
13

Managing Your Files and Workspace

Stata and R both have commands that replicate many of your computer’s
operating system functions such as listing names of objects, deleting them, set-
ting search paths, and so on. Learning how to use these commands is especially
important because, like Stata, R stores its data in your computer’s limited ran-
dom access memory. You need to make the most of your computer’s memory
when handling large data sets or when a command is highly iterative.

13.1 Loading and Listing Objects

You can see what objects are in your workspace with the ls function. To list
all objects such as data frames, vectors, and functions, use

ls()

The objects function does the same thing and its name is more descrip-
tive, but ls is more widely used since it is the same command that UNIX,
Linux, and MacOS X users can use to list the files in a particular directory
or folder (without the parentheses).

When you first start R, using the ls function will tell you there is nothing
in your workspace. How it does this is quite odd by Stata’s standards. It tells
you that the list of objects in memory is a character vector with zero values.

> ls()

character(0)

The file myall.RData contains all of the objects we created in Chapter 5,
“Programming Language Basics.” After loading that into our workspace using
the load function, ls will show us the objects that are available.

> load("myall.RData")

R.A. Muenchen, J.M. Hilbe, R for Stata Users, Statistics 291
and Computing, DOI 10.1007/978-1-4419-1318-0 13,
© Springer Science+Business Media, LLC 2010



292 13 Managing Your Files and Workspace

> ls()

[1] "gender" "mydata" "mylist" "mymatrix" "q1"
[6] "q2" "q3" "q4" "workshop"

You can use the pattern argument to search for any regular expression. There-
fore, to get a list of all objects that begin with the string “my,” you can use
the following:

> ls(pattern="my")

[1] "mydata" "mylist" "mymatrix"

The ls function does not look inside data frames to see what they contain,
and it does not even tell you when an object is a data frame. You can use
many of the functions we have already covered to determine what an object
is and what it contains.

To review, typing its name or using the print function will show you the
whole object or at least something about it. What print shows you depends
on the class of the object. The head and tail functions will show you the top
or bottom few lines of vectors, matrices, tables, data frames, or functions.

The class function will tell you if an object is a data frame, list, or some
other object. The names function will show you object names within objects
such as data frames, lists, vectors, and matrices. The attributes function
will display all of the attributes that are stored in an object such as variable
names, the object’s class, and any labels that it may contain.

> attributes(mydata)

$names

[1] "id" "workshop" "gender" "q1" "q2" "q3" "q4"

$class

[1] "data.frame"

$row.names

[1] 1 2 3 4 5 6 7 8

The str function displays the structure of any R object in a compact form.

> str(mydata)

’data.frame’: 8 obs. of 6 variables:



13.1 Loading and Listing Objects 293

$ workshop: Factor w/ 4 levels "R","Stata","SPSS",..:
1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : num 1 2 2 3 4 5 5 4

$ q2 : num 1 1 2 1 5 4 3 5

$ q3 : num 5 4 4 NA 2 5 4 5

$ q4 : num 1 1 3 3 4 5 4 5

The str function works on functions too. The following is the structure it
shows for the lm function.

> str( lm )

function (formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE,

qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

The ls.str function applies the str function to every object in your
workspace. It is essentially a combination of the ls function and the str
function. The following is the structure of all of the objects we had in our
workspace as we wrote this paragraph.

> ls.str()

myCounts : ’table’ int [1:2, 1:2] 2 2 1 2

myCountsDF : ’data.frame’: 4 obs. of 3 variables:

$ gender : Factor w/ 2 levels "f","m": 1 2 1 2

$ workshop: Factor w/ 2 levels "R","Stata": 1 1 2 2

$ Freq : int 2 2 1 2

mydata : ’data.frame’: 8 obs. of 6 variables:

$ workshop: int 1 2 1 2 1 2 1 2



294 13 Managing Your Files and Workspace

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : int 1 2 2 3 4 5 5 4

$ q2 : int 1 1 2 1 5 4 3 5

$ q3 : int 5 4 4 NA 2 5 4 5

$ q4 : int 1 1 3 3 4 5 4 5

Frank Harrell’s Hmisc package has a contents function that is modeled
after the SAS Contents procedure. It also lists names and other attributes as
shown below. However, it works only with data frames.

> library("Hmisc")

Attaching package: ’Hmisc’
...

> contents(mydata)

Data frame:mydata 8 observations and 7 variables
Maximum # NAs:1

Levels Storage NAs
id integer 0
workshop integer 0
gender 2 integer 1
q1 integer 0
q2 integer 0
q3 integer 1
q4 integer 0

+--------+------+
|Variable|Levels|
+--------+------+
| gender | f,m |
+--------+------+

13.2 Understanding Your Search Path

Once you have data in your workspace, where exactly is it? It is in an
environment called .GlobalEnv. The search function will show us where that
resides in R’s search path. Since the search path is affected by any packages



13.2 Understanding Your Search Path 295

or data files you load, we will start R with a clean workspace and load our
practice data frame, mydata.

> setwd("/myRfolder")

> load("mydata.RData")

> ls()

[1] "mydata"

Now let us examine R’s search path.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Since our workspace, .GlobalEnv, is in position 1, R will search it first.
By supplying no arguments to the ls function, we were asking for a listing of
objects in the first position of the search path. Let us see what happens if we
apply ls to different levels. We can either use the path position value, 1, 2,
3,. . . or their names.

> ls(1) #This uses position number.

[1] "mydata"

> ls(".GlobalEnv") #This uses name.

[1] "mydata"

The package:stats at level 2 contains some of R’s built-in statistical func-
tions. There are a lot of them, so let us use the head function to show us just
the top few results.

> head( ls(2) )

[1] "acf" "acf2AR" "add.scope" "add1"
[5] "addmargins" "aggregate"

> head( ls("package:stats") ) #Same result.

[1] "acf" "acf2AR" "add.scope" "add1"
[5] "addmargins" "aggregate"



296 13 Managing Your Files and Workspace

13.3 Attaching Data Frames

Understanding the search path is essential to understanding what the attach
function really does. We will attach mydata and see what happens.

> attach(mydata)

> search()

[1] ".GlobalEnv" "mydata"
[3] "package:stats" "package:graphics"
[5] "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods"
[9] "Autoloads" "package:base"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"
[6] "q4" "workshop"

You can see that attach has made virtual copies of the variables stored in
mydata and placed them in search position 2. When we refer to just “gender”
rather than “mydata$gender,” R looks for it in position 1 first. It does find
anything with just that simple name even though mydata$gender is in that
position. R then goes on to position 2 and finds it. This is the process that
makes it so easy to refer to variables by their simple component names. It
also makes them very confusing to work with if you create new variables! Let
us say we want to take the square root of q4:

> q4 <- sqrt(q4)

> q4

[1] 1.000000 1.000000 1.732051 1.732051 2.000000 2.236068
[7] 2.000000 2.236068

This looks like it worked fine. However, let us list the contents of search
positions 1 and 2 to see what really happened:

> ls(1)

[1] "mydata" "q4"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"
[6] "q4" "workshop"



13.3 Attaching Data Frames 297

R created the new version of q4 as a separate vector in our main workspace.
The copy of q4 that the attach function put in position 2 was never changed!
Since search position 1 dominates, asking for q4 will cause R to show us the
one in our workspace. Asking for mydata$q4 will cause R to go inside the data
frame and show us the original, untransformed values.

There are two important lessons to learn from this:

1. If you want to create a new variable inside a data frame, either fully
specify the name using mydata$varname or mydata[ ,"varname"], or use
the tranform function described in Section 10.1, TransformingVariables.

2. When two objects have the same name, R will always choose the object
higher in the search path.

When the attach function places objects in position 2 of the search path
(a position you can change but rarely need to), those objects will block, or
mask, any others of the same name in lower positions (i.e., further toward the
end of the search list). In the following example, I started with a fresh launch
of R, loaded mydata, and attached it twice to see what happens.

> attach(mydata)
> attach(mydata)

The following object(s) are masked from mydata (position 3):
gender id q1 q2 q3 q4 workshop

> search()

[1] ".GlobalEnv" "mydata" "mydata"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Note that above mydata is now in search positions 2 and 3. If you refer to
any variable or any object, R has to settle which one you mean (they do not
need to be identical, as in this example.) The message about masked objects
in position 3 tells us that the second attach brought in variables with those
names into position 2. The variables from the first attach were then moved to
position 3, and those with common names were masked (all of them in this
example). Therefore, we can no longer refer to them by their simple names;
those names are already in use somewhere higher in the search path. In this
case, the variables from the second attach went to position 2 and they will be
used. However, if objects with any of those names were in our main workspace
(not in a data frame), they would be used instead.

When we first learned about vectors, we created q1, q2, q3, and q4 as
vectors and then formed them into a data frame. If we had left them as
separate vectors in our main workspace, even the first attach would have given



298 13 Managing Your Files and Workspace

us a similar message. The vectors in position 1 would have blocked those with
the same names in positions 2 and 3.

This masking effect can block access to any object. In Section 2.2, “Loading
an Add-on Package,” we saw that when two packages share a function name,
the most recent one loaded from the library is the one R will use. You can
avoid getting the warning about masked objects by first detaching packages
or data frames you previously attached, before attaching the second.

13.4 Attaching Files

So far, we have only used the attach function with data frames. It can also
be very useful with R data files. If you load a file, it brings all objects into
your workspace. However, if you attach the file, you can bring in only what
you need and then detach it.

For example, let us create a variable x and then add only the vector q4 from
the file myall.RData, a file that contains the objects we created in Chapter 5,
“Programming Language Basics.” Recall that in that chapter, we created each
of our practice variables first as vectors and then converted them to factors,
a matrix, a data frame, and a list.

> x <- c(1,2,3,4,5,6,7,8)

> attach("myall.RData")

> search()

[1] ".GlobalEnv" "file:myall.RData" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

> q4 <- q4

The last statement looks quite odd! What is going on? The attach function
loaded myall.RData, but put it at position 2 in the search path. R will place
any variables you create in your workspace (position 1) and the attached copy
allows R to find q4 in position 2. So it copies it from there to your workspace.
Let us look at what we now have in both places.

> ls(1) # Your workspace.

[1] "q4" "x"

> ls(2) # The attached file.



13.5 Removing Objects from Your Workspace 299

[1] "gender" "mydata" "mylist" "mymatrix" "q1"
[6] "q2" "q3" "q4" "workshop"

> detach(2)

So we have succeeded in copying a single vector, q4, from a data frame
into our workspace. The final detach removes "file:myall.RData" from the
search path.

13.5 Removing Objects from Your Workspace

To delete an object from your workspace, use the remove function or the
equivalent rm function as in

rm(mydata)

The rm function is one of the few functions that will accept multiple objects
separated by commas; that is, the names do not have to be in a single character
vector. In fact, the names cannot simply be placed into a single vector. We
will soon see why.

Let us load myall.RData, so we will have lots of objects to remove.

> load(file="myall.RData")

> ls()

[1] "mystats" "gender" "mydata" "mylist" "mymatrix"
[6] "q1" "q2" "q3" "q4" "workshop"

We do not need our vectors, workshop, gender, and the q variable since
they are in our dataframe, mydata. To remove these extraneous variables, we
can use

rm(workshop,gender,q1,q2,q3,q4)

If we had lots of variables, manually entering each name would get quite
tedious. We can instead use any of the shortcuts for creating sets of variable
names described in Chapter 7, “Selecting Variables.” Let us use the ls func-
tion with its pattern argument to find all of the objects that begin with the
letter “q.”

> myQvars <- ls(pattern="q")

> myQvars

[1] "q1" "q2" "q3" "q4"



300 13 Managing Your Files and Workspace

Now let us use the c function to combine workshop and gender with myQ-
vars:

> myDeleteItems <- c("workshop","gender",myQvars)

> myDeleteItems

[1] "workshop" "gender" "q1" "q2" "q3"
[6] "q4"

Note that myQvars is not enclosed in quotes in the first line. It is already
a character vector that we are adding to the character values of “workshop”
and “gender.”

Finally, we can delete them all at once by adding the list argument to
the rm function:

> rm(list=myDeleteItems)
>
> ls()
[1] "mydata" "myDeleteItems" "mylist" "mymatrix"
[5] "myQvars" "mystats"

Finally, we can remove myQvars and myDeleteItems.

> rm(myQvars,myDeleteItems)

> ls()

[1] "mydata" "mylist" "mymatrix" "mystats"

It may appear that a good way to delete the list of objects in myDeleteIt-
ems would be to use

rm(myDeleteItems)

or, equivalently,

rm( c("workshop","gender","q1","q2","q3","q4") )

However, that would delete only the list of item names, not the items them-
selves! That is why the rm function needs a list argument when dealing with
character vectors.

Once you are happy with the objects remaining in your workspace, you
can save them all with

save.image("myFavorites.RData")

If you want to delete all of the visible objects in your workspace, you can
do the following. Be careful, there is no “undo” function for this radical step!



13.7 Setting Your Working Directory 301

myDeleteItems <- ls()

rm( list=myDeleteItems )

Doing this in two steps makes it clear what is happening, but, of course,
you can nest these two functions. This approach looks quite cryptic at
first, but I hope the above steps make it much more obvious what is
occurring.

rm( list=ls() )

To conserve workspace by saving only the variables you need within a data
frame, see Section 10.8, “Keeping and Dropping Variables.” The rm function
cannot drop variables stored within a data frame.

13.6 Minimizing Your Workspace

Removing unneeded objects from your workspace is one important way to save
space. You can also use the cleanup.import function from Frank Harrell’s
Hmisc package. It automatically stores the variables in a data frame in their
most compact form. You use it as

library("Hmisc")

mydata <- cleanup.import(mydata)

If you have not installed Hmisc, see Chapter 2, “Installing R and Add-on
Packages,” for details.

13.7 Setting Your Working Directory

Your working directory is the location R uses to retrieve or store files, if you
do not otherwise specify the full path for filenames. On Windows, the default
working directory is My Documents. On Windows XP or earlier, that is
C:\Documents and Settings\username\My Documents. On Windows Vista or
later, that is C:\Users\Yourname\My Documents. On Macintosh, the default
working directory is /Users/username.

The getwd function will tell you the current location of your working
directory:

> getwd()

[1] "C:/Users/Muenchen/My Documents"



302 13 Managing Your Files and Workspace

Windows users can see and/or change their working directory by choosing
File>Change dir. . . . R will then display a window that you use to browse to
any folder you like.

On any operating system, you can change the working directory with the
setwd function. This is the equivalent to the Stata cd command. Simply
provide the full path between the quotes:

setwd("/myRfolder")

We discussed earlier that R uses the forward slash “/” even on computers
running Windows. That is because within strings, R uses “\t,” “\n” and “\\”
to represent the single characters tab, newline, and backslash, respectively. In
general, a backslash followed by another character may have a special meaning.
So when using R on Windows, always specify the paths with either a single
forward slash or two backslashes in a row. This book uses the single forward
slash because that works with R on all operating systems.

You can set your working directory automatically by putting it in your
.Rprofile. For details, see Appendix C, “Automating Your R Setup.”

13.8 Saving Your Workspace

Throughout this book we manually save the objects we create, naming them
as we do so. That is the way almost all other computer programs work. R also
has options for saving your workspace automatically when you exit.

13.8.1 Saving Your Workspace Manually

To save the entire contents of your workspace, you can use the save.image
function:

save.image(file="myWorkspace.RData")

This will save all your objects, data, functions, everything. Therefore, it is
usually good to remove unwanted objects first, using the rm function. See
Section 13.5, “Removing Objects from Your Workspace,” for details.
If you are a Windows user, R does not automatically append the .RData exten-
sion, as do most Windows programs, so make sure you enter it
yourself.

Later, when you start R, you can use File>Load Workspace to load it from
the hard drive back into the computer’s memory. You can also restore them
using the load function.

load(file="myWorkspace.RData")

If you want to save only a subset of your workspace, the save function
allows you to list the objects to save, separated by commas, before the file
argument:



13.9 Getting Operating Systems to Show You “.RData” Files 303

save(mydata, file="mydata.RData")

This is one of the few functions that can accept many objects separated by
commas, so might save three as in the example below.

save(mydata, mylist, mymatrix, file="myExamples.RData")

It also has a list argument that lets you specify a character vector of objects
to save.

You exit R by choosing File>Exit or by entering the function call quit()
or just q(). R will then offer to save your workspace. If you have used either
the save or the save.image functions recommended above, you should say
“No.”

13.8.2 Saving Your Workspace Automatically

Every time you exit R, it offers to save your workspace for you automatically.
If you click “Yes,” it stores it in a file named “.RData” in your working
directory (see how to set that in the Section 13.7. The next time you start
R from the same working directory, it automatically loads that file back into
memory, and you can continue working.

While this method saves a little time, it also has problems. The name
.RData is an odd choice, because most operating systems hide files that begin
with a period. So, initially, you cannot copy or rename your project files! That
is true on Windows, Macintosh, and Linux/UNIX systems. Of course, you can
tell your operating system to show you such files (shown below).

Since all your projects end up in a file with the same name, it is harder to
find the one you need via search engines or backup systems. If you accidentally
moved an .RData file to another folder, you would not know which project it
contained without first loading it into R.

13.9 Getting Operating Systems to Show You “.RData”
Files

While the default workspace file, “.RData,” is hidden on most operating sys-
tem, you can tell them to show you those files.

To get Windows XP to show you .RData, in Windows Explorer uncheck
the option below and uncheck the option Tools> Folder Options> View>
Hide extensions to known file types. Then click Apply to all folders. Then
click OK.

In Windows Vista, use the following selection: Start>Control Panel>
Appearance and Personalization> Folder Options> View> Show hidden files
and folders. Then click OK.

In Windows 7 or later, start File Explorer, then follow this menu path,
and uncheck the option Organize> Folder and search options> View> Hide
extensions for known file types. Then click OK.



304 13 Managing Your Files and Workspace

Note that this will still not allow you to click on a filename like myPro-
ject.RData and rename it to just .RData. The Windows Rename message box
will tell you “You must type a filename.”

Linux/UNIX users can see files named .RData with the command
“ls -a.”

Macintosh users can see files named .RData by starting a terminal window
with Applications> Utilities> Terminal. In the terminal window, enter

defaults write com.apple.finder AppleShowAllFiles TRUE
killall Finder

To revert back to normal file view, simply type the same thing, but with
“FALSE” instead of “TRUE.”

13.10 Organizing Projects with Windows Shortcuts

If you are a Windows user and like using shortcuts, there is another way to
keep your various projects organized. You can create an R shortcut for each of
your analysis projects. Then you right-click the shortcut, choose Properties,
and set the Start in folder to a unique folder. When you use that shortcut to
start R, on exit it will store the .RData file for that project. Although neatly
organized into separate folders, each project workspace will still be in a file
named .RData.

13.11 Saving Your Programs and Output

R users who prefer the graphical user interface can easily save programs,
called scripts, and output to files in the usual way. Just click anywhere on
the window you wish to save, choose File>Save as, and supply a name. The
standard extension for R programs is “.R” and for output is simply “.txt”.
You can also save bits of output to your word processor using the typical
cut/paste steps.

On Windows, R will not automatically append “.R” to each filename. You
must specify that yourself. When you forget this, and you will, later choosing
File>Open script will not let you see the file! You will have to specify “*.*”
as the filename to get the file to appear.

R users who prefer to use the command-line interface often use text edi-
tors such as Emacs, or the one in JGR, that will check their R syntax for
errors. Those files are no different from any other file created in a given
editor.

Windows and Macintosh users can cut and paste graphics output into
their word processors or other applications. Users of any operating system
can rerun graphs, directing their output to a file. See Chapter 14, “Graphics
Overview” for details.



13.13 Large Data Set Considerations 305

13.12 Saving Your History

The R console displays function calls you enter (or that menus enter for you)
and their output. It is a good idea to submit function calls from a script
window (program editor), but sometimes you enter them directly into the
console and then later realize that you need to save the program. You could
save the input and output in the console window, but you would need to edit
out the output to create a usable program.

R has a history file that saves all of the function calls in a given ses-
sion. This is similar to the Stata LOG file. However, unlike Stata, the history
file is not cumulative on Windows computers. It is cumulative on Linux and
Macintosh, however.

You can save the current session’s history to a file in your working directory
with the savehistory function. To route the history to a different folder, use
the setwd function to change it before using savehistory, or simply specify
the file’s full path in the file= argument.

savehistory(file="myHistory.Rhistory")

You can later recall it using the loadhistory function.

loadhistory(file="myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you
do not provide one. We prefer to save a cumulative history file automatically.
It takes little disk space and you never know when it will help you recover
work that you thought you would never need. For details, see Appendix C,
“Automating Your R Setup.”

All of the file and workspace functions we have discussed are summarized
in Table 13.1.

13.13 Large Data Set Considerations

All of the topics we have covered in this chapter are helpful for managing
the amount of free space you have available in your workspace. Since R, like
Stata, stores its data in your computer’s random access memory, R cannot
analyze huge data sets.

An exception to this is Thomas Lumley’s biglm package [31], which pro-
cesses data in “chunks” for some linear and generalized linear models.

When the physical memory in your computer fills up, it is possible to use
use your computer’s hard drive to simulate more memory (known as virtual
memory), but it is extremely inefficient and time-consuming. Given the low
cost of memory today this is much less of a problem than you might think. R
can handle hundreds of thousands of records on a computer with 2 gigabytes of



306 13 Managing Your Files and Workspace

Table 13.1. Workspace management functions

Function to perform Example

List object names, including
.First, .Last

objects(all.names=TRUE)

List object names, of most
objects

ls() or objects()

List object attributes attributes(mydata)

Load workspace load(file="myWorkspace.RData")

Remove a variable from
a data frame

mydata$myvar <- NULL

Remove all objects
(non hidden ones)

rm( list=ls() )

Remove an object rm(mydata)

Remove several objects rm(mydata, mymatrix, mylist)

Save all objects save.image(file="myWorkspace.RData")

Save some objects save(x,y,z,file="myObjects.RData)

Show structure of all objects ls.str( all.names=TRUE )

Show structure of most objects ls.str()

Show structure of data frame
only (requires Hmisc)

contents(mydata)

Show structure of objects
by name

str(mydata), str(lm)

Store data efficiently
(requires Hmisc)

mydata <- cleanup.import(mydata)

Working directory, getting getwd ()

Working directory, setting setwd("/mypath/myfolder")

Even Windows uses forward slashes,

memory available to R. That is the current memory limit for a single process
or program in 32-bit operating systems. To have 2 gigabytes free just for R,
you would you would want to have perhaps 3 gigabytes of total memory so
that your operating system would have the room it needs.

Operating systems capable of 64-bit memory spaces are the norm on newer
systems. The huge amounts of memory they can handle mitigate this problem.

Another way around the limitation is to store your data in a relational
database and use its facilities to generate a sample to analyze. A sample size
of a few thousand is sufficient for many analyses.

However, if you need to ensure that certain small groups (e.g., those who
have a rare disease, the small proportion that defaulted on a loan) then you
may end up taking a complex sample, which complicates your analysis con-
siderably. R has specialized packages to help analyze such samples, including
pps, sampfling, sampling, spsurvey, and survey. See CRAN at http://
cran.r-project.org/ for details.

An alternative for R users is to purchase S-PLUS, a commercial package
that has an almost identical language to R. S-PLUS has functions to handle
what it calls “big data.” It solves the problem in a way similar to that used

http://cran.r-project.org/
http://cran.r-project.org/


13.14 Example R Program for Managing Filesand Workspace 307

in packages such as SAS and SPSS. However, while S-PLUS can run many R
programs written using R’s core functions, it cannot run R’s add-on packages.

13.14 Example R Program for Managing Files
and Workspace

Most chapters in this book end with the Stata and R programs that summarize
the topics in the chapter. However this chapter has been very specific to R.
Therefore, we present only the R program below.

# Filename: ManagingFilesWorkspace.R

ls()

setwd("/myRfolder")
load("myall.RData")
ls()

# List objects that begin with "my".
ls(pattern="my")

# Get attributes and structure of mydata.
attributes(mydata)
str(mydata)

# Get structure of the lm function.
str( lm )

# List all objects’ structure.
ls.str()

# Use the Hmisc contents function.
install.packages("Hmisc")
library("Hmisc")
contents(mydata)

# ---Understanding Search Paths---
# After restarting R to purge it of
# packages added by loading Hmisc...

setwd("/myRfolder")
load("mydata.RData")
ls()
search()



308 13 Managing Your Files and Workspace

ls(1) #This uses position number.
ls(".GlobalEnv") # This does the same using name.

head( ls(2) )
head( ls("package:stats") ) #Same result.

# See how attaching mydata change the path.
attach(mydata)
search()
ls(2)

# Create a new variable.
q4 <- sqrt(q4)
q4
ls(1)
ls(2)

# Attaching data frames.
detach(mydata)
attach(mydata)
attach(mydata)
search()

# Clean up for next example,
# or restart R with an empty workspace.
detach(mydata)
detach(mydata)
rm( list=ls() )

# Attaching files.
x <- c(1,2,3,4,5,6,7,8)
attach("myall.RData")
search()
q4 <- q4

ls(1) # Your workspace.
ls(2) # The attached file.
detach(2)

# Removing objects.
rm(mydata)
load(file="myall.RData")
ls()
# Example not run:
# rm(workshop,gender,q1,q2,q3,q4)



13.14 Example R Program for Managing Filesand Workspace 309

myQvars <- ls(pattern="q")
myQvars

myDeleteItems <- c("workshop","gender",myQvars)
myDeleteItems

myDeleteItems
rm( list=myDeleteItems )

ls()
rm( myQvars, myDeleteItems )
ls()

# Wrong!
rm(myDeleteItems)
rm( c("workshop","gender","q1","q2","q3","q4") )

save.image("myFavorites.RData")

# Removing all workspace items.
# The clear approach:

myDeleteItems <- ls()
myDeleteItems
rm( list=myDeleteItems )

# The usual approach:
rm( list=ls() )

# Setting your working directory.

getwd()
setwd("/myRfolder")

# Saving your workspace.

load(file="myall.RData")

# Save everything.
save.image(file="myPractice1.RData")

# Save some objects.
save(mydata,file="myPractice2.RData")
save(mydata,mylist,mymatrix,file="myPractice3.RData")



310 13 Managing Your Files and Workspace

# Remove all objects and reload myPractice3.
rm( list=ls() )
load("myPractice3.RData")
ls()

# Save and load history.
savehistory(file="myHistory.Rhistory")
loadhistory(file="myHistory.Rhistory")


	13 Managing Your Files and Workspace
	13.1 Loading and Listing Objects
	13.2 Understanding Your Search Path
	13.3 Attaching Data Frames
	13.4 Attaching Files
	13.5 Removing Objects from Your Workspace
	13.6 Minimizing Your Workspace
	13.7 Setting Your Working Directory
	13.8 Saving Your Workspace
	13.8.1 Saving Your Workspace Manually
	13.8.2 Saving Your Workspace Automatically

	13.9 Getting Operating Systems to Show You ``.RData'' Files
	13.10 Organizing Projects with Windows Shortcuts
	13.11 Saving Your Programs and Output
	13.12 Saving Your History
	13.13 Large Data Set Considerations
	13.14 Example R Program for Managing Filesand Workspace



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




