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Introduction

Axial skeletal development is part of the complex, inclusive process of axial or
midline development. It involves the interaction of many tissues including the
embryonic notochord, neural tube, somite compartments, intersomitic angiopotent
cells, and neural crest cells. These tissues give rise to the axial skeleton, interverte-
bral discs, spinal cord, trunk musculature and dorsal dermis, intervertebral arteries,
and spinal ganglia. Development of these tissues occurs in an interdependent and
hierarchical manner over an extended period of time. These characteristics may
make the axial skeleton disproportionately susceptible to environmental influence,
accounting for the high incidence of axial skeletal defects among live and stillbirths.
It may also account for the many manifestations of axial skeletal defects observed.

Data show that the axial skeleton is one of several organ systems with a high
frequency of abnormality, 1 in 1,000 live births (Brent and Fawcett 2007, Cohen
1997, Dias 2007, Erol et al. 2002, Jaskwhich et al. 2000, O’Rahilly and Müller
1996, Oskouian et al. 2007) and a very low heritable component, estimated to be
between 0.5 and 2%. Congenital axial skeletal defects may occur in isolation or
as a component of more widespread syndromes or sequences (Cohen 1997, Dias,
2007, Erol et al. 2002, Jaskwhich et al. 2000, Oskouian et al. 2007) (Table 3.1 and
Chapter 7). It is estimated that the skeletal defect is accompanied by an intra-spinal
neural defect in 40% of cases. In addition, approximately 50–60% cases of congen-
ital scoliosis suffer additional congenital defects in other organ systems including
urogenital and cardiovascular systems (approximately 20% and 10–12%, respec-
tively), gastrointestinal and limb defects (2–5%). These combinations of congenital
defects and their frequencies are reflective of the degree of concurrent development
of the different organ systems.
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Table 3.1 Genetic syndromes that are characterized by scoliosis

Syndrome Features

Alagille syndrome (autosomal dominant) Neonatal jaundice, cholestasis, peripheral
pulmonic stenosis, occasional septal defects
and patent ductus arteriosus, accompanied by
abnormal facies, ocular, vertebral, and nervous
system abnormalities

Bertolotti syndrome Sacralization of the fifth lumbar vertebrae with
sciatica and scoliosis

Caudal dysgenesis (agenesis, regression)
syndrome

Failure to form part or all of the coccygeal,
sacral, and lumbar vertebrae and
corresponding spinal segments with
malformation and dysfunction of the bowel
and bladder

Cerebrocostomandibular syndrome
(autosomal recessive)

Severe micrognathia, severe costovertebral
anomalies including bell-shaped thorax,
incompletely ossified, aberrant rib structure,
abnormal rib connection to the vertebral body,
accompanied by palatal defects, glossoptosis,
pre- and post-natal growth deficiencies, mental
retardation

Coffin-Siris syndrome Hypoplasia of the fifth fingers and toes
associated with mental and growth retardation,
coarse facies, mild microcephaly, hypotonia,
lax joints, mild hirsutism, and occasionally
accompanied by cardiac, vertebral, and
gastrointestinal abnormalities

Oculocerebral hypopigmentation
syndrome (autosomal recessive)

Oculocutaneous albinism, microphthalmus,
opaque corneas, oligophrenia with spasticity,
high-arched palate, gingival atrophy, scoliosis

Kabuki make-up syndrome Mental retardation, dwarfism, scoliosis,
cardiovascular abnormalities, and facies
reminiscent of a Japanese Kabuki actor

King’s syndrome (malignant
hyperthermia)

Short stature, kyphoscoliosis, pectus carinatum,
cryptorchidism, delayed motor development,
progressive myopathy, structural
cardiovascular defects

Klippel–Feil syndrome Reduced number of cervical vertebrae, cervical
hemivertebrae, low hair-line, reduced neck
mobility

Lenz’s syndrome (X-linked) Microphthalmia, anophthalmia, digital
anomalies, narrow shoulders, double thumbs,
vertebral abnormalities, dental, urogenital,
and cardiovascular defects may occur

Multiple pterygium syndrome (autosomal
recessive)

Pterygia of the neck, axillae, popliteal,
antecubital, and intercrural areas, accompanied
by hypertelorism, cleft palate, micrognathia,
ptosis, short stature, and a wealth of skeletal
anomalies including camptodactyly,
syndactyly, equinovarus, rocker-bottom feet,
vertebral fusions, and rib abnormalities
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Table 3.1 (continued)

Syndrome Features

Oculoauricularvertebral syndrome
(Goldenhar syndrome)

Colobomas of the upper eye lids, bilateral
accessory auricular appendages, vertebral
anomalies, facial bossing, asymmetrical skull,
low hair-line, mandibular hypoplasia, low-set
ears, and sometimes hemifacial microsomia

Rubenstein–Taybi syndrome Mental and motor retardation, broad thumbs and
big toes, short stature, high-arched palate,
straight, beaked nose, various eye
abnormalities, pulmonary stenosis, keloid
formation at surgical scars, large foramen
magnum, vertebral and sternal abnormalities

Spondylothoracic dysplasia
(Jarcho–Levin syndrome)
(autosomal recessive)

Multiple vertebral defects, short thorax, rib
abnormalities, camptodactyly, syndactyly, and
accompanied by urogenital anomalies and
respiratory dysfunction

VATER-VACTERL sequence Vertebral anomalies, anal atresia, (cardiac
abnormalities), tracheal fistula with
esophageal atresia, renal defects, (limb
abnormalities)

A selected list of recognized genetic syndromes that may include vertebral anomalies. Genetic
syndromes associated with scoliosis are further discussed in Chapter 7.

While dramatic axial skeletal defects do occur in the context of syndromes and
other anomalies, the majority of congenital spinal anomalies involve single struc-
tural defects of the spine and frequently few obvious coincident malformations or
functional deficits (Erol et al. 2002, Jaskwhich et al. 2000, Oskouian et al. 2007),
indicating that a time-dependent, tissue-specific insult may be involved. The com-
plexity of axial skeletal development and the variety of axial skeletal defects suggest
a variety of loci and mechanisms through which environmental factors may cause
axial skeletal dysmorphogenesis.

Faced with the high social costs of resultant morbidity, it is critical to determine
the possible impact any environmental factor may have on the embryo. Although
many of the known human teratogens can produce axial skeletal defects, the etiol-
ogy of over half of observed axial skeletal defects is unknown and is assumed to
be multi-factorial, a combination of genetic susceptibility and environmental insult
(Cohen 1997, Jaskwhich et al. 2000). This fact highlights the need for investigat-
ing the role of environmental factors, alone or in combination, in the production of
this particular class of defects. Such study requires the convergence of at least two
broad fields of study. The first is developmental biology, to understand the details of
normal development and identify new markers, loci, and perhaps possible mecha-
nisms of teratogenesis. The second field is teratology, a discipline closely related to
reproductive toxicology that involves assessing the impact of environmental factors
on the new biological markers, loci, and mechanisms discovered and characterized
in developmental biology.
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Vertebral Dysmorphogenesis in Human Congenital Scoliosis

Clinically, congenital scoliosis is defined as a spinal curvature of over 10% caused
by a structural vertebral defect (Dias 2007, Erol et al. 2002, Oskouian et al. 2007).
The abnormal spinal curvature is further defined by its anterior–posterior loca-
tion and the plane of curvature as coronal for scoliosis and sagittal for kyphosis.
The characteristic feature of congenital axial skeletal defects is the malformation
of vertebral bodies or processes evident at birth. Broadly, these vertebral defects
are clinically classified as failures in formation and morphogenesis represented by
hemivertebrae, wedge vertebrae, open vertebral arches, bifid vertebrae, and vertebral
agenesis or failures in segmentation represented by unilateral unsegmented bars or
block vertebrae bilateral fusions (Fig. 3.1) (Dias 2007, Erol et al. 2002, Jaskwhich
et al. 2000, Oskouian et al. 2007). Developmentally, however, all of these defects
have their origin in somitogenesis, the initial manifestation of the vertebral column’s
metameric segmentation.

Fig. 3.1 Different forms of
congenital scoliosis: block
vertebrae (a), unilateral bar,
(b), wedge vertebrae, (c),
multiple hemivertebrae, (d),
single, semi-segmented
vertebrae, (e), non-segmented
hemivertebrae, (f),
incarcerated hemivertebrae,
(g), defects in segmentation
can produce these defects

Normal Development of the Axial Skeleton

As discussed in previous chapters, the axial skeleton is derived from the paraxial
mesoderm, a primary germ layer, which undergoes the molecularly timed process
of somitogenesis to produce blocks of tissue symmetrically arranged on either side
of the midline neural tube and notochord (Table 3.2, Fig. 3.1) (Christ et al. 2000,
Stockdale et al. 2000, Gridley 2006). The somite is a transient embryonic structure
that plays an important role in the patterning of the axial skeleton (comprised of ver-
tebral bodies, ribs, and intervertebral discs) and its associated tissues: the hypaxial
and epaxial muscles of the spine, the dorsal dermis of the trunk, and the interver-
tebral arteries. The morphogenic description of somitogenesis can be conceptually
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Table 3.2 Developmental timing of the axial skeleton in the human embryo

Developmental feature
Day of
gestation Other notable occurrences

Gastrulation 15 Neural plate formation
Notochord formation 17–19 Neural tube folding
First somite 19 Heart tube formation
Onset of neural tube fusion 22 Heart tube folding, optic and otic

vesicle formation begins
Anterior neuropore closure 23–26 Embryonic circulation
Posterior neuropore closure 26–30 Forelimb bud
Sclerotomal segmentation 24–35
Notochordal segmentation 28–30
Last (30th) somite formed 32 Hind limb bud, optic cup formed
All rib primordia evident 42–44
Chondrification of centra 36–42
Chondrification of ribs and

laminae
40–44

Chondrification complete/onset of
ossification

56–60

divided into several phases: patterning, morphogenesis, differentiation, and growth
and maturation (Tam and Trainor 1994, Christ et al. 2000, Alexander et al. 2007a).
These are helpful classifications when characterizing and studying birth defects and
their causes.

Among the tissues of the spine, the axial skeleton and its composite tissues
undergo multiple rounds of patterning, differentiation, and growth events, includ-
ing somitogenesis, resegmentation, and ossification, among other processes. Briefly,
the axial skeleton is derived from the sclerotome, the ventromedial quadrant of each
somite. Cells of sclerotome are initially part of the epithelial somite. Shortly after
expressing the paired-box gene Pax1 (Wallin et al. 1994, Barnes et al. 1996a), the
cells de-epithelialize and relocate themselves to surround the notochord. These cells
then begin expressing Sox9, a chondrocyte-specific transcription factor, and pro-
ducing prodigious amounts of cartilage matrix to form the cartilage anlage of the
vertebral body (Healy et al. 1999). There is a distinct polarity to the somite as it
matures (Tam and Trainor 1994) that is consequential in the course of resegmenta-
tion, in which the posterior half of one somite merges with the anterior half of the
posterior somite (Christ et al. 2004). Together, these halves combine to form a ver-
tebral body out of phase with the other tissue, characteristic of the vertebral motor
unit.

Development of the axial skeleton and the surrounding tissues occurs in an inter-
dependent and hierarchical manner over an extended period of time. This may
make the axial skeleton disproportionately susceptible to environmental influence,
accounting for the high incidence of axial skeletal defects among live and still-
births. It may also account for the many manifestations of axial skeletal defects
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observed. Understanding these processes (the normal development of the spine) and
their effects upon the surrounding tissues is important in deciphering the etiology of
various forms of congenital scoliosis and the mechanisms by which environmental
agents may initiate abnormal development.

Experimental Axial Skeletal Teratology

Given that the majority of axial defects have no known genetic cause (Cohen 1997,
Dias 2007, Erol et al. 2002, Jaskwhich et al. 2000, Oskouian et al. 2007), the
assumption must be made that there is an environmental component. The principles
that helped define environmental teratogical agents were popularized in the wake of
the “thalidomide experience” and with some modification remain applicable today
(Wilson 1977, Sulik 1997, Sadler and Hunter 1994). In establishing the role of an
environmental agent in inducing a congenital axial skeletal defect, we know that it
must first affect the development and function of axial tissues and those that influ-
ence their differentiation including the notochord, neural tube, paraxial mesoderm,
and overlying ectoderm. Second, the exposure must occur somewhere between the
4th and 10th week of human gestation, or organogenesis, during which time gas-
trulation, neurulation, and somitogenesis occur (Table 3.2) (Nishimura et al. 1974,
O’Rahilley and Müller 1996). Third, the target of the teratogen must play a nec-
essary role in the affected developmental process (e.g., somitogenesis) by acting
via a specific mechanism. Finally, we must observe the dose-response effect of the
environmental agent on embryonic development in both frequency and degree of
malformation, including the graded manifestations of abnormal development: death,
dysmorphogenesis, inhibition of growth or developmental delay, and functional
deficit.

In the etiology of scoliosis, target organs may include the paraxial mesoderm and
somites, the neural tube and notochord, and the overlying ectoderm. In particular,
the patterning of the somite boundaries and the subsequent boundaries of differentia-
tion defined by integrated signaling pathways under the influence of the surrounding
tissues figures prominently. Morphological processes that may be affected include
somitogenesis, neurulation, and gastrulation, which involve cell migration, epithe-
lialization, and laminar fusion, as well as proliferation and apoptosis. Finally the
differentiation, growth, and maturation of the axial skeletal elements may also play
an important role (Table 3.3).

Pathogenesis of Abnormal Axial Development

The identification of the structural defect in congenital scoliosis in the fetus or
neonate remains an analysis conducted long after the initial pathogenic events induc-
ing the malformation. Identifying and understanding the initial pathogenic event
is a critical step in characterizing the mechanisms of teratogenesis, which can
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Table 3.3 Phases of somitogenesis in a stage 12 chick embryo and possible causal links between
teratogen target tissues and hypothesized mature dysmorphogenesis

Stage 12 Chick
Embryo 

Transverse section/time of
teratogenic insult Target tissue

Possible resultant 
dysmorphogenes

1. Notochord

2.Ectoderm/
   neural tube

3. Sclerotome

Cleft vertebrae

Vertebral element
    agenesis

Vertebral disc
    anomalies
Abnormal bone
    metabolism

1. Chordomesoderm/
     notochord

2. Paraxial
    mesoderm

3. Ectoderm Block or
    hemivertebrae
Bifid or fused ribs
    vertebral agenesis

Vertebral disk
    anomalies
Caudal agenesis
Vertebral agenesis
Hemiblock
     Vertebrae

1. Notochord

2. Ectoderm/
    Neural tube

3. Somitic
    mesoderm

4. Lateral plate
    mesoderm

Cleft vertebrae

Vertebral agenesis

Hemivertebrae
Block vertebrae

Bifid ribs

Phases of somitogenesis at three anterioposterior locations (A, B, and C) in a stage 12 chick
embryo. Labels: DSo, differentiated somite; ESo, epithelial somite; CSo, condensed somite; PM,
paraxial mesoderm; NT, neural tube; HN, Hensen’s node; ECT, ectoderm; END, endoderm, NC,
notochord; DM, dermomyotome; SC, sclerotome; IM, intermediate mesoderm; LM, lateral plate
mesoderm.

then lead to the development of appropriate interventions. Environmental insults
to a developing organism occur at molecular or sub-cellular levels. While the
list of possible environmental insults is very large, the insults may be translated
into types of cellular responses that result in recognizable patterns of dysfunction
of dysmorphogenesis among tissues and organs (Table 3.4) (Wilson 1977, Sulik
1997).

Although teratogens are often discrete in nature (e.g., of known struc-
ture/composition and chemical characteristic), the determination of teratogenic
mechanism is complicated. The main reasons for this are as follows. First, not
all the possible targets of a teratogen have been identified, since many poten-
tially affected targets remain unknown, i.e., normal developmental mechanisms still
need identification and characterization. Related to this is the fact that it is highly
unlikely that most teratogens act upon a single molecule or even a cellular pathway.
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Table 3.4 Potential mechanisms, routes of pathogenesis, and ultimate morphogenetic outcome
used by environmental teratogens in the induction of congenital malformation. Adapted from
Wilson (1977)

Mechanisms Pathogenesis Final tissue outcome

Genetic mutation Increased or decreased cell
death

Reduction of cells to allow
proper morphogenesis or
tissue maturation

Chromosomal damage Failed cell-cell interactions
Epigenetic alteration Reduced matrix biosynthesis Imbalances in

differentiation
Mitotic interference Impeded morphogenic

movements
Imbalances in growth

Nucleic acid synthesis/balance Mechanical disruption of
tissues

Altered enzymatic substrates,
co-factors, etc.

Altered energy source
Altered redox status
Disrupted membrane or

cytoskeletal integrity
Altered signal transduction

Multiple mechanistic pathways may combine to produce a single pathogenic mech-
anism contributing to the resultant congenital defect. Second, our ability to monitor
the effect of the teratogen on the biochemistry of individual cellular targets is
limited. Specifically, probes with sufficient sensitivity and specificity are unavail-
able for many processes and applications. Contributing to these issues is the fact that
the amount of tissue available for study is usually very limited. Intertwined within
these shortcomings is the difficulty of experimental interpretation, which varies with
probe, detection, and particularly the endpoint chosen.

Despite these complications, we can hypothesize several intracellular processes
that may be targets of teratogens. The teratogen generates its effects on the embryo
often through a mode of molecular mimicry co-opting or undermining normal cel-
lular processes such that they are activated, inactivated, or diverted in a manner
inconsistent with developmental timing. Such processes include mitotic interference
(mutagenesis and carcinogenesis), epigenetic changes (methylation and acetylation
state), altered membrane function (composition or porosity), altered signal trans-
duction, altered/inhibited energy metabolism, inhibition of waste (intermediary)
metabolism, changed redox status, specific or general enzyme inhibition, and distur-
bances in nucleic acid synthesis, among other possibilities. The cellular responses to
these insults may be grouped into several common outcomes, including necrosis or
apoptosis, reduced biosynthesis, failed cell/cell or cell/matrix interactions, impeded
morphogenetic movement, and mechanical disruption of tissues. Ultimately, the
final defect may be manifested via loss of cells or tissue or imbalances in growth
and differentiation.
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While specific mechanisms of many teratogenic insults remain largely unknown,
the characterization of cellular responses has been more successful. One particularly
well-characterized outcome is the correlation of tissue-specific patterns of cell death
and impending malformation (Sadler and Hunter 1994, Sulik et al. 1988, Sulik 1997,
Zakeri and Ahuja 1997). This correlation has highlighted several characteristics of
teratogenic action including the principles that different cell populations are sen-
sitive to teratogenic insults at different time points, different agents target different
tissues, and many teratogens expand areas of normal, developmentally regulated cell
death. The observed changes in normal cell death patterns indicate the target tissue
often plays a role in the subsequent dysmorphogenesis; however, the apoptotic cells
do not participate in subsequent tissue formation – thus the effect of the teratogen
on the surviving cells is important and presumed to be related to the cause of cell
death. Nonetheless, the increase in cell death serves as an early marker for the ter-
atogenic action. As we learn more about development and toxicological responses
on the molecular level, we will create more sensitive cell response markers that will
allow greater resolution of the teratological action.

Overview of Agents and Conditions Associated with Axial
Skeletal Teratogenesis

As stated above, axial skeletal malformations are often linked to exposure to
teratogenic conditions. The following summarizes the types of teratogens and terato-
genic conditions associated with spinal malformations (Schardein 2000). Detailed
descriptions of some of these factors will be presented in the following sections.

Recreational teratogens: Recreational drugs such as alcohol, cocaine, and
cigarettes are known to significantly reduce fetal and post-natal growth, increase
infant mortality, and cause congenital malformations of various types and severity.

Pharmaceutical teratogens: Most embryonic organs and the central nervous sys-
tem are extremely sensitive to the teratogenic affects of pharmaceuticals such as
thalidomide, diethylstilbestrol, retinoic acid, valproic acid, warfarin, chemotherapy,
lithium, and nicotinic acid.

Industrial and environmental teratogens: Industrial processes required to provide
for growing populations worldwide release a substantial amount of waste products
into the environment, with the toxicologic and teratogenic effect of many species
as yet uncharacterized. Among the chemicals with known teratogenic effects are
organic solvents; arsenic, cadmium, and lead anesthetic gases; and organic mercury.

Agricultural teratogens: Insecticides and herbicides are critical to providing
nutrition to growing populations. Studies have determined that organochlorine
insecticides such as DTT, parathion, and malathion may interfere with fertil-
ity and reproduction by mimicking estrogen-like compounds. Among herbicides,
the byproduct of Agent Orange, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), is
highly teratogenic causing cleft palate and congenital renal abnormalities.
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Infectious diseases: Microbial chemicals may act as teratogens. Microbes such
as syphilis, cytomegalovirus, rubella, herpes, toxoplasma, and fifth disease affect 1–
5% of all live births. These infections may cause a group of associated malformation
known as the TORCH complex, as well as isolated structural defects and functional
deficits.

Metabolic conditions: Some metabolic disorders, most prominently diabetes
and hyperthermia also induce congenital malformations in the embryos. Diabetic
pregnancy increases the frequency of a wide variety of congenital defects over back-
ground including cardiac defects, eye and ear defects, renal defects, and functional
deficits in addition to a high rate of congenital scoliosis, in addition to increased
embryonic death and life-long metabolic disorders.

Non-genetically Linked Conditions Characterized by Axial
Skeletal Defects: VATER Association

The VATER spectrum is a non-random association characterized by vertebral
anomalies (V), anal atresia (A), tracheoesophageal (TE) fistula, and renal (R)
anomalies (Botto et al. 1997, Cohen 1997, Martínez-Frías and Frías 1997). This
spectrum may also be associated with cardiovascular (C) anomalies and limb (L)
anomalies (VACTERL). The incidence of VATER in diabetic mothers is 200×
higher than in the general population, which occurs at a rate of 16 per 100,000
births (Pauli 1994, Cohen 1997, Martínez-Frías et al. 1998a). Vertebral defects in
this association can involve agenesis, hypoplasia, and hemivertebrae, often afflict-
ing many contiguous vertebral units. As the acronym suggests, many associated
tissues are affected. The association of these different mesenchymally derived tis-
sues to the vertebral column and the timing of their development are critical to
hypothesizing the origin and mechanism of the defect(s). Analyses of the frequency
and co-occurrence of the features of VACTERL and other syndromes suggest
that the anomalies can extend to various cranio-caudal levels suggesting a time
dependency and critical period through a defect in a common mechanism of dys-
morphogenesis (Stewart et al. 1993). The VACTERL sequence can be conceptually
included in a group of progressively severe spectrums of which it may be the most
severe (Table 3.5). This broad spectrum of malformations has been coined the axial
mesodermal dysplasia complex (AMDC) (Stewart et al. 1993). Some confounding
features to any hypothesis are the broad range of defects sometimes involving tis-
sues derived from all germ layers, its largely spontaneous occurrence, and low rate
of subsequent inheritance.

There are two related, non-exclusive models currently employed to explain the
etiology of AMDC suggesting that the collection of defects may arise from a single
environmental insult at a time early in post-implantation development. In the first
theory, the embryo at the time of early gastrulation is comprised of a single mor-
phogenetic field, the primary developmental field (Optiz et al. 2002, Martinez-Frias
et al. 1998b). At this time the embryo responds essentially as a single, homogeneous
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Table 3.5 Common features of different associations within the axial mesodermal dysplasia
complex spectrum

Malformation VACTERL VATER OAV PIV PHS

Vertebral X X X X
Imperforate anus X X X X
Craniofacial X X
Tracheal–esophageal fistula X X
Renal abnormalities X X X
Limb anomalies X X X

(OAV) Oculo-auriculo-vertebral dysplasia, (PIV) Polyoligodactyly-imperforate
anus-vertebral anomalies syndrome, (PHS) Pallister-Hall syndrome.

entity. The primary effect of the insult at this time is to affect growth (proliferation)
within the embryo, drastically affecting the existence and position of organizing
centers and tissue morphogenesis throughout the embryo as this primary develop-
mental field subdivides into secondary developmental fields that will give rise to the
various organs and structures of the embryo including the axial skeleton (Martinez-
Frias and Frias 1999). If the insult occurs at this time, there is necessarily a wide
range of structures affected (polytopic defects) often of mesenchymal origin, but
involving ectodermal and endodermal germ layers as well.

A second variant on the theory holds that the broad spectrum of defects reflects a
common mechanistic cause in many tissues of a more heterogeneous entity com-
prised of multiple secondary developmental fields, such that different tissues of
the embryo respond in specific manners to produce the wide spectrum of observed
defects (Martínez-Frías and Frías 1997, Bohring et al. 1999). The defect then is
thought to lie more in mechanisms of patterning or morphogenesis as the insult or
defect occurs slightly later in development. This latter variation on developmen-
tal field defects and the etiology of multiple congenital anomalies such as VATER
appears to more easily explain the wide spectrum of cranio-caudal positions of the
defects and the wide degree of severity observed in several multiple congenital
defect associations by allowing for a longer critical period. Both of these theo-
ries have been characterized theoretically and statistically to the range of defects
observed in infants born to diabetic mothers, one of the most frequently recognized
“causative” factors of the VATER spectrum (Martínez-Frías et al. 1998a). The high
incidence of the VATER and other AMDC variants in diabetic mothers suggests
an etiology that involves a fundamental metabolic imbalance in energy production
or a dysfunction in a critical component of the embryonic stress response. Some
investigators have suggested that the defects may arise from malformation or dys-
function of the notochord, which is critical to the establishment and maintenance
of embryonic axes and the patterning and differentiation of many mesenchymal tis-
sues (Gilbert-Barness et al. 2001). It has been suggested that notochord mutants
such as brachyury (T) or sonic hedgehog (SHH) knock-outs could be used as
models for VATER and AMDC (Arsic et al. 2002). We discuss the potential for
energy metabolism dysregulation as the locus affected resulting in VATER in the
context of diabetes-induced congenital scoliosis below.
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Environmental Factors That Cause Axial Skeletal
Dysmorphogenesis

Valproic Acid

Valproic acid (VPA) is an anti-epileptic drug that is associated with a 20-fold
increased incidence of spina bifida, a neural tube defect, in children born to preg-
nant mothers undergoing VPA treatment (Lammer et al. 1987, Nau et al. 1991).
Experimentally, VPA has been shown to be teratogenic in mouse, rat, chick, hamster,
rabbit, and rhesus monkeys (Ehlers et al. 1992, Menegola et al. 1996, Vorhees et al.
1987, Barnes et al. 1996b, Basu and Wezeman 2000, Hendrickx et al. 1988). Skeletal
abnormalities in these models were most commonly observed, involving vertebrae,
ribs, digits, and craniofacial bones. These frequently occur in the context of other
cardiovascular, urogenital, and neurological anomalies that together comprise the
fetal valproate syndrome. The axial skeletal defects can include presacral vertebrae,
cervical and thoracic ribs, indicating possible homeotic transformations. The defects
may also include structural vertebral defects, indicating segmentation defects.

In general, the primary locus of teratogens causing spina bifida including VPA
is believed to be the neural tube, resulting in failure of neural tube closure (Turner
et al. 1990). Subsequently, the neural arches are unable to fuse. However, verte-
bral defects such as block vertebrae and hemivertebrae sometimes coincide with a
neural tube defect have also been observed following VPA exposure (Barnes et al.
1996b). More detailed studies have shown that important patterning genes, such as
Pax1 and paraxis (Tcf15), are down-regulated by the administration of VPA in chick
embryos (Barnes et al. 1996b, Barnes et al. 1997). The malformations produced by
VPA can be mimicked through the administration of anti-sense deoxynucleotides
during somitogenesis (Barnes et al. 1996b, Barnes et al. 1997). This type of data
confirms that dysregulation of these genes can be teratogenic, but does not indi-
cate a specific mechanism for how this may occur. The down-regulation of these
genes may be caused by decreased signaling or reduced or delayed differentiation
caused by increased ROS production or altered nucleic acid metabolism (Fantel
1996, Nau et al. 1991), as suggested by studies showing that folic acid adminis-
tration can significantly reduce the incidence of experimentally induced VPA axial
skeletal defects (Green and Copp 2005). More recently, VPA has been shown to
also inhibit histone deacetylase activity at therapeutic levels, and that this activity is
correlated with axial skeletal defects and exencephaly (Menegola et al. 2006). In a
comparison of the teratogenicity and changes in gene expression by VPA and TSA
(Trichostatin A), many of the shared genetic effects were specific to skeletal and car-
diac muscle, assigning a more specific mechanistic action of VPA to dysregulating
epigenetic control which leads to altered gene expression.

Hypoxia

Congenital vertebral anomalies have been produced in newborn animals experi-
mentally by transient hypoxia and transient exposure during the embryonic period
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(Grabowski and Paar 1958, Ingalls and Philbrook 1958, Rivard 1986, Webster and
Abela 2007). In these studies, many gross vertebral and associated skeletal defects
have been induced, including hemivertebrae, vertebral fusions, fragmented vertebral
bodies, bifid ribs, or junctions of two or more ribs. The nature and extent of skeletal
malformations induced have been dependent upon the precise stage of somite for-
mation at the time when maternal stress has been induced. Hypoxia is thought to
affect the early embryo through the induction of increased reactive oxygen species
(ROS) homotopically (where ROS are already prominent; Fantel 1996) and later
through altered vascularization (Grabowski 1961, Danielson et al. 1992, Webster
and Abela 2007). Less well defined is the idea that hypoxia itself or its manage-
ment is important in and of itself for morphogenic process or cell function during
embryonic development (Chen et al. 1999, Semenza 1999).

During early organogenesis as the embryonic circulation develops, the embryo
is known to undergo a transition from anaerobic respiration to aerobic respiration
(Hunter and Sadler 1989, Hunter and Tugman 1995, Mackler et al. 1975, Miki et al.
1988a). Recent studies have confirmed that oxygenation and the cellular response
to oxygenation as interpreted through expression patterns of heat shock proteins
(protective chaparones) (Edwards et al. 1997, Mirkes 1997), antioxidant (super-
oxide dismutases) (Wells and Winn 1996, Ornoy 2007, Forsberg et al. 1996, Yon
et al. 2008, Zaken et al. 2000), and HIF1alpha expression (Iyer et al. 1998, Maltepe
et al. 1997, Jain et al. 1998, Minet et al. 2000) vary between different tissues of the
embryo over time. Some of these variations have been correlated to periods of ter-
atogenic susceptibility (Ornoy et al. 1999, Forsberg et al. 1996). In this transition,
mitochondrial respiration may be inefficient producing higher-than-usual amounts
of ROS at a time when embryonic defenses against ROS damage are not well devel-
oped. This combination can lead to excess ROS-induced cell stress and cell death
(Dennery 2007, Dumollard et al. 2007, Burton et al. 2003). One hypothesis is that
those tissues undergoing energetically demanding process such as morphogenesis
are most susceptible to the oxygenation transition, a hypothesis furthered in dia-
betic embryopathy. The neural tube and somatic mesoderm have been shown to have
a higher metabolic activity (Raddatz and Kucera 1983, Miki et al. 1988a, b, Mackler
et al. 1971, Mackler et al. 1975) than surrounding tissues during early organogen-
esis, the time of greatest susceptibility to environmentally induced axial skeletal
defects.

Carbon Monoxide

Early work studying the effects of hypoxia utilized carbon monoxide as a
chemical hypoxic agent. Carbon monoxide (CO) is an odorless, colorless, non-
irritating gas produced by the incomplete combustion of carbon containing materi-
als. There have been no epidemiological studies of the direct effect of CO on human
pregnancies (Schardein 2000). However, there are a number of case reports and
anecdotes suggesting that CO may be a teratogen in humans (Robkin 1997, Longo
1977). Anecdotal accounts were given in Brander (Robkin 1997) and reported
congenital malformations, such as microcephaly, micrognathia, and limb defects
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including hip dysplasia, tetraplegia, equinovarus, and limb reduction. Indirect epi-
demiological information can be obtained from the observations of pregnancy
outcomes among women who smoke. Maternal smoking is associated with vari-
ous adverse outcomes including low birth weight, decreases in successful births
(Fichtner et al. 1990), and various behavioral defects that can be mimicked by CO
alone in animal models (Bnait and Seller 1995).

There are a limited number of studies linking CO to congenital malformations.
Early studies in chick, rabbit, and rat showed a causative relationship (Baker and
Tumasonis 1972, Murray et al. 1979); however, later studies failed to confirm this
connection (Astrup et al. 1975). More recent studies exploring threshold levels and
critical periods related to CO-induced effects upon the embryo have documented
CO-induced dysmorphogenesis (Bailey et al. 1994, Daughtrey et al. 1983, Loder
et al. 2000, Alexander and Tuan 2003). CO exposures during early organogenesis,
the critical period, resulted in vertebral anomalies, microphthalmia, and a phenotype
similar to caudal dysgenesis syndrome. Such malformations have been reported with
CO exposures administered during organogenesis in the context of other teratogens
at sub-teratogenic levels (Singh et al. 1993, Singh 2006). This may be a signif-
icant problem worldwide since acute carbon monoxide exposures may be higher
and more frequent than often reported (Fichtner et al. 1990, Ralston and Hampson
2000).

CO does impair oxygen delivery to and into cells by binding hemoglobin, myo-
globin, and other porphyrins; however, it may also function as a signaling molecule
in the context of nitric oxide (NO) signaling (Maines 1997). When administered
after the vascular system is developed, the axial defects caused by CO are attributed
to vascular leakage and subsequent mechanical disruption of developing tissue
(Baker and Tumasonis 1972). However, during early organogenesis, axial defects
involve the reduction of important segmentation genes including Pax1 and paraxis
(Tcf15) (Alexander and Tuan 2003), resulting possibly in the impaired inductive
interaction of the neural tube with the paraxial mesoderm with CO acting as a
signaling molecule. Nitric oxide is known to regulate neurulation and other early
embryonic processes (Lee and Juchau, 1994), and CO can alter the production of
NO in axial tissues (Alexander et al. 2007a). The impaired interaction is likely due to
a loss of cell function characterized or indicated by increased neural tube apoptosis
and loss of neural tube-derived somite epithelialization signals.

Diabetes

Maternal diabetes is known to have many teratogenic effects (Finnell and Dansky
1991, Aberg et al. 2001). Malformations including neural tube defects, caudal dys-
genesis, vertebral defects, congenital heart defects, femoral hypoplasia, renal, and
craniofacial anomalies are described in infants of diabetic mothers. Caudal regres-
sion syndrome is a severe condition characterized by agenesis, regression, and or
disorganization of the posterior (sacral–lumbar) vertebrae and the malformation
of the soft tissue at that level and below (Bohring et al. 1999, Martinez-Frias
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et al. 1998b). It occurs 200 times more frequently in diabetic than in nondiabetic
pregnancies. Other major malformations of the midline are also much more fre-
quent including VATER, OAV, and other major malformations. Together, these can
be placed in a related and progressive spectrum of syndromes and non-random
associations belonging to the ADMC.

Mouse models utilizing “diabetic environments” or hyperglycemia report various
anomalies encompassing the full spectrum of embryonic embryopathy (Akazawa
1995, Ornoy et al. 1999). These models together reveal that hyperglycemia is suf-
ficient to cause most of the defects observed in diabetic embryopathy including
neural tube defects, axial skeletal defects, heart and craniofacial abnormalities, rib
and renal defects – although no individual model phenocopies the condition com-
pletely. At physiological levels of hyperglycemia or ketosis, the most consistent
outcome is a failure of anterior and posterior neuropore closure (Sadler et al. 1988,
Sadler and Horton 1983, Horton and Sadler 1983, Ornoy et al. 1986, Sadler et al.
1989). Researchers have determined that the diabetic environment increases ROS
production in these regions of the neural tube and in the primordia of the organs
listed above including craniofacial region, otic, and optic cups, Hensen’s node, and
the notochord, caused by the diabetic environment. Coincident with the high ROS
is an increase in cell death and a decrease in Pax3, a factor critical in neural tube
closure (Fine et al. 1999, Loeken 2005). Application of folic acid and other antioxi-
dants greatly reduced the incidence of ROS production (Ornoy 2007), insipient cell
death and the reduction of Pax3 expression.

The caudal agenesis/dysgenesis syndrome can be phenocopied by prolonged
exposure to hyperglycemia, hyperketonemia, and streptozotocin. The collection of
defects in these severely affected animals indicates an early patterning event is
disturbed. The notochord is laid down during gastrulation and is responsible for
dorsoventral and mediolateral patterning as well as survival of the mesoderm during
axis elongation. High levels of cell death in the notochord are observed in severely
affected animals, suggesting the notochord function is likely to be compromised,
and mutations in the T-box gene brachyury (Rashbass et al. 1994) and disruption of
Shh function (Kim et al. 2001) have been presented as possible models of caudal
dysgenesis and other manifestations of ADMC.

The incidence and severity of malformations in diabetic pregnancies are cor-
related with poor glycemic control in the first trimester and can be reduced by
instituting tight glycemic control prior to conception, and the evidence presented
above of various antioxidants and insulin provides hope that a cocktail can be devel-
oped and delivered harmlessly to prevent the initiation of the diabetic embryopathic
condition. While prevention of the condition appears at hand, the initial biochemical
imbalance presents us with an interesting pattern. The condition of hyperglycemia
provides a “free” energy source that is readily available to the mitochondrion for
ATP production, a condition opposite to hypoxia, in which ATP production in
greatly decreased. A reasonable hypothesis incorporating these two opposite con-
ditions is that molecular regulation of any developmental process can be disturbed
by abnormal maternal fuel metabolism, and the timing of specific episodes of poor
glycemic control determines which organ systems are affected.
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Retinoic Acid

Retinoic acid (RA) is an analog of vitamin A commonly used to treat acne and other
skin conditions. In humans, prenatal exposure results in a characteristic pattern of
defects including abnormalities in the ears, mandibles, palates, aortic arch, and cen-
tral nervous system. In animal models, many similar defects are observed (Gudas
1994). At higher doses delivered during organogenesis, RA can induce axial skele-
tal defects as well as including homeotic transformations (Kessel and Gruss 1991,
Rubin and LaMantia 1999, Kawanishi et al. 2003), and at higher doses axial skeletal
truncations (Padmanabhan 1998).

Aside from being a well-characterized teratogen, retinoic is also a naturally
occurring chemical involved in many aspects of embryonic patterning, including
the patterning of the somites. The teratogenic effects of retinoic acid above are con-
sistent with the in situ expression of RA receptors (Maden 1994, Cui et al. 2003,
Iulianelle et al. 1999) and metabolic-transforming enzymes (Swindell et al. 1999,
Niederreither et al. 2002, Reijntjes et al. 2004, Cammas et al. 2007) as well as the
effect of knocking down these molecules in murine models. RA, its receptors, and
CYP26 are expressed in the paraxial mesoderm and act as critical regulators in the
coordination of the somitogenesis clock and HOX gene expression (Duester 2007,
reviewed in Sewell and Kusumi 2007). At higher levels, it is hypothesized that RA
interrupts tissue morphogenesis, neural crest migration, and at highest doses causes
cell death in morphogenically critical tissues, such as the neural tube, notochord, and
paraxial mesoderm, resulting in a phenotype similar to caudal dysgenesis syndrome
(Iulianelle et al. 1999).

Hyperthermia

Exposure of the human fetus to high temperatures (for example, 2◦C over normal),
as in the case of high fever or prolonged hot tub usage, is associated with neural tube
defects, heart defects, microphthalmia, and functional deficits (Graham et al. 1998,
Edwards et al. 1997). There is no epidemiological evidence suggesting heat shock
causes axial skeletal defects. In studying the mechanisms of heat shock teratogenesis
in animal models, vertebral defects were observed in many species including mice,
rats, and chicks (Breen et al. 1999, Mirkes and Cornel 1992, Primmet et al. 1988).
The severity of these defects is correlated to the time and duration of exposure.
Experimental studies in chick embryos revealed that at moderate levels and exposure
times (42◦C for 20 minutes), one or two adjacent segments were fused into a single
large somite. This effect was repeated every 7–8 somites separated by normal somi-
togenesis (Primmet et al. 1988). This result suggested a cell cycle-dependent mecha-
nism to the defect and to somitogenesis itself, prompting the proposal of a clock and
wave-front model for the patterning process of somitogenesis (Primmet et al. 1989).

The response of the embryo to hyperthermia is very dependent upon the degree
of temperature increase, its duration, and the stage at which the heat shock is
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experienced (Graham et al. 1998). There is a steep threshold for embryonic survival
and resorption, which suggests the general outcome of hyperthermia is embryonic
resorption. At levels of hyperthermia inducing embryonic survival and malforma-
tion, tissue-specific cell death is observed. Investigators identified the induction
of heat shock proteins (HSP) as a prominent feature of the embryonic response.
These molecular chaperones play important roles in regulating protein folding dur-
ing normal cell function, but they also serve to protect cells from environmental
insult. In the process, the HSP-bound proteins are not able to perform their function
(Buckiova et al. 1998, Walsh et al. 1999). During teratological doses of hyperther-
mia, the cell cycle is slowed, suggesting a mechanism of the vertebral anomalies
observed. Recently the mechanism of somitogenesis was shown to involve the
tightly controlled, cyclic expression of a variety of proteins many belonging to the
Notch/Delta signaling system (Shifley and Cole 2007). During heat shock, some
of these proteins or their targets may be bound by HSP, and we can hypothe-
size that this would disrupt the somitogenic clock resulting in disrupted pattern
and ultimately vertebral defects. An important feature of the protective heat shock
response then and its relation to teratogenesis is that their activation and function
may reduce or delay tissue development or morphogenic actions. In fact, many
teratogenic insults induce HSP activity, and as such HSP activation may be an
underlying commonality in teratogenic mechanisms along with ROS production and
apoptosis.

Arsenic

Arsenic, a metal pollutant, is found naturally in groundwater and unnaturally in
mine waste sites, industrial byproducts, and in agricultural runoff. It is toxic to
humans and is known to cause birth defects including spina bifida, craniofacial
defects, developmental retardation and to decrease birth weight and increase inci-
dences of fetal mortality, miscarriage, and still birth (Willhite and Ferm 1984,
DeSesso et al. 1998). In experimental in vitro models, arsenic is teratogenic in
mice, rats, and chicks (Hood and Bishop 1972, Chaineau et al. 1994, Beaudoin
1974, Lindgren et al. 1984, Peterková and Puzanová 1976, DeSesso et al. 1998),
with neural tube defects being common among all of them (Shalat et al. 1996,
Takeuchi 1979). Its toxicity is greatly dependent on its redox state: arsenate vs.
arsenite. The structure of arsenate can mimic that of phosphate groups, imparting
arsenate with the ability to disrupt various cell processes including nucleic acid
metabolism, lipid metabolism, and electron transport. Inefficient electron transport
can lead to high production of ROS, which have documented cell destructive activi-
ties and teratogenic capacity (Hunter 2000, Kitchin and Ahmad 2003, Bernstam and
Nriagu 2000). In addition, arsenate can reduce to arsenite. The effects of arsenite on
disruption of cell cycle and cytoskeletal structure have been attributed to its reac-
tion to sulfhydryl groups (Levinson et al. 1980), which may account for its strong
induction of the heat shock response (German et al. 1986, Mirkes and Cornel 1992,
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Bernstam and Nriagu 2000). In addition, arsenite can disrupt the citric acid cycle
and electron transport via binding to thiol group enzymatic active sites (DeSesso
et al. 1998). A disruption in the energy status of different tissues of the develop-
ing embryo is attributed to teratogenicity of arsenic causing similar malformations
to those observed in hypoxic or hyperglycemic environment; however, arsenic has
other distinctive effects on the embryo (DeSesso et al. 1998). Arsenic and other
metal compounds are very effective inducers of the heat shock response (Mirkes
and Cornel 1992, Bernstam and Nriagu 2000), which may protect cell from molec-
ular damage, but induce birth defects in its own right via disruption of the cell
cycle and other cyclic and time-dependent morphogenetic processes (Wlodarczyk
et al. 1996). In addition, cells surviving the initial arsenic insult, may pass on
genetic damage that contribute to subsequent carcinogenic transformation later in
ontogeny (Bernstam and Nriagu 2000). These multiple, interacting mechanisms
may account for the wide range of malformations observed following acute arsenic
exposure.

Ethanol

Ethanol, widely consumed as a recreational drug, has long been strongly associ-
ated with teratogenesis as fetal alcohol syndrome (FAS). FAS is present in one in
three children of alcoholic mothers, with an estimated 40,000 children born every
year in the United States (Schardein 2000, Thackray and Tift 2001). FAS manifes-
tations include growth deficiency, central nervous system problems, characteristic
facial features, and organ malformations. Features of FAS have been observed in
animal models exposed to ethanol in utero or in vitro, including mice, rat, chick,
and others (Sulik et al. 1981, Becker et al. 1996, Fernandez et al. 1983, Sanders and
Cheung 1990, Yelin et al. 2007, Schardein 2000, Chaudhuri 2000, Padmanabhan
and Muawad 1985).

The mouse model has been a particularly effective model in elucidating the
etiology of ethanol-induced birth defects. One mechanism, of ethanol-induced
teratogenesis is through ethanol impaired placental blood flow to the fetus by
constricting blood vessels and inducing embryonic/fetal hypoxia and malnutrition
(Shibley et al. 1999). Since ethanol rapidly crosses the placenta into the fetus, there
are other direct embryonic and fetal targets of ethanol. The mouse model has been
a particularly effective model in elucidating the etiology of ethanol-induced birth
defects. Ethanol has been shown to increase cell death in critical cell populations
including anterior neural folds and neural crest cells (Sulik et al. 1988, Rovasio and
Battiato 1995, Dunty et al. 2001), which play a critical role in the morphogenesis
of the face. Neural crest cells are particularly vulnerable to ethanol, inducing
delayed/altered migration and cell death (Rovasio and Battiato 1995). Correlations
have been made to increased ROS production within the neural crest population
(Kotch et al. 1995), mitochondrial dysfunction and cell death in the etiology of
ethanol and other teratogens (Ornoy 2007). The anterior neural tube and cranial
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neural crest have been the subject of intense scrutiny in the teratogenic mechanisms
of ethanol, however, other tissues are also affected, including the eye, ear, heart,
renal system, and axial skeleton (Kennedy and Elliott 1986, Parnell et al. 2006,
Sulik 2005, Webster and Abela 1984, Assadi and Zajak 1992, Sanders and Cheung
1990, Carvan et al. 2004). With respect to the axial skeleton, investigators observed
a misalignment or segmentation defect in ethanol-exposed embryos. Despite the
substantial morphological difference with heat shock- treated embryos, the inves-
tigators suggested that the mechanism may be similar to heat shock (Carvan et al.
2004), involving the induction of the stress response by increased ROS production.

Methanol

Methanol is an alcohol encountered frequently during industrial processes. When
the effects of inhaled ethanol and methanol were compared, the highest doses of
methanol significantly increased the incidence of various defects including skeletal
malformations (Nelson et al. 1985). Skeletal malformations were the most prevalent
congenital defects observed and included vertebral abnormalities and an increased
incidence of cervical ribs. Other skeletal abnormalities caused by methanol have
been observed including holoprosencephaly, facial dysmorphogenesis, basicranial
malformation, duplications of the atlas and axis and cervical vertebral abnormalities,
and abnormal number of presacral vertebrae (Connelly and Rogers 1997, Rogers
et al. 2004). Initial cellular responses appear similar to ethanol at the level of tissue-
specific cell death (Abbott et al. 1995). In contrast to ethanol, many of the axial
skeletal defects indicate homeotic shifts in segment identity.

Conclusion

Advances in cell and molecular biology with respect to normal development and
somitogenesis and the pathogenesis and mechanisms of teratogenesis are occurring
at a tremendous rate. This allows teratologists and developmental toxicologists the
opportunity to revisit old problems with new tools. Despite the large number of cel-
lular processes that may be disturbed by a teratogen, there are only a limited number
of cellular and morphological outcomes. This has led investigators to strive for the
identification of very defined critical periods and doses in a variety of model systems
to aid in the identification of the initial targets of a teratogen and the true, hypotheti-
cally singular target molecule or process, as proposed by Wilson in 1956. Applying
genomic and proteomic technologies to the problem of teratogenesis should begin to
reveal the full spectrum of cellular processes affected, and elucidate links between
variations in genotype and the effect of the environment on the phenotype that pro-
duce birth defects such as congenital scoliosis. The identification, at least in part,
of this “holy grail” will aid in the development of new preventative treatments to a
variety of teratogenic insults.
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