
Chapter 8

(Meta-)Heuristic Separation of
Jump Cuts in a Branch&Cut
Approach for the Bounded Diameter
Minimum Spanning Tree Problem

Martin Gruber and Günther R. Raidl

Abstract The bounded diameter minimum spanning tree problem is an NP-
hard combinatorial optimization problem arising, for example, in network de-
sign when quality of service is of concern. We solve a strong integer linear pro-
gramming formulation based on so-called jump inequalities by a Branch&Cut
algorithm. As the separation subproblem of identifying currently violated
jump inequalities is difficult, we approach it heuristically by two alternative
construction heuristics, local search, and optionally tabu search. We also in-
troduce a new type of cuts, the center connection cuts, to strengthen the
formulation in the more difficult to solve odd diameter case. In addition, pri-
mal heuristics are used to compute initial solutions and to locally improve
incumbent solutions identified during Branch&Cut. The overall algorithm
performs excellently, and we were able to obtain proven optimal solutions for
some test instances that were too large to be solved so far.

8.1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a combi-
natorial optimization problem appearing in applications such as wire-based
communication network design when quality of service is of concern and,
e.g., a signal between any two nodes in the network should not pass more
than a fixed number of routers. It also arises in ad-hoc wireless networks
[1] and in the areas of data compression and distributed mutual exclusion
algorithms [19, 2].

Martin Gruber · Günther R. Raidl

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Vienna, Austria

e-mail: {gruber,raidl}@ads.tuwien.ac.at

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 209

DOI 10.1007/978-1-4419-1306-7 8, c© Springer Science+Business Media, LLC 2009

{gruber,raidl}@ads.tuwien.ac.at

210 M. Gruber and G.R. Raidl

The goal is to identify a tree structure of minimum cost connecting all
nodes of a network where the number of links between any two nodes is
limited by a maximum diameterD. More formally, we are given an undirected
connected graph G = (V,E) with node set V and edge set E and associated
costs ce ≥ 0, ∀e ∈ E. We seek a spanning tree T = (V,ET) with edge
set ET ⊆ E whose diameter does not exceed D, where D ≥ 2, and whose
total cost

∑
e∈ET

ce is minimal. This problem is known to be NP-hard for
4 ≤ D < |V | − 1 [7].

8.2 Previous Work

The algorithms already published for this problem range from greedy con-
struction heuristics, e.g. [14, 20], to various exact (mixed) integer linear pro-
gramming (ILP) approaches. The latter include formulations based on Miller-
Tucker-Zemlin inequalities [6], a compact Branch&Cut approach strength-
ened by connection and cycle elimination cuts [11], and in particular hop-
indexed multi-commodity network flow models [8, 9] whose linear program-
ming (LP) relaxations yield tight bounds but which involve a huge number of
variables. Recently, a constraint programming approach has been proposed
in [16]. Due to the complexity of the problem, exact algorithms are lim-
ited to relatively small instances with considerably less than 100 nodes when
dealing with complete graphs. For larger instances, metaheuristics have been
designed, e.g., evolutionary algorithms [18, 20] and a variable neighborhood
search (VNS) [12]. The so far leading metaheuristics to address instances up
to 1000 nodes are to our knowledge the evolutionary algorithm and the ant
colony optimization algorithm from [13], which are based on a special level
encoding of solutions and strong local improvement procedures.

Strongly related to the BDMST problem is the hop constrained minimum
spanning tree (HCMST) problem, in which a root node is specified and the
number of edges (hops) on each path from the root to some other node
must not exceed a limit H. An overview on several ILP models and solution
approaches for this problem can be found in [5]. A well working approach in
particular for smaller H is the reformulation of the problem as a Steiner tree
problem on a layered graph [10]. Another strong formulation is based on so-
called jump inequalities [4]. Unfortunately, their number grows exponentially
with |V |, and the problem of separating them in a cutting plane algorithm
is conjectured to be NP-hard. Therefore, Dahl et al. [4] exploited them in
a Relax&Cut algorithm where violated jump inequalities only need to be
identified for integer solutions, which is straightforward.

In this work, we adopt the concept of jump inequalities to formulate a
strong model for the BDMST problem, which we then solve by Branch&Cut.
A hierarchy of two alternative construction heuristics, local search, and tabu
search is used for efficiently separating jump cuts.

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 211

8.3 The Jump Model

Our ILP model is defined on a directed graph G+ = (V +, A+), with the arc
set A+ being derived from E by including for each undirected edge (u, v) ∈ E
two oppositely directed arcs (u, v) and (v, u) with the same costs cu,v = cv,u.
In addition, we introduce an artificial root node r that is connected to every
other node with zero costs, i.e. V + = V ∪{r} and {(r, v) | v ∈ V } ⊂ A+. This
artificial root allows us to model the BDMST problem as a special directed
outgoing HCMST problem on G+ with root r, hop limit (i.e., maximum
height) H = bD

2 c + 1, and the additional constraint that the artificial root
must have exactly one outgoing arc in the case of even diameter D and two
outgoing arcs in the case D is odd. From a feasible HCMST T+ = (V +, A+

T),
the associated BDMST T on G is derived by choosing all edges for which a
corresponding arc is contained in A+

T . In the odd diameter case, an additional
center edge connecting the two nodes adjacent to the artificial root is further
included.

We make use of the following variables: Arc variables xu,v ∈ {0, 1},
∀(u, v) ∈ A+, which are set to one iff (u, v) ∈ T+, and center edge vari-
ables zu,v ∈ {0, 1}, ∀(u, v) ∈ E, which are only relevant for the odd diameter
case and are set to one iff (u, v) forms the center of the BDMST.

The even diameter case is formulated as follows:

minimize
∑

(u,v)∈A

cu,v · xu,v (8.1)

subject to
∑

u|(u,v)∈A+

xu,v = 1 ∀ v ∈ V (8.2)

∑
v∈V

xr,v = 1 (8.3)∑
(u,v)∈δ+(V ′)

xu,v ≥ 1 ∀ V ′ ⊂ V + | r ∈ V ′ (8.4)

∑
(u,v)∈J(P)

xu,v ≥ 1 ∀ P ∈ P (V +) | r ∈ S0. (8.5)

The objective is to minimize the total costs of all selected arcs (8.1). All
nodes of the original graph (without artificial root node r) have exactly one
predecessor (8.2), and just one node is successor of r (8.3). To achieve a
connected, cycle free solution we include the widely used directed connection
cuts (8.4), where δ+(V ′) denotes all arcs (u, v) with u ∈ V ′ and v ∈ V + \V ′,
see also [15].

The diameter restriction is enforced by the jump inequalities (8.5) from
[4] as follows. Consider a partitioning P of V + into H + 2 pairwise disjoint
nonempty sets S0 to SH+1 with S0 = {r}. Let σ(v) denote the index of the
partition a node v is assigned to. Jump J(P) is defined as the set of arcs

212 M. Gruber and G.R. Raidl

S0 S1 S2 S3=H SH+1

r

J(P)

1 2 3=H H+1

Fig. 8.1 Partitioning P of the nodes in V + into H + 2 nonempty sets S0, . . . , SH+1. The

jump J(P) contains all arcs leading from a partition to a higher indexed one skipping at

least one in-between (curved arcs). A path connecting the artificial root r with nodes in
SH+1 without any arc from J(P) would consist of at least H + 1 arcs and thus violate the

hop constraint H.

(u, v) ∈ A+ with σ(u) < σ(v)− 1, i.e., J(P) contains all arcs leading from a
partition to a higher indexed one and skipping at least one in-between, see
Fig. 8.1. The jump inequality associated with this partitioning states that
in a feasible HCMST T+ at least one of these arcs in J(P) must appear.
Otherwise, there would be a path connecting the root contained in S0 to a
node in SH+1 with length at least H + 1 violating the hop constraint. Such
jump inequalities must hold for all possible partitions P (V +) of V + with r
being element of set S0.

The odd diameter case additionally makes use of the center edge vari-
ables zu,v:

minimize
∑

(u,v)∈A

cu,v · xu,v +
∑

(u,v)∈E

cu,v · zu,v (8.6)

subject to
∑
v∈V

xr,v = 2 (8.7)∑
v|(u,v)∈E

zu,v = xr,u ∀ u ∈ V (8.8)

2 ·
∑

(u,v)∈δ+(V \V ′′)

xu,v +
∑

v∈V ′′

xr,v +
∑

(u,v)∈δ(V ′′)

zu,v ≥ 2 ∀ ∅ 6= V ′′ ⊂ V (8.9)

(8.2), (8.4), and (8.5) are adopted unchanged.

Now, two nodes are to be connected to the artificial root node r (8.7), and
they are interlinked via the center edge (8.8). The cost of this edge is also
accounted for in the extended objective function (8.6).

The new connection inequalities (8.9), which we call center connection
inequalities, are not necessary for the validity of the model but strengthen
it considerably. They are essentially derived from observations in [9]: The
HCMST T+ together with the center edge linking the two center nodes con-
nected to r forms a special structure, a so-called triangle tree. In such a tree

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 213

...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...

r r

v v

(a) Two different paths from r to v.

...
. . .

...

r

...
. . .

...

...
. . .

...

r

...
. . .

...
V

′′
V

′′

(b) Center connection inequalities.

Fig. 8.2 Triangle tree: In the odd diameter case there are two paths connecting r with

any node v ∈ V . This leads to the center connection inequalities involving the center edge.

every node v ∈ V can be reached from r by two different – not necessarily
completely arc disjoint – directed paths: The first path directly connects r
with v via one center node, whereas the second one visits the second center
node first and crosses the center edge, see Fig. 8.2. This idea is captured in
these inequalities: Two paths from r have to reach each subset V ′′ of nodes
of V , either from other non-center nodes (first term) or – in case a center
node v is contained in V ′′ – directly from r and via the center edge (second
and third terms).

As there are exponentially many directed and center connection inequal-
ities (8.4, 8.9) and jump inequalities (8.5), directly solving these models is
not a practical option. Instead, we start without these inequalities and apply
Branch&Cut, thus, separating inequalities that are violated by optimal LP
solutions on the fly. Directed connection cuts – including our special variants
(8.9) – can efficiently be separated: In each LP solution |V | max-flow/min-
cut computations have to be performed between the artificial root r and any
node of the instance graph. To compute these maximum flows in a directed
graph we used the algorithm by Cherkassky and Goldberg [3]. Unfortunately,
solving the separation problem for the jump inequalities is conjectured to be
NP-hard [4].

8.4 Jump Cut Separation

In order to find a valid jump cut, we have to identify a node partitioning P
and corresponding jump J(P) for which the current LP solution (xLP, zLP)
violates

∑
(u,v)∈J(P) x

LP
u,v ≥ 1.

214 M. Gruber and G.R. Raidl

8.4.1 Exact Separation Model

In a first attempt we formulate the separation problem as an ILP, making
use of the following variables: yv,i ∈ {0, 1}, ∀v ∈ V +, i = 0, . . . ,H + 1, is set
to one iff node v is assigned to partition Si, and xu,v ∈ {0, 1}, ∀(u, v) ∈ ALP

is set to one iff arc (u, v) is contained in the jump J(P); let ALP = {(u, v) ∈
A+ | xLP

u,v > 0}. This leads to the following model:

minimize
∑

(u,v)∈ALP

xLP
u,v · xu,v (8.10)

subject to
H+1∑
i=1

yv,i = 1 ∀ v ∈ V (8.11)

yr,0 = 1 (8.12)∑
v∈V

yv,H+1 = 1 (8.13)

yu,i − 1 +
H+1∑

j=i+2

yv,j ≤ xu,v ∀ i ∈ {1, . . . ,H − 1}, (u, v) ∈ ALP(8.14)

H+1∑
i=2

yv,i ≤ xr,v ∀v ∈ V | (r, v) ∈ ALP (8.15)

The objective is to minimize the total weight of the arcs in the jump
J(P) (8.10). Each node in V is assigned to exactly one of the sets S1 to
SH+1 (8.11), whereas the artificial root r is the only node in set S0 (8.12).
Exactly one node is assigned to set SH+1 (8.13), as Dahl et al. [4] showed
that a jump inequality is facet-defining iff the last set is singleton. Finally,
an arc (u, v) (8.14), respectively (r, v) (8.15), is part of the jump J(P) iff it
leads from a set Si to a set Sj with j ≥ i+ 2.

Note that, according to the following theorem, it is not necessary to ex-
plicitly address the condition that no partition may be empty:

Theorem 1. In case all directed connection cuts are separated in advance,
no partition Si, i ∈ {1, . . . ,H}, will be empty in an optimal solution to the
ILP model described by (8.10) to (8.15).

Proof. Assume Si, i ∈ {1, . . . ,H}, is an empty set in an otherwise valid (ac-
cording to the rules defined for jump inequalities) partitioning P ,

∑
(u,v)∈J(P)

xLP
u,v < 1. Then V + can be partitioned into two sets V ′ and V + \ V ′, with
V ′ = {v ∈ V + | σ(v) < i} (including r). The sets V ′ and V + \ V ′ de-
fine a cut where all arcs from V ′ to V + \ V ′ belong to the jump J(P); it
follows that

∑
(u,v)∈δ+(V ′) x

LP
u,v < 1. Consequently, every partitioning with∑

(u,v)∈J(P) x
LP
u,v < 1 and an empty set Si, i ∈ {1, . . . ,H}, can be trans-

formed into a violated directed connection inequality, see Fig. 8.3. Since such

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 215

S0 Si−1 Si Si+1 SH+1

r

V
′

V
+\V′

Fig. 8.3 A partitioning P with
∑

J(P) xLP < 1 and an empty set Si corresponds to a

violated directed connection cut.

a violated directed connection inequality does not exist in the current LP
solution by assumption, no set Si can be empty. �

This observation reveals the possibility to avoid time-consuming max-flow/
min-cut computations to separate directed connection cuts. By not forcing
the sets S1, . . . , SH to be nonempty, violated directed connection and jump
constraints can be identified by only one single separation procedure, depend-
ing on whether the node partitioning P contains an empty partition Si or
not.

The exact jump cut separation model contains O(H · |V |+ |ALP|) variables
and O(|V | + H · |ALP|) constraints. Solving it by a general purpose solver
each time when a jump cut should be separated is, however, only applicable
for small problem instances as the computation times are high and increase
dramatically with the problem size. According to our experiments, between
about 85% and almost 100% of the total time for solving the BDMST problem
is spent in this exact separation procedure for jump cuts.

To speed up computation, we developed heuristic procedures for this sep-
aration problem and apply them in the following sequence: Two alternative
construction heuristics are used to find initial partitions; they are improved
by local search and, in case a violated jump inequality has not yet been
encountered, finally by tabu search.

8.4.2 Simple Construction Heuristic CA

Heuristic CA greedily assigns the nodes V + to sets S1, . . . , SH+1 trying to
keep the number of arcs that become part of the jump J(P) as small as possi-
ble, see Algorithm 1. An independent partitioning is computed for each node
v ∈ V initially placed in the last set SH+1, and the overall best solution is re-
turned. To derive one such partitioning, all nodes u connected to r via an arc
(r, u) ∈ ALP with xLP

r,u exceeding a certain threshold (0.5 in our experiments)
are assigned to set S1. Then the algorithm iterates through partitions SH+1

216 M. Gruber and G.R. Raidl

Algorithm 1: Simple Construction Heuristic CA

input : V +, ALP

output: partitioning P of V +

forall nodes v ∈ V do1

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;2

forall arcs (r, u) | u 6= v do3

if xLP
r,u > 0.5 then S1 ← S1 ∪ {u};4

for i = H + 1, . . . , 3 do5

foreach node u ∈ Si do6

foreach arc (w, u) ∈ ALP | w not already assigned do7

Si−1 ← Si−1 ∪ {w};8

forall still unassigned nodes u ∈ V + do9

S1 ← S1 ∪ {u};10

derive jump J(P) for current partitioning P = (S0, . . . , SH+1);11

evaluate J(P) and store P if best so far;12

return best found partitioning;13

down to S3. For each of these sets Si all arcs (w, u) ∈ ALP with target node
u ∈ Si are further examined. In case w is still free (i.e., not already assigned
to a set), it is placed in Si−1, in order to avoid (w, u) becoming part of J(P).
At the end, eventually remaining free nodes are assigned to set S1.

Results achieved with heuristic CA were encouraging, but also left room
for improvement when compared to the exact separation. In particular, this
heuristic does (almost) not consider differences in arc weights xLP

u,v when
deciding upon the assignment of nodes.

8.4.3 Constraint Graph Based Construction Heuristic
CB

To exploit arc weights in a better way, we developed the more sophisticated
construction heuristic CB which makes use of an additional constraint graph
GC = (V +, AC). To avoid that an arc (u, v) ∈ ALP becomes part of J(P),
the constraint σ(u) ≥ σ(v) − 1 must hold in partitioning P . Heuristic CB

iterates through all arcs in ALP in decreasing LP-value order (ties are broken
arbitrarily) and checks for each arc whether or not its associated constraint
on the partitioning can be realized, i.e., if it is compatible with previously
accepted arcs and their induced constraints. Compatible arcs are accepted
and collected within the constraint graph, while arcs raising contradictions
w.r.t. previously accepted arcs in GC are rejected and will be part of J(P).
After checking each arc in this way, a partitioning P respecting all constraints

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 217

represented by GC is derived. Algorithm 2 shows this heuristic in pseudo-
code.

In more detail, graph GC not only holds compatible arcs but for each
node u ∈ V + also an integer assignment interval bu = [αu, βu] indicating
the feasible range of partitions; i.e., u may be assigned to one of the sets
{Si | i = αu, . . . , βu}. When an arc (u, v) is inserted into AC , the implied new
constraint σ(u) ≥ σ(v)− 1 makes the following interval updates necessary:

bu ← [max(αu, αv − 1), βu] and bv ← [αv, min(βv, βu + 1)]. (8.16)

Changes of interval bounds must further be propagated through the con-
straint graph by recursively following adjacent arcs until all bounds are fea-
sible again w.r.t. the constraints.

Figure 8.4 gives an example of such an update procedure after inserting
an arc into the constraint graph. It visualizes the relevant part of GC in
an instance with a diameter constraint of six, including the artificial root
node r assigned to S0 (br = [0, 0]), node vn in partition SH+1 (bvn = [5, 5]),
six additional nodes v1 to v6 which still are allowed to be assigned to any
partition Si, i = 1, . . . , 4, and already some compatible arcs. In Fig. 8.4(a) a
new arc from r to v1 should be inserted into the constraint graph. To prevent
this arc to become part of the jump J(P) we have to restrict the assignment
interval of v1 (r is already fixed to a single partition): If v1 would be assigned
to any partition Si with i ≥ 2, the arc (r, v1) would skip at least S1 making
it a jump arc. Therefore, the upper bound βv1 has to be decreased to one
(bv1 = [1,min(4, 0+1)]), see Fig. 8.4(b). Now this update has to be propagated

Algorithm 2: Constraint Graph Based Construction Heuristic CB

input : V +, ALP

output: partitioning P of V +

sort ALP according to decreasing LP values;1

forall nodes v ∈ V do2

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;3

br = [0, 0]; bv = [H + 1, H + 1]; ∀w ∈ V \ {v}: bw ← [1, H];4

initialize GC : AC ← ∅;5

initialize jump J(P)← ∅;6

forall arcs (u, v) ∈ ALP according to decreasing xLP
u,v do7

if AC ∪ (u, v) allows for a feasible assignment of all nodes then8

AC ← AC ∪ (u, v);9

perform recursive update of bounds starting at bu and bv ;10

else11

J(P)← J(P) ∪ (u, v);12

assign nodes to partitions according to the constraints in GC ;13

evaluate jump J(P) and store P if best so far;14

return best found partitioning;15

218 M. Gruber and G.R. Raidl

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1, 4]

r

(a) GC : Inserting (r, v1).

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1,1]

r

(b) Feasible update of bv1 .

v3

vnv6

[0, 0]

[1,2]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1,3]

v4 v1 v2

v5

[1, 1]

r

(c) Recursive update.

Fig. 8.4 Insertion of arc (r, v1) into the constraint graph GC , including all necessary
updates to the assignment intervals.

through the constraint graph as shown in Fig. 8.4(c). Nothing has to be done
for node v2 (and so for v3), it still can be assigned to any of the partitions S1

to S4 since the arc (v2, v1) can no longer become part of J(P) (σ(v2) ∈ [1, 4]
will always be greater than or equal to σ(v1)− 1 = 1− 1 = 0). On the other
hand, the upper interval bound of v4 has to be set to two (to avoid that arc
(v1, v4) skips at least partition S2), and – analogously – βv5 has to be set to
three. After this recursive update procedure the constraint graph is in a valid
state again, i.e., all nodes can be assigned to partitions without violating
constraints implied by the collected arcs AC .

An arc (u, v) can be feasibly added to the graph GC without raising con-
flicts with any stored constraint as long as the assignment intervals bu and
bv do not become empty, i.e., αu ≤ βu ∧ αv ≤ βv must always hold. In Algo-
rithm 2 this condition is tested in line 8, and the arc (u, v) is either accepted
for AC or added to J(P), respectively.

Theorem 2. The recursive update of the assignment interval bounds in GC

after inserting an arc (u, v) always terminates and cannot fail if it succeeded
at nodes u and v.

Proof. Let GC be valid, i.e., it contains no contradicting constraints, and
it was possible to insert arc (u, v) into the graph without obtaining empty
assignment intervals for nodes u and v. Let (s, t) be any other arc ∈ GC ,
implying αs ≥ αt−1, and βt ≤ βs +1. Now, assume that αt was updated, i.e.
increased, to α′t, with α′t ≤ βt. If the lower bound of s must be modified, it is
set to α′s = α′t − 1 according to the update rules. To prove that the interval
at s will not become empty we have to show that α′s ≤ βs:

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 219

Algorithm 3: Local Search
input : V +, ALP, current partitioning P and implied jump J(P)

output: possibly improved partitioning P of V +

repeat1

improved ← false;2

forall arcs (u, v) ∈ J(P) do3

if moving u to Sσ(v)−1 or v to Sσ(u)+1 is valid and improves solution then4

perform move; update P and J(P) correspondingly;5

improved ← true;6

break;7

until improved = false ;8

return partitioning P ;9

α′s
(update rule)

= α′t − 1
α′t≤βt

≤ βt − 1
βt≤βs+1

≤ βs (8.17)

The feasibility of the upper bound propagation can be argued in an anal-
ogous way. This also proves that the recursive update procedure terminates,
even when there are cycles in GC (intervals cannot become empty, and up-
dates increase respectively decrease lower and upper bounds by at least one).
�

8.4.4 Local Search and Tabu Search

Although the construction heuristics usually find many violated jump in-
equalities, there is still room for improvement using local search. The neigh-
borhood of a current partitioning P is in principle defined by moving one node
to some other partition. As this neighborhood would be relatively large and
costly to search, we restrict it as follows: Each arc (u, v) ∈ J(P) induces two
allowed moves to remove it from the associated jump J(P): reassigning node
u to set Sσ(v)−1 and reassigning node v to set Sσ(u)+1, respectively. Moves
modifying S0 or SH+1 are not allowed. The local search is performed in a
first improvement manner until a local optimum is reached; see Algorithm 3.

In most cases, the construction heuristics followed by local search are able
to identify a jump cut if one exists. In the remaining cases, we give tabu
search a try to eventually detect still undiscovered violated jump inequalities.
Algorithm 4 shows our tabu search procedure in pseudo-code.

The neighborhood structure as well as the valid moves are defined as in
the local search, but now a best improvement strategy is applied. Having
performed a movement of a node v, we file as tabu the node v in combination
with its inverted direction of movement (to a lower or higher indexed set,
respectively).

220 M. Gruber and G.R. Raidl

Algorithm 4: Tabu Search
input : V +, ALP, current partitioning P and implied jump J(P)

output: possibly improved partitioning P of V +

tabu list L← ∅;1

repeat2

search neighborhood of P for best move m considering tabu list L;3

perform move m; update P and J(P) correspondingly;4

file move m−1 in tabu list: L← L ∪ {m−1};5

remove from L entries older than max(lmin, γ · |J(P)|) iterations;6

until no new best partitioning found during the last imax iterations ;7

return best encountered partitioning;8

The tabu tenure is dynamically controlled by the number of arcs in jump
J(P): Tabu entries older than max(lmin, γ · |J(P)|) iterations are discarded,
where lmin and γ are strategy parameters.

We consider the following aspiration criterion: The tabu status of a move is
ignored if the move leads to a new so far best node partitioning. Tabu search
terminates when a predefined number imax of iterations without improvement
of the overall best partitioning is reached.

8.5 Primal Heuristics

In order to further improve the performance of our Branch&Cut approach we
make use of additional fast heuristics to set an initial solution and to locally
improve incumbent solutions.

In [14] Julstrom describes two different construction heuristics for the
BDMST problem, the center based tree construction (CBTC) and the ran-
domized tree construction (RTC) heuristic. Both are primarily based on
Prim’s MST algorithm [17] and compute, after determining a center, a height
restricted tree.

CBTC simply grows a BDMST from a randomly chosen or predefined
center by always adding the node with the cheapest available connection to
the so long build tree without violating the height constraint. This heuristic
is well suited for instances with more or less randomly generated edge weights
whereas it fails miserably on Euclidean instances. The problem is that CBTC
is too greedy and tends to create a backbone – the edges near the center – of
extremely short edges instead of one consisting of some few but long edges
spanning the whole area. As a consequence, the leaves of the BDMST have to
be attached to the backbone with relatively long edges leading to a extremely
poor solution as can be seen in Fig. 8.5.

To overcome this problem on Euclidean instances the RTC heuristic cre-
ates a random permutation of all nodes. The first (two) node(s) will form

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 221

(a) CBTC (8.284). (b) RTC (5.725). (c) Optimum (5.195).

Fig. 8.5 Diameter constrained trees computed by two different construction heuristics,
CBTC and RTC (best solution from 100 runs), and the optimal solution (complete, Eu-
clidean graph with 40 nodes distributed randomly in the unit square, D = 6). Correspond-

ing objective values are given in parenthesis. Heuristics were forced to use the center of
the optimum.

the center of the BDMST, the remaining ones are connected to the tree in
the cheapest possible way in the order given by the permutation and without
violating the height restriction. This approach at least increases the chance
to bring longer edges into the backbone, thus leading to better final solutions.

Both construction heuristics are designed to operate on complete graphs.
Whereas CBTC can handle incomplete graphs easily we modified RTC to
increase the possibility of identifying a valid BDMST also on sparse graphs
in the following way: Every node of the permutation not feasibly connectable
is stored within a queue. After the whole permutation of nodes has been
processed each node in the queue is again checked if it could be connected to
the tree without violating the height restriction. This procedure is stopped
when either the queue becomes empty or none of the nodes in the queue
can be added feasibly to the tree. In addition, in case the diameter is odd a
permutation is only accepted if the first two nodes, which should form the
center, are linked via an edge.

Solutions of both construction heuristics as well as all incumbent solu-
tions found during the optimization are further improved by the variable
neighborhood descent (VND) from [13] utilizing four different neighborhood
structures:

Arc exchange neighborhood: Neighboring solutions are all feasible trees that
differ in exactly one arc from the current one.

Node swap neighborhood: This neighborhood contains all solutions that are
obtained by exchanging the position of a node with one of its direct suc-
cessors in the tree structure.

Level change neighborhood: In a neighboring solution the depth of exactly
one node has been increased or decreased by one. All affected nodes are
newly connected in a locally optimal way by choosing cheapest available
arcs.

222 M. Gruber and G.R. Raidl

Center exchange level neighborhood: In neighboring solutions, the one or
two center node(s) are exchanged by other nodes. The former center nodes
are reconnected by cheapest possible arcs.

8.6 Computational Results

For our computational experiments we utilize Euclidean (TE) and random
(TR) instances as described and used by Gouveia et al. [8, 9] as well as com-
plete and sparse Euclidean instances of Santos et al. [6, 16]. The instance
type, together with the number of nodes (|V |) and edges (|E|) and the diam-
eter bound (D) is specified for each test case in the following results tables.
All experiments have been performed on a dual-core AMD Opteron 2214 ma-
chine (2.2GHz), and CPLEX 11.1 has been used as ILP solver and framework
for Branch&Cut. Since most of the heuristic components are not determin-
istic, the median and/or the mean value of at least 30 independent runs is
listed for each experiment (when not otherwise specified). To verify statistical
significance Wilcoxon rank tests with an error level of 5% (if not indicated
otherwise) have been performed.

The experiments were executed with modified jump cut heuristics to si-
multaneously identify violated directed connection cuts to avoid additional
time-consuming max-flow/min-cut computations (see proof of Theorem 1).
Although a polynomial time exact separation procedure is replaced by a
heuristic approach, preliminary tests demonstrated a significant enhancement
in running time. Violated directed connection cuts were only identified sep-
arately in case the exact ILP model was used to separate jump cuts.

Table 8.1 demonstrates the clear advantages of applying primal heuristics:
For a set of small and medium-sized instances the running times in seconds
are given (heuristic jump cut separation using construction heuristic CB with
local search), as well as the mean values (including the gaps to the optimal so-
lutions opt) and the standard deviations of the initial solutions. For instances
with random edge costs (TR) the CBTC construction heuristic was used to
compute initial solutions, RTC for all others. Since CBTC gives deterministic
results for a given center it was executed once for each node ∈ V for even
diameter bounds. Otherwise, both construction heuristics were iterated until
no better solution could be found for 100 runs; the finally best solution was
utilized as initial solution in Branch&Cut.

The results are clear: Primal heuristics boost the optimization noticeable,
especially if D is even. Significantly better results are highlighted in gray, the
error probability obtained by the Wilcoxon tests is always less than 0.01%,
except for instance TR 60/600/7 (0.789%). The parts of the overall running
times of CBTC/RTC and the VND to improve incumbent solutions are negli-
gibly, much less than one second for all instances. Only in some rare cases the

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 223

Table 8.1 Optimization with and without primal heuristics, running times t (in seconds),

and quality of solutions, compared to the optimum (opt), obtained by the construction
heuristics RTC (Euclidean instances TE and Santos) or CBTC (instances with random

weights TR); significantly better results according to Wilcoxon tests are highlighted gray.

Since not all of the applied heuristics are not deterministic, 30 independent runs have been
performed for each instance.

t(primal heuristics) t(no primal heuristics) quality RTC/CBTC

Instance |V | |E| D median min max median min max opt mean stddev gap(mean)

TE 30 200 4 11.78 11.59 12.03 21.57 21.36 21.85 599 599.13 0.34 0.02%

6 8.92 8.63 12.68 12.84 12.70 13.11 482 483.97 2.98 0.41%
8 1.99 1.89 2.27 2.41 2.33 2.51 437 437.35 1.05 0.08%

TR 30 200 4 1.37 1.35 1.41 2.13 2.08 2.20 234 234.00 0.00 0.00%

6 0.61 0.59 0.63 0.78 0.74 0.80 157 160.00 0.00 1.91%
8 0.12 0.10 0.13 0.15 0.14 0.16 135 135.00 0.00 0.00%

Santos 25 300 4 2.07 2.02 2.12 4.06 3.98 4.12 500 500.00 0.00 0.00%

6 0.70 0.66 0.93 1.07 1.05 1.11 378 378.55 1.15 0.15%
10 0.48 0.40 0.56 0.59 0.55 0.62 379 383.06 2.13 1.07%

40 100 4 1.16 1.10 1.29 1.34 1.27 1.38 755 759.26 11.45 0.56%

6 0.43 0.40 0.45 0.43 0.41 0.44 599 621.32 2.87 3.73%
10 0.38 0.36 0.41 0.39 0.37 0.41 574 589.42 5.58 2.69%

TE 40 400 4 27.98 27.18 46.24 91.98 91.23 93.60 672 674.32 3.35 0.35%

6 126.62 93.23 243.96 182.59 181.73 189.06 555 558.97 1.96 0.71%
8 81.78 42.37 98.84 154.92 154.01 162.29 507 514.94 3.05 1.57%

TR 60 600 4 1739.10 1647.47 1828.58 3494.98 3464.51 3645.16 326 368.00 0.00 12.88%

6 561.53 537.10 607.79 901.11 894.57 937.41 175 179.00 0.00 2.29%

8 4.66 4.53 4.89 4.74 4.67 4.89 127 148.00 0.00 16.54%

TE 30 200 5 67.50 45.67 69.34 52.96 52.54 53.74 534 534.29 0.90 0.05%
7 28.98 24.91 31.95 28.34 27.92 28.91 463 464.68 1.58 0.36%

TR 30 200 5 2.67 2.36 3.64 2.39 2.35 2.44 195 196.52 3.11 0.78%

7 0.29 0.27 0.34 0.32 0.31 0.33 144 145.26 3.20 0.87%

Santos 25 300 5 10.42 10.27 10.59 10.65 10.52 10.88 429 429.00 0.00 0.00%

7 2.13 2.11 2.16 3.85 3.79 3.92 408 408.00 0.00 0.00%

9 1.11 1.08 1.41 1.62 1.58 1.64 336 337.19 1.83 0.36%
40 100 5 0.93 0.87 1.02 1.06 1.02 1.10 729 739.35 14.37 1.42%

7 3.38 2.90 4.30 4.52 4.47 4.65 667 684.87 7.12 2.68%
9 3.44 3.30 3.81 3.95 3.90 4.05 552 570.77 8.79 3.40%

TE 40 400 5 348.51 335.09 618.57 466.34 464.20 478.88 612 613.55 2.41 0.25%

7 463.89 244.64 808.79 605.31 601.90 623.02 527 532.84 3.38 1.11%

9 181.40 111.62 822.45 527.47 524.99 544.38 495 502.74 3.68 1.56%
TR 60 600 5 1286.76 652.53 2546.96 811.16 804.56 835.89 256 265.71 11.09 3.79%

7 33.37 17.44 52.10 27.31 27.01 28.06 150 163.35 3.90 8.90%
9 5.99 5.33 20.88 10.32 10.17 10.62 124 136.35 2.74 9.96%

primal heuristics can mislead CPLEX, although the minimal running times
achieved are still better or at least comparable.

The solutions computed by CBTC and RTC for these small instances are
in general of high quality (average objective value less than 2% from the
optimum) when the graph is complete or at least dense. On sparse graphs
(Santos 40/100, TR 60/600) already finding a feasible solution is difficult.
An interesting observation is that the running times are much more stable
when no primal heuristics are used, so differences in the jump cuts identified
by CB plus local search have only a relatively small impact in this case. For
all remaining experiments primal heuristics were activated.

For smaller instances where the exact ILP-based jump cut separation can
also be applied, Table 8.2 lists success rates SR(·) for finding existing violated
jump inequalities in LP solutions for the two construction heuristics (CA and

224 M. Gruber and G.R. Raidl

Table 8.2 Success rates SR (%) for separating jump cuts by construction heuristics CA

and CB , optionally followed by local search L and tabu search T, in comparison to the
exact separation approach on the same LP solutions.

Instance |V | |E| D #exact SR(CA) SR(CAL) SR(CB) SR(CBL) SR(CBLT)

TE 30 200 4 817 99.02% 100.00% 99.14% 99.39% 99.39%

6 991 97.17% 99.80% 97.07% 97.58% 98.63%

8 560 65.87% 92.94% 95.08% 95.42% 96.35%
TR 30 200 4 272 100.00% 100.00% 100.00% 100.00% 100.00%

6 152 98.03% 100.00% 100.00% 100.00% 100.00%

8 22 100.00% 100.00% 100.00% 100.00% 100.00%

Santos 25 300 4 316 100.00% 100.00% 100.00% 100.00% 100.00%

6 126 99.21% 99.21% 100.00% 100.00% 100.00%

10 77 100.00% 100.00% 100.00% 100.00% 100.00%
40 100 4 204 100.00% 100.00% 100.00% 100.00% 100.00%

6 112 100.00% 100.00% 100.00% 100.00% 100.00%

10 85 64.71% 90.59% 96.47% 96.47% 96.47%

TE 30 200 5 2786 89.75% 98.39% 92.41% 95.36% 95.36%

7 3353 64.04% 91.88% 94.06% 95.41% 96.99%
TR 30 200 5 377 79.05% 91.51% 96.55% 97.35% 97.35%

7 89 80.90% 85.39% 92.13% 94.38% 95.51%

Santos 25 300 5 794 83.50% 97.10% 97.73% 98.36% 99.46%
7 188 81.38% 88.83% 95.21% 95.74% 96.81%

9 115 91.30% 93.91% 97.39% 97.39% 98.26%

40 100 5 186 100.00% 100.00% 100.00% 100.00% 100.00%
7 445 81.88% 93.82% 95.58% 96.15% 96.16%

9 485 67.80% 73.35% 92.66% 93.04% 94.02%

CB), optionally followed by local search (L) and tabu search (T) with the
strategy parameters lmin = 5, γ = 0.75, and imax = 25. The number of cuts
identified by the exact model is given in column “#exact”. As can be seen,
for even diameter already the simple construction heuristic CA gives excel-
lent results, in most cases further improved by local search. The statistically
significantly better heuristic CB (error level < 0.01%) leaves not much room
for local and tabu search to enhance the success rate. A more differentiated
situation can be observed for odd diameter bounds. The number of jump cuts
identified directly by CB is significantly higher in contrast to CA (error level
< 0.01%), whereas local search flattens the differences in the construction
phase to a greater or lesser extent. On almost all test instances, tabu search
further improves the success rate to more than 95%. In total, heuristic CB

followed by local search and tabu search was able to separate all existing
jump cuts for 9 out of 22 instances.

The consequences of the success to reliably identify violated jump inequal-
ities can be seen in Table 8.3, where for the various approaches CPU-times
t(·) to identify proven optimal integer solutions are listed. It can clearly be
seen that the excessive running times of the exact jump cut separation pro-
hibit its usage on larger instances. Times of the overall optimization process
are in general magnitudes higher as when using our heuristics for jump cut
separation, sometimes even the given CPU-time limit of one hour is exceeded.
Since tabu search is only executed in case the construction heuristic followed

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 225

Table 8.3 Optimal solution values, median running times t (in seconds) to find and prove

these solutions when using different strategies for jump cut separation, and optimality gaps
of the final LP relaxations in the root nodes of the Branch&Cut search trees when using

heuristic CB followed by local search and tabu search. The last column gives running times

in case directed connection cuts (dc) are separated exactly using multiple max-flow/min-
cut computations.

Instance |V | |E| D opt t(exact) t(CAL) t(CBL) t(CBLT) gap(CBLT) t(dc+CBLT)

TE 30 200 4 599 3522.73 13.03 11.78 11.39 1.69% 18.73

6 482 > 1h 32.06 8.92 9.09 2.59% 13.73

8 437 > 1h 2.16 1.99 2.12 1.98% 3.25
TR 30 200 4 234 328.09 1.63 1.37 1.38 0.00% 3.28

6 157 185.65 0.96 0.61 0.63 0.00% 1.16

8 135 0.59 0.11 0.12 0.11 0.00% 0.30

Santos 25 300 4 500 809.86 7.03 2.07 2.10 0.00% 3.58

6 378 215.30 1.04 0.70 0.71 0.53% 0.86

10 379 419.03 0.58 0.48 0.48 0.00% 0.64
40 100 4 755 105.34 0.98 1.16 1.18 0.00% 2.14

6 599 41.07 0.37 0.43 0.43 0.00% 0.93

10 574 440.55 0.34 0.38 0.36 0.13% 0.70

TE 30 200 5 534 > 1h 57.85 67.50 62.14 7.20% 148.88

7 463 > 1h 28.87 28.98 28.35 6.63% 38.16
TR 30 200 5 195 831.31 2.86 2.67 2.85 9.40% 5.36

7 144 139.08 0.27 0.29 0.30 4.56% 1.31

Santos 25 300 5 429 1122.52 7.20 10.42 6.08 8.87% 20.08
7 408 2489.67 1.69 2.13 1.98 4.65% 6.10

9 336 66.66 1.01 1.11 1.12 0.89% 1.28

40 100 5 729 238.24 0.79 0.93 1.02 0.00% 2.98
7 667 988.36 2.47 3.38 3.22 1.50% 5.32

9 552 > 1h 7.47 3.44 3.98 3.22% 5.70

by local search fails to identify a violated jump inequality, running times of
CBL and CBLT considerably differ only on few instances, especially when D
is odd.

On these relatively small instances it is difficult to draw conclusions on the
performance of the various heuristics, even though the time required to solve
all instances to proven optimality is lowest for CB with local search and tabu
search (141.02s), followed by CBL (150.86s) and CAL (170.77s). The picture
becomes more apparent when investigating slightly larger instances (sparse,
dense, and complete graphs), see Table 8.4. Again, statistically significantly
better results are highlighted gray; the error probability is always less than
0.01% except for instances TE 30/435/9 (0.5%), TR 40/480/7 (2.73%; CAL
is significantly faster although median(CBL)<median(CAL)), TR 40/480/9
(4.17%), and TR 40/780/7 (1.72%). With increasing instance size the higher
success rates of CBL in identifying jump cuts show a considerable impact on
running times.

To achieve a good runtime behavior using tabu search a lot of parameter
tuning for lmin, γ, and imax is necessary. A parameter set working for all in-
stance types and sizes very well does not exist. In addition, when the number
of nodes and edges in the graph increases, the benefit of identifying more vi-
olated jump inequalities is increasingly undone. Especially this is true when

226 M. Gruber and G.R. Raidl

Table 8.4 Running times t (in seconds) on larger instances (sparse, dense, complete)

when separating jump cuts using heuristics CA and CB including local search; statistically
significantly better results are highlighted gray.

Instance |V | |E| D t(CAL) t(CBL) D t(CAL) t(CBL)

sparse TE 30 175 4 9.40 9.31 5 112.39 72.05

6 28.66 6.62 7 23.07 28.65

8 2.09 1.62 9 1.49 1.49

dense 305 4 98.95 27.08 5 35.38 33.51
6 24.01 11.28 7 12.09 27.10

8 2.70 2.01 9 1.47 1.80

complete 435 4 98.68 30.74 5 54.49 32.64
6 47.57 13.18 7 13.00 19.73

8 2.68 2.60 9 2.37 2.64

sparse TR 40 175 4 63.59 24.27 5 174.60 20.03
6 10.28 2.08 7 3.82 1.63

8 0.46 0.47 9 0.84 0.72

dense 480 4 173.81 27.55 5 24.63 20.78
6 8.34 2.71 7 3.21 3.09

8 0.77 0.72 9 1.15 1.10
complete 780 4 206.48 27.75 5 100.00 68.67

6 7.60 3.61 7 15.27 15.50

8 1.08 1.10 9 9.13 8.96

sum: 787.15 194.70 588.40 360.09

D is odd since a lot of computational effort is invested into LP solutions in
which no jump cuts exist. Therefore, we abstained from using tabu search
on larger instances since the performance of the construction heuristics with
local search is already excellent.

Table 8.3 also lists optimal solution values (“opt”) as well as optimal-
ity gaps of the LP relaxations at the root nodes of the Branch&Cut search
trees for CBLT. Whereas our model is quite tight in the even diameter
case, the gaps for odd diameters reveal potential for further investigations
to strengthen the formulation. In the last column, Table 8.3 finally gives run-
ning times for CBLT when directed connection cuts (dc) are separated for
LP solutions before jump cuts using an exact max-flow/min-cut algorithm,
which proved to be definitely much more time consuming by a factor of at
least 1.2 up to 4 and more.

Last but not least, Table 8.5 compares our approach to the so far lead-
ing hop-indexed multi-commodity flow formulations from [8] (even diameter
cases) and [9] (odd diameter cases) on larger instances. The columns list
for each instance the optimal objective value if known, otherwise an upper
bound (opt/UB∗), the LP relaxation value for construction heuristic CB with
local search (LP(CBL)), the gaps for this approach and for the best model
from [8] and [9] whenever the optimum is available resp. the corresponding
values were published (gap(CBL), gap(GMR)), as well as the running time
to proven optimality (t(CBL)); a time limit of 10 hours was used for these
experiments.

We were able to discover and prove previously unknown optima (bold)
and could show that instance TE 80/800/4 is infeasible. Concerning the LP

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 227

Table 8.5 Optimal values resp. upper bounds, LP relaxation values, LP gaps (for CBL

and GMR, the tightest models from [8] and [9]), and running times on Euclidean and
random instances with 40, 60, and 80 nodes.

t(CBL)

Instance |V | |E| D opt/UB∗ LP(CBL) gap(CBL) gap(GMR) median min max

TE 40 400 4 672 672.00 0.00% 0.04% 27.98 27.18 46.24

6 555 544.33 1.92% 0.60% 126.62 93.23 243.96
8 507 500.14 1.35% 0.50% 81.78 42.37 98.84

60 600 4 1180 1178.50 0.13% 0.10% 1062.03 673.11 1154.82

6 837 816.85 2.41% 0.50% 9244.26 5331.65 16389.33
8 755 736.60 2.44% 18844.98 15815.31 25913.07

80 800 4 infeasible infeasible 1871.81 1857.74 2098.96

6 1066 1044.87 1.98% > 10h
8 963∗ 925.32 ∗3.91% > 10h

TR 40 400 4 309 309.00 0.00% 0.00% 23.35 22.84 23.99

6 189 189.00 0.00% 0.00% 2.82 2.78 2.90
8 161 161.00 0.00% 0.00% 0.76 0.72 0.79

60 600 4 326 323.49 0.77% 0.70% 1739.10 1647.47 1828.58

6 175 171.16 2.19% 1.30% 561.53 537.10 607.79
8 127 127.00 0.00% 0.00% 4.66 4.53 4.89

80 800 4 424 399.67 5.74% 5.70% > 10h
6 210 206.41 1.71% 1904.19 1891.74 2181.73

8 166 164.33 1.00% 25.56 24.83 27.24

TE 40 400 5 612 578.42 5.49% 0.00% 348.51 335.09 618.57
7 527 495.09 6.06% 0.30% 463.89 244.64 808.79

9 495 468.08 5.44% 0.30% 181.40 111.62 822.45
60 600 5 965 899.79 6.76% 0.00% 34288.91 31383.42 > 10h

7 789 742.23 5.93% 0.00% > 10h

9 738 690.88 6.38% 0.50% > 10h 30869.08 > 10h
80 800 5 1313 1205.82 8.16% > 10h

7 1010 942.60 6.67% > 10h

9 950∗ 871.90 ∗8.22% > 10h

TR 40 400 5 253 224.90 11.11% 1.00% 17.94 17.66 22.49

7 171 169.11 1.10% 0.00% 2.16 2.00 2.26

9 154 154.00 0.00% 0.00% 1.06 0.86 1.20
60 600 5 256 217.14 15.18% 3.20% 1286.76 652.53 2546.96

7 150 138.50 7.67% 0.30% 33.37 17.44 52.10

9 124 119.84 3.35% 0.00% 5.99 5.33 20.88
80 800 5 323 272.42 15.66% > 10h

7 185 176.44 4.62% 153.57 126.16 300.28

9 158 154.57 2.17% 15.97 13.81 133.14

gaps, the results are comparable on even diameter instances, while for odd
diameters the flow models are significantly better. A fair runtime comparison
to [8] and [9] is not possible since the used hardware is too different (dual-core
AMD Opteron 2214 (2.2GHz) compared to an Intel Pentium II (450MHz)).
A rough estimation indicates that the flow formulations have their strengths
on small diameter bounds (4 to 6), whereas Branch&Cut dominates when the
diameter bound is looser (6 and above). To give an example: In [9] Gouveia et
al. report for their best odd diameter formulation, the Longest-Path model,
on instance TE 40/400/5 a running time of 345 seconds to prove optimality,
the Branch&Cut approach requires about the same time on a much faster
machine (median: 348.51 seconds). On the same instance with a diameter

228 M. Gruber and G.R. Raidl

bound of 9 the situation changes, Gouveia et al. list 44600 seconds for their
model whereas Branch&Cut in general only requires about 181.40 seconds
(median).

8.7 Conclusions and Future Work

In this work we presented a new ILP formulation for the BDMST problem
utilizing jump inequalities to ensure the diameter constraint and solve it
with Branch&Cut. The odd diameter case is further strengthened by new
center connection inequalities. For the separation of jump inequalities we
considered an exact ILP approach and two greedy construction heuristics
followed by local and tabu search. While our exact separation prohibits its
use in practice due to its excessive computation times, the heuristic methods
are substantially faster and achieve convincing success rates in identifying
violated jump inequalities; they lead to an excellent overall performance of
the Branch&Cut.

The usage of primal heuristics for determining initial solutions and for lo-
cally improving new incumbent solutions enhances our approach significantly.
The gain received by replacing an exact polynomial time separation proce-
dure for directed connection cuts by fast (meta-)heuristics was surprisingly
high and can be an interesting field for further research also for other types
of cuts and problems. Having an exact algorithm at hand to solve BDMST
instances of moderate size in reasonable time also opens up new opportuni-
ties in combining it with leading metaheuristics. Smaller subproblems arising
can now be solved to proven optimality, or specially designed neighborhoods
can be searched making use of the Branch&Cut approach.

References

1. K. Bala, K. Petropoulos, and T.E. Stern. Multicasting in a linear lightwave network. In
Proc. of the 12th IEEE Conference on Computer Communications, pages 1350–1358.
IEEE Press, 1993.

2. A. Bookstein and S. T. Klein. Compression of correlated bit-vectors. Information
Systems, 16(4):387–400, 1991.

3. B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method for

the maximum flow problem. Algorithmica, 19(4):390–410, 1997. Code available at

http://www.avglab.com/andrew/CATS/maxflow_solvers.htm.
4. G. Dahl, T. Flatberg, N. Foldnes, and L. Gouveia. Hop-constrained spanning trees:

The jump formulation and a relax-and-cut method. Technical report, University of

Oslo, Centre of Mathematics for Applications (CMA), 2005.
5. G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-

constrained minimum spanning tree problem. In Handbook of Optimization in
Telecommunications, chapter 19, pages 493–515. Springer Science + Business Media,

2006.

http://www.avglab.com/andrew/CATS/maxflow_solvers.htm

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 229

6. A.C. dos Santos, A. Lucena, and C.C. Ribeiro. Solving diameter constrained minimum

spanning tree problems in dense graphs. In Proceedings of the International Workshop
on Experimental Algorithms, volume 3059 of LNCS, pages 458–467. Springer Verlag,

Berlin, 2004.

7. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

8. L. Gouveia and T.L. Magnanti. Network flow models for designing diameter-

constrained minimum spanning and Steiner trees. Networks, 41(3):159–173, 2003.
9. L. Gouveia, T.L. Magnanti, and C. Requejo. A 2-path approach for odd-diameter-

constrained minimum spanning and Steiner trees. Networks, 44(4):254–265, 2004.

10. L. Gouveia, L. Simonetti, and E. Uchoa. Modelling the hop-constrained minimum
spanning tree problem over a layered graph. In Proceedings of the International Net-

work Optimization Conference, pages 1–6, Spa, Belgium, 2007.
11. M. Gruber and G.R. Raidl. A new 0–1 ILP approach for the bounded diameter

minimum spanning tree problem. In L. Gouveia and C. Mourão, editors, Proceedings of

the International Network Optimization Conference, volume 1, pages 178–185, Lisbon,
Portugal, 2005.

12. M. Gruber and G.R. Raidl. Variable neighborhood search for the bounded diameter

minimum spanning tree problem. In P. Hansen, N. Mladenović, J.A. Moreno Pérez, ed-
itors, Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search,
Tenerife, Spain, 2005.

13. M. Gruber, J. van Hemert, and G.R. Raidl. Neighborhood searches for the bounded
diameter minimum spanning tree problem embedded in a VNS, EA, and ACO. In
Proceedings of the Genetic and Evolutionary Computation Conference 2006, volume 2,

pages 1187–1194, 2006.
14. B.A. Julstrom. Greedy heuristics for the bounded-diameter minimum spanning tree

problem. Technical report, St. Cloud State University, 2004.
15. T.L. Magnanti and L.A. Wolsey. Handbooks in Operations Research and Management

Science: Network Models, chapter 9. North-Holland, 1995.
16. T.F. Noronha, A.C. Santos, and C.C. Ribeiro. Constraint programming for the di-

ameter constrained minimum spanning tree problem. Electronic Notes in Discrete

Mathematics, 30:93–98, 2008.
17. R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389–1401, 1957.

18. G.R. Raidl and B.A. Julstrom. Greedy heuristics and an evolutionary algorithm for
the bounded-diameter minimum spanning tree problem. In G. Lamont, H. Haddad,
G.A. Papadopoulos, and B. Panda, editors, Proceedings of the ACM Symposium on
Applied Computing, pages 747–752. ACM Press, 2003.

19. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems, 7(1):61–77, 1989.

20. A. Singh and A.K. Gupta. Improved heuristics for the bounded-diameter minimum
spanning tree problem. Soft Computing, 11(10):911–921, 2007.

	(Meta-)Heuristic Separation of Jump Cuts in a Branch&Cut Approach for the Bounded Diameter Minimum Spanning Tree Problem
	Martin Gruber and Günther R. Raidl
	Introduction
	Previous Work
	The Jump Model
	Jump Cut Separation
	Exact Separation Model
	Simple Construction Heuristic CA
	Constraint Graph Based Construction Heuristic CB
	Local Search and Tabu Search

	Primal Heuristics
	Computational Results
	Conclusions and Future Work
	References

