
16

Graphics with ggplot2

16.1 Introduction

As we discussed in Chapter 14, “Graphics Overview,” the ggplot2 package
is an implementation of Wilkinson’s Grammar of Graphics (hence the “gg”
in its name). The last chapter focused on R’s traditional graphics functions.
Many plots were easy, but other plots were a lot of work compared to Stata.
In particular, adding things like legends and confidence intervals were com-
plicated.

The ggplot2 package makes many of those things easier, as you will now
see as we replicate many of the same graphs. The ggplot2 package has both a
shorter qplot function (also called quickplot) and a more powerful ggplot
function. We will use both so you can learn the difference and choose whichever
you prefer. Although less flexible overall, the built-in lattice package is also
capable of doing these examples.

While traditional graphics come with R, you will need to install the
ggplot2 package. For details, see Chapter 2, “Installing and Updating R.”
Once installed, we need to load the package using the library function.

> library("ggplot2")

Loading required package: grid
Loading required package: reshape
Loading required package: proto
Loading required package: splines
Loading required package: MASS
Loading required package: RColorBrewer
Loading required package: colorspace

Notice that it requires the grid package. That is a completely different
graphics system than the traditional graphics system. That means that the
par function we used to set graphics parameters, like fonts, in the last chapter

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 385
and Computing, DOI 10.1007/978-1-4419-1318-0 16,
© Springer Science+Business Media, LLC 2010

386 16 Graphics with ggplot2

does not work with ggplot2, nor do any of the base functions that we have
covered, including abline, arrows, axis, box, grid, lines, and text.

16.1.1 Overview qplot and ggplot

With the ggplot2 package, you create your graphs by specifying the following
elements:

• Aesthetics: The aesthetics map your data to the graph, telling it what role
each variable will play. Some variables will map to an axis, and some will
determine the color, shape, or size of a point in a scatter plot. Different
groups might have differently shaped or colored points. The size or color
of a point might reflect the magnitude of a third variable. Other variables
might determine how to fill the bars of a bar chart with colors or patterns;
so, for example, you can see the number of males and females within each
bar.

• Geoms: Short for geometric objects, geoms determine the objects that will
represent the data values. Possible geoms include bar, box plot, error bar,
histogram, jitter, line, path, point, smooth, and text.

• Statistics: Statistics provide functions for features like adding regression
lines to a scatter plot, or dividing a variable up into bins to form a his-
togram.

• Scales: These match your data to the aesthetic features—for example, in
a legend that tells us that triangles represent males and circles represent
females.

• Coordinate system: For most plots this is the usual rectangular Cartesian
coordinate system. However, for pie charts it is the circular polar coordi-
nate system.

• Facets: These describe how to repeat your plot for each subgroup, perhaps
creating a separate scatter plot for males and females. A helpful feature
with facets is that they standardize the axes on each plot, making com-
parisons across groups much easier.

The qplot function tries to simplify graph creation by (a) looking a lot like
the traditional plot function and (b) allowing you to skip specifying as many
of the items above as possible. As with the plot function, main arguments
to the qplot function are the x and y variables. You can identify them with
the argument name “x=” or “y=” or you can simply supply them in that
order. Unlike the plot function, the qplot function has a data argument.
That means you do not have to attach the data frame to use short variable
names. (However, to minimize our code, our examples will assume the data is
attached.)

Finally, as you would expect, elements are specified by an argument. For
example, geom="bar". A major difference between plot and qplot is that
qplot will not automatically give you diagnostic plots for a model you have
created. So it is much easier to get diagnostic plots using the plot function.

16.1 Introduction 387

The ggplot function offers a complete implementation of the grammar
of graphics. To do so, it gives up any resemblance to the plot function. It
requires you to specify the data frame, since you can use different data frames
in different layers of the graph. (The qplot function cannot.) Its options
are specified by additional functions rather than the usual arguments. For
example, rather than the geom="bar" format of qplot, they follow the form
+geom_bar(options). The form is quite consistent, so if you know there is
a geom named “smooth,” you can readily guess how to specify it in either
qplot or ggplot.

The simplicity that qplot offers has another limitation. Since it cannot
plot in layers, it occasionally needs help interpreting what you want it to do
with legends. For example, you could do a scatter plot for which size=q4. This
would cause the points to have five sizes, from small for people who did not like
the workshop to large for those who did. The qplot function would generate
the legend for you automatically. However, what happens when you just want
to specify the size of all points with size=4? It generates a rather useless
legend showing one of the points and telling you it represents “4.” Whenever
you want to tell qplot to inhibit the interpretation of values, you nest them
within the “I()” function: size=I(4). As a mnemonic, think that I()=Inhibit
unnecessary legends. The ggplot function does not need the I function since
its level of control is fine enough to make your intentions obvious.

See Table 16.1 for a summary of the major differences between qplot and
ggplot.

Although the ggplot2 is based on The Grammar of Graphics, the package
differs in several important ways from the syntax described in that book.
It depends on R’s ability to transform data, so you can use log(x) or any
other function within qplot or ggplot. It also uses R’s ability to reshape or
aggregate data, so the ggplot2 package does not include its own algebra for
these steps. Also, ggplot2 displays axes and legends automatically, so there
is no “guide” function.

For a more detailed comparison, see ggplot2: Elegant Graphics for Data
Analysis by Hadley Wickham [55].

Now let us look at some examples. When possible, each is done using both
qplot and ggplot. You can decide which you prefer.

16.1.2 Missing Values

By default, the ggplot2 package will display missing values. That would result
in additional bars in bar charts and even entire additional plots when we repeat
graphs for each level of a grouping variable. That might be fine in your initial
analyses, but you are unlikely to want that in a plot for publication. We will
use a version of our data set that has all missing values stripped out with

mydata100 <- na.omit(mydata100)

388 16 Graphics with ggplot2

Table 16.1. Comparison of the qplot and ggplot functions.

The qplot function The ggplot function
Goal Designed to be quick and as standard

R as possible.
Designed as a full grammar of graphics
system.

Aesthetics Like most R functions:
qplot(x= , y= , fill= ,
color= , shape= ,...)

You must specify the mapping between
each graphical element, even x - and y-
axes, and the variable(s):
ggplot(data= ,
aes(x= , y= , fill= , color= ,
shape= ,...))

ABline ...geom="abline",
intercept=a, slope=b)

+geom_abline(
intercept=a, slope=b)

Aspect ratio Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square

Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square

Axis flipping +coord_flip() +coord_flip()
Axis labels ...xlab="My Text")

Just like plot function.
+scale_x_discrete("My Text")
+scale_y_discrete("My Text")
+scale_x_continuous("My Text")
+scale_y_continuous("My Text")

Axis
logarithmic

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

Bars ...geom="bar", position="stack"
or dodge.

+geom_bar(position="stack") or dodge.

Bar filling ...posttest, fill=gender) +aes(x=posttest, fill=gender)
Data Optional data= argument as with

most R functions.
You must specify data= argument.
ggplot(data=mydata, aes(...

Facets ...,facets=gender ~ .) + facet_grid(gender ~ .)
Greyscale +scale_fill_grey(start=0, end=1)

Change values to control grey.
+scale_fill_grey(start=0, end=1)
Change values to control grey.

Histogram ...geom="histogram", binwidth=1) +geom_bar(binwidth=1)
Density ...geom="density") +geom_density()
Jitter ..position=position_jitter()

Lessen jitter with e.g., (width=.02).
+geom_jitter(position=position_jitter()
Lessen jitter with e.g., (width=.02).

Legend
inhibit

Use I() function, e.g.,
...geom="point", size=I(4))

Precise control makes I() function
unnecessary.

Line ...geom="line" +geom_line()
Line vertical ...geom="vline", intercept=?) +geom_vline(intercept=?)
Line horiz. ...geom="hline", intercept=?) +geom_hline(intercept=?)
Pie (polar) +coord_polar(theta="y") +coord_polar(theta="y")
Points ...geom="point") That is the default

for two variables.
+geom_point(size=2) There is no default
geom for ggplot. The default size is 2.

QQ plot ...stat="qq") +stat_qq=()
Smooth ...geom="smooth", method="lm")

Lowess is default method.
+geom_smooth(method="lm")
Lowess is default method.

Smooth w/o
Confidence

...geom="smooth",
method="lm", se=FALSE)

+geom_smooth(method="lm", se=FALSE)

Titles ...main="My Title")
Just like plot function.

+opts(title="My Title")

See Section 10.5, “Missing Values” for other ways to address missing val-
ues.

16.1.3 Typographic Conventions

Throughout this book we have displayed R’s prompt characters only when
input was followed by output. The prompt characters helped us discriminate
between the two. Each of our function calls will result in a graph, so there is
no chance of confusing input with output. Therefore, we will dispense with

16.2 Bar Plots 389

the prompt characters for the remainder of this chapter. This will make the
code much cleaner to read because our examples of the ggplot function of-
ten end in a “+” sign. That is something you type. Since R prompts you
with “+” at the beginning of a continued line, that looks a bit confusing at
first.

16.2 Bar Plots

Let us do a simple bar chart of counts for our workshop variable (Fig. 16.1).
Both of the following function calls will do it.

The qplot approach to Fig. 16.1 is

> attach(mydata100) # Assumed for all qplot examples

> qplot(workshop)

The ggplot approach to to Fig. 16.1 is

> ggplot(mydata100, aes(workshop)) +
+ geom_bar()

Bars are the default geom when you give qplot only one factor, so we only
need a single argument, workshop.

workshop

co
un

t

0

5

10

15

20

25

30

R SAS SPSS Stata

Fig. 16.1. A bar plot of workshop attendance.

390 16 Graphics with ggplot2

The ggplot function call above requires three arguments:

1. Unlike most other R functions, it requires that you specify the data frame.
As we will see later, that is because ggplot can plot multiple layers, and
each layer can use a different data frame.

2. The aes function defines the aesthetic role that workshop will play. It
maps workshop to the x -axis. We could have named the argument as in
aes(x=workshop). The first two parameters to the aes function are x
and y, in that order. To simplify the code, we will not bother listing their
names.

3. The geom_bar function tells it that the geometric object, or geom, needed
is a bar. Therefore, a bar chart will result. This function call is tied to the
first one through the “+” sign.

We did that the same plot using traditional graphics bar plot function,
but that required us to summarize the data using table(workshop). The
ggplot2 package is more like Stata in this regard; it does that type of sum-
marization for you.

If we want to change to a horizontal bar chart (Fig. 16.2), all we need to
do is flip the coordinates. In the following examples, it is clear that we simply
added the cord_flip function to the end of both qplot and ggplot. There
is no argument to qplot like coord="flip".

count

w
or

ks
ho

p

R

SAS

SPSS

Stata

0 5 10 15 20 25 30

Fig. 16.2. A horizontal bar plot demonstrating the impact of the
coord flip function.

16.2 Bar Plots 391

This brings up an interesting point. Both methods create the exact same
graphics object. Even if there is a qplot equivalent, you can always add a
ggplot function call to a qplot function call.

The qplot approach to Fig. 16.2 is

qplot(workshop) + coord_flip()

The ggplot approach to Fig. 16.2 is

ggplot(mydata100, aes(workshop)) +
geom_bar() + coord_flip()

You can create the usual types of grouped bar plots. Let us start with
a simple stacked one (Fig. 16.3). You can use either function below. They
contain two new arguments. Although we are requesting only a single bar,
we must still supply a variable for the x -axis. The function call factor("")
provides the variable we need, and it is simply an unnamed factor whose
value is empty. We use the factor function to keep it from labeling the x -
axis from 0 to 1, which it would do if the variable were continuous. The
fill=workshop aesthetic argument tells the function to fill the bars with the
number of students who took each workshop.

With qplot, we are clearing labels on the x -axis with xlab="". Otherwise,
the word “factor” would occur there from our factor("") statement.

The equivalent way to label ggplot is to use the scale_x_discrete func-
tion, also providing an empty label for the x -axis. Finally, the

co
un

t

0

20

40

60

80

workshop

R

SAS

SPSS

Stata

Fig. 16.3. A stacked bar plot of workshop attendance.

392 16 Graphics with ggplot2

scale_fill_grey function tells each function to use shades of grey. You can
leave this out, of course, and both functions will choose the same nice color
scheme. The start and end values tell the function to go all the way to black
and white, respectively. If you use just scale_fill_grey(), it will use four
shades of grey.

The qplot approach to Fig. 16.3 is

qplot(factor(""), fill=workshop,
geom="bar", xlab="") +
scale_fill_grey(start=0, end=1)

The ggplot approach to Fig. 16.3 is

ggplot(mydata100,
aes(factor(""), fill=workshop)) +
geom_bar() +
scale_x_discrete("") +
scale_fill_grey(start=0, end=1)

16.2.1 Pie Charts

One interesting aspect to the grammar of graphics concept is that a pie chart
(Fig. 16.4) is just a single stacked bar chart (Fig. 16.3), drawn in polar coor-
dinates. So we can use the same function calls that we used for the bar chart
in the previous section, but convert to polar afterward using the coord_polar
function.

This is a plot that only ggplot can do correctly. The geom_bar(width=1)
function call tells it to put the slices right next to each other. If you included
that on a standard bar chart, it would also put the bars right next to each
other.

co
un

t

0

20

4060

80 workshop

R

SAS

SPSS

Stata

Fig. 16.4. A pie chart of workshop attendance.

16.2 Bar Plots 393

ggplot(mydata100,
aes(factor(""), fill=workshop)) +
geom_bar(width=1) +
scale_x_discrete("") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

That is a lot of code for a simple pie chart! In the previous chapter, we created
this graph with a simple

pie(table(workshop))

So traditional graphics are the better approach in some cases. However, as we
will see in the coming sections, the ggplot2 package is the easiest to use for
most things.

16.2.2 Bar Charts for Groups

Let us now look at repeating bar charts for levels of a factor, like gender.
This requires having factors named for both the x argument and the fill
argument. By default, the position argument stacks the fill groups—in
this case, the workshops. That graph is displayed in the upper left frame of
Fig. 16.5.

The qplot approach to Fig. 16.5, upper left is

qplot(gender, geom="bar",
fill=workshop, position="stack") +
scale_fill_grey(start=0, end=1)

The ggplot apprach to Fig. 16.5, upper left is

ggplot(mydata100, aes(gender, fill=workshop)) +
geom_bar(position="stack") +
scale_fill_grey(start=0, end=1)

Changing either of the above examples to:
position="fill"

makes every bar fill the y-axis, displaying the proportion in each group rather
than the number. That type of graph is called a spine plot and it is displayed
in the upper right of Fig. 16.5.

Finally, if you set
position="dodge" the filled segments appear beside one another, “dodging”
each other. That takes more room on the x -axis, so it appears across the whole
bottom row of Fig. 16.5.

We will discuss how to convey similar information using multiframe plots
in Section 16.15, “Multiple Plots on a Page.”

394 16 Graphics with ggplot2

position = stack

gender

co
un

t

0

10

20

30

40

50

workshop

R

SAS

SPSS

Stata

FemaleMale

position = fill

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

workshop

R

SAS

SPSS

Stata

gender
FemaleMale

position = dodge

gender

co
un

t

0

5

10

15

Female Male

workshop

R

SAS

SPSS

Stata

Fig. 16.5. A multiframe plot showing the impact of the various position settings.

16.3 Plots by Group or Level

One of the nicest features of the ggplot2 package is its ability to easily plot
groups within a single plot (Fig. 16.6). To fully appreciate all of the work it
is doing for us, let us first consider how to do this with traditional graphics
functions.

1. We would set up a multiframe plot, say for males and females.
2. Then we might create a bar chart on workshop, selecting

which(gender=="Female").
3. Then we would repeat the step above, selecting the males.
4. We probably want to standardize the axes to better enable comparisons

and do the plots again.
5. We would add a legend, making sure to manually match any color or

symbol differences across the plots.
6. Finally, we would turn off the multiframe plot settings to get back to one

plot-per-page.

16.3 Plots by Group or Level 395

workshop

co
un

t 0

5

10

15

0

5

10

15

R SAS SPSS Stata

F
em

ale
M

ale

Fig. 16.6. A bar plot of workshop attendance with facets for the genders.

Thank goodness the ggplot2 package can perform the equivalent of those
tedious steps using either of the following simple function calls:

The qplot approach to Fig. 16.6 is

qplot(workshop, facets=gender ~ .)

The ggplot approach to Fig. 16.6 is

ggplot(mydata100, aes(workshop)) +
geom_bar() + facet_grid(gender ~ .)

The new feature is the facets argument in qplot and the facet_grid
function in ggplot. The formula it uses is in the form “rows~columns”. In
this case, we have “gender~.” so we will get rows of plots for each gender
and no columns. The “.” represents “1” row or column. If we instead did
“.~gender”, we would have one row and two columns of plots side-by-side.

396 16 Graphics with ggplot2

You can extend this idea with the various rules for formulas described in
Section 5.6.2, “Controlling Functions with Formulas.” Given the constraints
of space, the most you are likely to find useful is the addition of one more
variable, such as

facets=workshop ~ gender

In our current example, that leaves us nothing to plot, but we will look at a
scatter plot example of that later.

16.4 Presummarized Data

We mentioned earlier that the ggplot2 package assumed that your data
needed summarizing, which is the opposite of some traditional R graphics
functions. However, what if the data are already summarized? The qplot
function makes it quite easy to deal with, as you can see in the program be-
low. We simply use the factor function to provide the x argument and the c
function to provide the data for the y argument. Since we are providing both x
and y arguments, the qplot function will provide a default point geom, so we
override that with geom="bar". The xlab and ylab arguments label the axes,
which it would otherwise label with the factor and c functions themselves.

The qplot approach to Fig. 16.7 is

qplot(factor(c(1,2)), c(40, 60), geom="bar",
xlab="myGroup", ylab="myMeasure")

The ggplot approach to this type of plot is somewhat different because
it requires that the data be in a data frame. I find it much easier to create
a temporary data frame containing the summary data. Trying to nest a data
frame creation within the ggplot function will work, but you end up with so
many parentheses that it can be a challenge getting it to work. The example
program at the end of this chapter contains that example as well.

The following is the more complicated ggplot approach to Fig. 16.7. We
are displaying R’s prompts here to differentiate input from output.

> myTemp <- data.frame(
+ myGroup=factor(c(1,2)),
+ myMeasure=c(40, 60)
+)

> myTemp

myGroup myMeasure
1 1 40
2 2 60

16.5 Dot Charts 397

myGroup

m
yM

ea
su

re

0

10

20

30

40

50

60

21

Fig. 16.7. A bar plot of presummarized data.

> ggplot(data=myTemp, aes(myX, myY)) +
+ geom_bar()

> rm(myTemp) #Cleaning up.

16.5 Dot Charts

Dot charts are bar charts reduced to just points on lines, so you can take any
of the above bar chart examples and turn them into dot charts (Fig. 16.8).

Dot charts are particularly good at packing in a lot of information on a
single plot, so let us look at the counts for the attendance in each workshop,
for both males and females. This example demonstrates how very different
qplot and ggplot can be. It also shows how flexible ggplot is and that it is
sometimes much easier to understand than qplot.

First, let us look at how qplot does it. The variable workshop is in the
x position, so this is the same as saying x=workshop. If you look at the plot,
workshop is on the y-axis. However, qplot requires an x variable, so we can-
not simply say y=workshop and not specify an x variable. Next, it specifies
geom="point" and sets the size of the points to I(4), which is much larger
than in a standard scatter plot. Remember that the I() function around the

398 16 Graphics with ggplot2

count

w
or

ks
ho

p R

SAS

SPSS

Stata

R

SAS

SPSS

Stata

10 12 14 16

F
em

ale
M

ale

Fig. 16.8. A dot chart of workshop attendance with facets for the genders.

4 inhibits interpretation, which in this case means that it stops qplot from
displaying a legend showing which point size represents a “4.” In this example,
that is useless information. You can try various size values to see how it looks.
The stat="bin" argument tells it to combine all of the values that it finds
for each level of workshop as a histogram might do. So it ends up counting
the number of observations in each combination of workshop and gender. The
facets argument tells it to create a row for each gender. The coord_flip
function rotates it in the direction we desire.

The qplot approach to Fig. 16.8 is

qplot(workshop, geom="point", size=I(4),
stat="bin", facets=gender~.) +

coord_flip()

Now let us see how ggplot does the same plot. The aes function supplies the
x -axis variable and the y-axis variable uses the special “..count..” computed
variable. That variable is also used by qplot, but it is the default y variable.
The geom_point function adds points, bins them, and sets their size. The
coord_flip function then reverses the axes. Finally, the facet_grid function
specifies the same formula used earlier in qplot. Notice here that we did not
need the I() function, as ggplot “knows” that the legend is not needed. If
we were adjusting the point sizes based on a third variable, we would have

16.6 Adding Titles and Labels 399

to specify the variable as an additional aesthetic. The syntax to ggplot is
verbose, but more precise.

ggplot(mydata100,
aes(workshop, ..count..)) +
geom_point(stat="bin", size=4) + coord_flip()+
facet_grid(gender~.)

16.6 Adding Titles and Labels

Sprucing up your graphs with titles and labels is easy to do (Fig. 16.9). The
qplot function adds them exactly like the traditional graphics functions do.
You supply the main title with the main argument, and the x and y labels with
xlab and ylab, respectively. There is no subtitle argument. As with all labels
in R, the characters “\n” causes it to go to a new line, so “\nWorkshops”
below will put just the word “Workshops” at the beginning of a new line.

The qplot approach to Fig.16.9 is

qplot(workshop, geom="bar",
main="Workshop Attendance",
xlab="Statistics Package \nWorkshops")

Workshop Attendance

Statistics Package
Workshops

co
un

t

0

5

10

15

20

25

30

R SAS SPSS Stata

Fig. 16.9. A bar plot demonstrating titles and x -axis labels.

400 16 Graphics with ggplot2

The ggplot approach to Fig.16.9 is

ggplot(mydata100, aes(workshop, ..count..)) +
geom_bar() +
opts(title="Workshop Attendance") +
scale_x_discrete("Statistics Package \nWorkshops")

Adding titles and labels in ggplot is slightly more verbose. The opts func-
tion sets various opt ions, one of which is title. The axis labels are attributes
of the axes themselves. They are controlled by the functions,
scale_x_discrete, scale_y_discrete, and for continuous axes, they are
controlled by the functions,
scale_x_continuous, scale_y_continuous, which are clearly named accord-
ing to their function. We find it odd that you use different functions for label-
ing axes if they are discrete or continuous, but it is one of the trade-offs you
make when getting all of the flexibility that ggplot offers.

16.7 Histograms and Density Plots

Many statistical methods make assumptions about the distribution of your
data, or at least of your model residuals. Histograms and density plots are
two effective plots to help you assess the distributions of your data.

16.7.1 Histograms

As long as you have 30 or more observations, histograms (Fig. 16.10) are a
good way to examine continuous variables. You can use either of the follow-
ing examples to create one. In qplot, the histogram is the default geom for
continuous data, making it particulary easy to perform.

The qplot approach to Fig. 16.10 is

qplot(posttest)

The ggplot approach to Fig. 16.10 is

ggplot(mydata100, aes(posttest)) +
geom_histogram()

Both functions will print the number of bins it uses by default (30) to the R
console (not shown). If you narrow the width of the bins, you will get more
bars, showing more structure in the data (Fig. 16.11). If you prefer qplot,
simply add the binwidth argument. If you prefer ggplot, add the geom_bar
function with its binwidth argument. Smaller numbers result in more bars.

The qplot approach to Fig. 16.11 is

qplot(posttest, geom="histogram", binwidth=0.5)

16.7 Histograms and Density Plots 401

posttest

co
un

t

0

2

4

6

8

10

12

60 70 80 90

Fig. 16.10. A histogram of posttest.

The ggplot approach to Fig. 16.11 is

ggplot(mydata100, aes(posttest)) +
geom_bar(binwidth=0.5)

16.7.2 Density Plots

If you prefer to see a density curve, just change the geom argument or function
to density (Fig. 16.12).

The qplot approach to Fig. 16.12 is

qplot(posttest, geom="density")

The ggplot approach to Fig. 16.12 is

ggplot(mydata100, aes(posttest)) +
geom_density()

16.7.3 Histograms with Density Overlaid

Overlaying the density on the histogram, as in Fig. 16.13, is only slightly more
complicated. The variable that qplot or ggplot computes in the background

402 16 Graphics with ggplot2

posttest

co
un

t

0

2

4

6

8

60 70 80 90

Fig. 16.11. A histogram of posttest with smaller bin widths.

posttest

de
ns

ity

0.00

0.01

0.02

0.03

0.04

0.05

60 70 80 90

Fig. 16.12. A density plot of posttest.

16.7 Histograms and Density Plots 403

posttest

de
ns

ity

0.00

0.02

0.04

0.06

0.08

60 70 80 90

Fig. 16.13. A density plot overlaid on a histogram.

for the y-axis is named “..density..”. To ask for both a histogram and
the density, you must explicitly list ..density.. as the y variable. Then for
qplot, you provide both histogram and density to the geom argument by
combining them into a character vector using the c function.

For ggplot, you simply call both functions.
The qplot approach to Fig. 16.13 is

qplot(posttest, ..density..,
geom=c("histogram", "density"))

The ggplot approach to Fig. 16.13 is

ggplot(mydata100, aes(posttest, ..density..)) +
geom_histogram() + geom_density()

16.7.4 Histograms for Groups, Stacked

What if we want to compare the histograms for males and females (Fig. 16.14)?
Using base graphics, we had to set up a multiframe plot and learn how to
control breakpoints for the bars so that they would be comparable. Using
ggplot2, the facet feature makes the job trivial.

404 16 Graphics with ggplot2

posttest

co
un

t

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

60 70 80 90

F
em

ale
M

ale

Fig. 16.14. Histograms of posttest with facets for the genders.

The qplot approach to Fig. 16.14 is

qplot(posttest, facets=gender~.)

The ggplot approach to Fig. 16.14is

ggplot(mydata100, aes(posttest)) +
geom_histogram() + facet_grid(gender ~ .)

16.7.5 Histograms for Groups, Overlaid

We can also compare males and females by filling the bars by gender as in
Fig. 16.15. As earlier, if you leave off the scale_fill_grey function, the bars
will come out in two colors rather than black and white.

The qplot approach to Fig. 16.15 is

qplot(posttest, fill=gender) +
scale_fill_grey(start = 0, end = 1)

The ggplot approach to Fig. 16.15 is

ggplot(mydata100, aes(posttest, fill=gender)) +
geom_bar() + scale_fill_grey(start=0, end=1)

16.9 Strip Plots 405

posttest

co
un

t

0

2

4

6

8

10

12

60 70 80 90

gender

Female

Male

Fig. 16.15. A histogram with bars filled by gender.

16.8 Normal QQ Plots

We defined what a QQ plot is the previous chapter on traditional graphics.
Creating them in the ggplot2 package is straightforward (Fig. 16.16). If you
prefer the qplot function, supply the stat="qq" argument. In ggplot, the
similar stat_qq function will do the trick.

The qplot approach to Fig. 16.16 is

qplot(posttest, stat="qq")

The ggplot approach to Fig. 16.16 is

ggplot(mydata100, aes(posttest)) +
stat_qq()

16.9 Strip Plots

Strip plots are scatter plots of single continuous variables, or a continuous
variable displayed at each level of a factor like workshop. As with the single
stacked bar chart, the case of a single strip plot still requires a variable on the
x -axis (Fig. 16.17). As you see below, factor("") will suffice. The variable to
actually plot is the y argument. Reversing the x and y variables will turn the

406 16 Graphics with ggplot2

theoretical

sa
m

pl
e

65

70

75

80

85

90

95

–2 –1 0 1 2

Fig. 16.16. A normal quantile–quantile plot of posttest.

po
st

te
st

60

70

80

90

Fig. 16.17. A strip chart done using the jitter geom.

16.9 Strip Plots 407

plot on its side, the default way the traditional graphics function, stripchart,
does it. We prefer the vertical approach, as it matches the style of box plots and
error bar plots when you use them to compare groups. The geom="jitter"
adds some noise to separate points that would otherwise obscure other points
by plotting on top of them. Finally, the xlab="" and scale_x_discrete("")
labels erase what would have been a meaningless label about factor("") for
qplot and ggplot, respectively.

This qplot approach does a strip plot with wider jitter than Fig 16.17:

qplot(factor(""), posttest, geom="jitter", xlab="")

This ggplot approach does a strip plot with wider jitter than Fig. 16.17:

ggplot(mydata100, aes(factor(""), posttest)) +
geom_jitter() +
scale_x_discrete("")

The above two examples use an amount of jitter that is best for large data sets.
For smaller data sets, it is best to limit the amount of jitter to separate the
groups into clear strips of points. Unfortunately, this complicates the syntax.

The qplot function controls jitter width with the position argument,
setting position_jitter with width=scalefactor.

The ggplot approach places that same parameter within its geom_jitter
function call.

The qplot approach to Fig. 16.17 is

qplot(factor(""), posttest, data = mydata100, xlab="",
position=position_jitter(width=.02))

The ggplot approach to Fig. 16.17 is

ggplot(mydata100, aes(factor(""), posttest)) +
geom_jitter(position=position_jitter(width=.02)) +
scale_x_discrete("")

Placing a factor like workshop on the x -axis will result in a strip chart for
each level of the factor (Fig. 16.18).

This qplot approach does a grouped strip plot with wider jitter than
Fig 16.18, but its code is simpler:

> qplot(workshop, posttest, geom="jitter")

This ggplot approach does a grouped strip plot with wider jitter than
Fig 16.18, but with simpler code:

> ggplot(mydata100, aes(workshop, posttest)) +
+ geom_jitter()

408 16 Graphics with ggplot2

po
st

te
st

60

70

80

90

R SAS SPSS Stata

Fig. 16.18. A strip chart with facets for the workshops.

Limiting the amount of jitter for a grouped strip plot uses exactly the
same parameters we used for a single strip plot.

The qplot approach to Fig. 16.18 is

qplot(workshop, posttest, data = mydata100, xlab="",
position=position_jitter(width=.08))

The ggplot approach to Fig. 16.18 is

ggplot(mydata100, aes(workshop, posttest)) +
geom_jitter(position=position_jitter(width=.08)) +
scale_x_discrete("")

16.10 Scatter Plots and Line Plots

The simplest scatter plot hardly takes any effort in qplot. Just list x and y
variables in that order. You could add the geom="point" argument, but it is
the default when you list two variables.

The ggplot function is slightly more complicated. Since it has no default
geometric object to display, we must specify geom_point().

The qplot approach to Fig. 16.19, upper left, is

qplot(pretest, posttest)

16.10 Scatter Plots and Line Plots 409

geom=point

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85
pretest

60 65 70 75 80 85

pretest
60 65 70 75 80 85

pretest
60 65 70 75 80 85

SSS

geom=line

po
st

te
st

60

70

80

90

geom=path

po
st

te
st

60

70

80

90

geom_segment

po
st

te
st

60

70

80

90

Fig. 16.19. A multiframe plot demonstrating various styles of scatter plots and line
plots. The top two and the bottom left show different geoms. The bottom right is
done a very different way, by drawing line segments from each point to the x -axis.

The ggplot approach to Fig. 16.19, upper left, is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point()

We can connect the points using the line geom, as you see below. However,
the result is different from what you get in traditional R graphics. The line
connects the points in the order that they appear on the x -axis. That almost
makes our data appear as a time series, when it is not.

The qplot approach to Fig. 16.19, upper right, is

qplot(pretest, posttest, geom="line")

The qplot approach to Fig. 16.19, upper right, is

ggplot(mydata100, aes(pretest, posttest)) +
geom_line()

410 16 Graphics with ggplot2

Although the line geom ignored the order of the points in the data frame,
the path geom will connect them in that order. You can see the result in the
lower left quadrant of Fig. 16.19. The order of the points in our data set has
no meaning, so it is just a mess!

The qplot approach to Fig. 16.19, lower left, is

qplot(pretest, posttest, geom="path")

The ggplot approach to Fig. 16.19, lower left, is

ggplot(mydata100, aes(pretest, posttest)) +
geom_path()

Now let us run a vertical line to each point. When we did that using
traditional graphics, it was a very minor variation. In ggplot2, it is quite
different but an interesting example. It is a plot that is much more clear using
ggplot, so we will skip qplot for this one.

In the ggplot code below, the first line is the same as the above exam-
ples. Where it gets interesting is the geom_segment function. It has its own
aes function, repeating the x and y arguments, but in this case, they are the
beginning points for drawing line segments! It also has the arguments xend
and yend, which tell it where to end the line segments. This may look overly
complicated compared to the simple "type=h" argument from the plot func-
tion, but you could use this approach to draw all kinds of line segments. You
could easily draw them coming from the top or either side, or even among sets
of points. The "type=h" approach is a one trick pony. With that approach,
adding features to a function leads to a very large number of options, and
the developer is still unlikely to think of all of the interesting variations in
advance.

The following is the code, and the resulting plot is in the lower right panel
of Fig. 16.19.

ggplot(mydata100, aes(pretest, posttest)) +
geom_segment(aes(pretest, posttest,

xend=pretest, yend=58))

16.10.1 Scatter Plots with Jitter

We discussed the benefits of jitter in the previous chapter. To get a nonjittered
plot of q1 and q4, we will just use qplot (Fig. 16.20, left).

qplot(q1,q4)

To add jitter, below are both the qplot and gglot approaches (Fig. 16.20,
right). Note that the geom="point" argument is the default in qplot when two
variables are used. Since that default is not shown, the fact that the position
argument applies to it is not obvious. That relationship is clearer in the ggplot

16.10 Scatter Plots and Line Plots 411

Likert Scale Without Jitter

q1

q4

1

2

3

4

5

Likert scale with jitter

q1

q4
1

2

3

4

5

1 2 3 4 51 2 3 4 5

Fig. 16.20. A multiframe plot showing the impact of jitter on five-point Likert–
scale data. The plot on the left is not jittered, so many points are obscured. The
plot on the right is jittered, randomly moving points out from behind one another.

code, where the position argument is clearly part of the geom_point func-
tion. You can try various amounts of jitter to see which provides the best view
of your data.

The qplot approach to Fig. 16.20, right, is

qplot(q1, q4, position=position_jitter(width=.3,height=.3))

The ggplot approach to Fig. 16.20, right, is

ggplot(mydata100, aes(x=q1, y=q2)) +
geom_point(position=position_jitter(width=.3,height=.3))

16.10.2 Scatter Plots for Large Data Sets

When plotting large data sets, points often obscure one another. The ggplot2
package offers several ways to deal with this problem, including decreasing
point size, adding jitter and/or transparency, displaying density contours, and
replacing sets of points with hexagonal bins.

Scatter Plots with Jitter and Transparency

By adjusting the amount of jitter and the amount of transparency, you can
find a good combination that lets you see through points into the heart of a
dense scatter plot (Fig. 16.21).

412 16 Graphics with ggplot2

Fig. 16.21. A scatter plot demonstrating how transparency allows you to see many
points at once.

Unfortunately, transparency is not yet supported in Windows metafiles.
So if you are a Windows user, choose “Copy as bitmap” when cutting and
pasting graphs into your word processor. For a higher-resolution image, route
your graph to a file using the png function. For an example, see Section 14.6,
“Graphics Devices.” You can also use the ggsave function, which is part of
the ggplot2 package. For details, see Section 16.16, “Saving ggplot2 Graphs
to a File.”

To get 5,000 points to work with, we generated them with the following:

pretest2 <- round(rnorm(n=5000,mean=80,sd=5))

posttest2 <- round(pretest2 + rnorm(n=5000,mean=3,sd=3))

pretest2[pretest2>100] <- 100

posttest2[posttest2>100] <- 100

temp=data.frame(pretest2,posttest2)

16.10 Scatter Plots and Line Plots 413

Now let us plot this data. This builds on our previous plots that used
jitter and size. In computer terminology, controlling transparency is called
alpha compositing. The qplot function makes this easy with a simple alpha
argument. You can try various levels of transparency until you get the result
you desire.

The size and alpha arguments could be set as variables. In which case,
they would vary the point size or transparency to reflect the levels of the
assigned variables. That would require a legend to help us interpret the plot.
However, when you want to set them equal to fixed values, you can nest the
numbers using the I() function. The I() function inhibits the interpretation
of its arguments. Without the I() function, the qplot function would print
a legend saying that “size=2” and “alpha=0.15,” which in our case is fairly
useless information.

The ggplot function controls transparency with the colour argument to
the geom_jitter function. That lets you control color and amount of trans-
parency in the same option.

The qplot approach to Fig. 16.21 is

qplot(pretest2, posttest2, data=temp,
geom="jitter", size=I(2), alpha=I(0.15),
position=position_jitter(width=2))

The ggplot approach to Fig. 16.21 is

ggplot(temp, aes(pretest2, posttest2),
size=2, position = position_jitter(x=2,y=2)) +
geom_jitter(colour=alpha("black",0.15))

Scatter Plots with Density Contours

A different approach to study a dense scatter plot is to draw density contours
on top of the data (Fig. 16.22). With this approach, it is often better not to
jitter the data, so that you can more clearly see the contours. You can do this
with the density2d geom in qplot or the geom_density function in ggplot.
The size=I(1) argument below reduces the point size to make it easier to
see many points at once. As before, the I() function simply suppressed a
superfluous legend.

The qplot approach to Fig. 16.22 is

qplot(pretest2, posttest2, data=temp,
geom=c("point","density2d"), size = I(1))

The ggplot approach to Fig. 16.22 is

ggplot(temp, aes(pretest2, posttest2)) +
geom_point(size=1) + geom_density_2d()

414 16 Graphics with ggplot2

pretest2

po
st

te
st

2

65

70

75

80

85

90

95

100

65 70 75 80 85 90 95 100

Fig. 16.22. This scatter plot shows an alternate way to see the structure in a large
data set. These points are small, but not jittered, making more space for us to see
the density contour lines.

16.10.3 Hexbin Plots

Another approach to plotting large data sets is to divide the plot surface into
a set of hexagons and shade each hexagon to represent the number of points
that fall within it; see Fig. 16.23. In that way, you can scale millions of points
down into tens of bins.

In qplot, we can use the hex geom. In ggplot, we use the equivalent
geom_hex function. Both use the bins argument to set the number of hexag-
onal bins you want. The default is 30; we use it here only so that you can
see how to change it. As with histograms, increasing the number of bins may
reveal more structure within the data.

The following function call uses qplot to create a color version of Fig. 16.23:

qplot(pretest2, posttest2, geom="hex", bins=30)

The following code uses ggplot to create the actual greyscale version of
Fig. 16.23. The scale_fill_continuous function allows us to shade the
plot using levels of grey. You can change the low="grey80" argument to
other values to get the range of grey you prefer. Of course, you could add
this function call to the above qplot call to get it to be grey instead of
color.

16.10 Scatter Plots and Line Plots 415

pretest2

po
st

te
st

2

60

70

80

90

100

60 65 70 75 80 85 90 95

20

40

60

80

100

Fig. 16.23. A hexbin plot of pretest and posttest.

ggplot(temp, aes(pretest2, posttest2)) +
geom_hex(bins=30) +
scale_fill_continuous(

low = "grey80", high = "black")

16.10.4 Scatter Plots with Fit Lines

While the traditional graphics plot function took quite a lot of extra effort to
add confidence lines around a regression fit (Fig. 15.38), the ggplot2 package
makes that automatic. Unfortunately, the transparency used to create the
confidence band is not supported when you cut and paste the image as a
metafile in Windows. The image in Fig. 16.24 is a slightly lower resolution
600-dpi bitmap.

To get a regression line in qplot, simply specify geom="smooth". However,
that alone will replace the default of geom="point", so if you want both, you
need to specify geom=c("point","smooth").

In ggplot, you use both the geom_point and geom_smooth functions. The
default smoothing method is a lowess function, so if you prefer a linear model,
include the method=lm argument.

The qplot approach to Fig. 16.24 is

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm)

416 16 Graphics with ggplot2

Fig. 16.24. A scatter plot with regression line and default confidence band.

The ggplot approach to Fig. 16.24 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() + geom_smooth(method=lm)

Since the confidence bands appear by default, we have to set the se argu-
ment (standard error) to FALSE to turn it off.

The qplot approach to Fig. 16.25 is

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm, se=FALSE)

The ggplot approach to Fig. 16.25 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() + geom_smooth(method=lm, se=FALSE)

16.10.5 Scatter Plots with Reference Lines

To place an arbitrary straight line on a plot, use the abline geom in
qplot. You specify your slope and intercept using clearly named arguments.
Here we are using intercept=0 and slope=1 since this is the line where
posttest=pretest. If the students did not learn anything in the workshops,

16.10 Scatter Plots and Line Plots 417

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

Fig. 16.25. A scatter plot with regression line with default confidence band re-
moved.

the data would fall on this line (assuming a reliable test). The ggplot func-
tion adds the abline function with arguments for intercept and slope.

The qplot approach to Fig. 16.26 is

qplot(pretest, posttest,
geom=c("point","abline"),
intercept=0, slope=1)

The ggplot approach to Fig. 16.26 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point()+ geom_abline(intercept=0, slope=1)

Vertical or horizontal reference lines can help emphasize points or cutoffs.
For example, if our students are required to get a score greater than 75 before
moving on, we might want to display those cutoffs on our plot (Fig. 16.27).

In qplot, we can do this with the xintercept and yintercept arguments.
In ggplot, the functions are named geom_vline and geom_hline, each with
an intercept argument.

The qplot approach to Fig. 16.27 is

qplot(pretest, posttest,
geom=c("point", "vline", "hline"),
xintercept=75, yintercept=75)

418 16 Graphics with ggplot2

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

Fig. 16.26. A scatter plot with a line added where pretest=posttest. Most of the
points lie above this line, showing that students did learn.

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

Fig. 16.27. A scatter plot with vertical and horizontal reference lines.

16.10 Scatter Plots and Line Plots 419

The ggplot approach to Fig. 16.27 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline(xintercept=75) +
geom_hline(yintercept=75)

To add a series of reference lines, we need to use the geom_vline or
geom_hline functions (Fig. 16.28). The qplot example does not do much
with qplot itself since it cannot create multiple reference lines. So for both
examples, we use the identical geom_vline function. It includes the seq func-
tion to generate the sequence of numbers we needed. Without it we could
have used intercept=c(70,72,74,76,78,80). In this case, we did not save
much effort, but if we wanted to add dozens of lines, the seq function would
be much easier.

The qplot approach to Fig. 16.28 is

qplot(pretest, posttest, type="point") +
geom_vline(intercept=seq(from=70,to=80,by=2))

The ggplot approach to Fig. 16.28 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline(xintercept=seq(from=70,to=80,by=2))

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

Fig. 16.28. A scatter plot with multiple vertical reference lines.

420 16 Graphics with ggplot2

16.10.6 Scatter Plots with Labels Instead of Points

If you do not have much data or you are only interested in points around the
edges, you can plot labels instead of plots symbols (Fig. 16.29). The labels can
be identifiers such as ID numbers, people’s names or row names, or they could
be values of other variables of interest to add a third dimension to the plot.

You do this using the geom="text" argument in qplot or the geom_text
function in ggplot. In either case, the label argument points to the values
to use. Recall that in R, row.names(mydata) gives you the stored row names,
even if these are just the sequential characters, “1,” “2,” and so on. We will
store them in a variable named mydata$id and then use it with the label
argument. The reason we do not use the form label=row.names(mydata100)
is that the ggplot2 package puts all of the variables it uses into a separate
temporary data frame before running.

The qplot approach to Fig. 16.29 is

mydata100$id <- row.names(mydata100)
qplot(pretest, posttest, geom="text",

label=mydata100$id)

The ggplot approach to Fig. 16.29 is

ggplot(mydata100, aes(pretest, posttest,
label=mydata100$id)) + geom_text()

pretest

po
st

te
st

60

70

80

90

1

2

45

6

7

8

9

10 11
12

13
14

15

16
17

1819
20

21

22
23

24

25

26

27

28

29

30

31 32
33

34

35

36

37 38

3940

41 42

43
44

45

46

47

48

49
50

51

52

53
54

5556

57

58

59

60

61

62

63

64

65

66

67

68

69

70
71

72

73

74

7576

77

78 79

80

81
82

83

84

85

86

87
88

89

90

91

92

93
9495

96

97
98

99
100

60 65 70 75 80 85

Fig. 16.29. A scatter plot with ID numbers plotted instead of points.

16.10 Scatter Plots and Line Plots 421

16.10.7 Changing Plot Symbols

You can use different plot symbols to represent levels of any third variable.
Factor values, such as those representing group membership, can be displayed
by different plot symbols (shapes) and/or colors. You could use a continuous
third variable to shade the colors of each point or to vary the size of each
point. The ggplot2 package makes quick work of any of these options. Let us
consider a plot of pretest versus posttest that uses different points for males
and females (Fig. 16.30).

The qplot function can do this using the shape argument.
The ggplot function must bring a new variable into the geom_point func-

tion. Recall that aesthetics map variables into their roles, so we will nest
aes(shape=gender) within the call to geom_point.

You can also set color and size by substituting either of those arguments
for shape.

The qplot approach to Fig. 16.30 is

qplot(pretest, posttest, shape=gender)

The ggplot approach to Fig. 16.30 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_point(aes(shape=gender))

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

gender

Female

Male

Fig. 16.30. A scatter plot with point shape determined by gender.

422 16 Graphics with ggplot2

16.10.8 Scatter Plot with Linear Fits by Group

We have seen that the smooth geom adds a lowess or regression line and that
shape can include group membership. If we do both of these in the same plot,
we can get separate lines for each group as shown in Fig. 16.31.

The qplot approach to Fig. 16.31 is

qplot(pretest, posttest, geom=c("smooth","point"),
method="lm", shape=gender)

The ggplot approach to Fig. 16.31 is

ggplot(mydata100,
aes(x = pretest, y=posttest, shape=gender)) +
geom_smooth(method="lm") + geom_point()

16.10.9 Scatter Plots Faceted for Groups

Another way to compare groups on scatter with or without lines of fit is
through facets (Fig. 16.32). As we have seen several times before, simply
adding the facets argument to the qplot function allows you to spec-
ify rows~columns of categorical variables. So facets=workshop~gender is

Fig. 16.31. A scatter plot with regression lines and point shape determined by
gender.

16.10 Scatter Plots and Line Plots 423

Fig. 16.32. A scatter plot with facets showing linear fits for each workshop and
gender combination.

requesting a grid of plots for each workshop:gender combination, with work-
shop determining the rows and gender determining the columns.

The ggplot function works similarly, using the facet_grid function to
do the same. If you have a continuous variable to condition on, you can use
the chop function from the ggplot2 package or the cut function that is built
into R to break the variable into groups.

The qplot approach to Fig. 16.32 is

qplot(pretest, posttest, geom=c("smooth","point"),
method="lm", shape=gender, facets=workshop ~ gender)

The ggplot approach to Fig. 16.32 is

ggplot(mydata100, aes(pretest, posttest)) +
geom_smooth(method="lm") + geom_point() +
facet_grid(workshop ~ gender)

424 16 Graphics with ggplot2

16.10.10 Scatter Plot Matrix

When you have many variables to plot, a scatter plot matrix is helpful
(Fig. 16.33). You lose a lot of detail compared to a set of full-sized plots,
but if your data set is not too large, you usually get the gist of the relation-
ships.

The ggplot2 package has a separate plotmatrix function for this type of
plot. Simply entering the following will plot variables 3 through 8 against one
another (not shown):

plotmatrix(mydata100[3:8])

You can embellish the plots with many of the options we have covered
earlier in this chapter. Shown below is an example of a scatter plot matrix

Fig. 16.33. A scatter plot matrix with lowess curve fits on the off-diagonal plots,
and density plots on the diagonals.

16.11 Box Plots 425

(Fig. 16.33) with smoothed lowess fits for the entire data set (i.e., not by
group). The density plots on the diagonals appear by default.

plotmatrix(mydata100[3:8]) +
geom_smooth()

The lowess fit generated some warnings but that is not a problem. It said,
“There were 50 or more warnings (use warnings() to see the first 50).”

The next example gets fancier by assigning a different symbol shape and
linear fits per group (plot not shown.)

plotmatrix(mydata100[3:8],
aes(shape=gender)) +
geom_smooth(method=lm)

16.11 Box Plots

We discussed what box plots are in the Chapter “Traditional Graphics,” Sec-
tion 15.11. We can recreate all those examples using the ggplot2 package,
except for the “notches” to indicate possible group differences, shown in the
upper right of Fig. 15.45

The simplest type of box plot is for a single variable (Fig. 16.34). The
qplot function uses the simple form of factor("") to act as its x -axis value.

po
st

te
st

60

70

80

90

Fig. 16.34. A box plot of posttest.

426 16 Graphics with ggplot2

The y value is the variable to plot: in this case, posttest. The geom of boxplot
specifies the main display type. The xlab="" argument blanks out the label
on the x -axis, which would have been a meaningless “factor("")”.

The equivalent ggplot approach is almost identical with its ever-present
aes arguments for x and y and the geom_boxplot function to draw the box.
The scale_x_discrete function simply blanks out the x -axis label.

The qplot approach to Fig. 16.34 is

qplot(factor(""), posttest,
geom="boxplot", xlab="")

The ggplot approach to Fig. 16.34 is

ggplot(mydata100,
aes(factor(""), posttest)) +
geom_boxplot() +
scale_x_discrete("")

Adding a grouping variable like workshop makes box plots much more
informative (Fig. 16.35, ignore the overlaid strip plot points for now). These
are the same function calls as above but with the x variable specified as
workshop. We will skip showing this one in favor of the next.

workshop

po
st

te
st

60

70

80

90

R SAS SPSS Stata

Fig. 16.35. A box plot comparing workshop groups on posttest, with jittered points
on top.

16.11 Box Plots 427

The qplot approach to box plots (figure not shown) is

qplot(workshop, posttest, geom="boxplot")

The ggplot approach to box plots (figure not shown) is

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot()

Now we will do the same plot but with an added jittered strip plot on top
of it (Fig. 16.35). This way we get the box plot information about the median
and quartiles plus we get to see any interesting structure in the points that
would otherwise have been lost. As you can see, the qplot now has jitter added
to its geom argument, and ggplot has an additional geom_jitter function.
Unfortunately, the amount of jitter that both functions provide by default is
optimized for a much larger data set. So these next two sets of code do the
plot shown in Fig. 16.35, but with much more jitter.

The qplot approach to Fig. 16.35 with more jitter added is

qplot(workshop, posttest,
geom=c("boxplot","jitter"))

The ggplot approach to Fig. 16.35 with more jitter added is

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot() + geom_jitter()

The following is the exact code that created Fig. 16.35. The qplot function
does not have enough control to request both the box plot and jitter while
adjusting the amount of jitter.

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot() +
geom_jitter(position=position_jitter(width=.1))

To add another grouping variable, you only need to only add the fill
argument to either qplot or ggplot. Compare the resulting Fig. 16.36 to
the result we obtained from traditional graphics, in the lower right panel of
Fig. 15.45. The ggplot2 version is superior in many ways. The genders are
easier to compare for a given workshop, because they are now grouped side-
by-side. The shading makes it easy to focus on one gender at a time to see
how they changed across the levels of workshop. The labels are easier to read
and did not require the custom sizing that we did earlier to make room for
the labels. The ggplot2 package usually does a better job with complex plots
and makes quick work of them too.

428 16 Graphics with ggplot2

workshop

po
st

te
st

60

70

80

90

R SAS SPSS Stata

gender

Female

Male

Fig. 16.36. A box plot comparing workshop and gender groups on posttest.

The qplot approach to Fig. 16.36 is

qplot(workshop, posttest,
geom="boxplot", fill=gender) +
scale_fill_grey(start=0, end=1)

The ggplot approach to Fig. 16.36 is

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot(aes(fill=gender), colour="black") +
scale_fill_grey(start=0, end=1)

16.12 Error Bar Plots

Plotting means and 95% confidence intervals, as in Fig. 16.37, is a task that
stretches what qplot was designed to do. As you can see from the two ex-
amples below, there is very little typing saved by using qplot over ggplot.
In both cases, we are adding a jittered strip plot of points, as we did earlier
in the section on strip plots (Section 16.9). Notice that we had to use the
as.numeric function for our x variable: workshop. Since workshop is a factor,
the software would not connect the means across the levels of x. Workshop

16.12 Error Bar Plots 429

as.numeric(workshop)

po
st

te
st

60

70

80

90

1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4.0

Fig. 16.37. An error bar plot with lines running through the means, with default
axis labels.

is not a continuous variable, so that makes sense! Still, connecting the means
with a line is a common approach, one that facilitates the study of higher
level-interactions.

The key function for this plot is stat_summary, which we use twice. First,
we use the argument fun.y="mean" to calculate the group means. We also
use the geom="smooth" argument to connect them with a line. Next, we use
fun.data="mean_cl_normal" to calculate confidence l imits for the means
based on a normal distribution and display them with the errorbar geom.
You can try various values for the width argument until you are satisfied with
the error bar widths.

qplot(as.numeric(workshop), posttest) +
geom_jitter(position=position_jitter(width=.1)) +
stat_summary(fun.y="mean",

geom="smooth", se=FALSE) +
stat_summary(fun.data="mean_cl_normal",

geom="errorbar", width=.2)

ggplot(mydata100,
aes(as.numeric(workshop), posttest)) +
geom_jitter(size=1,

position=position_jitter(width=.1)) +

430 16 Graphics with ggplot2

stat_summary(fun.y="mean",
geom="smooth", se=FALSE) +

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

Since we have a fairly small data set, replacing the geom_jitter function
with just geom_point(size=1) creates a nice plot too (not shown).

16.13 Logarithmic Axes

If your data has a very wide range of values, working in a logarithmic scale is
often helpful. In ggplot2 you can approach this in three different ways. First,
you can take the logarithm of the data before plotting:

qplot(log(pretest), log(posttest))

Another approach is to use evenly placed tick-marks on the plot but have the
axis values use logarithmic values such as 101, 102, and so on. This is what the
scale_x_log10 function does (similarly for the y-axis, of course). There are
similar functions for natural logarithms, scale_x_log and base 2 logarithms,
scale_x_log2:

qplot(pretest, posttest, data=mydata100) +
scale_x_log10() + scale_y_log10()

Finally, you can have the tick marks spaced unevenly and use values on
your original scale. The coord_trans function does that. Its arguments for
the various bases of logarithms are log10, log, and log2.

qplot(pretest, posttest, data=mydata100) +
coord_trans("log10", "log10")

With our data set, the range of values is so small that this last plot will not
noticeably change the axes. Therefore, we do not show it.

16.14 Aspect Ratio

Changing the aspect ratio of a graph can be far more important than you
might first think. Research has shown that when most of the lines or scatter
on a plot are angled at 45°, people make more accurate comparisons to those
parts that are not [6].

Unless you specify an aspect ratio for your graph, qplot and ggplot will
match the dimensions of your output window and allow you to change those
dimensions using your mouse, as you would for any other window.

If you are routing your output to a file however, it is helpful to be able to set
it using code. You set the aspect ratio using the coord_equal function. If you
leave it empty, as in coord_equal(), it will make the x - and y-axes of equal
lengths. If you specify this while working interactively, you can stillreshape

16.15 Multiple Plots on a Page 431

your window, but the graph will remain square. Specifying a ratio parameter
follows the form “height/width.” For a mnemonic, think of how R specifies
[rows,columns]. The following example would result in a graph that is four
times wider than it is high (not shown):

qplot(pretest, posttest) + coord_equal(ratio=1/4)

16.15 Multiple Plots on a Page

In the previous chapter on traditional graphics, we discussed how to put mul-
tiple plots on a page. However, ggplot2 uses the grid graphics system, so
that method does not work. We saw the multiframe plot in Fig. 16.38 in the
section on bar plots. Let us now look at how it was constructed. We will skip
the bar plot details here and focus on how we combined them.

position=stack

gender

co
un

t

0

10

20

30

40

50

Female Male

workshop

R

SAS

SPSS

Stata

position=fill

gender

co
un

t

0.0

0.2

0.4

0.6

0.8

1.0

Female Male

workshop

R

SAS

SPSS

Stata

position=dodge

gender

co
un

t

0

5

10

15

Female Male

workshop

R

SAS

SPSS

Stata

Fig. 16.38. A multiframe plot showing the impact of the various position settings.

432 16 Graphics with ggplot2

We first clear the page with the grid.newpage function. This is an impor-
tant step as otherwise plots printed using the following methods will appear
on top of others.

grid.newpage()

Next, we use the pushViewport function to define the various frames called
viewports in the grid graphics system. The grid.layout argument uses R’s
common format of (rows, columns). The following example sets up a two by
two grid for us to use:

pushViewport(viewport(layout=grid.layout(2,2)))

In traditional graphics, you would now just do the graphs in order and
they would find their place. However, in the grid system, we must save the
plot to an object and then use the print function to print it into the viewport
we desire. The object name of “p” is commonly used as an object name for
the plot. Since there are many ways to add to this object, it is helpful to keep
it short. To emphasize that this is something we get to name, we will use
“myPlot.”

The print function has a vp argument that lets you specify the v iewport’s
position in row(s) and column(s). In the following example, we will print the
graph to row 1 and column 1:

myPlot <- ggplot(mydata100,
aes(gender, fill=workshop)) +

geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=stack ")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1))

The next plot prints to row 1 and column 2.

myPlot <- ggplot(mydata100,
aes(gender, fill=workshop)) +

geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=fill")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2))

The third and final plot is much wider than the first two. So we will print
it to row 2 in both columns 1 and 2. Since we did not set the aspect ratio
explicitly, the graph will resize to fit the double-wide viewport.

16.17 An Example Specifying All Defaults 433

myPlot <- ggplot(mydata100,
aes(gender, fill=workshop)) +

geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=dodge")

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1:2))

The next time you print a plot without specifying a viewport, the screen
resets back to its previous full-window display. The code for the other multi-
frame plots is in the example program in Section 16.19.

16.16 Saving ggplot2 Graphs to a File

In Section 14.6, “Graphics Devices,” we discussed various ways to save plots
in files. Those methods work with the ggplot2 package, and in fact they are
the only way to save a multiframe plot to a file.

However, the ggplot2 package has its own function that is optimized for
saving single plots to a file. To save the last graph you created, with either
qplot or ggplot, use the ggsave function. It will choose the proper graphics
device from the file extension.

For example, the following function call will save the last graph created in
an encapsulated postscript file:

> ggsave("mygraph.eps")

Saving 4.00" x 3.50" image

It will choose the width and height from your computer monitor and will
report back those dimensions. If you did not get it right, you can change those
dimensions and rerun the function. Alternately, you can specify the width and
height arguments in inches or, for bitmapped formats like Portable Network
Graphics (png), in dots-per-inch. See help(ggsave) for additional options.

16.17 An Example Specifying All Defaults

Now that you have seen some examples of both qplot and ggplot, let us take
a brief look at the full power of ggplot by revisiting the scatter plot with a
regression line (Fig. 16.39). We will first review both sets of code, exactly as
described in Section 16.10.4.

First, done with qplot, it is quite easy and it feels similar to the traditional
graphics plot function:

434 16 Graphics with ggplot2

Fig. 16.39. This same scatter plot results from several types of programs shown in
the text.

qplot(pretest, posttest,
geom=c("point","smooth"), method="lm")

Next, let us do it using ggplot with as many default settings as possible. It is
not too much more typing, and it brings us into the grammar of graphics world.
We see the new concepts of aesthetic mapping of variables and geometric
objects, or geoms:

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_smooth(method="lm")

Finally, here it is again in ggplot but with no default settings. We see that
the plot is actually two layers: one with points and another with the smooth
line. Each layer can use different data frames, variables, geometric objects,
statistics, and so on. If you need graphics flexibility, ggplot2 is the package
for you!

ggplot() +
layer(

data=mydata100,
mapping=aes(pretest, posttest),
geom="point",

16.18 Summary of Graphic Elements and Parameters 435

stat="identity"
) +
layer(

data=mydata100,
mapping=aes(pretest, posttest),
geom="smooth",
stat="smooth",
method="lm"

) +
coord_cartesian()

16.18 Summary of Graphic Elements and Parameters

We have seen many ways to modify plots in the ggplot2 package. The ggopt
function is another way. You can set the parameters of all future graphs in the
current session with the following function call. See help(ggopt) function for
many more parameters.

ggopt(
background.fill = "black",
background.color ="white",
axis.colour = "black" #default axis fonts are grey.
)

The opts function is useful for modifying settings for a single plot. For
example, when colors, shapes, or labels make a legend superfluous, you can
suppress it with

+ opts(legend.position="none")

See help(opts) for more examples.
The plots created with both qplot and ggplot make copious use of color.

Since our examples did not really need color we supressed it with

...+ scale_fill_grey(start=0,end=1)

An alternate way of doing this the theme_set function. To use levels of grey,
use:

theme_set(theme_grey())

To limit colors to black and white, use:

theme_set(theme_bw())

To return to the default colors, use:

theme_set()

Enter help(theme_set) for details.

436 16 Graphics with ggplot2

16.19 Example Programs for ggplot2

Stata does not offer the grammar of graphics model. See previous the chapter
for Stata graphics examples.

This program brings together the examples discussed in this chapter and
a few variations that were not.

Filename: GraphicsGG.R

setwd("/myRfolder")
load(file="mydata100.Rdata")
detach(mydata100) #In case I’m running repeatedly.

Get rid of missing values for facets
mydata100 <- na.omit(mydata100)
attach(mydata100)
library(ggplot2)

---Barplots---

Barplot - Vertical

qplot(workshop)

ggplot(mydata100, aes(workshop)) +
geom_bar()

Can also follow this form:
ggplot(mydata100) +

aes(x=workshop) +
geom_bar()

Barplot - Horizontal

qplot(workshop) + coord_flip()

ggplot(mydata100, aes(workshop)) +
geom_bar() + coord_flip()

Barplot - Single Bar Stacked

qplot(factor(""), fill=workshop,
geom="bar", xlab="") +
scale_fill_grey(start=0, end=1)

16.19 Example Programs for ggplot2 437

ggplot(mydata100,
aes(factor(""), fill=workshop)) +
geom_bar() +
scale_x_discrete("") +
scale_fill_grey(start=0, end=1)

Pie charts, same as stacked bar
but polar coordinates

qplot(factor(""), fill=workshop,
geom="bar", xlab="") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

ggplot(mydata100,
aes(factor(""), fill=workshop)) +
geom_bar(width=1) +
scale_x_discrete("") +
coord_polar(theta="y") +
scale_fill_grey(start=0, end=1)

Barplots - Grouped
position=stack, fill, dodge,
for qplot, then ggplot

qplot(gender, geom="bar",
fill=workshop, position="stack") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom="bar",
fill=workshop, position="fill") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom="bar",
fill=workshop, position="dodge") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill=workshop)) +
geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill=workshop)) +
geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1)

438 16 Graphics with ggplot2

ggplot(mydata100, aes(gender, fill=workshop)) +
geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1)

Barplots - Faceted

qplot(workshop, facets=gender~.)

ggplot(mydata100, aes(workshop)) +
geom_bar() + facet_grid(gender~.)

Barplots - Presummarized data

qplot(factor(c(1,2)), c(40, 60), geom="bar",
xlab="myGroup", ylab="myMeasure")

myTemp <- data.frame(
myGroup=factor(c(1,2)),
myMeasure=c(40, 60)

)
myTemp

ggplot(data=myTemp, aes(myGroup, myMeasure)) +
geom_bar()

---Dotcharts---

qplot(workshop, geom="point", size=I(4),
stat="bin", facets=gender~.) +

coord_flip()

ggplot(mydata100) +
aes(x=workshop, y=..count..) +
geom_point(stat="bin", size=4) + coord_flip()+
facet_grid(gender~.)

---Adding Titles and Labels---

qplot(workshop, geom="bar",
main="Workshop Attendance",
xlab="Statistics Package \nWorkshops")

16.19 Example Programs for ggplot2 439

ggplot(mydata100) +
aes(workshop, ..count..) +
geom_bar() +
opts(title="Workshop Attendance") +
scale_x_discrete("Statistics Package \nWorkshops")

Example not in book: labels of continuous scales.
ggplot(mydata100) +

aes(pretest,posttest) +
geom_point() +
scale_x_continuous("Test Score Before Training") +
scale_y_continuous("Test Score After Training") +
opts(title="The Relationship is Linear")

---Histograms and Density Plots---

Simle Histogram
qplot(posttest)

ggplot(mydata100) +
aes(posttest) +
geom_histogram()

Histogram with more bars.
qplot(posttest, geom="histogram", binwidth=0.5)

ggplot(mydata100) +
aes(posttest) +
geom_histogram(binwidth=0.5)

Density plot
qplot(posttest, geom="density")

ggplot(mydata100) +
aes(posttest) +
geom_density()

Histogram with Density

qplot(data=mydata100,posttest, ..density..,
geom=c("histogram","density"))

ggplot(mydata100, aes(posttest, ..density..)) +
geom_histogram() + geom_density()

440 16 Graphics with ggplot2

Histogram - Separate plots by group

qplot(posttest, geom="histogram", facets=gender~.)
qplot(posttest, facets=gender~.)

ggplot(mydata100, aes(posttest)) +
geom_histogram() + facet_grid(gender~.)

Histograms - Overlaid

qplot(posttest, fill=gender) +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(posttest, fill=gender)) +
geom_bar() +
scale_fill_grey(start = 0, end = 1)

---QQ plots---

qplot(sample=posttest, stat="qq")

ggplot(mydata100, aes(sample=posttest)) +
stat_qq()

---Strip plots---

With too much jitter for our small data set:

qplot(factor(""), posttest, geom="jitter", xlab="")

ggplot(mydata100, aes(factor(""), posttest)) +
geom_jitter() +
scale_x_discrete("")

Strip plot by group.
qplot(workshop, posttest, geom="jitter")

ggplot(mydata100, aes(workshop, posttest)) +
geom_jitter()

Again, with limited jitter that fits our data better.

16.19 Example Programs for ggplot2 441

qplot(factor(""), posttest, xlab="",
position=position_jitter(width=.02))

ggplot(mydata100, aes(factor(""), posttest)) +
geom_jitter(position=position_jitter(width=.02)) +
scale_x_discrete("")

Strip plot by group.
Note that I am increasing the jitter width from
.02 to .08 because there is only one fourth the
room for each graph.

qplot(workshop, posttest, data = mydata100, xlab="",
position=position_jitter(width=.08))

ggplot(mydata100, aes(workshop, posttest)) +
geom_jitter(position=position_jitter(width=.08)) +
scale_x_discrete("")

---Scatter Plots---

Simple scatter plot

qplot(pretest, posttest)
qplot(pretest, posttest, geom="point")

ggplot(mydata100, aes(pretest, posttest)) +
geom_point()

Scatter plot connecting points sorted on x.
qplot(pretest, posttest, geom="line")

ggplot(mydata100, aes(pretest, posttest)) +
geom_line()

Scatter plot connecting points in data set order.

qplot(pretest, posttest, geom="path")

ggplot(mydata100, aes(pretest, posttest)) +
geom_path()

442 16 Graphics with ggplot2

Scatter plot with skinny histogram-like bars to X axis.

qplot(pretest,posttest,
xend=pretest, yend=50,
geom="segment")

ggplot(mydata100, aes(pretest, posttest)) +
geom_segment(aes(pretest, posttest,

xend=pretest, yend=50))

Scatter plot with jitter
qplot(q1, q4) #First without

Now with jitter.
qplot(q1, q4, position=

position_jitter(width=.3,height=.3))

ggplot(mydata100, aes(x=q1, y=q2)) +
geom_point(position=

position_jitter(width=.3,height=.3))

Scatter plot on large data sets

pretest2 <-
round(rnorm(n=5000, mean=80, sd=5))

posttest2 <-
round(pretest2 + rnorm(n=5000, mean=3, sd=3))

pretest2[pretest2>100] <- 100
posttest2[posttest2>100] <- 100
temp=data.frame(pretest2,posttest2)

Small, jittered, transparent points.

qplot(pretest2, posttest2, data = temp,
size = I(1), colour = I(alpha("black", 0.15)),
geom = "jitter")

Or in the next version of ggplot2:

qplot(pretest2, posttest2, data = temp,
size = I(1), alpha = I(0.15),
geom = "jitter")

ggplot(temp, aes(pretest2, posttest2),

16.19 Example Programs for ggplot2 443

size=2, position = position_jitter(x=2,y=2)) +
geom_jitter(colour=alpha("black",0.15))

ggplot(temp, aes(pretest2, posttest2)+
geom_point(colour=alpha("black",0.15),

position=position_jitter(width=.3,height=.3)))

Hexbin plots

qplot(pretest2, posttest2, geom="hex", bins=30)

ggplot(temp, aes(pretest2, posttest2)) +
geom_hex(bins=30)

This works too:

ggplot(temp, aes(pretest2, posttest2)) +
stat_binhex(bins = 30)

Using density contours and small points.

qplot(pretest2, posttest2, data=temp,
geom=c("point","density2d"), size = I(1))

geom_density_2d was renamed geom_density2d

ggplot(temp, aes(x=pretest2, y=posttest2)) +
geom_point(size=1) + geom_density2d()

rm(pretest2,posttest2,temp)

Scatter plot with regression line,
95% confidence intervals.

qplot(pretest, posttest,
geom=c("point","smooth"), method=lm)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() + geom_smooth(method=lm)

Scatter plot with regression line
but NO confidence intervals.

444 16 Graphics with ggplot2

qplot(pretest, posttest,
geom=c("point","smooth"),
method=lm, se=FALSE)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_smooth(method=lm, se=FALSE)

Scatter with x=y line

qplot(pretest, posttest,
geom=c("point","abline"),
intercept=0, slope=1)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point()+
geom_abline(intercept=0, slope=1)

Scatter with vertical or horizontal lines

When the book was written, qplot required the
values to be equal. Now it does not using
xintercept and yintercept.

qplot(pretest, posttest,
geom=c("point", "vline", "hline"),
xintercept=75, yintercept=75)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline(xintercept=75) +
geom_hline(yintercept=75)

Scatter plot with a set of vertical lines

qplot(pretest, posttest, type="point") +
geom_vline(xintercept=seq(from=70,to=80,by=2))

ggplot(mydata100, aes(pretest, posttest)) +
geom_point() +
geom_vline(xintercept=seq(from=70,to=80,by=2))

Scatter plotting text labels

16.19 Example Programs for ggplot2 445

qplot(pretest, posttest, geom="text",
label=rownames(mydata100))

ggplot(mydata100,
aes(pretest, posttest,
label=rownames(mydata100))) +
geom_text()

Scatter plot with different
point shapes for each group.

qplot(pretest, posttest, shape=gender)

ggplot(mydata100, aes(pretest, posttest)) +
geom_point(aes(shape=gender))

Scatter plot with regressions fit for each group.

qplot(pretest, posttest,
geom=c("smooth","point"),
method="lm", shape=gender)

ggplot(mydata100,
aes(pretest, posttest, shape=gender)) +
geom_smooth(method="lm") + geom_point()

Scatter plot faceted for groups

qplot(pretest, posttest,
geom=c("smooth", "point"),
method="lm", shape=gender,
facets=workshop~gender)

ggplot(mydata100,
aes(pretest, posttest, shape=gender)) +
geom_smooth(method="lm") + geom_point() +
facet_grid(workshop~gender)

Scatter plot matrix

plotmatrix(mydata100[3:8])

Small points & lowess fit.
plotmatrix(mydata100[3:8], aes(size=1)) +

446 16 Graphics with ggplot2

geom_smooth() +
opts(legend.position="none")

Shape and gender fits.
plotmatrix(mydata100[3:8],

aes(shape=gender)) +
geom_smooth(method=lm)

---Box Plots---

box plot of one variable

qplot(factor(""), posttest,
geom="boxplot", xlab="")

ggplot(mydata100,
aes(factor(""), posttest)) +
geom_boxplot() +
scale_x_discrete("")

Box plot by group

qplot(workshop, posttest, geom="boxplot")

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot()

Box plot by group with jitter

First, with default jitter,
that is too much for our small data set

qplot(workshop, posttest,
geom=c("boxplot","jitter"))

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot() + geom_jitter()

Again, with a smaller amount of jitter.

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot() +

16.19 Example Programs for ggplot2 447

geom_jitter(position=
position_jitter(width=.1))

Box plot for two-way interaction.

qplot(workshop, posttest,
geom="boxplot", fill=gender) +
scale_fill_grey(start = 0, end = 1)

ggplot(mydata100,
aes(workshop, posttest)) +
geom_boxplot(aes(fill=gender),

colour="grey50") +
scale_fill_grey(start = 0, end = 1)

Error bar plot

This is the code for qplot.

qplot(as.numeric(workshop), posttest) +
geom_jitter(position=

position_jitter(width=.1)) +
stat_summary(fun.y="mean",

geom="smooth", se=FALSE) +
stat_summary(fun.data="mean_cl_normal",

geom="errorbar", width=.2)

This is the code for ggplot.

ggplot(mydata100,
aes(as.numeric(workshop), posttest)) +
geom_jitter(size=1,

position=position_jitter(width=.1)) +
stat_summary(fun.y="mean",

geom="smooth", se=FALSE) +
stat_summary(fun.data="mean_cl_normal",

geom="errorbar", width=.2)

This does away with the jitter and looks nice.

ggplot(mydata100,
aes(as.numeric(workshop), posttest)) +
geom_point(size=1) +
stat_summary(fun.y="mean",

geom="smooth", se=FALSE) +

448 16 Graphics with ggplot2

stat_summary(fun.data="mean_cl_normal",
geom="errorbar", width=.2)

This uses large points for the means.

ggplot(mydata100,
aes(workshop, posttest)) +
geom_point(size=1) +
stat_summary(fun.y="mean",

geom="point", size=3) +
stat_summary(fun.data="mean_cl_normal",

geom="errorbar", width=.2)

---Logarithmic Axes---

Change the variables

qplot(log(pretest), log(posttest))

ggplot(mydata100,
aes(log(pretest), log(posttest))) +
geom_point()

Change axis labels

qplot(pretest, posttest, log="xy")

ggplot(mydata100,
aes(x=pretest, y=posttest)) +

geom_point() +
scale_x_log10() +
scale_y_log10()

Change axis scaling

Tickmarks remain uniformly spaced,
because scale of our data is too limited.

qplot(pretest, posttest, data=mydata100) +
coord_trans(x="log10", y="log10")

ggplot(mydata100,
aes(x=pretest, y=posttest)) +

geom_point() +
coord_trans(x="log10", y="log10")

16.19 Example Programs for ggplot2 449

---Aspect Ratio---

This forces x and y to be equal.
qplot(pretest, posttest) + coord_equal()

This sets aspect ratio to height/width.
qplot(pretest, posttest) +

coord_equal(ratio=1/4)

#---Multiframe Plots: Bar Chart Example---

Clears the page, otherwise new plots
will appear on top of old.

grid.newpage()

Sets up a 2 by 2 grid to plot into.
pushViewport(

viewport(layout=grid.layout(2,2))
)

Bar Chart dodged in row 1, column 1.
myPlot <- ggplot(mydata100,

aes(gender, fill=workshop)) +
geom_bar(position="stack") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=stack ")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=1))

Bar Chart stacked, in row 1, column 2.
myPlot <- ggplot(mydata100,

aes(gender, fill=workshop)) +
geom_bar(position="fill") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=fill")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2))

Bar Chart dodged, given frames,
in row 2, columns 1 and 2.
myPlot <- ggplot(mydata100,

450 16 Graphics with ggplot2

aes(gender, fill=workshop)) +
geom_bar(position="dodge") +
scale_fill_grey(start = 0, end = 1) +
opts(title="position=dodge")

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1:2))

dev.off()

#---Multiframe Scatter Plots---

Clears the page, otherwise new plots
will appear on top of old.

grid.newpage()

Sets up a 2 by 2 grid to plot into.
pushViewport(

viewport(layout=grid.layout(2,2))
)

Scatter plot of points
myPlot <- qplot(pretest, posttest,

main="geom=point")
print(myPlot, vp=viewport(

layout.pos.row=1,
layout.pos.col=1))

myPlot <- qplot(pretest, posttest,
geom="line", main="geom=line")

print(myPlot, vp=viewport(
layout.pos.row=1,
layout.pos.col=2))

myPlot <- qplot(pretest, posttest,
geom="path", main="geom=path")

print(myPlot, vp=viewport(
layout.pos.row=2,
layout.pos.col=1))

myPlot <- ggplot(mydata100,
aes(pretest, posttest)) +
geom_segment(aes(x=pretest, y=posttest,

xend=pretest, yend=58)) +
opts(title="geom_segment")

16.19 Example Programs for ggplot2 451

print(myPlot,
vp=viewport(

layout.pos.row=2,
layout.pos.col=2)

)

---Multiframe Scatter Plot for Jitter---

grid.newpage()

pushViewport(
viewport(layout=grid.layout(1,2))

)

Scatter plot without
myPlot <- qplot(q1, q4,

main="Likert Scale Without Jitter")
print(myPlot, vp=viewport(

layout.pos.row=1,
layout.pos.col=1))

myPlot <- qplot(q1, q4,
position=position_jitter(

width=.3,height=.3),
main="Likert scale with jitter")

print(myPlot,
vp=viewport(layout.pos.row=1,

layout.pos.col=2)
)

---Detailed Comparison of qplot and ggplot---

qplot(pretest, posttest,
geom=c("point","smooth"), method="lm")

Or ggplot with default settings:

ggplot(mydata100, aes(x=pretest, y=posttest)) +
geom_point() +
geom_smooth(method="lm")

452 16 Graphics with ggplot2

Or with all of the defaults displayed:
ggplot() +
layer(

data=mydata100,
mapping=aes(x=pretest, y=posttest),
geom="point",
stat="identity"

) +
layer(

data=mydata100,
mapping=aes(x=pretest, y=posttest),
geom="smooth",
stat="smooth",
method="lm"

) +
coord_cartesian()

	16 Graphics with ggplot2
	16.1 Introduction
	16.1.1 Overview qplot and ggplot
	16.1.2 Missing Values
	16.1.3 Typographic Conventions

	16.2 Bar Plots
	16.2.1 Pie Charts
	16.2.2 Bar Charts for Groups

	16.3 Plots by Group or Level
	16.4 Presummarized Data
	16.5 Dot Charts
	16.6 Adding Titles and Labels
	16.7 Histograms and Density Plots
	16.7.1 Histograms
	16.7.2 Density Plots
	16.7.3 Histograms with Density Overlaid
	16.7.4 Histograms for Groups, Stacked
	16.7.5 Histograms for Groups, Overlaid

	16.8 Normal QQ Plots
	16.9 Strip Plots
	16.10 Scatter Plots and Line Plots
	16.10.1 Scatter Plots with Jitter
	16.10.2 Scatter Plots for Large Data Sets
	16.10.3 Hexbin Plots
	16.10.4 Scatter Plots with Fit Lines
	16.10.5 Scatter Plots with Reference Lines
	16.10.6 Scatter Plots with Labels Instead of Points
	16.10.7 Changing Plot Symbols
	16.10.8 Scatter Plot with Linear Fits by Group
	16.10.9 Scatter Plots Faceted for Groups
	16.10.10 Scatter Plot Matrix

	16.11 Box Plots
	16.12 Error Bar Plots
	16.13 Logarithmic Axes
	16.14 Aspect Ratio
	16.15 Multiple Plots on a Page
	16.16 Saving ggplot2 Graphs to a File
	16.17 An Example Specifying All Defaults
	16.18 Summary of Graphic Elements and Parameters
	16.19 Example Programs for ggplot2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

