
Chapter 6

Convergence Analysis
of Metaheuristics

Walter J. Gutjahr

Abstract In this tutorial, an overview on the basic techniques for proving
convergence of metaheuristics to optimal (or sufficiently good) solutions is
given. The presentation is kept as independent of special metaheuristic fields
as possible by the introduction of a generic metaheuristic algorithm. Different
types of convergence of random variables are discussed, and two specific fea-
tures of the search process to which the notion “convergence” may refer, the
“best-so-far solution” and the “model”, are distinguished. Some core proof
ideas as applied in the literature are outlined. We also deal with extensions
of metaheuristic algorithms to stochastic combinatorial optimization, where
convergence is an especially relevant issue. Finally, the important aspect of
convergence speed is addressed by a recapitulation of some methods for ana-
lytically estimating the expected runtime until solutions of sufficient quality
are detected.

6.1 Introduction

Metaheuristic algorithms (see, e.g., the standard textbook [19]) are general-
purpose solvers for optimization problems. Their use is prevalent in modern
applications of computational intelligence because of their broad flexibility,
their intuitive structures and their applicability even in the case of problem
instances for which classical optimization techniques fail. A huge amount of
knowledge about the empirical performance of diverse metaheuristics on nu-
merous classes of optimization problems has been accumulated within the last
two decades. Theoretical analysis lags behind this development. While some
aspects of the performance of metaheuristics are already well-understood,
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some other issues still wait for an analytical treatment. One of the most ba-
sic issues is the question whether or not the current solutions proposed by
a metaheuristic converge to an optimal or at least to a “sufficiently good”
solution—and if yes, how fast this happens.

Especially the recent attempts of combining metaheuristic techniques with
the well-established methods from mathematical programming (MP) to pow-
erful hybrids give the convergence issue a new relevance. Researchers from the
MP field are used to be sure that their algorithms reach an optimal solution
within finite time. More than that, even a proof of optimality is delivered by
an MP method, typically within a computation time that can be bounded
from above (although the bound may be very large). In contrast to that,
metaheuristics are not only unable to produce proven optimality; some often
applied variants cannot even guarantee that an optimal solution (or a solu-
tion of a certain minimum quality) will be eventually found if an unlimited
amount of computation time is invested. An algorithm embedding an MP
component within a metaheuristic inherits this weakness.

Fortunately, however, convergence to the optimum can be shown for sev-
eral variants (or parameterizations) of metaheuristic algorithms, and usually,
convergence of an algorithm can even be ensured simultaneously for a very
broad range of problems, e.g., for all combinatorial optimization (CO) prob-
lems. Identifying conditions that entail convergence provides a starting point
also for the practically very relevant question of convergence speed.

In this tutorial, we give an introduction to the basic ideas of convergence
proofs for metaheuristics. The scope will be restricted by two limitations:
First, we shall focus on global convergence instead of converge to local optima.
In particular, dynamical-systems approaches to the analysis of metaheuristics
(cf. [20] or [60, 9]) are not addressed here because of their orientation towards
local convergence. Secondly, we concentrate on discrete finite search spaces,
i.e., on the CO case. There is a large amount of literature on convergence of
search algorithms on continuous search spaces, let us only refer to [56, 59, 45]
for some recent examples. Because of the specific aspects occurring in this
scenario, however, we must consider a discussion of this type of investigations
as outside of the scope of this article.

Since we do not restrict ourselves to some specific metaheuristic algorithm
but would rather like to discuss the topic in a general context, we have to
start with a generic framework encompassing most (or all) existing meta-
heuristics. This is done in Section 6.2. Section 6.3 addresses convergence
definitions and different types of convergence of metaheuristic algorithms. In
Section 6.4, core ideas of convergence proofs are outlined and illustrated by
examples concerning different metaheuristics. Section 6.5 deals with conver-
gence of metaheuristic variants for Stochastic CO problems, and Section 6.6
shortly discusses the issue of convergence speed. The final Section 6.7 contains
concluding remarks and open research topics.
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6.2 A Generic Metaheuristic Algorithm

We consider optimization problems of the form

f(x)→ min such that x ∈ S, (6.1)

where S is a search space and f is a real-valued function called objective
function or cost function. Maximization problems are reformulated as mini-
mization problems in a straightforward way. We shall assume S to be a finite
set, which puts the problem (6.1) into the field of CO.

To give a unified framework within which convergence may be discussed for
a large class of metaheuristics, we present in the following a generic algorithm
that includes most (perhaps all) currently used metaheuristic algorithms as
special cases (cf. also [28]). In some sense, the proposed generic algorithm
extends the generic black-box optimizer presented by Droste et al. [13], but
it is not restricted to black-box optimization, and it does not consider prior
function samples in their raw form, but rather in an already condensed form,
which is closer to existing metaheuristics and automatically addresses space
restrictions.

The algorithm (say, in a concrete instantiation A) works in an iterative
way. In iteration t (t ≥ 1), algorithm A uses a memory mt and a list Lt of
solutions xi ∈ S. We call the elements of Lt sample points. The structure of
the procedure is the following:

1. Initialize m1 according to some rule.
2. In iteration t = 1, 2, . . ., until some stopping criterion is satisfied,

a. determine the list Lt as a function g(mt, ξt) of the memory state mt

and of a random influence ξt;
b. determine the objective function values f(xi) of all xi ∈ Lt, and form

a list L+
t containing the pairs (xi, f(xi));

c. determine the new memory state mt+1 as a function h(mt, L
+
t , ξ

′
t) of

the current memory state mt, of the list of solution-value pairs L+
t , and

of a random influence ξ′t.

The memory state mt can be decomposed as mt = (ms
t ,m

r
t ) into two compo-

nents ms
t and mr

t , where ms
t , the sample-generating part, contains all infor-

mation in mt that is actually used by the function g for generating the list Lt

of sample points, and mr
t , the reporting part, contains that information that

is not used for this purpose. The function h is allowed to use both parts ms
t

and mr
t for updating the memory. Typically1, the reporting part contains at

least the best-so-far solution xbsf
t which is initialized arbitrarily for t = 1, and

set to xi each time when in some iteration t, some xi ∈ Lt is evaluated to an
objective function value f(xi) better than f(xbsf

t ). The best-so-far solution

1 An exception is the context of optimization under noise discussed in Section 6.5, where

the best-so-far solution cannot be determined with certainty.
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is used as the currently proposed approximation to the optimal solution in
iteration t.

The elements ξt and ξ′t can be imagined as vectors of (pseudo-)random
numbers that are used by the metaheuristic. Thus, the function g(mt, ξt)
specifies, to given memory mt, a probability distribution for the list of new
sample points, whereas the function h(mt, L

+
t , ξ

′
t) specifies, to given memory

mt and current list L+
t of solution-value pairs, a probability distribution for

the new state of the memory. If the functions g and h are independent of ξt
resp. ξ′t, we obtain the special case of a deterministic search algorithm. Most
metaheuristics, however, are stochastic search algorithms.

Contrary to [13], in our formalism, the functions g and h may use any
information on the problem instance. (In order not to overload notation,
the problem instance is not written explicitly as an additional argument of
g and h.) The important special case where g and h are only allowed to
use the knowledge of the search space S and of the problem type, but not
of the actual problem instance, is denoted as black-box optimization. Some
variants of metaheuristics are black-box optimization algorithms, some are
not. In particular, algorithms combining a metaheuristic with mathematical
programming (see Section 6.1) are typical cases of algorithms that are not of
black-box type.

The states (mt, L
+
t ) generated during the execution of the algorithm form

a Markov process in discrete time, since the distribution of the next state
(mt+1, L

+
t+1) only depends on the current state (mt, L

+
t ). For fixed objective

function f , we can consider already the sequence (mt) (t = 1, 2, . . .) of mem-
ory states as a Markov process, since (via L+

t , which results from mt) the
distribution of mt+1 only depends on mt.

To illustrate that the generic algorithm above is able to cover well-known
metaheuristics as special cases, let us look at some examples:

Generalized Hillclimbing Algorithms: This class of metaheuristics,
which we shortly denote as GHCs (generalized hillclimbers), was introduced
by Jacobson et al. [43] and contains the well-known Simulated Annealing (SA)
algorithm and some other stochastic local search algorithms as a special cases.
Here, a neighborhood structure N assigning to each x ∈ S a set N (x) ⊆ S
of neighbor solutions is used. The sample-generating part ms

t of the memory
consists of a single element, the current search point xt. The reporting part
mr

t contains xbsf
t as well as the current iteration counter t. The list Lt of

sample points consists of a single element, the currently investigated neighbor
solution y ∈ N (x) to x.

• To determine Lt from ms
t , choose a random neighbor y to the element x

in ms
t .

• To update mt to mt+1, decide by the following stochastic acceptance rule
whether y is accepted or not: Draw a random variable R from a distribution
Dt depending on t. If R ≥ f(y) − f(x), accept y, i.e., set ms

t+1 = {y}. If
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R < f(y) − f(x), reject y, i.e., set ms
t+1 = {x}. The new reporting part

mr
t+1 is obtained by updating xbsf

t to xbsf
t+1 and by incrementing t.

SA is the special case where the random variable R is chosen as −ct ln(ζ),
where ct is the temperature parameter of SA in iteration t, and ζ is a random
number distributed uniformly on [0, 1]. The acceptance probability of worse
neighbors results then as exp(−(f(y)− f(x))/ct).

In other stochastic local search algorithms such as Iterated Local Search
(ILS) or the Variable Neighborhood Search (VNS) algorithm developed by
Hansen and Mladenović [33], the memory is slightly extended, e.g., by the
addition of an incumbent solution. Contrary to GHCs and to ILS, VNS works
with a family of neighborhoods Nk of varying sizes k = 1, . . . , kmax. In all
these metaheuristics, the number of elements in the memory is fixed (and
usually small) and is not tuned to the problem instance. This is different in
the next example:

Genetic Algorithms (GAs): For the canonical GA according to the
definition in [54], ms

t consists of a current population of k solutions, mr
t

contains only xbsf
t , and also Lt consists of k solutions.

• To determine Lt fromms
t , apply the well-known genetic operators mutation

and crossover to the solutions in mt. This yields Lt.
• To update mt to mt+1, apply fitness-proportional selection to the popula-

tion contained in Lt by using the corresponding objective function values.
The result is stored as ms

t+1. The new reporting part is obtained by up-
dating xbsf

t to xbsf
t+1.

Other GAs are represented as obvious modifications of this procedure.

Ant Colony Optimization (ACO): Both the Ant System (AS) vari-
ant by Dorigo et al. [10] and the Max-Min Ant System (MMAS) variant by
Stützle and Hoos [58] can be represented in the following form: The sample-
generating part ms

t of the memory consists of a vector (or matrix) of real-
valued parameters, called pheromone values. The reporting part mr

t contains
xbsf

t and (depending on the special MMAS version) possibly also an iteration-
best solution xib

t . The list Lt consists of k solutions.

• To determine Lt from ms
t , let k “ants” construct k random solutions by

traversing random paths in a “construction graph”, where the probabilities
of the moves are governed by the pheromone values in ms

t .
• To update mt to mt+1, start by updating xbsf

t and xib
t based on the k new

solutions in L+
t . Then, apply the specific pheromone update rule of the

ACO variant under consideration in order to determine the new pheromone
values from the current values by reinforcing the components of the solu-
tion(s) contained in xbsf

t and/or xib
t . This gives ms

t+1.

The macro-structure of Estimation-of-Distribution Algorithms (EDAs, see,
e.g., Gonzalez et al. [20]) is very similar to that of ACO. The parameters of
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the distribution used for sampling replace here the pheromone values of ACO.
Also the Cross Entropy Optimization metaheuristic introduced by Rubinstein
[53] shows the same macro-structure.

Finally, let us mention that also metaheuristics as Particle Swarm Opti-
mization (PSO) (developed by Kennedy and Eberhart [47]) fit into the frame-
work above, although in the standard version of PSO, search is not performed
on a discrete finite search space, but on a continuous search space instead.
PSO versions for CO problems as the Binary PSO algorithm proposed in [48]
have a structure related to that just described for ACO. Here, ms

t contains
real-valued positions and velocities of a set of particles.

6.3 Convergence

6.3.1 Convergence Notions

The mathematical definition of convergence of a series (x1, x2, . . .) of elements
in a space X with a distance function d is the following: The series (xn)
converges to a limit x∗, if for each ε > 0, there is an integer N such that
d(xn, x

∗) < ε for all n ≥ N . This definition considerably simplifies if the
space X is finite. In this case, xn converges to x∗ if and only if there is some
N such that xn = x∗ for all n ≥ N . It should be mentioned, however, that
although we restrict ourselves to finite search spaces in this paper, we shall
also have to do with convergence of non-discrete random variables.

Most metaheuristics are stochastic search algorithms, such that the defi-
nition above is not sufficient. We need a generalization to a notion of con-
vergence of a series of random variables. Let us start with a recapitulation of
two important established definitions of stochastic convergence. After that,
we proceed to a consideration of different types of convergence of a meta-
heuristic.

We consider a stochastic process (X1, X2, . . .), i.e., a sequence of random
variables with a common distribution. In general, the random variables are
not independent.

Definition 1.

(i) A sequence of random variables (X1, X2, . . .) converges with probability
one (short: w. pr. 1) or almost surely2 to a random variable X∗, if

Pr{Xt → X∗} = 1, (6.2)

2 The last term is very usual in the probabilistic literature. We avoid it in this paper
because the word “almost” can be misunderstood. If Xt → X w. pr. 1, it’s quite sure that

the sequence converges.
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i.e., if with probability one, the realization (x1, x2, . . .) of the sequence
(Xt) converges to the realization x∗ of X∗.

(ii) A sequence of random variables (X1, X2, . . .) converges in probability
to a random variable X∗, if for all ε > 0,

Pr{ d(Xt, X
∗) ≥ ε} → 0 as t→∞, (6.3)

where d is the distance function on the space X in which the random
variables Xt take their values.

It can be shown that convergence notion (i) is stronger than convergence no-
tion (ii): if Xt → X∗ w. pr. 1, then also Xt → X∗ in probability. In general,
the converse does not hold. Let us construct, e.g., a sequence X1, X2, . . . of
binary random variables as follows. Initialize each Xt by the value 0. Decom-
pose the index set {1, 2, . . .} into blocks k = 1, 2, . . . of increasing length k,
such that the first block is {1}, the second block is {2, 3}, the third block is
{4, 5, 6}, etc. Now select within each block k a position t uniformly at ran-
dom and set the corresponding variable Xt to the value 1. Then, Xt → 0 in
probability as t→∞, but Xt → 0 w. pr. 1 does not hold, since a realization
(x1, x2, . . .) of this stochastic process never converges.

Usually, these definitions are specialized to the case where the limiting X∗

is a constant, deterministic element x∗. If X is a finite set, convergence of Xt

to x∗ w. pr. 1 holds exactly if

Pr{there is a u ≥ 1 such that Xt = x∗ for all t ≥ u} = 1,

and convergence of Xt in probability holds exactly if Pr{Xt = x∗} → 1 as
t → ∞. In the finite case, we can also slightly generalize the definition of
convergence in probability by saying that Xt converges to a subset X ∗ of X
in probability, if Pr{Xt ∈ X ∗} → 1 as t→∞.

We shall apply these definitions to components of the current state
(mt, L

+
t ) of the Markov process associated with algorithm A. However, which

components should be considered, and how is the limiting element supposed
to look like?

6.3.2 Best-So-Far Convergence

A natural choice consists in considering the best-so-far solution xbsf
t and to

ask whether or not it converges to some optimal solution, as t→∞. In a finite
search space and with xbsf

t defined as in Section 6.2, convergence of xbsf
t to an

optimal solution amounts to convergence of the cost function values f(xbsf
t )

(t = 1, 2, . . .) to the optimal cost function value. Thus, we may ask under
which conditions it can be guaranteed that f(xbsf

t ) converges (“w. pr. 1” or
“in probability”) to f∗ = min{f(x) : x ∈ S}.
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Restricting the discussion to the case of finite S, we can simplify the defin-
ing conditions (6.2) – (6.3) for convergence of f(xbsf

t ) to the optimum f∗ by
introducing the nondecreasing sequence of indicator variables

Zt = I(f(xbsf
t ) = f∗) (t = 1, 2, . . .),

where I denotes the indicator function. The success indicator Zt is 1 if an
optimal solution is found in one of the iterations 1, . . . , t, and 0 otherwise.
The first hitting time is given as

T1 = min{t ≥ 1 : Zt = 1}. (6.4)

Furthermore, with E denoting the mathematical expectation, we define

µt = E(Zt) = Pr{Zt = 1} = Pr{T1 ≤ t} (t = 1, 2, . . .) (6.5)

as the probability that algorithm A finds an optimal solution in one of the
iterations 1, . . . , t. (In some articles such as [35] or [64], the sequence of num-
bers 1 − µt is called the convergence rate.) It is easy to see that with this
notation and with the ordinary absolute difference on the set of reals as the
distance function,

• f(xbsf
t ) converges to f∗ w. pr. 1 if and only if Pr{Zt = 0 for all t} = 0

(which is the same as Pr{T1 <∞} = 1), and
• f(xbsf

t ) converges to f∗ in probability if and only if µt → 1 (t→∞).

It follows that for best-so-far convergence, the two convergence notions coin-
cide, since Pr{Zt = 0 for all t} ≤ Pr{Zu = 0} = 1 − µu for all iterations u,
such that µu → 1 as u→∞ implies convergence w. pr. 1.

The convergence concept above may look nice. However, it has a seri-
ous disadvantage: It turns out that under this concept, even very inefficient
search algorithms converge to the optimum, which makes the concept too
“generous”. The standard example for this observation is random search.

In our framework, (pure) random search can be described as that instan-
tiation of our generic algorithm where the sample-generating part ms

t of the
memory is empty, the reporting part mr

t consists only of xbsf
t , and the list Lt

consists of a single sample point xt that is chosen at random from S accord-
ing to some fixed distribution. Because ms

t does not contain any information,
the choice of xt has to be performed independently of the memory state mt

(and hence of the previous iterations).
It is well-known that random search on a finite set S ensures convergence of

the best-so-far solution value to the optimum, as long as every solution x ∈ S
has a nonzero probability p(x) > 0 of being chosen as the sample point xt.
We will derive this quickly in Subsection 6.4.1. Furthermore, however, it will
be shown that the expected value E(T1) of the first hitting time is usually
very large for random search, such that convergence is here of no help for
practice.
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Informally, the reason why convergence in the best-so-far sense does not
go hand in hand with a good runtime behavior is that for demonstrating this
type of convergence, it is only required that the algorithm performs a suffi-
cient amount of exploration of the search space. The feature of exploitation of
the information obtained in previous iterations (stored in the memory mt),
as it is incorporated in most well-performing metaheuristics, does not alle-
viate the convergence proof; quite contrary, it rather hampers it. Of course,
however, exploitation is an advantage for the runtime of the algorithm! Thus,
convergence of the best-so-far solution value is not an indicator for a good
runtime behavior. It only ensures that the part of the search space containing
the optimal solution is not excluded from the search a priori, such that at
least in the absence of limits on computation time, search is “complete”.3

Several investigations on the convergence of diverse metaheuristics have
started with results concerning the best-so-far concept. Let us give examples
from two metaheuristic fields: Hartl [34] and Rudolph [54] showed conver-
gence of f(xbsf

t ) to the optimum for certain variants of GAs transferring
“elite” solutions (best solutions in a current population) from generation to
generation. If, e.g., one elite solution is always preserved within the popula-
tion, this solution is identical to xbsf

t . Brimberg et al. [7] showed convergence
results of best-so-far type for ILS as well as for a VNS parametrization where
the parameter kmax defining the largest neighborhood is sufficiently large to
cover the whole search space S. The proofs provided in the mentioned ar-
ticles are possible starting points for the derivation of stronger convergence
properties (cf. the remarks in the next subsection).

6.3.3 Model Convergence

The chance that provable convergence properties are correlated with good
runtime behavior are considerably increased if we do not focus on the best-
so-far solution xbsf

t , but on the sample-generating part ms
t of the memory.

In an efficient metaheuristic, exploitation of the search experience should
concentrate the search more and more on the most promising areas of the
search space S, with the consequence that the average cost function values
of the sample points in Lt tend to decrease (not necessarily monotonically)
over time. The case where the expected cost function values in Lt remain
constant is essentially the exploitation-less random search case.

Borrowing from the concept of “model-based search” as developed by
Zlochin et al. [65], we may alternatively denote the sample-generating part
ms

t of the memory as the current model for the search distribution. In the
model-based view, search points are generated in dependence of the model,

3 Hoos [39] and Hoos and Stützle [40] call a search algorithm with Pr{T1 <∞} < 1 for a

class of problems essentially incomplete for this class.
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cost function values are evaluated, and the obtained information is then fed
back into a modification of the model. Basically, this corresponds to the mech-
anism of our generic algorithm, with the difference that we also extend this
view to classical search algorithms with discrete state spaces instead of re-
stricting it to metaheuristics as ACO, EDAs or Cross Entropy Optimization,
where the model is described by a vector of real-valued parameters.

By the argumentation above, a runtime behavior superior to that of ran-
dom search can be expected if it can be shown that the model ms

t converges,
as t→∞, to some limiting state (ms)∗ that supports only the generation of
optimal or at least high quality sample points. We denote this type of con-
vergence as model convergence as opposed to best-so-far convergence. Note
that the model can be very small: in a GHC, e.g., it contains only the current
search point xt. Nevertheless, convergence of this search point to a solution
in S∗ is more relevant than convergence of xbsf

t resp. f(xbsf
t ) only, since it

indicates that the search is gradually directed towards more promising areas
of the search space.4

Contrary to proofs of best-so-far convergence which are technically the eas-
ier the more emphasis the considered algorithm puts on exploration (as op-
posed to exploitation), model convergence proofs have to take the exploration-
exploitation tradeoff explicitly into account and only succeed under parameter
assumptions ensuring a proper balance between these two factors. Typically,
the results yield rather narrow conditions for parameter schemes within which
model convergence holds; outside the balanced regime, either a surplus of ex-
ploitation yields premature convergence to a suboptimal solution, or a surplus
of exploration produces random-search-type behavior without model conver-
gence (although best-so-far convergence may hold).

Historically, the first model convergence results have been found in the SA
field (see, e.g., Gelfand and Mitter [17], Hajek [32], or Aarts and Korst [1]).
In Subsection 6.4.2, we shall outline the key ideas of the proofs in the more
general context of modern GHC results. Also for some ACO variants and for
a variant of Cross Entropy Optimization, results of model convergence type
are known. Empirical evidence suggests that such results should be possible
for several other metaheuristics as well.

In the GA case, model convergence would mean that the population tends
to “positive stagnation” in the long run by being filled with optimal solutions
only. Since mutation counteracts this effect, a model-convergent variant of a
GA would presumably have to gradually decrease the mutation rate and/or
to increase the selection pressure. This would have to be done slowly enough

4 Convergence analysis of metaheuristics has been questioned by the argument that every
randomized search algorithm can easily be made convergent to the optimum by repeatedly
calling it with randomly chosen start solutions. This is trivial for best-so-far convergence,

as already the series of start solutions yields a random search run in itself. However, model

convergence typically does not hold in this scenario, since during each restart, the current
information in ms

t is thrown away. Thus, the expected average cost function value in the

sample points does not improve from run to run.
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to prevent premature convergence and fast enough to ensure convergence.
Similarly investigation could be performed for the VNS case. (Convergence of
the Markov process of VNS visits in local optima has been shown in Brimberg
et al. [7].)

6.4 Proving Convergence

6.4.1 Proving Best-So-Far Convergence

Convergence of xbsf
t to the optimum can usually be shown easily. We shall

illustrate this for the simple case of random search. Let Zt be defined as in
Section 6.3, and let p =

∑
x∈S∗ p(x) > 0 denote the probability of hitting

an optimal solution in a single iteration of the random search algorithm.
Because of the independence of the trials in different iterations, Pr{Zt =
0} = (1 − p)t → 0 as t → ∞, and therefore µt → 1 as t → ∞. In other
words, convergence in probability to the optimum holds (and by the remark
in Subsection 6.3.2 on the special situation for best-so-far convergence, even
convergence w. pr. 1).

In some more interesting algorithms, the hitting probability is time-
dependent: p = pt. If a strictly positive lower bound pmin > 0 for pt can
be shown, convergence immediately results as above. However, even in some
cases where pt tends to 0, convergence still holds: E.g., if pt = ct−1/2 (c > 0),
we still get convergence in probability since limt→∞(1 − ct−1/2)t = 0. For
pt = c/t, this does not hold anymore, since (1 − c/t)t → e−c > 0. Lower
bounds on the hitting probability have been used, e.g., in the convergence
analysis of the MMAS variant of ACO given by Stützle and Dorigo [57].

For time-independent p, the expected value E(T1) of the first hitting time
computes as 1/p by the standard calculation of the expected value of a geo-
metric distribution, which is typically a very large number even for medium-
sized search spaces, unless if the distribution p(·) of the random trials can be
focused around the set S∗ of optimal solutions by means of prior information.

6.4.2 Proving Model Convergence

We outline the ideas of model convergence proofs by presenting some char-
acteristic examples.
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6.4.2.1 Generalized Hillclimbers and Simulated Annealing

The results by Jacobson and Yücesan [44] concerning convergence of GHCs
are especially instructive as, on the one hand, GHCs contain SA (for which
the first model convergence theorems have been shown) as a special case,
and on the other hand, the article works already on a more general level
such that metaheuristic-independent features become visible. In [44], it is as-
sumed that subsequent iterations of a GHC are comprised to macro iterations
k = 1, 2, . . .. (We shall choose a simple, special way of defining macro itera-
tions later.) During each macro iteration, the random variable R deciding on
acceptance (see Section 6.2) has the same distribution. With t(k) denoting
the last “micro” iteration of macro iteration k, let xk denote xt(k), i.e., the
current search point as it is obtained at the end of macro iteration k. We
introduce the following abbreviations:

• C(k) is the event that xk ∈ S∗, i.e., the event that macro iteration k
produces an optimal solution. The complementary event is denoted by
Cc(k).

• B(k) is the event Cc(1) ∩ Cc(2) ∩ . . . ∩ Cc(k), i.e., the event that none of
the macro iterations 1, . . . , k produces an optimal solution. The comple-
mentary event to B(k) is Bc(k).

• B =
⋂∞

k=1B(k) is the event that no iteration at all produces an optimal
solution.

• r(k) = Pr{Bc(k) |B(k − 1)} is the probability that in macro iteration k,
an optimal solution is produced, although it has not yet been produced in
any of the previous macro iterations.

Convergence of xk in probability to the set X∗ of optimal solutions can be
expressed as Pr(C(k))→ 1 as k →∞. It is now possible to show the following
criterion:

Theorem 1 (Jacobson and Yücesan [44]). For a GHC, x∗ converges to S∗

in probability if and only if the two following two conditions are satisfied:

(i)
∑∞

k=1 r(k) =∞,
(ii) Pr(Cc(k) |Bc(k − 1)} → 0 as k →∞

Let us present the proof idea of the part of the theorem stating that the two
conditions above are sufficient for convergence in probability. The idea is not
too complicated, but very informative, because it recurs in some variations in
related proofs in the literature. First, we show that condition (i) is equivalent
to Pr(B) = 0. This results as follows:

Pr(B) = Pr(B(1)) · Pr(B(2)|B(1)) · Pr(B(3)|B(1) ∩B(2)) · . . .

= (1− r(1)) · (1− r(2)) · (1− r(3)) · . . . .

Therefore,
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Pr(B) = 0 ⇔
∞∏

k=1

(1− r(k)) = 0 ⇔
∞∑

k=1

log(1− r(k)) = −∞,

where the second equivalence follows by taking logarithm on both sides. Since
log(1− r(k)) ∼ −r(k) for small r(k), the latter is equivalent to

∑∞
k=1 r(k) =

∞. (To make the proof precise, the approximation has to be replaced by
bounds.)

Now, by the law of total probability,

Pr(Cc(k)) = Pr(Cc(k)|Bc(k − 1)) · Pr(Bc(k − 1))

+Pr(Cc(k)|B(k − 1)) · Pr(B(k − 1))

= Pr(Cc(k)|Bc(k − 1)) · Pr(Bc(k − 1)) + P (B(k)).

By condition (ii), the first term in the last expression tends to 0 as k → ∞.
Because of the equivalence derived above, condition (i) yields Pr(B) = 0.
Because B(1) ⊆ B(2) ⊆ . . ., by the Monotone Convergence Theorem,

Pr(B(k))→ Pr

( ∞⋂
k=1

B(k)

)
= Pr(B) = 0,

and therefore also the second term tends to zero. This shows Pr(Cc(k))→ 0,
which completes the proof.

Theorem 1 can be nicely interpreted in terms of the exploration-exploitation
tradeoff: Condition (i) guarantees that enough exploration is performed in or-
der to be sure to find a globally optimal solution eventually. Condition (ii),
on the other hand, ensures that enough exploitation is done in order to pre-
serve an optimal solution with a high probability, once it has been found, and
enables convergence in this way.5

Consider now the special case of SA. We choose macro iterations of equal
length, consisting of L micro iterations each, where L is the maximum of the
minimum number of transitions to neighbors required to reach an optimal
solution from an arbitrary initial solution x over all x ∈ S. Then it is possible
to reach from an arbitrary point x ∈ S an optimal solution in exactly L micro

5 The decomposition of the process into a phase before and a phase after an optimal

solution x∗ has been found may appear as a cheap trick: One might be tempted to construct

a “model-convergent” metaheuristic by letting it perform random search before x∗ has
been found, and to freeze the current solutions xt to x∗ after that time. The point is,

however, that the decomposition into these two phases only exists at the level of analysis
and cannot be done by the algorithm itself, which does not know when it has detected an
optimal solution, such that it cannot use the attainment of the optimum as the criterion

for switching from exploration to exploitation. Thus, in order to preserve x∗ after it has

been discovered, the algorithm has to do a sufficient amount of exploitation already before
this event — which, on the other hand, makes it nontrivial to guarantee that the global

optimum is not missed.
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iterations (i.e., in one macro iteration), either by moving with the search point
xt towards x∗ or by letting it stay in x∗, rejecting neighbor solutions. We shall
focus on the process (xk) defined by the macro iterations, but mention that
corresponding results can also be derived for the process (xt) on the level of
micro iterations.

It is easy to see that if the temperature parameter is fixed at some constant
level c, either condition (i) or condition (ii) of Theorem 1 are violated: If c > 0,
then r(k) has a strictly positive lower bound, such that condition (i) holds; in
this case, however, condition (ii) is not satisfied, since even after an optimal
solution has been visited, suboptimal solutions will always be produced with
probabilities larger than some positive constant. On the other hand, if c = 0,
then only better neighbor solutions are accepted, with the consequence that
condition (ii) is satisfied (once an optimal solution has been found, it is
not left anymore), but condition (i) is violated, because usually an optimal
solution is not found.

The stunt of satisfying the two conditions simultaneously is achieved by de-
creasing the temperature parameter with a suitable speed. Choose a temper-
ature scheme ck with ck → 0 (k →∞) and ck ≥ L∆/ log(k+1) (k = 1, 2, . . .),
where ∆ = maxx,y∈S(f(x)− f(y)). It is easily seen that as soon as the tem-
perature has become low enough,

r(k) ≥
[

1
|S|
· exp

(
−∆
ck

)]L

≥ C

k

with some constant C > 0, which implies that
∑
r(k) =∞ and hence condi-

tion (i) of Theorem 1 is satisfied.
To show that the above temperature scheme is also sufficient for satisfying

condition (ii) needs some technicalities from the theory of inhomogeneous
Markov chains, which we omit here; the interested reader is referred to [1].
Let us only provide the rough picture. The sequence (xt) is an inhomogeneous
Markov chain with transition matrix P (k) on temperature level ck. Condi-
tion (i) above ensures weak ergodicity of this Markov chain, which essentially
means that the dependence on the initial solution vanishes over time. To sat-
isfy also condition (ii), it has to be shown that (a) for all k, there exists a left
eigenvector π(k) of P (k) with eigenvalue 1, (b) the eigenvectors π(k) satisfy∑∞

k=1 ||π(k)−π(k+1)|| <∞, and (c) the eigenvectors πk converge as k →∞
to a limiting vector π∗ containing probabilities of the solutions x ∈ S such
that only the probabilities in S∗ have nonzero values. These properties can
be demonstrated to be satisfied indeed for the given temperature scheme,
which implies that the Markov chain is strongly ergodic and converges in
distribution to π∗.
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6.4.2.2 Ant Colony Optimization and Cross Entropy Optimization

The convergence proofs for special ACO variants in [21, 22] and for a partic-
ular variant of Cross Entropy Optimization in [49] have a similar structure
as the results for GHCs outlined above. Let us explain this for the ACO case.

The algorithmic variants investigated in [22] are derived from the MMAS
variant of ACO proposed in [58]. MMAS provides the possibility of applying a
lower pheromone bound τmin > 0 which prevents that the components of the
pheromone vector τt contained in ms

t approach zero. In this way, exploitation
is limited to a certain degree in favor of exploration. The update of the
pheromone values is done by a reinforcement of the components of the best-so-
far solution xbsf

t , sometimes also the components of the iteration-best solution
xib

t are reinforced. The degree of reinforcement is controlled by a parameter
ρ ∈]0, 1[ called evaporation rate, which can be considered as a learning rate.
The new pheromone vector results as

τt+1 = (1− ρ)τt + ρψt,

where ψt is the vector of the rewards in the current iteration. If ρ is high,
the observations made in the current iteration (the “presence”) have a high
influence on the new pheromone vector, compared to former iterations (the
“past”), whereas in the more conservative case of low ρ, the past is given a
higher influence than the presence.

In [22], two particular variants are considered: The first of them, “algo-
rithm 1”, does not use a pheromone bound, but decreases the learning rate ρ
over time, choosing it as ρ = ρt. The second one, “algorithm 2”, uses a time-
dependent lower pheromone bound τmin

t . In both algorithms, iteration-best
reinforcement is not done, i.e., xib

t is not used.
The following result is shown: Both for algorithm 1 and for algorithm 2, as

t→∞, xbsf
t converges w. pr. 1 to an optimal solution x∗, and the current state

τt of the sample-generating part ms
t of the memory converges w. pr. 1 to a

pheromone vector τ∗ allowing only the generation of the optimal solution x∗,
provided that the following conditions are satisfied:

• In the case of algorithm 1:

ρt ≤ 1− log t
log(t+ 1)

and
∞∑

t=1

ρt =∞.

This can be achieved, e.g., by the parameter scheme ρt = c/(t log t) with
0 < c < 1.

• In the case of algorithm 2:

τmin
t = ct/ log(t+ 1) with lim

t→∞
ct > 0.

This can be achieved, e.g., by constant ct = c > 0.
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The line of the proof is similar to the general scheme implicit in the proof
of Theorem 1. Also here, the first part of the proof consists in ensuring that
eventually, an optimal solution x∗ is found. For this purpose, it is demon-
strated that from the indicated conditions, a counterpart to condition (i) in
Theorem 1 follows. After that, it has to be ensured that w. pr. 1, pheromone
concentrates on the components of x∗ and vanishes elsewhere. (That the op-
timal solution x∗ is not left anymore after the first visit is trivial here by
construction of xbsf

t .) The convergence of the pheromone vector results by a
deterministic consideration for an arbitrary realization of the stochastic pro-
cess, such that we even obtain convergence w. pr. 1 in this scenario. Note that
the conditions for algorithm 1 require that ρt decreases neither too fast nor
too slow, and the conditions for algorithm 2 require an analogous property
for the lower pheromone bounds τmin

t .
Whereas in [22] it was assumed that the rewards for the components of

the best-so-far solution are of a constant amount, Sebastiani and Torrisi [55]
gave convergence conditions for the modification of the MMAS algorithm
where the size of the rewards is chosen “fitness-proportional”, i.e., decreasing
in the cost function value of the solution to be reinforced. (This modification
is frequently used in practice.)

Margolin [49] was able to provide a convergence proof for a certain Cross
Entropy Optimization variant. Both convergence conditions and proof tech-
nique are closely related to the results in [22], so that we omit the details
here.

6.4.2.3 Practical Aspects

What do the outlined results imply for applications of metaheuristics? We
do not claim that it is always advisable to use a model-convergent parameter
scheme when implementing a metaheuristic. Rather than that, our claim is
that it can be helpful to know how such a scheme looks like. Let us justify
this by an informal argument: In some sense, a model-convergent parameter
scheme is a scheme maximizing exploitation under the constraint that there
is still a sufficient amount of exploration in order to keep the promise of
finally achieving the globally optimal solution alive. In cases of large problem
instances with many good local optima, it may be more efficient to sacrifice
the warranty of finding the global optimum “at the end of the day” for the
benefit of accelerating the search for good local optima “in the course of
the day”. In such a case, one may decide to apply a parametrization of the
algorithm that is slightly below the model-convergent scheme with respect to
the degree of exploration. This means slightly faster cooling in SA or slightly
less restrictive lower pheromone bounds in ACO, compared to the conditions
in the theoretical convergence results.

Future research, both on a theoretical and on an experimental level, may
possibly concretize this consideration by quantitative results.
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6.5 Convergence for Problems with Noise

There is a situation where the concept of best-so-far convergence is not ap-
plicable at all. It is the scenario of Stochastic Combinatorial Optimization
characterized by the property that the parameters of either cost function or
constraints are not known with certainty, such that stochastic models are
required to represent these parameters as random variables. We restrict our-
selves to the special (but frequently occurring) case where only the cost func-
tion is uncertain, and the objective is to minimize its expected value. If this
expected value can be computed efficiently, the situation reduces to that of
deterministic CO and can be treated by ordinary metaheuristics. Otherwise,
a solution algorithm has to be based on concrete observations (realizations)
of the cost function values in certain points x ∈ S, but these observations do
not represent the expected value, but deviate from it by “noise”. A typical
case is that where expected costs are estimated by (Monte Carlo) simula-
tion, as it is frequently done, e.g., in queuing systems or in stochastic vehicle
routing.

The SCO problem has then the following general form:

E(f(x, ω))→ min such that x ∈ S. (6.6)

Therein, ω denotes a random influence (with a distribution given by the
stochastic model of the problem), which has to be distinguished from the
random variables ξ and ξ′ used by the metaheuristic solution procedure (see
Section 6.2), and E is the expectation with respect to the distribution of ω.
For surveys on the solution of problems of this type by metaheuristics, see
Jin and Branke [46] and Bianchi et al. [3].

A sample average estimator (SAE) approximates the true objective func-
tion value F (x) = E(f(x, ω)) by the average over a random sample:

F̃ (x) = (1/s)
s∑

ν=1

f(x, ων) ≈ E(f(x, ω)). (6.7)

Therein, ων (ν = 1, . . . , s) represent s independent sample observations, e.g.,
s runs of a simulation routine. It is immediately seem that E(F̃ (x)) = F (x),
i.e., the SAE is always unbiased. We can apply the SAE during a meta-
heuristic optimization run every time when an objective function evaluation
is required, but we have to keep in mind that F̃ (x) usually deviates from
F (x), and this is so even more if the sample size s is small. Increasing the
sample size s improves the accuracy of the SAE, but this comes at the price of
increasing the runtime. The resulting tradeoff has to be addressed by efficient
metaheuristic variants.

Several modifications of different metaheuristics have been proposed in the
literature for the treatment of SCO problems, e.g., in the SA field [18, 30, 2], in
the ACO field [23, 24, 4] or in the VNS field [29]. These techniques are usually
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variable-sample approaches extending the generic algorithm of Section 6.2 in
the following way: In step 2b of the generic algorithm, the evaluation of
the objective function values f(xi) is replaced by the determination of an
SAE F̃ (xi). Typically, the sample size s = st is increased from iteration to
iteration, but there are also variants where s is kept constant.

A crucial observation is that in this scenario, the best-so-far solution xbsf
t

cannot be determined anymore, since we cannot decide with certainty which
of two solutions x and y has the better objective function value; by increas-
ing s, a guess based on the SAEs F̃ (x) and F̃ (y) becomes more trustable,
but never certain. Convergence issues get very important in this framework,
because in a non-convergent situation, we would neither know which of the
visited solutions to deliver as the proposed solution nor when to stop the
algorithm: diminishing marginal gains of f(xbsf

t ), as they can be used as a
stopping criterion in the deterministic context, do not give us a hint here.

The key idea to obtain convergence in the outlined stochastic context is to
carefully control the accuracy of the estimates F̃ (x) = F̃t(x) as t increases by
corresponding increments of the sample size s = st in iteration t, such that
the influence of randomness is gradually reduced while the metaheuristic
under consideration turns to more promising areas of the search space. As
a consequence, it becomes more probable in later phases that the global
optimum is recognized as such by the search procedure, whereas in earlier
phases, where the average solution quality is only small, it would be a waste
of time to strive for a very good accuracy in objective function evaluation.

In [30], this idea is carried out by proving that, on some conditions, con-
vergence in probability of SA carries over to the stochastic context. The
most essential condition is that the standard deviations of the noise variables
F̃t(x) − F (x) decrease as t → ∞ with an order O(t−γ) where γ > 1. Since
the variance of the SAE is inversely proportional to the sample size, this can
be achieved by letting the sample size st grow faster than quadratically in t.

A related approach has been followed in [23] for proving convergence of a
variant S-ACO of ACO proposed for SCO problems. In the design of S-ACO,
an attempt has been made to improve performance by considering, instead
of the current search point xt, something that corresponds to the best-so-
far solution xbsf

t in the deterministic context: Let x̂bsf
t denote the presumably

best-so-far solution in iteration t, defined by an arbitrary initialization in
iteration 1 and a replacement of x̂bsf

t each time when in some subsequent
iteration, the SAE F̃t(xt) of the current solution xt found in this iteration
turns out as better than the SAE F̃t(x̂

bsf
t ). In other words, at the end of

each iteration t, we perform a tournament between the current x̂bsf
t and the

current xt, based on a sample of size st, and define the new presumably best-
so-far solution as the winner of this tournament. It is shown in [23] that for a
modification of the MMAS “algorithm 2” described above with a sample size
st growing at least linearly in t, convergence of x̂bsf

t to the optimal solution
of (6.6) is ensured.
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The tournament concept has also been used in [29] to present a provably
convergent version S-VNS of VNS for SCO problems. In the proof, a general
theorem by Homem-de-Mello [8] is applied, which can possibly also be useful
in the convergence analysis of other SCO-metaheuristics. Therefore, let us
shortly outline its idea.

Denote the vector of independent random numbers that are used in the
tournament of iteration t for the evaluation of F̃ (x̂bsf

t ) and of F̃ (xt) (we
can take the same vector for both SAEs) by ωt = (ωt

1, . . . , ω
t
st

). The same
solution x can take part in the tournament in several iterations, possibly
even infinitely often. An interesting question is how fast the sample sizes st

have to be increased such that we can be sure that after sufficient time, a
suboptimal x is distinguished reliably from an optimal x, and (if present) only
optimal solutions will win the tournament in the future. Homem de Mellos’s
theorem, which is proved by large-deviations theory, answers this question:

Theorem 2 (Homem-de-Mello [8], Proposition 3.2). Suppose that for a
scheme (s1, s2, . . .) of sample sizes and independent random variables ωt

ν ,

(i) for each x ∈ S, the variances var[f(x, ωt
1)] are bounded by some constant

M(x) > 0,
(ii) the variables ωt

ν are identically distributed, and the SAEs

F̃t(x) = (1/st)
st∑

ν=1

f(x, ωt
ν)

are unbiased6, i.e., E(F̃t(x)) = F (x) for all x,
(iii)

∑∞
t=1 α

st <∞ for all α ∈]0, 1[.

Then for each x, we have F̃t(x)→ F (x) (t→∞) w. pr. 1.

In the S-VNS algorithm [29], a tournament is only performed at the end
of each macro iteration, where a macro iteration consists of a shaking step
followed by local search. For simplicity, let us apply t as an index for macro
iterations in the following. Convergence of S-VNS is shown as follows: First
of all, it is demonstrated that with a probability larger than zero, a macro
iteration finds an optimal solution x∗ and exposes it to the tournament. With
probability one, this even happens in infinitely many macro iterations. By
using Theorem 2, it is verified that for a specific realization of the stochastic
process, among all macro iterations where x∗ is exposed to the tournament,
there is one (say, macro iteration t∗) from which on the sampling error is
already small enough to distinguish reliably between optimal and suboptimal
solutions. In t∗ and in all subsequent macro iterations, an optimal solution
will win the tournament, which proves the assertion.

6 [8] also refers to a more general situation where E(f(x, ωt
ν)) can be different from F (x).

In our context, unbiasedness follows by definition.
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Condition (iii) of Theorem 1 requires that st grows fast enough. It is easy
to see that a growth proportional to t1/2 already satisfies condition (iii),
whereas a growth proportional to log t is yet too slow. The other conditions
of Theorem 2 are usually automatically satisfied.

We see that the proof relies on a convergence property of (only) best-so-far
type for the underlying deterministic VNS algorithm, which makes the result
weaker than those for SA and for ACO. It would be desirable to extend it to
a result of model-convergence type.

6.6 Convergence Speed

After having ensured convergence of a metaheuristic algorithm A, the natural
next question is “How fast does A converge on a given problem instance?”7

We have seen in the previous sections that for several metaheuristics, very
general convergence results, covering the whole range of CO problems, can
be derived. Unfortunately, it is rather unlikely that the next step can be to
show comparably broad positive results for the speed of convergence. The
reason lies in the so-called No-Free-Lunch Theorems (NFLTs) by Wolpert
and Macready [63] stating that in the average over all cost functions f :
S → W , where W is some value range, the expected performance of every
black-box optimization algorithm is the same. In particular, in this average,
no metaheuristic A is better than random search, and to every function f1
where A outperforms random search, there must be another function f2 where
random search outperforms A.

The chance to prove a convergence speed faster than that of random search
for an algorithm increases for restricted sets of problems or problem instances.
NFLTs do not hold within problem classes with restricted computational
complexity (see [11, 14, 15, 5]) or for objective functions with certain fit-
ness landscape properties (see [41, 42]). At the moment, however, it has not
yet been achieved to derive general convergence speed bounds using these
observations. Rather than that, the literature on the optimization time of
metaheuristic algorithms is split into a large number of single results for spe-
cial algorithms applied to special (usually rather simple) objective functions.
It cannot be the goal of this paper to survey these results. Overviews have re-
cently been given in [51] for evolutionary algorithms with the exception of the
swarm-intelligence algorithms ACO and PSO, and in [26] for ACO. However,

7 It does not make too much sense to raise the second question before the first is answered
at least for special problem instances and in the weakest possible meaning. E.g., if for an
algorithm A on a given problem instance, xbsf

t does not converge in probability to a set S̃ of

solutions considered as sufficiently good (which can be the set S∗), then the expected first

hitting time of S̃ is ∞. The concept of convergence or runtime “with overwhelming prob-
ability” has been used to deal with situations where non-convergence cannot be excluded,

but its interpretations are distinctly less intuitive than those of expected runtimes.
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a short recapitulation of some main tools for analyzing convergence speed
applicable to several metaheuristics may be helpful.

For the sake of brevity, we focus on the possibly most important perfor-
mance measure, the expected first hitting time E(T1) of the optimal solution,
where T1 is defined by (6.4). Note that in view of (6.5), the distribution func-
tion of T1 is given by t 7→ µt. If, from the viewpoint of application, it is
sufficient to reach a solution of some fixed minimum quality instead of the
exact optimum, the concept can easily be modified by considering E(T̃1) in-
stead of E(T1), where T̃1 is given as min{t ≥ 1 : f(xbsf

t ) ≤ c} with some
aspiration level c for the cost function.

The following outline of methods is neither intended to be complete nor to
present all the formal details. Rather than that, the aim is the presentation
of some often applied basic ideas.

(1) Markov Chain Analysis
In the case where the memory content mt can only take finitely many

values, the property that the stochastic process (mt) is a Markov process can
be used directly for computing E(T1) — at least in principle. In this case,
(mt) is a (homogeneous) Markov chain. Examples are GHCs (including SA)
and GAs. For the ease of notation, let us assume in the sequel that the optimal
solution x∗ is unique, and that even the state m∗ of the memory producing
the optimal solution is unique; this scenario can easily be generalized to the
existence of several optimal memory states. We ask for the expected time
until state m∗ is visited first. Let P = (pij) (1 ≤ i, j ≤ N) denote the
transition matrix of the Markov chain. Arrange the indices of the possible
memory states in such a way that the largest index N corresponds to m∗, and
let P̂ denote the matrix obtained from P by deleting the Nth column and
the Nth line. Then it is well-known (see, e.g., Mühlenbein and Zimmermann
[50] or He and Yao [37]) that the vector ϑ = (ϑ1, . . . , ϑN−1) of the values for
E(T1) after a start in memory state 1, . . . , N − 1, respectively, computes as

ϑ = (I − P̂ )−1 · 1N−1, (6.8)

where I is the identity matrix, and 1N−1 is the vector consisting of N − 1
ones. The inversion of the matrix I − P̂ may cause difficulties, but in some
special cases, explicit formulas can be derived. E.g., [50] gives a formula for
the case where I− P̂ has a tri-diagonal form, i.e., contains only three nonzero
elements in each line.

(2) State Space Decomposition and Subgoals
Usually, the state space becomes to large to be tractable directly by (6.8).

However, in some cases, it can be decomposed into subsets that are treated
equivalently by the metaheuristic under consideration. If the transition prob-
ability between an element of subset i and an element of subset j only depends
on i and j, then the Markov property is also satisfied for the “embedded”
chain which has the subsets as its states. This can reduce the size of the state
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space considerably. To give a simple concrete example, let us consider the
function

σα,β,n(y) =

 y, if 0 ≤ y < α,
−y + 2α, if α ≤ y < β,
y + 2α− 2β, if β ≤ y ≤ n

on {0, . . . , n}, where 0 < α < β < n and β < 2α. The function σ has a global
minimum at y = 0 and a local minimum at y = β. Furthermore, we define
the cost function

fα,β,n(x) = σα,β,n(|x|) (6.9)

on the set S = {0, 1}n of binary strings of length n, where |x| denotes the
number of 1-bits in x ∈ {0, 1}n. For minimizing f(x), we apply a GHC
where the random variable R takes the value 0 with probability 1 − p and
the value ∞ with probability p, such that better neighbors are always ac-
cepted, whereas worse neighbors are only accepted with probability p. (For
our special example, this can also be formulated in terms of SA.) A neighbor
solution to x is obtained by flipping a single bit in x. As subset i of the state
space, we consider all x ∈ S with |x| = i. Figure 6.1 shows the plot of the
expected first hitting time (assuming random initial states) in dependence of
the parameter p for the special case α = 8, β = 11 and n = 15, computed by
means of the formulas in [50]. The exploration-exploitation tradeoff is clearly
seen: Both for large p, where exploration dominates, and for small p, where
exploitation dominates, the runtime behavior of the GHC is suboptimal. For
a certain p = p∗, the expected first hitting time is minimized; in our example,
this happens for p∗ ≈ 0.215, resulting in E(T1) ≈ 234.3. Note that we have
set the parameter p to a fixed, time-independent value; gradually decreasing
it would possibly produce improved performance.8

Unfortunately, it is rather the exception than the regular case that af-
ter a decomposition of the space of memory states into subsets, the Markov
property remains valid for the subsets. The level reaching method for obtain-
ing runtime bounds, which has been developed in articles on evolutionary
algorithms (EAs) (cf. Droste et al. [12] or Borisovsky and Eremeev [6]), is
applicable in a broader range of cases. The basic idea of this method is to
define subgoals for the final goal of attaining a setM∗ of memory states pro-
ducing optimal solutions (or solutions considered as of sufficient quality). In
our generic framework, the method can be formulated as follows: Let M be
the set of all possible memory states. A hierarchy

H1 ⊇ H2 ⊇ . . . ⊇ HK =M∗

is defined, where Hk ⊆M stands for the set of all memory states on a certain
“quality level” k, and reaching this quality level is considered as “subgoal” k
(k = 1, . . . ,K). The algorithm under consideration must fulfill the mono-
tonicity constraint mt ∈ Hk ⇒ mt+1 ∈ Hk. The expected first hitting time

8 For the runtime analysis of SA with decreasing temperature, cf. Wegener [62].
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Fig. 6.1 Expected first hitting time of the GHC in dependence of the acceptance proba-
bility p for the illustration example.

tk of subset Hk, i.e., the expected time until subgoal k is reached for the first
time, is given by tk = E(min{t : mt ∈ Hk}).

In the analysis of a considered algorithm on a special problem instance,
one tries to identify upper bounds ηij for the expected runtime until satis-
fying subgoal j, provided that the algorithm starts in an arbitrary memory
state m ∈ Hi. Then, e.g., it holds that

tK ≤
K−1∑
i=1

ηi,i+1. (6.10)

Often, the algorithm performs independent trials to achieve Hi+1 from Hi.
Let in this situation αij > 0 be a lower bound for the probability that Hj

is reached after one iteration if the current state is in Hi. Then, we can set
ηi,i+1 = 1/αi,i+1 and apply (6.10). Borisovsky and Eremeev [6] also provide
stronger bounds on the values (t1, . . . , tK) derived from the matrix A = (αij)
in this more specific context.

A natural definition of subgoals derives from the possible cost function
values: Let φ1 > . . . > φK be the cost function values in decreasing order.
Assume that the current memory state mt contains xbsf

t as a component. By
defining Hk as the set of all memory states m for which f(xbsf) ≤ φk, the
required monotonicity property is satisfied. This principle has enabled the
derivation of several runtime results for EAs (cf. [61, 51]).

Recently, it has been shown that the level-reaching approach can also be
extended to continuous memory state spaces, as they occur in ACO, EDAs
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or PSO. The article [31] provides general lemmas to ensure the mathematical
validity of this extension, and derives expected first hitting time results for the
MMAS variant of ACO on several standard test functions analyzed previously
in the EA field.

(3) Martingales and Supermartingales
Let us consider again the Markov process (mt) and assume that the cur-

rently proposed solution xt is derived from the current state mt ∈ M,
i.e., xt = ψ(mt) with some function ψ. Furthermore, let us assume that
a distance function d on M is given, which allows it in particular to de-
fine the distance d(m,M∗) = min{d(m,m∗)|m∗ ∈ M∗} of a state m to the
set M∗ of memory states producing an optimal solution as the currently
proposed solution. A possible way to define d may, e.g., consist in setting
d(m,m′) = |f(ψ(m))−f(ψ(m′))|. For givenM∗, let us abbreviate d(m,M∗)
by d(m). We restrict the discussion to the case where M is a discrete finite
set. He and Yao [36, 38] define the one-step mean drift in state m as the
conditional expectation

E(d(mt)− d(mt+1) |mt = m) = d(m)−
∑
m′

p(m,m′)d(m′),

where p(m,m′) is the transition probability from state m to state m′. In the
case where the mean drift is always zero, the process (d(mt)) is a martingale,
which is a stochastic process (Yt) with the property E(Yt+1|Y1, . . . , Yt) =
Yt. For problem instances, however, that are not deceptive in the sense of
systematically misleading the search, it can happen that the drift is always
positive. In this case, (d(mt)) becomes a supermartingale, i.e., a process (Yt)
with E(Yt+1|Y1, . . . , Yt) ≤ Yt.

In [36, 38], drift analysis is applied to the runtime analysis of EAs on some
special functions, and general conditions for classifying a problem instance as
“easy” or “hard” for the considered algorithm are given, where “easy” and
“hard” mean expected first hitting times of polynomial and exponential order
in the problem instance size n, respectively. E.g., in [38], the following theorem
is shown: A problem belongs to the “easy” class if and only if there exists a
distance function d(m) such that (i) d(mt) ≤ g1(n) with a polynomial g1(n),
and E(d(mt)−d(mt+1) |mt) ≥ clow with a constant clow > 0 for any state mt

in any iteration t.

(4) ODE Approximations
The scenario of a continuous memory state space M causes particular

problems for the analysis, especially in the case where the search mechanism
does not rely on the best-so-far solution xbsf

t , but on other parts of the current
state, such that in a natural definition of the sets Hk defining subgoals, the
monotonicity property mentioned above is not satisfied anymore. An example
is the Ant System variant of ACO, introduced in [10]. In the analysis of this
algorithm, it is not clear how to define subgoals in a helpful way.
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A tool to enable a mathematical runtime analysis also in such cases is
the asymptotic approximation of the stochastic process by a limiting process
obtained by letting some parameter tend to a boundary value. In the Ant
System case, this can be done for the evaporation rate ρ, as shown in [25, 27]:
If ρ → 0 (which is a meaningful asymptotic for ACO in view of one of the
convergence results outlined in Section 6.4 which has ρt → 0), the Ant System
process approaches a limiting process where the pheromone vector (i.e., the
current memory state) follows a deterministic dynamic, described by a system
of ordinary differential equations (ODEs). On the other hand, the sample
points in Lt still remain stochastic, which means that the explorative capacity
of the algorithm is not reduced. Conclusions on convergence and on expected
first hitting time for special test functions can be derived, see [25, 27]. A
similar approach has been presented in [52]. This technique is still relatively
new in the literature on analysis of metaheuristics, such that its potential
will yet have to be explored in the future.

6.7 Conclusions

In this paper, several notions of convergence in the context of optimization
by metaheuristics have been discussed, and some fundamental mathematical
proof ideas for showing convergence of special metaheuristic algorithms for
all CO problems have been presented. In particular, we have distinguished
between a weaker form of convergence termed best-so-far convergence, and a
stronger form termed model convergence. Examples of algorithms owing one
or both of these types of convergence properties have been given.

Let us shortly outline some open research topics. Several metaheuristic
variants have not even been shown to converge in a best-so-far sense; as
an example, let us mention ACO variants without pheromone bounds and
working only with iteration-best reinforcement. It would be interesting to find
out under which conditions these variants converge to the optimum at all.
An obvious other topic of future research is of course to strengthen existing
convergence results of best-so-far type, as available for a large class of other
metaheuristic variants, to results of model convergence type.

Another open problem has already been outlined at the end of Subsec-
tion 6.4.2: the investigation of the connections between convergent or “sub-
convergent” parameter schemes for an algorithm to its performance within
finite time (measured, e.g., by the average achieved solution quality).

In the field of convergence speed analysis, it seems that at the moment,
the area of open problems is much larger that that of available results. Be-
sides the challenging goal of analyzing the performance of metaheuristics on
NP-complete problems, it may also be important to strive for more gen-
eral results than those available at present. Although no-free-lunch theorems
(cf. Section 6.6) set limits to generalizability, one might attempt to identify
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runtime-relevant properties common to larger classes of different problems
(e.g., fitness landscape properties) and to study the impacts of these proper-
ties on the runtime behavior in depth.

A final remark concerns “mat-heuristic” algorithms combining a meta-
heuristic approach with mathematical programming techniques. At the mo-
ment, convergence results for such algorithms (as an example, let us mention
the well-known Local Branching algorithm by Fischetti and Lodi [16]) seem
to be yet unavailable. As mentioned in the introduction, a rigorous math-
ematical analysis of algorithms would be especially desirable in this field
overlapping with that of traditional mathematical optimization.
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40. H.H. Hoos and T. Stützle. Local search algorithms for SAT: an empirical investigation.

Journal of Automated Reasoning, 24:421–481, 2000.
41. C. Igel and M. Toussaint. On classes of functions for which no free lunch results hold.

Information Processing Letters, 86:317–321, 2003.
42. C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform distributions of

target functions. Journal of Mathematical Modelling and Algorithms, 3:313–322, 2004.
43. S.H. Jacobson, K.A. Sullivan, and A.W. Johnson. Discrete manufacturing process de-

sign optimization using computer simulation and generalized hill climbing algorithms.
Engineering Optimization, 31:147–260, 1998.

44. S.H. Jacobson and E. Yuecesan. Analyzing the performance of generalized hill climbers.
Journal of Heuristics, 10:387–405, 2004.

45. J. Jaegerskuepper. Lower bonds for hit-and-run direct search. In J. Hromkovic,
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