and
to attempt to reestablish a connection between GWVr2 and GWVrl.

GWVrl and GWVr2 differ in their interpretation of the graph data structure.
GWVr2 treats the Copy and Compute edges of the information flow graph differ-
ently while GWVrl sees the graph only through the eyes of DIA, which blurs the
distinction between the Copy and Compute edges.
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FramedGWvVrl [
INindex: TYPE, INState: TYPE+, INvalue: TYPE,
getIN: [[INindex, INState] -> INvaluel],
OUTindex, OUTState, OUTvalue: TYPE,
getOUT: [[OUTindex, OUTState] -> OUTvalue],
copy: [ [INindex,OUTindex] -> [INvalue -> OUTvaluell]:
THEORY BEGIN

IMPORTING GWVrl [INindex, INState, INvalue, getIN,
OUTindex, OUTState, OUTvalue, getOUT]

StepFunction: TYPE = [ INState -> OUTState ]
GraphFunction: TYPE [ INState -> graph ]
PreCondition: TYPE [ INState -> bool ]

For Copy edges, GWVr2 reduces to a single state theorem about how the func-
tion being characterized is equivalent to a function that copies an input value to
the output. We call this theorem the frame condition (FrameCondition). The
frame condition provides a strong functional theorem about the behavior of Next
at copied index values. Typically copy is defined as the identity function (the first
two parameters to copy are included only to satisfy type reasoning). In such case,
FrameCondition says that Next leaves the state completely unchanged at copied
index locations. We will see in subsequent sections that this strong functional theo-
rem, which is not available with GWVrl, provides a convenient means of expressing
noninterference theorems. The defSet of a graph is composed entirely of computed
index values. The nonmembership of an index value in the defSet of a graph is
equivalent that index being a copy edge in the graph.

FrameCondition (Next: StepFunction)
(Hyps: PreCondition,
Graph: GraphFunction) : bool =
FORALL (x: OUTindex, st: INState):
not (member (x,defSet (Graph(st)))) & Hyps(st) =>
getOUT (x,Next (st)) =
copy (CopyIndex (Graph(st) (x)) ,x)
(getIN(CopyIndex (Graph(st) (x)),st))

For Compute edges, GWVr2 reduces to GWVrl (due, in part, to the virtues
of the carefully chosen st_bad). We call a GWVrl theorem that is condi-
tional on the graph edge associated with the output index a framed congruence
(FramedGWVrl).
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FramedGWVrl (Next: StepFunction)

(Hyps: PreCondition,

Graph: GraphFunction): bool =

FORALL (x: OUTindex, inl,in2: INState) :

equivSet (DIA (x,Graph(inl)),inl,in2) &
Hyps (inl) & Hyps (in2) &

member (x,defSet (Graph (inl)))

=>
equiv (x,Next (inl) ,Next (in2))

Given these definitions, it is possible to prove that GWVr2 is equal to a framed
congruence plus a frame condition. This reformulation is actually more amenable to
automated proof and is now the preferred representation of GWVr2.

GWVr2 reduction: LEMMA
FORALL (Next: StepFunction,
Hyp: PreCondition,
Graph: GraphFunction) :
GWVr2 (Next) (Hyp,Graph) =
(FramedGWVrl (Next) (Hyp, Graph) &
FrameCondition (Next) (Hyp, Graph))

3.2 Domain Guards and GWVr2

The development of GWVr2 was motivated in part by the need for a better method

for modeling systems containing dynamic domain guards. Recall our definition of
guardedDomain.

nat? (x: int): bool = (0 <= x)

guardedDomain(st: state): state =
LET index:int = get(0,st) IN
IF nat? (index) THEN
set (index, 1, st)
ELSE st
ENDIF

AUTO REWRITE+ guardedDomain!

And recall the naive, type-safe graph that failed under GW'Vrl.
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guardedDomainGraph (st: state): graph =
LET index:int = get(0,st) IN
IF nat? (index) THEN
addDIA (index, 0, ID)
ELSE ID
ENDIF

AUTO REWRITE+ guardedDomainGraph!

The proof that failed under GWVrl succeeds under FramedGWVr1, for an ap-
propriate definition of copy.

copy(x,y: nat) (1i: int): int = i;

IMPORTING FramedGWVrl [nat,state, int,get,
nat, state, int, get,
copy]

guardedDomainFramedGWVrl: LEMMA
FramedGWVrl (guardedDomain) (Hyps, guardedDomainGraph)

- guardedDomainFramedGWVrl : PROOF
(then
(auto-rewrite "FramedGWVrl")
(auto-rewrite! "DIA" "defSet")
(auto-rewrite! "addDIA" "defSet" "get" "get")
(auto-rewrite "ID")
(auto-rewrite "member")
(
(
(

o® o° o o oP°

auto-rewrite "equiv")
auto-rewrite "copy")
auto-rewrite-theory
"EquivSetRules [nat, state, int,get]")
(apply (repeat* (thenx
(lift-if) (ground) (skosimp)))))

o o® o o® o o o° oP° o°
| | I I I |

l
0
=
g

The proof of the frame condition works as well.

guardedDomainFrameCondition: LEMMA
FrameCondition (guardedDomain)
(Hyps, guardedDomainGraph)

)

%|- guardedDomainFrameCondition : PROOF
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I
—

then

(auto-rewrite "FrameCondition")
(auto-rewrite! "DIA" "defSet")

(auto-rewrite! "addDIA" "defSet" "get" "set")
(

(

(

(

(

auto-rewrite "ID")
auto-rewrite "member")
auto-rewrite "equiv")
auto-rewrite "copy")
auto-rewrite-theory
"EquivSetRules [nat, state, int,get]")
(apply (repeats* (thenx
(1ift-if) (ground) (skosimp)))))

o° o o° o° o° o° o° o°® o° o° o° o° o
I

l
0
=
g

Consequently, the GWVr2 property, by selectively partitioning information flow
modeling into both a congruence problem and a frame condition, enables the use of
more intuitive models of information flow for dynamic systems.

4 Multicycle Information Flow Analysis

As mentioned previously, state machine models are used to represent sequential
computing systems. A state machine model suggests a step function that operates
over a set of inputs and an initial state to produce a set of outputs and a next
state. This step function can be applied iteratively to successive inputs and states
to simulate the evolution of the sequential system and its outputs over time. Our
theory of multicycle systems is parameterized by everything necessary to specify a
basis set as well as an index set representing the inputs to the system, a step function,
a precondition, and a graph function.

MultiCycle [index:TYPE , state: TYPE+, value: TYPE,
get: [[index, state] -> wvaluel,
(IMPORTING GWVrl [index, state,value, get,

index, state,value,get])

InputSet: set [index],
Next: StepFunction,
Hyp: PreCondition,
Graph: GraphFunction]: THEORY

BEGIN

A number of assumptions over the parameters are necessary in the development
of our theory. We assume that the graph function is a GWVrl characterization of
the step function under the precondition that the precondition is invariant over the
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step function, that the precondition is independent of the inputs, that the basis set is
Orthogonal and Complete, and that the graph is reactive, which is to say that any
input contained in the graph depends upon itself.

ASSUMING

NextCharacterization: ASSUMPTION
GWVrl (Next) (Hyp, Graph)

Next PostCondition: ASSUMPTION
FORALL (s: state):
Hyp(s) =>
Hyp (Next (s) )

HypCongruence: ASSUMPTION
FORALL (sl,s2: state):
equivSet (not (InputSet),sl,s2) =>
Hyp(sl) = Hyp(s2)

IMPORTING Ideal [state, index,value]

OrthogonalSet get: ASSUMPTION
OrthogonalSet (get)

Complete get: ASSUMPTION
Complete (get)

reactive Graph: ASSUMPTION
FORALL (i: index):
member (i, InputSet) =>
FORALL (st: state):
member (i,DIA(i,Graph(st)))

ENDASSUMING

We are developing a model of multicycle operation, and we assume that our
model of state includes the system inputs. Consequently, we need a means of de-
scribing how those inputs are updated in each step of the system. The function
applyInputs is chosen (using an axiom of choice) as a means of applying inputs
(its first argument) to a given state (its second argument). Note that for representa-
tional convenience we do not define a special input type. Rather, we reuse the state
type to model inputs. The crucial property of applyInputs is that, when accessed via
get, the value returned will be the associated value from the input when the index
is a member of the InputSet and will be the associated value from the original state
when the index is not in InputSet.
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inputApplication (input, st: state) (s: state) :bool =
FORALL (i: index):
(IF member (i, InputSet) THEN

get (i,s) = get (i, input)
ELSE

get(i,s) = get(i,st)
ENDIF)

applyInputs (inputs, st: state): state =
epsilon[state] (inputApplication (inputs, st))

get applyInputs: LEMMA
FORALL (i: index, input,st: state):
get (i, applyInputs (input,st)) =
IF member (i, InputSet) THEN
get (i, input)
ELSE
get (i, st)
ENDIF

We are now in a position to describe the functional behavior of our state machine
over time. Time is modeled as a natural number and a trace is defined as a mapping
from time to states. The first argument to our state machine model is the time up
to which it is to run, beginning at time zero. The second input to our model is a
trace (the oracle) containing the inputs that are to be consumed by the machine at
each step. Additionally, the oracle at time zero is interpreted as the initial state of
the system. In every step, the machine applies the inputs at the current time to the
result of applying a single step (Next) to the state computed in the previous time.

time: TYPE = nat
trace: TYPE = [ time -> state ]

Run (t:nat) (oracle: trace): RECURSIVE state =
IF (t = 0) THEN oracle(0) ELSE
applyInputs (oracle (t) ,Next (Run(t-1) (oracle)))
ENDIF
MEASURE t

Observe that our recursive model of sequential execution can be viewed as a se-
quence of compositions of the state transition function with the inputs and itself. Not
surprisingly, the information flow of our sequential system can also be modeled as
a sequence of compositions of the graph that characterizes the state transition func-
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tion with itself. In other words, the information flow model of a sequential system
is itself a sequential system.

IMPORTING GraphlID [index]

GraphRun (t: time) (oracle: trace): RECURSIVE graph o
IF (t = 0) THEN ID ELSE
Graph (Run(t-1) (oracle)) o
GraphRun (t-1) (oracle)
ENDIF
MEASURE t

It is relatively easy to prove, given the fact that graph composition is a model of
function composition, that such a state machine model does, in fact, track informa-
tion flow in a sequential system. However, the development of the proof requires
that we extend our calculus of indices to take into account the fact that our inputs
are applied fresh in every cycle. There are a variety of ways to model this poten-
tially unbounded collection of inputs. We could, for example, extend our basis set
to construct a unique index value for each input at each step in time. The technique
we choose, however, is to extend our interpretation of what an input is. Rather than
an input being a single value, we view each input as a sequence of values that may
vary over time. We call such mappings from time to values signals. Employing this
concept we define a new projection function, sigget, that projects input index values
from the input oracle into signals that may vary over time. For representational con-
venience, the projection function also projects index values that are not inputs into
signals that assume the value of the index in the initial state (the oracle at time 0) for
all time. Employing this new projection function, we define sigEquiv and sigSetE-
quiv as equivalence relations between two different oracle traces.

signal: TYPE = [ time -> value ]

sigget (i: index, oracle: trace): signal =
IF member (i, InputSet) THEN
(lambda (t: time) : get(i,oracle(t)))
ELSE
(lambda (t: time): get(i,oracle(0)))
ENDIF

sigEquiv (i: index, o0l,02: trace): bool =
sigget (i,0l) = sigget (i, o02)

sigSetEquiv (set: set[index], o0l,02: trace): bool =
FORALL (i: index):
member (i, set) => sigEquiv (i, ol,02)
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These new definitions, in conjunction with selected theory assumptions and their
consequences, allow us to prove that GraphRun characterizes Run (in a GWVrl
sense) for all time.

RunGWVrl: LEMMA
FORALL (t: time) :
FORALL (i: index,oraclel,oracle2: trace):
Hyp (oraclel (0)) & Hyp(oracle2(0)) &
sigSetEquiv (DIA (i, GraphRun(t) (oraclel)),
oraclel,oracle2) =>
equiv (i,Run(t) (oraclel) ,Run(t) (oracle2))

5 Classical Noninterference

Having described our treatment of sequential systems, we are now in a position
to show how our model of information flow relates to the classical notion of non-
interference found in the literature. Noninterference is a useful and well-studied
characterization of information flow for secure systems. Goguen and Meseguer orig-
inally defined noninterference as follows:

One group of users, using a certain set of commands, is noninterfering with another group

of users if what the first group does with those commands has no effect on what the second
group of users can see [3].

Rushby also provides a formalization of noninterference in which he employs the
concept of security domains (in place of users) and associates with those domains
some set of actions (in place of commands). Using this terminology:

A security domain u is noninterfering with domain v if no action performed by u can influ-
ence subsequent outputs seen by u [11].

Rushby goes on to claim that the requisite lack of perception exists if the behavior
of v remains unchanged, even after purging from the system trace of all the actions
performed by u.

Terminology aside, these formalisms are similar in that they both speak of secu-
rity domains (or users) that are selectively empowered with a set of computational
capabilities (commands or actions). Notions such as actions, commands, and users,
while convenient for expressing certain policy statements, are nearly orthogonal to
the essential concept of noninterference found in both formulations: that of not per-
ceiving (or not seeing) some “effect” and the use of equality between some projected
portion of state as a litmus test of that fact.

We view this essential concept of noninterference as an information flow prop-
erty. Furthermore, we require that higher level concepts (such as security domains
and capabilities) be given formal information flow models before noninterference
properties expressed in terms of those concepts can be verified.
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5.1 Domains

The concept of a security domain found in the noninterference literature includes
some notion of inputs, outputs, and state. Our model of system state is assumed to
include all system inputs, outputs, and state variables. We also assume a rigorously
defined interpretation of that state relative to a specific basis set of index values. In
our model of noninterference, domains are defined by functions that maps a system
state into a set of said index values.® Because domains are functions of the state, it
is possible for the set of index values included in the domain to change over time.

5.2 Capabilities

In the noninterference literature, we also find references to the concept of capa-
bilities in the form of commands or actions that may be performed by (or within) a
security domain. Typically a number of capabilities are associated with each security
domain.

In our model of noninterference, there is no explicit connection between do-
mains (which are merely collections of index values) and capabilities. However, the
evolution of system state is driven by the activation of different capabilities over
time. The activation of a specific capability will typically be dependent upon some
condition within the state, and such conditions will often depend upon information
stored within particular domains. Additionally, capabilities may be encoded as pro-
grams that are stored in the system state, again often within specific domains. Thus,
from the dependencies of the conditions that drive them and from the dependencies
of the capabilities themselves, we may find that specific capabilities are implicitly
associated with specific domains.

More important than the association of a specific capability with a particular do-
main, however, is the information flow characterization of each capability of the
system. In our models, we are generally not concerned with the functional behavior
of any capability within the system. The kind of computation performed is irrele-
vant. What is important is the impact that the computation has on information flow
in the system. It is the combined information flow contract of all of the various ca-
pabilities active within the system that will ultimately determine whether or not the
system satisfies a particular noninterference relation.

5.3 Noninterference Example in PVS

Consider a system containing two domains: a Red domain and a Black domain.
Informally, the Red domain is noninterfering with the Black domain if no action
of the Red domain can ever be perceived by the Black domain. We express this

6 Such functions have also been called crawlers [4, 6].
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property as a theorem about the sequential behavior of the system after an arbitrary
number of steps. In particular, we want to show that the value of each element of
the Black domain is the same whether we start from an arbitrary state or from that
arbitrary state modified by some capability of the Red domain.

Our noninterference example extends the MultiCycle theory presented previ-
ously. Our single-step model function, Next, is employed as a generic model of
the application of one or more system capabilities. Run, therefore, models an ar-
bitrary evolution of our system over some amount of time and RunGraph models
the information flow of the overall system during that time. One system capability
is explicitly identified, however, and we call it RedCapability. Associated with that
capability is a graph, RedGraph, that characterizes the information flow behavior of
RedCapability. We assume that the system state can be partitioned into some num-
ber of security domains, including a Red domain (RedDomain) and a Black domain
(BlackDomain).

The type DomainFunction is provided to help identify domain functions, being
defined as a function that maps a state into a set of index values. We define a copy
function and use it to import the FramedGWVr1 theory. We also define a function
that constructs an input oracle trace from a trace and an initial state.

DomainFunction: TYPE = [ state -> sget[index]]
copy(i,j: index) (v: value): value = v
IMPORTING FramedGWVrl [index, state,value, get,

index, state,value, get,
copyl] AS X
Oracle(input: trace, st: state): trace =
(LAMBDA (t: time) :
IF (t = 0) THEN st ELSE input(t) ENDIF)

Predicates are introduced that become obligations on the various functions ap-
pearing in our example. The trueCopies predicate states that the index values stored
in the copy edges of a graph function really are copies of the index value used to
index the graph. The PostCondition predicate says that the precondition is invariant
over the step function. The RedGraphRestriction predicate restricts the defSet of
the RedGraph to be a subset of the RedDomain (ensuring no writes outside of the
bounds of the Red domain by the Red capability). The final predicate, the NonInter-
ferenceProperty, is a property of the system, RunGraph, that says that no member
of the Red domain ever appears in the DIA (interferes set) of any member of the
Black domain.

trueCopies (G: X.GraphFunction): bool =
FORALL (s: state):
FORALL (i: index):
(Copied? (G(s) (1)) =>
(CopyIndex(G(s) (i)) = 1i))
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PostCondition (Hyp: X.PreCondition,
Next: X.StepFunction): bool =
FORALL (s: state):
Hyp(s) => Hyp (Next (s))

RedGraphRestriction
(RedGraph: X.GraphFunction,
RedDomain: DomainFunction) : bool =
FORALL (st: state):
subset? (defSet (RedGraph (st)) ,RedDomain(st))

NonInterferenceProperty
(RedDomain,BlackDomain: DomainFunction): bool =
FORALL (blk,red: index,
in: trace,
st: state):
Hyp(st) &
member (blk,BlackDomain(st)) &
member (red, RedDomain(st)) =>
FORALL (t: time) :
not (member (red,
DIA (blk,GraphRun (t) (Oracle (in,st)))))

Employing these definitions, our example noninterference theorem says that, for
every RedCapability, RedGraph, RedDomain, and BlackDomain, if the RedGraph
contains trueCopies, the RedCapability satisfies the PostCondition, the RedCapabil-
ity satisfies the FrameCondition (half of GWVr2) suggested by the RedGraph under
Hyp, the RedGraph satisfies RedGraphRestriction relative to the RedDomain, and
the system RunGraph satisfies the NonInterferenceProperty with respect to the Red-
Domain and BlackDomain, then the value extracted by get at every member of the
BlackDomain after running ¢ cycles following the execution of the RedCapability
will be the same as the value at that index after running ¢ cycles without execut-
ing the RedCapability. The proof of this theorem ultimately appeals to the fact that
RunGraph characterizes Run.

NonInterferenceTheorem: LEMMA

FORALL
(RedCapability : X.StepFunction,
RedGraph : X.GraphFunction,
RedDomain : DomainFunction,
BlackDomain : DomainFunction

) :
trueCopies (RedGraph) &
PostCondition (Hyp,RedCapability) &
FrameCondition (RedCapability) (Hyp,RedGraph) &
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RedGraphRestriction (RedGraph,RedDomain) &
NonInterferenceProperty (RedDomain, BlackDomain)
=>
FORALL (t: time,
blk: index,
in: trace,
st: state):
Hyp(st) &
member (blk,BlackDomain(st)) =>

get (blk,Run(t) (Oracle (in,RedCapability(st)))) =
get (blk,Run(t) (Oracle (input,st)))

It is worth noting that the proof of this particular theorem is made possible by the
strong functional property provided by the GWVr2 frame condition. In particular,
the frame condition allows us to reduce RedCapability to a copy (no op) when we
examine index values outside of its defSet.

The trueCopies, PostCondition, FrameCondition, and RedGraphRestriction
properties appearing in this theorem are all obligations that can be dispatched
locally. That is, they can be established as properties of RedCapability, RedGraph,
RedDomain, and BlackDomain without knowledge of the rest of the system. The
NonlnterferenceProperty, on the other hand, is a property of the entire system infor-
mation flow graph (RunGraph). It is a system-wide property and it is the true heart
of the noninterference theorem. Goguen and Meseguer claim that noninterference is
useful as a system security policy. We claim that information flow graphs are useful
as a system specification. Our example noninterference theorem demonstrates how
a noninterference policy can be established from a property (NonInterferenceProp-
erty) of a graphical system specification.

5.4 Establishing the Noninterference Property

Our example noninterference theorem follows from a collection of local properties
about functions appearing in the theorem and one global noninterference property
of the system information flow graph. Note too that, while the local properties are
quantified over all states, the noninterference property is quantified over all time.
Establishing the noninterference property may be a nontrivial task and the best
methodology for doing so is likely to depend upon a variety of factors. For many
systems, however, it may be possible to establish the noninterference property using
model checking [2]. Model checking of information flow properties is described in
detail in [15]. Here we merely establish a connection between our formulation of
the noninterference property and a formulation of the property in temporal logic.
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Temporal logic is most conveniently expressed in terms of traces. Here we intro-
duce the type GSTrace which is a trace type parameterized by a step relation that
constrains the sequential steps in the trace.

TraceMU [GState: TYPE]: THEORY
BEGIN

time: TYPE = nat
GSPred: TYPE = [ GState -> bool ]
GSRelation: TYPE = [[GState,GState] -> bool]
GSStep: TYPE = [ GState -> GState |
StepGSRelation (Step: GSStep): TYPE =
{ r: GSRelation |
FORALL (gl,g2: GState):
r(gl,g2) = (g2 = Step(gl)) }
GSTrace (StepRelation: GSRelation) : TYPE =
{ trace: sequence[GState] |

FORALL (t: time):
StepRelation (trace (t),trace(t+1)) }

We define a simple trace property as one that expresses a precondition in the
initial state, Hyp, and a subsequent invariant that must be satisfied at all time, Prop.

simple trace prop (Hyp,Prop: GSPred,
Step?: GSRelation): bool =
(FORALL (trace: GSTrace (Step?)) :
Hyp (trace(0)) =>
(FORALL (n: nat): Prop(trace(n))))

Using Rushby’s formalization of linear temporal logic [12], we can express an
equivalent property in LTL and prove that the two are equivalent. There are many
model checkers available for checking properties expressed in LTL.

IMPORTING LTL[GStatel

simple LTL prop (Hyp,Prop: GSPred,
Step?: GSRelation): bool =
FORALL (s: GSTrace(Step?)):
(s |= (Holds (Hyp) =>
G (Holds (Prop))))
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trace to LTL: LEMMA
FORALL (Hyp,Prop: GSPred,
Step?: GSRelation) :
simple LTL prop (Hyp,Prop, Step?) =>
simple trace prop (Hyp, Prop, Step?)

Alternatively, one could express our simple property using MU calculus. This
formulation is provably equivalent to our LTL formulation. For properties expressed
in the MU calculus, PVS provides built-in model checking capabilities.

simple MU prop (Hyp,Prop: GSPred,
Step: GSStep): bool =
(FORALL (gs: GState):
Hyp (gs) =>
AG (relation (Step) , Prop) (gs))

LTL to MU: LEMMA
FORALL (Hyp,Prop: GSPred,
Step: GSStep,
Step?: StepGSRelation(Step)) :
simple LTL prop (Hyp,Prop, Step?) =
simple MU prop (Hyp, Prop, Step)
END TraceMU

Recall our definition of NonInterferenceProperty.

NonInterferenceProperty
(RedDomain,BlackDomain: DomainFunction) : bool =
FORALL (blk,red: index,
in: trace,
st: state):
Hyp(st) &
member (blk,BlackDomain(st)) &
member (red, RedDomain(st)) =>
FORALL (t: time) :
not (member (red,
DIA (blk,GraphRun (t) (Oracle (in,st)))))

We define a compound type that contains both our system state and our graph
state. Using this we define a relation, StepRelation, that constrains our trace to re-
flect the evolution of our system state machine and system information flow graph.
A predicate, GSHyp0, is defined to reflect our preconditions on the initial system
state and the initial graph state.
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GState: TYPE = [# state: state, graph: graph #]
gstrace: TYPE = [ nat -> GState ]

GraphStepRelation(sl: state,gl,g2 :graph): bool H
(g2 = (Graph(sl) o gl));

StateStepRelation(sl,s2: state): bool =
FORALL (i:index) :
not (member (i, InputSet)) =>
get (i,s2) = get(i,Next(sl))

StepRelation(gsl,gs2: GState): bool =
GraphStepRelation
(state(gsl) ,graph(gsl) ,graph(gs2)) &
StateStepRelation (state(gsl),h state(gs2))

strace(stl: gstrace): trace =
(LAMBDA (t: time): state(stl(t)))
StepTrace: TYPE = {gs: gstrace |
FORALL (t: time): StepRelation(gs(t),gs(t+1l))

GSHypO (gs: GState): bool =
Hyp (state(gs)) & (graph(gs) = ID)

Using these definitions, we can express our noninterference property in terms of
a precondition, noninterference—hyp, and an invariant, noninterference—prop. Tra-
ceNonlnterferenceProperty combines these two properties into a single predicate.
The trace formulation of noninterference is provably equivalent to our original non-
interference property.

noninterference hyp (RedDomain: DomainFunction,
BlackDomain:DomainFunction,
red,blk: index)
(gs: GState): bool =
GSHypO (gs) &
member (blk,BlackDomain (state(gs))) &
member (red, RedDomain (state (gs)))

noninterference prop(red,blk: index)
(gs: GState): bool =
not (member (red, DIA (blk,graph(gs))))
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TraceNonInterferenceProperty
(RedDomain,BlackDomain: DomainFunction): bool =
FORALL (blk,red: index, gs: StepTrace):
noninterference hyp
(RedDomain,BlackDomain, red, blk) (gs(0)) =>
FORALL (t: time):
noninterference prop (red,blk) (gs(t))

TraceNonInterference is NonInterference: LEMMA
FORALL (Red: DomainFunction,
Black: DomainFunction,
TraceNonInterferenceProperty (Red,Black) =
NonInterferenceProperty (Red,Black)

The TraceNonlnterferenceProperty, however, maps easily into the
simple_trace_prop that we developed in the TraceMU theory. This proof com-
pletes a link that allows our original NonlnterferenceProperty to be expressed as
TraceNonInterferenceProperty and then as simple_trace_prop and then as either
simple_LTL _prop or simple_MU_prop, at which point it may avail itself to model
checking.

IMPORTING TraceMU [GState]

TraceNonInterference as simple trace prop: LEMMA
FORALL (RedD,Black: DomainFunction) :
TraceNonInterferenceProperty (RedD,Black) =
FORALL (blk,red: index) :
simple trace prop (

noninterference hyp(RedD,Black, red, blk),
noninterference prop(red,blk),
StepRelation)

6 Conclusion

A good mathematical specification is one that can be verified against a formal
implementation or validated against an actual system, can be used in the formal
verification of properties of larger systems, and accurately expresses and predicts
behavior in the domain of interest.

We have demonstrated that models of computing systems can be informally
validated and formally verified to satisfy our formal model of communication. Both
the Green Hills INTEGRITY-178B and the AAMP7G verification efforts involved
informal review of formal models against actual system implementations [10, 16].
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The AAMP7G effort also employed commuting proof between the implementa-
tion model and an abstract representation as well as a proof that abstract model
implemented the desired interpartition communication policy, expressed as an in-
formation flow property.

Our models of information flow have been used compositionally to verify in-
teresting security properties of more abstract computing systems. We verified the
security properties of a simple firewall implemented on a partitioned operating
system by appealing to the information flow properties of the OS and the indi-
vidual partitions. The hierarchical approach used in our analysis of the Green Hills
INTEGRITY-178B operating system derived information flow properties of systems
by composing information flow properties of their subsystems. Finally, an analysis
of an abstract model of the Turnstile system verified several key information flow
properties of the system and confirmed a known information back-channel resulting
from “assured delivery” requirements [15].

We have also established that our model of information flow accurately expresses
and predicts system behavior in the domain of interest. Recall that our concern is
how information may or may not be communicated within computing systems. Our
techniques have been shown to address three specific concerns from the secure com-
puting domain [7]:

e Exfiltration. A computational principal is able to read information in violation of
the system security policy, a policy such as a Bell-LaPadula “read-up” policy.

e Infiltration. A computational principal is able to write information in violation of
the system security policy, a policy such as a Bell-LaPadula “write-down” policy.

e Mediation. A computational principal is able to move information in the system,
contrary to a policy which does not allow that principal to perform that action, a
policy such as a “Chinese wall” separation of duties policy.

Having demonstrated that our models accurately express and predict behavior in the
domain of information assurance, can be used in the verification of larger systems,
and can be validated against actual systems, we feel that we have met our objective
of developing a good mathematical framework for modeling and reasoning about
information security specifications.
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Modeling and Security Analysis of a Commercial
Real-Time Operating System Kernel

Raymond J. Richards

1 Introduction

INTEGRITY-178B is a real-time operating system (RTOS) developed by Green
Hills Software [4]. Real-time operation implies that the operating system kernel will
schedule tasks as described by a predetermined schedule. System designers depend
on the kernel to reliably and faithfully schedule tasks according to the schedule.
This is to ensure that the tasks complete their necessary computations before sys-
tem imposed deadlines.

The initial market for INTEGRITY-178B was safety-critical systems, such as
avionics. The FAA accepts the use of DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification [10], as a means of certifying software
in avionics. DO-178B defines five levels of software to describe the impact to air-
craft safety should there be a failure. The criticality levels are denoted “A” through
“E,” “A” is the most critical, and “E” is the least critical.

INTEGRITY-178B is able to host multiple applications of mixed criticality
levels. It provides fault containment, preventing faults from cascading to other
applications. That is to say, a fault in one application is never noticeable in another
application. Recall that this is in a real-time operational environment, meaning that
the failure of an application cannot cause any other application to miss a deadline.
To achieve this level of fault containment, it is necessary for the kernel to strictly
partition not only the time allocated to each application, but also the system memory
between the various applications. This stringent time and space partitioning is often
referred to as “hard-partitioning.”

The high-assurance realms of safety-critical systems and security-critical
systems overlap in many interesting ways. In particular, the use of hard partitioning
is important in building high-assurance systems in both realms [11]. Mechanisms
that provide hard partitioning are often referred to as “separation kernels.” In the
safety critical realm, separation kernels can integrate functionality of various levels
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of criticality on a single computing platform. Separation provides fault isolation;
a fault in a less critical application cannot impact the execution of a more critical
function. In the security-critical realm, separation kernels can ensure that there is
no unauthorized flow of information between applications. This means that an ap-
plication cannot inadvertently or maliciously signal another application with which
it is not authorized to communicate. Since separation kernels are useful for both
safety-critical and security-critical systems, it is reasonable to take a separation
kernel that has been certified in one realm and attempt certification in the other
realm.

Information assurance products can be certified in accordance with the Common
Criteria for Information Technology Security Evaluation [2] or “Common Criteria”
for short. In USA, the National Information Assurance Partnership (NIAP) performs
Common Criteria evaluations. The Common Criteria defines seven evaluation as-
surance levels (EALs). The levels are labeled one through seven; EAL 7 is the most
stringent level. A study has compared the certification requirements of DO-178B
Level A and Common Criteria EAL 7 [1]. This study concluded that a product that
is used in a DO-178B certified system could achieve Common Criteria EAL 7 by
completing a few missing requirements. The most significant missing requirements
are those that pertain to formal analysis.

INTEGRITY-178B was designed to be, and has been used in, systems that have
been certified to DO-178B Level A; therefore, it was judged to be a good candi-
date to be the first separation kernel to obtain a Common Criteria certification. The
INTEGRITY-178B analysis effort supported an EAL 6 Augmented (EAL6+4-) eval-
uation. EAL64 means that some of the evaluation requirements were more stringent
than prescribed by EALG6.

The Common Criteria defines three levels of rigor in analysis. These three
levels are informal, semiformal, and formal. In this context, formal means a pre-
cise mathematical treatment with machine-checked proofs. Informal is a natural
language-based justification of the security properties. Semiformal is something in
between. For the INTEGRITY-178B kernel, this means a mathematical treatment,
where some of the proofs are not machine checked.

The INTEGRITY-178B evaluation requirements for EAL 5 and above specify
five elements that are either formal or semiformal. These five elements are the
Security Policy Model, the Functional Specification, the High-Level Design, the
Low-Level Design, and the Representation Correspondence [9]. The level of rigor
that was applied to INTEGRITY-178B is as follows:

e Security Policy Model: A formal specification of the relevant security properties
of the system.

e Functional Specification: A formal representation of the functional interfaces of
the system.

e High-Level Design: A semiformal representation of the system. This representa-
tion may be somewhat abstract.

e Low-Level Design: A semiformal, but detailed representation of the system.

e Representation Correspondence: This element demonstrates the correspondence
between pairs of the other elements. The Representation Correspondence is
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formal when it shows the correspondence between two formal elements; it is
semiformal otherwise. The Representation Correspondence shows that:

The functional specification implements the security policy model.
— The high-level design implements the functional specification.
The low-level design implements the high-level design.

The Common Criteria explicitly states that one entity may fulfill multiple
requirements. For example, a single design specification may fulfill the need for
both a high-level and a low-level design; in this case, the correspondence between
these two elements is trivial.

INTEGRITY-178B runs on a variety of microprocessors and motherboards.
A well-defined hardware abstraction layer with well-defined interfaces facili-
tates this portability. The formal (and semiformal) analysis was constrained to
the hardware-independent portions of the INTEGRIY-178B kernel. A methodi-
cal informal analysis was performed on the software in the hardware abstraction
layer. This approach allows the formal (and semiformal) analysis to be used as
certification evidence on multiple hardware platforms.

This chapter discusses details of the formal analysis approach taken for the
INTEGRITY-178B kernel, including:

o The generalization of the GWV theorem to capture the meaning of separation in
a dynamic system.
e A discussion on how the system was modeled including:

— System state
— Behavior
— Information flow

e The proof architecture used to demonstrate correspondence.
e The informal analysis of the hardware abstraction layer.

2 Separation Theorem

Existing formal specifications of separation properties were not expressive enough
to state anything meaningful about INTEGRITY-178B. The GWV theorem has been
shown to hold for the AAMP7G’s hardware-based separation kernel [12]. However,
the AAMP7G’s kernel is very static. Its execution schedule is set a priori; it is impos-
sible for user-level software to have an impact on the state of the kernel’s scheduler.
The original GWV theorem is only applicable to such strict static schedulers.

INTEGRITY-178B’s scheduling model is much more dynamic. A more general
GWYV theorem was derived that captures the appropriate system level properties.
This theorem is known as GWVr2 [5].

For a GWVr2 proof, the system needs to be modeled as a state transition system
(Fig. 1). That is, it receives as inputs the current state of the system, as well as any
external inputs. It produces a new system state, as well as any external outputs.
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Fig. 1 State transition
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State’
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Fig. 2 Modified system model

System execution is a series of these state transitions. As a convenience, we
will assume that the external inputs and outputs are contained in the system state
structure. This state transition is expressed in the language of the ACL2 theorem
prover [7] as:

(let state’ (system state))

The system state, inputs, and outputs can be decomposed into atomic elements.
Each of these elements is uniquely identifiable. Let the number of state elements
plus the number of output elements be denoted by the symbol S. The system can
be represented by S copies of the original system, each producing one element of
the next state or output. Each of these S systems can be fed with only the elements
of the current state and inputs that are necessary for it to compute its result. A system
that takes a current state and input elements, maps the appropriate inputs to .S copies
of the system, and then maps the S resulting elements into the next state and external
outputs is denoted as system™ (Fig. 2).

The ACL2 notation for system™ is a function that has two inputs. One input is
a structure containing current state and external inputs. The other is a graph that
specifies how the current state and inputs elements are mapped to the S subsystems.
It produces the next system state, expressed in ACL2 as

(let state (system™ graph state))
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If it can be proven that the system and system™ produce identical results for all
inputs of interest, it implies that the graph used by system™* completely captures the
information flow of the system. This is the GWVr2 theorem.

(equal
(system state)
(system™ graph state))

A trivial graph that satisfies this theorem simply gives each subsystem all inputs
and state elements. Conversely, there is a minimal graph, for which removing any
element from the input of any subsystem causes the theorem to fail. Elements can
be added to the minimal graph, without impacting the correctness of the theorem.
This means that the input for one of the subsystems defines all of the data necessary
for computing one element of the next state or output.

The GWVr2 Theorem is the Common Criteria Security Policy Model for
INTGERITY-178B.

3 Modeling System State

To be consistent with the goal that the formal analysis be platform independent, the
model of system state is that of nested abstract data structures. Elements within a
data structure can either be a scalar or a nested data structure. A data structure that
contains other data structures may be a record of heterogeneous data items or an
array of homogenous data items. All elements in a data structure have names that
uniquely identify them and distinguish them from their peer elements. This is analo-
gous to a Unix file system containing directories and files. The directories represent
nested data structures and the files represent scalar data elements.

In such a file system, one can identify any directory or file resident within a
particular directory by specifying a path. The path contains the name of every sub-
directory that must be traversed in order to reach the item of interest. Similarly, in
the model of state, one can reach any piece of state that is resident in a data structure
by specifying a path. Arrays are represented in this model by using the array indices
as a specifier in the path.

Paths are considered scalar data items; they can be stored as part of state. This is
how C language pointers are modeled. Paths can be references to state locations and
can be dereferenced. Dereferencing a path produces the value stored at that location
in state.

An example data structure is shown in Fig. 3. Four scalar values are stored in
nested data structures. The paths to these for values and the data stored in this struc-
ture are shown in Table 1.

The ACL2 representation of a path is simply a list of identifiers. The head of
a path is the outermost data structure. The tail of a path represents a path that is
relative to the head. In this way, paths are analogous to a directory path in a Unix
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Fig. 3 Example state

structure
Struct1
Valuet
A String
Value2
123
Struct2
Value3
7.5
Value4
State.Struct1.Value2
Table 1 Path examples Path Value Data type
State.Struct1.Valuel “A String” String
State.Struct].Value2 123 Integer
State.Struct2.Value3 7.5 Float

State.Struct2.Value4 State.Struct1.Value2 Path

file system. Absolute paths are relative to the root of the file system; relative paths
are referenced from the current location.

Operators are defined to update and query the state. Both of these operators use
a path to specify which element of the state they are affecting. The query operator
“GP)” or Get from Path, returns the value stored at the specified location. Its im-
plementation is a recursive function that fetches the data specified by the identifier
at the head of the path and recursively calls itself using the tail of the path and the
fetched bit of state as the recursive arguments. The signature of the GP operator is:

(GP path st)

The update operator “SP,” or Set Path, returns a new state, where the element
specified by the given path is replaced with a new value. Its implementation is
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also recursive. SP replaces the element specified by the head of the path with the
value returned by its recursive call. The arguments to this recursive call are the tail
of the given path and the value found in the state at the location specified by the
head of the path. The signature of the SP operator is:

(SP path wvalue st)

4 Modeling Kernel Behavior

The hardware-independent portion of the INTEGRITY-178B kernel is implemented
in C code and formally modeled in ACL2. The Common Criteria explicitly forbids
the low-level design specification and the implementation representation (source
code) to be one and the same. Furthermore, establishing correspondence between
the low-level design specification and the implementation representation is typically
a manual, labor-intensive endeavor. This process is sometimes referred to as a “code-
to-spec” review.

One of the goals in modeling the system is to capture enough of the implementa-
tion details so that a clear and compelling argument can be made that the behavior
of the system is captured accurately. In an effort to facilitate that argument, it is use-
ful if the low-level design specification has a one-to-one correspondence with the
source code. That is to say, for every action in the source code there is a correspond-
ing action in the model, and for every action in the model there is a corresponding
action in the source code. In order to make the correspondences clear, it is useful to
make the model greatly resemble the source code.

Two areas where it is not possible to make the ACL2 model closely resemble the
C code implementation are in modeling loop constructs, as well as certain types of
recursion. Since the formal language (ACL2) used to model the system is a func-
tional language, and the INTEGRITTY-178B implementation Language (C) is an
imperative language, it is not always possible to directly represent constructs in the
system’s implementation in the model. For instance, ACL2 does not have looping
constructs. Loops are instead modeled by recursive functions.

ACL2 requires a proof of termination before admitting any function. This implies
that a certain style of recursion, known as reflexive recursion, cannot be directly
modeled [6]. Reflexive recursion occurs when two successive recursive calls are
made, the latter one taking as an argument something calculated by the first. The
following is an example of a reflexive recursive function:

int reflex (int 1i){
int j;
<function body>
j=reflex(reflex(i-1));
<function body>
return j;
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In this example, the outer call to the function ref1lex depends upon the results
of the inner call. This results in the proof of termination depending upon the termina-
tion of the function. When this occurs in the INTEGRITY-178B kernel, it is modeled
by unrolling the recursion. The recursion encountered in INTEGRITY-178B is con-
trolled by a simple counting variable; when that variable reaches a particular value,
the recursion is terminated.

4.1 Reader Macro

A set of ACL2 macros is used to allow the functional model to have an impera-
tive look and feel. These macros are known collectively has the reader macro. The
reader macro expands statements into a functional form. The reader macro is a form
that begins with the symbol “%.” This allows a syntax that closely resembles C to
expand into native ACL2. The native ACL2 uses the state operators “SP” and “GP”
to interact with the system state. The following types of statements are handled by
the reader macro:

e Global variable access

e Assignment

¢ Function invocation

e Conditional early exit from a function

4.1.1 Global Variable Access

In the functional language model, all state information, except for local variables,
is stored in the state structure that is passed throughout the model. Local, or stack,
variables are modeled by local variables in ACL2, as long as there is no address-
based accessing of the variable. A local variable that has its address passed to a
subordinate function must be modeled as a state element.

The C language’s use of variable identifiers does not distinguish between global
and local variables. Since global variables are elements in the state structure, syntax
was adopted to indicate when an identifier is an access to a global variable. Preced-
ing an identifier with the symbol “@” indicates that the identifier should be treated
as a path to a global variable. Preceding any path, including that of a local variable,
with the symbol “*” queries the value stored at that location pointed to by the path.

4.1.2 Assignment
Assignment statement syntax depends on the impact of the assignment. That is,

assignments to local variables have a different syntax than assignments that change
the persistent state.
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Assignment statements can be generalized as an lvalue, an assignment operator,
and an rvalue.

lvalue assign op rvalue

The lvalue denotes where the assigned value is stored. This can be a local vari-
able or a location in state. Local variables are modeled by local ACL2 variables.
This means when the scope in which the local variable has been declared is exited,
its value is lost. The syntax for local variable assignment uses the variable identifier
as the lvalue, followed by an equal sign “=,” followed by the rvalue.

lvalue = rvalue

Assignments to local variables are transformed into let bindings. The body of the
let binding is the scope where that assignment is valid.

In assignment statements that change state, the lvalue must evaluate to a path.
Rvalues are evaluated and the results are stored in the location indicated by the
lvalue. Assignments to state are transformed into state updates. The lvalue of an
assignment that impacts the state must evaluate to a path into the state. The syntax
for such statements is as follows:

(path) @= rvalue
global var @= rvalue

4.1.3 Functions

C language functions may or may not return a value. When modeling in ACL2,
functions need to at least return the state that is a result of their invocation. The
reader macro transforms function invocations that appear to not return a value into a
function call that returns the new state, catching it in the appropriate variable. Model
functions are declared using a form called “defmodel,” which is similar to the ACL2
defun form.

Functions that return a value are modeled using a multivalued return. That is, it
returns a list of items. The return list has a length of two; the second item is always
the state returned from the function.

4.1.4 Conditional Early Exit

It is a common coding practice for functions to perform checks on the validity of
their inputs. If the input checks do not pass satisfactorily, the function is exited,
often returning an error code.

if (conditional){
error handling;
return;

ACL2 functions only exit at the end of the function body. The reader macro rec-
ognizes conditional early exits, translating them into an if statement whose then
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clause includes whatever error handling is needed. The else clause contains the re-
mainder of the function. The syntax for conditional early exist is:

(ifx (conditional)
error handling)

4.2 Model Example

The following example will be used to illustrate the various parts of this analysis.
The example is a function that operates on a circular, doubly linked list. This func-
tion removes one element from the list, maintaining a well-formed linked list. This
function is passed two arguments. The first is a pointer to a structure that contains a
pointer to the head of the list. The second is a pointer to the element that is removed
from the list. It is assumed that the element pointed to by the second argument is a
member of the list pointed to by the first argument. How this assumption is captured
in the analysis will be discussed later in this chapter. The example’s C language
implementation is:

void RemoveFromList (LIST *TheList, ELEMENT xElement) {
ELEMENT *NextInList, *PrevInList;

NextInList = Element -> next;

1f (NULL == NextInList)
return;

/x Update list x/

if (Element == NextInList) {
/x only element in the list =/
ThelList->First = NULL;

} else {
/+ not only element in the list x/
if (TheList->First == Element) {
/+* Element is first in list =/
ThelList->First) = NextInList;

PrevInList = Element-s>prev;
PrevInList->next = NextInList;
NextInList->prev = PrevInList;

/+ clear this element’s links x/
Element->next NULL;
Element->prev = NULL;
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The formal model for this function is defined as follows:

defmodel RemoveFromList (TheList Element st)

[
(%

(NextInList = (x Element -> next))

(ifx (NULLP NextInList)
st)

(if (equal Element NextInList)
(

o

;; only element in the list
((TheList -»> First) @= (NULL)))

else

o0 ~.

(
;; not only element in the list
(if (equal (* ThelList -> First) Element)

;; Element is first in list
(%
(

(TheList -> First) @= NextInList))

;; else
st)

(PrevInList = (x Element -> prev))
((PrevInList -> next) @= NextInList)
((NextInList -> prev) @= PrevInlList)))

clear this element’s links

((Element -> next) @= (NULL))
((Element -> prev) @= (NULL))))

4.3 Model Syntax Summary

The following table describes how various C language constructs are modeled
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C ACL2 Lisp/ACL2 Notes
Variable reference
X X Value of local variable x
*@ x) Value of global variable x
oy (*xp) Value pointed to by local variable xp
P * (*@ xp)) Value pointed to by global variable x,

&x (@ x) Address of global y variable
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Variable assignment

X=..; % .. (x=..).)
(%.(x@=...).)
(% .. (xp) @=...).)

Xp = .. (% .. (F@xy) @=...).)

Simple structure references

Xy (@x)lly

Xp_ >y (* Xp_ > Y)
CC@xp)—>y

X[yl x(@xlyD

x,ly] CxplyD

CFe@x)lyD

&x.y (& (@x)|.|ly

&x,— >y (& x,—>y)
(& (*@ xp)— >y)

&x[y] &@x)[y]

gxfy] &xply D
(& (@) [y ]

Complex structure references
Xy ¢ @xlly)

x>y (* (xp= > )

" F@x)—>y)

*x[yl @y

R.J. Richards

Assign value of local variable x

Assign value of global variable x

Assign value pointed to by local
variable X,

Assign value pointed to by global
variable X,

Value of field y of the structure
instance at global variable x

Value of field y of the structure
pointed to by local variable x,,

Value of field y of the structure
pointed to by global variable x,

Value of element at index y in the
array instance at global variable x

Value of element at index y of the
array to which local variable x,
points

Value of element at index y of the
array to which global variable x,
points

Address of field y of the structure
instance at global variable x

Address of field y of the structure
pointed to by local variable x,,

Address of field y of the structure
pointed to by global variable x,,

Address of element at index y in the
array instance at global variable x

Address of element at index y of the
array to which local variable x;,
points

Address of element at index y of the
array to which global variable x,
points

Value pointed to by field y of the
structure instance at global
variable x

Value pointed to by field y of the
structure pointed to by local
variable X,

Value pointed to by field y of the
structure pointed to by global
variable X,

Value pointed to by element at index y
in the array instance at local
variable x
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* Xplyl

" Cxp [y )

CECex)ly

Simple structure assignments

(% ..

Xy =...; (%
Xp—>y=..,; (%
Xlyl=..; (% ..
Xplyl = ...

(% ..

(% ..

~@xlly e=...

L ((xp—>y) @= ...

Complex structure assignments

(% ..

Xy=...; (%
*Rp— >y =... (%
Xyl =... (% ..
*Xplyl--

(% ..

Arithmetic operators

(% ..

(@ lly)e=...).)

S xp—>y))@=...).)

X+y; (+xy)

X-y; (=xy)

x*y; (ACL2::* x y)
x1y; xy)

Logical operators

X == (equal x y)
x!=y (not (equal x y))
X<y (<xy)

X>y (>xy)

X <=y (<=xYy)

xp == NULL (NULLP xp)

Xp

((@exly)h @e=.

)-)

)-)

(F@xp)—>y)@=...).)
L))
(xplyD@=...).)

(F@xp)lyhe=...).)

(*E@xyne=..).)

(xplyD)@=...).)

(Cexpiyh)e=...).)

Value pointed to by element at index y of
the array to which local variable xp
points

Value pointed to by element at index y of
the array to which global variable x,,
points

Assign value of field y of the structure
instance at global variable x

Assign value of field y of the structure
pointed to by local variable x;

Assign value of field y of the structure
pointed to by global variable x,

Assign value of element at index y in the
array instance at global variable x

Assign value of element at index y of the
array to which local variable x;, points

Assign value of element at index y of the
array to which global variable x,
points

Assign value pointed to by field y of the
structure instance at global variable x

Assign value pointed to by field y of the
structure pointed to by local variable
Xp

((*(*@ xp)— > y)) @=...)..) Assign value pointed to by field y of the

structure pointed to by global variable
Xp

Assign value pointed to by element at
index y in the array instance at global
variable x

Assign value pointed to by element at
index y of the array to which local
variable X, points

Assign value pointed to by element at
index y of the array to which global
variable X, points

Addition
Subtraction
Multiplication
Division

Equal

Not-equal (Negation)
Less-than
Greater-than
Less-than or equal-to
Null pointer test
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xp == 0
Xp

Conditional control structures
if (x) y; else z;

if () y;

{3

If (x) {Agume; Bstmes } €lse { Coues }
x?y:z

Function Declarations

type foo ...

... foo (intx) ...

... foo (int *x) ...

return;

return x;

4.4 Kernel Boundaries

(NNULL x,,)

(ifxyz)

(if x y st)

(%...)

(lf X (% AstmtBstml' ..
(% Cstm) -~ ))
(ifxyz)

(defun foo ...

... foo (x st)

... foo (xp st)

(return st)

(return x)

R.J. Richards

Non-Null pointer test

If expression x is true do 'y
otherwise do z.

If expression x is true do 'y
otherwise to nothing. State (st)
as the else component is
analogous to do-nothing or the
absence of as else-component.

Groups a series of sequential
statements into a single global
structure or block

) If example with a code block.

C alternation

Return type not specified in
function signature

No parameter type declarations
State (st) parameter added for
access to global state

No parameter type declarations

State (st) parameter added for
access to global state

Function return when function
application only changes state

Function returns a single value x
when function application does
not change state

There are several important boundaries to the kernel model that could not be
modeled as a straightforward translation of the system source code. These bound-
aries include asynchronous interactions with the world outside of the kernel, includ-
ing interrupt processing and execution of application code. Another boundary is the
interaction with the portion of the kernel that is specific to the hardware platform.

4.4.1 Breaking the Kernel Loop

The GWVr2 theorem requires that steady-state operation be defined as a step that
can be performed repeatedly. Since the steady-state execution of most operating
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systems is implemented with an infinite loop, it is a natural inclination to have one
step in the model represents a single iteration of this loop. We will refer to this as
the scheduling loop.

Great care needs to be taken to determine where this loop is broken. The cut point
of the loop must represent a well-defined state in the execution. This is the point
where the next entity to execute can be identified from the state, and the previous
entity has been removed from execution and its state saved. This is the point where
all assumptions about the state hold. These assumptions include well formedness
and necessary constraints on the data. We refer to the state between two steps as a
secure state. It is assumed that the system reaches a secure initial state as a result
of the system initialization. Evidence justifying this assumption has been generated
and is beyond the scope of this chapter. The generalization of the GWV theorem
to the GWVr2 theorem does allow for the execution of a previous system step to
influence which is the next entity to execute. The successive execution of steps is
shown in Fig. 4.

The INTEGRITY-178B scheduling loop picks which thread of the current
partition is to execute next and does not necessarily represent a context switch or a
change in the logical partition.

4.4.2 Hardware-Dependent Layer

As mentioned earlier, only the hardware-independent portion of the kernel is
formally modeled. The hardware-dependent portion of the kernel is present in the
formal model only in an abstract form. The functional interface to this portion
of the kernel is modeled by ACL2 encapsulations. In an encapsulation, the func-
tion signatures are defined, as well as key properties, but no implementations are
modeled. The properties given in these encapsulations are the properties necessary
to prove either termination of a higher level model function or the GWVr2 Theorem.

Secure States

Secure Initial State I
[ Execute |

Step

Fig. 4 Dividing Kernel execution into discrete steps
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Justification of these properties in the actual implementation occurred as part of the
rigorous manual analysis of that code. This analysis is discussed later in this chapter.

4.4.3 Interrupt Processing

Asynchronous events typically interact with INTEGRITY-178B via the interrupt
mechanism. Interrupt processing is implemented as functions that are invoked from
the platform-specific interrupt handling software. We model all such interrupt pro-
cessing at the level of the scheduling loop. That is, before the step concludes, it
processes all of the interrupts that occurred during execution of the step.

A logical mechanism known as an oracle is used to determine the number and
type of interrupts that have arrived. An oracle is modeled by an unspecified function
that produces the information that is needed. Properties may be stated about the
oracle function, which may be as simple as the type of information it produces. The
oracle function takes as an input an undefined piece of the system state. This gives
us a convenient way to reason about an arbitrary number of arbitrary events.

Interrupts are modeled by a loop whose number of iterations is controlled by one
oracle; in the body of the loop, a second oracle determines what type of interrupt
has arrived.

4.4.4 Application Software Execution

The purpose of a separation kernel is to orchestrate the execution of multiple
partitions. From time to time the kernel relinquishes control of the hardware to
application software. However, the actions of the application cannot be modeled,
since they are unknown. What is modeled are the application software’s interactions
with the kernel. These interactions come in the form of system calls. We model an
arbitrary number of arbitrary system calls in the same manner in which we model
interrupts. One oracle determines how many systems calls are going to be processed,
and a second oracle determines the type of each system call.

5 Modeling Information Flow

Information flows are modeled by defining for a given element in system state;
what are the state elements that can influence its next value. This can be thought
of as a graph with vertices representing state elements and edges representing
dependencies. For each function of the model, a new function is defined that
calculates its graph, given its set of inputs, including the input state. The naming
convention for these graph-computing functions (often referred to as graph func-
tions) is to append “-graph” to the model function’s name. The graph function’s
parameters are identical to that of the model function. The graph function returns
a data structure that contains all of the graph edges for each state element that is
updated by the model function.
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5.1 Crawlers

In order to define a graph, it is necessary to be able to articulate what elements in
state belong to which data structures. That is to say, for an operation upon a data
structure, we need to be able to create sets of elements that may be updated by the
operation and sets of elements whose values are used to create the new values. To
do this, we have created a construct known as a crawler. Crawlers are used to create
collections of state elements. Each member of the collection is identified by its path.
Once a collection is created, it can be transformed into a collection of subelements
by appending the subelement identifier to each path. We call the action of appending
the same identifier to each path decorating the paths in the collection.

Let us consider the doubly linked circular list example. Each list element contains
a next and previous pointer in order to connect it to the list. A crawler over this
data structure might create a collection containing all elements in the list. That is, it
creates a set of paths, one representing each element in the list. A decorate operation
might refine these paths to refer to the next and previous fields of each element in
the list.

5.2 Graphs

A graph describes, for a set of state elements that may have their value changed by
an operation, what are the sources of information that are used in calculating the
new values. Using our circular linked list example, let us consider a graph for either
a sort or remove-element operation. In each case, the state elements that may be
changed are the previous and next fields of all of the elements of the list. The new
values that may be stored in these locations are the values that are stored in these
same locations before the operation. Therefore, the graph states that the new values
of the previous and next fields in the list depend upon what is currently stored in the
previous and next fields in the list. More precisely, the graph contains an entry for
each previous and next pointer as a location that may be updated. Each entry defines
a dependency on the set of previous and next pointers as the source of information
for the updated values.

Several functions and macros are defined to assist in developing graph functions.
Chief among these is “defgraph,” which takes four arguments. The first argument
is the name of the function whose graph is being defined. The second argument
is the list of names of the function’s parameters. Any parameter that is a pass-by-
value structure has its name in parentheses. The third argument is the list of variable
names whose values are returned by this function. Again, pass-by-value structures
have their names in parentheses. The last argument is the body of the graph defining
function.

The functions “du,” “du*,” and “merg-u2” are used to create dependencies or use
lists. The functions “su” and “su*” are used to associate a dependency set with an
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element that has its value defined by the function. The function “mvg” returns the
graph and associates variables with returned values.
The graph for the RemoveFromList example function is defined as follows:

(defgraph RemoveFromList (:ThelList :Element (:st))
((:st))
(

o\°

;; determine the nodes in the list
(list-nodes = (crawl-list ThelList st))

;; define the state elements whose values
;; might change
(list-ass =
‘' (,@(decorate-list list-nodes
(ElementStruct Kstr))
,@(decorate-1list ThelList
(ListStruct Kstr))))

;; create the dependencies set for the things
;7 that might change
(u2 = (merg-u2 :ThelList :Element

(dux :st list-ass)))

;; define the dependencies for things that
;7 might change
(g = (su*x :st list-ass u2 g))

(mvg (:st) st)))

5.3 Graph Composition

In the formal analysis, graphs are created for each function in the kernel. A graph
for a function that calls other functions must be no smaller than the graphs of the
subordinate functions. That is, the dependencies defined by any graph of a called
function must exist in the graph of the calling function.

In the circular linked list example, consider an Add operation. The state elements
that may be updated are not only the previous and next fields of the existing list, but
also the previous and next fields of the element being added to the list. The sources
of new values for these elements are not only the previous and next pointers of the
existing list, but also the parameter to the function pointing to the new element.

The graph of any function calling the Add operation must relate the previous
and next fields of the current list members and the previous and next fields of any
elements that might be added to the list to the sources of possible new values. The



Modeling and Security Analysis of a Commercial Real-Time Operating System Kernel 319

sources of possible new values are, of course, the previous and next fields of the
current members of the list and the locations that could supply the new elements to
the Add operation.

6 Proof of Separation

In order to prove the GWVr2 theorem, it is useful to first prove two lemmas with re-
spect to the function being analyzed. These lemmas are referred to as the Workhorse
Lemma and the ClearP Lemma. We will discuss these lemmas with respect to
the circular linked list example. Before we discuss these lemmas, we will define
functions needed to support them.

e RemoveFromList-Hyp. For every model function “foo” a function “foo-hyp” is
defined. This function states the hypothesis that is needed in order to have the
model function work appropriately. The hypothesis function takes the same ar-
guments as the model function. Recall that for the RemoveFromList function, it
was assumed that the element given to the function is a member of the list; the
RemoveFromList-Hyp function is where that assumption is stated.

e Keys. The Key function is passed a dependency graph and returns the set of state
elements that may be updated, according to the graph.

e DIA. The direct interaction allowed (DIA) function takes a state element and a
graph. It returns the set of state elements that the passed-in element has depen-
dencies on, as defined by the graph.

o CP-Set-Equal. CP-Set-Equal is a predicate that takes a set of state elements and
two states. It evaluates to True if the two states have the same value for each
member of the set. It does not say anything about portions of the state that are
not in the set. Therefore, the two states may be different in the parts of the state
not defined in the set.

e CLRP-Set. CLRP-Set takes a set of state elements and a state. It returns a state
that is a copy of the passed-in state, but the elements of the state specified in
the set have been cleared. In this case, cleared means that their values have been
replaced with nil.

6.1 Workhorse Lemma

The Workhorse Lemma states a relationship between the results of two invocations
of a function. These two invocations operate on different states, but on the same
parameters. For the circular linked list example, the two states satisfy the following
constraints:

e Both states satisfy the RemoveFromList-Hyp assumptions. This means we are
only considering invocations of this function, where the element to be removed
is a member of the list.

e The two states have the same values for all elements that are in one of the depen-
dency sets defined by the RemoveFromList graph.
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These constrains are specified in ACL2 as:

(AND
(RemoveFromList-Hyp List Element St1)
(RemoveFromList-Hyp List Element St2)
(Member Path (Keys
(RemoveFromList-Graph List Element Stl)))
(CP-Set-Equal
(DIA Path
(RemoveFromList-Graph List Element Stl))
Stl St2))

This lemma concludes that having these criteria satisfied implies that the two
states resulting from the two RemoveFromList invocations have the same values
for all state elements that are defined by the RemoveFromList-Graph function. The
ACL2 statement of this lemma is:

(DEFTHM RemoveFromList-Workhorse
(IMPLIES
(AND
(RemoveFromList-Hyp List Element St1l)
(RemoveFromList-Hyp List Element St2)
(Member Path
(Keys (RemoveFromList-Graph List

Element
St1)))
(CP-Set-Equal
(DIA Path
(RemoveFromList-Graph List
Element
St1))
St1l
St2))
(IFF (EQUAL

(GP Path (RemoveFromList List Ele ment Stl))
(GP Path (RemoveFromList List Element St2)))
T)))

The Workhorse lemma demonstrates that the function’s graph sufficiently cap-
tured the dependencies in the data flows of the function.

6.2 ClearP Lemma

The ClearP Lemma demonstrates that all of the changes to state performed by a
function are captured by the function’s graph. In the circular linked list example, for
a list, element, and a state that satisfy the function’s hypothesis function
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(RemoveFromList-Hyp List Element St1)

the ClearP lemma establishes that the operation of the function does not change state
in a manner that is not captured by its graph. The lemma considers two states, the
input state and the output state the function. If all elements that the graph says might
be updated are removed from both states, then satisfying ClearP means that the
remaining states are identical. This demonstrates that the footprint of state changed
by the function is captured by the graph.

Once these two lemmas are proven, it is straightforward to prove GWVr2 for the
function.

7 Hardware-Dependent Code Analysis

In the INTEGRITY-178B evaluation, the small layer of hardware-dependent code
was subjected to a rigorous by hand review. NIAP provided a list of source code
characteristics that when present tend to promote correctness, stability, and un-
derstandability. These characteristics were collected from industry’s best practices
for real-time high-assurance software. An example of these characteristics is the
absence of pointer arithmetic. Importantly, the assumptions stated in the abstract
model of the code are validated by this analysis.

All of the source code in this layer (C code and assembly language) was
examined to determine if it conformed to the characteristics list. For each func-
tion, justification for each characteristic was documented. This documentation was
provided as part of the certification evidence.

8 Conclusion

After a thorough review of all of the certification evidence, including the for-
mal, semiformal, and informal analysis described herein, NIAP granted a Com-
mon Criteria Certificate for the INTEGRITY-178B kernel at the EAL6+ level on
September 1, 2008. The “home page” for the certification documentation can be
found online [8]; a summary of the formal verification activities can be found in the
Security Target document [3].
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Refinement in the Formal Verification
of the selL4 Microkernel

Gerwin Klein, Thomas Sewell, and Simon Winwood

1 Introduction

seL4, the subject of this verification, is an operating system (OS) microkernel.
The OS kernel by definition is the part of the software that runs in the most privi-
leged mode of the hardware. As such, it has full privileges to access and change all
parts of the system. Therefore, any defect in the OS kernel is potentially fatal to the
operation of the whole system, not just to isolated parts of it. One approach to reduce
the risk of such bugs is the microkernel approach: to reduce the privileged kernel
code to an absolute minimum. The remaining code base — 8,700 lines of C and 600
lines of assembly in the case of seL4 — is small enough to be amenable to formal
verification on the implementation level. The L4.verified project has produced such
an implementation proof for the C code of seL4. The overall proof comes to about
200,000 lines of proof script and roughly 10,000 intermediate lemmas.

The proof assumes correctness of compiler, assembly code, and hardware. It also
assumes correct use of low-level hardware caches (memory caches and translation-
look-aside buffer) and correctness of the boot code (about 1,200 lines of the 8,700).
It formally derives everything else. The verified version of the seL.4 kernel runs on
the ARMvV6 architecture and the Freescale . MX31 platform.

This article gives an overview of the main proof technique and the proof frame-
work that was used in this verification project: refinement.

The proof is not done in a refinement calculus that transforms the program in
many small steps, but proceeds in two large refinement steps R4 and Rc¢ in-
stead. The three main specification artefacts in the proof are shown in Fig. 1.
The top-level specification of kernel behaviour is an abstract, operational model
in higher order logic. We call it A in the following. The intermediate specification £
is an executable, detailed model of kernel behaviour that has been translated from a
working prototype written in Haskell into Isabelle/HOL. The bottom layer C is the
C program selL4, automatically parsed into Isabelle/HOL.
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Isabelle/HOL

| Abstract Specification ‘

‘ Executable Specification ‘ <] Haskell Prototype

| High-Performance C Implementation |

<] Automatic Translation

II Refinement Proof

Fig. 1 Refinement steps in L4.verified

On the surface, these two large refinement proofs use different formalisms and
connect different kinds of specification artefacts. Technical details on these two
proofs have appeared elsewhere [4, 17, 23]. This article recalls some of these details
and shows how they are put together into a common, general refinement framework
that allows us to connect the results and extract the main overall theorem: the C code
of seL4 correctly implements its abstract specification.

Section 2 shows the overall data refinement framework. Section 3 gives some
example code on the monadic and C level. Section 4 summarises the refinement
proof R 4 and shows how it is mapped into the framework. Section 5 does the same
for the C implementation proof Rc.

2 Data Refinement

The ultimate objective of our effort is to prove refinement between an abstract and a
concrete process. Following de Roever and Engelhardt [6], we define a process as a
triple containing an initialisation function, which creates the process state with ref-
erence to some external state, a step function which reacts to an event, transforming
the state, and a finalisation function which reconstructs the external state.

record process = Init :: "external = ’state set
Step :: ’event = (’state X ’state) set
Fin :: ’state = ’external

The idea is that the external state is the one observable on the outside, about which
one may formulate Hoare logic properties. A process may also contain hidden state
to implement its data structures. In the simple case, the full state space of a compo-
nent is just a pair of external and hidden states and the projection function Fin is just
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the canonical projection from pairs. With more complex processes, the projection
function that extracts the observable state may become more complex as well.

The execution of a process may be non-deterministic, starting from a initial ex-
ternal state, resulting via a sequence of inputs in a set of external states:

steps § s events = foldl (Astates event. (8 event) ‘‘ states) s events
execution A s events = (Fin A) “ (steps (Step A) (Init A s) events)

where R ““ § and f * R are the images of the set S under the relation R and the
function f, respectively.

Process A is refined by C, if with the same initial state and input events, execution
of C yields a subset of the external states yielded by executing A:

A C C = Vs events. execution C s events C execution A s events

This is the classic notion of refinement as reducing non-determinism. Note that it
also includes data refinement: A and C may work on different internal state spaces;
they merely both need to project to the same external state space.

A well-known property of refinement is that it is equivalent with the preservation
of Hoare logic properties.

Lemmal. ACC iff VPQ.AF{P}events {Q} —> Ct {P} events {Q},

where A = {P} events {Q} = Vs € P. execution A s events C Q. The proof is by
unfolding of definitions and basic set reasoning.

This means that once refinement is shown, it is enough to prove a Hoare logic
property on the abstract level A for it to hold on the concrete level C. For this to
be useful, the external state must be rich enough to represent the properties one is
interested in.

2.1 Forward Simulation

Refinement is commonly proven by establishing forward simulation [6], of which
it is a consequence. To demonstrate forward simulation we define a relation, SR,
between the internal states of the two processes. We must show that the relation is
established by Init, is maintained if we advance the systems in parallel, and implies
equality of the final external states:

fw-sim SRCA = (Vs. InitCs C SR ““ InitA s)
A (Y event. Step C event O SR C SR O Step A evenr)
A (Vss'.(s,s) € SR—> FinCs’=FinAy),
where T O § is the composition of relations S and 7.

To prove forward simulation, it is often helpful to use additional facts about the
execution of abstract or concrete level. If this information is available in the form of
an invariant, it may be established separately and can then be easily integrated into
the refinement proof. An invariant is any property which is always established by
Init and preserved by Step. In the refinement proof, we may then assume it to be
true at the commencement of all steps and before finalisation (Fig. 2).
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Fig. 2 Forward simulation
Abstract Operation

O
v

State Relation
v
OtziarO
State Relation

Concrete Operation

invariant I M = (Vs. InitMs S 1) A (Vevent. Step Cevent ‘1 C 1)
fw-simISRCAI. I, = (Vs.InitCs S SR “InitAs)
A (Y event. Step C event O (SR N (I, X I.)) € SR O Step A evenr)
A(Vss'.(s,s) € SRAse€l, ANs’€l.— FinCs’=FinAy)
The key theorems are, first, that forward simulation implies refinement and,
second, that forward simulation assuming invariants implies forward simulation
in general.

Lemma 2. fw-sSimSRCA —ACC

The proof is by unfolding definitions and induction on the event sequence in the
refinement statement, followed by relation reasoning to apply forward simulation in
the induction step.

Lemma 3. Forward simulation assuming invariants implies forward simulation if
the invariants are established separately.

fw-siml SR CA I. I, A invariant I, A A invariant I, C — fw-sim SR C A

This lemma is shown by basic relation and set reasoning after unfolding definitions.

2.2 Structure

The three processes we are interested in have a common structure in their Step
operations. We model five kinds of events in our processes. The first two are transi-
tions that do not involve the kernel: user thread execution and idle thread execution.
We model the execution of user threads with unrestricted non-determinism, allowing
all possible behaviours. We distinguish the idle thread as it may run in the kernel’s
context and thus must be better behaved. The next two kinds of events model the
transition from user mode to kernel mode when exceptions occur: user mode excep-
tions and idle mode exceptions. The final event type is the one we are interested in:
kernel execution. This is the only part of the Step operation that differs between our
processes.
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Formally, we model this in a function global-automaton that takes the kernel be-
haviour as a parameter and implements the above transitions generically. The kernel
transition is:

global-automaton kernel-call KernelTransition =
{ ((s, KernelMode, Some ¢), (s’, m, None)) |s s’ e m. (s,s’,m) € kernel-call e}

The parameter kernel-call is a relation between current and final kernel state and the
next mode the machine is switched into (kernel mode, user mode, and idle mode).
The state space of the process is a triple of the kernel-observed machine state, in-
cluding memory and devices, a current mode, and a current kernel entry event. The
latter is produced by the other transitions in the model. For instance, in idle mode,
only an interrupt event can be generated:

global-automaton kernel-call IdleEventTransition
{ ((s, IdleMode, None), (s, KernelMode, Some Interrupt)) |s. True }

From user mode, any kernel entry event e is possible. The transition from user to
kernel mode itself does not change the state; the context switch is modelled inside
the kernel transition that comes after, because it is modelled differently at each ab-
straction level. The transition assumes no further conditions and does not depend on
the parameter kernel-call.

global-automaton kernel-call UserEventTransition =
{ ((s, UserMode, None), (s, KernelMode, Some ¢)) |s e. True}

The other transitions are analogous.

The definition of kernel execution may vary between our three processes, but
they share a common aspect. Each is implemented through a call to the top-level
kernel handler function from which a call graph proceeds in a structured language.
Exploiting this structure is the key aspect of our approach.

2.3 Correspondence

Forward simulation, like most properties that can be expressed in a commuting
diagram, composes sequentially. This composition over successive Step actions is
important in the proof that forward simulation implies refinement. Sequential com-
position is also useful in proving refinement within a single kernel execution step.

The kernel execution bodies are, as discussed above, each written in a lan-
guage which affords substantial internal structure. To exploit similarities in this
structure, we define a new notion which we call correspondence. Correspondence
is essentially forward simulation defined not on state transformers but on the terms
of the languages in which the kernel execution bodies are defined. This leads us to
define two different correspondence predicates for R 4 and R¢, which will be dis-
cussed in the following sections. It is crucial that these predicates be defined in a
manner that allows the correspondence proofs to be composed across the syntactic
composition operators of the relevant languages.
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3 Example

The seL4 kernel [8] provides the following operating system kernel services:
inter-process communication, threads, virtual memory, access control, and interrupt
control. In this section, we present a typical function, cteMove, with which we will
illustrate the two proof frameworks for refinement. Figure 3 shows the same func-
tion in the monadic executable specification and in the C implementation. The first
refinement proof relates two monadic specifications; the second refinement proof
relates the two layers shown in the figure.

Access control in seL4 is based on capabilities. A capability contains an object
reference along with access rights. A capability table entry (CTE) is a kernel data
structure with two fields: a capability and an mdbNode. The latter is book-keeping
information and contains a pair of pointers which form a doubly linked list.

The cteMove operation, shown in Fig. 3, moves a CTE from src to dest.

The first six lines in Fig. 3 initialise the destination entry and clear the source
entry; the remainder of the function updates the pointers in the doubly linked list.
During the move, the capability in the entry may be diminished in access rights.
Thus, the argument cap is this possibly diminished capability, previously retrieved
from the entry at src.

In this example, the C source code is structurally similar to the executable
specification. This similarity is not accidental: the executable specification describes
the low-level design with a high degree of detail. Most of the kernel functions ex-
hibit this property. It is also true, to a lesser degree, for the refinement between two
monadic specifications. Even so, the implementation here makes a small optimisa-
tion: in the specification, updateMDB always checks that the given pointer is not
NULL. In the implementation, this check is done for prev_ptr and next _ptr —
which may be NULL — but omitted for srcSlot and destSlot. In verifying
cteMove, we will have to prove that these checks are not required.

cteMove cap src dest = void cteMove (cap_t newCap,
do cte t xsrcSlot, cte t xdestSlot) {
cte <— getCTE src; mdb_node_t mdb; uint32_t prev_ptr, next ptr;
mdb < return (cteMDBNode cte); mdb = srcSlot->cteMDBNode;
updateCap dest cap; destSlot->cap = newCap;
updateCap src NullCap; srcSlot->cap = cap_null_cap new() ;
updateMDB dest (const mdb); destSlot->cteMDBNode = mdb;
updateMDB src (const nullMDBNode); srcSlot->cteMDBNode = nullMDBNode;
prev_ptr = mdb _node_get _mdbPrev (mdb) ;
updateMDB if (prev_ptr) mdb node ptr_ set mdbNext (
(mdbPrev mdb) &CTE_PTR (prev_ptr) - >cteMDBNode,
(Am. m ( mdboNext := dest ))); CTE_REF (destSlot)) ;
next_ptr = mdb node_ get mdbNext (mdb) ;
updateMDB if (next_ptr) mdb_node_ptr_set_mdbPrev (
(mdbNext mdb) &CTE_PTR (next_ptr) - >cteMDBNode,
(Am. m ( mdbPrev := dest ) CTE_REF (destSlot)) ;
od }

Fig. 3 cteMove: executable specification and C implementation
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4 Monadic Refinement

4.1 Non-deterministic State Monads

The abstract and executable specifications over which R 4 is proved are written
in a monadic style inspired by Haskell. The type constructor (’a, ’s) nd-monad
is a non-deterministic state monad representing computations with a state type ’s
and a return value type ’a. Return values can be injected into the monad using the
return :: ’a = (’a, ’s) nd-monad operation. The composition operator bind ::
(’a, ’s) nd-monad = (’a = (’b, ’s) nd-monad) = (’b, ’s) nd-monad performs
the first operation and makes the return value available to the second operation.
These canonical operators form a monad over (’a, ’s) nd-monad and satisfy the
usual monadic laws. More details are given elsewhere [4]. The ubiquitous do ...
od syntax seen in Sect. 3 is syntactic sugar for a sequence of operations composed
using bind.

The type ("a, ’s) nd-monad is isomorphic to s = ("a x ’s) set x bool. This can
be thought of as a non-deterministic state transformer (mapping from states to sets
of states) extended with a return value (required to form a monad) and a boolean
failure flag. The flag is set by the fail :: (’a, ’s) nd-monad operation to indicate
unrecoverable errors in a manner that is always propagated and not confused by
non-determinism. The destructors mResults and mFailed access, respectively, the
set of outcomes and the failure flag of a monadic operation evaluated at a state.

Exception handling is introduced by using a return value in the sum type. An
alternative composition operator op >>=F :: (e 4+ ’a, ’s) nd-monad = (a
= (e + ’b, ’s) nd-monad) = (’e + ’b, ’s) nd-monad inspects the return
value, executing the subsequent operation for normal (right) return values and skip-
ping it for exceptional (left) ones. There is an alternative return operator returnOk
and these form an alternative monad. Exceptions are thrown with throwError and
caught with catch.

We define a Hoare triple denoted {P}} a {R} on a monadic operator a, precondition
P and postcondition Q. We have a verification condition generator (VCG) for such
Hoare triples, which are used extensively both to establish invariants and to make
use of them in correspondence proofs.

4.2 Correspondence

The components of our monadic specifications are similar to the non-deterministic
state transformers on which forward simulation is defined. To extend to a correspon-
dence framework, we must determine how to handle the return values and failure
flags. This is accomplished by the corres predicate. It captures forward simulation
between a component monadic computation C, and its abstract counterpart A, with
SR instantiated to our standard state relation state-relation. It takes three additional
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parameters: R is a predicate which will relate abstract and concrete return values,
and the preconditions P and P’ restrict the input states, allowing use of information
such as global invariants:

corresRPP’AC =V (s,s’) €state-relation. Ps A P’ s —>
(Y (r’, ') emResults (C s’). 3 (r, 1) e mResults (A s). (¢, ") € state-relation ARrr’)
A (—mFailed (C s’))

Note that the outcome of the monadic computation is a pair of result and failure
flag. The last conjunct of the corres statement mandates non-failure for C.

The key property of corres is that it decomposes over the bind constructor
through the CORRES-SPLIT rule.

CORRES-SPLIT:
corresR’PP’AC
Vrr.R rr—>corresR(Sr) (S’r’) (Br) (Dr) {0} A {S} {0’} C{S’}
corres R (Pand Q) (P’and Q’) (A >>=B) (C >>= D)

This splitting rule decomposes the problem into four subproblems. The first two
are corres predicates relating the subcomputations. Two Hoare triples are also re-
quired. This is because the input states of the subcomputations appearing in the
second subproblem are intermediate states, not input states, of the original problem.
Any preconditions assumed in solving the second subproblem must be shown to
hold at the intermediate states by proving a Hoare triple over the partial computa-
tion. Use of Hoare triples to demonstrate intermediate conditions is both a strength
and a weakness of this approach. In some cases, the result is repetition of existing
invariant proofs. However, in the majority of cases, this approach makes the flexi-
bility and automation of the VCG available in demonstrating preconditions that are
useful as assumptions in proofs of the corres predicate.

The decision to mandate non-failure for concrete elements and not abstract ones
is pragmatic. Proving non-failure on either system could be done independently;
however, the preconditions needed are usually the same as in corres proofs and it
is convenient to solve two problems simultaneously. Unfortunately we cannot so
easily prove abstract non-failure. Because the concrete specification may be more
deterministic than the abstract one, there is no guarantee that we will examine all
possible failure paths. In particular, if a conjunct mandating abstract non-failure was
added to the definition of corres, the splitting rule above would not be provable.

Similar splitting rules exist for other common monadic constructs including
bindE, catch, and conditional expressions. There are terminating rules for the ele-
mentary monadic functions, for example:

CORRES-RETURN:
Rab

corres R T T (return a) (return b)

The corres predicate also has a weakening rule, similar to the Hoare Logic.

CORRES-PRECOND-WEAKEN:
corresRQQ’AC Vs.Ps—> Qs Vs.PPs—>Q’s

corresRPP AC
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Proofs of the corres property take a common form: first the definitions of the
terms under analysis are unfolded and the CORRES-PRECOND-WEAKEN rule is ap-
plied. As with the VCG, this allows the syntactic construction of a precondition to
suit the proof. The various splitting rules are used to decompose the problem, in
some cases with carefully chosen return value relations. Existing results are then
used to solve the component corres problems. Some of these existing results, such
as CORRES-RETURN, require compatibility properties on their parameters. These
are typically established using information from previous return value relations.
The VCG eliminates the Hoare triples, bringing preconditions assumed in corres
properties at later points back to preconditions on the starting states. Finally, as in
Dijkstra’s postcondition propagation [7], the precondition used must be proved to
be a consequence of the one that was originally assumed.

4.3 Mapping to Processes

To prove R 4, we must connect the corres framework described above to the for-
ward simulation property we wish to establish. The Step actions of the processes we
are interested in are equal for all events other than kernel executions, and simulation
is trivial to prove for equal operations. In the abstract process .4, kernel execution
is defined in the monadic function call-kernel. The semantics of the whole abstract
process A are then derived by using call-kernel in the call to global-automaton.
The context switch is modelled by explicitly changing all user accessible parts,
for instance the registers of the current thread, fully non-deterministically. The se-
mantics of the intermediate process for the executable specification £ are derived
similarly from a monadic operation callKernel. These two top-level operators sat-
isfy a correspondence theorem KERNEL-CORRES:

V event. corres (Arv rv’. True) invs invs’ (call-kernel event) (callKernel event)

The required forward simulation property for kernel execution (assuming the
system invariants) is implied by this correspondence rule. Invariant preservation for
the system invariants follows similarly from Hoare triples proved over the top-level
monadic operations:

V event. {invs} call-kernel event {A-. invs}
Y event. {invs’} callKernel event {A-. invs’}

From these facts, we may thus conclude that R 4 holds:

Theorem 1. The executable specification refines the abstract one.
ACE

5 C Refinement

In this section, we describe our infrastructure for parsing C into Isabelle/HOL and
for reasoning about the result.
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Fig. 4 C language framework

The sel4 kernel is implemented almost entirely in C99 [15]. Direct hardware
accesses are encapsulated in machine interface functions, some of which are im-
plemented in ARMv6 assembly. In the verification, we axiomatise the assembly
functions using Hoare triples.

Figure 4 gives an overview of the components involved in importing the ker-
nel into Isabelle/HOL. The right-hand side shows our instantiation of SIMPL [18],
a generic, imperative language inside Isabelle. The SIMPL framework provides a
program representation, a semantics, and a VCG. This language is generic in its ex-
pressions and state space. We instantiate both components to form C-SIMPL, with
a precise C memory model and C expressions, generated by a parser. The left-hand
side of Fig. 4 shows this process: the parser takes a C program and produces a
C-SIMPL program.

SIMPL provides a data type and semantics for statement forms; expressions are
shallowly embedded. Along with the usual constructors for conditional statements
and iteration, SIMPL includes statements of the form Guard F P ¢ which raises the
fault F if the condition P is false and executes ¢ otherwise.

Program states in SIMPL are represented by Isabelle records containing a field
for each local variable in the program and a field globals containing all global vari-
ables and the heap. Variables are then simply functions on the state.

SIMPL semantics are represented by judgements of the form I' (c,x) = x’,
which means that executing statement ¢ in state x terminates and results in state x’;
the parameter I” maps function names to function bodies. These states include both
the program state and control flow information, including that for abruptly termi-
nating THROW statements used to implement the C statements return, break,
and continue.

The SIMPL environment also provides a VCG for partial correctness triples;
Hoare-triples are represented by judgements of the form I'H JF P ¢ CA, where
P is the precondition, C is the postcondition for normal termination, A is the
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postcondition for abrupt termination, and F is the set of ignored faults. If F'is UNIV,
the universal set, then all Guard statements are effectively ignored. Both A and F
may be omitted if empty.

Our C subset allows type-unsafe operations including casts. To achieve this
soundly, the underlying heap model is a function from addresses to bytes. This al-
lows, for example, the C function memset, which sets each byte in a region of the
heap to a given value. We generally use a more abstract interface to this heap: we
use additional typing information to lift the heap into functions from typed pointers
to Isabelle terms; see Tuch et al. [20, 21] for more detail.

The C parser takes C source files and generates the corresponding C-SIMPL
terms, along with Hoare-triples describing the set of variables mutated by the
functions. Although our C subset does not include union types, we have a tool which
generates data types and manipulation functions which implement tagged unions via
C structures and casts [3]. The tool also generates proofs of Hoare-triples describing
the operations.

5.1 Refinement Calculus for C

Refinement phase R¢ involves proving refinement between the executable specifi-
cation and the C implementation. Specifically, this means showing that the C kernel
entry points for interrupts, page faults, exceptions, and system calls refine the exe-
cutable specification’s top-level function callKernel.

As with R4, we introduce a new correspondence notion that implies forward
simulation. We again aim to divide the proof along the syntactic structure of both
programs as far as possible and then prove the resulting subgoals semantically.

In the following, we first give our definition of correspondence, followed by a
discussion of the use of the VCG. We then describe techniques for reusing proofs
from R 4 to solve proof obligations from the implementation. Next, we present our
approach for handling operations with no corresponding analogue. Finally, we de-
scribe our splitting approach and sketch the proof of the example.

5.2 The Correspondence Statement

As with the correspondence statement for R 4, we deal with state preconditions and
return values by including guards on the states and a return value relation in the
Rc correspondence statement. In addition, we include an extra parameter used for
dealing with early returns and breaks from loops, namely a list of statements called
a handler stack.

We thus extend the semantics to lists of statements, writing I" I+ {c-hs, s) = x’.
The statement sequence ks is a handler stack; it collects the CATCH handlers which
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surround usages of the statements return, continue, and break. If ¢ termi-
nates abruptly, each statement in hs is executed in sequence until one terminates
normally.

Relating the return values of functions is dealt with by annotating the corre-
spondence statement with a return value relation r. Although evaluating a monadic
operation results in both a new state and a return value, functions in C-SIMPL re-
turn values by updating a function-specific local variable; because local variables
are fields in the state record, this is a function from the state. We thus annotate the
correspondence statement with an extraction function xf, a function which extracts
the return value from a program state.

The correspondence statement is illustrated in Fig. 5 and defined below

ccorresrxfPP hsac =
V(s,0)eS.Vt'.s € PAt € PP A—mFailed (as) A ' I (chs, 1) = ¢
—> 3 (s’,rv) e mResults (a s).
A’y. ' =Normal 'y A (s’,t'N) € SATFrr (xft'N)

The definition can be read as follows: given related states s and ¢ with the pre-
conditions P and P’, respectively, if the abstract specification a does not fail when
evaluated at state s, and the concrete statement ¢ evaluates under handler stack As in
extended state ¢ to extended state ¢’, then the following must hold:

Evaluating a at state s returns some value rv and new abstract state s’.

The result of the evaluation of ¢ is some normal (non-abrupt) state Normal 7’ .
States s” and ¢’ are related by the state relation S.

Values rv and xf ¢’y — the extraction function applied to the final state of ¢ — are
related by r, the given return value relation.

AP

Note that a is non-deterministic: we may pick any suitable rv and s’. As mentioned
in Sect. 4.2, the proof of R 4 entails that the executable specification does not fail.
Thus, in the definition of ccorres, we may assume — mFailed (a s). In practice, this
means assertions and other conditions for (non-)failure in the executable specifica-
tion become known facts in the proof. Of course, these facts are only free because
we have already proven them in R 4.
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5.3 Proving Correspondence via the VCG

Data refinement predicates can, in general [6], be rephrased and solved as Hoare
triples. We do this in our framework by using the VCG after applying the following
rule:
Vs.I'H{t|s € PAt € P’A(s, 1) € S}
Cc
{#’'|3(rv,s’) emResults (as). (s, 1) € SArm (xft)}
ccorres rxfP P’ hsac

In essence, this rule states that to show correspondence between a and c, for a
given initial specification state s, it is sufficient to show that executing c¢ results in
normal termination where the final state is related to the result of evaluating a at s.
The VCG precondition can assume that the initial states are related and satisfy the
correspondence preconditions.

Use of this rule in verifying correspondence is limited by two factors. First, the
verification conditions produced by the VCG may be excessively large or complex.
Our experience is that the output of a VCG step usually contains a separate term
for every possible path through the target code and that the complexity of these
terms tends to increase with the path length. Second, the specification return value
and result state are existential and thus outside the range of our extensive automatic
support for showing universal properties of specification fragments. Fully expanding
the specification is always possible, and in the case of deterministic operations it
will yield a single state/return value pair, but the resulting term structure may also
be large.

5.4 Splitting

As with R4, we prove correspondence by splitting the proof into corresponding
program lines. Splitting allows us to take advantage of structural similarity by con-
sidering each match in isolation; formally, given the specification fragment do rv
< a; b rv od and the implementation fragment c; d, splitting entails proving a first
correspondence between a and ¢ and a second between b and d.

In the case where we can prove that ¢ terminates abruptly, we discard d. Other-
wise, the following rule is used:

ccorres r’ xf’ PP’ hsac
Vv.d v~dif] Yrvr'. r v —>ccorres rxf (Qr) (Q rviv’) hs (brv) (d ')
{R} a {O} Fl—/u Rc{s|Vrm.rmw@fs)—s € Q r (xf s)}

ccorres rxf (PN R) (P’NR’) hs (a >> =b) (c; d)

In the second correspondence premise, d’ is the result of lifting xf* in d; this
enables the proof of the second correspondence to use the result relation from the
first correspondence. To calculate the final preconditions, the rule includes VCG
premises to move the preconditions from the second correspondence across a and c.
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In the C-SIMPL VCG obligation, we may ignore any guard faults as their absence
is implied by the first premise. In fact, in most cases the C-SIMPL VCG step can
be omitted altogether, because the postcondition collapses to the universal set after
simplifications.

We have developed a tactic which assists in splitting: C-SIMPL’s encoding of
function calls and struct member updates requires multiple specialised rules. The
tactic symbolically executes and moves any guards if required, determines the cor-
rect splitting rule to use, instantiates the extraction function, and lifts the second
correspondence premise.

5.5 Mapping to Processes

We map the C kernel into a process by lifting the operational semantics of the kernel
C code into a non-deterministic monad:

exec-C I' c = As. {0} x {s’ | ' (c,Normal s) = Normal s}, False)

that is, for a given statement ¢ we construct a function from an initial state s into the
set of states resulting from evaluating ¢ at s. We define the return value of this exe-
cution as the unit. We set the failure flag to False and require a successful Normal
result from C.

We then construct a function callKernel-C, parametrised by the input event,
which simulates the hardware exception dispatch mechanism. The function exam-
ines the argument and dispatches the event to the corresponding kernel entry point.
Finally, we form the process ADT-C by instantiating the global automaton with this
step function.

We again establish a correspondence result between the kernel entry points, this
time between callKernel in £ and callKernel-C in C. This time, we did not need to
prove additional invariants about the concrete level (the C program). The framework
presented above enabled us to shift all such reasoning to the level of the executable
specification £.

Theorem 2. The translated C code refines its executable specification.
ECC

6 Main Theorem

Putting the two theorems from the previous sections together, we arrive via transi-
tivity of refinement at the main functional correctness theorem.

Theorem 3. ACC
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7 Related Work

We briefly summarise related work on OS verification; a comprehensive overview
is provided by Klein [16].

Early work on OS verification includes PSOS [9] and UCLA Secure Unix [22].
Later, KIT [2] describes verification of process isolation properties down to ob-
ject code level, but for an idealised kernel they are much simpler than modern
microkernels.

The VFiasco project [13] and later the Robin project [19] attempted to verify
C++ kernel implementations. They created a precise model of a large, relevant
part of C+4+4-, but did not verify substantial parts of the kernel.

Heitmeyer et al. [12] report on the verification and Common Ceriteria certification
of a “software-based embedded device” featuring a small (3,000 LOC) separation
kernel. Similarly, Green Hills’ Integrity kernel [11] recently underwent formal veri-
fication during a Common Criteria EAL6+ certification [10]. The Separation Kernel
Protection Profile [14] of Common Criteria demands data separation only rather
than functional correctness.

A closely related project is Verisoft [1], which is attempting to verify not only
the OS, but also a whole software stack from verified hardware up to verified appli-
cation programs. This includes a formally verified, non-optimising compiler for a
Pascal-like implementation language. While Verisoft accepts a simplified (but veri-
fied) hardware platform and two orders of magnitude slow-down for the simplified
VAMOS kernel, we deal with real C and standard tool chains on ARMv6 and have
aimed for a commercially deployable, realistic microkernel. A successor project,
Verisoft XT, is aiming to verify the functional correctness of the Microsoft Hyper-
visor, which contains concurrency and is substantially larger than seL.4. While initial
progress has been made on this verification [5], it is unclear at this stage if the goal
will be reached.

8 Conclusion

We have presented the different refinement techniques used in the verification of the
seL.4 microkernel. We have given an overview of the overall unifying framework, of
the refinement calculus used for stateful, monadic specification, of the refinement
calculus for imperative programs, and we have shown how these are put together
into the final theorem.

The two frameworks presented here have withstood the test of large-scale ap-
plication to high-performance C code in the Isabelle/HOL verification of the sel.4
microkernel. Proving functional correctness for real-world application down to the
implementation level is possible and feasible.
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Specification and Checking of Software
Contracts for Conditional Information Flow

Torben Amtoft, John Hatcliff, Edwin Rodriguez, Robby, Jonathan Hoag,
and David Greve

1 Introduction

National and international infrastructures as well as commercial services are
increasingly relying on complex distributed systems that share information with
multiple levels of security (MLS). These systems often seek to coalesce infor-
mation with mixed security levels into information streams that are targeted to
particular clients. For example, in a national emergency response system, some data
will be privileged (e.g., information regarding availability of military assets and
deployment orders for those assets) and some data will be public (e.g., weather and
mapping information). In such systems, there is a huge tension between providing
aggressive information flow in order to gain operational advantage while preventing
the flow of information to unauthorized parties. Specifying and verifying secu-
rity policies and providing end-to-end guarantees in this context are exceedingly
difficult tasks.

The multiple independent levels of security (MILS) architecture [32] proposes to
make development, accreditation, and deployment of MLS-capable systems more
practical, achievable, and affordable by providing a certified infrastructure founda-
tion for systems that require assured information sharing. In the MILS architecture,
systems are developed on top of (a) a “separation kernel,” a concept introduced
by Rushby [27] which guarantees isolation and controlled communication between
application components deployed in different virtual “partitions” supported by the
kernel and (b) MILS middleware services such as “high assurance guards” that allow
information to flow between various partitions, and between trusted and untrusted
segments of a network, only when certain conditions are satisfied.

Researchers at Rockwell Collins Advanced Technology Center (RC ATC) are
industry leaders in certifying MILS components according to standards such as the
Common Criteria (EAL 6/7) that mandate the use of formal methods. For example,
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RC ATC engineers carried out the certification of the hardware-based separation
kernel in RC’s AAMP7 processor (this was the first such certification of a MILS
separation kernel and it formed the initial draft of the Common Criteria Protection
Profile for Separation Kernels) as well as the software-based kernel in the Green
Hills Integrity 178B RTOS.

Seeking to leverage the groundbreaking work on the AAMP7 separation kernel,
Rockwell Collins product groups (that include 200+ developers) are building sev-
eral different information assurance products on top of the AAMP7 following the
MILS architecture. These products are programmed using the SPARK subset of Ada
[8]. One of the primary motivating factors for the use of SPARK is that it includes
annotations (formal contracts for procedure interfaces) for specifying and checking
information flow [12]. The use of these annotations plays a key role in the certifi-
cation cases for the products. The SPARK language and associated tool-set is the
only commercial product that we know of which can support checking of code-level
information flow contracts, and SPARK provides a number of well-designed and
effective capabilities for specifying and verifying properties of implementations of
safety-critical and security-critical systems.

However, Rockwell Collins developers are struggling to provide precise argu-
ments for correctness in information assurance certification due to several limita-
tions of the SPARK information flow framework. A key limitation is that SPARK
information flow annotations are unconditional (e.g., they capture such statements
as “executing procedure P may cause information to flow from input variable X
to output variable Y), but MILS security policies are often conditional (e.g., data
from partition A is only allowed to flow to partition B when state variables G; and
G, satisfy certain conditions). Thus, SPARK currently can neither capture nor sup-
port verification of critical aspects of MILS policies (treating such conditional flows
as unconditional flows in SPARK is an overapproximation that leads to many false
alarms).

In previous work, Banerjee and the first author have developed Hoare logics that
enable compositional reasoning about information flow [1,4]. Inspired by challenge
problems from Rockwell Collins, this logic was extended to support conditional in-
formation flow [3]. While the logic as presented in [3] exposed some foundational
issues, it only supported intraprocedural analysis, it required developers to specify
information flow loop invariants, the verification algorithm was not yet fully imple-
mented (and thus no experience was reported), and the core logic was not mapped to
a practical method contract language capable of supporting compositional reasoning
in industrial settings.

In this paper, we address these limitations by describing how the logic can pro-
vide a foundation for a practical information flow contract language capable of
supporting compositional reasoning about conditional information flows. The spe-
cific contributions of our work are as follows:

e We propose an extension to SPARK’s information flow contract language that
supports conditional information flow, and we describe how the logic of [3] can
be used to provide a semantics for the resulting framework.

e We extend the algorithm of [3] to support procedure calls and thus modularity.
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e We present a strategy for automatically inferring conditional information flow
invariants for while loops, thus significantly reducing developers’ annotation
burden.

e We provide an implementation that can automatically mine conditional informa-
tion flow contracts (which might then be checked against existing contracts) from
source code.

e We report on experiments applying the implementation to a collection of
examples.

Recent efforts for certifying MILS separation kernels [18, 19] applied ACL2
[22] or PVS [25] theorem provers to formal models; extensive inspections were
then required by certification authorities to establish the correspondence between
model and source code. Because our approach is directly integrated with code, it
complements these earlier efforts by (a) removing the “trust gaps” associated with
inspecting behavioral models (built manually) and (b) allowing many verification
obligations to be discharged earlier in the life cycle by developers while leaving only
the most complicated obligations to certification teams. In addition, the logic-based
approach presented in this paper provides a foundation for producing independently
auditable and machine-checkable evidence of correctness and MILS policy com-
pliance as recommended [21] by the National Research Council’s Committee on
Certifiably Dependable Software Systems.

2 Example

Figure 1 illustrates the conceptual information flows in a fragment of an idealized
MILS infrastructure component used by Rockwell Collins engineers to demonstrate,
for NSA and industry representatives, specification and verification of information
flow issues in MILS components running on top of the AAMP?7 separation kernel.
This demonstration was the first iteration of what is now a much more sophisticated
high assurance network guard product line at Rockwell Collins. The ‘“Mailbox”
component in the center of the diagram mediates communication between two client

H
r

. ¢
Separation procedure MACHINE_STEP

> — INFORMATION FLOW CONTRACT GOES HERE
Mailbox * — see Figure 2 —
H

is

H DATA.0, DATA.l : CHARACTER:

Input 0 H Input 1 begin

~ . - - if IN.O.RDY and not OUT.1.RDY then
~ . 7 DATAL0 := IN.O.DAT:

IN.O-RDY := FALSE:

S InputOReady\\: , Input 1 Ready S_) OUT.1_.DAT := DATAL:
c ‘ © OUT.IRDY := TRUE;
o ? ':_,'_ end if;
O Output 0 Ready & o Output 1 Ready -
7:\ if IN.I.RDY and not OUT.ORDY then
PR DATA-l := IN.1.DAT;
- . S~ IN.I.RDY := FALSE;
: OUT-0.DAT := DATA.I;
Output 0 . Output 1 OUT.0RDY := TRUE;
- end if;
— end MACHINE_STEP;

Fig. 1 Simple MILS Guard - mailbox mediates communication between partitions
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processes — each running on its own partition in the separation kernel. Client 0
writes data to communicate in the memory segment Input O that is shared between
Client 0 and the mailbox, then it sets the Input 0 Ready flag. The mailbox process
polls its ready flags; when it finds that, e.g., Input 0 Ready is set and Output 1
Ready is cleared (indicating that Client I has already consumed data deposited in
the Output I slot in a previous communication), then it copies the data from Input 0
to Output I and clears Input O Ready and sets Output 1 Ready. The communication
from Client I to Client 0 follows a symmetric set of steps. The actions to be taken in
each execution frame are encoded in SPARK Ada by the MACHINE_STEP procedure
shown in Fig. 1.

Figure 2a shows SPARK Ada annotations for the MACHINE_STEP procedure,
whose information flow properties are captured by derives annotations. It re-
quires that each parameter and each global variable referenced by the procedure be
classified as in (read only), out (written and initial values [values at the point of pro-
cedure call] are unread), or in out (written and initial values read). For a procedure
P, variables annotated as in or in out are called input variables and denoted as
INp, while variables annotated as out or in out are output variables and denoted
as OUT p. Each output variable x, must have a derives annotation indicating the
input variables whose initial values are used to directly or indirectly calculate the
final value of x,. One can also think of each derives clause as expressing a depen-
dence relation (or program slice) between an output variable and the input variables
that it transitively depends on (via both data and control dependence).

For example, the second derives clause specifies that on each MACHINE_STEP
execution the output value of oUT_-1_DAT is possibly determined by the input val-
ues of several variables: from IN_0_DAT when the Mailbox forward data supplied
by Client 0, from ouT_1_DAT when the conditions on the ready flags are not sat-
isfied (oUT_1.DAT’s output value then is its input value), and from ouT_1_rRDY and
IN_0_RDY because these variables control whether or not data flows from Client 0 on
a particular machine step (i.e., they guard the flow).

a b
—+# global in out IN.O_.RDY, IN_1_.RDY, —# derives
—# OUT-0-RDY, OUT-1-RDY, —# OUT-0-DAT from
—# OUT-0-DAT, OUT-1_DAT; —# IN_1_DAT when
—# in IN_O-DAT, IN_1_DAT; —# (IN-1_RDY and not OUT-0-RDY),
—# derives —+# OUT-0-DAT when
—# OUT-0-DAT from IN_-1_.DAT, OUT-0-DAT, —# (not IN_-I_.RDY or OUT-0-RDY),
—# OUT-O_RDY, IN_1_RDY & —# OUT-O-RDY, IN_1_RDY &
—# OUT-1-DAT from IN_O_-DAT, OUT-1_DAT, —# OUT-1_DAT from
—# IN_.O_-RDY, OUT-1.RDY & —# IN_O_-DAT when
—+# IN_O_-RDY from IN_-O-RDY, OUT-1.RDY & —+# (IN-O_.RDY and not OUT-1_RDY),
—# IN_I_.RDY from INP_1_RDY, OUT-O0.RDY & —# OUT-1.-DAT when
—# OUT-0_RDY from OUT-O-RDY, IN_1_RDY & —+# (not IN_.O_.RDY or OUT-1_RDY),
—# OUT-1_RDY from OUT-1_.RDY, IN_O-RDY; —# OUT-1_RDY, IN_O_-RDY

Fig.2 (a) SPARK information flow contract for Mailbox example. (b) Fragment of same example
with proposed conditional information flow extensions
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While upper levels of the MILS architecture require reasoning about lattices of
security levels (e.g., unclassified, secret, top secret), the policies of infrastructure
components such as separation kernels and guard applications usually focus on data
separation policies (reasoning about flows between components of program state),
and we restrict ourselves to such reasoning in this paper.

No other commercial language framework provides automatically checkable
information flow specifications, so the use of the information flow checking frame-
work in SPARK is a significant step forward. As illustrated above, SPARK derives
clauses can be used to specify flows of information from input variables to output
variables, but they do not have enough expressive power to state that information
only flows under specific conditions. For example, in the Mailbox code, informa-
tion from IN_0_DAT only flows to ouT-1.DAT when the flag IN_0_RDY is set and
OUT-1-READY is cleared, otherwise OUT-1.DAT remains unchanged. In other words,
the flags IN_0_RDY and oUT-1_RDY guard the flow of information through the mail-
box. Unfortunately, the SPARK derives cannot distinguish the flag variables as
guards nor phrase the conditions under which the guards allow information to pass
or be blocked. This means that guarding logic, which is central to many MLS ap-
plications including those developed at Rockwell Collins, is completely absent from
the checkable specifications in SPARK.

In general, the lack of ability to express conditional information flow not
only inhibits automatic verification of guarding logic specifications, but also re-
sults in imprecision which cascades and builds throughout the specifications in
the application.

3 Foundations of SPARK Conditional Information Flow

The SPARK subset of Ada is designed for programming and verifying high assur-
ance applications such as avionics applications certified to DO-178B Level A. It
deliberately omits constructs that are difficult to reason about such as dynamically
created data, pointers, and exceptions. In Fig. 3, we present the syntax of a simple
imperative language with assertions that one can consider to be an idealized ver-
sion of SPARK. We omit some features of SPARK that do not present conceptual
challenges, such as records, and the package and inheritance structure.

Referring to Fig. 3, we consider three kind of expressions (E € Exp): arithmetic
(A € AExp), boolean (B € BExp), and array expressions (H € HExp). We use
X, y to range over scalar variables, & to range over array variables, and w, z to range
over both kind of variables; actual variables appearing in programs are depicted
using typewriter font. We also use ¢ to range over integer constants, p to range
over named (parameterless) procedures, Op to range over arithmetic operators in
{+, x,mod, ...}, and bop to range over comparison operators in {=, <, ...}.

The use of programmer assertions is optional, but often helps to improve the
precision of our analysis. For example, a loop while B do S od, which is known
to have invariant ¢, may be transformed into while B do assert(¢ A B) ;S od;
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Expressions Commands

arithmetic S 1= skip
Auz=x|c|AopA | x=4 assignment

boolean | S;8 sequential composition
B ::= Abop A | assert(¢) programmer asssertion

) | call p procedure call
Assertions | if B then S else S conditional
$u=Blond | while Bdo S od iteration
| oVvol—¢

Fig. 3 Syntax of a simple imperative language

assert(¢ A —B). We refer to the assertions of Fig.3 as /-assertions since they
represent predicates on a single program state; they can be contrasted with
2-assertions that we introduce later for reasoning about information flow in terms
of a pair of program states.

Using parameterless procedures simplifies our exposition; our implementation
supports procedures with parameters (there are no conceptual challenges in this ex-
tended functionality).

The SPARK information flow analysis treats arrays as atomic entities — a con-
servative approximation that makes analysis significantly easier. In the SPARK
analysis, any information flowing to/from a particular array element is treated as
flowing to/from all elements of the array. Due to the lack of heap-allocated data
in SPARK, complex data structures are often implemented in arrays. For informa-
tion assurance applications, the SPARK treatment of information flow for arrays
can significantly impede the ability to verify interesting end-to-end information flow
properties. Elsewhere [6], we describe how our logic provides a basis for reasoning
about individual elements of arrays, thus giving more precision than SPARK.

For an expression E, we write fv(E) for the variables occurring free in £, which
is the union of the free scalar variables fsv(E) and the free array variables fav(FE),
and write E[A/x] for the result of substituting in E all occurrences of x by A.
We use similar notations for assertions ¢, where as usual we define ¢; — ¢, as
—¢1 V ¢2, and also define true as 0 = 0 and false as 0 = 1.

3.1 Semantics

The semantics of an arithmetic expression [A] is a function from stores into values,
where a value (veVal) is an integer n and where a store s € Store maps variables to
values; we write dom(s) for the domain of s and write [s|x > v] for the store that is
like s except that it maps x into v. Similarly, [ B]s denotes a boolean.

Figure 4 summarizes the semantics of commands. A command transforms the
store into another store; hence its semantics is given in relational style, in the form
s[S]s’. For some S and s, there may not exist any s’ such that s [S]s’; this can
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s [skip] s’ iff s’ =5
sx:=A] s iff Iv:v=[A]y;and s" = [s | x+>V]
s [S1;8,] s iff As” 25 [S1] s and 5" [S5] s’
s [assert(¢)] s” iff s =¢pands’ =s
s [eall p] s" iff s P(p) s’

s [if B then S, else S,] s” iff ([B]; = True and s [S1] s")
or ([B]s; = False and s [S,] ")

s [while B do S od] s" iff 3i > 0:s f; s’ where f; is inductively defined by:
s fo s’ iff [B]; = False and s’ = s
s fig1 8" iff 3s” 2 ([B]y = True and
s [S]s” ands” f; s")

Fig. 4 Command semantics

happen if a while loop does not terminate, or an assert fails. We assume an implicit
global procedure environment P that for each p returns a relation between input
and output stores.

Assertions ¢ are also called 1-assertions since they represent predicates on a
single program state; we write s |= ¢ to denote that ¢ holds in s following the
standard semantics. We write ¢ > ¢’ if whenever s |= ¢ also s = ¢’. As usual we
define ¢; — ¢, as =@ V ¢,; we also define rrue as 0 = 0 and false as 0 = 1.

3.2 Reasoning About Information Flow in Terms
of Noninterference

MILS seeks to prevent security breaches that can occur via unauthorized/unintended
information flow from one partition to another; thus previous certification efforts for
MILS components have among the core requirements included the classical prop-
erty of non-interference [17] which (in this setting) states: for every pair of runs of
a program, if the runs agree on the initial values of one partition’s data (but may
disagree on the data of other partitions) then the runs also agree on the final values
of that partition’s data.

3.3 Capturing Noninterference and Secure Information
Flow in a Compositional Logic

The logic developed in [1] was designed to verify specifications of the following
form: given two runs of P that initially agree on variables x1, . . . , X, the runs agree
on variables y1, ..., ym at the end of the runs. This includes noninterference as a
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special case, as can be seen by letting x1, ..., X,,and y1, ..., Vm, be the variables of
one partition. We may express such a specification, which makes the “end-to-end”
(input to output) aspect of verifying confidentiality explicit, in Hoare-logic style as

{x1%, ., xn X} P {yiX, ..., ymX},

where the agreement assertion xx is satisfied by a pair of states, s; and s,, if
s1(x) = s2(x). With P the example program from Sect. 2, we would have, e.g.,

{INP_1_DATX, OUT_0_DATX, INP_1_RDYX, OUT_0_RDYX} P {OUT_0_DATX}.

To capture conditional information flow, recent work [3] by Banerjee and the first
author introduced conditional agreement assertions, also called 2-assertions. They
are of the form ¢ = Ex which is satisfied by a pair of stores if either at least one
of them does not satisfy ¢, or they agree on the value of E:

s & 51 = ¢ = Exiff whenever s = ¢ and 51 = ¢ then [E]; = [E],-

We use 6 € 2Assert to range over 2-assertions. For § = (¢ = Ex), we call ¢
the antecedent of 6 and write ¢ = ant(f), and we call E the consequent of 6 and
write E = con(6). We often write ExX for true = Ex. We use ® € P(2Assert)
to range over sets of 2-assertions (where we often write 6 for the singleton set {6}),
with conjunction implicit. Thus, s&s1 = @ iff VO € O : s&s1 = 6.

Figure 5 depicts a simple derivation using conditional information flow assertions
that answers the question: what is the source of information flowing into variable
ouT-0-DAT? The natural way to read the derivation is from the bottom up (since our
algorithm works “backward”). Thus, for ouT-0_DATX to hold after execution of P,
we must have DATA_1x before line 3 (since data flows from DATA_1 to OUT_0_DAT),
1INP_1_DATKX before line 2 (since data flows from INP_1_DAT to DATA 1), and finally
INP-1.RDYX and OUT_0_RDYX (since they control which branch of the condition is
taken), along with conditional assertions. The precondition shows that the value of
oUT_0_DAT depends unconditionally on INP_1_RDY and OUT_0_RDY, and conditionally
on INP_1_DAT and OUT_0_DAT, just as we would expect.

{INP_1_RDY A —OUT_0_.RDY = INP.1.DATKX,
—INP_1_RDY V OUT.0_.RDY => OUT_0_DATX,
INP_1.RDYX, OUT-0-RDYX}

1. if 1nvp_1_rRDY and not ouT_0_rRDY then
{Inp_1DATX}

2. DATA_l := INP_1_DAT; INP.1_RDY := false;
{paTa_1x}

3. OUT.0DAT := DATA.1; OUT-0_RDY := true;
{ouT_oDATX}

4. fi
{ouT_oDATX}

Fig. 5 A derivation for the mailbox example, illustrating the handling of conditionals
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3.4 Relations Between Agreement Assertions

We define © >, ©’, pronounced “® 2-implies @’,” to hold iff for all s, s1: whenever
s&s1 = O then also s&s; = ©'. In development terms, when @ >, @’ holds
we can think of @ as a refinement of ® and © an abstraction of ®. For exam-
ple, {xix, yx} refines xx by adding an (unconditional) agreement assertion, and
y < 10 = xx refines y < 7 = xX by weakening the antecedent of a 2-assertion.
In general, logical implication on 1Assert conditions in agreement assertions is re-
lated in a contravariant manner to logical implication in agreement assertions; this
is a special case (with £ = Ej) of the following result:

Lemma 1. Assume that (a) ¢ >1 ¢o, and (b) whenever s |= ¢ and 51 = ¢ and
[Eols = [Eols, then also [E]s = [E]s,. Then (¢o = Eox) >3 (¢ = EX).

Proof. Assuming (i) s&s; = ¢o = Eox and (ii) s = ¢ and 51 |= ¢, we must prove
[E]ls = [E]s,- By (a), we infer from (ii) that s = ¢o and 51 = ¢, which by (i)
implies [Eo]ls = [Eols, - By (b), we get the desired [E]s = [E]s, - |

We define a function decomp that converts arbitrary 2-assertions into assertions with
only variables as consequents: decomp(@)={¢p = xx|p = Ex € O, x € fv(E)}.
For example, decomp(¢p = (x + y)x)={¢p = xX,¢ = yx}.

Fact 2 Forall ©, decomp(O) is a refinement of ©.

The converse does not hold, with a counterexample being s&s; = (x + y)x but
not s&s; = xx or s&s; = yx, as when s(x) = s1(y) = 3,s(y) = s1(x) = 7.

4 Conditional Information Flow Contracts

4.1 Foundations of Flow Contracts

The syntax of a SPARK derives annotation for a procedure P (as illustrated in
Fig. 2a) can be represented formally as a relation Dp between OUTp and P(INp).
A particular clause derives(z, w) € Dp declares that the final value of output vari-
able z depends on the input values of variables w = wy, ..., wg. The correctness of
such a clause as a contract for P can be expressed in terms of the logic of the preced-
ing section, as requiring the triple {wx} S {zix} where S is the body of procedure P
and where wi is a shorthand for {wyx, ..., wgix}.

Because Dp contains multiple clauses (one for each output variable of P),
it captures multiple “channels” of information flow through P. Therefore,
we cannot simply describe the semantics of a multiclause derives contract
{derives(z, w), derives(x, y)} as {(wy)x} S {zx,xx} because this would con-
fuse the dependencies associated with z and x, i.e., it would allow z to depend on y.
Accordingly, the full semantics of SPARK derives contracts is supported by what
we term a multichannel version of the logic which is extended to include indexed
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agreement assertions zX. indexed by a channel identifier ¢ — which one can usually
associate with a particular output variable. In the multichannel logic, the confused
triple above can now be correctly stated as {wx,, yxx} S {zx;, xx}. (Alterna-
tively, we could have rwo single-channel triples: {yx} S {xx} and {wx} S {zx}.)
The algorithm to be given in Sect. 5 extends to the multichannel version of the logic
in a straightforward manner; hence the implementation described subsequently sup-
ports the multichannel version of the logic. For notational simplicity, we continue
the discussion of the semantics of contracts using the single-channel version of
the logic.

We now give a more convenient notation for triples of the form {®}P{O’}. This
will provide a formal interpretation for method contracts that capture conditions
of flows from beginning to end of a method P. A flow judgment « is of the form
O~0’, with O the precondition and with @’ the postcondition. We say that ©@~>©’
is valid for command S, written S |= © ~> @', if whenever s51&s> = © and s5;[S]s]
and s, [S] s% then also s]&s) = @' (if the 2-assertions in the precondition hold for
input states s; and s,, the postcondition must also hold for associated output states
7 and s5).

4.2 Language Design for Conditional SPARK Contracts

The logic of the preceding section is potentially much more powerful than what
we actually want to expose to developers — instead, we view it as a “core calculus”
in which information flow reasoning is expressed. Our design goals that determine
how much of the power of the logic we wish to expose to developers in enhanced
SPARK conditional information flow contracts are (1) the effort required to write
the contracts should be as simple as possible, (2) the contracts should be able to
capture common idioms of MILS information guarding, (3) the contract checking
framework should be compositional so as to support MILS goals, and (4) there
should be a natural progression (e.g., via formal refinements) from unconditional
derives statements to conditional statements.

4.2.1 Simplifying Assertions

The agreement assertions from the logic of Sect. 3 have the form ¢ = Ex. Here
E is an arbitrary expression (not necessarily a variable), whereas SPARK derives
statements are phrased in terms of IN/OUT variables only. We believe that includ-
ing arbitrary expressions in SPARK conditional derives statements would add
significant complexity for developers, and our experimental studies have shown
that little increase in precision would be gained by such an approach. Instead, we
retain the use of expression-based assertions ¢ = Ex only during intermedi-
ate(automated) steps of the analysis. Appealing to Fact 2, we have a canonical way
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of strengthening, at procedure boundaries, ¢ = EX to ¢ = wiX,..., ¢ = wiX
where fv(E) = {wi,...,wg}. A second simplification relates to the fact that the
core logic allows both pre- and postconditions to be conditional (e.g., {¢1 =
Eix} P {¢po = E,x} where ¢; and ¢, may differ.) Based on discussions with
developers at Rockwell Collins and initial experiments, we believe that this would
expose too much power/complexity to developers leading to unwieldy contracts and
confusion about the underlying semantics. Accordingly, we are currently pursuing
an approach in which only preconditions can be conditional. Combining these two
simplifications, SPARK derives clauses are extended to allow conditions on input
variables as follows:

derives x from y; when @1,

s

Vi when @y

Here ¢4, ..., ¢x are boolean expressions on the prestate of the associated proce-
dure P. Thus, the above specification can be read as “The value of variable x at the
conclusion of executing P (for any final state s’) is derived from those y; where
¢; holds in the prestate s from which s’ is computed.” Additional syntactic sugar
can be introduced to simplify the contract notation, e.g., when input variables are
conditioned (guarded) using the same expression. Figure 2b shows how this can be
used to specify conditional flows for procedure MACHINE_STEP in Fig. 1.

4.2.2 Design Methodology Separating Guard Logic from Flow Logic

The lack of conditional assertions in postconditions has the potential to introduce
imprecision. Yet, we believe that the above approach to conditional expressions can
be effective for the following reason: we have observed that information assurance
application design tends to factor out the guarding logic (i.e., the pieces of state and
associated state changes that determine when information can flow) from the code
which propagates information. This follows a common pattern in embedded systems
in which the control logic is often factored out from data computation logic.

This informal design strategy can be firmed up and presented as an effective
design methodology: some procedures act to modify the conditions under which
information flows (the guard logic) while other procedures actually realize the
flows. This could be enhanced by an explicit declaration of the guard state, i.e.,
the program variables that can be observed by guards. Guard state variables would
be modified in guard logic procedures, but not be modified in any procedure that
declares conditions based on those guards. SPARK’s existing IN/OUT variable
annotations can capture this requirement (i.e., we could require that no variable
appearing in a condition can be a member of OUT).
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4.2.3 Contract Abstraction and Refinement

For a practical design and development methodology, it is important to consider
notions of contract abstraction (generalization) and refinement — ideally, conditional
contracts should be a refinement of unconditional contracts. For example, we be-
lieve it will be easier to introduce conditional contracts into workflows if developers
can (1) make a rough cut at specifying information flows without conditions and
(2) systematically refine to produce conditional contracts. In addition, in situations
where developers have trouble capturing flow policies, they can state flows without
conditions and expert verification engineers can later refine those into conditional
contracts. Conversely, it is important for managers to understand that they are not
locked into our emerging technology; if they decide not to pursue a verification
approach based on conditional SPARK contracts, they can safely abstract all condi-
tional contracts back to unconditional contracts.

We now establish the desired notion of contract refinement (in terms of the gen-
eral underlying calculus instead of its limited exposure in SPARK), by defining a
relation between flow judgments: k; >, k2, pronounced “k; refines «,” to hold iff
for all commands S, whenever S = k1 then also S = «5.

To gain the proper intuition about contract refinement, it is important to note
that the refinement relation is contravariant in the precondition and covariant in
the postcondition: given k1 = @1~ O] and k» = O~ O, if O, >, O and
O} > O) then k1 > k2. For example, XX ~> yx >, xX,yX ~> yx holds be-
cause xx, yx >, xX (Sect. 3). Intuitively, this captures the fact that a contract can
always be abstracted to a weaker one by stating that the output variables may de-
pend on additional input variables. This illustrates that our contracts capture “may”
dependence modalities: output y may depend on both inputs x and y, but a refine-
ment xx ~> yx shows that output y need not depend on input y (the contract
before refinement is an over-approximation of dependence information). Also, we
have (y <7 = xX~» zX) B>, (XX ~>zX), which realizes our design goals of achiev-
ing (a) a formal refinement by adding conditions to a contract and (b) a formal (safe)
abstraction by removing conditions.

5 A Precondition Generation Algorithm

We define in Fig. 6 an algorithm Pre for inferring preconditions from postcondi-
tions. We write {®} (R) <= S {®’} when, given command S and postcondition
©’, Pre returns a precondition ® for S that is designed so as to be sufficient to estab-
lish ® and a relation R that associates each 2-assertion § € @’ with the 2-assertions
in ® needed to establish 6. R captures dependences between variables before and
after the execution of S, and it also supports reasoning about multiple channels of
information flow as discussed in Sect. 4.1, e.g., if {y1 y2Xx, y1y3x.} S {xXx, 27X},
then R will relate y; to x and to z, y» to x, and y3 to z. More precisely, we
have R C ©® x {m,u} x O, where tags m,u are mnemonics for “modified”
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{®} (R)<=skip{O®'} iff R ={(0,u,0) |0 € @'}and ©® = &’
{O} (R) <= assert(¢y) {O'} iff R={((p A ) = EX,u,¢ = EX) | ¢p = Ex€®’} and ©® =dom(R)

{0} (R)<=x = A{O'} iff R ={(¢[A/x] = E[A/x]X,y,¢ = EX) | ¢p = Ex € @'},
where y = m iff x € fv(E) and ® = dom(R)

{0} (R) <= S1; 5, {0} iff {0"} (Ry) <= S, {0’} and {O} (R,) <= S, {O"}
and R={(0,y,0") 30", y1,v2: (0,v1,0”)€Ry, (0”,2,0") ERy}, where y = miff yy=mor y,=m

{®} (R) <= if B then S else S, {O®'}

iff {&1} (R) <= S {0}, {0} (R) <= S,{O'}, R=R; U R, U R{U Ry, and ® = dom(R),

where R| = {((¢1 A B) = E;x,m,0") |0’ € O, (¢ = Ex,_,0') € R}

and R}, = {((¢» A—B) = E;x,m,0") | 0’ € ©,,, (¢, = E»x,_,0) € Ry}

and R = {(((¢1 A B) V (¢ A —B)) = Bx,m,§’)
|0 €,
and Ry = {(((¢1 A B) V (¢2 A —=B)) = Ex,u, )

|6’ €O, (g = Ex,u,0’) € Ry, (¢ = Ex,u,0’) € R,}

and @), ={6’ € ® |3(,m,0’) e RiUR}and ®, = O\ O},

{O} (R) <=call p {O'}
iff R= R, U RyU R,, and ® = dom(R),
where R, = {(rm{r, () = Ex,u,¢ = Ex) | (p = Ex) € @ AN(E) NOUT, = 0}
and Ry = {(rmg'UTP (@) = wx,m,¢p = Ex)
| (¢ = Ex) € @ Afv(E)NOUT, # @ Awefv(E) Aw ¢ OUT,}
and R,y = {(rmdyr, (@) A &7, = ¢, m, ¢ = Ex)
| (9 = Ex)e®@ Awefv(E) NOUT, A ¢}, = zX among preconditions for wx in p’s summary }

{®} (R) <= while B do S, od {®’}
iff R= R, U R,, and @ = dom(R),
where for each w € X (with X the variables “involved”) we inductively in i define ¢/, ©', R, ¥ by
¢ =\V{p |3E : (¢p = ExX)e@ Awelv(E)}, O ={¢, = wx |we X}, {} (R) < S, {O'}
yi=V{¢ |3 = Ex,_, ) € R withw € fv(E)
orw € fv(B) and 3(0, m, 0’) € R' with ¢ = ant(0) or ¢ = ant(8’)}
G =if Y D> g then g else 6, vV,
and j is the least i such that @ = @ t!
and R,={(¢ = Ex,u,0")|0’€ 0, E =con(8"),({v(E)=0,¢ =true) vV ((V(E) # 0,0 =ty ($0))}
and R, ={(0,m,0’) | 6’ € ®), AO € @ U {true = 0x}}
and O], ={0" € @ | 3w € fv(con(0")) : A(.,m,. = wx) € R/} and @, = @'\ O,

(¢ = Eix,.,0') € Ry, (¢ = Erx,_,0) € Ry}

Fig. 6 The precondition generator

and “unmodified”; if (6,u,6’) € R then additionally it holds that S modifies no
“relevant” variable, where a “relevant” variable is one occurring in the consequent
of 6’. We use y to range over {m, u} and write dom(R) = {6 | 3(0,_,.) € R} and
ran(R) = {0’ | (-, -, 0") € R}.

5.1 Correctness Results

If {®} () <= S {®'}, then O is indeed a precondition (but not necessarily the
weakest such) that is strong enough to establish @', as stated by:

Theorem 1 (Correctness). Assume {O} ()<= S {O'}. Then S E © ~>O'. That
is, if s&s1 |= O, and s', s are such that s [S] s" and s1 [S] 57, then s'&s)| = ©'.
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Note that Theorem 1 is termination insensitive; this is not surprising given our
choice of a relational semantics (but see [2] for a logic-based approach that is termi-
nation sensitive). Also note that correctness is phrased directly wrt the underlying
semantics, unlike [1,4] which first establish the semantic soundness of a logic and
next provide a sound implementation of that logic. Theorem 1 is proved in the tech-
nical report accompanying this paper [5], much as the corresponding result [3] (that
handled a language with heap manipulation but without procedure calls and without
automatic computation of loop invariants), by establishing some auxiliary properties
that have largely determined the design of Pre. The first such property is a variant
of the “*-property” by Bell and La Padula [11], also called “write confinement” [7],
which is used to preclude, e.g., “low writes under high guards.” In our setting, it
captures the role of the u tag and reads as follows:

Lemma 3. Assume {®} (R) <= S {®'}. Then dom(R) = O and ran(R) = ©'.
Given 0’ € O/, there exists at most one 6 such that (6,u,0’) € R. If there exists
such 0, then con(0) = con(0’), and with E = con(6) we have that if s [S] s’ then s
agrees with s’ on fv(E).

Lemma 3, proved in [5], is needed in the proof of Theorem 1 to handle the case
where the two runs in question follow different branches in a conditional, as we
must then ensure that neither run modifies a variable on which we want the two runs
to agree afterward. We shall also use a lemma, proved in [5], which expresses that
there will always be one applicable condition in the precondition:

Lemma 4. Assume {®} (R) <= S {O'}. Given 0’ € @', there exists (0, _,0') € R
such that whenever s [S] s" and s’ \= ant(0') then s = ant(6).

5.2 Intraprocedural Analysis

We now explain the various clauses of Pre in Fig. 6, where the clause for skip is
trivial. For an assignment x := A, each 2-assertion ¢ = Ex in @’ produces exactly
one 2-assertion in @, given by substituting A for x (as in standard Hoare logic) in
¢ as well as in E; the connection is tagged m when x occurs in E. For example, if
S is x := w then R might contain the triplets (y > 4 = wx,m,y > 4 = xx) and
(w>3=zx,u,x >3 = zX).

The rule for Sy ; S> works backward, first computing S,’s precondition which
is then used to compute S;’s; the tags express that a consequent is modified iff
it has been modified in either S; or S,. The rule for assert allows us to weaken
2-assertions, by strengthening their antecedents; this is sound since execution will
abort from stores not satisfying the new antecedents.

To illustrate and motivate the rule for conditionals, we shall use Fig.5 where,
given postcondition ouT_0_DATX, the then branch generates (as the domain of R;)
precondition INP_1_DATK, which by R contributes the first conditional assertion
of the overall precondition. The skip command in the implicit else branch gen-
erates (as the domain of R») precondition ouT_0_DATX which by R’ contributes
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the second conditional assertion of the overall precondition. We must also capture
that two runs, in order to agree on OUT-0-DAT after the conditional, must agree
on the value of the test B; this is done by R; which generates the precondition
(true A B) Vv (true A —B) = Bx; optimizations (not shown) in our algorithm sim-
plify this to Bx and then use Fact 2 to split out the variables in the conjuncts of
B into the two unconditional assertions of the overall precondition. Finally, assume
the postcondition contained an assertion ¢ = Ex, where E is not modified by ei-
ther branch: if also ¢ is not modified then ¢ = Ex belongs to both R; and R»,
and hence by Ry also to the overall precondition; if ¢ is modified by one or both
branches, Ry generates a more complex antecedent for E'x.

5.3 Interprocedural Analysis

A procedure summary for p must satisfy:

1. If s P(p) s’ then s(w) = s'(w) for all w ¢ OUT,,.

2. A postcondition is of the form wx with w € OUT,, and for each w € OUT,,

there is exactly one postcondition wix.

A precondition is of the form ¢ = zx.

For each postcondition wix, there is a precondition of the form true = zx.

5. For each postcondition wix, with ®,, its preconditions: if s&s; = ©,, and
s P(p) s’ and s1 P(p) s}, then s'(w) = s7(w).

> w

Here Requirement 1 expresses that OUT,, does indeed contain all output variables.
Requirements 2 and 3 were motivated in Sect. 4.2. Requirement 4 is needed for
Lemma 4 to hold; it might seem restrictive but can always be established without
losing precision, as by adding true = g, where q is a variable not occurring in the
program. Requirement 5 expresses that the summary computes correct information
flow.

At a call site call p, antecedents in the call’s postcondition will carry over to
the precondition, provided that they do not involve variables in OUT p. Otherwise,
since our summaries express variable dependencies but not functional relationships,
we cannot state an exact formula for modifying antecedents (unlike what is the case
for assignments). Instead, we must conservatively strengthen the preconditions, by
weakening their antecedents; this is done by an operator rm™ such that if ¢’ =
rm;(gi)) (where X = OUT,) then ¢ logically implies ¢’ where ¢’ does not contain
any variables from X. A trivial definition of rm™ is to let it always return true
(which drops all conditions associated with X), but we can often get something
more precise; for instance, we can choose rm{t{} (x>7Az>5 =(z>5)asis

done by the following definition of rm™.

We define rm™, having the property that if ¢’ = rm} (¢) then ¢’ does not
contain any variables from X, and is logically implied by ¢, simultaneously with its
dual rm™ which has the property that if ¢’ = rm (¢) then ¢’ does not contain any
variables from X and logically implies ¢.
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Summary information for p:
OouT, = {x}
derives x from y, 2z when y>0, w when y<0

Procedure call

{z>T=>vX,z>5=>uX, z2>5=yX, z2>5Ay>0=2zX, z>5Ay <0 = wx}
call p
{x>5Az2>T=2vX, x>7TAz2>5= (x+ux}

Fig. 7 An example illustrating the handling of procedure calls

rmy (B) = true if fv(B) N X # @ rmy (B) = false it tv(B)N X # 0
rm¥(B) = B iffv(B)N X =0 rmy(B) = B ifftv(B)NX =0
rmy (g1 A ) = rmE (@) Armf () | rmy (@1 Ada) = rmy(d1) Army ()
rm¥ 1V g2) = rmE (@) VrmE () | rmy @1V da) = rmy () V rmy ()
rm3 (=) = —=rm (¢o) rmy (=¢o) = —rm¥ (o)

Equipped with rm™, we can now define the analysis of procedure call, as
done in Fig.6 and illustrated in Fig.7. Here R, deals with assertions (such as
x> 5Az>7 = vx in the example) whose consequent has not been modified
by the procedure call (its “frame conditions” determined by the OUT declaration).
For an assertion whose consequent £ has been modified (suchasx > 7 Az > 5 =
(x + u)x), we must ensure that the variables of E agree after the procedure call
(when the antecedent holds). For those not in OUT, (such as u), this is done by
Ry (which expresses some “semiframe conditions”); for those in OUT, (such as x),
this is done by R, which utilizes the procedure summary (contract) of the called
procedure.

5.4 Synthesizing Loop Invariants

For while loops (the only iterative construct), the idea is to consider assertions of
the form ¢, = xx and then repeatedly analyze the loop body so as to iteratively
weaken the antecedents until a fixed point is reached. To illustrate the overall behav-
ior, consider the example in Fig. 8§ where we are given rix as postcondition; hence
the initial value of r’s antecedent is true, whereas all other antecedents are initial-
ized to false. The first iteration updates v’s antecedent to odd(1), since v is used to
compute r when 1 is odd, and also updates i’s antecedent to true, since (the parity
of) i is used to decide whether r is updated or not. The second iteration updates x’s
antecedent to —0dd (1), since in order for two runs to agree on v when i is odd, they
must have agreed on x in the previous iteration when i was even. The third iteration
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while 1 < 7 do Iteration 0 1 2 3
if odd (1) false  false false false = hx
then r := r + v; false  true true true = ix
v :=Vv + h true  true true true = ¥X
else v := Xx; false odd(i) odd(i) odd(i) = vx
i:=1+1 false false —odd(i) true = xx
{rx}

Fig. 8 TIterative analysis of while loop. (We use 0dd(i) as a shorthand for i mod2 = 1)

updates x’s antecedent to frue, since in order for two runs to agree on x when 1 is
even, they must agree on x always (as x does not change). We have now reached a
fixed point. It is noteworthy that even though the postcondition mentions rix, and r
is updated using v which in turn is updated using h, the generated precondition does
not mention h, since the parity of i was exploited. This shows [3] that even if we
should only aim at producing contracts where all assertions are unconditional, pre-
cision may still be improved if the analysis engine makes internal use of conditional
assertions.

In the general case, however, fixed point iteration may not terminate. To ensure
termination, we need a “widening operator” 7 on 1-assertions, with the following
properties:

(a) Forall ¢ and ¥, ¥ logically implies ¥ 7 ¢ and also ¢ logically implies ¥ 7 ¢
(b) If for all i we have that ¢’ *! is of the form v v/ ¢', then the chain {¢’ | i > 0}
eventually stabilizes.

A trivial widening operator is the one that always returns frue, in effect converting
conditional agreement assertions into unconditional. A less trivial option will utilize
a number of assertions, say V1, ..., ¥k, and allow ¥ 7 ¢ = ; if ¥; is logically
implied by 1 as well as by ¢; such assertions may be given by the user if he has a
hint that a suitable invariant may have one of /1, ..., Y as antecedent.

We can now explain the various lines in the clause for while loops in Fig. 6. The
iteration starts with antecedents ¢° that are computed such that the correspond-
ing 2-assertion, @', implies the postcondition ®’. The ith iteration updates the
antecedents ¢! into antecedents ¢fv+l that are potentially weaker in that for each
w € X, each disjunct of y! must imply ¢/ *1; here v captures the “business logic”
of the while loop:

1. If the precondition computed for the iteration contains an assertion ¢ = EX
with w € fv(E), then ¢ is an element of ! .

2. If a consequent has been modified by the loop body, then the antecedent must
belong to ! for all w € fv(B).

Here (2) ensures that if one run stays in the loop and updates a variable on which
the two runs must agree, then also the other run stays in the loop (similar to the
role of Ry in the clause for conditionals), whereas (1) caters for the soundness when
both runs stay in the loop, cf. the role of R} and R) in the case for conditionals.
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Alternatively, to more closely follow the rule for conditionals, for (1) we could
instead demand that ¢ A B belongs to wv"v; our current choice reflects that we expect
the bodies of while loops to be prefixed by assert statements (which will automati-
cally add B to the antecedents), but do not expect such transformations for branches
of a conditional.

With the iteration stabilizing after j steps (thanks to the widening operator), the
while loop’s precondition & and its R component can now be computed; the former
is given as the domain of the latter which is made up from two parts:

e First, R, deals with those assertions in ®" whose consequents have not been
modified (a kind of “frame condition” for the while loop); each such asser-
tion is connected to an assertion with the same consequent (so as to establish
Lemma 3) but with an antecedent that is designed to be so weak that we can
establish Lemma 4.

e Next, R,, deals with those assertions in ®' whose consequents have been
modified; each such assertion is connected to all other assertions in @7 so as
to express that the subsequent iterations of the while loop may give rise to chains
of variable dependences. (It would be possible to give a definition that in most
cases it produces only a subset of those connections, but this would increase the
conceptual complexity of Pre, without — we conjecture — any improvement in
the overall precision of the algorithm.) In addition, again to establish Lemma 4,
we introduce a trivial assertion true = 0x.

6 Evaluation

6.1 Summary of Performance

The algorithm of Sect.5 provides a foundation for automatically inferring con-
tracts from implementations, but can also be used for checking (conditional and
unconditional) derives contracts supplied by a developer: first run the inference
algorithm per method and then check (currently by hand but we are looking into au-
tomatization) if the contract precondition implies the precondition generated by the
algorithm. In principle, this approach may reject a sound contract since the inference
algorithm (due to approximations) does not always generate the weakest precondi-
tion (i.e., the strongest antecedents), but we have verified by manual inspection that
the algorithm never produces a contract that is less precise than the original SPARK
contract.

There is much merit in a methodology that encourages writing of the con-
tract before writing/checking the implementation. However, one of our strategies
for injecting our techniques into industrial development groups is to pitch the
tools as being able to discover more precise conditional specifications to sup-
plement conventional SPARK derives contracts already in the code; thus we
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focus the experimental studies of this section on the more challenging problem
of automatically inferring contracts starting from code with no existing derives
annotations.

For each procedure P, with OUTp = {wj, ..., wg}, the algorithm analyzes the
body wrt a postcondition wyX1, ..., wgXg. Since SPARK disallows recursion, we
simply move in a bottom-up fashion through the call-graph — guaranteeing that a
contract exists for each called procedure. When deployed in actual development,
one would probably allow developers to tweak the generated contracts (e.g., by
removing unnecessary conditions for establishing end-to-end policies) before pro-
ceeding with contract inference for methods in the next level of the call hierarchy.
However, in our experiments, we used autogenerated contracts for called methods
without modification. All experiments were run under JDK 1.6 on a 2.2-GHz Intel
Core2 Duo.

6.1.1 Code Bases

Embedded security devices are the initial target domain for our work, and the
security-critical sections to be certified from these code bases are often relatively
small, e.g., roughly 1,000 LOC for the guard partition of the Rockwell Collins high
assurance guard mentioned earlier and 3,000 LOC for the (undisclosed) device re-
cently certified by Naval Research Labs researchers [19]. For our evaluation, we
consider a collection of five small to moderate size applications from the SPARK
distribution in addition to an expanded version of the mailbox example of Sect. 2. Of
these, the Autopilot and Missile Control applications are the most realistic. There are
well over 250 procedures in the code bases, but due to space constraints, in Table 1
we list metrics for only the most complex procedures from each application (see
[29] for the source code of all the examples). Columns LOC, C, L, and P report the
number of noncomment lines of code, conditional expressions, loops, and procedure
calls in each method. Our tool can run in two modes. The first mode (identified as
version 1 in Table 1) implements the rules of Fig. 6 directly, with just one small op-
timization: a collection of boolean simplifications are introduced, e.g., simplifying
assertions of the form true A ¢ = Ex to ¢ = Ex. The second mode (version 2 in
Table 1) enables a collection of simplifications aimed at compacting and eliminating
redundant flows from the generated set of assertions. One simplification performed
is elimination of assertions with false in the antecedent (these are trivially true) and
elimination of duplicate assertions. Also, it eliminates simple entailed assertions,
such as ¢=Ex when frue=Ex also appears in the assertion set.

6.1.2 Typical Refinement Power of the Algorithm

Column O gives the number of OUT variables of a procedure (this is equal to
the number of derives clauses in the original SPARK contract), and Column SF
gives the number of flows (total number of IN/OUT pairs) appearing in the original
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Table 1 Experiment data (excerpts)

Time
Flows Cond. Flows Gens. (seconds)

Package.Procedure Name LP 28 1 21 2

Autopilot. AP.Altitude.Pitch.Rate.History_Average 10 0 1 0 1 2 5 30 0 0 0 0.047 0.063
Autopilot. AP.Altitude.Pitch.Rate.History_Update 8 1 1 0 1 2 3 30 0 0 0 0.000 0.157
Autopilot. AP.Altitude.Pitch.Rate.Calc Pitchrate 13 2 02 2 7 17 8 0 0 15 15 0.000 0.015
Autopilot. AP.Altitude.Pitch. Target_ROC 9 20012 7 3.6 2 0 0 0.000 0.000
Autopilot. AP.Altitude.Pitch. Target_Rate 17 401 13 53 4 42 0 142 46 0.015 0.015
Autopilot. AP.Altitude.Pitch.Calc_ElevatorMove 7 0 0 1 1 3 4 4 0 0 0 0 0.000 0.000
Autopilot.AP.Altitude.Pitch.Pitch_AP 7 004 21154 114 0 0 0 0.015 0.000
Autopilot. AP.Altitude.Maintain 201 4193 2323 19 0 0 0.000 0.015
Autopilot. AP.Heading.Roll. Target_-ROR 15 30112 4 30 0 26 26 0.000 0.000
Autopilot. AP.Heading.Roll. Target_Rate 1 20113 9 4 0 0 14 14 0.000 0.000
Autopilot. AP.Heading.Roll.Calc_Aileron_-Move 7 001 13 4 4 0 0 0 0 0.000 0.000
Autopilot. AP.Heading.Roll.Roll_AP 7 00427 9 70 0 0 0 0.000 0.000
Autopilot. AP.Control 19 10138 46 58 540 0 63 51 0.016 0.032
Autopilot. AP.Heading. Yaw.Calc_Rudder_Move 7 001 12 4 30 0 0 0 0.000 0.000
Autopilot. AP.Heading. Yaw. Yaw_AP 5 003 25 5 50 0 0 0 0.000 0.000
Autopilot.Scale.Inverse 4 000 11 10 0 0 0 0.000 0.016
Autopilot.Scale.Scale_Movement 22 402 14 47 1046 9 0 0 0.016 0.000
Autopilot.Scale.Heading_Offset 7 100 11 3 1 2 0 0 0 0.000 0.000
Autopilot.Heading. Maintain 6 102 4 1528 216 16 0 0 0.000 0.000
Autopilot.Main 5 011 8 47 176 540 0 0 0 0.0310.031
Minepump.Logbuffer.Protected Write 8§ 100 59 9 9 4 4 0 0 0.031 0.047
Minepump.Logbuffer.ProtectedRead 6 000 56 7 7 0 0 0 0 0.000 0.000
Minepump.Logbuffer. Write 2 001 59 11 9 3 1 0 0 0.000 0.000
Mailbox. MACHINE_STEP 17 200 6 16 18 1812 12 0 0 0.047 0.062
Mailbox.Main 6 011 6 1654 220 0 2 2 0.031 0.016
BoilerWater-Monitor.FaultIntegrator. Test 11 3 00 4 11 46 2242 18 0 0 0.047 0.047
BoilerWater-Monitor.FaultIntegrator.ControlHigh 8 1 0 2 2 4 6 50 0 2 2 0.000 0.000
BoilerWater-Monitor.FaultIntegrator.ControlLow 8 1 0 2 2 4 6 50 0 2 2 0.000 0.000
BoilerWater-Monitor.FaultIntegrator.Main 11 016 22 14 40 0 0 0 0.016 0.016
Lift-Controller.Next_Floor 9 20012 7 4 6 3 0 0 0.047 0.047
Lift-Controller.Poll 22 21329 77 1243 0 0 0 0.0310.031
Lift-Controller.Traverse 18 01 113 10 210 1366 O 0 0 0.281 0.063
Missile_Guidance.Clock_Read 12 200 35 13 1110 8 0 0 0.047 0.047
Missile_Guidance.Clock_Utils_Delta_Time 7 10012 4 2 2 0 0 0 0.000 0.000
Missile_Guidance.Extrapolate_Speed 13 20227 14 106 4 36 16 0.000 0.000
Missile_Guidance.Code_To_State 12 300 17 15 9 14 8 0 0 0.000 0.000
Missile_Guidance. Transition 20 4 02 1 9 3,527 63 3,524 62 4 4 0.156 0.125
Missile_Guidance..Relative_Drag_At_Altitude 8§ 200 11 7 3 6 2 0 0 0.000 0.000
Missile_Guidance.Drag_cfg.Calc_Drag 21 401 13 37 3 34 0 0 0 0.000 0.000
Missile_Guidance.If_Airspeed_Get_Speed 6 100 23 4 4 2 2 0 0.000 0.000
Missile_Guidance.Nav.Handle_Airspeed 18 404 3 13 117 28110 25 18 18 0.000 0.000
Missile-Guidance.Nav.Estimate_Height 21 502 2 11 60 1857 16 4 4 0.000 0.000

contract. Column Flows gives the number of flows generated by different versions
of our algorithm. This number increases over SF as SPARK flows are refined into
conditional flows (often creating two or more conditioned flows for a particular
IN/OUT variable pair). The data shows that the compacting optimizations often
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substantially reduce the number of flows; the practical impact of this is to sub-
stantially increase the readability/tractability of the contracts. Column Cond. Flows
indicates the number of flows from Flows that are conditional. Not only we expect to
see the refining power of our approach in procedures with conditionals (column C)
primarily, but we also see increases in precision that is due to conditional contracts
of called procedures (column P). In few cases, we see a blow-up in the number
of conditional flows. The worse case is MissileGuidance.Transition, which
contains a case statement with each branch containing nested conditionals and pro-
cedure calls with conditional contracts — leading to an exponential explosion in path
conditions. Only a few variables in these conditions lie in what we consider to be
the “control logic” of the system. The tractability of this example would improve
significantly with the methodology suggested earlier in which developers declare
explicitly the guarding variables (such as the xx_RDY variables of Fig. 1) and the al-
gorithm then omits tracking of conditional flows not associated with declared guard
variables. Overall, a manual inspection of each inferred contract showed that the
algorithm usually produces conditions that an expert would expect.

6.1.3 Efficiency of Inference Algorithm

As can be see in the Time columns, the algorithm is quite fast for all the examples,
usually taking a little longer in version 2 (all optimizations on). However, for some
examples, version 2 is actually faster; these are the cases of procedures with calls to
other procedures. Due to the optimizations, the callees now have simpler contracts,
simplifying the processing of the caller procedures.

6.1.4 Sources of Loss of Precision

We would like to determine situations where our treatment of loops or procedure
calls leads to abstraction steps that discard conditional information. While this is
difficult to determine for loops (one would have to compare to the most precise loop
invariant — which would need to be written by hand), Column Gens. indicates the
number of conditions dropped across processing of procedure calls. The data shows,
and our experience confirms, that the loss of precision is not drastic (in some cases,
one wants conditions to be discarded), but more experience is needed to determine
the practical impact on verification of end-to-end properties.

6.1.5 Threats to Validity of Experiments

While the applications we consider are representative of small embedded controller
systems, only the mailbox example is an information assurance application. While
these initial results are encouraging, we are still in the process of negotiating access
to the source code of actual products being developed at Rockwell Collins; that will
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allow us to answer the important question: does our approach provide the precision
needed to better verify local and end-to-end MILS policies, without generating large
contracts that become unwieldy for developers and certifiers?

6.2 Detailed Discussion of Selected Examples

In this section, we give a detailed discussion of two case studies: the Mailbox exam-
ple (briefly discussed in Sect. 2) and part of the control code for the Autopilot code
base (for which number figures were given in Table 1). For the Mailbox, we will
discuss in detail the MACHINE_STEP procedure, previously introduced, comparing
the results of running our tool with the original SPARK specification. In the Au-
topilot case study, we will discuss four procedures and two functions, spanning an
entire call chain in the package, starting at the Main procedure, and going through
the code that controls the altitude in this simplified example of an aircraft autopilot.

6.2.1 Mailbox Example

This example was discussed in detail in Sect. 2, so we will focus in comparing the
resulting information flow specifications obtained from running our tool on the code
with the original SPARK specification. Figure 9 shows the procedure MACHINE_STEP
with the original SPARK information flow specification. Figure 10 shows the in-
formation flow specification obtained by running our tool on the same procedure
(using the slightly modified version of the SPARK language described in Sect. 4.2).
For simplicity, in Fig. 10 we have omitted the body of the procedure, as well as the
global annotations. In addition to using unabbreviated variable names, the code of
Fig. 9 differs from that of Fig. | in its use of procedures to manipulate both the con-
trol variables (e.g., Mailbox.CHARACTER.INPUT_0_READY) as well as the data vari-
ables of the system. For example, the procedure NOTIFY_INPUT_0_CONSUMED clears
the Mailbox.CHARACTER-INPUT_0_READY flag where as NOTIFY_OUTPUT-1_READY
sets the Mailbox.CHARACTER-OUTPUT-1_READY flag.

Upon close examination of Fig. 10, we can see the usage of the symbol {}. These
empty braces are used to represent flow from a constant value. For example, in the
following information flow declaration from Fig. 10:

derives ... Mailbox.CHARACTER.INPUT_-0.READY from
{} when (Mailbox.CHARACTER_INPUT-0_.READY
and not Mailbox . CHARACTER.OUTPUT._1.READY)

indicates that the variable Mailbox.CHARACTER_INPUT_O_READY, in the case when
the condition specified holds, has its postcondition value derived from a constant
instead of another variable. By examining the code in Fig. 9, we can see that this is
the case when Mailbox.CHARACTER.-INPUT_0_READY is assigned the literal false.
The results displayed in Fig. 10 show that the information flow specifications for
every variable in this example have been refined with at least one conditional flow.
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procedure MACHINE.STEP
—# global in out Mailbox . CHARACTER-INPUT-0-READY ,
—# Mailbox . CHARACTER-INPUT-1-READY ,

—# Mailbox . CHARACTER-OUTPUT-0-READY ,

—# Mailbox . CHARACTER-OUTPUT-1-READY ,

—# Mailbox . CHARACTER.OUTPUT-0-DATA ,

—# Mailbox . CHARACTER.OUTPUT .1 .DATA ;

—# in Mailbox . CHARACTER.INPUT.0.DATA

—# Mailbox . CHARACTER.INPUT.1 .DATA ;

—# derives Mailbox.CHARACTER.OUTPUT-.0-DATA from Mailbox.CHARACTER.INPUT.I.DATA,
—# Mailbox . CHARACTER.OUTPUT-0-READY ,
—# Mailbox . CHARACTER-OUTPUT-0-DATA
—# Mailbox . CHARACTER-INPUT.1.READY &
—# Mailbox . CHARACTER-OUTPUT-1.DATA from Mailbox . CHARACTER.INPUT-0-DATA ,
—# Mailbox . CHARACTER-INPUT-0-READY ,
—# Mailbox . CHARACTER-OUTPUT-1.DATA
—# Mailbox . CHARACTER.OUTPUT-1 .READY &
—# Mailbox . CHARACTER.INPUT-0-READY from Mailbox.CHARACTER-INPUT-0-READY ,
—# Mailbox . CHARACTER.OUTPUT-1 .READY &
—# Mailbox . CHARACTER-INPUT-1.READY from Mailbox.CHARACTER-INPUT-1-READY,
—# Mailbox . CHARACTER.OUTPUT-0-READY &
—# Mailbox . CHARACTER.OUTPUT-.0-READY from Mailbox . CHARACTER-OUTPUT.0-READY ,
—# Mailbox . CHARACTER-INPUT.1_READY &
—# Mailbox . CHARACTER-OUTPUT-1-READY from Mailbox . CHARACTER-OUTPUT.1.READY ,
—# Mailbox . CHARACTER-INPUT-0-READY ;

is
DATA.0 : CHARACTER:
DATA.l : CHARACTER;
begin
if Mailbox .INPUT.0.READY and Mailbox .OUTPUT.I.CONSUMED then
DATA.0 := Mailbox .READ.INPUT.0;
Mailbox . NOTIFY_INPUT.0.CONSUMED ;
Mailbox . WRITE.OUTPUT-1(DATA.0);
Mailbox .NOTIFY.-OUTPUT-1.READY ;
end if;

if Mailbox .INPUT.-I.READY and Mailbox .OUTPUT.0.CONSUMED then
DATA-l := Mailbox .READ.INPUT.I;
Mailbox . NOTIFY_INPUT.1.CONSUMED ;
Mailbox . WRITE.OUTPUT-0 (DATA.I);
Mailbox . NOTIFY.OUTPUT-0-READY ;
end if;
end MACHINE.STEP ;

Fig. 9 Original SPARK specification for Mailbox example

procedure MACHINE.STEP;
—# derives Mailbox. CHARACTER.OUTPUT.0-DATA
—# Jfrom Mailbox . CHARACTER_.INPUT.1 .DATA

—# when (Mailbox . CHARACTER-INPUT-1-READY and not Mailbox.CHARACTER-OUTPUT-0-READY ),
—# Mailbox . CHARACTER-OUTPUT.0-READY ,

—# Mailbox . CHARACTER.OUTPUT-0-DATA

—# when (not (Mailbox.CHARACTER.INPUT-I1.READY and not Mailbox . CHARACTER.OUTPUT-0-READY )) ,
—# Mailbox . CHARACTER-INPUT-1.READY &

—# Mailbox . CHARACTER-OUTPUT-1-DATA

—# from Mailbox . CHARACTER-INPUT-0-DATA

—# when (Mailbox . CHARACTER-INPUT-0-READY and not Mailbox . CHARACTER-OUTPUT-1-READY ),
—# Mailbox . CHARACTER.INPUT.0.READY ,

—# Mailbox . CHARACTER.OUTPUT .1 -DATA

—# when (not (Mailbox.CHARACTER.INPUT.0.READY and not Mailbox . CHARACTER.OUTPUT.1.READY ) ) ,
—# Mailbox . CHARACTER.OUTPUT.1 .READY &

—# Mailbox . CHARACTER.INPUT-0.READY

—# Jrom Mailbox . CHARACTER.INPUT.0.READY ,

—# {} when (Mailbox.CHARACTER.INPUT-0-READY and not Mailbox.CHARACTER-OUTPUT-1-READY ),
—# Mailbox . CHARACTER-OUTPUT-1.READY &

—# Mailbox . CHARACTER-INPUT-1 .READY

—# from Mailbox . CHARACTER-INPUT-1-READY ,

—# {} when (Mailbox.CHARACTER.INPUT-1.READY and not Mailbox.CHARACTER-OUTPUT-0-READY ),
—# Mailbox . CHARACTER.OUTPUT-.0-READY &

—# Mailbox . CHARACTER.OUTPUT.0-READY

—# Jfrom Mailbox . CHARACTER.OUTPUT.0-READY ,

—# {} when (Mailbox.CHARACTER.OUTPUT.0-READY and not Mailbox . CHARACTER.INPUT.I_.READY ),
—# Mailbox . CHARACTER.INPUT-1 .READY &

—# Mailbox . CHARACTER-OUTPUT -1 .READY

—# from Mailbox . CHARACTER-OUTPUT.-1.READY ,

—# {} when (Mailbox.CHARACTER-OUTPUT.1.READY and not Mailbox . CHARACTER.INPUT.0-READY ),
—# Mailbox . CHARACTER-INPUT-0-READY ;

Fig. 10 Results of running tool on Mailbox example

Now, we wish to determine what benefits are gained from having such a refined
information flow specification; that is, what do we gain from having information
flow specifications split into cases denoted by particular conditions? We must keep
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in our mind the objective of our research and engineering effort: we want to build a
foundation for an information assurance specification and verification framework.

From our point of view, an adequate information flow assurance framework
must capture and describe the following information about an information-critical
system:

o Admissible channels of information flow. The framework must provide mecha-
nisms to appropriately specify when a flow of information from one part of the
system to another (or from one variable to another) is acceptable. The original
derives annotations from SPARK, and its corresponding checking mechanism,
can already be used for this purpose (although they were not originally intended
to fulfill this functionality).

e FEnabling conditions for information flow channels. The framework must pro-
vide mechanisms to specify under what conditions a particular information flow
channel is active. In information flow assurance applications, information flow
channels are often controlled by system conditions. However, as it is, SPARK
does not posses any mechanism that allows specifying under what conditions a
particular information flow channel is active.

In the case of the mailbox example, we have a device intended to serve as a
communication channel between two entities. If we were to try to describe the in-
formation flow policy requirements for the mailbox, we could write something like:

The mailbox will guarantee that information produced at the by Client 0 will be
forwarded to Client 1, and the information produced by Client 1 will be forwarded
to Client 0.

However, when we look at the information flow specification for the Client 0’s
output on Fig. 9, we have:

derives Mailbox . CHARACTER.OUTPUT 0.DATA from Mailbox.CHARACTERINPUT_1.DATA,
Mailbox . CHARACTER. OUTPUT.0_READY,
Mailbox . CHARACTER. OUTPUT.0_.DATA,
Mailbox . CHARACTER_INPUT.1_ READY

The output of Client 0 is not derived only from Client 1’s input, but from other
three variables. It is not necessarily obvious where these other dependences are com-
ing from, and they certainly do not match with our first attempt at describing the
mailbox’s behavior. As it turns out, what happens here is that this specification de-
scribes more than one information flow channel, and the conditions on which they
are active, but all this information has been merged into a single annotation. Let us
look at the equivalent annotation from Fig. 10 to see what is going on:

derives Mailbox . CHARACTER.OUTPUT.0.DATA
from Mailbox . CHARACTERINPUT.1_.DATA
when (Mailbox .CHARACTER-INPUT.1_READY
and not Mailbox . CHARACTER.OUTPUT.O.READY),
Mailbox . CHARACTER OUTPUT-0_READY,
Mailbox . CHARACTER. OUTPUT.0_.DATA
when (not (Mailbox.CHARACTER.INPUT._1_.READY
and not Mailbox . CHARACTER.OUTPUT.OREADY)) ,
Mailbox . CHARACTER-INPUT-1.READY

In the original SPARK specification, we cannot tell whether there are several in-
formation channels, or that the target variable is derived from a combination of the
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source variables, because there are no conditions. However, by looking at the spec-
ification produced by our tool, we can see that there are actually two information
flow channels acting on this variable, controlled by two different conditions. We
can also see that the dependence on the extra two variables is produced from control
dependence on the variables that are used to compute the conditions.

It is clear now that there are two information flow channels working on this vari-
able (1) when information available from Client 1 and Client O is ready to receive
this information, then the output read by Client O is derived from the input produced
by Client 1, and (2) if either there is no input from Client 1 or Client O is not ready
to receive, then the output read by Client O keeps its old value. And clearly, which
of these two channels is active depends on the aforementioned conditions, which in
turn produce a control dependence on the variables that keep track of whether Client
1 has produced any information and whether Client O is ready to receive.

After the previous discussion, the benefits of having conditional information flow
specifications are immediately clear. We have a more precise description of the be-
havior of the system and are able to check both aspects of the information assurance
behavior of a system that we described before: the channels of information flow and
the conditions under which those channels are active.

Another improvement that could be made is to differentiate the parts of the
specification that deal with the control logic from those that deal exclusively with
information flow. For example, in the case of the mailbox annotation for output 0,
we get dependences on a couple of extra variables that arise from control depen-
dence. Perhaps one could mark these flows with a special annotation to explicitly
state that they arise from the control logic. Similarly, we can see in Figs.9 and 10
that, besides those for the output variables, we have flow annotations for each of
the control variables. These annotations are needed because these variables may be
reset by the procedure. However, these modifications of control variables are also
part of the control logic, and perhaps these flows could also be annotated in a spe-
cial way. Furthermore, one could imagine a tool that would use these annotations
to filter views and show all annotations or hide flows corresponding to the control
logic, etc.

6.2.2 Autopilot Example

The Autopilot system is one of the examples included in the SPARK distribution
(discussed in detail in [8, Chapter 14]). This is a control system controlling both the
altitude and heading of an aircraft. The altitude is controlled by manipulating the
elevators and the heading is controlled by manipulating the ailerons and rudder. The
autopilot has a control panel with three switches each of which has two positions —
on and off.

e The master switch — the autopilot is completely inactive if this is off.
e The altitude switch — the autopilot controls the altitude if this is on.
e The heading switch — the autopilot controls the heading if this is on.
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Desired autopilot heading values are entered in a console by the pilot, whereas
desired altitude values are determined by the current altitude (similar to how an
automobile cruise control takes its target speed from the current speed when the
cruise control is activated). For this example, we will take a look at a total of four
procedures and two functions.

The procedure in Fig. 15 is interesting for conditional information flow analysis

for multiple reasons:

It contains nested case statements with a call at the lowest level of nesting to
procedure Pitch.Pitch AP that updates global variables.

The actual updates to global variables occur several levels down the call chain
from pitch.Pitch AP.

The call chain includes several procedures with conditional flows — some of the
conditions propagate up through the call chain, whereas others do not.

We discuss in detail the conditional information flow along the following call

path:

Main (main.adb): It contains an infinite loop that does nothing but call
AP.Control on each iteration.

AP.Control (ap.adb): It reads values for the three switches above
from the environment. If Master_Switch is on, then it uses the values
read for Altitude_Switch and Heading.Switch to set switch variables
Altitude_Selected and Heading.Selected, otherwise Altitude_Selected
and Heading_Selected are set to “off.”” Instruments needed to calculate altitude
and heading are read, then Altitude.Maintain (with Altitude_Selected as
the actual parameter for Switch_-Pressed) and Heading.Maintain are called to
update the autopilot state.

AP.Altitude.Maintain (ap-altitude.adb): If Altitude_Switch has
transitioned from off to on, the Present_Altitude is used as value for
Target_Altitude. Otherwise, the previous value of Target Altitude is used
for value of Target Altitude. Pitch.Pitch_AP is called to calculate the value
of Surfaces.Elevators based on the parameter values of Pitch.Pitch-AP and
the pitch history.

Pitch.Pitch AP (ap-altitude-pitch.ads): It calls a series of
helper functions which update the local variables Present_Pitchrate,
Target_Pitchrate, and Elevator_Movement and these are used in
Surfaces.Move_Elevators to calculate the value of the global output variable
Surfaces.Elevators. The behavior of surfaces.Move_Elevators lies out-
side the SPARK boundary and thus the interface to Surfaces.Move_Elevators
represents the leaf of the call tree path under consideration.

We will also consider two functions called from Pitch.Pitch AP:
Altitude.Target_Rate and Altitude.Target_ROC. This will allow us to
illustrate some interesting aspects of computing information flow specifications
for SPARK functions.

The first procedure we look at is the main procedure. This is, like in most

languages, the top most procedure and the point of access for the whole system.
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procedure Main
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—# global in out AP. State;
—# out Surfaces.Elevators ,
—# Surfaces . Ailerons
—# Surfaces . Rudder;
—# in Instruments . Altitude,
—# Instruments . Bank ,
—# Instruments . Heading ,
—# Instruments . Heading -Bug ,
—# Instruments . Mach,
—# Instruments . Pitch ,
—# Instruments . Rate-Of-Climb ,
—# Instruments . Slip ;
—# derives AP.State
—# from *,
—# Instruments . Altitude ,
—# Instruments . Bank ,
—# Instruments . Pitch ,
—# Instruments . Slip &
—# Surfaces.Elevators
—# from
—# AP. State ,
—# Instruments . Altitude ,
—# Instruments . Bank ,
—# Instruments . Mach,
—# Instruments . Pitch ,
—# Instruments . Rate-Of-Climb ,
—# Instruments . Slip
—# &
—# Surfaces.Ailerons
—# from
—# AP. State ,
—# Instruments . Altitude ,
—# Instruments . Bank ,
—# Instruments . Heading ,
—# Instruments . Heading -Bug ,
—# Instruments . Mach,
—# Instruments . Pitch ,
—# Instruments . Slip &
—# Surfaces.Rudder
—# from AP. State ,
—# Instruments . Altitude,
—# Instruments . Bank ,
—# Instruments . Mach,
—# Instruments . Pitch ,
—# Instruments . Slip
—#

is

begin
loop

AP. Control;

end loop:

end Main;

Fig. 11 Original SPARK specification for procedure main from the autopilot code base

Figure 11 shows the original SPARK specifications and the code, and Fig. 12 shows
the corresponding information flow specifications computed by our tool. The first
thing we note is that there are more derived variables in the annotations derived by
our tool than in the original annotations. This is not a mistake. The reason for this is
that we still have not incorporated SPARK’s “own refinement” abstraction mecha-
nism in our tool. All the variables in the derives annotations from Fig. 12 that start
with Ap. are abstracted into the variable ap.state in Fig. 11. As a consequence,
we get more flow specifications because they are refined from those in the original
annotations.

An interesting effect of not having abstraction in our annotations is that
some of the false flows introduced by the abstraction process are not present
in our annotations. For instance, in Fig. 11 one of the annotations suggests that
Surfaces.Ailerons may be derived from Instruments.Altitude. However, as
we can see in Fig. 12, this is not the case; such flow is absent from the specification.
The reason this false flow appears in the abstracted version is that, when all the Ap.
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procedure Main;
—# derives AP.Heading.Yaw. Rate.Yaw-History

—# from *,

—# i

—# AP. Controls. Master-Switch ,
—# AP. Controls. Heading.Switch ,
—# Instruments . Slip &

—# AP.Altitude . Pitch.Rate. Pitch-History

—# from *,

—# (B

—# AP. Controls. Master _Switch ,
—# AP. Controls. Altitude-Switch ,
—# Instruments . Pitch &

—# AP.Heading.Roll.Rate.Roll-History

—# from *,

—# i

—# AP. Controls. Master _Switch ,
—# AP. Controls. Heading.Switch ,
—# Instruments . Bank &

—# AP.Altitude . Target-Altitude

—# from *,

—# (B

—# AP. Controls. Master-Switch ,
—# AP. Controls. Altitude-Switch ,
—# AP. Altitude . Switch-Pressed-Before ,
—# Instruments . Altitude &

—# AP.Altitude . Switch_Pressed -Before

—# from *,

—# (B

—# AP. Controls. Master _Switch ,
—# AP. Controls. Altitude .Switch &
—# Surfaces.Elevators

—# from {3},

—# AP. Controls. Master-Switch ,
—# AP. Controls. Altitude-Switch
—# AP. Altitude . Pitch.Rate. Pitch-History ,
—# AP. Altitude . Switch-Pressed-Before ,
—# AP. Altitude . Target-Altitude ,
—# Instruments . Altitude,

—# Instruments . Mach,

—# Instruments . Pitch ,

—# Instruments . Rate .Of.Climb &
—+# Surfaces.Ailerons

—# from {3},

—# AP. Controls. Master-Switch ,
—# AP. Controls. Heading-Switch,
—# AP. Heading. Roll.Rate. Roll-History ,
—# Instruments . Bank ,

—# Instruments . Heading ,

—# Instruments . Heading -Bug ,

—# Instruments . Mach &

—# Surfaces.Rudder

—# from {3},

—# AP. Controls. Master -Switch ,
—# AP. Controls. Heading-Switch,
—# AP. Heading.Yaw. Rate . Yaw-History,
—# Instruments . Mach,

—# Instruments . Slip

—#

Fig. 12 Results of running tool on procedure main from the autopilot code base

variables are abstracted into AP.State, then Surfaces.Ailerons depends on this
new abstract variable (because it depends on some AP. variables), and since some
AP. variables depend on Instruments.Altitude, then Surfaces.Ailerons gets
a possible dependence on Instruments.Altitude, even though this dependence
is really nonexistent.

Other than the differences described above, the specifications obtained by our
tool are basically the same as those in the original annotations. Also, we see {}
annotations (derivations from constant values). In the original SPARK, these con-
stant derivations are simply ignored; however, we leave them explicit for the sake
of completeness. In fact, these annotations become more interesting when they are
associated by themselves with a condition, as they might actually represent “reset”
conditions (as in the case of the mailbox example).
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procedure Control
—# global in Controls. Master .Switch ,
—# Controls. Altitude-Switch ,
Controls. Heading -Switch ;
in out Altitude. State,
Heading. State ;
out Surfaces.Elevators,
Surfaces. Ailerons ,
Surfaces . Rudder;
in Instruments . Altitude ,
Instruments . Bank ,
Instruments . Heading ,

Instruments

Instruments
Instruments
Instruments

. Heading-Bug ,

Mach,
Pitch ,
Rate-Of-Climb

Instruments . Slip ;
derives Altitude. State

from *,
Controls. Master_.Switch ,
Controls. Altitude-Switch ,
Instruments . Altitude ,
Instruments . Pitch &

Heading. State

from *,
Controls. Master-Switch ,
Controls. Heading-Switch ,
Instruments . Bank ,
Instruments . Slip &

Surfaces . Elevators

from Controls. Master_.Switch ,
Controls. Altitude-Switch ,
Altitude . State ,

Instruments

Instruments

Instruments

Instruments .

Altitude ,
Mach,
Pitch ,

.Rate.Of-Climb &

Surfaces . Ailerons
from Controls. Master_.Switch ,
Controls. Heading-Switch ,
Heading . State ,
Instruments . Bank ,
Instruments . Heading ,
Instruments . Heading -Bug ,
Instruments . Mach &
Surfaces . Rudder
from Controls. Master.Switch ,
Controls. Heading-Switch ,
Heading . State ,
Instruments . Mach,
Instruments . Slip

LLLLLLLLL LD LD DL L DL L DL L DL L DL L LU L

is

Master-Switch , Altitude-Switch , Heading.Switch,
Altitude-Selected , Heading-Selected : Controls.Switch;

Present-Altitude Instruments . Feet;
Bank Instruments . Bankangle:
Present-Heading Instruments . H
Target-Heading Instruments . B
Mach Instruments . Machnumber;
Pitch Instruments . Pitchangle;
Rate.Of.Climb Instruments . Feetpermin ;
Slip Instruments . Slipangle;

begin

Controls.Read-Master-Switch (Master-Switch);
Controls.Read-Altitude-Switch (Altitude-Switch);
Controls.Read-Heading-Switch (Heading-Switch):
case Master-Switch is
when Controls.On =>
Altitude-Selected := Altitude-Switch;
Heading-Selected := Heading-Switch;
when Controls. Off =>
Altitude.Selected Controls . Off;
Heading-Selected := Controls.Of
end case;
Instruments . Read-Altimeter (Present-Altitude );
Instruments . Read-Bank.Indicator (Bank);

Instruments
Instruments
Instruments
Instruments
Instruments
Instruments

.Read-Compass(Present-Heading ):
.Read-Heading-Bug(Target-Heading):
.Read-Mach.Indicator(Mach);
.Read_-Pitch_Indicator (Pitch);
.Read.VSI(Rate_Of_-Climb );
.Read_Slip-Indicator (Slip);

Altitude . Maintain (Altitude-Selected , Present-Altitude ,Mach, Rate_Of_.Climb , Pitch);
Heading . Maintain (Heading.Selected ,Mach, Present.Heading , Target.Heading ,Bank, Slip):
end Control;

Fig. 13 Original specification for procedure AP.Control from the autopilot code base

369
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procedure Control;
derives Altitude.Switch-Pressed -Before
from *,
i
Controls. Master-Switch ,
Controls. Altitude -Switch &
Altitude . Pitch.Rate. Pitch.History
from *,
(B
Controls. Master-Switch ,
Controls. Altitude.Switch ,
Instruments . Pitch &
Altitude . Target-Altitude
from *,
i
Controls. Master-Switch ,
Controls. Altitude.Switch ,
Altitude . Switch.Pressed-Before ,
Instruments . Altitude &
Heading . Yaw. Rate. Yaw -History
from *,
.
Controls. Master-Switch ,
Controls. Heading -Switch ,
Instruments . Slip &
Heading. Roll. Rate. Roll-History
from *,
(B
Controls. Master-Switch ,
Controls. Heading .Switch ,
Instruments . Bank &
Surfaces . Elevators
from {3},
Controls. Master-Switch ,
Controls. Altitude-Switch ,
Altitude . Target-Altitude ,
Altitude . Switch-Pressed-Before ,
Altitude . Pitch.Rate. Pitch-History ,
Instruments . Altitude ,
Instruments . Mach,
Instruments . Pitch ,
Instruments . Rate .Of.Climb &
Surfaces . Ailerons
from {3},
Controls. Master-Switch ,
Controls. Heading -Switch ,
Heading. Roll . Rate. Roll-History ,
Instruments . Bank ,
Instruments . Heading ,
Instruments . Heading -Bug ,
Instruments . Mach &
Surfaces . Rudder
Sfrom £},
Controls. Master-Switch ,
Controls. Heading -Switch ,
Heading.Yaw. Rate. Yaw_History ,
Instruments . Mach,
Instruments . Slip

LULLLLLLL LU DDLU DL DL L DL DL DL L L LD LD L LU L

e
i

e
—
=

Results of running tool on procedure AP.Control from the autopilot code base

Next we look at the procedure ap.control. The original SPARK annotations,
as well as the code for the procedure, are given in Fig. 13, and the result from our
tool is presented in Fig. 14. Just as with main procedure explained before, we get
basically the same annotations, except for getting extra variables due to differences
in abstraction and the presence of {} annotations in our tool’s results. However, it is
rather disappointing that we do not get conditional information flow specifications in
this example. Upon a closer look at the code, we see that there is a case statement in
the body that should give rise to conditions. Furthermore, as we will see later, most
of the procedures called from this procedure generate conditional specifications. So,
why do not we get any conditional specifications here?

The bottom line is that we are getting hurt by the generalization rules triggered by
the procedure call rule discussed in Sect. 5. The procedure does generate conditions;



Specification and Checking of Software Contracts for Conditional Information Flow 371

however, all these conditions are dropped once the top three procedure calls are
analyzed: the procedures that read the value of the switches (the guard variables).
What happens is that the conditions generated are basically predicates in terms of
the guard variables (the value of the switches), and since the top three procedures
set these switch variables, we have to drop the conditions and turn the annotation
into an unconditional one.

To see this with more detail, let us take a look at what happens at the return
point of the procedure call to Controls.Read-Heading-Switch. Recall that our
algorithm is a weakest precondition algorithm and, as such, it works bottom-up. So,
when we reach the point right before the call to this procedure, the algorithm has,
among all of the derivations generated, the following flow specification:

derives Surfaces. Ailerons from Instruments.Heading
when Heading_-Switch = Controls.On and Master-Switch = Controls.On

This specification basically tells us that if the heading and master
switches are in the ON position, then Surfaces.Ailerons derives its value
from the current heading reading (Instruments.Heading). Furthermore, an-
other similar specification tells us that if the heading switch is OFF, then
Surfaces.Ailerons maintains its current value. However, when we process the
call to Controls.Read_Heading_Switch, all this information is lost, because this
procedure sets the value of Heading-Switch with the actual state of the switch.
In doing this, since our analysis is modular (i.e., we do not look at the body of
Controls.Read.-Heading_Switch), we do not know in general what this mod-
ification to Heading-Switch did, and so we have to drop the condition. At
the very least we would have to drop the part of the condition that refers to
Heading_Switch; however, in this case it does not matter, because as soon as
Controls.Read-Master_Switch was analyzed, the rest of the condition would be
dropped.

As it turns out, in this particular case, it would be safe not to drop the condi-
tion and simply substitute Heading-Switch with Controls.Heading-Switch, but
this cannot be determined without looking at the procedure’s body and breaking
modularity. One way by which this situation could be ameliorated would be to refac-
tor the procedure into two different procedures: one that reads in the value of the
switches and another that implements the rest of the logic. For example,
procedure Control
18
begin

Read_Controls_Swintches (Master_-Switch , Altitude_-Switch , Heading-Switch);

Execute-Control-Logic(Master-Switch, Altitude-Switch, Heading_-Switch);
end Control;

where Read-Controls_Switches simply performs the top three procedure
calls in control, and the rest of the functionality is implemented in
Execute_Control_Logic. Then the conditional information flow specifications of
Control would be exposed in the procedure Execute_Control_Logic.
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Another option would be to exploit other annotations in the code (like postcon-
ditions and/or assertions) to avoid unnecessary generalizations. For example, if the
procedure Controls.Read Heading-Switch had the following annotation:
procedure Read_Heading_Switch (Heading_Switch)

—# post: Heading Switch = Controls.Heading _Switch ;

then from this annotation we could determine exactly what the value of
Heading_Switch is in the postcondition (Controls .Heading-Switch) and perform
a direct substitution in the condition expressions instead of having to drop them.
These are all options that we are considering for future versions of the tool.

The next procedure to discuss is Altitude.Maintain, which is called from
AP.Control. This is the first procedure in our study of the Autopilot that has gener-
ated conditional specifications. The original SPARK annotations as well as the code
are displayed in Fig. 15, and the annotations generated by our tool are presented in
Fig. 16. The purpose of this procedure is to maintain the altitude of the airplane de-
pending on the current configuration of the autopilot, so there are quite a few cases
this procedure has to handle, which is why we get several conditional information
flow specifications.

procedure Maintain (Switch_Pressed : in Controls.Switch;
Present-Altitude : in Instruments .Feet;
Mach :in Instruments . Machnumber;
Climb.Rate : in Instruments . Feetpermin ;
The-Pitch : in Instruments . Pitchangle)

—# global in out Target-Altitude,

—# Switch-Pressed-Before ,

—# Pitch. State ;

—# out Surfaces.Elevators;

—# derives Target.Altitude

—# from *,

—# Switch-Pressed ,

—# Switch-Pressed-Before ,

—# Present Altitude &

—# Pitch. State

—# from *,

—# Switch-Pressed ,

—# The-Pitch &

—# Switch-Pressed -Before

— from

—# Switch.Pressed &

—# Surfaces . Elevators

—# from Switch-Pressed ,

—# Switch-Pressed-Before ,

—# Target-Altitude ,

—# Present-Altitude ,

—# Mach,

—# Climb-Rate ,

—# The-Pitch ,

—# Pitch. State

—%

is

begin

case Switch-Pressed is
when Controls.On =>
case Switch_Pressed-Before is
when Controls . Off =>

Target-Altitude := Present-Altitude:
when Controls.On =>
null ;
end case;

Pitch.Pitch.AP(Present.Altitude , Target.Altitude ,Mach, Climb-Rate , The_.Pitch);
when Controls. Off =>
null;
end case;
Switch_Pressed .Before := Switch_Pressed;
end Maintain ;

Fig. 15 Original SPARK specification for procedure Altitude.Maintain from the autopilot code
base
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procedure Maintain (Switch-Pressed : in Controls.Switch;
Present-Altitude : in Instruments .Feet;
Mach : in Instruments .Machnumber;
Climb.Rate : in Instruments . Feetpermin ;
The-Pitch : in Instruments .Pitchangle);
—# derives Target.Altitude
—# from * when (not Switch.-Pressed = Controls.On),
—# Switch-Pressed ,
—# Switch-Pressed -Before when (Switch-Pressed = Controls.On),
—# Present.Altitude
— when (Switch_Pressed = Controls.On and Switch_Pressed -Before = Controls.Off),

—# * when (Switch-Pressed = Controls.On and (not Switch-Pressed-Before = Controls. Off)) &
—# Pitch.Rate. Pitch-History

—# from {*, The-Pitch} when (Switch-Pressed = Controls.On),

—# Switch-Pressed ,

—# * when (not Switch-Pressed = Controls.On) &

—# Switch-Pressed .Before

—# from

—# Switch.Pressed &

—# Surfaces.Elevators

—# from Switch-Pressed ,

—# {Switch-Pressed -Before ,

—# Present-Altitude ,

—# Mach,

—# Climb-Rate ,

—# The-Pitch ,

—# Pitch.Rate. Pitch-History} when (Switch-Pressed = Controls.On),

—# Target.Altitude

—# when (Switch-Pressed = Controls.On and (not Switch.Pressed -Before = Controls. Off)),
—# Present Altitude

—# when (Switch-Pressed = Controls.On and Switch_Pressed -Before = Controls. Off),
—# Surfaces . Elevators when (not Switch.Pressed = Controls.On)

—#

Fig. 16 Results of running tool on procedure Altitude.Maintain from the autopilot code base

Here again we have a case in which it is extremely beneficial to have conditional
information flow contracts. The information flow contracts in this example describe
not only the information flow channel present, but also the conditions under which
they are active, revealing details of the control logic of the system. Not only that, in
this particular example, the details of the control logic revealed actually give a good
insight of the actual functionality of the procedure.

Let us start by looking at the flow specifications for Target_Altitude. We can
see that Target_Altitude either derives its new value from Present_Altitude
or it keeps from its own previous value. We can see that the dependences on
Switch_Pressed and Switch_Pressed_Before are simply control dependences, as
these are the variables that appear in the conditions. Switch_Pressed contains the
state of the altitude switch, passed as an argument, and Switch_Pressed_Before is
a global used to store the state of Switch-Pressed in the previous state.

So, under what conditions is the value of Target_Altitude modified using
pPresent_-Altitude? Looking at the first specification, we can see that when-
ever Switch_Pressed is OFF, Target_Altitude’s new value is derived from
itself. Now we have two interesting cases. If Switch_Pressed is ON, but
Switch_Pressed-Before is OFF (i.e., the value of switch_Pressed in the pre-
vious state was OFF) then Target_Altitude derives gets its new value derived
from Present_Altitude. On the other hand, if Switch_Pressed is ON and
Switch_Pressed_Before is OFF, then Target_ Altitude gets its new value de-
rived from itself. Thus, we have exposed the logic of the altitude control system:
when the altitude switch transitions from OFF to ON, the target altitude (the al-
titude at which the plane will be automatically maintained) is set to the present
altitude, after that initial transition the target altitude does not change (transition
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from ON to ON), unless the system transitions again from OFF to ON. So
Switch_Pressed-Before is basically used to detect the transitions from OFF to
ON and set the target altitude. A similar analysis applied to the information flow
specifications for Surfaces.Elevators.

Now let us examine procedure Altitude.Pitch.Pitch-AP which is called from
Altitude.Maintain. The original SPARK annotations as well as the code can be
seen in Fig. 17, and the results of our tool are presented in Fig. 18. This example
is actually relatively simple, and as seen by looking at the figures the results of
our tool are exactly the same as the original SPARK annotations. As Pitch-AP’s
purpose is just to update a set of variables, depending on its input, there is really
no conditional information flow behavior in this procedure. This procedure sets the

procedure Pitch.AP(Present_Altitude : in Instruments .Feet;

Target.Altitude : in Instruments .Feet;
Mach : in Instruments . Machnumber;
Climb_-Rate : in Instruments . Feetpermin ;
The-Pitch : in Instruments . Pitchangle)
—# global in out Rate.Pitch-History;
—# out Surfaces.Elevators;
—# derives Rate.Pitch-History
—# from s,
—# The-Pitch &
—# Surfaces. Elevators
—# from Rate. Pitch_-History ,
—# Present-Altitude ,
—# Target.Altitude ,
—# Mach,
—# Climb-Rate ,
—# The-Pitch
—#
is
Present-Pitchrate : Degreespersec;
Target-Pitchrate : Degreespersec;
Elevator-Movement : Surfaces.Controlangle:
begin
Calc-Pitchrate (The_Pitch, Present-Pitchrate);
Target.Pitchrate := Target_Rate(Present.Altitude , Target-Altitude ,Climb-Rate);
Elevator.Movement := Calc.Elevator.Move(Present.Pitchrate , Target.Pitchrate ,Mach);

Surfaces . Move.-Elevators (Elevator-Movement);
end Pitch.AP;

Fig. 17 Original SPARK specification for procedure AP.Altitude.Pitch_AP from the autopilot code
base

procedure Pitch.AP(Present_Altitude : in Instruments .Feet;

Target-Altitude : in Instruments .Feet:
Mach ¢ in Instruments . Machnumber;
Climb_-Rate : in Instruments . Feetpermin ;
The-Pitch : in Instruments . Pitchangle)
—# derives Rate.Pitch-History
—# from *,
—# The-Pitch &
—# Surfaces.Elevators
—# from Rate. Pitch_-History ,
—# Present-Altitude ,
—# Target.Altitude ,
—# Mach,
—# Climb-Rate ,
—# The-Pitch
—#
is
Present.Pitchrate : Degreespersec;
Target.Pitchrate : Degreespersec;
Elevator.Movement : Surfaces.Controlangle;
begin
Calc-Pitchrate (The-Pitch, Present-Pitchrate);
Target-Pitchrate := Target-Rate(Present-Altitude , Target-Altitude ,Climb-Rate);
Elevator-Movement := Calc.Elevator-Move(Present-Pitchrate , Target-Pitchrate ,Mach):

Surfaces . Move-Elevators (Elevator-Movement);
end Pitch.AP;

Fig. 18 Results of running tool on procedure AP.Altitude.Pitch_AP from the autopilot code base
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pitch, depending on the values of the present and target altitude. What is interesting
about this procedure is that it calls a SPARK function, which is the one we look at
next.

To conclude we look at a couple of SPARK functions, which are at the bottom of
this call chain in Autopilot. The reason we look at this functions is to discuss a cou-
ple of relevant concepts in the computation of the annotations relevant to functions,
which are not issues in the original SPARK. The functions are Target_Rate, which
is called from pitch AP, and Target_ROC, which is called from Target_Rate. The
code for these functions and the annotations obtained with our tool are presented in
Figs. 19 and 20, respectively.

function Target.Rate(Present.Altitude : Instruments.Feet;
Target.Altitude : Instruments .Feet;
Climb-Rate : Instruments .Feetpermin)

return Degreespersec
—# derives @result

—# from {3},
—# Climb-Rate ,

—# Present-Altitude ,
—# Target-Altitude
—¥

is
Target.Climb_.Rate : Floorfpm;
Floor.Climb-Rate : Floorfpm;
Result : Degreespersec;
begin
Target.Climb.Rate := Target.ROC(Present.Altitude , Target-Altitude );
if Climb-Rate > Floorfpm ’Last then
Floor-Climb.Rate := Floorfpm’Last:
elsif Climb.Rate < Floorfpm’ First then
Floor-Climb.Rate := Floorfpm’ First;

else

Floor-Climb.Rate := Climb-Rate;
end if;
—# assert Floor.Climb.Rate in Floorfpm and
—# Target.Climb.Rate in Floorfpm;
Result := Degreespersec( (Target.Climb.Rate — Floor.Climb_-Rate) / 12);
if (Result > 10) then

Result := 10;
elsif (Result < —10) then

Result := —10;
end if;

return Result;
end Target.Rate;

Fig. 19 Results of running tool on function AP.Altitude.Target_Rate from the autopilot code base

function Target.ROC(Present-Altitude : Instruments.Feet:
Target-Altitude : Instruments.Feet)
return Floorfpm

—# derives @result

—# from {}
—# when ((Target-Altitude — Present_Altitude) / 10 < Floorfpm’ First
—# and not ((Target-Altitude — Present_Altitude) / 10 > Floorfpm ’Last)),
— ¢
—# when ((Target-Altitude — Present.Altitude) / 10 > Floorfpm 'Last),
—# Target.Altitude ,
—# Present-Altitude
—#
is
Result : Instruments .Feetpermin ;
begin
Result := Instruments .Feetpermin ( Integer(Target-Altitude — Present.Altitude) / 10);
if (Result > Floorfpm’ Last) then
Result := Floorfpm’ Last;
elsif Result < Floorfpm’ First then
Result := Floorfpm’ First;
end if;

return Result;
end Target-ROC;

Fig. 20 Results of running tool on function AP.Altitude.Target_ROC from the autopilot code base
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To conclude, we look at two SPARK functions that lie at the bottom of this call
chain in Autopilot. This will reveal a couple of relevant concepts in the computation
of the annotations relevant to functions, which are not issues in the original SPARK.
The main thing to observe in these functions is the annotations. In SPARK, func-
tions do not have derives annotations. Because functions are not allowed to have
side-effects, the required information is implicit in the declaration of arguments and
return value: the return value simply depends on all parameters and globals declared
in the function. However, in our case, to provide a means to capture conditional
flows, we need to explicitly introduce flow contracts as shown in Figs. 19 and 20.

In order to be able to specify conditional information flow for functions, we need
to be able to talk about the value computed by the function. We define a special
variable @result, which denotes the value returned by the function, and we com-
pute dependences for this special variable. In the case of Target_Rate, we do not
have conditional information flow specifications, but in the case of Target_ROC, we
do have a couple of conditional flows. However, these two conditional flows are
constant flows and as such they disappear in Target_Rate. The main point we want
to present here is the need for information flow specifications for SPARK functions
and the way we implement those in our adaptation of SPARK.

7 Related Work

The theoretical framework for the SPARK information flow framework is provided
by Bergeretti and Carré [12] who present a compositional method for inferring
and checking dependences [14] among variables. That approach is flow sensitive,
whereas most security type systems [7, 33] are flow insensitive as they rely on as-
signing a security level (“high” or “low”) to each variable. Chapman and Hilton [13]
describe how SPARK information flow contracts could be extended with lattices of
security levels and how the SPARK Examiner could be enhanced to check confor-
mance of flows to particular security levels. Those ideas could be applied directly
to provide security levels of flows in our framework. Rossebo et al.[26] show how
the existing SPARK framework can be applied to verify various unconditional prop-
erties of a MILS Message Router. Apart from SPARK, there exist several tools for
analyzing information flow properties, notably Jif (Java + information flow) which
is based on [23] and Flow Caml [28].

The seminal work on agreement assertions is [1], whose logic is flow sensi-
tive, and comes with an algorithm for computing (weakest) preconditions, but the
approach does not integrate with programmer assertions. To address that, and to
analyze heap-manipulating languages, the logic of [4] employs three kinds of prim-
itive assertions: agreement, programmer, and region (for a simple alias analysis).
But, since those can be combined only through conjunction, programmer assertions
are not smoothly integrated, and it is not possible to capture conditional information
flows. That was what motivated Amtoft and Banerjee [3] to introduce conditional
agreement assertions for a heap-manipulating language. This paper integrates that
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approach into the SPARK setting (where the lack of heap objects enables us to omit
the “object flow invariants” of [3]) for practical industrial development, adds inter-
procedural contract-based compositional checking, adds an algorithm for computing
loop invariants (rather than assuming they are provided by the user), and provides
an implementation as well as reports on experiments.

A recently popular approach to information flow analysis is self-composition,
first proposed by Barthe et al. [10] and later extended by, e.g., Terauchi and
Aiken [31] and (for heap-manipulating programs) Naumann [24]. Self-composition
works as follows: for a given program S, a copy S’ is created with all variables re-
named (primed); with the observable variables say x, y, then noninterference holds
provided the sequential composition S'; S” when given precondition x = x’Ay = y’
also ensures postcondition x = x’ A y = y’. This is a property that can be checked
using existing verifiers like BLAST [20], Spec# [9], or ESC/Java2 [15]. Darvas
et al. [16] use the key tool for interactive verification of noninterference; informa-
tion flow is modeled by a dynamic logic formula, rather than by assertions as in
self-composition.

When it comes to conditional information flow, the most noteworthy existing
tool is the slicer by Snelting et al. [30] which generates path conditions in pro-
gram dependence graphs for reasoning about end-to-end flows between specified
program points/variables. In contrast, we provide a contract-based approach for
compositional reasoning about conditions on flows with an underlying logic rep-
resentation that can provide external evidence for conformance to conditional flow
properties. We have recently received the implementation of the approach in [30],
and we are currently investigating the deeper technical connections between the two
approaches.

Finally, we have already noted how our work has been inspired by and aims to
complement previous ground-breaking efforts in certification of MILS infrastruc-
ture [18, 19]. While the direct theorem-proving approach followed in these efforts
enables proofs of very strong properties beyond what our framework can currently
handle, our aim is to dramatically reduce the labor required, and the potential for
error, by integrating automated techniques directly on code, models, and developer
workflows to allow many information flow verification obligations to be discharged
earlier in the life cycle.

8 Conclusion

We have presented what we believe to be an effective and developer-friendly frame-
work for specification and automatic checking of conditional information flow
properties, which are central to verification and certification of information applica-
tions built according to the MILS architecture. The directions that we are pursuing
are inspired directly by challenge problems presented to us by industry teams using
SPARK for MILS component development. The initial prototyping and evaluation
of our framework has produced promising results, and we are pressing ahead with
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evaluating our techniques against actual product codebases developed at Rockwell
Colins. A crucial concern in this effort will be to develop design and implemen-
tation methodologies for (a) exposing and checking conditional information flows
and (b) specifying and checking security levels of data along conditional flows. We
believe that our framework will nicely integrate with work on conditional declassi-
fication/degrading.

While our framework already supports many of the language features of SPARK
and the extension to almost all other features (e.g., records) is straightforward, the
primary remaining challenge is the effective treatment of arrays, which are often
used in SPARK to implement complex data structures. Rockwell Collins developers
are facing significant frustrations because SPARK treats arrays as atomic entities,
i.e., it does not support even unconditional specification and checking of flows in/out
of specific array components. This report contains some first steps toward building a
theory for a more precise handling of conditional information flow for array compo-
nents, but we still need to integrate it with the treatment of while loops and procedure
calls, incorporate it into our implementation, and develop appropriate enhancements
of SPARK contract notations.
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Model Checking Information Flow

Michael W. Whalen, David A. Greve, and Lucas G. Wagner

1 Introduction

In order to describe the secure operation of a computer system, it is useful to study
how information propagates through that system. For example, an unintended propa-
gation of information between different components may constitute a covert channel
that can be used by an attacker to gain access to protected information. We are there-
fore interested in determining how and when information may be communicated
throughout a system. At Rockwell Collins, we have spent several years modeling
information flow problems to support precise formal analyses of different kinds of
software and hardware models.

In this chapter, we describe an analysis procedure that can be used to check a
variety of information flow properties of hardware and software systems. One of the
properties that can be checked is a form of noninterference [5,19-21] that is defined
over system traces. Informally, it states that a system input does not interfere with a
particular output if it is possible to vary the trace of that input without affecting the
output in question.

Although great strides have been made in the development of formal analysis
tools over the last few years, there have been relatively few instances reported of
their successful application to industrial problems outside of the realm of hardware
engineering. In fact, software and system engineers are often completely unaware
of the opportunities that these tools offer. One of the goals of our analysis was that
it could be completely automated and directly applicable to the tools and languages
used by engineers at Rockwell Collins, such as MATLAB Simulink® [11] and Es-
terel Technologies SCADE Suite™ [4]. These tools are achieving widespread use
in the avionics and automotive industry and can also be used to describe hardware
designs. The graphical models produced by these tools have straightforward formal
semantics and are amenable to formal analysis. Furthermore, it is often the case
that software and/or hardware implementations are generated directly from these
models, so the analysis model is kept synchronized with the actual system artifact.
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Our analysis is based on annotations that can be added directly to a Simulink
or SCADE model that describe specific sources and sinks of information. After
this annotation phase, the translation and model checking tools can be used to au-
tomatically demonstrate a variety of information flow properties. In the case of
noninterference, they will either prove that there is no information flow between
the source and sinks or demonstrate a source of information flow in the form of a
counterexample.

The result returned by the model checker must be justified by a general claim
regarding the soundness of the analysis and the annotated model. To justify our
analyses, we first define a kind of trace equivalence. This trace equivalence is just
a form of the GWVrl characterization defined earlier in Chap. 9 [6]. We then
define syntax and semantics for a synchronous dataflow language and provide an
information flow semantics for the language. Next, we demonstrate that this in-
formation flow semantics characterizes (i.e., enforces) the trace equivalence and
define noninterference as a dual property of the information flow characterization.
The information flow semantics is then directly reflected into a “flow model” that is
emitted as part of the translation and conjoined with the original model. We finally
show that model checking this conjoined model yields the same result as executing
the flow model semantics.

The organization of the rest of the chapter is as follows: Sect. 2 introduces the
concepts involved through the use of a motivating shared buffer example. Section 3
describes an abstract formalization of information flow through trace equivalence,
presents the syntax and semantics for a simplified dataflow language, and proves
an interference theorem, that is, the information flow semantics preserves the trace
equivalence. Section 4 demonstrates how noninterference can be defined as a corol-
lary of the interference theorem. Section5 describes how this formalization is
realized in the Gryphon tool suite. Section 6 describes how the tools can be used
to analyze intransitive interference. Section7 describes connections between the
formalization in this chapter and the GWV formulation from Greve [6]. Section 8
describes applications of the analysis: the shared buffer model and also a large-scale
model of the Rockwell Collins Turnstile high-assurance guard. Section 9 presents
future directions for the analysis and concludes.

2 A Motivating Example

To motivate our presentation, we use an example of a shared buffer model, shown in
Fig. 1. In this model, secret and unclassified information both pass through a shared
buffer. In order to prevent leakage of secret information, this buffer is coordinated
by a scheduler (bottom of the figure) that mediates access to the buffer. On the left,
there are two input processes for secret and unclassified input. On the right, there
are two output processes for secret and unclassified output.

When the scheduler is in the WAITING state, a write request from either input
process will result in that process obtaining the buffer. The process will continue
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Fig. 1 Shared buffer architecture

to control the buffer until a corresponding read from the buffer is completed. The
controller is designed to ensure that the secret data is only allowed to be consumed
by the secret output and symmetrically that the unclassified data is only consumed
by the unclassified output.

Given this system, we would like to determine whether or not there is information
flow between the secret processes and the unclassified processes. In other words, is
it possible for the unclassified processes to glean information of any kind from the
secret processes and vice versa? This information sharing is usually called interfer-
ence; noninterference is the dual idea expressing that no information sharing occurs.
In this example, the potential for interference exists via the scheduler. Unclassified
processes can perceive the state of the buffer (whether they are able to read and write
from it) via the scheduler, which is affected by the secret processes.

If we decide that this interference is allowable, we would like to be able to de-
termine whether there are any other sources of interference between the secret and
unclassified processes. An analysis which does not account for the current system
state will probably decide that there is the potential for interference, since both kinds
of processes use a shared buffer. We would like a more accurate analysis that ac-
counts for the scheduler state in order to show that there is no interference through
the shared buffer.

This example demonstrates important features of the analysis that we will de-
scribe in the next sections:

o Conditional information flow. We would like the analysis to account for enough
of the system state to allow an accurate analysis (e.g., that no information flows
from a secret input to unclassified output through the shared buffer)
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“Covert” information flow. The scheduler does not directly convey information
from secret processes to unclassified processes, yet its state allows information
about the secret processes to be perceived. The analysis should detect this inter-
ference.

Intransitive information flow. If we are willing to allow information flow through
the scheduler, there should be a mechanism to allow us to tag this information
path as “allowable” and determine if other sources of flow exist. In the nonin-
terference literature, this is generally described as intransitive noninterference
[5,19,20]. The meaning of intransitive has to do with the nature of information
flows. Since the scheduler depends on the secret input and the unclassified output
depends on the scheduler, a transitive analysis would assert that the unclassified
output depends on the secret input. However, we would like to be able to tag
certain mediation points (e.g., downgraders or encryptors) as “allowed” sources
of information flow.

2.1 Shared Buffer Simulink Model

A Simulink model of the shared buffer example is shown in Fig. 2. The inputs to the
model are shown on the left: we have the requests to use the buffer from the four pro-
cesses (the secret input/output process and the unclassified input/output processes)
as well as the input buffer data from the secret and unclassified input processes. The
scheduler subsystem determines access to the buffer, while the buffer subsystem
uses the scheduler state to determine which process writes to the shared buffer.

The information flow analysis is performed in terms of a set of principal

variables. These variables are the variables that we are interested in tracking

si_req si_req
ui_req
si_data state
[Eorea>—ps0.req
[ui_req]
uireq wo_req
fui_data] scheduler —
ui_data >
EET>——psate (S o mode secat || H—>(2)
so_req From1 so_data
o
Ce) si_data buffer_dat: _
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uo_data
Buffer @4

Fig. 2 Shared buffer example in Simulink
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Fig. 3 Annotated Simulink model

through the model. We always track the input variables to the model, and we
sometimes track computed variables internal to the model. To perform the analysis,
the Simulink model is annotated to add the principal variables as shown in Fig. 3.

Once we have annotated the model, we use the Gryphon tool set [24] to automat-
ically construct an information flow model that can be model checked on a variety
of model checking tools including NuSMV [8], SAL [23], and Prover [16]. The
analysis process extends the original model with a flow model that operates over
sets of principal variables. Each computed variable in the original model has a flow
variable in the flow model that tracks its dependencies in terms of the principal
variables.

For model checking, sets of principal variables are encoded as bit sets, and check-
ing whether information flow is possible is the same as determining whether it is
possible that one of the principal bits is set. For the model above, the translation
generates the following bit set for the principals:

Principal bit vector: {
si maps to bit: 0,
so maps to bit: 1,
ui maps to bit: 2,
uo maps to bit: 3

}

Now we can write properties over output variables. For example, suppose we
want to show that the secret output data is unaffected by the unclassified input or
output principal. In this case, we could write:
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LTLSPEC G(! (gry IF so datalui_ idx] |
gry IF so dataluo idx]));

gry-IF is the prefix used for the flow variables, so the analysis checks whether
there is flow to the so_data output from the ui principal or the uo principal. These
principals correspond to flow from the ui_req, ui_data, and uo_req input variables.

As described earlier, this property is violated, because there is information flow
from the unclassified processes to the secret output through the scheduler. NuSMV
generates a counterexample that we can examine to determine how the information
leak occurred.

After analyzing the problem, we decide that the flow of information through the
scheduler state is allowable. We would now like to search for additional sources
of flow. By adding an additional principal for the scheduler state, as shown in
Fig. 4, we can ignore the flows from the ui and uo principals that occur through the
scheduler. After rerunning the analysis, the model checker finds no other sources of
information flow.

3 Information Flow Modeling for Synchronous
Dataflow Languages

Languages such as Simulink [11] and SCADE [4] are examples of synchronous
dataflow languages. The languages are synchronous because computation proceeds
in a sequence of discrete instants. In each instant, inputs are perceived and states and
outputs are computed. From the perspective of the formal semantics, the computa-
tions are instantaneous. The languages are dataflow because they can be understood
as a system of assignment equations, where an assignment can be computed as
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soon as the equations on which it is dependent are computed. The equations can
be represented either textually or graphically. As an example, consider a system that
computes the values of two variables, X and Y, based on four inputs: a, b, ¢, and
d, as shown in Fig. 5.

The variables (often referred to as signals) in a dataflow model are used to label
a particular computation graph. Therefore, it is incorrect to view the equations as
a set of constraints on the model: a set of equations shown in Fig. 6 is not a valid
model because X and Y mutually refer to one another. This is shown in Fig. 6, where
the bold lines indicate the cyclic dependencies. Such a system may have no solution
or infinitely many solutions, so cannot be directly used as a deterministic program.
If viewed as a graph, these sets of equations have data dependency cycles and are
considered incorrect.

However, in order for the language to be useful, we must be able to have mutual
reference between variables. To allow benign cyclic dependencies, we create a step-
delay operator (i.e., a latch) using the comma operator. For example, {X = 2a/Y;
Y =1, (X + d))} defines a system where X is equal to 2a divided by the current
value of Y, while Y is initially equal to 1, and thereafter equal to the previous value
of X plusd.

There are several examples of textual dataflow languages, including Lustre [7],
Lucid Synchrone [3], and Signal [9], that differ in terms of structuring mechanisms,
computational complexity (i.e., whether recursion is allowed), and clocks that de-
fine the rates of computation for variables. Our analysis is defined over the Lustre
language. Lustre is the kernel language of the SCADE tool suite and also the inter-
nal language of the Rockwell Collins Gryphon tool suite. Lustre is also sufficient to
model the portions of the Simulink/Stateflow languages that are suitable for hard-
ware/software codesign.
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3.1 Modeling Information Flow

When describing information flow, we are often attempting to define a noninterfer-
ence relation of some kind. There have been several formulations of noninterference
[5,19-21] involving transition systems and process algebras, which have focused on
noninterference in terms of a trace of actions (inputs) fed into some machine that
generates outputs. The idea of noninterference is simple: a security domain u does
not interfere with domain v if no action performed by u can influence subsequent
outputs of v.

In the formulation of [20], noninterference is demonstrated by removing actions
from the trace T (call it T') and showing that under certain conditions the final
output of the machine is the same. However, for synchronous dataflow languages
such as Lustre or Simulink, characterizing the “removable” inputs is difficult, as
each input variable is assigned a value in each step; one must define predicates over
the cross product of the input variables. Characterizing the “action” of a model with
potentially tens or hundreds of outputs presents similar difficulties.

Instead, following Greve in an earlier chapter [6], we would like to define a
notion of noninterference on individual variables within a model in terms of cor-
respondences between two traces. In our formulation, a trace is a sequence of model
states, each state containing the assignments to all variables within the model. We
define a set of principal variables as a superset of the inputs and then define an
Interferes function for any variable c that describes the set of principals that could
possibly affect the value of ¢. We determine the correctness of the Interferes set in
terms of trace correspondence. The Interferes set is correct if given any variable ¢
and traces ¥ and v, and if the traces agree on all the variables of Interferes(c), then
they will agree on c. In other words, the variables in Interferes(c) are sufficient to
determine the value of ¢ at any step. Equivalently, any principal variable outside the
Interferes set cannot affect the value of c.

Formalized in the PVS notation [22], the theorem that we are proving is as
follows:

InterferenceTheorem: LEMMA

FORALL (p: Program, gtl:gtrace, stl,st2:strace):
FORALL (idx:index) :
WFp(p) & St(p,stl) & St(p,st2) &
IFt (p,stl,gtl) &
vtraceEquivSet (DepSet (idx,gtl) ,stl,st2) =>
liftv(idx,stl) = liftv(idx,st2)
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This theorem states that if two traces are equivalent (vtraceEquivSet) on the
dependencies computed for a variable idx by our Interferes set (DepSet(idx,gtl)),
then two traces agree on the value of idx. The details of the theorem and steps in the
proof will be explained in the following sections.

How this is used in practice is that the user suggests what is believed to be a
noninterfering principal variable for some variable ¢ and a model checker is used to
determine whether or not this variable interferes with (i.e., affects) c.

3.2 Using PVS

PVS [15,22] is a mechanized theorem prover based on classical, typed higher order
logic. Specifications are organized into (potentially parameterized) theories, which
are collections of type and function definitions, assumptions, axioms, and theorems.
The proof language of PVS is composed of a variety of primitive inference proce-
dures that may be combined to construct more powerful proof strategies.

Normally in PVS the proof process is performed interactively, and the proof
script encoding the entire proof is not visible to the user. In our development, we
used the ProofLite [14] extension to PVS in order to embed the proofs as comments
into the PVS theories. To make the theories shorter and easier to understand, we
omit the ProofLite scripts in this chapter. However, the interested reader is encour-
aged to visit http://extras.springer.com, and enter the ISBN for this book, in order to
view the complete scripts.

3.3 Traces and Processes

The semantics of synchronous dataflow languages are usually defined in terms of
traces that describe the behavior of the system over time. These traces are for-
malized in the language of the PVS theorem prover in Fig.7. We are interested
in two kinds of traces. First, we are interested in the trace of values produced by the
execution of the system. We define the set of values that can be assigned to variables
using the opaque type vtype.' The execution traces are mappings from instants in
time to states, where states map variables to values, and are defined by the strace
and state types, respectively. The variables in our model correspond to indices in
Greve’s formulation, and we use the term index to identify a variable in a trace.
Second, we are interested in tracing the dependencies of a variable in terms of
a set of other variables (in GWYV terms, the information flow graph). These traces
map instants in time to graph states, where each graph maps an index (i.e., variable)
to sets of indices. At each instant, for a given variable v, the graph captures a set of

! Opaque types in PVS allow one to define a type as an unspecified set of values.
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variables that are necessary for computing v. These traces are defined by the gtrace
and graphState types, respectively.

Note that our states are defined over an infinite set of variables nat. In a real
system, we would have a finite set, but this can be modeled by simply ignoring all
variables above some maximum index. This change does not affect the formalization
or the proofs.

Next, we define processes that constrain the traces in Fig. 8. The processes are
built from expressions: an (unspecified) set of unary and binary operators, constant,

Traces: THEORY
BEGIN

index: TYPE = nat
time: TYPE = nat
vtype: TYPE+

|
—

state : TYPE = index -> vtype ]
strace: TYPE = [ time -> state ]

get(i: index, s: state): vtype = s(i)
graphState: TYPE = [ index -> set[index] ]

gtrace: TYPE = [ time -> graphState ]
END Traces

Fig. 7 Traces theory

ProcessExprTypes: THEORY
BEGIN
IMPORTING Traces

BopType: TYPE+
UopType: TYPE+

BopEx (Bop: BopType, v1,v2: vtype): vtype
UopEx (Uop: UopType, vO0: vtype): vtype
isTrue(v0: vtype): bool

END ProcessExprTypes

ProcessExpr: DATATYPE
BEGIN
IMPORTING ProcessExprTypes

Fig. 8 Processes and programs
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Constant (value : vtype): Constant?
Variable (name : index): Variable?
ITE (test: ProcessExpr, thn: ProcessExpr,
els: ProcessExpr): ite?
Bop (OpB: BopType, al: ProcessExpr,
az2: ProcessExpr): Bop?
Uop (OpU: UopType, al: ProcessExpr): Uop?
END ProcessExpr

ProcessAssignment: DATATYPE

BEGIN
IMPORTING ProcessExpr
Gate (gexpr: ProcessExpr): Gate?

Latch(v0: vtype, lexpr: ProcessExpr): Latch?
Input: Input?
END ProcessAssignment

Program: THEORY

BEGIN
IMPORTING ProcessAssignment
IMPORTING IndexSet[index]

Program: TYPE = [ index -> ProcessAssignment ]

StatesP(p: Program): set[index] =
(LAMBDA (v: index): Latch?(p(v)))

InputsP(p: Program): set[index] =
(LAMBDA (v: index): Input?(p(v)))

GatesP (p: Program): set[index] =
(LAMBDA (v: index): Gate?(p(v)))

De (e: ProcessExpr): RECURSIVE set[index] =

CASES e OF
Constant (value): Empty,
Variable (name): singleton(name),
ITE (test,thn,els): De(test) + De(thn) +
De(els),
Bop (OpB,al,a2): De(al) + De(aZ2),
Uop (OpU, a0) : De(al)
ENDCASES

MEASURE e by <<

belowSet (n: nat, s: set[nat]): bool =
FORALL (i: nat): member(i,s) => (i < n)

Fig. 8 (continued)

391
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Ae(v: index, a: ProcessAssignment): ProcessExpr =

CASES a OF
Gate (gexpr) : gexpr,
Latch(v0, lexpr): lexpr,
Input : Variable (v)
ENDCASES;

WEp (p: Program) : bool =
FORALL (v: index):
belowSet (v, De(Ae(v,p(v))) & GatesP(p))

WEFPrograms : TYPE = { p : Program | WFp(p) }

END Program

Fig. 8 (continued)

variable, and conditional (if/then/else) expressions. We next partition the indices
into gates, latches, and inputs. Gates are computed from the current values of other
variables, while latches are computed from the previous values of other variables.
Latches also have an initial value which is their value in the first step of a trace.
Inputs are not computed and assumed to be externally provided.

The processes described in Fig. 8 define a simple synchronous dataflow lan-
guage, such as Simulink or SCADE. For the purposes of this discussion, the
structuring mechanisms of these languages (nodes and subsystems) as well as the
clocking mechanisms for variables can be thought of as syntactic sugar.

In general, a set of simultaneous equations may yield zero or multiple solutions.
We want a program to be functional, given a particular input trace. In order to en-
sure that the assignments yield functional traces, we need a strict ordering on gate
assignments. Since indices are defined as naturals, it suffices to define an ordering
such that the assignment expression for a variable may only refer to gate indices
that are strictly smaller than the index being assigned. Note that only gate indices
are restricted — it is possible to write benign cyclic dependencies involving latches.

The Ae function returns the assignment expression associated with a particular
index. For inputs, Ae just returns a variable expression referring to the input. The De
predicate defines the dependencies of an expression and WFp defines the functional
well-formedness constraint on programs. Note that this predicate also forms a basis
for inducting over the gates within the program that we will use for several of the
proofs.

3.4 Semantic Rule Conventions

We define different kinds of semantics for the values produced by a program and
also for the information flow. The semantic functions that are introduced follow a
naming convention to make them easier to follow and to relate to one another. The
form of the semantics functions is as follows:
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<TYPE><syntax><OPTIONAL RESTRICTION>

For example, the Se function defines the value-semantic function for expressions,
and the /F'sG function defines the information-flow function for states with respect
to gates.

The <TYPE>s of semantics that will be used in the following discussion are as
follows:

S: Value semantics for traces

D: Syntactic dependencies

DS: Dependencies based on syntax and current state
IF: Information flow dependencies

The <syntax>es that will be discussed are the following:

e: Expressions

i: Indices (assignments)
s: States

t: Traces

The <OPTIONAL RESTRICTION>s restrict the semantic functions at a par-
ticular syntactic level to:

I: Inputs
G: Gates
L: Latches

3.5 Value Trace Semantics

We next create semantic functions for the expressions and programs in Fig. 8. Fol-
lowing [1] and [12], the semantics are defined in terms of trace conformance, as
shown in Fig. 9. We state that a trace conforms to a program if the values computed
by the assignment expressions for the gates and latches correspond to the values in
the trace. The Se function computes a value from a Process expression. The SsG
predicate checks conformance between the gate assignments and a state, and the
SsL predicates check conformance between the latch assignments and the trace. The
St predicate defines trace conformance over both gates and latches.

3.6 Creating an Accurate Model of Information Flow

Now we can create a semantics that tracks information flow through the model,
as shown in Fig. 10. This semantics maps indices to the set of indices used when
computing the value of the index. For expressions, we create two different seman-
tics; the first tracks the indices that are immediately used within the computation of
the expression; the second traces the indices back to principal variables, which are
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ProcessSemantics:
BEGIN
IMPORTING Program

Se (e: ProcessExpr,
CASES e OF

Variable (name) :

ELSE Se(els, s)

Bop (OpB,al,a2):

Uop (OpU, a0) :
ENDCASES

MEASURE e by <<

END ProcessSemantics

THEORY

N
Constant (value) :
ITE (test, thn,els):

IF isTrue (Se(test,s))

UopEx (OpU, Se (a0, s))

Si(p: Program) (i: index, s0: state): vtype =
CASES p (i) OF
Gate (gexpr) s0(i),
Latch (v0, lexpr) Se (lexpr,s0),
Input s0 (1)
ENDCASES
SsG(p: Program, s0O: state): bool =
FORALL (v: index): Gate?(p(v)) =>
(sO(v) = Se(Re(v,p(v)),s0))
SsLO (p: Program, s0O: state): bool =
FORALL (v: index): Latch?(p(v)) =>
(s0(v) = v0(p(V)))
SsLn(p: Program, s0,sl: state): bool =
FORALL (v: index): Latch?(p(v)) =>
(get(v,sl) = si(p) (v,s0))
St (p: Program, st: strace): bool =
FORALL (n: nat):
IF (n = 0) THEN
SsLO(p,st(0)) & SsG(p,st(0))
ELSE
SsLn(p,st(n-1),st(n)) & SsG(p,st(n))
ENDIF

state) : RECURSIVE vtype
value,
s (name) ,

THEN Se (thn, s)
ENDIF,
BopEx (OpB, Se (al,s),Se(a2,s)),

Fig. 9 Process trace semantics

the actual concern of the information flow analysis. For the moment, we consider
the inputs as the principal variables. We expand this notion when we talk about

intransitive interference in Sect. 6.

The only difference between the DSe and IFe semantics in Fig. 10 is in the
behavior of the Variable branch. For the /Fe semantics, a set of principal variables
are provided. If a referenced variable is a principal variable, then we return it as a
dependency; if it is not, then we return the dependencies of that variable. The effect
of this rule is to backchain through the intermediate variables so that dependencies
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ProcessIndexSets: THEORY
BEGIN

IMPORTING ProcessSemantics
IMPORTING MemberRules [index]

DSe (e: ProcessExpr, s0: state):
RECURSIVE set[index] =

CASES e OF
Constant (value): Empty,
Variable (name): singleton(name),

ITE (test,thn,els):
IF isTrue (Se(test,s0)) THEN
SDe (test,s0) + SDe(thn,s0)

ELSE
SDe (test,s0) + SDe(els,sO0)
ENDIF,
Bop (OpB,al,a2): SDe(al,s0) + SDe(a2,s0),
Uop (OpU,a0) : SDe(al,s0)
ENDCASES

MEASURE e by <<

IFe(e: ProcessExpr, principal: set[index],
s0: state, g0: graphState): RECURSIVE
set[index] =

CASES e OF
Constant (value): Empty,
Variable (name) :
IF principal (name) THEN
singleton (name)
ELSE
g0 (name)
ENDIF,
ITE (test,thn,els):
IF isTrue(Se(test,s0)) THEN
IFe(test,principal,s0,g0) +
IFe (thn,principal, s0,g0)
ELSE
IFe(test,principal,s0,g0) +
IFe(els,principal, s0,g0)
ENDIF,
Bop(OpB,al,a2): IFe(al,principal,s0,g0) +
IFe(a2,principal,s0,g0),
Uop (OpU,a0) : IFe(al,principal,s0,g0)
ENDCASES
MEASURE e by <<

IFsI(p: Program, s0: state, g0: graphState): bool=
FORALL (v: index): Input?(p(v)) =>
(g0(v) = IFe(Ae(v,p(v)),InputsP(p),s0,g90))

Fig. 10 Process index semantics

395
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IFtI(p: Program, st: strace, gt: gtrace): bool =
FORALL (t: time) : IFsI(p, st(t), gt(t))

IFsG(p: Program, s: state, g: graphState): bool =
FORALL (v: index): Gate?(p(v)) =>
(g(v) = IFe(Ae(v,p(v)),InputsP(p),s,q))

IFtG(p: Program, st: strace, gt: gtrace): bool =
FORALL (t: time) : IFsG(p, st(t), gt(t))

IFsLO(p: Program, g0O: graphState): bool =
FORALL (v: index):
Latch?(p(v)) => g0(v) = Empty

IFsln(p: Program, s0O: state,
g0,gl: graphState): bool =
FORALL (v: index): Latch?(p(v)) =>
(gl(v) = IFe(Re(v,p(v)),InputsP(p),s0,g0))

IFtL(p: Program, st: strace, gt: gtrace): bool =
FORALL (n: nat):
IF (n = 0) THEN
IFsLO(p, gt (0))
ELSE
IFsLn(p,st(n-1),gt(n-1),gt(n))
ENDIF

IFt(p: Program, st: strace, gt: gtrace): bool =
IFtG(p,st,gt) & IFtL(p,st,gt) & IFtI(p,st,gt)

tracePair : TYPE = [# s: strace, g: gtrace #];

tp_ok(p: Program, tp: tracePair) : bool =
IFt(p, s(tp), g(tp)) AND St(p, s(tp)) i

Fig. 10 (continued)

are always a subset of the principal variables. The DSe semantics, on the other hand,
return the immediate dependencies (i.e., the indices of all variables referenced in the
assignment expression).

Note that both the DSe and /Fe semantics are state dependent: For if/then/else
expressions, the set of dependencies depends on the if-test; only dependencies for
the used branch are returned. This feature allows conditional dependencies to be
tracked within the model.

After defining the expression semantics, we define the IF semantics on states
and programs, matching the structure of the S definitions in Fig. 9. At the bottom
of Fig. 10, we define trace pairs as a type and define trace pair conformance to a
program based on both semantics.
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3.7 PVS Proof of Trace Equivalence (InterferenceTheorem)

We can now state the interference theorem that should be proven over the trace
pairs. Informally, we would like to state that for a particular index idx, if the inputs
referenced in an information flow trace for idx (DepSet) have the same values in two
state traces (vtraceEquivSet), then the two traces will have the same values for idx.
Formally, this obligation is expressed in Fig. 1 1. Note that there is an asymmetry in
the interference theorem: we define two execution traces (st/ and s72) but only one
graph trace (gt/). The graph trace (gt/) corresponding to an execution trace (s¢/) for
a given index idx characterizes the signals that must match for any other execution
trace (in this case s¢2) to match st/ for signal idx. It is equivalent to use a graph trace
based on sz2.

To prove this theorem, we have to build a hierarchy of equivalences shown in
Fig. 12. This graph does not show all of the connections between proofs (e.g.,
which theorems are instantiated in the proofs of other theorems), but it provides
a good overview of the structure of the proof. Ultimately, we are interested in prov-
ing the final theorem, which defines a relationship between traces as described by
the information flow semantics /F and the value semantics S. In order to prove
this theorem, we define an intermediate flow semantics based on state dependen-
cies (DS). Whereas the information flow semantics unwinds the dependencies from
outputs to inputs implicitly through the use of the graph state and graph trace, the
DS flow semantics unwind the graph explicitly and therefore provide an easier basis
for inductive proof.

vtrace: TYPE = [ time -> vtype ]

liftv(i: index, st: strace): vtrace =
(LAMBDA (t: time): st(t) (1))

vtraceEquivSet (set: set[index],stl,st2: strace):

bool =
FORALL (i: index): member (i,set) =>
liftv(i,stl) = liftv(i,st2)

DepSet (x: index, gt: gtrace): set[index] =
(lambda (i: index):
(EXISTS (t: time): member(i,gt(t) (x))))

InterferenceTheorem: LEMMA
FORALL (p: Program, gtl:gtrace, stl,st2:strace):
FORALL (idx:index):
WFp(p) & St(p,stl) & St(p,st2) &
IFt(p,stl,gtl) &
vtraceEquivSet (DepSet (idx,gtl),stl,st2) =>
liftv(idx,stl) = liftv(idx,st2)

Fig. 11 Interference theorem
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DSiP
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Dependencies
over Principals
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State
Dependencies
back to Graph
State

[ Fst | [ 1FsG | [1Fsto | [ IFsin |
DSt
Dependencies
_ — P| overTraces
GraphUnwinding
IFt <€ Final Theorem P St
Key:
GWV Equivalences o >
Information flow Equivalences <—-—-—-»
Subset Relations —_ — >
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Fig. 12 Proof graph for final theorem

The “rows” of the proof graph correspond to a level in the evaluation hierarchy.
Reading from top to bottom, we talk about equivalences in terms of expres-
sions, then in terms of indices (assignments), then states, and, finally, traces. The
“columns” correspond to the different semantics. On the left is the information flow
(IF) semantics, in the middle is the DS semantics, and on the right is the value (S)
semantics. One semantics bridges the /F' and DS semantics (DSiIF).

There are two different kinds of theorems that are proved between the semantics.
The first are equivalences between the different flow semantics (e.g., that two flow
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semantics yield the same set of dependencies). The second are GW V-style theorems,
in the same style as [6]. These state that if the values of the dependent indices for
a piece of syntax Y  are equal within two states or traces s1 and s2, then the value
produced by evaluating > over s1 and s2 will be equal.

In our analysis, we prove GW Vrl-style theorems. GWVrl is less expressive than
GWVr2 but it is simpler to formulate. The additional expressive power in GW V12 is
necessary to describe dynamic memory, but the synchronous models that we analyze
in this chapter do not use dynamic memory, so GWVrl is sufficiently expressive for
our purposes. The connection between the formulation in this chapter and [6] is
explored further in Sect. 7.

3.7.1 Expression Equivalence Theorems

In Fig. 13, we begin the process of proving the final theorem by describing some
lemmas over expressions. These will form the basis of the later proofs over larger
pieces of syntax.

The DSe_subset_De lemma states that the state-aware dependency function (DSe)
returns a subset of the indices referenced by the syntactic dependency function (De).
We appeal to this lemma (through another lemma: WFg_to_WFgDSe) to establish a
basis for induction for some of the proofs involving equivalence of gate assignments.

The Compose function is used to look up each of the entries in a set in the graph
state. It performs the same function as the Direct Interaction Allowed (DIA) function
in Greve’s formulation [6]. It is used to map from a set of immediate dependencies
to their dependencies.

The IFe_to_DSe_Property lemma defines the first mapping between the state-
based DS dependency semantics and the gtrace-based IF dependency semantics.
Remember from Sect. 3.4 that the IFe semantics are defined in terms of a set of
principals: if a variable is principal, then we look up its dependencies in the graph
state. This property creates an equivalence between these semantics by looking up
(via Compose) the nonprincipal variables from the DSe semantics.

3.7.2 Program Well-Formedness Theorems

In Fig. 14, we define a bridge between the program well-formedness constraint WFp
and state dependencies (DSe). This bridge will allow us to use the WFp predicate
in reasoning about GWV equivalences involving state dependencies. We define a
WFgDSe predicate that defines well-formedness in terms of the DSe and show that
WFp implies the (more accurate) WFgDSe predicate.

3.7.3 GWY Equivalence Theorems

Now, we can start proving GW V-style equivalence properties. These state that if the
values of the dependent indices for a piece of syntax Y match within two states or
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DSe subset De: LEMMA
FORALL (e: ProcessExpr, s0: state):
subset? (DSe (e, s0),De(e))

Compose (uset: set[index], g0: graphState):
set [index] =
(lambda (z: index):
(EXISTS (m: index):
member (m,uset) & member(z,g0(m))))

member Compose: LEMMA
FORALL (i: index, uset: set[index],
g0: graphState):
member (i, Compose (uset,g0)) =
(EXISTS (m: index):
member (m,uset) & member (i, g0(m)))

IFe to DSe Property(e: ProcessExpr): bool =
FORALL (principal: set[index], s0: state,
g0: graphState):
IFe(e,principal, s0,g0)
LET uset: set[index]
(uset & principal)
Compose (uset & (not

DSe (e, s0) IN

—~ + |

principal)),g0)

IFe_to_DSe_proof: LEMMA
FORALL (e: ProcessExpr): IFe to DSe Property(e)

IFe to DSe: LEMMA
FORALL (e: ProcessExpr, principal: set[index],
s0: state, g0: graphState):
IFe(e,principal,s0,g0) =
LET uset: set[index] =
(uset & principal) +
Compose (uset & (not(principal)),g0)

DSe(e,s0) IN

Fig. 13 Expression equivalence proofs

traces s1 and s2, then the value produced by the evaluating Y over s1 and 52 will
match. The idea is that we will start from the immediate dependencies of an expres-
sion and progressively unwind the dependencies toward the inputs. This unwinding
occurs in two stages as follows:

e First we unwind to the principals, which (for the purposes of the proof) are
the states and inputs. Another way of looking at this first unwinding is un-
winding back to the “beginning” of the step. This is the definition of the DSiP
dependencies.

e Next, we unwind the dependencies back to the inputs by examining the graph
trace over time. This is the definition of the DSt dependencies.
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Principals(p: Program): set[index] =
StatesP(p) + InputsP(p)

WFg (p: Program): bool =
FORALL (v: index):
belowSet (v,De(RAe(v,p(v))) - Principals(p))

Principals_Gates_partition : LEMMA
FORALL (p: Program):
(GatesP(p) = complement (Principals(p)))

Principals_Gates_ subset equiv : LEMMA
(FORALL (s: set[index], p: Program)
(s & GatesP(p)) = (s - Principals(p)))

WFp to WFg : LEMMA
FORALL (p: Program) : (WFp(p) = WFg(p))

WFgDSe (p: Program, sO: state): bool =
FORALL (v: index):
belowSet (v,DSe (Ae(v,p(v)),s0) - Principals(p))

WFg_to_WFgDSe: LEMMA
FORALL (p: Program, sO: state):
WFg (p) => WFgDSe (p,s0)

END ProcessIndexSets

Fig. 14 Well-formedness predicates for programs

We also map these state-based equivalences that are computed via explicit
unwindings of dependencies to the /F equivalences, which implicitly unwind
the dependencies using the graph states. This is accomplished by using the DSilF
dependency relation. This will be the key lemma to show the equivalence of the IF
and DS formulations.

Figure 15 shows the dependency proof for the DSe dependencies. There are two
equivalences: the first over evaluation of expressions and the second over evaluation
of indices.

Figure 16 shows the proofs for the next level of unwinding: showing that if the
principal variables are the same for two states, then the results produced for an index
will be the same. This step removes the gates from the dependency calculation.

Figure 17 shows the proofs of the next level of unwinding to the dependen-
cies of the states. The definition of the DSilF predicate is particularly important
as it bridges between the graph-trace-based IF semantics and the state-based DS
semantics. Like the DSiP semantics, it backtraces through the gates to reach de-
pendencies based on states and inputs. The distinction is that it then looksup the
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ProcessInterference: THEORY
BEGIN
IMPORTING ProcessIndexSets
IMPORTING GWV_EquivSetRules[index,state,vtype, get]

StateEquivSet (s:set[index],sl,s2: state): bool =
equivSet (s,sl,s2)

GWVrl Se DSe: LEMMA
FORALL (e: ProcessExpr):
FORALL (inl, in2: state):
StateEquivSet (DSe(e, inl), inl, in2) =>
(Se(e, inl) = Se(e, 1in2))

GWVrl Si DSe: LEMMA
FORALL (p: Program) :
FORALL (i: index, inl, in2: state):
SsG(p,inl) & SsG(p,in2) &
StateEquivSet (DSe(Re(i,p(1)), inl),
inl, in2) =>
Si(p) (i,inl) = Si(p) (i,in2)

Fig. 15 GWVrl1 for DSe dependencies

state dependencies in the graph state. This means that the dependencies computed
by DSilF will match the dependencies computed by the IF relation, as demonstrated
by the IFe_to_DSilF lemma. This is a key lemma in proving the unwinding theorem
over state dependency traces DSt and information flow traces IFt.

Finally, in Fig. 18, we map dependencies to inputs across a multistep trace. First,
we prove a lemma that is sufficient for the proof of latch assignment at step zero
(GWVr1_Si_SsL0). This lemma will be used to provide the base case for latches in
the GWVr1_Si_DSt proof.

Next, in Fig. 19, we have to define a graph unwinding theorem, which maps
between our state-dependency-based formulation DSt and our graph-dependency-
based formulation /Ft. This is performed in two steps. First, we show that the DSilF
formulation matches the result returned by IFe. Next, we define the unwinding
theorem which demonstrates that DSt and IFt yield the same dependencies.

3.7.4 Proof of InterferenceTheorem

Now we have finally assembled the pieces necessary to prove the trace theorem
that was proposed in Fig. 8 in Sect.3.7. The proof is shown in Fig.20. We state
that the information flow characterizes the execution of a model, if it satisfies the
InterferenceTheorem.
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DSiP(p: Program,sO: state) (x: index)
RECURSIVE set[index] =
LET uset: set[index] = DSe(Re(x,p(x)),s0) IN
LET pri : set[index] = Principals(p) IN
(uset & pri) +
(lambda (z: index):
(EXISTS (m: index):
m< X &
member
member
MEASURE x

m,uset & not(pri)) &

)
z,DSiP(p,s0) (m))))

DSiP_contains only Principals: LEMMA
FORALL (x: index, p: Program, s0: state):
subset? (DSiP(p,s0) (x),Principals(p))

DSiP_def: LEMMA
FORALL (p: Program,s0O: state,x: index):
WFg (p) =>
DSiP(p,s0) (x) =

IN

LET pri : set[index]

IN
(uset & pri) +
Compose (uset & not (pri),DSiP(p,s0))

GWVrl Si DSiP: LEMMA
FORALL (p: Program):
FORALL (i: index, sl,s2: state):

WFg (p) & SsG(p,sl) & SsG(p,s2) &

StateEquivSet (DSiP(p,sl) (1),sl,s2)
Si(p) (1,81) = Si(p) (i,s2)

Principals (p)

LET uset: set[index] = DSe(Re(x,p(x)),s0)

=>

Fig. 16 GWVrl for principal dependencies

4 Interference to Noninterference

403

A nearly immediate corollary of the interference theorem is a noninterference theo-
rem, shown in Fig. 21. If a variable unclass does not depend on a variable secret in
any legal trace of the system (as defined by #p_ok), then we say that secret does not
interfere with unclass. This is demonstrated by the Non_Interference lemma; in this
lemma, we state that any two traces whose inputs differ only by secret will yield the

same values for unclass.
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GProgram: TYPE = { p : Program | WFg(p) }

DSiIF(p: GProgram, sO: state, g0: graphState)
(x: index): RECURSIVE set[index] =

LET uset : set[index] = DSe(Ae(x,p(x)),s0) IN
LET ins : set[index] = InputsP(p) IN
LET dff : set[index] = StatesP(p) IN
LET gates : set[index] = GatesP(p) 1IN

(uset & ins) +
Compose (uset & dff, g0) +
(lambda (z: index):
(EXISTS (m: index):
member (m,uset & gates) &
member (z, DSiIF (p,s0,g0) (m))))
MEASURE x

DSiIF to DSiP: LEMMA
FORALL (p: Program, sO: state, g0: graphState):
WEg (p) =>
FORALL (x: index):
DSiIF(p,s0,g0) (x) =
(InputsP(p) & DSiP(p,s0) (x)) +
Compose (StatesP(p) & DSiP(p,s0) (x),g0)

Fig. 17 GWVrl for state-input dependencies

S Model Checking Information Flow

Up to this point, we have defined formal notions of interference and noninterference
over traces for a simple synchronous dataflow language and shown that an informa-
tion flow semantics can be used to demonstrate noninterference. However, we have
not yet proposed a mechanism for computing noninterference relations using the
model checker using a temporal logic such as LTL [2].

In order to use a model checker to analyze the notion of noninterference pro-
posed in Sect. 4, we must do two things. First, we must formalize noninterference
in a temporal logic such as LTL that is understood by model checkers. Second,
we must encode the model and information flow semantics into the notation of the
model checker. The syntax (Fig. 8) and execution semantics (Fig. 9) of our language
were chosen in part because they correspond to a subset of the syntax and seman-
tics supported by several popular model checkers including NuSMV [8], SAL [23],
and Prover [16]. The translation of the execution model and semantics is therefore
immediate.

To support analysis of information flow, however, we have to encode the IF se-
mantics in the syntax of the model checker. We call this encoding the information
flow model. Then we can analyze a hybrid model, containing both the original pro-
gram and the information flow model in order to reason about flow properties.
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GWVrl Si SsLO: LEMMA
FORALL (p: Program):

FORALL (i: index, sl,s2: state):
WFg(p) & SsLO(p,sl) & SsLO(p,s2) &
SsG(p,sl) & SsG(p,s2) &
StateEquivSet (InputsP(p) &
DSiP(p,sl) (i),sl,s2) =>

Si(p) (i,81) = Si(p) (i,s2)

RECURSIVE set[index] =
IF (t = 0) THEN
InputsP(p) & DSiP(p,st(t)) (i)
ELSE
LET uset: set[index] = DSiP(p,st(t)) (i) IN
(uset & InputsP(p)) +
Compose (not (InputsP(p)) & uset,
DSt (p,st,t - 1))
ENDIF
MEASURE t

subset Compose: LEMMA
member (a, x) => subset?(g(a),Compose(x,qg))
vtrace: TYPE = [ time -> vtype ]

vtrace extensionality: LEMMA
FORALL (i: index, sl,s2: vtrace):
(sl = s2) =
FORALL (t: time): sl(t) = s2(t)

AUTO REWRITE+ vtrace extensionality

liftv(i: index, st: strace): vtrace =
(LAMBDA (t: time): st(t) (1))

bool =
FORALL (i: index): member (i,set) =>
liftv(i,stl) = liftv(i,st2)

GWVrl Si DSt: LEMMA
FORALL (p: Program, stl,st2: strace):
FORALL (t: time, i:index):
WFg (p) & St(p,stl) & St(p,st2) &
vtraceEquivSet (DSt (p,stl,t) (i),stl,st2)
Si(p) (i,st1(t)) = Si(p) (i,st2(t))

DSt (p: Program, st: strace, t: time) (i: index):

FORALL (a: index, x: set[index], g: graphState):

vtraceEquivSet (set: set[index],stl,st2: strace):

=>

Fig. 18 GWVrl1 theorems for trace dependencies
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IFe to DSiIF: LEMMA
FORALL (p: GProgram,
IFsG(p,s0,90) & WEFg(p)
FORALL (x: index):
IFe (Ae (x,p (X))

Graph Unwinding: LEMMA
FORALL (p: Program,
FORALL (t: time,
WEg (p
IFe(Ae(v,p(V)),

DSt p,st t)( )

st:
v

(
)
(A
(

s0:

, InputsP (p)
DSiIF(p,s0,g0) (x

index) :
& IFt(p,st gt)
InputsP(p),st(t)

state,
=>

g0: graphState):

+80,90)
)

strace, gt: gtrace):

=>

rgt(t))

Fig. 19 The graph unwinding theorem demonstrating equivalence between /Ft and DSt semantics

DepSet (x: index, gt: gtrace): set[index] =
(lambda (i: index): (EXISTS (t: time):
member (i,gt(t) (x))))
InterferenceTheorem: LEMMA
FORALL (p: Program, gt: gtrace, stl,st2: strace):
FORALL (i:index):
WFp(p) & St(p,stl) & St(p,st2) &
IFt(p,stl,gt) &
vtraceEquivSet (DepSet (i, gt),stl,st2) =>
liftv(i,stl) = 1liftv(i,st2)

Fig. 20 Proof of the InterferenceTheorem

5.1 Formalizing Noninterference in LTL

We first assume Rushby’s formalization of LTL [2] in PVS presented in [6]. We now
prove in Fig. 22 that a noninterference assertion over a graph state machine follows
from a particular LTL assertion, in the same way as in Greve [6].

5.2 Creating the Information Flow Model

Recall that the IF semantics correspond to graph traces (gtrace) that are composed
of a sequence of graph states (gstate). Each gstate maps program variables to a finite
set of Principal variables. The information flow semantics from the previous section
are then encoded as set manipulations. The information flow model is then the set
of assignments to the information flow variables.
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ProcessNonInterference: THEORY
BEGIN
IMPORTING ProcessInterference

Never Interferes(p: Program, secret: index,
unclass: index) : bool =
FORALL (x: tracePair):
tp_ok(p, x) =>
(FORALL (t: time):
not (member (secret, g(x) (t) (unclass))))

Inputs Match Except Secret(p: Program,
stl, st2: strace, secret: index) : bool =
FORALL (t: time, idx: index):
( (member (idx, InputsP(p)) AND
(idx /= secret)) =>
stl(t) (idx) = st2(t) (idx))

Non Interference : LEMMA
FORALL (p: Program, secret: index,

unclass: index, stl,st2: strace):

(member (secret, InputsP(p)) &

WFg (p) & St(p, stl) & St(p, st2) &

Never Interferes(p, secret, unclass)) &

Inputs Match Except Secret(p, stl, st2,
secret)

=>

liftv(unclass, stl) = liftv(unclass, st2)

END ProcessNonInterference

Fig. 21 Process Noninterference

The mechanism for creating the information flow variable assignments is a set of
transformation rules that are applied to the syntax of ProcessExpr and ProcessAs-
sign datatypes defined in Fig. 8. The transformation rules generate a slightly richer
expression syntax (shown in Fig. 23) that contains two additional variables. The first
expression, IF_Variable, allows reference variables in the information flow graph
state. The second, SingletonSet, takes an index and generates a singleton set con-
taining that index.

We can now reflect the information flow semantics into an extended program
ProgramExt that contains assignments for both the state and graph traces, as shown
in Fig. 24.

The hybrid model in Fig. 24 contains assignments both for the state variables (s)
and the graph variables (gr). The syntax of the state assignments does not change;
however, the strong typing of PVS requires that we define a transformation to
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ProcessLTL: THEORY
BEGIN

IMPORTING ProcessInterference
GState : TYPE = [# g: graphState, s: state #]
IMPORTING 1tl[GState]

P : Program
P inputs : TYPE = {x: index | Input?(P(x)) }

split (x: sequence[GState]) : tracePair =
(# s := LAMBDA (t: time): s(x(t)),
g := LAMBDA (t: time): g(x(t)) #)
merge (x: tracePair) : sequence[GState] =
(LAMBDA (t: time):
(# s 1= s(x)(t), g := g(x) (L) #) )

GSTrace : TYPE =
{ x : sequence[GState] | tp ok(P, split(x)) }

Non_Interference (secret: P_inputs, unclass: index)
(gs: GState) : bool =
(not (member (secret, g(gs) (unclass))))
% only consider well-formed models
reduction: LEMMA
WFg (P) =>
FORALL (secret: P inputs, unclass: index):
(FORALL (s: GSTrace):
(s |I=
G (Holds (
Non Interference (secret,unclass)))))
=>
(FORALL (s: tracePair):
tp ok(P,s) =>
(FORALL (t: time):
(not (member (secret,
g(s) (t) (unclass))))))

END ProcessLTL

Fig. 22 Connection to LTL

map from the ProcessExpr and ProcessAssignment datatypes into the ExprExt and
AssignExt datatypes, respectively. This is performed by the IDe and IDa functions,
respectively.

The mapping of the information flow /F semantics into syntax that can be inter-
preted is performed by the TR functions. These functions create new syntax based
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ExprExt: DATATYPE
BEGIN
IMPORTING ProcessTypes
Constant (value : vtype): Constant?

Variable(sname : index): Variable?
ITE (test: ExprExt, thn: ExprExt, els: ExprExt):
ite?

Bop (OpB: BopType, al: ExprExt, a2: ExprExt): Bop?
Uop (OpU: UopType, a0: ExprExt): Uop?

IF Variable(ifname : index): IF Variable?
SingletonSet (varSet: set[index], prname : index)
SingletonSet?

END ExprExt

AssignmentExt: DATATYPE
BEGIN
IMPORTING ExprExt
Gate (gexpr: ExprExt): Gate?
Latch(v0: vtype, lexpr: ExprExt): Latch?
Input: Input?
END AssignmentExt

Fig. 23 Extended process syntax

on an original program that manipulates index sets. It is instructive to compare the
syntax created by the TRe function with the definition of the /Fe semantics originally
defined in Fig. 10 and shown again in Fig. 25. Note the similarities between the se-
mantic definitions in /Fe and the syntax generated by the TRe function.

The compositional equivalence between the syntactic rule and the semantic rule
can be proven, but we do not demonstrate it in this chapter. To do so would require
some further elucidation of sets-as-vtype elements as well as an algebraic formula-
tion of the union binary operator over vtype elements to show its equivalence to the
standard set-union operator. We plan to do this in future work.

The model encoding tool in the Rockwell Collins Gryphon tool suite implements
the transformation defined by the 7R rules. It operates over the Lustre language
[7]. Lustre includes a superset of the expressions described in the 7R rules, such
as expressions for creating and manipulating composite datatypes including arrays,
records, and tuples. It also accounts for Lustre’s notion of modularity, called the
node, which corresponds to Simulink subsystems. The complete rules for rewriting
Lustre programs are described in a Rockwell Collins technical report that is avail-
able by visiting http://extras.springer.com and entering the ISBN for this book.

For encoding the set of principals for model checking tools, we use bitvectors.
The models that we attempt to analyze will always consist of a finite number of
variables, and therefore, the principal variables form a finite set. We encode this set
as a bitvector containing one bit per principal signal. The Union and SingletonSet
operations are encoded as bit_or operators and bitvector constants, respectively.
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TransformIF : THEORY
BEGIN

IMPORTING Program, AssignmentExt
Union : BopType
EMPTYSET : vtype

principal index : [set[index], index -> vtype]

IDe (e: ProcessExpr): RECURSIVE ExprExt =

CASES e OF
Constant (value): Constant (value),
Variable (name): Variable (name),

ITE (test, thn,els):
ITE(IDe(test), IDe(thn), IDe(els)),

Bop (OpB,al,a2): Bop(OpB, IDe(al), IDe(a2)),
Uop (OpU,a0) : Uop(OpU, IDe(al))
ENDCASES

MEASURE e by <<

IDa(a: ProcessAssignment) : AssignmentExt =
CASES a OF
Gate (gexpr) : Gate(IDe(gexpr)),
Latch(v0, lexpr) : Latch(v0,IDe(lexpr)),
Input : Input
ENDCASES

TRe (e: ProcessExpr, Pr: set[index]):
RECURSIVE ExprExt =
CASES e OF
Constant (value) : Constant (EMPTYSET) ,
Variable (name) :
IF Pr (name) THEN
SingletonSet (Pr, name)
ELSE
IF Variable (name)
ENDIF,
ITE (test,thn,els):
Bop (Union,
ITE (IDe(test),TRe(thn, Pr),TRe(els, Pr)),
TRe (test, Pr)),
Bop (OpB,al,a2):
Bop (Union, TRe(al, Pr), TRe(a2, Pr)),
Uop (OpU, a0) : TRe(al, Pr)

Fig. 24 Hybrid model definitions

5.3 From Principals to Domains

Our implementation allows multiple variables to be mapped to the same principal
identifier (id). This identifier can be thought of as a security domain [5, 20]. For
the purposes of analysis, this can reduce the number of bits necessary for a model
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ENDCASES
MEASURE e by <<

TRa(a: ProcessAssignment, Pr: set[index])
AssignmentExt =
CASES a OF
Gate (gexpr) : Gate(TRe(gexpr, Pr)),
Latch(v0, lexpr)
Latch (EMPTYSET, TRe(lexpr, Pr)),
Input : Input
ENDCASES

AssignSet: TYPE = [index -> AssignmentExt ]

ProgramExt: TYPE =
[# st: AssignSet, gr: AssignSet #]

TRa (p(idx), InputsP(p))) #)

END TransformIF

TRp (p: Program) : ProgramExt =
(# st := (LAMBDA (idx: index) : IDa(p(idx))),
gr := (LAMBDA (idx: index)

Fig. 24 (continued)

411

IFe(e: ProcessExpr, principal: set[index],
s0: state, g0: graphState): RECURSIVE
set[index] =

CASES e OF
Constant (value): Empty,
Variable (name) :
IF principal (name) THEN
singleton (name)
ELSE
g0 (name)
ENDIF,
ITE (test,thn,els):

IF isTrue(Se(test,s0)) THEN
IFe(test,principal,s0,g0) +
IFe(thn,principal,s0,g0)

ELSE
IFe(test,principal,s0,g0) +
IFe(els,principal,s0,g0)

ENDIF,

Bop (OpB,al,a2): IFe(al,principal,s0,g0)
IFe(a2,principal,s0,g0),
Uop (OpU,a0) : IFe(al,principal,s0,g0)
ENDCASES
MEASURE e by <<

+

Fig. 25 Another presentation of the IFe function
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checking analysis, which improves performance. It also coarsens the analysis, as
it is no longer clear from a counterexample which of the variables mapped to the
principal id is responsible for information flow.

5.4 Adding Control Variables

The implementation allows variables to be designated as control variables. The in-
tuition is that an operand of an AND or OR gate sometimes acts as a mask for the
other operand (toward FALSE and TRUE, respectively). In this instance, we would
like to consider the information flow from the other variable into the gate only if
the control variable has the appropriate value. This feature allows for slightly more
accurate analysis in some models. It is a conservative extension because the seman-
tics of AND and OR gates are semantically the same as the following if/then/else
structure:

Y
Y

Cand E & Y = if C then E else false;
Cor E <& Y = if C then true else E ;

Y is semantically equivalent in both cases, and the soundness of the flow analysis
follows from the existing proof of if/then/else expressions in Fig. 12. Note that the
condition variable for if/then/else (C) is always used for the information flow analy-
sis, so if both variables in a Boolean expression are control variables, the following
is generated:

s
I

Co and C; <&
if Cp then (if C; then C¢ else false) else
(if C; then C¢ else false)

s
I

After applying the syntactic TRe transformation to the right-hand side of the
equivalence and simplifying, this yields the “standard” information flow expression
for the original binary expression: Bop(Union, TRe(al, Pr), TRe(a2, Pr)).

6 Intransitive Interference and Noninterference

We have defined a considerable amount of infrastructure for determining which
variables can interfere with a particular computed variable within a model. In the
approach that we have pursued in the previous sections of this chapter, all interfer-
ence relations are fransitive. That is, if variable A interferes with variable B and B
interferes with C, then A interferes with C. However, there are several systems in
which we are willing to allow certain kinds of interference across security domains,
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as long as it is mediated in some way. The reasoning for allowing this interference

is well explained by Roscoe and Goldsmith [19]:
It seems intuitively obvious that the relation must be transitive: how can it make sense for
A to have lower security level than B, and B to have lower level than C, without A hav-
ing lower level than C ? But this argument misses a crucial possibility, that some high-level
users are trusted to downgrade material or otherwise influence low-level users. Indeed, it
has been argued that no large-scale system for handling classified data would make sense
without some mechanism for downgrading information after some review process, inter-
val (e.g., the U.K. 30-year rule) or defined event (the execution of some classified mission
plan, for example). Largely to handle this important problem, a variety of extended theories
proposing definitions of “intransitive noninterference” have appeared, though we observe
that this term is not really accurate, as it is in fact the interference rather than the nonin-
terference relation which is not transitive. Perhaps the best way to read the term is as an
abbreviation for “noninterference under an intransitive security policy.”

There have been several formulations of intransitive interference based on state ma-
chines [20], process algebras [19], and event traces [10].

6.1 Formulating Intransitive Interference

Our model is entirely defined in terms of variables. Operations such as encryption
or downgrading are implemented as subsystems (sets of variables) within a larger
model whose output is another variable within the model. Therefore, it is natural to
think of extending the set of principal variables P from only the inputs to include
internal variables that define the mediation points of interest. Since the definition of
Noninterference requires only that the principal variables agree, these intermediaries
are easily incorporated into our definition.

For example, in the shared buffer model, we are willing to allow information to
flow through the scheduler. By adding the scheduler state to P, we restrict ourselves
to reasoning over traces in which the scheduler states match. From the perspective
of reasoning, it is straightforward to parameterize the proofs over a superset of the
inputs and reprove the InterferenceTheorem and NoninterferenceTheorem defined
in Sects. 3 and 4.

6.1.1 The Problem of Implicit Functional Dependencies

Unfortunately, this formulation of “correctness” allows unintended covert informa-
tion flows around the mediation point as long as they can be functionally derived
from an input variable.

Figure 26 presents a Simulink model that illustrates the problem. Output O is
a record type that contains two fields B and C. Field B is the output of a sub-
system that encrypts the input variable (A); field C is a simple pass-through of
A. Suppose that the output of the encryptor B is functionally derived from input A.
That is, two traces on B agree only when the traces on A4 also agree. In this case, ac-
cording to the interference theorem, we can adjudge output O to be dependent only
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—} In1 Out1

Encryptor

Fig. 26 Simulink model containing a bypass

on B, even though there is clearly a flow that bypasses B. The problem is that the
encryptor variable is functionally derived from a single input A, so the equivalence
on B forces a corresponding equivalence on the input A. In other words, requiring
a trace equivalence on a computed principal variable may cause an implicit equiv-
alence on another principal variable. These implicit equivalences allow an attacker
to bypass the desired mediation variable.

6.1.2 An Overly Conservative Formulation

An approach that could be considered for intransitive interference reframes the prob-
lem: given a program P involving a computed principal variable ¢, we construct a
program P’ in which ¢ is an input and assert that all traces must agree on P’. P’
has at least as many traces as P, as the value of ¢ is unconstrained with respect
to the other variables in P’. The additional traces distinguish variables that bypass
the computed principal as there is no longer a functional connection between the
computed variable and the inputs.

Unfortunately, treating states as inputs leads to overly conservative analyses in-
volving traces that are impossible in the original program. Consider the shared
buffer model from Sect.2. If a new model is created in which the scheduler out-
put is instead a system input, then the scheduler can no longer correctly mediate
access to the shared buffer and so information flow occurs through the buffer. The
flow analysis will (correctly) state that there is information flow through the buffer,
but the flagged traces are not possible in the original model.

6.2 Modeling Intransitive Interference Using Graph Cuts

The analysis approach that is used in Gryphon is to model intransitive information
flow through cuts in the information flow graph. That is, we define a new principal
variable in the information flow graph by cutting the edges that define the dependen-
cies of that computed variable. To implement the change in the information flow (IF)
semantics defined in Sect. 3, we add the internal variable indices to the set of inputs
that are used in the IFe, IFi, IF's, and IFt relations. The definition of the program P
is left unchanged.
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This modified graph model is sufficient to correctly characterize both a program
P and a modified program P’ in which a principal variable c is treated as an input.
In other words, this formulation is sensitive to the structure of the computation of the
system execution traces as well as the functional result. The original program P is
analyzed, so there are no problems introduced by the additional traces of P’, but we
(correctly) characterize models such as the one described by Fig.26 as containing
direct information flows from input variable A to output O.

Illustrations of a transitive flow model and an intransitive model using graph
cuts are shown in Fig. 27. Recall that the hybrid model that is generated for model
checking is composed of both a functional model (the original system) and an infor-
mation flow model, which is an encoding of the /F semantics as described in Sect. 5.
In Fig. 27, the functional model is shown at the top of the figure. In the middle is
a transitive information flow model. At the bottom is an intransitive information
flow model.> Each model is presented both graphically on the left and in terms
of equations on the right. In this figure, the principal bitvector for a variable X is
notated as X .

© | Original Model |

r X=AorB
Y = if X then C else D

‘ 1 Z=CandY

%} Downgrader

Transitive information
flow graph

X_Graph = A bit_or B
b Y_Graph = X_Graph bit_or
w (if X then C else D)

Z_Graph = C bit_or Y_Graph

Y

Intransitive graph with
computed principal signal Y

X_Graph = A bit_or B

Y_Graph = X_Graph bit_or
(if X then C else D)

Z_Graph =C bit_orY

Fig. 27 Transitive vs. intransitive flow graphs

2 For model checking analysis, only one of the two information flow models would be generated,
depending on the set of principal signals provided. However, Fig.27 is designed to illustrate the
differences between the transitive and intransitive analysis.
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Suppose variable Y (the switch gate) acts as a downgrader for variable D. We
would like to state that the output (Z) depends on input D only when mediated
through the downgrader. Given the transitive formulation of information flow in the
middle of Fig.27, it is not possible to make this claim. However, the intransitive
graph at the bottom of Fig.27 breaks the information flow graph for each use of
variable Y, replacing the input flows through the computed definition of ¥ with a
new principal signal Y. Given this new graph, it is possible to prove that no infor-
mation flows from D to Z that is not mediated by Y. On the other hand, note that
with this intransitive graph, a noninterference proof would still not be possible for
variable C as it has a flow to Z that bypasses Y.

We currently do not have a strong theorem (such as the InterferenceTheorem)
that we can prove about intransitive dependencies. Further, we conjecture that it is
not possible to functionally characterize such dependencies using trace semantics.
Instead, the structure of the computation function must be examined — the property
is intrinsic to the structure.

7 Connections to GWV

In the current chapter and the earlier chapter by Greve [6], we have presented
two quite similar formulations of information flow modeling. The formulation in
Greve’s chapter is more abstract and describes information flow over arbitrary func-
tions using flow graphs. It then describes how these functions can be composed and
how multistep state transition systems can be encoded. Two different formulations
(GWVrl and GWVr2) are presented. The GWVr2 formulation is capable of model-
ing dynamic information flows, in which storage locations are created and released
during the computation of the function, but this additional capability comes at a cost
of some additional complexity.

In this chapter, we have modeled information flow specifically for synchronous
dataflow languages. The basis for this approach was modeling GW V-style equiv-
alences using a model checker. However, the approach was originally justified by
manual proofs over trace equivalences due to the first author’s familiarity with this
style of formalization for synchronous dataflow languages. The mechanized proofs
in this chapter reflect the manual proofs.

As a basis for formalization, the trace equivalence allows a very natural style of
presentation. It provides a nice abstraction of the computation and information flow
analysis in that a total computation order for the assignments of the semantic and
flow analyses is not required. Instead, we can talk about conformance to some exist-
ing trace. Also, since the entire trace is provided, we can describe latch conformance
by examining the previous state in the trace.
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GWVrl Connection|
(importing ProcessInterference)
P: WFPrograms]: THEOCRY
BEGIN
IMPORTING ProcessInterference

valid tp : TYPE = {tp: tracePair | tp ok(P, tp)}

st liftv(i: index, tp: tracePair) : vtrace =
liftv (i, s(tp))

IMPORTING GWVrl[index, valid tp, vtrace, st_liftv,
index, valid tp, vtrace, st_liftv]

step_id(tp: valid tp) : valid tp = tp:
gtrace graph(tp: valid tp) (idx: index)
GraphEdge [index] =

Compute (DepSet (idx, g(tp)))

precondition(tp: valid tp) : bool = true ;

inputEquivSet to_vtraceEquivSet : LEMMA
(FORALL (is: set[index], tpl, tp2: tracePair)
Input.equivSet (is, tpl, tp2) =>
vtraceEquivSet (is, s(tpl), s(tp2)))

GraphIsGWVrl : LEMMA
GWVrl (step_id) (precondition, gtrace graph);

END GWVrl Connection

Fig. 28 Connection to GWVr1 theorem

7.1 From InterferenceTheorem to GWVrl

From the InterferenceTheorem, it is straightforward to map directly into the GWVrl

theorem presented in Greve’s chapter [6], as shown in Fig. 28.

GWVrl is defined as a proof obligation over a transition function from an input
state to an output state. The fragment of the GWVr1 theory required for the proof is

shown in Fig. 29.

The index, state, value, and get parameters to the theory define the indices of
discourse, the state, the values that can be stored at indices, and the “getter” function
to look up a value for the inputs and outputs of the transition function. In our case,

the types of inputs and outputs are the same: we are looking at traces. To format

our
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GWVrl [INindex, INState, INvalue: TYPE,
getIN: [[INindex, INState] -> INvalue],
OUTindex, OUTState, OUTvalue: TYPE,
getOUT: [[OUTindex, OUTState] -> OUTvalue]

GWVrl [INindex, INState, INvalue: TYPE,
getIN: [[INindex, INState] -> INvalue]l,
OUTindex, OUTState, OUTvalue: TYPE,
getOUT: [[OUTindex, OUTState] -> OUTvalue]
1: THEORY

BEGIN

IMPORTING GWV_Graph[INindex,OUTindex]
IMPORTING GWV_Equiv[INindex,INState, INvalue,getIN]
AS Input
IMPORTING GWV_Equiv[OUTindex,OUTState,OUTvalue,
getOUT] AS Output

StepFunction: TYPE = [ INState -> OUTState ]
GraphFunction: TYPE = [ INState -> graph ]
PreCondition: TYPE = [ INState -> bool ]

GWVrl (Next: StepFunction)
(Hyps: PreCondition, Graph: GraphFunction): bool=
FORALL (x: OUTindex, inl,in2: INState):
Input.equivSet (DIA(x,Graph(inl)),inl,in2) &
Hyps (inl) & Hyps (in2) =>
Output.equiv(x,Next (inl),Next (in2))

Fig. 29 Fragment of GWVrl theory

trace equivalences as a GWVrl theorem, we create a theory parameterized by an
arbitrary well-formed program. The GWYV index values are simply our index type,
the state is the trace pair containing both the execution state and the information flow
state, values map to our vtype, and the get function returns a variable trace from the
state trace.

The proof to GWVrl merely involves reshaping the InterferenceTheorem into
the expected arguments for GWVrl. Our StepFunction is simply the identity; we
already have the entire trace. The GraphFunction returns the trace dependency set
for a variable of interest; this is the same set used by the InterferenceTheorem. No
hypotheses are necessary, so we create a trivial precondition function. We intro-
duce a lemma inputEquivSet_to_vtraceEquivSet to map between the set equivalence
functions used by InterferenceTheorem and GWVrl, then can establish the Graphls-
GWVrl lemma with very little difficulty using the InterferenceTheorem as a lemma.

Although the trace formulation provides a nice level of abstraction for describ-
ing synchronous dataflow languages, in this chapter we have duplicated some of
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the infrastructure that had already been established in [6] with respect to function
composition, mapping from interference to noninterference, and justifying LTL
theorems in terms of trace equivalence. It would be possible to reformalize the syn-
chronous language semantics defined in Sect. 3 in order to better utilize the GWV
infrastructure, but we leave this for future work.

8 Using Gryphon for Information Flow Analysis

We now demonstrate the information flow analysis in the Rockwell Collins Gryphon
tool suite. Gryphon is an analysis framework designed to support model-based
development tools such as Simulink/Stateflow and SCADE. Model-based develop-
ment (MBD) refers to the use of domain-specific, graphical modeling languages that
can be executed and analyzed before the actual system is built. The use of such mod-
eling languages allows the developers to create a model of the system, execute it on
their desktop, analyze it with automated tools, and use it to automatically generate
code and test cases.

As MBD established itself as a reliable technique for software development, an
effort was made to develop a set of tools to enable the practitioners of MBD to for-
mally reason about the models they created. Figure 30 illustrates MBD development
process flow.

8.1 Model-Based Development ToolChain

The following sections briefly describe each component of the MBD toolchain.

8.1.1 Simulink, Stateflow, MATLAB

Simulink, Stateflow, and MATLAB are products of The MathWorks, Inc. [11]
Simulink is an interactive graphical environment for use in the design, simulation,
implementation, and testing of dynamic systems. The environment provides a cus-
tomizable set of block libraries from which the user assembles a system model by

selecting and connecting blocks. Blocks may be hierarchically composed from pre-
defined blocks.

8.1.2 Reactis

Reactis® [17], a product of Reactive Systems, Inc., is an automated test gener-
ation tool that uses a Simulink/Stateflow model as input and autogenerates test
code for the verification of the model. The generated test suites target specific
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Customer Modeling Test Formal Automated Formally
Specification and Generation | Specification Formal Verified
Simulation and Language Analysis Model
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Verification
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coverage Various model checkers
metrics and/or theorem provers
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Fig. 30 Model-based development process flow

levels of coverage, including state, condition, branch, boundary, and modified
condition/decision coverage (MC/DC). Each test case in the generated test suite
consists of a sequence of inputs to the model and the generated outputs from the
model. Hence, the test suites may be used in testing of the implementation for be-
havioral conformance to the model, as well as for model testing and debugging.

8.1.3 Gryphon

Gryphon [24] refers to the Rockwell Collins tool suite that automatically translates
from two popular commercial modeling languages, Simulink/Stateflow and SCADE
[4], into several back-end analysis tools, including model checkers and theorem
provers. Gryphon also supports code generation into Spark/Ada and C. An overview
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Fig. 31 Gryphon translator framework

of the Gryphon framework is shown in Fig. 31. Gryphon uses the Lustre [7] formal
specification language (the kernel language of SCADE) as its internal representa-
tion. This allows for the reuse of many of the RCI proprietary optimizations.

8.1.4 Prover

Prover [16] is a best-of-breed commercial model checking tool for analysis of the
behavior of software and hardware models. Prover can analyze both finite-state
models and infinite-state models, that is, models with unbounded integers and real
numbers, through the use of integrated decision procedures for real and integer arith-
metic. Prover supports several proof strategies that offer high performance for a
number of different analysis tasks including functional verification, test-case gener-
ation, and bounded model checking (exhaustive verification to a certain maximum
number of execution steps).

8.1.5 Custom Code Generation
By leveraging its existing Gryphon translator framework, Rockwell Collins de-

signed and implemented a toolchain capable of automatically generating SPARK-
compliant Ada95 source code from Simulink/Stateflow models.

8.2 Modeling and Analyzing the Turnstile High-Assurance
Guard Architecture

A large scale use of the Gryphon analysis was performed on the Rockwell
Collins Turnstile high-assurance cross-domain guard [18]. A high-level view of
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Fig. 32 Turnstile system architecture

the architecture is shown in Fig. 32. The offload engines (OEs) provide the external
interface to Turnstile. The Guard Engine (GE) is responsible for enforcing the
desired security policy for message transport. The guard data movers (GDMs) pro-
vide a high-speed mechanism to transfer messages under the direction of the GE.
The GE is implemented on the EAL-7 AAMP7 microprocessor [25] and uses the
partitioning guarantees provided by the AAMP to ensure secure operation.

In its initial implementation, Turnstile provides a “one-way” guard. It has a high-
side OE (OElI in Fig.32) that submits messages (generates input) for the guard, a
low-side OE (OE3 in Fig. 32) that emits messages if they are allowed to pass through
the guard, and an audit OE (OE2 in Fig. 32) that provides audit functionality for the
system.

The architectural analysis focused on the interaction between the GDMs, GE,
and OEs. The OEs, GDMs, and GE do not share a common clock and both execute
and communicate asynchronously. In the model, we clock each of the subsystems
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using a system input. This input is allowed to vary nondeterministically, allowing us
to model all possible interleavings of system execution.

8.2.1 Representing the Turnstile Architecture in Simulink
The Simulink model of the Turnstile system architecture is shown in Fig.33. The

components were modeled at various levels of fidelity, depending on their relevance
to the information flow problem:
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e The GDM:s are responsible for most of the data routing and are modeled to a
high level of fidelity. All of the GDM channels (transmit, receive, audit, control,
and health monitor) are modeled as well as the GDM-to-GDM and GDM-to-GE
transfer protocols.

e The data routing portions of the GE were accurately modeled. The policy en-
forcement portions (the guard evaluator) were modeled nondeterministically: the
GE component randomly chooses whether messages are dropped or propagated.

o The OEs were modeled at a fairly low level of fidelity. As the OEs are not trusted
by the Turnstile architecture, we allow them to nondeterministically submit re-
quests on all of the interfaces between OE and GDM. This approach allows us to
model situations in which the OE violates the Turnstile communications proto-
cols (which should cause the system to enter a fail-safe mode).

The principals of interest are those processes on the Offload Engines that inter-
act with the outside world (the low and high networks): the reading and writing
processes on OE1 and the reading and writing processes on OE3. To represent the
arbitrary interleavings of the Turnstile processes, we used enabled (clocked) subsys-
tems in Simulink. The GDMs run in synchrony at the basic rate of the model while
the OEs and GE run at arbitrary intervals of the basic rate.

The model in Fig.33 was translated via Gryphon into the model checkers
NuSMV [8] and Prover [16]. With these tools we analyzed several of the information
flows through the model. Since the OE has multiple inputs in our model (and in real
life), we analyzed every input into the OEs for the possible presence of information
from an unwanted source. In a one-way guard configuration, we are interested in
determining whether there is backflow of information to the high-side network, that
is, whether any GDM input into OEI is influenced by the low-side (OE3) reading
or writing principals. These properties can be encoded as shown in Fig. 34.

One of the back flow properties (shown in bold font) was violated in the architec-
tural model. However, this was already a known source of back flow because of the
implementation of the GDM transfer protocol that resulted from a quality of service

12h_tx1 = not gry_IF_OE1_TX_Access[p_oe3_writer] ;

- 12h_tx2 = not gry_IF_OE1_TX_Access[p_oe3_reader] ;
12h_tx3 = not gry_IF_OE1_RX_Access[p_oe3_writer] ;
I2h_tx4 = not gry_IF_OE1_RX_Access[p_oe3_reader] ;
12h_tx5 = not gry_IF_OE1_RX_Read_Data[p_oe3_writer] ;
12h_tx6 = not gry_IF_OE1_RX_Read_Data[p_oe3_reader] ;
12h_ctrl1 = not gry_IF_OE1_CTRL_Data[p_oe3_writer] ;
12h_ctrl2 = not gry_IF_OE1_CTRL_Data[p_oe3_reader] ;
I2h_ctrl3 = not gry_IF_OE1_CTRL_Access[p_oe3_writer] ;
12h_ctrl4 = not gry_IF_OE1_CTRL_Access[p_oe3_reader] ;
12h_hlst1 = not gry_IF_OE1_HLST_Access[p_oe3_writer] ;
12h_hlist2 = not gry_IF_OE1_HLST_Access[p_oe3_reader] ;

Fig. 34 Backflow properties from “low-side” OE3 to “high-side” OEl
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oe2_audit1 = not gry_IF_OE2_Audit_Access[p_oe3_writer] ;
oe2_audit2 = not gry_IF_OE2_Audit_Access[p_oe3_reader] ;
oe2_audit3 = not gry_IF_OE2_Audit_Data[p_oe3_writer] ;
oe2_audit4 = not gry_IF_OE2_Audit_Data[p_oe3_reader] ;
oe2_audit5 = not gry_IF_OE2_CTRL_Access[p_oe3_writer] ;
oe2_audit6 = not gry_IF_OE2_CTRL_Access[p_oe3_reader] ;
oe2_audit7 = not gry_IF_OE2_CTRL_Data[p_oe3_writer] ;
oe2_audit8 = not gry_IF_OE2_CTRL_Data[p_oe3_reader] ;
oe2_audit9 = not gry_IF_OE2_HLST_Access[p_oe3_writer] ;
oe2_audit10 = not gry_IF_OE2_HLST_Access[p_oe3_reader] ;

Fig. 35 Backflow properties from “low-side”” OE3 to audit OE2

requirement levied on the Turnstile implementation. This requirement stated that
a new message cannot be accepted until the previous message had been delivered.
In the Turnstile architecture, the high-side writer is unable to transmit to the GDM
until the low-side reader has finished consuming the last message. The low-side
reader could potentially use this mechanism to transmit information (interfere) with
the high-side network. The verification of the other properties demonstrates that the
high-side OE is not, for example, influenced by the low-side writer.

Also, because the Audit OE may also be connected to the high network, we
wanted to verify that no information from OE3 leaks out to the Audit network from
any of the GDM inputs to OE2. These properties, which are all proven correct by
the Prover model checker, are shown in Fig. 35.

Though much more complex, the Turnstile architectural model is conceptually
similar to the shared buffer example. The GE acts as the scheduler between the
GDMs, which are physically connected together and can be thought of as defining a
“shared” resource. It is crucial to note that accurate conditional information flow is
necessary to successfully analyze the Turnstile system architecture and many other
industrial systems of interest. Since the GDMs are directly connected, an uncondi-
tional analysis of the architecture would not be able to demonstrate noninterference
properties between the high- and low-side OEs. Only by considering the state of the
system (especially the GE) can one demonstrate the security of the architecture.

9 Conclusion and Future Work

In this chapter, we have described an analysis procedure that can be used to check a
variety of information flow properties of hardware and software systems, including
noninterference over system traces. This procedure is an instantiation of the GWV-
style flow analysis specialized for synchronous dataflow languages such as SCADE
[4] and Simulink [11]. Our analysis is based on annotations that can be added di-
rectly to a Simulink or SCADE model that describe specific sources and sinks of
information. After this annotation phase, the translation and model checking tools
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can be used to automatically demonstrate a variety of information flow properties. In
the case of noninterference, they will either prove that there is no information flow
between the source and a variable of interest or demonstrate a source of information
flow in the form of a counterexample.

In order to justify the model checking analysis, we have presented a formalization
of our approach in PVS and demonstrated a NoninterferenceTheorem. This theorem
states that if our model checking analysis determines a system input that does not
interfere with a particular output, then it is possible to vary the trace of that input
without affecting the output in question. The analysis is both scalable and accurate
and can be used to describe the following:

o Conditional information flow. The analysis is sensitive to the state of the model
and can be used in situations in which multiple domains “share” a resource, such
as the shared buffer model.

o “Covert” information flow. The analysis can detect flows due to (for example)
contention for resources. These flows are ultimately manifest in the test expres-
sions for conditionals, which are propagated to the output of the conditional.

o [Intransitive information flow. The analysis can be used to define intransitive in-
formation flows, in which we are willing to allow information flows between
domains as long as they occur through well-defined mediation points.

Our analysis is implemented in the Gryphon tool suite that supports several kinds
of formal analysis of Simulink and Stateflow models. Gryphon has been used in
several large-scale formal verification efforts [24], including a flow analysis of the
Turnstile high-assurance cross-domain guard.

9.1 Future Work

There are several directions for future work given the framework that has been
created. First, there are a variety of interesting properties beyond noninterference
that can be formalized using temporal logic. For example, it is possible to be-
gin talking about rates of information flow through a system by creating more
interesting temporal logic formulations of flow properties. For example, one can
state that flow occurs at most every ten cycles of evaluation (say), with the follow-
ing Real-Time CTL (RTCTL) [2] property:

SPEC AG(gry IF_output[P1] -> ABF[5,23] (!gry IF_output[P1]));

where “ABF” is the bounded future operator of RTCTL. This formula states that if
flow occurs from principal P1 to variable output in the current steps, then no flow
occurs from P1 to output over the next ten steps. In order to be informative, this
obligation would have to be paired with some notion of how much information was
being transmitted by a particular flow in an instant when flow occurs. It should be
possible to annotate (manually or automatically) an information flow model with
the flow rates along particular edges within the graph. Such an annotation could be
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used to overapproximate “acceptable” levels of information loss when strict nonin-
terference is not possible (such as with the scheduler in the shared buffer example
from Sect. 2.2).

Similarly, we may want to describe modal information flow properties. For
example: as long as the system is not in the self-test mode, then no information
flows from A to B. These properties are straightforward to specify in temporal logic,
but precisely defining the meaning of these kinds of properties in a more general
InterferenceTheorem would be a useful exercise.

It should be possible to partition the model checking analyses using composi-
tional reasoning techniques such as those described in [12,13] for very large models.
Determining the obligations over both the functional state and also the information
flow graph should be an interesting exercise and may yield further insights into the
relationship between a functional model and information flow graph.

There are several directions to extend the full formalization of the approach in
PVS. First, we should formalize the proof of equivalence between the /Fe semantics
and the information flow model that is generated by the translation rules in Sect. 5.
A more ambitious step would be to formalize the entire Lustre language in PVS
including the clock operators and modularity constructs and demonstrate the cor-
rectness of the complete translation provided in the Gryphon toolsuite.

Finally, we would like to be able to compose the model checking results with
results from theorem proving GW V-style theorems using a theorem prover such as
PVS or ACL2. This would allow partitioning of very large problems into portions
that can be analyzed with “the right tool for the job,” using theorem proving where
required (e.g., when complex dynamic data structures are involved) but using auto-
mated analysis using model checking where possible.
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