
Chapter 9

A Good Recipe for Solving MINLPs

Leo Liberti, Giacomo Nannicini, and Nenad Mladenović

Abstract Finding good (or even just feasible) solutions for Mixed-Integer
Nonlinear Programming problems independently of the specific problem
structure is a very hard but practically useful task, especially when the ob-
jective and/or the constraints are nonconvex. We present a general-purpose
heuristic based on Variable Neighbourhood Search, Local Branching, Sequen-
tial Quadratic Programming and Branch-and-Bound. We test the proposed
approach on the MINLPLib, discussing optimality, reliability and speed.

9.1 Introduction

The mathematical programming formulation min{f(x) | g(x) ≤ 0} can be as-
cribed to four different categories: Linear Programming (LP) if f, g are linear
forms and x ∈ Rn are continuous variables, Mixed-Integer Linear Program-
ming (MILP) if some of the variables are integer, Nonlinear Programming
(NLP) if there are some nonlinear functions in f, g and the variables are
continuous, Mixed-Integer Nonlinear Programming (MINLP) if f, g involve
nonlinear functions and the vector x includes some integer variables; prob-
lems are also categorized according to the convexity of objective function and
constraints. In general, solving LPs and convex NLPs is considered easy, and
solving MILPs, nonconvex NLPs and convex MINLPs (cMINLPs) is consid-
ered difficult. Solving nonconvex MINLPs involves difficulties arising from
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both nonconvexity and integrality, and it is considered the hardest problem
of all. From the modelling point of view, however, nonconvex MINLPs are
the most expressive mathematical programs — it stands to reason, then,
that general-purpose MINLP solvers should be very useful. Currently, opti-
mal solutions of MINLPs in general form are obtained by using the spatial
Branch-and-Bound (sBB) algorithm [2, 29, 38, 39]; but guaranteed optima
can only be obtained for relatively small-sized MINLPs. Realistically-sized
MINLPs can often have thousands (or tens of thousands) of variables (con-
tinuous and integer) and nonconvex constraints. With such sizes, it becomes
a great challenge to even find a feasible solution, and sBB algorithms become
almost useless. Some good solvers targeting cMINLPs exist in the literature
[1, 4, 6, 16, 17, 27]; although they can all be used on nonconvex MINLPs
as well (forsaking the optimality guarantee), in practice their mileage varies
wildly with the instance of the problem being solved, resulting in a high
fraction of “false negatives” (i.e. feasible problems for which no feasible so-
lution was found). The Feasibility Pump (FP) idea was recently extended to
cMINLPs [5], but again this does not work so well when applied to nonconvex
MINLPs unmodified [35].

In this chapter, we propose an effective and reliable MINLP heuristic,
called the Relaxed-Exact Continuous-Integer Problem Exploration (RECIPE)
algorithm. The MINLPs we address are cast in the following general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
xL ≤ x ≤ xU

xi ∈ Z ∀ i ∈ Z

 (9.1)

In the above formulation, x are the decision variables (xi is integer for each
i ∈ Z and continuous for each i 6∈ Z, where Z ⊆ {1, . . . , n}). f : Rn → R is a
possibly nonlinear function, g : Rn → Rm is a vector of m possibly nonlinear
functions (assumed to be differentiable), l, u ∈ Rm are the constraint bounds
(which may be set to ±∞), and xL, xU ∈ Rn are the variable bounds.

RECIPE puts together a global search phase based on Variable Neigh-
bourhood Search (VNS) [22] and a local search phase based on a Branch-and-
Bound (BB) type heuristic. The VNS global phase rests on neighbourhoods
defined as hyperrectangles for the continuous and general integer variables
[30] and by Local Branching (LB) for the binary variables [15]. The local
phase employs a BB solver for convex MINLPs [17], and applies it to (pos-
sibly nonconvex) MINLPs, making therefore effectively a heuristic. A local
NLP solver, which implements a Sequential Quadratic Programming (SQP)
algorithm [20], supplies an initial constraint-feasible solution to be employed
by the BB as starting point. RECIPE is an efficient, effective and reliable
general-purpose algorithm for solving complex MINLPs of small and medium
scale.
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The original contribution of this chapter is the way a set of well-known
and well-tested tools are combined into making a very powerful global op-
timization method. This chapter does not contribute theoretical knowledge
but rather the description of a practically useful algorithm whose easy im-
plementation rests on existing off-the-shelf software tools complemented by
relatively few lines of code. It turns out that RECIPE, when acting on the
whole MINLPLib library [9], is able to find optima equal to or better than the
best solutions reported in the literature for 55% of the instances. The closest
competitor is SBB+CONOPT [10, 13], which matches or surpasses the best
solutions listed in MINLPLib on only 37% of the instances. We improve the
best known solutions in 7% of the cases.

The rest of this chapter is organized as follows. In Section 9.2 we describe
the basic component algorithms on which RECIPE is based. Section 9.3
presents the overall approach. In Section 9.4 we discuss computational re-
sults obtained over MINLPLib, focusing on optimality, reliability and speed.
Section 9.5 concludes the chapter.

9.2 The Basic Ingredients

This section describes the four main components used in RECIPE, which are:

• the global search phase: Variable Neighbourhood Search;
• the binary variable neighbourhood definition technique: Local Branching;
• the constraint and integral feasibility enforcing local solution algorithm:

Branch-and-Bound for cMINLPs;
• the constraint feasibility enforcing local solution algorithm: Sequential

Quadratic Programming.

9.2.1 Variable Neighbourhood Search

VNS relies on iteratively exploring neighbourhoods of growing size to identify
better local optima [22, 23, 24]. More precisely, VNS escapes from the current
local minimum x∗ by initiating other local searches from starting points sam-
pled from a neighbourhood of x∗ which increases its size iteratively until a
local minimum better than the current one is found. These steps are repeated
until a given termination condition is met. This can be based on CPU time,
number of non-improving steps and other configurable parameters.

VNS has been applied to a wide variety of problems both from combina-
torial and continuous optimization [3, 7, 12, 26, 31, 32, 37]. Its early applica-
tions to continuous problems were based on a particular problem structure.
In the continuous location-allocation problem, the neighbourhoods are de-
fined according to the meaning of problem variables (assignments of facilities
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to customers, positioning of yet unassigned facilities and so on) [7]. In bilin-
early constrained bilinear problems the neighbourhoods are defined in terms
of the applicability of the successive linear programming approach, where
the problem variables can be partitioned so that fixing the variables in either
set yields a linear problem; more precisely, the neighbourhoods of size k are
defined as the vertices of the LP polyhedra that are k pivots away from the
current vertex [22]. The first VNS algorithm targeted at problems with fewer
structural requirements, namely, box-constrained nonconvex NLPs, was given
in [36] (the paper focuses on a particular class of box-constrained NLPs, but
the proposed approach is general). Its implementation is described in [11].
Since the problem is assumed to be box-constrained, the neighbourhoods
arise naturally as hyperrectangles of growing size centered at the current lo-
cal minimum x∗. The same neighbourhoods were used in [30], an extension
of VNS to constrained NLPs.

9.2.2 Local Branching

LB is an efficient heuristic for solving difficult MILP problems [15]. Given
an integer k > 0, the LB search explores k-neighbourhoods of the incumbent
x∗ by allowing at most k of the integer variables to change their value; this
condition is enforced by means of the local branching constraint:∑

i∈S̄

(1− xi) +
∑
i 6∈S̄

xi ≤ k, (9.2)

where S̄ = {i ≤ n | i ∈ Z ∧ x∗i = 1}, which defines a neighbourhood of radius
k with respect to the binary variables of (9.1), centered at a binary solution
with support S̄. LB updates the incumbent as it finds better solutions. When
this happens, the LB procedure is called iteratively with S̄ relative to the new
incumbent. We remark that LB was successfully used in conjunction with
VNS in [25].

9.2.3 Branch-and-Bound for cMINLPs

Solving cMINLPs (i.e. MINLPs where the objective function and constraints
are convex — the terminology is confusing as all MINLPs are actually non-
convex problems because of the integrality constraints) is conceptually not
much more difficult than solving MILPs: as the relaxed problem is convex,
obtaining lower bounds is easy. The existing tools, however, are still far from
the quality attained by modern MILP solvers. The problem is usually solved
by BB, where only the integer variables are selected for branching. A re-
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stricted (continuous) convex NLP is formed and solved at each node, where
the variable ranges have been restricted according to the node’s definition.
Depending on the algorithm, the lower bounding problem at each node may
either be the original problem with relaxed integrality constraints [10, 17]
(in which case the BB becomes a recursive search for a solution that is both
integer feasible and a local optimum in continuous space), or its linear relax-
ation by outer approximation [1, 4, 14, 16]. In the former case, the restricted
NLP is solved to optimality at each node by using local NLP methods (which
converge to the node’s global optimum when the problem is convex) such as
SQP (see Section 9.2.4), in the latter it is solved once in a while to get good
incumbent candidates.

Another approach to solving MINLPs, which can be applied to convex and
pseudoconvex objective and constraints alike, is taken in [40, 41, 42], where a
cutting planes approach is blended in with a sequence of MILP subproblems
(which only need to be solved to feasibility).

These approaches guarantee an optimal solution if the objective and con-
straints are convex, but may be used as a heuristic even in presence of non-
convexity. Within this chapter, we employ these methods in order to find
local optima of general (nonconvex) MINLPs. The problem of finding an ini-
tial feasible starting point (used by the BB local NLP subsolver) is addressed
by supplying the method with a constraint feasible (although not integer
feasible) starting point found by an SQP algorithm (see Section 9.2.4).

9.2.4 Sequential Quadratic Programming

SQP methods find local solutions to nonconvex NLPs. They solve a sequence
of quadratic approximations of the original problem subject to a lineariza-
tion of its constraints. The quadratic approximation is obtained by a convex
model of the objective function Hessian at a current solution point, subject to
a linearization of the (nonlinear) constraints around the current point. SQP
methods are now at a very advanced stage [20], with corresponding imple-
mentations being able to warm- or cold-start. In particular, they deal with
the problem of infeasible linear constraints (this may happen as the lineariza-
tion around a point of a set of feasible nonlinear constraints is not always
feasible), as well as the feasibility of the starting point with respect to the
nonlinear constraints. This case is dealt with by elastic programming [21]. In
particular, snopt does a good job of finding a constraint feasible point out of
any given initial point, even for reasonably large-scale NLPs. By starting a
local MINLP solver from a constraint feasible starting point, there are better
chances that an integer feasible solution may be found.
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9.3 The RECIPE Algorithm

Our main algorithm is a heuristic exploration of the problem solution space
by means of an alternating search between the relaxed NLP and the exact
MINLP. This is a two-phase global optimization method. Its local phase
consists in using the SQP algorithm for solving relaxed (nonconvex) NLPs
locally; next, the BB algorithm is used for solving exact (nonconvex) MINLPs
to feasibility. The global phase of the algorithm is given by a VNS using two
separate neighbourhoods for continuous and general integer variables and for
binary variables. The former neighbourhoods have hyper-rectangular shape;
the latter are based on a LB constraint involving all binary variables.

We consider a (nonconvex) MINLP P given by formulation (9.1), with its
continuous relaxation P̄ . Let B = {i ∈ Z | xL

i = 0 ∧ xU
i = 1} be the set of

indices of the binary variables, and B̄ = {1, . . . , n} \ B the set of indices of
others, including general integer and continuous variables. Let Q(x̄, k, kmax)
be its reformulation obtained by adding a local branching constraint∑

i∈B

(x̄i(1− xi) + (1− x̄i)xi) ≤
⌈
k
|B|
kmax

⌉
, (9.3)

where x̄ is a (binary) feasible solution (e.g. obtained at a previous iteration),
kmax ∈ N and k ∈ {1, . . . , kmax}. At each VNS iteration (with a certain
associated parameter k), we obtain an initial point x̃, where x̃i is sampled
in a hyperrectangular neighbourhood of radius k for i ∈ B̄ (rounding where
necessary for i ∈ Z \B) and x̃i is chosen randomly for i ∈ B. We then solve
the continuous relaxation P̄ locally by means of an SQP method using x̃ as a
starting point, and obtain x̄ (if x̄ is not feasible with respect to the constraints
of P , then x̄ is re-set to x̃ for possibly having a better choice). We then use a
BB method for cMINLPs in order to solve Q(x̄, k, kmax), obtaining a solution
x′. If x′ improves on the incumbent x∗, then x∗ is replaced by x′ and k is
reset to 1. Otherwise (i.e. if x′ is worse than x∗ or if Q(x̄, k, kmax) could not
be solved), k is increased in a VNS-like fashion. The algorithm is described
formally in Algorithm 1.

9.3.1 Hyperrectangular Neighbourhood Structure

We discuss here the neighbourhood structure for Nk(x) for the RECIPE
algorithm.

Consider hyperrectangles Hk(x), centered at x ∈ Rn and proportional to
the hyperrectangle xL ≤ x ≤ xU given by the original variable bounds, such
that Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. More formally, let Hk(x∗) be the
hyperrectangle yL ≤ x ≤ yU where, for all i 6∈ Z,



9 A Good Recipe for Solving MINLPs 237

Algorithm 1: The RECIPE algorithm.
Input: Neighbourhoods Nk(x) for x ∈ Rn;

maximum neighbourhood radius kmax;
number L of local searches in each neighbourhood.

Output: Best solution found x∗.
Set x∗ = xL/2 + xU/2
while (!time-based termination condition) do

Set k ← 1

while (k ≤ kmax) do
for (i = 1 to L) do

Sample a random point x̃ from Nk(x∗).
Solve P̄ using an SQP algorithm from initial point x̃ obtaining x̄
if (x̄ is not feasible w.r.t. the constraints of P ) then

x̄ = x̃
end if
Solve Q(x̄, k, kmax) using a BB algorithm from initial point x̄ obtaining x′

if (x′ is better than x∗) then
Set x∗ ← x′

Set k ← 0

Exit the FOR loop
end if

end for

Set k ← k + 1.
end while

end while

yL
i = x∗i −

k

kmax
(x∗i − xL

i )

yU
i = x∗i +

k

kmax
(xU

i − x∗i ),

for all i ∈ Z \B,

yL
i = bx∗i −

k

kmax
(x∗i − xL

i ) + 0.5c

yU
i = bx∗i +

k

kmax
(xU

i − x∗i ) + 0.5c,

and for all i ∈ B, yL = 0 and yU = 1.
We let Nk(x) = Hk(x)\Hk−1(x). This neighbourhood structure defines a

set of hyperrectangular nested shells with respect to continuous and general
integer variables. Let τ be the affine map sending the hyperrectangle xL ≤
x ≤ xU into the unit L∞ ball (i.e., hypercube) B centered at 0, i.e., B = {x :
|xi| ≤ 1∀i}. Let rk = k

kmax
be the radii of the balls Bk (centered at 0) such

that τ(Hk(x)) = Bk for each k ≤ kmax. In order to sample a random vector
x̃ in Bk\Bk−1 we proceed as in Algorithm 2.

The sampled point x̃ will naturally not be feasible in the constraints of
(9.1), but we can enforce integral feasibility by rounding x̃j to the nearest
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integer for j ∈ Z, i.e. by setting x̃j ← bx̃j+0.5c. This will be rather ineffective
with the binary variables xj , which would keep the same value x̃j = x∗j
for each k ≤ kmax

2 . Binary variables are best dealt with by solving the LB
reformulation Q in Algorithm 1.

9.4 Computational Results

Algorithm 1 presents many implementation difficulties: the problem must
be reformulated iteratively with the addition of a different LB constraint at
each iteration; different solvers acting on different problem formulations must
be used. All this must be coordinated by the outermost VNS at the global
level. We chose AMPL [19] as a scripting language because it makes it very
easy to interface to many external solvers. Since AMPL cannot generate the
reformulation Q of P iteratively independently of the problem structure, we
employed a C++ program that reads an AMPL output .nl file in flat form
[29] and outputs the required reformulation as an AMPL-readable .mod file.

The minlp bb solver [27] was found to be the MINLP solver that performs
best when finding feasible points in nonconvex MINLPs (the comparison was
carried out with the default-configured versions of filMINT [1] and BonMin
[6]). The SQP solver of choice was snopt [21], found to be somewhat more
reliable than filtersqp [18]: on the analysed test set, snopt achieves, on
average, better results at finding feasible solution in a short CPU time. All
computational results have been obtained on an Intel Xeon 2.4 GHz with 8
GB RAM running Linux.

RECIPE rests on three configurable parameters: kmax (the maximum
neighbourhood radius), L (the number of local searches starting in each
neighbourhood) and the maximum allowed user CPU time (not including
the time taken to complete the last local search). After some practical exper-
imentation on a reduced subset of instances, we set kmax = 50, L = 15 and
the maximum CPU time to 10h. These parameters were left unchanged over
the whole test set, yielding good results without the need for fine-tuning.

Algorithm 2: Sampling in the shell neighbourhoods.
Input: k, kmax.

Output: A point x̃ sampled in Hk(x)\Hk−1(x).
Sample a random direction vector d ∈ Rn

Normalize d (i.e., set d← d
||d||∞

)

Let rk−1 = k−1
kmax

, rk = k
kmax

Sample a random radius r ∈ [rk−1, rk] yielding a uniformly distributed point in the

shell
Let x̃ = τ−1(rd)
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9.4.1 MINLPLib

The MINLPLib [9] is a collection of Mixed Integer Nonlinear Programming
models which can be searched and downloaded for free. Statistics for the
instances in the MINLPLib are available at http://www.gamsworld.org/
minlp/minlplib/minlpstat.htm. The instance library is available at http:
//www.gamsworld.org/minlp/minlplib.htm. The MINLPLib is distributed
in GAMS [8] format, so we employed an automatic translator to cast the files
in AMPL format.

At the time of downloading (Feb. 2008), the MINLPLib consisted of 265
MINLP instances contributed by the scientific and industrial OR community.
These were all tested with the RECIPE algorithm implementation described
above. We had 20 unsuccessful runs due to some AMPL-related errors (the
model contained some unusual AMPL operator not implemented by some of
the solvers/reformulators employed in RECIPE). The instances leading to
AMPL-related failure were:

blendgap, dosemin2d, dosemin3d, fuzzy, hda, meanvarxsc, pb302035, pb302055,

pb302075, pb302095, pb351535, pb351555, pb351575, pb351595, water3, waterful2,
watersbp, waters, watersym1, watersym2.

The performance of RECIPE was evaluated on the 245 runs that came to
completion. The results are given in Tables 9.1, 9.2 (solved instances) and 9.3
(unsolved instances). Table 9.1 lists results where the best solution found by
RECIPE was different by at least 0.1% from that listed in MINLPLib. The
first column contains the instance name, the second contains the value f∗

of the objective function found by the RECIPE algorithm and the third the
corresponding CPU usage measured in seconds of user time; the fourth con-
tains the value f̄ of the objective function reported in the official MINLPLib
table and the fifth contains the name of the corresponding GAMS solver that
found the solution. Table 9.2 lists instance names where the best values found
by RECIPE and listed in MINLPLib are identical.

9.4.1.1 Optimality

RECIPE found feasible solutions for 163 instances out of 245 (66%). Relative
to this reduced instance set, it found the best known solution for 121 instances
(74%), gave evidence of the unboundedness of three instances (1%), and
improved the best known objective value for 12 instances (7%). In the other
cases it found a local optimum that was worse than the best known solution.

Improved solutions were found for the following instances:

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib.htm
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Table 9.1 Computational results on MINLPLib. Values denoted by ∗ mark instances with

unbounded values in the optimal solution.

instance RECIPE known solution
f∗ CPU f̄ Solver

csched2a -165398.701331 75.957500 -160037.701300 BonMin
eniplac -131926.917119 113.761000 -132117.083000 SBB+CONOPT
ex1233 160448.638212 3.426480 155010.671300 SBB+CONOPT
ex1243 118489.866394 5.329190 83402.506400 BARON
ex1244 211313.560000 7.548850 82042.905200 SBB+CONOPT
ex1265a 15.100000 9.644530 10.300000 BARON
ex3 -53.990210 1.813720 68.009700 SBB+CONOPT
ex3pb -53.990210 1.790730 68.009700 SBB+CONOPT
fo7 2 22.833307 23.710400 17.748900 AlphaECP
fo7 24.311289 25.423100 20.729700 AlphaECP
fo9 38.500000 46.296000 23.426300 AlphaECP
fuel 17175.000000 1.161820 8566.119000 SBB+CONOPT
gear4 1.968201 9.524550 1.643400 SBB+CONOPT2
lop97ic 4814.451760 3047.110000 4284.590500 -
lop97icx 4222.273030 1291.510000 4326.147700 SBB+CONOPT
m7 220.530055 17.275400 106.756900 AlphaECP
minlphix 209.149396∗ 4.849260 316.692700 SBB+snopt
nuclear14b -1.119531 7479.710000 -1.113500 SBB+CONOPT
nuclear24b -1.119531 7483.530000 -1.113500 SBB+CONOPT
nuclear25 -1.120175 1329.530000 -1.118600 SBB+CONOPT
nuclearva -1.008822 167.102000 -1.012500 SBB+CONOPT2+snopt
nuclearvb -1.028122 155.513000 -1.030400 SBB+CONOPT2+snopt
nuclearvc -1.000754 176.075000 -0.998300 SBB+CONOPT2+snopt
nuclearvd -1.033279 202.416000 -1.028500 SBB+CONOPT2+snopt
nuclearve -1.031364 193.764000 -1.035100 SBB+CONOPT2+snopt
nuclearvf -1.020808 200.154000 -1.017700 SBB+CONOPT2+snopt
nvs02 5.964189 1.925710 5.984600 SBB+CONOPT3
nvs05 28.433982 4.215360 5.470900 SBB+CONOPT3
nvs14 -40358.114150 2.070690 -40153.723700 SBB+CONOPT3
nvs22 28.947660 4.849260 6.058200 SBB+CONOPT3
o7 2 125.907318 23.262500 116.945900 AlphaECP
o7 160.218617 24.267300 131.649300 AlphaECP
oil -0.006926 389.266000 -0.932500 SBB+CONOPT(fail)
product -1971.757941 2952.160000 -2142.948100 DICOPT+CONOPT3/CPLEX

st e13 2.236072 0.548916 2.000000 BARON
st e40 52.970520 0.930858 30.414200 BARON
stockcycle 120637.913333 17403.200000 119948.688300 SBB+CONOPT
super3t -0.674621 38185.500000 -0.685965 SBB+CONOPT
synheat 186347.748738 3.534460 154997.334900 SBB+CONOPT
tln7 19.300000 1000.640000 15.000000 BARON
risk2b −∞∗ 45.559100 -55.876100 SBB+CONOPT3
risk2bpb −∞∗ 48.057700 -55.876100 SBB+CONOPT3

csched2a: f∗ = −165398.701331 (best known solution: −160037.701300)
ex3: f∗ = −53.990210 (best known solution: 68.009700)

ex3pb: f∗ = −53.990210 (best known solution: 68.009700)

lop97icx: f∗ = 4222.273030 (best known solution: 4326.147700)
minlphix: f∗ = 209.149396 (best known solution: 316.692700)

nuclear14b: f∗ = −1.119531 (best known solution: −1.113500)

nuclear24b: f∗ = −1.119531 (best known solution: −1.113500)
nuclear25: f∗ = −1.120175 (best known solution: −1.118600)

nuclearvc: f∗ = −1.000754 (best known solution: −0.998300)
nuclearvd: f∗ = −1.033279 (best known solution: −1.028500)

nuclearvf: f∗ = −1.020808 (best known solution: −1.017700)

nvs02: f∗ = 5.964189 (best known solution: 5.984600)
nvs14: f∗ = −40358.114150 (best known solution: −40153.723700)

risk2b: f∗ = −∞ (best known solution: −55.876100)

risk2bpb: f∗ = −∞ (best known solution: −55.876100).



9 A Good Recipe for Solving MINLPs 241

Table 9.2 Instances for which RECIPE’s optima are the same as those reported in

MINLPLib.

alan ex1224 gbd nvs06 parallel st e32 tln2
batchdes ex1225 gear2 nvs07 prob02 st e36 tln4
batch ex1226 gear3 nvs08 prob03 st e38 tln5
cecil 13 ex1252a gear nvs09 prob10 st miqp1 tln6
contvar ex1252 gkocis nvs10 procsel st miqp2 tloss
csched1a ex1263a hmittelman nvs11 pump st miqp3 tls2
csched1 ex1263 johnall nvs12 qap st miqp4 util
csched2 ex1264a m3 nvs13 ravem st miqp5
du-opt5 ex1264 m6 nvs15 ravempb st test1
du-opt ex1265 meanvarx nvs16 sep1 st test2
enpro48 ex1266a nuclear14a nvs17 space25a st test3
enpro48pb ex1266 nuclear14 nvs18 space25 st test4
enpro56 ex4 nuclear24a nvs19 spectra2 st test6
enpro56pb fac1 nuclear24 nvs20 spring st test8
ex1221 fac2 nuclear25a nvs21 st e14 st testgr1
ex1222 fac3 nuclear25b nvs23 st e15 st testph4
ex1223a feedtray2 nvs01 nvs24 st e27 synthes1
ex1223b feedtray nvs04 oaer st e29 synthes2
ex1223 gastrans nvs03 oil2 st e31 synthes3

All new best solutions were double-checked for constraint, bounds and
integrality feasibility besides the verifications provided by the local solvers,
and were all found to be integral feasible; 11 out of 12 were constraint/bound
feasible to within a 10−5 absolute tolerance, and 1 (csched2a) to within 10−2.
The 3 instances marked by ∗ in Table 9.1 (minlphix, risk2b, risk2bpb) gave
solutions x∗ with some of the components at values in excess of 1018. Since
minlphix minimizes a fractional objective function and there are no upper
bounds on several of the problem variables, the optimum is attained when
the variables appearing in the denominators tend towards +∞. We solved
risk2b and risk2bpb several times, setting increasing upper bounds to the
unbounded variables: this yielded decreasing values of the objective function,
suggesting that these instances are really unbounded (hence the −∞ in Table
9.1).

On 82 instances out of 245 listed in Table 9.3, RECIPE failed to find any
local optimum within the allotted time limit. Most of these failures are due
to the difficulty of the continuous relaxation of the MINLPs: there are several
instances where the SQP method (snopt) does not manage to find a feasible
starting point, and in these cases the convex MINLP solver (minlp bb) also
fails. On a smaller number of instances, minlp bb is not able to find integral
feasible solutions even though constraint feasible solutions are provided by
snopt.

9.4.1.2 Reliability

One interesting feature of RECIPE is its reliability: in its default configu-
ration it managed to find solutions with better or equal quality than those
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Table 9.3 Instances unsolved by RECIPE.

4stufen elf fo9 ar2 1 no7 ar2 1 nuclear49 st e35 tltr
beuster fo7 ar2 1 fo9 ar25 1 no7 ar25 1 o7 ar2 1 st test5 uselinear
deb10 fo7 ar25 1 fo9 ar3 1 no7 ar3 1 o7 ar25 1 st testgr3 var con10
deb6 fo7 ar3 1 fo9 ar4 1 no7 ar4 1 o7 ar3 1 super1 var con5
deb7 fo7 ar4 1 fo9 ar5 1 no7 ar5 1 o7 ar4 1 super2 waste
deb8 fo7 ar5 1 gasnet nous1 o7 ar5 1 super3 water4
deb9 fo8 ar2 1 m7 ar2 1 nous2 o8 ar4 1 tln12 waterx
detf1 fo8 ar25 1 m7 ar25 1 nuclear104 o9 ar4 1 tls12 waterz
eg all s fo8 ar3 1 m7 ar3 1 nuclear10a ortez tls4 windfac
eg disc2 s fo8 ar4 1 m7 ar4 1 nuclear10b qapw tls5 waterx
eg disc s fo8 ar5 1 m7 ar5 1 nuclear49a saa 2 tls6
eg int s fo8 mbtd nuclear49b space960 tls7

reported in the MINLPLib on 136 instances over 245 (55%) and at least a fea-
sible point in a further 11% of the cases. On the same set of test instances, the
closest competitor is SBB+CONOPT, which matches or surpasses the best
solutions in MINLPLib in 37% of the cases, followed by BARON with 15%
and by AlphaECP with 14% (these percentages were compiled by looking at
http://www.gamsworld.org/minlp/minlplib/points.htm in June 2008).

9.4.1.3 Speed

The total time taken for solving the whole MINLPLib (including the unsolved
instances, where the VNS algorithm terminates after exploring the neighbour-
hoods up to kmax or when reaching the 10 hours time limit, whichever comes
first) is roughly 4 days and 19 hours of user CPU time. RECIPE’s speed
is very competitive with that of sBB approaches: tests conducted using the
ooOPS solver [28, 29, 34] as well as BARON on some complex MINLPs
showed that sBB methods may take a long time to converge. Naturally, the
trade-off for this speed is the lack of an optimality guarantee.

9.5 Conclusion

This chapter describes a heuristic approach to solving nonconvex MINLPs
based on the mathematical programming formulation. Our approach, called
RECIPE, combines several existing exact, approximate and heuristic tech-
niques in a smart way, resulting in a method that can successfully solve
many difficult MINLPs without hand-tuned parameter configuration. Such a
reliable solver would be particularly useful in industrial applications where
the optimum quality is of relative importance and the optimization layer is
hidden from user intervention and is therefore “just supposed to work”.

http://www.gamsworld.org/minlp/minlplib/points.htm
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