
Chapter 7

MIP-based GRASP and Genetic
Algorithm for Balancing Transfer Lines

Alexandre Dolgui, Anton Eremeev, and Olga Guschinskaya

Abstract In this chapter, we consider a problem of balancing transfer lines
with multi-spindle machines. The problem has a number of distinct features
in comparison with the well-studied assembly line balancing problem, such as
parameterized operation times, non-strict precedence constraints, and paral-
lel operations execution. We propose a mixed-integer programming (MIP)-
based greedy randomized adaptive search procedure (GRASP) and a genetic
algorithm (GA) for this problem using a MIP formulation. Both algorithms
are implemented in GAMS using the CPLEX MIP solver and compared
to problem-specific heuristics on randomly generated instances of different
types. The results of computational experiments indicate that on large-scale
problem instances the proposed methods have an advantage over the methods
from literature for finding high quality solutions. The MIP-based recombi-
nation operator that arranges the elements of parent solutions in the best
possible way is shown to be useful in the GA.

7.1 Introduction

The problem considered in this chapter consists in balancing a transfer line
where multi-spindle transfer machines without intermediate buffers are used.
This problem is referred to as the transfer line balancing problem (TLBP)
[5]. Machining transfer lines are usually paced and serial. They consist of
a sequence of stations linked by an automated material handling device. In

Alexandre Dolgui · Olga Guschinskaya
Ecole Nationale Supérieure des Mines de Saint Etienne, Saint Etienne, France
e-mail: {dolgui,guschinskaya}@emse.fr

Anton Eremeev
Omsk Branch of Sobolev Institute of Mathematics SB RAS, Omsk, Russia

e-mail: eremeev@ofim.oscsbras.ru

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 189

DOI 10.1007/978-1-4419-1306-7 7, c© Springer Science+Business Media, LLC 2009

{dolgui,guschinskaya}@emse.fr
eremeev@ofim.oscsbras.ru

190 A. Dolgui, A. Eremeev, and O. Guschinskaya

lines of this type, each station is equipped by a special machine-tool which
performs machining operations block by block. All operations of each block
are executed simultaneously using one multi-spindle head. The parallel execu-
tion of operations in a block is possible due to the fact that the multi-spindle
heads carry several simultaneously activated tools. When machining at the
current station is finished (all blocks installed on this machine have been ac-
tivated) the part is moved to the next station. The time span between two
movements can not exceed the given time value T0 referred to as line cycle
time. The balancing problem consists in assigning the given set of operations
to parallel blocks and stations under given assignment restrictions.

The line balancing problem in the assembly environment is well-studied
in the literature. Several reviews of different formulations and used solution
methods are available e.g. in [1, 2, 9]. The TLBP has a number of unique
characteristics such as parameterized operation times, non-strict precedence
constraints, and parallel operations execution. These features make it impos-
sible to use directly the optimization methods developed for assembly line
balancing problems; for details see [5]. Several exact (e.g. mixed-integer pro-
gramming and graph approaches) and heuristic (e.g. FSIC (First Satisfy In-
clusion Constraints) and multi-start decomposition algorithm) methods have
been developed for the TLBP. A description of these methods is given in
[10]. Later, in [11] it was proposed to use greedy randomized adaptive search
procedures (GRASP) for solving this problem.

In this chapter, we propose a MIP-based greedy randomized adaptive
search procedure (GRASP) and a genetic algorithm (GA) for the TLBP,
using the MIP formulation [5] of the TLBP in both algorithms. The solution
construction and the local improvement stages of GRASP are based on solv-
ing sub-problems of smaller size. The same solution construction method is
used for building the initial population in the GA. The crossover and mu-
tation in the GA are combined in a MIP-recombination operator, similar to
the recombination proposed in [3].

Both algorithms are implemented in GAMS using the CPLEX MIP solver
and compared to problem-specific heuristics [10] on randomly generated in-
stances of different types. The results of computational experiments indicate
that on large problem instances the methods proposed offer an advantage
over the methods from literature in finding high quality solutions. The capa-
bility of the MIP-recombination operator to arrange the elements of parent
solutions in the best possible way is shown to be useful in the GA.

The chapter is organized as follows. The problem statement in the MIP
formulation is given in Section 7.2. The solution methods are discussed in
Sections 7.3 and 7.4. The results of computational experiments are presented
in Section 7.5. Concluding remarks are given in Section 7.6.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 191

7.2 Problem Statement

For the TLBP the following input data are assumed to be given [5]:

• N is the set of all operations involved in machining of a part;
• T0 is the maximal admissible line cycle time;
• τS and τ b are the auxiliary times needed for activation of a station and a

spindle head (block), respectively;
• C1 and C2 are the relative costs of one station and one spindle head (block);
• m0 is the maximal admissible number of stations;
• n0 is the maximal number of spindle heads (blocks) per station;
• Precedence constraints between the operations. These constraints define

a non-strict partial order relation over the set of operations N. They are
represented by a digraph G = (N, D). An arc (i, j) ∈ N2 belongs to
the set D if and only if the block with operation j cannot precede the
block with operation i. (If (i, j) ∈ D then the operations i and j can be
performed simultaneously in a common block.)

• Inclusion constraints defining the groups of operations that must be as-
signed to the same station, because of a required machining tolerance.
These constraints can be represented by a family ES of subsets of N, such
that all operations of the same subset e ∈ ES must be assigned to the
same station;

• Station exclusion constraints defining the groups of operations that cannot
be assigned to the same station because of their technological incompati-
bility. These constraints are represented by a family ES of subsets of N,
such that all elements of the same subset e ∈ ES cannot be assigned to
the same station.

• Block exclusion constraints defining the groups of operations that cannot
be assigned to the same block because of their technological incompatibil-
ity. These constraints are represented by a family EB of subsets from N,
such that all elements of the same subset e ∈ EB cannot be assigned to
the same block.

• For each operation j, its processing time tj is given or, alternatively, it may
be characterized by two parameters: the required working stroke length λj

and the maximal admissible feed per minute sj . The working stroke length
includes the required depth of cut and the distance between the tool and
the part surface.

A MIP formulation for solving the TLBP was suggested in [5]. Here, we
reproduce this model with the improvements proposed in [10].

Let us denote the set of all operations assigned to station k by Nk and
let the set of operations grouped into block l of station k be Nkl. Station
processing time tS(Nk) equals the sum of its block processing times: tS(Nk) =∑nk

l=1 t
b(Nkl) + τS .

We will consider two definitions of block processing time. A simplified
definition [10] uses the assumption that the block processing time tb(Nkl) is

192 A. Dolgui, A. Eremeev, and O. Guschinskaya

equal to the duration of the longest operation in the block:

tb(Nkl) = max{tj |j ∈ Nkl}+ τ b. (7.1)

A more general definition [12] does not use the processing times of opera-
tions tj , but rather the parameters λj and sj :

tb(Nkl) =
max{λi|i ∈ Nkl}
min{si|i ∈ Nkl}

+ τ b. (7.2)

Note that the latter definition covers the first case, assuming λj = tj , sj = 1
for all j. Besides that, it suits better the practical situations where the oper-
ations assigned to several tools fixed within one block may require different
depths of their cuts and different maximal admissible feed speeds.

In the MIP formulation below we use the following notation:

• q is the block index; q = (k − 1)n0 + l is the l-th block of a station k;
• q0 is the maximal possible value of q, q0 = m0n0;
• S(k) = {(k − 1)n0 + 1, . . . , kn0} is the set of block indices for a station k;
• Q(j) is the set of indices q (blocks) where operation j can be assigned;
• K(j) is the set of indices k (stations) where operation j can be assigned;
• e is a set of operations which is an element of ES, ES or EB;
• j(e) is an arbitrarily fixed operation from the set e.
• tj is the execution time of operation j if it is performed alone in a block.

In the simplified formulation, tj is given as input data. Otherwise, tj = λj

sj
.

• tij = max{λi,λj}
min{si,sj} is the execution time of two operations i, j if they are

performed in one block. In the simplified formulation this value is not
used.

The following variables will be involved:

• Xjq is a binary decision variable (1 if operation j is assigned to block q
and 0 otherwise);

• Fq is an auxiliary real-valued variable for determining the time of process-
ing the block q;

• Yq is an auxiliary binary variable that indicates if the block q exists;
• Zk is an auxiliary binary variable that indicates if the station k exists.

The variables Yq and Zk are used to count the number of blocks and
stations, respectively. To reduce the number of decision variables and con-
straints, the sets of possible block and station indices Q(j), K(j) for each
operation j are obtained by means of the procedure described in [5].

The problem consists in the minimization of investment costs incurred by
construction of stations and spindle heads (blocks):

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 193

Min C1

m0∑
k=1

Zk + C2

q0∑
q=1

Yq (7.3)

subject to ∑
q∈Q(j)

(q − 1)Xjq ≥
∑

s∈Q(i)

(s− 1)Xis, (i, j) ∈ D, (7.4)

∑
q∈Q(j)

Xjq = 1, j ∈ N, (7.5)

∑
j∈e\{j(e)}

∑
q∈S(k)∩Q(j)

Xjq = (|e| − 1)
∑

q∈S(k)

Xj(e)q, e ∈ ES, k ∈ K(j(e)),

(7.6)∑
j∈e

Xjq ≤ |e| − 1, e ∈ EB, q ∈ ∩j∈eQ(j), (7.7)

∑
j∈e

∑
q∈S(k)∩Q(j)

Xjq ≤ |e| − 1, e ∈ ES, k ∈ ∩j∈eK(j), (7.8)

Fq ≥ (ti + τ b)Xiq, i ∈ N, q ∈ Q(i), (7.9)

Fq ≥ (tij + τ b)(Xiq +Xjq − 1), i, j ∈ N, i < j, q ∈ Q(i) ∩Q(j), (7.10)

τS +
∑

q∈S(k)

Fq ≤ T0, k = 1, 2, . . . ,m0, (7.11)

Yq ≥ Xjq, j ∈ N, q ∈ Q(j), (7.12)

Zk = Y(k−1)n0+1, k = 1, 2, . . . ,m0, (7.13)

Yq−1 − Yq ≥ 0, q ∈ S(k)\{(k − 1)n0 + 1}, k = 1, 2, . . . ,m0, (7.14)

Zk−1 − Zk ≥ 0, k = 2, 3, . . . ,m0, (7.15)

Xjq, Yq, Zk,∈ {0, 1}, j ∈ N, q = 1, 2, . . . , q0, k = 1, . . . ,m0, (7.16)

194 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fq ∈ [0, T0 − τS − τ b], q = 1, 2, . . . , q0. (7.17)

Here inequalities (7.4) impose the precedence constraints; equalities (7.5) re-
flect the fact that each operation must be assigned to exactly one block; con-
straints (7.6) determine the necessity of grouping certain operations in the
same station; constraints (7.7)-(7.8) deal with the impossibility of grouping
certain operations in one block or executing certain operations at the same
station, respectively; constraints (7.9) and (7.10) determine the block pro-
cessing times according to (7.1) or (7.2): here condition (7.9) corresponds to
the case of a single operation in a block, while (7.10) covers the cases of two
or more operations (note that in the simplified formulation with block time
defined by (7.1), inequality (7.10) is redundant); constraint (7.11) imposes
the bound on cycle time; constraints (7.12) ensure that block q exists in the
design decision if and only if Xjq = 1 for some j; equalities (7.13) ensure
that a station k exists in the design decision if and only if at least one block
is assigned to it; constraints (7.14) guarantee that block q is created in sta-
tion k only if block q−1 exists for this station; constraints (7.15) ensure that
station k can be created only if station k − 1 is created.

Inequalities (7.14) and (7.15) mainly serve as symmetry-breaking cuts in
this model (note that by a simple modification of (7.13) one could make
these inequalities redundant). Bounds (7.16) are also imposed to reduce the
polyhedron of the linear relaxation. One could assume that all variables Yq

and Zk are real values from the interval [0,1] but we do not use this assump-
tion, because our preliminary experiments indicate that binary variables Yq

and Zk yield a more appropriate problem formulation for the CPLEX MIP
solver.

Another modification that can improve the performance of branch-and-cut
algorithms consists in adding a relatively small penalty term to the objective
function. The greater is the block number where an operation is assigned,
the greater penalty is given:

Min C1

m0∑
k=1

Zk + C2

q0∑
q=1

Yq + C3

q0∑
q=1

∑
j∈N

(1− q)Xjq. (7.18)

Here, the weight C3 may be chosen sufficiently small, so that the opti-
mal solution of the modified problem (7.4)–(7.18) is also optimal for prob-
lem (7.3)–(7.17). The penalty term breaks some symmetries of the problem
and provides appropriate bias when the branching is made. Our experiments
indicate that for faster search of approximate solutions the value C3 may be
chosen adaptively (see the details in Section 7.5).

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 195

7.3 Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start metaheuristic algorithm, where each iteration con-
sists of two phases: constructing a feasible solution and improving it. Both
phases are repeated interchangeably until a stopping criterion is satisfied.
Extensive bibliographies on GRASP were published in [8, 16]. The general
scheme of GRASP is as follows:

GRASP method
Until a stopping criterion is satisfied do:
1. Construct a random feasible solution.
2. If a feasible solution is constructed,

apply a local improvement procedure to it.
3. Update the best found solution.

7.3.1 Construction Phase

In the case of the TLBP, a feasible solution at Step 1 can be obtained by
applying a randomized greedy heuristic algorithm (see, e.g., [13]). The MIP-
based greedy algorithm for the TLBP starts from a transfer line with an
empty set of blocks, and then the blocks are created consecutively. A feasible
solution is constructed by adding a set N t

add of one or more operations at each
step t of the greedy algorithm. We will denote by N t the set of operations
that have been assigned to stations on steps 1, . . . , t assuming N0 = ∅.

The set N t
add is constructed by a randomized procedure which has two

tunable parameters α ∈ [0, 1] and β ∈ {1, . . . , |N|}. Adjustment of α and
β will be discussed in Section 7.5. At the beginning of step t it is assumed
that N t

add = ∅, then it is extended in the following loop:

1. Compute the set of candidate operations NCL, consisting of all operations
that can be allocated after the set of operations N t−1 ∪ N t

add in view of
inclusion and precedence constraints. To this end, we use a supplementary
digraph G′ = (N, D′) which is obtained from G by adding the arcs (i, i′)
for all pairs i, i′ such that i ∈ e, i′ ∈ e for some e ∈ ES, and by taking the
transitive closure of this extended digraph. The inclusion and precedence
constraints will not be violated if a new operation j is executed after all
operations of the set N t−1 ∪N t

add, provided that N t−1 ∪N t
add contains all

such i that (i, j) ∈ D′ and (j, i) 6∈ D′. The graph G′ may be computed
by means of Warshall’s algorithm in time O(|N|3), before the GRASP
iterations begin.

2. Rank the operations in NCL according to the values of greedy function g(j)
(this function will be described later). Find

196 A. Dolgui, A. Eremeev, and O. Guschinskaya

gmax = max{g(j) : j ∈ NCL} and gmin = min{g(j) : j ∈ NCL}.

3. Place the well-ranked candidate operations j with g(j) ≥ gmax−α(gmax−
gmin) into a set NRCL, called restricted candidate list. The parameter α
controls the trade-off between randomness and greediness in the construc-
tion process.

4. Select an element j uniformly at random from NRCL and add j to the
set N t

add.
5. Include into N t

add all operations i such that (i, j) ∈ D′ and (j, i) ∈ D′ (the
precedence and inclusion constraints imply that these operations must be
placed in the same block with j).

This loop continues until β iterations are made or there are no more opera-
tions to add, i.e. N t−1 ∪N t

add = N.
The iterations of the greedy algorithm continue until either all operations

are assigned and a feasible solution is obtained or it is impossible to create a
new station since m+ 1 > m0.

The greedy function g(j) measures the impact of assigning operation j
at the current iteration. Several greedy heuristics were elaborated for the
simple assembly line balancing problem with the greedy functions based on
priority rules; see, e.g., [17]. However, all previously considered priority rules
are based on the hypothesis that all operations are executed sequentially
and the operation times are cumulated. This hypothesis is not right for the
TLBP, where operations can be executed in parallel. As a consequence, the
greedy function can hardly be based on the known priority rules. We use
a simple greedy function g(j) equal to the lower bound on the number of
blocks required to assign all successors of operation j. This lower bound is
calculated by the algorithm suggested in [5].

Once the set N t
add is chosen, the operations of this set are appended to the

current partial solution which has been computed on the previous iterations.
Let us define for all j ∈ N, q = 1, . . . , q0 the set of values x(t)

jq , such that

x
(t)
jq = 1 if operation j is assigned to block q in the partial solution obtained

at iteration t, and x(t)
jq = 0 otherwise. Allocation of the new operations can be

carried out by means of a supplementary MIP problem. This MIP problem
is formulated by the set of constraints (7.4)–(7.17) and the objective func-
tion (7.18) but a large number of binary variables are fixed equal to zero as
described below.

Let kuse denote the number of the last station to which operations have
been assigned at the latest partial solution, i.e.

kuse = max

k | ∑
j∈N

∑
q∈S(k)

x
(t−1)
jq ≥ 1

 .

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 197

We aim to allocate the operations of the setN t
add to the stations with numbers

not greater than kmax = kuse + β (this is always possible if the problem is
solvable and kmax ≤ m0). To this end, we do not fix the variables Xjq with
j ∈ N t

add and q ≤ qmax, where qmax = kmaxn0. We also do not fix the
variables Xjq such that x(t−1)

jq = 1 or q = 1 + max{q|
∑

j∈N x
(t−1)
jq ≥ 1} to

allow some previously allocated operations to be moved into the first new
block, if it allows to save the cost. All the rest of the variables Xjq are fixed
to zero value. The resulting sub-problem at each step t of the greedy heuristic
is solved by a MIP solver. The value of parameter β is chosen experimentally
so that the resulting sub-problems involve as many operations as possible,
but the computational cost of the MIP solver in each iteration t is “not too
large”.

7.3.2 Improvement Phase

The improvement heuristic starts with a feasible solution obtained at the
construction phase in order to improve it. For this purpose, a MIP-based
modification of the decomposition algorithm with aggregate solving of sub-
problems (DAASS) [12] is used. The algorithm DAASS has already been used
with heuristic FSIC [4], which constructs a feasible solution without applying
any greedy function, in [10, 12].

The decomposition consists in cutting the sequence of stations correspond-
ing to the given feasible solution into several non-intersecting subsequences.
The size of each subsequence is chosen at random, as it is described below.
The total number w of such subsequences is known only at the end of the de-
composition procedure. A subsequence Kr, r = 1, . . . , w involving a random
number of stations kr, is used to generate a sub-problem SPr.

In DAASS, each sub-problem SPr is solved exactly by the graph approach
described in [6]. The results of previously solved sub-problems in DAASS
are taken into account while solving the next sub-problem: each block of
operations existing in the solution to SPr is replaced by a macro-operation
and all macro-operations are included in the consecutive sub-problem SPr+1.

In contrast to the DAASS method, the local improvement procedure used
in the present chapter is based on solving a series of sub-problems in MIP
formulation (7.4)–(7.18). To simplify the algorithm, at step r, r = 1, . . . , w
we do not construct the macro-operations in this heuristic, but simply fix all
binary variables non-related to the stations of setKr, equal to the correspond-
ing values of the best found solution. The remaining variables Xjq, Yq, q ∈
∪k∈Kr

S(k), and Zk, k ∈ Kr are optimized by a MIP solver.
In the randomized choice of the sets Kr we have to ensure that on one

hand, the size of a sub-problem is not “too small” and the solver can often
improve the heuristic solution, on the other hand, the size of a sub-problem is
not “too large” and it is possible to apply the solver in reasonable CPU time.

198 A. Dolgui, A. Eremeev, and O. Guschinskaya

The following parameters, are used to limit the size of the sub-problems [12]:
(i) the maximal number of stations kmax within one subsequence, that is the
maximum possible value of kr; (ii) the maximal number of operations nmax

within one subsequence.
The value kr is chosen uniformly at random within [1, kmax] and then can

be modified so that the total number of operations in the sub-problem does
not exceed Nmax and

∑w
r=1 kr is not greater than the number of stations in

the current heuristic solution.

7.4 Genetic Algorithm

A genetic algorithm is a random search method that models a process of
evolving a population of individuals [14, 15]. Each individual corresponds to
some solution of the problem (feasible or infeasible) and it is characterized
by the fitness which reflects the objective function value and the satisfaction
of problem constraints. The better the fitness value, the more chances are
given for the individual to be selected as a parent. New individuals are built
by means of a reproduction operator that usually consists of crossover and
mutation procedures. The crossover procedure produces the offspring from
two parent individuals by combining and exchanging their elements. The
mutation procedure adds small random changes to an individual. The formal
scheme of the GA with steady state replacement is as follows:

Steady-state scheme of the GA
1. Generate the initial population.
2. Assign t := 1.
3. Until a termination condition becomes true do:

3.1 Selection: choose p1, p2 from the population.
3.2 Produce a child c applying mutation and crossover to p1 and p2.

The crossover is used with probability Pc.
3.3 Choose the worst individual in population w.r.t. the fitness function

and replace it by c.
3.4 t:=t+1.

4. Result is the best found solution w.r.t. fitness function.

In our implementation of the GA the fitness function is identical with
the objective function. The choice of each parent on Step 3.1 is done by the
s-tournament selection: take s individuals at random from the population
(uniformly distributed, repetitions allowed) and select the best one w.r.t. the
objective function. The population size remains constant during the execution
of the GA - this parameter is denoted by Nind.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 199

In each iteration of a steady-state GA, most of the individuals of the
current population are kept unchanged, which is different from the canonical
GA proposed by Holland [14]. In many implementations of the steady-state
GA the offspring replace the worst individuals of the population, but there
are alternative replacement rules as well [15].

In this chapter, we will assume that the GA is restarted every time the
termination condition halts it. This continues until the overall execution time
will reach the limit T . The best solution found over all runs is returned as the
final output. In our computational experiments we have tested an alternative
approach, where the GA runs for the whole period T without restarts (see
Subsection 7.5.2) but it turned to be inferior to the GA with this restart rule.

Let θ be the iteration when the latest solution improvement took place.
The termination condition of GA is: restart if during the last θ iterations
there was no best-found solution improvement and t > Nind.

Encodings of solutions in a GA are usually called genotypes. One of the
most essential issues in the development of a GA is the choice of represen-
tation of solutions in genotypes. In the GA proposed in this chapter, the
genotype consists of values of the binary variables Xjq which describe the
whole assignment of operations. The genotypes of the initial population are
generated at random by Nind runs of the GRASP heuristic described in Sec-
tion 7.3.

MIP-Recombination

As proposed in [3], we combine mutation and crossover into a MIP-recom-
bination operator applied instead of Step 3.2 in the steady-state GA. In the
case of TLBP the MIP-recombination operator consists in solving a MIP
problem, which is obtained from the original problem (7.3)–(7.17) as follows:

MIP-recombination operator
1. Fix all Boolean variables equal to their values in p1.
2. Release all Boolean variables where p1 differs from p2

(analog of crossover).
3. Release a random subset of fixed variables independently with

probability Pm (analog of mutation).

In our implementation, the MIP-solver of CPLEX 11.1 is used to find the
optimum of the sub-problem emerging in the MIP-recombination. To avoid
time-consuming computations we set a time limit Trec for each call to the
solver. Unlike the standard GA crossover, the described MIP-recombination
procedure produces only one new individual at each iteration. If the parent
solutions are feasible, the solver always returns a feasible solution to the MIP-

200 A. Dolgui, A. Eremeev, and O. Guschinskaya

recombination sub-problem because the genotype of one of the parents is sent
to CPLEX as a MIP-start feasible solution.

The initial value of mutation parameter Pm is set to P 0
m and adapted in

the process of GA execution. Every time the MIP-recombination sub-problem
is solved to optimality, the parameter Pm is multiplied by 1.1. Whenever the
solver is unable to find an optimal solution within the time limit Trec, and
Pm > P 0

m, parameter Pm is divided by 1.1. This adaptive mechanism keeps
the complexity of the MIP-recombination problems close to the limit where
the solver is able to obtain exact solutions within the given time Trec.

7.5 Experimental Results

In this section, we compare the genetic algorithm and MIP-based GRASP
proposed in this chapter (further referred to as GA and MIP-GRASP, re-
spectively) to the following three heuristic and exact methods:

• the multi-start hybrid decomposition algorithm (henceforth denoted by
HD) combining DAASS [10, 12] with the FSIC heuristic, where FSIC is
used for construction of a feasible solution;

• the exact graph-based shortest path method [6, 10], denoted by SP;
• CPLEX 11.1 MIP-solver applied to problem (7.3)–(7.17) with the default

solver settings, denoted below by CPLEX.

7.5.1 Problem Instances

In the experiments, we use five test series S1-S5 from [10], each one containing
50 randomly generated instances and two new series S6 and S7, also randomly
generated but with more realistic data sets. Both series S6 and S7 consist of
20 instances. The number of operations and the upper bound m0 on the num-
ber of stations are shown in Table 7.1. Also, this table gives the precedence
constraints density, measured by the order strength (OS) of graph G. Here,
by order strength we mean the number of edges in the transitive closure of
graph G divided by |N|(|N| − 1)/2. In series S1-S5 we have C1 = 10, C2 = 2,
τ b = τS = 0, n0 = 4. In S6 and S7, C1 = 1, C2 = 0.5, τ b = 0.2, τS = 0.4,
n0 = 4.

The details on the random generation of series S1-S5 can be found in [10].
The series S6 and S7 consist of more realistic instances for two reasons. Firstly,
they contain non-trivial input data for parameters λj , sj , while series S1-
S5 in effect consist of problems in simplified formulation defined in terms
of operation times tj . Secondly, in S6 and S7 the pseudo-random choice of
operations was not performed independently and uniformly as in Series S1-
S5, but based on real-life data of typical shapes of the parts manufactured in

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 201

mechanical transfer lines. The random choice is applied to the shape of parts,
which further defines the parameters and mutual compatibility of operations.
The input data of the benchmarks in GAMS format can be found in the
Discrete Location Problems Benchmarks Library by http://www.math.nsc.
ru/AP/benchmarks/english.html.

7.5.2 Experimental Settings

The experiments were carried out on a Pentium-IV computer (3 GHz, 2.5 Gb
RAM). Both the GA and the MIP-GRASP were programmed in GAMS 22.8,
the rest of the algorithms being considered were coded in C++.

The tunable parameters of the constructive heuristic in MIP-GRASP and
in the GA initialization were chosen as follows: α = 0.25, β = 10. This tuning
was based on preliminary experiments with different values of α and β on
series S5. The frequency of finding best-known objective as a function for
different values of α and β in these trials can be seen on Figure 7.1. The
95% confidence intervals for probability of finding the best-known objective
value are displayed for β = 20. It follows from this figure that β = 20 is
preferable for series S5. We chose β = 10 for all subsequent experiments only
because on large problems of series S6 and S7 usage of β = 20 leads to so
hard sub-problems, that MIP-GRASP is sometimes unable to find a feasible
solution in the given amount of time.

On the basis of similar considerations, the parameters of the improvement
heuristic in MIP-GRASP were set to kmax = 15, nmax = 50.

We also found that the value of the penalty term C3 has a statistically
significant impact (p < 0.05) on the quality of MIP-GRASP results. In order
to choose C3 adaptively while solving a given instance in GA or MIP-GRASP,
we set it initially to such a small value that it does not change the optimal line
design (by solving two supplementary MIP problems). Further, parameter C3

is optimized by a simple one-dimensional search routine. This is done in MIP-
GRASP restarts or in the construction of the initial population for the GA,
using the average quality of solutions of the constructive heuristic as the
optimization criterion.

The CPLEX tolerance parameter optca in the greedy heuristic was set
to 2; parameter mipstart was set to 1 in the improvement heuristic and in

Table 7.1 Testing series

Series 1 2 3 4 5 6 7

|N| 25 25 50 50 100 46 - 92 94 - 125

OS 0.5 0.15 0.9 0.45 0.25 - -
m0 15 4 10 15 15 23 - 46 43 - 62

http://www.math.nsc.ru/AP/benchmarks/english.html
http://www.math.nsc.ru/AP/benchmarks/english.html

202 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fig. 7.1 Frequency of finding solutions with best-known objective value as a function of
parameter α for different values of β in MIP-GRASP on series S5.

the MIP recombination operator, the rest of CPLEX options were set as the
default. The termination conditions of the main loop in MIP-GRASP and in
the GA were triggered by reaching the given CPU time limit (see the tables
below).

In the experiments with the GA, we set the tournament size s = 5, and
the initial mutation probability P 0

m = 0.1. The time given for each call to the
MIP-recombination operator was Trec = 5 sec. The population size Nind was
set to 20 for all problems.

The GA restarting rule, described in Section 7.4, has been compared to
straightforward running GA for the whole period T without restarts. The
comparisons were carried out on the sets S3, S5 and S6, using the algorithmic
settings described in Subsection 7.5.3 below. The GA with restarts obtained
the best-known solutions more frequently on all three series. Besides that, on
series S5, its advantage was shown to be statistically significant with level
p < 0.02 in Wilcoxon matched pairs test. This motivated our choice of the
restarting rule.

7.5.3 Results

In the presentation of the obtained results, we use the following notation:
NS is the number of instances for which feasible solutions were found; NO
and NB are the number of instances where the optimal and the best-known
solutions were obtained, respectively; ∆max, ∆avg, ∆min are the percentage
of maximal, average and minimal deviation of the cost of solution from the
optimal or the best-known objective value, respectively; Tmax, Tav, Tmin are

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 203

Table 7.2 Results for series S1 and S2

Series 1 Series 2

SP CPLEX HD MIP-GRASP SP CPLEX HD MIP-GRASP

NS 50 50 50 50 50 50 50 50
NO 50 50 39 49 50 50 35 50

∆max 0 0 5.26 4.16 0 0 11.1 0

∆av 0 0 1.0 0.08 0 0 1.7 0
∆min 0 0 0.0 0.0 0 0 0 0

Tmax 11 841 90 90 1638 3.53 90 90

Tav 1.4 38 90 90 292 0.86 90 90
Tmin 0.03 0.39 90 90 3.77 0.06 90 90

the maximal, average and minimal running time. T ′av is the average time till
the final solution was found. Symbol ”-” stands for unavailable data. The
best result of a series is emphasized in bold.

7.5.3.1 Small Sized Instances

For the first two series, the available computational time was limited to 1800
seconds for the exact methods and to 90 seconds for the heuristics. The results
for series S1 and S2 are reported in Table 7.2. In both series the two exact
algorithms found the optima for all instances. One can see that the shortest
path method performs best on series S1 in terms of computational time.

For series S2, CPLEX is the best in terms of computational time. The
MIP-GRASP found all optima, outperforming HD, but these heuristics were
given more CPU time than CPLEX used. In fact the average time of finding
the optimal solution for MIP-GRASP was also greater than the CPLEX time.
The precision of MIP-GRASP is higher on this series than on series S1, which
is due to better performance of CPLEX solver on problems with low order
strength (see e.g. [10]). The GA was not tested on series S1 and S2 since they
are simple even for MIP-GRASP.

7.5.3.2 Medium Sized Instances

For solving the medium sized instances of series S3 and S4, the available
computational time was limited to 1800 seconds for the exact methods and
to 300 seconds for the heuristics. The results for series S3 and S4 are reported
in Tables 7.3 and 7.4.

On series S3, the shortest path method is again the best one both in terms
of the computation time and the quality of provided solutions. CPLEX found
the optimal solutions in all cases and MIP-GRASP missed the optimum twice.
The average and maximal time of finding the final solution for MIP-GRASP

204 A. Dolgui, A. Eremeev, and O. Guschinskaya

Table 7.3 Results for series S3

SP CPLEX HD MIP-GRASP GA

NS 50 50 50 50 50

NO 50 50 28 48 49

∆max 0 0 4.2 2.27 1.72
∆av 0 0 1.0 0.09 0.03

∆min 0 0 0 0 0

Tmax 0.09 463.4 300 300 300
Tav 0.04 41.1 300 300 300

Tmin 0.01 0.1 300 300 300

Table 7.4 Results for series S4

SP CPLEX HD MIP-GRASP GA

NS 14 20 50 50 50
NO 14 13 39 42 48

∆max - - 13.15 13.15 2.7
∆av - - 0.86 0.64 0.11

∆min - - 0 0 0

Tmax 1800 1800 300 300 300
Tav 1490.3 1519.0 300 300 300

Tmin 13.0 31.5 300 300 300

was 5.02 seconds and 66 seconds, respectively, which is much shorter than the
given running time. The GA demonstrated a similar behavior, slightly out-
performing MIP-GRASP. The results of the hybrid method HD are inferior
to those of all other algorithms in terms of the solution quality.

In series S4, the exact algorithms found feasible solutions in less than half
of the cases; see Table 7.4. The CPU times were similar for these methods. In
contrast, the heuristics were able to find feasible solutions in all cases, given a
six times shorter computation time. The overall quality of solutions is better
in the case of the GA. In general, this table shows that in cases of low density
of constraints even for the medium size problems the heuristic methods are
preferable, when the computational time is limited.

7.5.3.3 Large Sized Instances

The results for series S5 are reported in Table 7.5. The available compu-
tational time was limited to 5400 seconds for the exact methods and to 600
seconds for the heuristics. Both exact algorithms found less than 10 solutions;
therefore, they are excluded from the table. The heuristics found feasible solu-
tions in all 50 cases. In this series MIP-GRASP and GA demonstrate similar
behavior and it is hard to tell which one is better, while HD is definitely
inferior.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 205

Table 7.5 Results for series S5

HD MIP-GRASP GA

NB 11 37 36

∆max 35.9 30.8 12.8

∆av 5.02 1.6 1.5
T ′

av - 93.4 102.9

Table 7.6 Results for series S6 and S7

Series 6 Series 7

HD MIP-GRASP GA HD MIP-GRASP GA

NB 10 8 15 6 2 17
∆max 7.6 5.55 4.35 6 5.26 1.28
∆av 1.76 1.59 0.72 2.26 1.87 0.16
T ′

av - 360.4 423.57 - 1603 1323.5

Table 7.6 contains the results for series S6 and S7 with a more complex
formulation based on Equation (7.2). The stand-alone CPLEX MIP solver
was able to solve these problems only in several cases within 5400 seconds,
so the exact results are not displayed. The computational time given to the
heuristics was 900 seconds for S6 and 3000 seconds for S7. This table indicates
that HD is performing similar to MIP-GRASP for what concerns the average
and worst case solution quality, but HD outperforms MIP-GRASP concerning
the number of best-known solutions it has found.

The GA, however, tends to outperform significantly the two other heuris-
tics on both series S6 and S7. Most likely, this advantage of the GA is due
to the effect of the MIP-recombination which constitutes the main difference
of the GA from MIP-GRASP. In order to evaluate the significance of com-
bining traits of the parent solutions in the MIP-recombination, we modified
the GA so that the full MIP-recombination is performed only with a given
probability Pr, otherwise we skip Step 2 in the MIP-recombination routine
(this corresponds to mutation without crossover). In Figure 7.2 one can see
the frequency of finding the best seen solution as a function of probability Pr

for series S3, S5, S6 and S7. This figure indicates that except for the simplest
set of instances S3, the capability to combine the features of both parents in
a best possible way provides better output of the algorithm. This observa-
tion is also supported by the Wilcoxon matched pairs test (p < 0.1 for S5,
p < 0.05 for S6).

206 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fig. 7.2 Frequency of finding solutions with best-known objective values as a function of

probability Pr.

7.6 Conclusions

In our study, firstly a GRASP approach has been developed in the MIP
framework for balancing the transfer lines with multi-spindle transfer ma-
chines. The solution construction and local improvement procedures have
been implemented in the GAMS environment and the results of computa-
tional experiments indicate that the method obtained is quite competitive,
especially, for large-scale instances. It is important that due to the flexibil-
ity of the MIP modelling tools and robustness of the modern MIP solvers,
this approach is applicable to many other large-scale problems, where the
straightforward usage of branch-and-cut techniques does not yield satisfac-
tory results.

After that, the research was aimed at the development of a more complex
genetic algorithm for the TLBP, using GRASP as a supplementary heuristic
for building the initial population. Although for the TLBP instances of small
size this approach is not helpful, for the most difficult series of benchmarks,
which are not solvable by exact methods in a reasonable amount of time, this
method has a significant advantage.

The MIP-based recombination operator is shown to be useful in the genetic
algorithm. In view of the wide applicability of general-purpose MIP solvers,
we expect that the MIP-recombination approach may be successfully applied
for many other problems (see e.g. [3]). However, in the cases where the optimal

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 207

recombination can be carried out by polynomial-time algorithms [7], these
algorithms should be preferable to general purpose MIP solvers.

In subsequent research it would be valuable to compare the MIP-based
approach for GRASP and GA with alternative approaches to metaheuristics,
which use the shortest path method in a supplementary graph. Also, it might
be helpful to implement grouping of operations into macro-operations in the
improvement phase of the MIP-based GRASP. Questions of parameters tun-
ing should be considered as well.

Acknowledgements The authors thank Michael R. Bussieck for helpful discussions on
better usage of GAMS potential. The research is supported by the Russian Foundation for

Basic Research, grant 07-01-00410.

References

1. I. Baybars. A survey of exact algorithms for the simple assembly line balancing.
Management Science, 32:909–932, 1986.

2. C. Becker and A. Scholl. A survey on problems and methods in generalized assembly
line balancing. European Journal of Operational Research, 168:694–715, 2006.

3. P. Borisovsky, A. Dolgui, and A. Eremeev. Genetic algorithms for a supply manage-

ment problem: MIP-recombination vs. greedy decoder. European Journal of Opera-
tional Research, 195:770–779, 2009.

4. A. Dolgui, B. Finel, F. Vernadat, N. Guschinsky, and G. Levin. A heuristic approach

for transfer lines balancing. Journal of Intelligent Manufacturing, 16:159–172, 2005.
5. A. Dolgui, B. Finel, N. Guschinsky, G. Levin, and F. Vernadat. MIP approach to

balancing transfer lines with blocks of parallel operations. IIE Transactions, 38:869–
882, 2006.

6. A. Dolgui, N. Guschinsky, and G. Levin. A special case of transfer lines balancing by
graph approach. European Journal of Operational Research, 168:732–746, 2006.

7. A. Eremeev. On complexity of optimal recombination for binary representations of
solutions. Evolutionary Computation, 16:127–147, 2008.

8. P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro
and P. Hansen, editors, Essays and surveys on metaheuristics, pages 325–367. Kluwer,
Boston, 2001.

9. S. Ghosh and R. Gagnon. A comprehensive literature review and analysis of the de-
sign, balancing and scheduling of assembly lines. International Journal of Production
Research, 27(4):637–670, 1989.

10. O. Guschinskaya and A. Dolgui. A comparative evaluation of exact and heuristic
methods for transfer lines balancing problem. In A. Dolgui, G. Morel, and C. Pereira,
editors, Information Control Problems in Manufacturing 2006: A Proceedings volume
from the 12th IFAC International Symposium, volume 2, pages 395–400. Elsevier,

2006.
11. O. Guschinskaya and A. Dolgui. Balancing transfer lines with multiple-spindle ma-

chines using GRASP. Unpublished manuscript, 2007.
12. O. Guschinskaya, A. Dolgui, N. Guschinsky, and G. Levin. A heuristic multi-start

decomposition approach for optimal design of serial machining lines. European Journal
of Operational Research, 189:902–913, 2008.

208 A. Dolgui, A. Eremeev, and O. Guschinskaya

13. J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations

Research Letters, 6:107–114, 1987.
14. J. Holland. Adaptation in natural and artificial systems. University of Michigan Press,

1975.

15. C.R. Reeves. Genetic algorithms for the operations researcher. INFORMS Journal on
Computing, 9(3):231–250, 1997.

16. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In

F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249.
Kluwer Academic Publishers, 2003.

17. A. Scholl. Balancing and sequencing of assembly lines. Physica, Heidelberg, 1999.

	MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines
	Alexandre Dolgui, Anton Eremeev, and Olga Guschinskaya
	Introduction
	Problem Statement
	Greedy Randomized Adaptive Search Procedure
	Construction Phase
	Improvement Phase

	Genetic Algorithm
	Experimental Results
	Problem Instances
	Experimental Settings
	Results

	Conclusions
	References

