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Mitochondrial Decay and Impairment
of Antioxidant Defenses in Aging RPE Cells
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Abstract In the eye, the retinal pigment epithelium (RPE) is exposed to a highly
oxidative environment, partly due to elevated oxygen partial pressure from the
choriocapillaris and to digestion of polyunsaturated fatty acid laden photorecep-
tor outer segments. Here we examined the vulnerability of RPE cells to stress and
changes in their mitochondria with increased chronological aging and showed that
there is greater sensitivity of the cells to oxidative stress, alterations in their mito-
chondrial number, size, shape, matrix density, cristae architecture, and membrane
integrity as a function of age. These features correlate with reduced cellular lev-
els of ATP, ROS, and [Ca2+]c, lower �ψm, increased [Ca2+]m sequestration and
decreased expression of mtHsp70, UCP2, and SOD3. Mitochondrial decay, bioen-
ergetic deficiencies, and weakened antioxidant defenses in RPE cells occur as early
as age 62. With increased severity, these conditions may significantly reduce RPE
function in the retina and contribute to age related retinal anomalies.

20.1 Summary

In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative
environment, partly due to elevated oxygen partial pressure from the choriocapillaris
and to digestion of polyunsaturated fatty acid laden photoreceptor outer segments.
Here we examined the vulnerability of RPE cells to stress and changes in their
mitochondria with increased chronological aging and showed that there is greater
sensitivity of the cells to oxidative stress, alterations in their mitochondrial num-
ber, size, shape, matrix density, cristae architecture, and membrane integrity as a
function of age. These features correlate with reduced cellular levels of ATP, ROS,
and [Ca2+]c, lower �ψm, increased [Ca2+]m sequestration and decreased expression
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of mtHsp70, UCP2, and SOD3. Mitochondrial decay, bioenergetic deficiencies, and
weakened antioxidant defenses in RPE cells occur as early as age 62. With increased
severity, these conditions may significantly reduce RPE function in the retina and
contribute to age related retinal anomalies.

20.2 Introduction

It is often argued that the metabolic rate of an organism determines its life span
(Beckman and Ames 1998; Sohal et al. 2002; Pamplona et al. 2002) and that neu-
rodegenerative diseases that occur with advanced aging have a common root in
mitochondrial dysfunction. The mitochondria divide continuously throughout the
life of a cell and their numbers in the cell varies according to organism, tissue
type, and energy demands. They control a range of processes including cell sig-
naling, differentiation, death, proliferation, and cell cycle. They produce most of the
cells ATP, generate the bulk of ROS (Viña et al. 2006; Duchen 1999; Lane 2006),
and are important to the organism’s antioxidant defense systems (Mancuso 2007;
Jezek and Hlavatá 2005; Czarna and Jarmuszkiewicz 2006; Inoue et al. 2003). These
organelles are highly prone to oxidative damage, can accumulate mutations because
they lack efficient mtDNA repair mechanisms, and can pass these mutations on to
daughter cells (Passos et al. 2007; Chen et al. 2007; Stuart and Brown 2006). A
shift in the balance of the number of normal and defective mitochondria in cells
can influence senescence and apoptotic programs (Koopman et al. 2007; Chen et al.
2006; Hauptmann et al. 2008; Kwong et al. 2007).

There is compelling evidence that mitochondrial dysfunction is an early event
in many neurodegenerative diseases including Alzheimer’s disease (Lin and Beal
2006; Takuma et al. 2005; Beal 1998; Krieger and Duchen 2002; Eckert et al. 2008;
Song et al. 2004; Schapira 1999; Valente et al. 2004) and that mitochondrial decay
causes the cell’s anti-stress pathways to operate with less efficiency (Wenzel et al.
2008; Hayakawa et al. 2008; Sasaki et al. 2008; Kimura et al. 2007). It is there-
fore conceivable that unchecked propagation and accumulation of dysfunctional
mitochondria in aging RPE cells is also an underlying cause in the progression of
age-related retinal diseases such as age AMD, a multifactorial disorder with eti-
ology stemming, in part, from cumulative oxidative damage to the RPE (D’Cruz
et al. 2000; Gal et al. 2000; Dorey et al. 1989; Green and Enger 1993; Beatty et al.
2000; Dunaief et al. 2002; Winkler et al. 1999). Histological changes are evident in
the RPE and mitochondria of these cells at the earliest stages of AMD and precede
vision loss, even though the disease has been primarily associated with photorecep-
tor damage (Green et al. 1985; Young 1987; Hageman et al. 2001; Penfold et al.
2001; Feher et al. 2006).

The RPE, a metabolically active epithelium crucial to maintaining the health
of the retina, is continuously bombarded by high levels of oxidants (Weiter 1987;
Zareba et al. 2006). Among its numerous responsibilities, this epithelium consti-
tutes the blood retinal barrier, facilitates selective transport between the choroidal
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vasculature and outer retina, phagocytose and degrade shed photoreceptor outer
segments, regenerate photopigments, secrete neurotrophic, adhesion, and vascu-
lar regulatory factors, and contributes to the integrity of Bruch’s membrane and
the choriocapillaris. Disruption in any of these high-energy requiring processes is
detrimental to the health of the retina.

In the AMD retina there is abnormal regulation of several mitochondrial proteins
including ATP synthase, cytochome C oxidase complex, and mtHsp70 (Nordgaard
et al. 2008) and a link between mitochondrial dysfunction and RPE degeneration
(Jin et al. 2005; Liang and Godley 2003; Jin et al. 2001; Wang et al. 2008; Suter
et al. 2000). This is not surprising given the daily challenges the RPE faces. Here
we provide evidence for structural and functional modifications in the mitochondria
of RPE cells, attenuation of the cells antioxidant system, and increased sensitiv-
ity of the RPE to oxidative stress with increased chronological age. We propose
that increased accumulation of defective mitochondria in RPE cells with aging con-
tributes to reduced function of these cells and increased pathological consequences
in the retina.

20.3 Materials and Methods

20.3.1 Primary Human RPE Cell Culture

Human RPE cells were isolated from non-diseased donors as previously described
(McKay and Burke 1994) and cultures maintained in DMEM supplemented with
5% FBS. Cultures in third to sixth passages from normal human donors, ages 9, 52,
62, and 76 years, were used for the experiments below.

20.3.2 Hydrogen Peroxide Toxicity – PI Assays

Cells were seeded at a density of 1 × 105 for 24 h in serum free medium (SFM), then
exposed to 320 μM H2O2 for 2 h. Cultures were washed and cell death estimated
by propidium iodide (PI) (4 μg/ml) staining.

20.3.3 Mitochondrial Morphometrics

RPE cells were seeded onto fibronectin coated Thermanox cover slips, fixed and
processed for electron microscopy (Pavlovic et al. 2008; Zagon et al. 2007).
Twenty individual RPE cell EM micrographs were randomly taken along differ-
ent planes of cells from each donor and for each group, a carbon grating replica
was photographically recorded to calibrate the magnification of the cells (Laguens
1971). Micrographs were enlarged to 16,200X to count the mitochondria in three
49 μm2 perinuclear areas of the cell (Fig. 20.3). The counting template consisted of
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Area 1, placed closest to the nucleus in the mitochondrial dense region and Area 2
and 3 located at a 45◦ angle to area 1 and at the same distance of 10.5 μm from
the nucleus. The mitochondria morphology was examined at 35,000x and morpho-
metric analysis performed using the NIH Image J program. Data is presented at the
mean for each individual area/20 cells and the mean of all three areas/20 cells.

RPE cell morphology was also examined using phase-contrast and confocal
microscopy and cell size estimated by flow cytometry. Mitochondrial population
was estimated by labeling detached cultures with 50 nM MitoTracker Red and anal-
ysis of 10,000 cells by flow cytometry (BD FACS AriaTM, Becton Dickinson, USA)
at an excitation wavelength of 488 nm and emission of 590 nm.

20.3.4 Protein and Weight Estimation of RPE Cells
and Mitochondria

RPE cells (1 × 106) for each donor age were harvested by centrifugation. Pellets
were weighed, lysed, and protein concentrations estimated. Mitochondria were
isolated using reagents from the Pierce mitochondria isolation kit for cultured
cells (Pierce Chemical Co Rockford, Illinois, USA) (Hauptmann et al. 2008).
Mitochondrial pellet weights were estimated, then the organelles were lysed,
centrifuged, and concentration of protein in the supernatant estimated.

20.3.5 Measurement of ROS, ATP and Mitochondrial Membrane
Potential (��m)

Cellular oxidative stress was determined by the amount of ROS in the cytoplasm
(Degli Esposti 2002; Amer et al. 2003) of the RPE cells essentially as we have
described previously (He et al. 2008a). Cells were harvested by centrifugation,
washed, and 2 × 106 cells/ml incubated at 37◦C for 30 min with 0.4 μM ROS
indicator H2-DCF-DA. Excess H2-DCF-DA was removed from the samples and
cells analyzed by flow cytometry using 488 nm excitation and 530 nm emission
wavelengths. ATP levels were determined using a luciferin/luciferase-based assay
essentially as described (He et al. 2008a) and luminescence measured using a
luminometer (Orion II Luminometer, Berthold Detection Systems, TN).

�ψm measurements were carried out as we have previously described (He et al.
2008a) using the indicator JC-1, a lipophilic and cationic dye, which fluoresces red
when it aggregates in the matrix of healthy, high-potential mitochondria and fluores-
cence green in cells with low ��m. JC-1 (1 μg/ml) was added to 2 × 106 cells/ml
in suspension and samples incubated for 20 min at 37◦C, washed, and analyzed by
flow cytometry. Data were collected at an emission wavelength of 530 nm for green
fluorescence and 590 nm for red fluorescence.
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20.3.6 Measurement of ([Ca2+]c) and ([Ca2+]m)

Cytoplasmic calcium [Ca2+]c levels were measured with the fluorescent probe fluo-
3/AM and mitochondrial calcium [Ca2+] m with Rhod-2/AM (Kd ∼570 nM) as
described (He et al. 2008b; Deng et al. 2006; Mironov et al. 2005) using 1 × 105

cells/well in SFM. The cells were loaded with either 1 μM fluo-3/AM for 30 min,
or 1 μM rhod-2/AM for 1 h, trypsinized, washed twice, resuspended in 200 μl PBS,
then analyzed by flow cytometry at excitation and emission wavelengths of 488
and 525 nm respectively, for fluo-3/AM, and 549 nm and 581 nm respectively, for
Rhod-2/AM.

20.3.7 Expression of Mitochondrial Associated Genes

Total mRNA from RPE cultures was isolated, RT-PCR and real time-PCR performed
at an annealing temperature of 58◦C for 35 cycles for the mitochondria associated
genes, mtHsp70, UCP2, ATPase-α, β, γ, SOD1, SOD2, SOD3, Bax, Bcl-2, COX1
and COX2 using their respective primers (Invitrogen, Carlsbad, CA). GAPDH was
used as an internal RNA loading control and no reverse transcriptase (NRTs) reac-
tions as negative controls to confirm that amplification was RNA dependent. For
real-time PCR, the 2-step amplifying protocol was used with iQ SYBR green super-
mix solution (BioRad). Both the melting curve and gel electrophoretic analyses were
used to determine amplification homogeneity and quality of the reaction.

20.4 Results

20.4.1 Age Related Sensitivity of RPE Cells to Oxidative Stress

Phase-contrast micrographs of primary cultures of RPE cells show that RPE cells
from the 9 yo donor grow as a monolayer of tightly packed cobblestone-like cells
in culture whereas those from individuals >62 yo are larger and more fibroblastic in
appearance (Fig. 20.1). The identity of the cells in the cultures was established by
visual observation of the pigmented cells by phase contrast microscopy and using
RPE65 as an expression marker. Visual observation and immunocytochmistry indi-
cate that greater than 99% of the cells in the primary cultures were pigmented and
expressed RPE65.

In Fig. 20.2, we show that there are age related differences in the susceptibility of
RPE cells to oxidative stress. When treated with 160–320 uM H2O2, approximately
90% of cells were PI positive in cultures >62 yo compared to the 9 and 52 yo donors.
Flow cytometry for PI fluorescence intensity also confirms greater cell death in the
older cultures.
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Fig. 20.1 Phase-contrast micrographs of primary cultures of RPE cells obtained from various
donors ages (upper). Cells from donors >60 yo are larger and more fibroblastic in appearance
compared to those obtained from 9 and 52 yo individuals. >99% of the cells in all cultures are
pigmented and express RPE 65. Scale bar = 30 μm

20.4.2 Variation in Mitochondrial Number, Structure, and Size

We used a template that consisted of three identical counting areas to sample the
number of mitochondria per unit area in the mitochondria polarized region of the
RPE cells. RPE cells of all ages contain a mitochondrial-polarized region found in
a crown-like shape in the perinuclear area although there is some distribution of
these organelle throughout the cytoplasm of the cells (Fig. 20.3). In Table 20.1, we
show that there are fewer mitochondria per unit area of the mitochondrial polar-
ized cytoplasm of the RPE cells with increased donor age with >2 fold differences
between cells from the youngest and oldest donors (p <0.05). The average number
of mitochondria in all three areas/cell (mitochondria/147uM2/cell) is 46.22 ± 12.86,
37.75 ± 13.78, 25.68 ± 8.69 and 20.15 ± 5.30 for the 9, 52, 62 and 76 yo RPE,
respectively.

Electron microscopic comparison of the various RPE cultures shows very marked
differences in the mitochondrial populations of the cells (Fig. 20.4). Those from the
9 and 52 yo individuals are numerous, more regular in size, and are either round or
oval in shape. The cristae are distinctly visible and outer membranes intact. Cells
from the 62 and 76 yo donors have mitochondria that are sparsely distributed in the
cytoplasm, irregular in size, tubular in shape, have highly electron-dense matrices,
less distinct cristae, and disrupted outer membranes. There is a higher density of
mitochondria in the 9 and 52 yo cells compared to those from older individuals in
the mitochondrial polarized perinuclear area of the cells.

These findings were also confirmed by confocal microscopy (Fig. 20.5) where we
show that Mito Tracker Red (Hauptmann et al. 2008) labeling intensity decreases as
a function of RPE age. Labeling was perinuclear and discrete in the 9 yo samples
compared to the diffused, branching pattern of the 62 and 76 yo cells.
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Fig. 20.2 Phase-contrast light micrographs of cells treated with 320 μM H2O2 for 2 h showing
sensitivity to oxidative stress. Scale bar = 30 μm. PI staining indicates that there is ∼90% cell
death in the 76 yo cultures compared to 26% in 9 yo after exposure the H2O2

Table 20.1 Results summarized from EM analyses indicate that mitochondria number decreases
as a function of age in RPE cells

Cytoplasm area

Number of
mitochondria/age

1(close to
nucleus) 2 3 1 + 2 + 3

9 year 22.11 ± 3.62 13.78 ± 7.43 10.33 ± 5.55 46.22 ± 12.86
52 year 13.25 ± 5.22∗ 13.25 ± 6.51 11.25 ± 7.99 37.75 ± 13.78
62 year 10.00 ± 4.27∗ 7.63 ± 4.70∗ 8.05 ± 4.17 25.68 ± 8.69∗
76 year 7.38 ± 2.93∗ 5.92 ± 4.82∗ 6.85 ± 3.48 20.15 ± 5.30∗

n = 20 cells × 3 areas; area = 49 μm2; ∗p < 0.05
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Fig. 20.3 EM micrographs showing mitochondria in perinuclear regions of cells from various
donor ages and position of templates used for mitochondrial counting. Scale bar = 10.5 μm

In Table 20.2, we provide our results for cellular and mitochondrial weight and
protein estimations for equal number of cells in each sample. There is a ∼1.6 fold
increase in both wet weight and protein per 1 × 106 RPE cells from the 62 and 72
yo individuals compared to the 52 and 9 yo culures. Although there are fewer mito-
chondria in the aging cells, there is a ∼2 fold increase in wet weight and amount
of protein in mitochondrial samples isolated from the two older donor samples sup-
porting the EM observations that mitochondria increase in size in the RPE with
increased donor age.

20.4.3 ROS and ATP Production, and ��m Decrease in RPE
Cells with Aging

Data collected from flow cytometric acquisition/analyses indicate that the amount of
ROS generated by the 62, and 76 yo RPE cultures decreases by 3.23-fold (± 0.18)
and 4.76-fold (± 0.21) respectively, when compared to the 9 yo cultures (Fig. 20.6)
(p <0.05) (Fig. 20.6). There is also an early and consistent decrease in ATP levels in
52, 62 and 76 yrs RPE cells by 31, 35 and 45%, respectively, compared to 9 yr old
samples (p <0.05) (Fig. 20.7). The 31% deficiency in energy production at donor age
52 may account for the lower levels of ROS generation by the cells at later stages
of aging. The bioenergetic profiles of the various aged RPE cells also correlate well
with the �ψm in the cells. There is a 1.2-fold (±0.1), 1.52-fold (±0.2) and 2.1-fold
(±0.3) decrease in �ψm in the 52, 62 and 76 yo cells, respectively compared to the
9 yo cultures (Fig. 20.8). Together, these analyses suggest increased impairment in
mitochondrial function with chronological aging of RPE cells.
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Fig. 20.4 Electron
micrographs (magnification
35,000× and 12,500×) of
primary RPE cultures.
Mitochondria in 9 yo RPE
cells are oval and regular in
shape and contain intact
membranes with visibly
distinct inner and outer
membranes and cristae.
Those in 62 and 76 yo are
fewer, larger, irregular in size,
tubular in shape, have highly
electron dense matrices, and
disruption in membranes and
cristae. Scale bar = 1.5 μm
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Fig. 20.5 Fluorescence intensity of Mito Tracker Red is decreased with aging of the RPE cells
seen here by flow cytometry and confocal microscopy. Scale bar = 30 μm

Table 20.2 Mitochondria weight and protein concentration/1 × 106 RPE cells from each donor
age

9 52 62 76

Cell weight/106

cells(mg)
14.34 ± 0.62 13.81 ± 0.33 24.11 ± 1.27∗ 22.33 ± 1.81∗

Cytoplasmic
protein/106

cells(mg)

0.41 ± 0.08 0.39 ± 0.15 0.64 ± 0.09∗ 0.61 ± 0.05∗

Mitochondria
weight/106

cells(mg)

1.73 ± 0.14 1.51 ± 0.11 2.87 ± 0.18∗ 2.95 ± 0.35∗

Mitochondria
protein/106

cells(mg)

0.08 ± 0.01 0.08 ± 0.01 0.14 ± 0.02∗ 0.13 ± 0.01∗

∗p < 0.05

20.4.4 Age-Related Variations in ([Ca2+]c) and ([Ca2+]m) in RPE
Cells

There is abundant evidence of altered calcium dynamics in cells with increased
aging, a condition that renders the cells more vulnerable to degenerative events
(Toescu et al. 2004). We noted a correlation between lower [Ca2+]c levels and
increased mitochondrial sequestration of Ca2+ in RPE cells with aging (Fig. 20.9).
The relative amounts of fluo-3AM and Rhod-2 fluorescence intensity in the cultures
reflect a 1.52-fold (± 0.33) and 1.85-fold (± 0.28) decrease in [Ca2+]c and a 2.32-
fold (± 1.49) and 2.75-fold (± 1.88) increase in [Ca2+]m levels in the 62 and 76
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Fig. 20.6 Distribution of the fluorescent intensity for the ROS indicator, H2-DCF-DA, in RPE
cultures using flow cytometry. A decrease in ROS levels is seen with increased aging

Fig. 20.7 ATP levels are
decreased in RPE cells with
increased donor age

yo cells, respectively compared to the youngest counterpart (Fig. 20.9) (p <0.05).
Disruption in calcium homeostatic mechanisms together with lower energy levels in
the aging RPE cells may certainly impose limits on these cells in their response to
environmental stress.

20.4.5 Expression of Genes Associated with Mitochondrial
Function

Given the structural, biochemical, and functional changes in the mitochondria with
increased donor age, we examined the expression of several genes important to mito-
chondrial health and function to ascertain if any may have a mechanistic link with



176 Y. He and J. Tombran-Tink

Fig. 20.8 ��m are decreased in RPE cells with increased donor age

the changes observed above. In our studies we found a consistent decrease in the
mRNA levels of mtHsp70, UCP2, SOD3, Bcl-2 and Bax and increase in SOD2
expression with increased aging of the RPE cells (Fig. 20.10) but no significant
differences in the expression of ATPase-α, b, γ, SOD1, COX1 and COX2 between
cells of the various donor ages (data not show). This data suggest that there are vari-
ations in expression of genes important to mitochondrial function that may alter the
threshold level of the cells to environmental hazards.

Although, we recognize that a limitation of this study is the size of the RPE
donor samples used, we showed a longitudinal decrease in structural and func-
tional integrity of the mitochondria in RPE cells with aging. Since this presentation
was made at the XIIIth International Symposium on Retinal Degeneration in China
(September 2008), we have analyzed RPE samples from 4 other individuals >60
year old and have confirmed these findings. There is still the difficulty in obtain-
ing samples from younger donors, but the human ARPE19 cell line derived from a
19 year old male showed features of cell growth, morphology, and mitochondrial
structure and function that were similar to primary cultures from the 9 yo donor
(data not shown).
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Fig. 20.9 Flow cytometry showing that RPE cells sequester more [Ca2+]m and have lower levels
of [Ca2+]c with increased aging

20.5 Discussion

The RPE is in a location in the retina where it is constantly bombarded by reactive
oxygen species. Cumulative oxidative damage can cause this tissue to degenerate
(Beatty et al. 2000; Dunaief et al. 2002; Winkler et al. 1999). We examined the
function of these organelles in RPE cells and the susceptibility of these cells to
oxidative stress with increased chronological aging. Our study showed that with
increased aging there are numerous structural abnormalities in the mitochondria of
RPE cells which correlate with decreased bioenergetic levels of the cells, attenuation
of the cell’s antioxidant system, and increased sensitivity to oxidative stress. Our
work is supported by the findings of Feher et al (Feher et al. 2006) who showed,
in a larger sampling of individuals, that there are structural abnormalities in the
mitochondria of the RPE with advancing age and that these abnormalities increase
in severity in individuals with AMD.
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Fig. 20.10 Expression of antioxidant and apoptotic genes in RPE cells of various donor ages

It is well known that the numbers of mitochondria vary between cells in a tissue
(Knott et al. 2008) and that this organelle can undergo ultrastructural remodelling
to tailor energy output to meet environmental demands on the cell (Bereiter-Hahn
and Vöth 1994; Bertoni-Freddari et al. 1993, 2001). mtDNA are highly susceptible
to oxidative stress and unlike nuclear DNA, mutations in mtDNA are not repaired
and can be inherited or acquired by individual cells (Sastre et al. 2000; Barja 2004;
Melov 2004). A cell can have several populations of mtDNA (Kmiec et al. 2006).
Over 80% of mtDNA codes for functional proteins, thus most mtDNA mutations
lead to functional problems (Knott et al. 2008; Reeve et al. 2008). For example,
Leber’s hereditary optic neuropathy is associated with mutation in NADH-COQ
reductase, ragged muscle fibers with mutation in mt lysine tRNA, and Kaerns-Sayre
syndrome with several large deletions in mtDNA (Pätsi et al. 2008; Finsterer 2007).
Diabetes, stroke, Alzheimer’s and Parkinson’s diseases, lactic acidosis, myopathy,
osteoporosis, cancer, cardiovascular diseases, and aging, all show strong associa-
tions with mitochondrial dysfunction (Knott et al. 2008; Beal 2007; Lin and Beal
2006). The oxidative stress theory of aging, an expansion of the mitochondrial
theory of aging, is based on the idea that somatic mutations in mtDNA provoke
respiratory chain dysfunction, which leads to enhanced ROS production which, in
turn, promotes further mtDNA mutations and cell function collapse (Passos et al.
2007; Ishikawa et al. 2008). This vicious cycle is amplified in mitochondrial biogen-
esis, which occurs in a cell cycle-independent manner. It is, therefore, not surprising
that aging cells accumulate a subpopulation of dysfunctional mitochondria which,
in excess, may weaken the cell’s response to environmental hazards and promote
cellular aging and untimely degeneration of the cell.

A general trend in mitochondria structure is seen with aging: in older organisms,
there are studies showing a decrease in mitochondrial numbers but an increase in the
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organelle’s size due to fusion with other mitochondria or lack of fission (Bertoni-
Freddari et al. 1993, 2008). This is seen at the synaptic terminals of old rats where
there is a marked increase in the percentage of oversized organelles, often referred
to as megamitochondria (Melov 2004). These are found in some adverse conditions
as well, such as in cells exposed to large amounts of free radicals over an extended
period (Karbowski et al. 1999; Wakabayashi 2002). The speculation is that numeric
loss of mitochondria is due to impaired duplicative capacity of these organelles and
that a shift in size compensates for numbers (Bertoni-Freddari et al. 1993; Solmi
et al. 1994; Bertoni-Freddari et al. 2003, 2005). Our ultrastructural studies indicate
that there are ‘megamitochondria’ in the aging RPE cells and that these are abnormal
in appearance and have disruptions in the cristae architecture, a condition previously
reported with cross-linking ATP synthase complexes (Ko et al. 2003; Gavin et al.
2004).

To cope with toxic oxygen intermediates, the RPE evolved effective defenses
against oxidative damage and is particularly rich in anti-oxidants. However, sev-
eral antioxidant enzymes, including mtHsp70, UCP2, and SOD3 have reduced
expression in the RPE with aging. This may be one explanation why the primary
cultures of RPE cells from older donors are more susceptible to oxidative stress.
Strangely, however, there is a decrease in ROS production in the RPE from donor
samples >60 yo which contradicts popular findings that ROS increases in aging
tissues. One explanation is that the increase in SOD2 expression that we noted in
these cells with aging may have a compensatory effect on attenuating ROS produc-
tion with life span extension as a primary goal. Our finding of significantly lower
ATP levels in the aging RPE cells underscores the ‘low metabolic rate – high life
expectancy’ principle. However, one can argue that these in vitro studies do not
predict organismal ageing or disease progression.

Some mitochondrial-specific actions leading to apoptosis include loss of ��m,
induction of MPT opening, increased mitochondrial calcium levels, and cytosolic
translocation of apoptogenic factors, such as cytochrome c (Armstrong 2006; Green
and Kroemer 2004). Although the aging RPE cells have decreased ��m, as would
be expected from the lower ATP levels they generate, there was no cytochrome c
released by the cells or increased expression of the proapoptotic Bax gene. It is
known that mitochondria Ca2+ overload triggers mitochondrial permeability transi-
tion pore (MPTP) opening, which lowers ��m (Jackson and Thayer 2006; Dahlem
et al. 2006). The high [Ca2+]m in the aging RPE cells may, therefore, account for
the lower ��m in the cells.

Reduction in mitochondrial function and increased susceptibility of RPE cells to
oxidative stress is likely to be part of the normal aging process in the retina. While
accumulation of a relatively small number of defective mitochondria by these cells
may compromise epithelial function but not trigger apoptosis, acute degeneration
signals may be propagated when there is an excess in number of these dysfunctional
organelles in any RPE cell of the epithelium.

In conclusion, we present strong evidence for structural and biochemical abnor-
malities in the mitochondria of RPE cells as a function of normal aging. We
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propose that impairment of mitochondrial function makes RPE cells more vulnera-
ble to oxidative damage and that excess accumulation of dysfunctional mitochondria
in some RPE cells may trigger a degeneration cascade in a focal region of the
epithelium that could be an underlying event in the onset of some retinal pathologies.
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