
Chapter 5

Decomposition Techniques
as Metaheuristic Frameworks

Marco Boschetti, Vittorio Maniezzo, and Matteo Roffilli

Abstract Decomposition techniques are well-known as a means for obtain-
ing tight lower bounds for combinatorial optimization problems, and thus
as a component for solution methods. Moreover a long-established research
literature uses them for defining problem-specific heuristics. More recently
it has been observed that they can be the basis also for designing metaheu-
ristics. This tutorial elaborates this last point, showing how the three main
decomposition techniques, namely Dantzig-Wolfe, Lagrangean and Benders
decompositions, can be turned into model-based, dual-aware metaheuristics.
A well known combinatorial optimization problem, the Single Source Ca-
pacitated Facility Location Problem, is then chosen for validation, and the
implemented codes of the proposed algorithms are benchmarked on standard
instances from literature.

5.1 Introduction

Traditionally, heuristic methods, and metaheuristics in particular, have been
primal-only methods. They are usually quite effective in solving the given
problem instances, and they terminate providing the best feasible solution
found during the allotted computation time. However, disregarding dual in-
formation implies some obvious drawbacks, first of all not knowing the quality
of the proposed solution, but also having possibly found an optimal solution
at the beginning of the search and having wasted CPU time ever since, having
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searched a big search space that could have been much reduced, or having
disregarded important information that could have been very effective for
constructing good solutions.

Dual information is also tightly connected with the possibility of obtain-
ing good lower bounds (making reference, here and forward, to minimization
problems), another element which is not a structural part of current meta-
heuristics. On the contrary, most mathematical programming literature ded-
icated to exact methods is strongly based on these elements for achieving the
obtained results. There is nothing, though, that limits the effectiveness of
dual/bounding procedures to exact methods. There are in fact wide research
possibilities both in determining how to convert originally exact methods into
efficient heuristics and in designing new, intrinsically heuristic techniques,
which include dual information.

In this tutorial we examine a possibility from the second alternative. There
are many ways in which bounds can be derived, one of the most effective
of these is the use of decomposition techniques [6]. These are techniques
primarily meant to exploit the possibility of identifying a subproblem in the
problem to solve and to decompose the whole problem in a master problem
and a subproblem, which communicate via dual or dual-related information.
The popularity of these techniques derives both from their effectiveness in
providing efficient bounds and from the observation that many real-world
problems lead themselves to a decomposition.

Unfortunately, despite their prolonged presence in the optimization lit-
erature, there is as yet no clear-cut recipe for determining which problems
should be solved with decompositions and which are better solved by other
means. Clearly, decomposition techniques are foremost candidates for prob-
lems which are inherently structured as a master and different subproblems,
but it is at times possible to effectively decompose the formulation of a prob-
lem which does not show such structure and enjoy advantages. Examples
from the literature of effective usage of decomposition techniques (mainly
Lagrangean) on single-structure problems include, e.g., set covering [13, 14],
set partitioning [3, 32, 12] and crew scheduling [11, 18, 19, 24].

In a previous paper [9] we observed that the general structure of decompo-
sition techniques can be extended from bound computation to include feasible
solution construction. According to this, decompositions such as Dantzig-
Wolfe, Benders or Lagrangean provide a rich framework for designing meta-
heuristics. In this work we elaborate this point, showing how the three men-
tioned approaches can be practically applied to a well-known combinatorial
optimization problem, namely the Single Source Capacitated Facility Loca-
tion Problem.

The structure of the chapter is as follows. In Section 5.2 we introduce
the three basic decomposition techniques: Lagrangean relaxation, Dantzig-
Wolfe decomposition, and Benders decomposition. Section 5.3 shows, for each
of the three methods, how to derive a possible metaheuristic. Section 5.4
introduces the Single Source Capacitated Facility Location Problem, which
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will be used for benchmarking the algorithms. Finally, Section 5.5 shows
the computational results obtained with our implementation of the proposed
metaheuristics.

5.2 Decomposition Methods

This section briefly overviews the three decomposition techniques we will use
as a basis for metaheuristics design. These decompositions can be applied
to continuous, mixed-integer and pure integer linear programming problems.
Since decomposition is a basic operations research topic, which can be found
in any mathematical programming textbook, we only present here the basic
formulae in the general case of a mixed integer problem. The discussion is for
a minimization problem, being trivial to apply it to a maximization one.

The problem to solve, called P, has the following structure:

zP = min c1x + c2y (5.1)
s.t. Ax + By ≥ b (5.2)

Dy ≥ d (5.3)
x ≥ 0 (5.4)
y ≥ 0 and integer (5.5)

We assume, for ease of presentation, that the feasibility region is non-null
and bounded.

5.2.1 Lagrangean Relaxation

Lagrangean relaxation permits to obtain a lower bound to problem P by
removing some difficult constraints and by dualizing them into the objective
function by means of Lagrangean penalties. For example, if in problem P we
relax constraints (5.2) using the non-negative Lagrangean penalty vector λλλ,
we obtain the following formulation LR:

zLR(λλλ) = min c1x + c2y + λλλ(b−Ax−By) (5.6)
s.t. Dy ≥ d (5.7)

x ≥ 0 (5.8)
y ≥ 0 and integer (5.9)

zLR(λλλ) is a valid lower bound to the optimal value of P, i.e., zLR(λλλ) ≤
zP , for every λλλ ≥ 000. To identify the penalty vector λλλ that maximizes the
lower bound zLR(λλλ), we solve the so-called Lagrangean dual, which can be
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formulated as follows:

zLR = max {zLR(λλλ) : λλλ ≥ 0} (5.10)

For solving the Lagrangean dual, an internal subproblem LR must be solved
for each penalty vector λ. LR is as follows:

zLR(λλλ) = min (c1 − λλλA)x + (c2 − λλλB)y + λλλb (5.11)
s.t. Dy ≥ d (5.12)

x ≥ 0 (5.13)
y ≥ 0 and integer (5.14)

If the subproblem is solved to integrality, it is possible that the lower bound
provided by zLR is tighter than the linear relaxation of problem P.

Notice that it is possible to add to the LR formulation constraints that
are redundant in the original formulation, but that can help the convergence.
Moreover, it is sometimes possible to obtain feasible dual solutions directly
from the Lagrangean penalties. Approaches based on this property have been
used, e.g., to generate reduced problems which consider only the variables of
k-least reduced costs (e.g., [11, 12, 24]).

5.2.2 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition [16] is an iterative procedure which successively
approximates the linear relaxation of problem P by decomposing it into a
sequence of smaller and/or easier subproblems. The subproblems dynamically
generate the columns of a master problem corresponding to the LP relaxation
of P.

In order to use the same decomposition as in Section 5.2.1, let F be the
feasible region induced by constraints (5.3)–(5.5), i.e. F = {(x,y) : Dy ≥
d,x ≥ 0,y ≥ 0 and integer}, which we assume finite and non-null, and let
{(xt,yt) : t = 1, . . . , T} be the set of the extreme points of F . Dantzig-Wolfe
proceeds by identifying optimal (with respect to the current cost function)
extreme points of F , computed as solutions of a subproblem, then passing
them to the master problem in order to check them against the relaxed con-
straints, i.e., those not F -defining. The master problem is formulated as a
constrained linear combination of the proposed extreme points. After having
computed the cost of the best combination of the so far proposed extreme
points of F , taking into consideration also the relaxed constraints retained in
the master, the subproblem costs are updated, and are computed as reduced
costs derived from the dual values of the relaxed constraints. The subproblem
is then solved again, to see whether a new, less expensive extreme point can
be found.
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In the case of problem P, a possible master problem, obtained again by
relaxing the “difficult” constraints (5.2) is as follows:

zMDW = min
T∑

t=1

(c1xt + c2yt)µt (5.15)

s.t.
T∑

t=1

(Axt + Byt)µt ≥ b (5.16)

T∑
t=1

µt = 1 (5.17)

µt ≥ 0, t = 1, . . . , T (5.18)

The corresponding subproblem is:

zSDW (u, α) = min (c1 − uA)x + (c2 − uB)y − α (5.19)
s.t. Dy ≥ d (5.20)

x ≥ 0 (5.21)
y ≥ 0 and integer (5.22)

where u and α are the dual variables corresponding to constraints (5.16) and
(5.17) of the master problem, respectively.

If the subproblem optimal solution (x∗,y∗) has a value zSDW (u, α) < 0,
we can add the corresponding column (Ax∗ + By∗) of cost (c1x∗ + c2y∗)
into the master problem, otherwise we have reached the optimal solution of
MDW. Notice that subproblem SDW is identical to LR if we replace u and
α with λλλ and −λλλb, respectively.

At each iteration of the procedure, a valid lower bound to the optimal
solution value of the original problem is given by zMDW + zSDW (see [6]
for further details). This lower bound is not monotonically nondecreasing.
Therefore, we need to maintain the best value obtained through the iterations.

5.2.3 Benders Decomposition

Benders decomposition [8] computes a lower bound to the optimal cost of the
original problem by solving a master problem which fixes some of its variables.
Then, to improve the lower bound, it solves a subproblem which adds new
constraints to the master.

Let w and v be the dual variables of problem P associated to constraints
(5.2) and (5.3), respectively. The dual of P is as follows:
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zD = max wb + vd (5.23)
s.t. wA ≤ c1 (5.24)

wB + vD ≤ c2 (5.25)
w ≥ 0 (5.26)
v ≥ 0 (5.27)

The dual D can be also rewritten as zD = max {zSD(w) : wA ≤ c1,w ≥ 0},
where

zSD(w) = max wb + vd (5.28)
s.t. vD ≤ c2 −wB (5.29)

v ≥ 0 (5.30)

Let y be the dual variables associated to constraints (5.29). The dual of SD
becomes:

zSP (w) = min (c2 −wB)y + wb (5.31)
s.t. Dy ≥ d (5.32)

y ≥ 0 and integer (5.33)

Upon denoting W = {w : wA ≤ c1,w ≥ 0} and Y = {y : Dy ≥ d,y ≥
0 and integer}, we can rewrite problem D as:

zD = max
w∈W

min
y∈Y

(c2 −wB)y + wb. (5.34)

Let {wt, t = 1, . . . , T} be the set of the extreme points of W . Since we
have assumed the feasible region to be finite and non-null, we have that
zD = min

y∈Y
max

t=1,...,T
(c2 −wtB)y +wtb, which is equivalent to the following for-

mulation MB:

zMB = min z (5.35)

s.t. z ≥ (c2 −wtB)y + wtb, t = 1, . . . , T (5.36)
y ∈ Y (5.37)

Problem MB is the Benders master problem and constraints (5.36) are the so-
called Benders cuts. The number of Benders cuts T is usually huge; therefore,
the master problem is initially solved considering only a small number T ′ of
Benders cuts, i.e., T ′ � T . In order to ascertain whether the solution is
already optimal or an additional cut should be added to the master, we need
to solve a subproblem SB. Since problem D defined in (5.34) is equivalent to:

zD = min
y∈Y

(
c2y + max

w∈W
w(b−By)

)
(5.38)
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the subproblem SB is:

zSB(y) = max w(b−By) (5.39)
s.t. wA ≤ c1 (5.40)

w ≥ 0 (5.41)

Notice that a primal solution (x,y) of problem P, useful for the metaheuristics
discussed in Section 5.3, can be obtained by the dual of SB defined as:

zSP (y) = min c1x (5.42)
s.t. Ax ≤ b−By (5.43)

x ≥ 0 (5.44)

Also for problems MB and SB, it is possible to add constraints that are
redundant in the original formulation, but can help convergence.

It is interesting to show that also for Benders decomposition we can have
a subproblem equivalent to the ones of Lagrangean relaxation and Dantzig-
Wolfe decomposition. In fact, if the dual D, (5.23)–(5.27), is rewritten as:

zD = max {zSD′(w) : w ≥ 0} (5.45)

where

zSD′(w) = max wb + vd (5.46)
s.t. 0 ≤ c1 −wA (5.47)

vD ≤ c2 −wB (5.48)
v ≥ 0 (5.49)

the dual of SD′ is identical to subproblem LR, defined by (5.11)–(5.14), after
replacing the penalty vector λλλ with w.

5.3 Metaheuristics Derived from Decompositions

In this section we show how metaheuristic frameworks can be directly derived
from the three decomposition methods previously described. Notice that the
proposed algorithms are not the only ones that could be derived from the
used decompositions, but they represent reasonable frameworks, which we
have already used with success on different problems. We hope that this
chapter may serve as a means to foster research on different or more general
metaheuristic frameworks, including other approaches deriving from decom-
position techniques.
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5.3.1 A Lagrangean Metaheuristic

The literature is rich with heuristics based on the Lagrangean decomposition
structure outlined above. An excellent introduction to the whole topic of
Lagrangean relaxation, and of related heuristics, can be found in [7]. A general
structure of a Lagrangean heuristic, common to most applications, is given
in Algorithm 1.

Algorithm 1: LagrHeuristic

identify an “easy” subproblem LR(λλλ)1

repeat2

solve subproblem LR(λλλ) obtaining solution x3

check for unsatisfied constraints4

update penalties λλλ5

construct problem solution using x and λλλ6

until (end condition) ;7

This pseudocode is obviously underspecified for a direct application, being
at an abstraction level where metaheuristics are usually presented. However,
notice that this structure already shows the essential ingredients of a meta-
heuristic, i.e., it is “an iterative master process that guides and modifies the
operations of a subordinate heuristic” at Step 6.

Steps 1 and 3 are problem-dependent, such as neighborhood definition or
crossover implementation in other contexts. Step 4 is trivial, while Step 5 can
be implemented by means of any state-of-the-art technique, usually subgradi-
ent optimization or bundle methods. Moreover, some of these techniques have
been proved to converge not only to the optimal λλλ, but also to the optimal
x of the linear relaxation (see Sherali and Choi [29] and Barahona and Anbil
[4]), thereby possibly providing a particularly “intelligent” starting point for
Step 6.

5.3.2 A Dantzig-Wolfe Metaheuristic

As for any metaheuristic, also for Dantzig-Wolfe we can propose a general
structure that will have to be detailed in some of its steps in order to apply
it to specific problems. Here, we propose one possible effective structure, but
again, alternative ones are possible.

The master problem MDW should be defined to be easy to solve to op-
timality, while the subproblem SDW can be difficult and it could be needed
to solve it heuristically. The proposed pseudocode for algorithm DWHeu-
ristic tries to generate feasible solutions making use of the dual solutions
(u, α) provided by MDW and of the primal solution (x,y) =

∑T
t=1 (xt,yt)µt
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Algorithm 2: DWHeuristic

identify a master MDW and an “easy” subproblem SDW(u,α), set T=01

repeat2

solve master problem MDW3

given the solution µ of MDW define (x,y) =
∑T

t=1 (xt,yt)µt4

solve problem SDW(u,α), where (u,α) is the dual solution of MDW5

construct feasible solutions using (x,y) and/or (u,α), generated by MDW,6

and/or (x′,y′), generated by SDW(u,α)7

if (no more columns can be added) then8

STOP9

else10

set T = T + 111

add the column (x′,y′) generated at step 512

until (end condition) ;13

and (x′,y′) generated by solving MDW and SDW(u,α), respectively. How-
ever, it is possible to include other local search algorithms, based on different
neighborhoods. For example, we can generate a feasible solution using the so-
lutions (xt,yt) associated to the columns of MDW with µt > 0 in its current
solution.

5.3.3 A Benders Metaheuristic

The identification of a common structure for Benders based heuristics is more
difficult than for Lagrangean or Dantzig-Wolfe ones, since the proposals in
the literature vary much, and usually Benders decomposition is used in a very
problem-dependent fashion. We propose here one possible structure, which
already proved effective, but again, alternative ones are possible.

The structure can be applied both to MIP problems, as sketched in Section
5.2, and to pure IP problems. The subproblem SP (see Equation (5.42)) could
be defined over integer or binary variables, in both cases it is necessary to
use its linear relaxation in order to obtain its dual SB (Equation (5.39)).

Taking into account the intrinsic difficulty of both MB and SB, we propose
to consider solving them both heuristically. The effect of solving heuristically
MB at step 3 is that it is not guaranteed to produce a lower bound to problem
P. When a lower bound is needed, MB must be solved to optimality, or
approximated from below. Notice, however, that the main purpose of MB is
to produce alternative y sets, of possibly increasing qualities, and this can
be effectively accomplished by heuristic solutions. Step 5 provides an upper
bound, i.e., a feasible solution, to the whole problem. Step 6 finds a lower
bound to the problem obtained by fixing the y variables.
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Algorithm 3: BendHeuristic

identify a master MB and an “easy” subproblem SB(y), set T = 01

repeat2

solve (heuristically) master problem MB obtaining the solution (z,y)3

if (x are requested to be integer) then4

solve (heuristically) master problem MB obtaining the solution (z,y)5

solve problem SB(y) obtaining the dual solution w6

if (no more columns can be added) then7

STOP8

else9

set T = T + 110

add to MB the Benders cut generated by problem SB(y)11

until (end condition) ;12

The terminating condition at Step 7 depends on whether the master is
solved heuristically or to optimality. In this last case, the condition would be
“if zt ≥ zd”, which in fact implies the impossibility of generating new cuts.
However, in a heuristic context such as admitted by Steps 3 and 5, new cuts
could be further generated, which could prove useful for continuing search.

5.4 Single Source Capacitated Facility Location

The algorithms presented in Section 5.3 are meant as metaheuristics. They
are relatively simple, yet effective and robust approaches. To get state-of-the-
art results some sophisticated elements are needed, for these as for any other
metaheuristic. However, a straightforward application of these pseudocodes
already produces results, which are close to the state-of-the-art. In order to
show the robustness and the ease to arrive to fully-defined, problem-specific
codes, we report in this section on the application of each proposed approach
to the Single Source Capacitated Facility Location Problem (SCFLP).

The SCFLP is a well-known problem that arises in many applications,
from clustering problems in data mining to networks design. The problem
asks to locate a number of facilities (e.g., plants, warehouses or hubs), that
must provide a service to a set of customers, minimizing a global cost. The
cost includes fixed charges for opening the facilities and service costs for
satisfying customer demands.

Let J = {1, . . . , n} be the index sets of customers and I = {1, . . . ,m} the
index set of possible facility locations. Each customer j has an associated
demand, qj , that must be served by a single facility; a facility located at
site i has an overall capacity of Qi. The costs are composed of a cost cij for
supplying the demand of a customer j from a facility established at location i
and of a fixed cost, fi, for opening a facility at location i. Let xij , i = 1, . . . ,m,
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j = 1, . . . , n, be binary variables such that xij = 1 if customer j is assigned
to a facility located at i, 0 otherwise, and let yi, i = 1, . . . ,m, be binary
variables such that yi = 1 if a facility is located at site i, 0 otherwise.

A mathematical formulation of the SCFLP is as follows:

zSCFLP = min
∑

i∈I,j∈J

cijxij +
∑
i∈I

fiyi (5.50)

s.t.
∑
i∈I

xij = 1, j ∈ J (5.51)∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.52)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.53)
yi ∈ {0, 1}, i ∈ I (5.54)

The objective function (5.50) asks to minimize the sum of fixed and service
costs. Assignment constraints (5.51) ensure that all customers are serviced
by exactly one facility; knapsack constraints (5.52) are the facility capacity
constraints and, finally, (5.53) and (5.54) are the integrality constraints.

SCFLP is an NP-hard problem and often the optimal value of its LP
relaxation, obtained by removing the integrality constraints, is much worse
than the optimum integer solution value. In order to improve the optimal
value of the LP-relaxation, as suggested in [20], we can add the following
additional constraints, redundant in SCFLP:

xij − yi ≤ 0, for each i ∈ I and j ∈ J (5.55)

Given its simple structure, the SCFLP has often been used for benchmarking
new approaches. Some variants of it exist, the most studied one permits a split
assignment of customers to location, thus relaxing constraints (5.53) to xij ≥
0, i ∈ I, j ∈ J . Most approximation results, such as Chudak and Shmoys’s
3-approximation algorithm [15], refer to this problem version. Closely related
problems are also the Capacitated p-median and the Generalized Assignment
Problems. Several exact approaches have been proposed for the SCFLP, one
of the best known being [25], where a branch and bound scheme based on a
partitioning formulation is proposed. However, exact methods do not scale
up to large instance sizes.

Large instances have been tackled by means of different kinds of heuristics,
from very large scale neighborhood (VLSN) search [2] to reactive GRASP and
tabu search [17]. Extensive research has been devoted to Lagrangean heuris-
tics for the SCFLP. Most authors start by relaxing assignment constraints,
obtaining a Lagrangean subproblem which separates into n knapsack prob-
lems, one for each facility, whose combined solutions provide a lower bound
to the problem [5, 26, 31, 20, 28]. However, different relaxations have also
been used. Klincewicz and Luss [21] relax the capacity constraints (5.52),
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thereby obtaining as Lagrangean subproblem an uncapacitated facility loca-
tion problem, which is solved heuristically. Beasley [7] and Agar and Salhi [1]
relax both the assignment and the capacity constraints, and obtain a very ro-
bust solution approach, which provides good quality solutions to a number of
different location problems, including p-median, uncapacitated, capacitated
and single source facility location problems.

Having introduced the basic techniques and the problem they have been
applied to, we move on describing how the basic pseudocodes for the La-
grangean, Dantzig-Wolfe and Benders metaheuristics can be specialized for
the SCFLP.

5.4.1 Solving the SCFLP with a Lagrangean
Metaheuristic

We present here a very straightforward application of LagrHeuristic to the
SCFLP. The resulting algorithm is not enough to produce edge-level results,
but it shows that already by means of such a simple code it is possible to get
quite good performance. The steps of LagrHeuristic for the SCFLP can
be specified as follows. (Note that the step numbers refer to the lines in the
pseudocode of the metaheuristic.)

Step 1: Identify an “easy” subproblem LR. The relaxation of the assignment
constraints (5.51) in problem SCFLP yields the following problem.

zLR(λλλ) = min
∑

i∈I,j∈J

(cij − λj)xij +
∑
i∈I

fiyi +
∑
j∈J

λj (5.56)

s.t.
∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.57)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.58)
yi ∈ {0, 1}, i ∈ I (5.59)

where λj , j ∈ J , are unrestricted penalties.

Step 3: Solve subproblem LR. Problem LR decomposes naturally into |I|
knapsack problems, with objective function

∑
i∈I

(∑
j∈J(cij − λj)xij + fiyi

)
.

Thus, for each i ∈ I for which
∑

j∈J(cij − λj)xij < −fi, the corresponding
yi is set to 1, otherwise to 0.

Step 4: Check for unsatisfied constraints. The solution of LR can have cus-
tomers assigned to multiple or to no location. This can be determined by
direct inspection.
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Step 5: Update penalties λλλ. We used a standard subgradient algorithm [26]
for updating penalties.

Step 6: construct problem solution using x and λλλ. Let Ī be the set of locations
chosen in the solution obtained at Step 3. The SCFLP becomes a Generalized
Assignment Problem (GAP) as follows:

zGAP = min
∑

i∈Ī,j∈J

cijxij (5.60)

s.t.
∑
i∈Ī

xij = 1, j ∈ J (5.61)

∑
j∈J

qjxij ≤ Qi, i ∈ Ī (5.62)

xij ∈ {0, 1}, i ∈ Ī , j ∈ J (5.63)

This is still an NP-hard problem, but efficient codes exist to solve it, which
we did once per Lagrangean iteration (see the subsequent computational
results section for further details).

We formulate the GAP using the original costs {cij} instead of the pe-
nalized costs {cij − λj}, which could seem to be an obvious bonus granted
by using the Lagrangean relaxation in a heuristic context. This is because in
this case, having fixed the set of chosen locations Ī, solving the GAP to opti-
mality generates the best possible solution. However, in other circumstances,
we can take advantage of using penalized (thus dual-related) costs instead
of the original ones (e.g., the fully distributed Lagrangean metaheuristic for
a P2P Overlay Network Design Problem described in [10, 22]) obtaining a
considerable computational advantage.

Notice that for some iterations, Step 3 may provide a set of locations Ī
for which the GAP is unfeasible. In this case no feasible SCFLP solution is
generated and LagrHeuristic simply goes on.

5.4.2 Solving the SCFLP with a Dantzig-Wolfe
Metaheuristic

We have a number of possibilities to decompose our model for the SCFLP.
Among them we chose to decompose the problem in such a way as to have
a subproblem equivalent to LR, defined for the Lagrangean relaxation de-
scribed in the previous subsection. The specific steps of DWHeuristic for
the SCFLP result as follows.

Step 1: Identify a master MDW and an “easy” subproblem SDW. A possi-
ble Dantzig-Wolfe decomposition of the SCFLP maintains the assignment
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constraints in the master problem:

zMDW = min
t∑

k=1

 ∑
i∈I,j∈J

cijx
k
ij +

∑
i∈I

fiy
k
i

λk (5.64)

s.t.
t∑

k=1

(∑
i∈I

xk
ij

)
λk = 1, j ∈ J (5.65)

t∑
k=1

λk = 1 (5.66)

λk ≥ 0, k = 1, . . . , t (5.67)

and the subproblem is:

zSDW (u, α) = min
∑

i∈I,j∈J

(cij − uj)xij +
∑
i∈I

fiyi − α (5.68)

s.t.
∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.69)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.70)
yi ∈ {0, 1}, i ∈ I (5.71)

where uj and α are the dual variables of the master problem corresponding
to constraints (5.65) and (5.66), respectively.

Step 3: Solve master problem MDW. As the master problem is relatively easy
to solve, we solve it to optimality at each iteration.

Step 5: Solve subproblem SDW. The xij and yi are required to be in-
teger, but subproblem SDW is equivalent to LR, (5.56)–(5.59), and it
can be decomposed into |I| knapsack problems, with objective function∑

i∈I

(∑
j∈J(cij − uj)xij + fiyi

)
. Thus, for each i ∈ I for which

∑
j∈J(cij −

uj)xij < −fi, the corresponding yi is set to 1, otherwise to 0.

Step 6: Construct a feasible solution. We generate a feasible SCFLP solution
using the same procedure used for the Lagrangean metaheuristic by solving
problem GAP, (5.60)–(5.63), defined according to the SDW solution.

Step 8: Stop condition. If zSDW (u, α) ≥ 0 we stop because we have reached
the optimal solution of the master problem MDW. Otherwise, we add the
new column generated by SDW to the master problem MDW and we go on.
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5.4.3 Solving the SCFLP with a Benders Metaheuristic

Also a Benders metaheuristic approach offers a number of possibilities to
decompose our model and to generate feasible solutions for the SCFLP. The
implementation of BendHeuristic that we have chosen is as follows.

Step 1: Identify a master MB and an “easy” subproblem SP. A possible Ben-
ders decomposition of SCFLP involves keeping in the master the decision of
which facilities to open, and assigning clients to open facilities as a subprob-
lem. The subproblem is therefore a GAP again.

More in detail, the master problem is:

zMB = min
∑
i∈I

fiyi + zSP (y) (5.72)

s.t. yi ∈ {0, 1}, i ∈ I (5.73)

and the subproblem becomes:

zSP (y) = min
∑

i∈I,j∈J

cijxij (5.74)

s.t.
∑
i∈I

xij = 1, j ∈ J (5.75)∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.76)

xij ≤ yi, i ∈ I, j ∈ J (5.77)
xij ∈ {0, 1}, i ∈ I, j ∈ J (5.78)

where constraints (5.77) are considered only if the integrality constraints
(5.73) are relaxed.

Step 3: Solve master problem MB. As the master problem, even though NP-
hard after the addition of Bender’s cuts, was relatively easy to solve for the
benchmark instances from the literature, we solved it to optimality at each
iteration.

Step 6: Solve subproblem SP. The xij are required to be integer, but the
subproblem is the same GAP we met in Subsection 5.4.1. The same consid-
erations apply.

Step 11: Add to MB the Benders cut generated by problem SB. To get the
subproblem’s dual we relaxed constraints (5.78) into xij ≥ 0, i ∈ I, j ∈ J .
After associating dual variables w′j , j ∈ J , to constraints (5.75), w′′i , i ∈ I,
to constraints (5.76) and w′′′ij , i ∈ I, j ∈ J , to constraints (5.77), problem SB
becomes:
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zSB(y) = max
∑
j∈J

w′j +
∑
i∈I

Qiyiw
′′
i +

∑
i∈I

∑
j∈J

yiw
′′′
ij (5.79)

s.t. w′j + qjw
′′
i + w′′′ij ≤ cij , i ∈ I, j ∈ J (5.80)

w′′i ≤ 0, i ∈ I (5.81)
w′′′ij ≤ 0, i ∈ I, j ∈ J (5.82)

The master formulation, which includes the added cut, is as follows:

zMB = min z

s.t. z ≥
∑
i∈I

fi +Qiw
′′
i +

∑
j∈J

w′′′ij

 yi +
∑
j∈J

w′j (5.83)

yi ∈ {0, 1}, i ∈ I (5.84)

5.5 Computational Results

We implemented the above described algorithms in C# and Fortran, this
last was used by linking algorithms MT1R for solving knapsack problems
and MTHG for getting a heuristic solution of GAP problems [23] (codes
can be freely downloaded from the page http://www.or.deis.unibo.it/
knapsack.html). The code was run on a 1.7 GHz laptop with 1Gb of RAM
and .NET framework 2.0. Ilog CPLEX 11.1 was used as LP and MIP solver
where required.

The benchmark instances are those used by Holmberg et al. [20]; they
consist of 71 instances whose size ranges from 50 to 200 customers and from 10
to 30 candidate facility locations. The instances are divided into four subsets.
Set 1 has customers and locations with coordinates randomly generated in
the interval [10, 200], problems p1 to p12 have 50 customers and 10 possible
locations, problems p13 to p24 have 50 customers and 20 possible locations.
Set 2 has locations generated in the interval [10, 300]. The assignment costs
are based on a vehicle routing problem cost distribution (see [20] for details).
Set 3 is based on vehicle routing test problems used by Solomon [30], while
set 4 is generated as set 1 but the number of potential locations is 30 and
the number of customers is 200.

In this section we present computational results for the three proposed
metaheuristic procedures, namely, LagrHeuristic, DWHeuristic and
BendHeuristic, and compare them with those obtained by the “dfs” variant
of the VLSN heuristic proposed by [2], which is the best performing meta-
heuristic algorithm known for the SCFLP. The CPU times reported for dfs
have been obtained on a PC with an Athlon/1200Mhz processor and 512 Mb
RAM, under RedHat Linux 7.1.

http://www.or.deis.unibo.it/knapsack.html
http://www.or.deis.unibo.it/knapsack.html
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Table 5.1 Computational results obtained with procedure LagrHeuristic.

Problem Lagrangean Metaheuristic dfs
Sets GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.01 0.12 0.16 4.38 0.00 0.54

p1-p24 max 2.19 0.06 0.66 0.85 14.80 0.00 1.85

p25-p40 avg 0.77 0.55 0.69 1.51 51.04 0.13 12.67
p25-p40 max 2.02 2.95 1.86 10.77 107.21 0.79 34.08

p41-p55 avg 0.84 0.30 0.31 0.91 10.46 0.03 1.62

p41-p55 max 2.00 2.02 1.86 3.68 31.55 0.18 5.47

p56-p71 avg 0.57 0.21 0.57 27.27 475.15 0.02 15.97
p56-p71 max 2.28 1.06 1.95 201.74 1731.80 0.14 46.60

Let zMIP and zLP be the optimal solutions of problem SCFLP, (5.50)–
(5.54), and of its LP relaxation, respectively. Let zUB and zLB be the upper
and the lower bounds provided by the proposed procedures, respectively. In
Tables 5.1, 5.2 and 5.3, for each set of test instances, we report the following
average and maximum values:

GLP: the percentage gap between the optimal MIP solution and the optimal
LP solution, i.e., GLP = zMIP−zLP

zMIP
× 100;

GH : the percentage gap between the heuristic solution provided by the
proposed procedure and the optimal MIP solution, i.e., GH = zUB−zMIP

zMIP
×

100;
GL: the percentage gap between the lower bound provided by the proposed

procedure and the optimal MIP solution, i.e., GL = zMIP−zLB

zMIP
× 100;

TBest: the computing time in seconds required by the proposed procedure
to reach the best heuristic solution found;

TTot: the total computing time in seconds required by the proposed proce-
dure;

Gdfs: the percentage distance from optimality of dfs;
Tdfs: the CPU time in seconds taken by dfs.

5.5.1 Lagrangean Metaheuristic

Procedure LagrHeuristic was used with the α subgradient step control
parameter (see [27]) initially set to 0.5, and multiplied by 0.9 when five con-
secutive non-improving iterations were detected. LagrHeuristic terminated
either when an optimal solution was found, i.e., when zLB = zUB, when 5000
subgradient iterations were made, or when a time limit of 3600 seconds was
reached.

The computational results for procedure LagrHeuristic are reported in
Table 5.1. Figure 5.1 shows the evolution of the upper bound zUB and of the
lower bounds zLB when LagrHeuristic is applied to instance p11. Proce-
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Fig. 5.1 Upper and lower bounds evolution of LagrHeuristic for the instance p11.

dure LagrHeuristic shows on all test problems a performance qualitatively
similar to the one reported in Figure 5.1.

As repeatedly pointed out, the results we report here are not for showing
that we have the best heuristic in the literature, but for showing that even a
straightforward implementation of algorithm LagrHeuristic can get close
to the state-of-the-art. This is apparent on Table 5.1 where there are not big
differences with respect to dfs and where the existing gap is mainly due to
few instances. It would be rather easy to close that gap by means of some
trick on the subgradient algorithm, such as an α-restart or an adaptive anneal
(not to mention a local search on the upper bound), but again, this would
obfuscate our point.

We mention here again how the inclusion of dual information into the
metaheuristic permits to determine the quality of the best solution found,
and possibly its optimality. In our case, out of the 71 instances, 3 could be
solved to optimality by the subgradient alone, which evolved weights that lead
to the satisfaction also of the relaxed constraints, while 21 other ones were
solved to proven optimality since the lower and the upper bound converged
to the same cost. In all these cases the computation terminated before the
maximum available CPU time, an option which is not available for primal-
only heuristics.
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Table 5.2 Computational results obtained with procedure DWHeuristic.

Problem Dantzig-Wolfe Metaheuristic dfs
Name GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.04 0.14 11.39 825.22 0.00 0.54

p1-p24 max 2.19 0.76 0.67 32.20 2558.42 0.00 1.85

p25-p40 avg 0.77 0.55 4.83 1096.97 3581.77 0.13 12.67
p25-p40 max 2.02 2.95 12.48 2028.75 3600.72 0.79 34.08

p41-p55 avg 0.84 0.42 0.60 231.95 2793.80 0.03 1.62

p41-p55 max 2.00 2.02 2.48 1246.37 3600.96 0.18 5.47

p56-p71 avg 0.57 9.19 50.19 2875.35 3600.47 0.02 15.97
p56-p71 max 2.28 34.81 100.00 3555.17 3603.10 0.14 46.60

5.5.2 Dantzig-Wolfe Metaheuristic

We initialized the master problem by adding a column corresponding to a
dummy facility with a sufficient capacity to serve all customers, but with a
fixed cost equal to a known upper bound to the optimal solution cost.

Procedure DWHeuristic terminates when no further columns can be
added to the master problem. However, since the convergence can be slow,
procedure DWHeuristic was also stopped when 20000 columns were gen-
erated or when a time limit of 3600 seconds was reached.

The computational results reported in Table 5.2 show that the conver-
gence of our basic DWHeuristic is slow and is not competitive with the
Lagrangean metaheuristic. This behavior is mainly due to the large number
of iterations required to obtain a good lower bound and, building on it, good
solutions. Figure 5.2 shows a trace in the case of instance p11, where about
700 iterations are required to reach a good primal solution and about 1100
iterations to reach a good lower bound. Figure 5.2 confirms the convergence
of upper and lower bounds.

DWHeuristic finds difficulties in solving set 2 and set 4, where the given
time limit is not enough to provide a sufficiently good lower bound. For
set 4 the average gap between the primal solution and the lower bound is
unsatisfactory.

Clearly this basic schema is not competitive and some modifications are
required. For example, our basic implementation of DWHeuristic can be
improved by adding more columns at each iteration and/or solving heuristi-
cally the subproblem SDW, given by (5.68)–(5.71).

5.5.3 Benders Metaheuristic

We initialize the BendHeuristic in the same way as the master problem in
the DWHeuristic. Procedure BendHeuristic terminates when either no
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Fig. 5.2 Upper and lower bounds evolution of DWHeuristic for the instance p11.

further cuts can be added to the master problem, or when 5000 cuts were
added or when a time limit of 3600 seconds was reached.

The computational results reported in Table 5.3 show a lower compet-
itiveness of the basic BendHeuristic, when compared to its Lagrangean
counterpart. The basic BendHeuristic outperforms procedure DWHeu-
ristic, requiring less computing time to reach upper and lower bounds of
similar quality. Figure 5.3 shows a trace in the case of instance p11, where
it is evident that a good primal solution is generated quite quickly but the
convergence of the lower bound is slow.

BendHeuristic finds difficulties in solving set 3 and particularly set 4,
which has a cost structure that makes the master hard to solve when cuts
start to be added. Clearly this basic schema is not competitive on these
instances, more sophisticated considerations are required.

However, we believe that, since research on Benders based heuristics counts
much less contributions than for instance Lagrange based ones, there is a wide
room available for gaining insight on how to improve this basic functioning.
For example, in our basic implementation of BendHeuristic we had the
master solved to optimality, while it would be worthwhile to solve the master
only heuristically.
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Table 5.3 Computational results obtained with procedure BendHeuristic.

Problem Benders Metaheuristic dfs
Name GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.04 4.26 0.96 1612.28 0.00 0.54

p1-p24 max 2.19 0.76 13.30 6.90 3616.98 0.00 1.85

p25-p40 avg 0.77 0.55 0.34 17.26 2634.50 0.13 12.67
p25-p40 max 2.02 2.95 0.71 48.13 3602.35 0.79 34.08

p41-p55 avg 0.84 0.58 19.80 214.82 1781.79 0.03 1.62

p41-p55 max 2.00 2.02 68.66 1584.98 3611.57 0.18 5.47

p56-p71 avg 0.57 2.89 53.94 277.85 3636.65 0.02 15.97
p56-p71 max 2.28 14.20 80.52 1576.34 3836.41 0.14 46.60
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Fig. 5.3 Upper and lower bounds evolution of BendHeuristic for the instance p11.

5.6 Conclusions

This tutorial has shown a possibility to derive metaheuristic frameworks
from the three main decomposition techniques from the literature, namely
Lagrangean, Benders and Dantzig-Wolfe. This is an example, expanding a
proposal first published in [9], of how techniques, originally designed for ex-
act methods, could be included in a purely metaheuristic structure which
shows the usual properties of simplicity, robustness and effectiveness.



156 M. Boschetti, V. Maniezzo, and M. Roffilli

The main point behind our argument is that research on metaheuristic
methods should include elements from the mathematical programming lit-
erature in order to get a possibility to overcome the current computational
limits, whenever these limits are felt to diminish the practical effectiveness
of the available procedures.

We believe that the principal contribution of mathematically elaborate
techniques comes from the use of bounds to the cost of optimal solutions
and from dual information, two elements that can greatly help in directing
search for better-than-current solutions and for determining the quality of
the results achieved at any moment during search.

The computational results reported in Section 5.5 show that the heuristic
solutions provided by the proposed metaheuristics can be of good quality even
when the used dual information corresponds to a lower bound far from the
optimal solution. Therefore, we can have good results also when the conver-
gence is slow, with the only disadvantage of failing in reliably evaluating the
quality. In the proposed frameworks it is mandatory to solve to optimality the
subproblem. This can be a serious limitation when the relaxed problem is still
difficult and a valid lower bound is not produced. In this case we can further
relax the problem until the resulting problem is computationally tractable.
However, this is an interesting issue that deserves further investigations to
identify other approaches able to overcome all difficulties.

Research on how metaheuristics should make a strong point of mathemat-
ical modules is still at an embryonal level. We hope that this tutorial may
help in fostering research along this line, that we believe to be promising.
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