
Chapter 3

MetaBoosting: Enhancing Integer
Programming Techniques by
Metaheuristics

Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser

Abstract This chapter reviews approaches where metaheuristics are used to
boost the performance of exact integer linear programming (IP) techniques.
Most exact optimization methods for solving hard combinatorial problems
rely at some point on tree search. Applying more effective metaheuristics
for obtaining better heuristic solutions and thus tighter bounds in order to
prune the search tree in stronger ways is the most obvious possibility. Besides
this, we consider several approaches where metaheuristics are integrated more
tightly with IP techniques. Among them are collaborative approaches where
various information is exchanged for providing mutual guidance, metaheuris-
tics for cutting plane separation, and metaheuristics for column generation.
Two case studies are finally considered in more detail: (i) a Lagrangian decom-
position approach that is combined with an evolutionary algorithm for ob-
taining (almost always) proven optimal solutions to the knapsack constrained
maximum spanning tree problem and (ii) a column generation approach for
the periodic vehicle routing problem with time windows in which the pricing
problem is solved by local search based metaheuristics.

3.1 Introduction

When considering optimization approaches that combine aspects from meta-
heuristics with mathematical programming techniques, the resulting hybrid

Jakob Puchinger

arsenal research, Vienna, Austria
e-mail: jakob.puchinger@arsenal.ac.at

Günther R. Raidl · Sandro Pirkwieser

Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna,
Austria

e-mail: {raidl,pirkwieser}@ads.tuwien.ac.at

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 71

DOI 10.1007/978-1-4419-1306-7 3, c© Springer Science+Business Media, LLC 2009

72 J. Puchinger, G.R. Raidl, and S. Pirkwieser

system may either be of exact or heuristic nature. Exact approaches are guar-
anteed to yield proven optimal solutions when they are given enough com-
putation time. In contrast, heuristics only aim at finding reasonably good
approximate solutions usually in a more restricted time; performance guar-
antees are typically not provided. Most of the existing hybrid approaches are
of heuristic nature, and mathematical programming techniques are used to
boost the performance of a metaheuristic. Exploiting solutions to exactly
solvable relaxations of the original problem, or searching large neighbor-
hoods by means of mathematical programming techniques are examples for
such approaches; see also Chapter 4. On the other hand, there are also sev-
eral highly successful ways to exploit metaheuristic strategies for enhancing
the performance of mathematical programming techniques, and often these
methods retain their exactness. We refer to such improvement techniques as
MetaBoosting and study them in detail in the present chapter.

Most exact approaches for solving hard combinatorial optimization prob-
lems (COPs) are based on a tree search, where the search space is recursively
partitioned in a divide-and-conquer manner into mutually disjoint subspaces
by fixing certain variables or imposing additional constraints. In a naive enu-
meration tree each subspace is further divided as long as it contains more
than one feasible solution. Obviously, the size of such a naive search tree
increases rapidly with the problem size, and naive enumeration is therefore
inefficient. The key to successfully approach larger problem instances is to
have some mechanism for substantially pruning the search tree. This is usu-
ally done by identifying subspaces that need not to be further pursued, as
they cannot contain a feasible solution that is better than a solution already
found before. The scalability of a tree search thus depends essentially on the
efficiency of this pruning mechanism.

In branch-and-bound (B&B), upper and lower bounds are determined for
the objective values of solutions, and subspaces for which the lower bounds
exceed the upper bounds are discarded. Considering a minimization problem,
any feasible solution provides a (global) upper bound. Thus, any (meta-)
heuristic that is able to determine good heuristic solutions in reasonable time
may be an essential help in B&B for pruning the search tree, even when the
heuristic itself does not provide any performance guarantee.

Applying an effective metaheuristic to obtain better upper bounds for
B&B is the most obvious way how one can boost the performance of an
exact optimization technique by means of a metaheuristic. When consid-
ering established integer (linear) programming techniques including cutting
plane methods, column generation, and diverse variants of relaxation based
approaches in more detail, we can observe several further possibilities for
exploiting the strengths of metaheuristics.

The next section will introduce our basic notations and briefly review
important IP techniques. In Sections 3.3 to 3.5 we describe various successful
MetaBoosting strategies. Two exemplary case studies are presented together
with some practical results in more detail in Sections 3.6 and 3.7. First, we

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 73

consider a Lagrangian decomposition/evolutionary algorithm hybrid for the
knapsack constrained maximum spanning tree problem, and second, a column
generation approach that uses metaheuristics for solving the pricing problem
is discussed for the periodic vehicle routing problem with time windows.
Conclusions are drawn in Section 3.8.

3.2 Integer Programming Techniques

This section introduces some basic notations and gives a short introduction
into prominent IP techniques. For an in-depth coverage of the subject we
refer to the books on linear optimization by Bertsimas and Tsitsiklis [6] and
on combinatorial and integer optimization by Nemhauser and Wolsey [37]
and Wolsey [53].

We consider IP problems of the form

zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}, (3.1)

where x is an n-dimensional integer variable vector in column form and
c ∈ Qn an n-dimensional row vector. Their dot-product cx is the objective
function that should be minimized. Matrix A ∈ Qm×n and them-dimensional
column vector b ∈ Qm together define m inequality constraints. A mixed in-
teger program (MIP) would involve a combination of integer and real-valued
variables.

Maximization problems can be transformed into minimization problems
by simply changing the sign of c. Less-than constraints are similarly brought
into greater-than-or-equal form by changing the sign of the corresponding
coefficients, and equalities can be translated to pairs of inequalities. Thus,
we can handle all kinds of linear constraints by appropriate transformations.
Without loss of generality, we may therefore restrict our following consider-
ations to minimization problems of this standard form.

3.2.1 Relaxations and Duality

One of the most important concepts in integer programming are relaxations,
where some or all constraints of a problem are loosened or omitted. Relax-
ations are mostly used to obtain related, simpler problems that can be solved
efficiently yielding bounds and approximate (not necessarily feasible) solu-
tions for the original problem. Embedded within a B&B framework, these
techniques may lead to effective exact solution techniques.

The linear programming (LP) relaxation of the IP (3.1) is obtained by
relaxing the integrality constraints, yielding

74 J. Puchinger, G.R. Raidl, and S. Pirkwieser

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}. (3.2)

Large instances of such LPs can be efficiently solved using simplex-based
or interior-point algorithms. The solution to the LP relaxation provides a
lower bound for the original minimization problem, i.e. zIP ≥ zLP, since the
search space of the IP is contained within the one of the LP and the objective
function remains the same.

We can further associate a dual problem to an LP (3.2), which is defined
by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ Rm} (3.3)

with u being the m-dimensional dual variable row vector. The dual of the
dual LP is the original (primal) LP again. Important relations between the
primal problem and its dual are known as weak and strong duality theorems,
respectively:

• Weak duality theorem: The value of every finite feasible solution to the
dual problem is a lower bound for the primal problem, and each value of
a finite feasible solution to the primal problem is an upper bound for the
dual problem. As a consequence, if the dual is unbounded, the primal is
infeasible and vice versa.

• Strong duality theorem: If the primal has a finite optimal solution with
value z∗LP, than its dual has the same optimal solution value w∗LP = z∗LP

and vice versa.

In case of an IP we have to distinguish between weak and strong duals: A
weak dual of an IP (3.1) is any maximization problem w = max{w(u) | u ∈
SD} such that w(u) ≤ cx for all x ∈ {Ax ≥ b, x ≥ 0, x ∈ Zn}. An obvious
weak dual of (3.1) is the dual (3.3) of its LP relaxation (3.2). A strong dual
is a weak dual that further has an optimal solution u∗ such that w(u∗) = cx∗

for an optimal solution x∗ of (3.1). For solving IPs, weak duals which are
iteratively strengthened during the course of the optimization process are
often utilized.

Another commonly used relaxation of IPs, which often yields significantly
tighter bounds than the LP relaxation, is Lagrangian relaxation [20, 21].
Consider the IP

zIP = min{cx | Ax ≥ b,Dx ≥ d, x ≥ 0, x ∈ Zn}, (3.4)

where constraints Ax ≥ b are “easy” in the sense that the problem can be ef-
ficiently solved when the m′ “complicating” constraints Dx ≥ b are dropped.
Simply removing these constraints yields a relaxation, but the resulting bound
will usually be weak because of this complete ignorance. In Lagrangian re-
laxation, constraints Dx ≥ d are replaced by corresponding penalty terms in
the objective function:

zLR(λ) = min{cx+ λ(d−Dx) | Ax ≥ b, x ≥ 0, x ∈ Zn}. (3.5)

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 75

Vector λ ∈ Rm′
is the vector of Lagrangian multipliers, and for any λ ≥ 0,

zLR(λ) ≤ zIP, i.e., we have a valid relaxation of the IP. We are now interested
in finding a specific vector λ yielding the best, i.e. largest, possible lower
bound, which leads to the Lagrangian dual problem

z∗LR = max
λ≥0
{zLR(λ)}. (3.6)

This Lagrangian dual is a piecewise linear, convex function which can usually
be well solved by iterative procedures like a subgradient method. A more
elaborate algorithm that has been reported to converge faster on several
problems is the volume algorithm [4], whose name is inspired by the fact that
primal solutions are also considered, whose values come from approximating
the volumes below active faces of the dual problem.

Given a solution λ to the Lagrangian dual problem (3.6) and a corre-
sponding optimal solution x∗ to the Lagrangian relaxation (3.5) that is also
feasible to the original problem (3.4), i.e. Dx∗ ≥ d, the following comple-
mentary slackness condition holds: x∗ is an optimal solution to the original
problem (3.4) if and only if

λ(d−Dx∗) = 0. (3.7)

Provided that the Lagrangian dual problem is solved to optimality, it can
be shown that the Lagrangian relaxation always yields a bound that is at
least as good as the one of the corresponding linear relaxation.

A third general-purpose relaxation technique for IPs is surrogate relax-
ation [26]. Here, some or all constraints are scaled by surrogate multipliers
and cumulated into a single inequality by adding the coefficients. Similarly
as in Lagrangian relaxation, the ultimate goal is to find surrogate multipliers
yielding the overall best bound. Unfortunately, this surrogate dual problem
usually has not such nice properties as the Lagrangian dual problem and
solving it is often difficult. However, if one is able to determine optimal sur-
rogate multipliers, the bound obtained for the IP is always at least as good
as (and often better than) those obtained from the corresponding linear and
Lagrangian relaxations.

3.2.2 LP-Based Branch-and-Bound

By solving the LP relaxation of an IP we obtain a lower bound on the optimal
IP solution value and the solution in general will contain fractional variable
values. (If all variable values would be integer, we already would have solved
the IP.) The standard way to continue towards an optimal integer solution is
the already mentioned B&B. Branching usually takes place over some vari-
able xi with a fractional LP-value x∗i , defining as first subproblem the IP with

76 J. Puchinger, G.R. Raidl, and S. Pirkwieser

the additional inequality xi ≤ bx∗i c and as second subproblem the IP with
inequality xi ≥ dx∗i e. For these subproblems with the additional branching
constraints, the LP relaxations are resolved leading to increased lower bounds
and eventually solutions where all integer variables have integral values. As
mentioned in the introduction, primal heuristics are usually also applied to
each subproblem in order to find improved feasible solutions and correspond-
ing global upper bounds, enabling a stronger pruning of the search tree.

3.2.3 Cutting Plane Algorithm and Branch-and-Cut

When modeling COPs as IPs an important goal is to find a strong formu-
lation, for which the solution value of the LP relaxation in general provides
a tight bound. For many COPs it is possible to strengthen an existing IP
formulation significantly by including further inequalities, which would actu-
ally be redundant w.r.t. the integer optimum. In general it is even possible to
strengthen a model such that the LP relaxation already yields an integer opti-
mum. However, the number of required constraints often grows exponentially
with the problem size. Naively solving such an LP by standard techniques
might quickly become too costly in practice.

Dantzig et al. [10] proposed the cutting plane algorithm for this purpose,
which usually only considers a fraction of all constraints explicitly but is
nevertheless able to determine an optimal solution to the whole LP.

The cutting plane approach starts by solving a reduced LP consisting only
of a small subset of initial inequalities. It then tries to find inequalities that
are violated by the obtained solution but are valid for the original problem
(i.e. contained in the full LP). These valid inequalities are called cuts or
cutting planes, and they are added to the current reduced LP, which is then
resolved. The whole process is iterated until no further cutting planes can
be determined. If the algorithm computing the cuts provides a proof that no
further violated inequality exists, the final solution is optimal for the original
full LP. The subproblem of identifying cuts is called separation problem. In
practice it is crucial to have an efficient method for separating cuts as usually
a significant number of valid inequalities must be derived until the cutting
plane algorithm terminates.

From a theoretical point of view it is possible to solve any IP using a pure
cutting plane approach with appropriate classes of cuts. There exist generic
types of cuts, such as the Chvatal-Gomory cuts [53], which guarantee such a
result. In practice, however, it may take a too long time for such a cutting
plane approach to converge to the optimum, partly because it is often a hard
subproblem to separate effective cuts and partly because of the large number
of needed cuts.

The combination of B&B with cutting plane methods yields the highly
effective class of branch-and-cut algorithms which are widely used. Specialized

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 77

branch-and-cut approaches have been described for many applications and
are known for their effectiveness. Cut separation is usually applied at each
node of the B&B tree to tighten the bounds of the LP relaxation and to
exclude infeasible solutions as far as possible.

For cutting plane separation effective heuristic methods come into play
once again: For strengthening the LP relaxations it is often sufficient to gen-
erate cuts heuristically since the correctness of the final solution does not
depend on the generated cuts as long as they are valid. Almost all modern
MIP solvers include sophisticated generic cut separation heuristics, and they
play a major role in the success of these solvers.

3.2.4 Column Generation and Branch-and-Price

Often it is possible to model COPs via strong formulations involving a huge
number of variables. Dantzig-Wolfe decomposition [11] is a technique for ob-
taining such models from compact formulations in a systematic way. It re-
places the original problem variables by linear combinations of the extreme
points and extreme rays of the original search space, yielding a potentially
exponential number of new variables. The obtained models can result in much
stronger relaxations than their compact counterparts.

Despite the many variables, the LP relaxations of such formulations can
often be efficiently calculated. The column generation approach starts with
only a small subset of all variables (corresponding to columns in the matrix
notation of the IP) and solves the corresponding restricted LP relaxation. It
is then tried to identify one or more so far ignored variables whose inclusion
may lead to an improved solution. This subproblem is called pricing problem.
For a minimization problem a variable can eventually improve the current
LP solution if it has negative reduced costs. After adding such a new variable
to the restricted LP, it is resolved and the process iterated until no further
variables with negative reduced costs exist. The final solution is an optimal
solution for the complete LP.

Column generation can be seen as dual to the cutting plane approach,
since inequalities correspond to variables in the dual LP. For a recent review
on column generation see [35]. The cutting stock problem is an early exam-
ple for the successful application of column generation based methods [24].
Every possible cutting pattern is represented by a variable and the pricing
problem corresponds to the classical 0–1 knapsack problem, which can be
solved efficiently in pseudo-polynomial time.

As the column generation algorithm only solves the LP relaxation, it must
in general also be combined with B&B in order to obtain optimal integer
solutions. When column generation is performed for each node of the B&B
tree, the approach is called branch-and-price. One of the main difficulties in
the implementation of such methods lies in the development of appropriate

78 J. Puchinger, G.R. Raidl, and S. Pirkwieser

branching rules. Furthermore, the individual LPs may sometimes be degen-
erated, or newly added columns may only improve the solutions marginally
leading to many iterations until convergence. In the latter cases, stabilization
techniques as discussed in [13] often improve the situation.

Similarly as cutting plane separation may be performed by effective heuris-
tics, one can also heuristically solve the pricing problem in column generation.
Care must be taken that in the final iteration it is necessary to prove that
no further columns with negative reduced costs exist so that the obtained
solution value is guaranteed to be a lower bound for the original IP.

Finally, it occasionally makes sense to combine a cutting plane approach
with column generation and embed both in B&B. Such methods, called
branch-and-cut-and-price, are sometimes extremely successful but are typ-
ically also rather complex and highly specialized.

3.3 Metaheuristics for Finding Primal Bounds

Branch-and-bound based approaches rely on tight primal bounds that are
most commonly obtained from feasible solutions. Obviously, heuristics and
metaheuristics can be applied to the original problem before starting the B&B
process, providing initial solutions. The search space of the exact method is
immediately reduced, usually improving overall computation times. Such an
approach has the practical advantage of also providing feasible solutions at
an early stage of the optimization process.

Furthermore (meta-)heuristics can be repeatedly applied throughout the
whole tree search, providing possibly improved solutions. Again, this can
speed up the overall optimization essentially by further pruning the search
tree. Even the optimal solution might be discovered by one of those heuristics.
On the other hand, when heuristics are applied too often and have rather long
run-times, they might slow down the overall process. Thus, an appropriate
balance is required.

3.3.1 Initial Solutions

Generic MIP based heuristics for computing initial solutions are widely used.
They range from early heuristics such as described in [2, 30] over pivot and
complement [3] to the recent feasibility pump [17, 5], which is also discussed
in Chapter 2 of this book. The major commercial generic MIP solvers such
as CPLEX1 or XPRESS MP2 have very strong heuristics for finding initial

1 http://www.ilog.com
2 http://www.dashoptimization.com

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 79

feasible solutions, often outperforming simple problem-specific heuristics in
terms of solution quality and speed. Unfortunately, not much is publicly
known about these heuristics.

An interesting approach specifically tailored to the multidimensional knap-
sack problem (MKP) involving metaheuristics is presented in Vimont et
al. [52]. The MKP can be defined by the following IP:

(MKP) maximize z =
n∑

j=1

pjxj (3.8)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . ,m, (3.9)

xj ∈ {0, 1}, j = 1, . . . , n. (3.10)

A set of n items with profits pj > 0 and m resources with capacities ci > 0
are given. Each item j consumes an amount wij ≥ 0 from each resource i.
Variables xj indicate which items are selected. The objective is to choose a
subset of items with maximum total profit that does not violate any of the
capacity constraints (3.9).

An exact algorithm based on implicit enumeration and reduced cost prop-
agation is applied. The enumeration algorithm tries to first handle the un-
promising parts of the search space, with the goal of reducing it substantially.
After computing an initial solution yielding a lower bound, the problem is
first partitioned by fixing the number of selected items to certain values [50].
Each of the resulting subproblems is then explored by B&B with a special
branching strategy based on the solution to the LP relaxation and reduced
costs at each search tree node.

The search space is further reduced by fixing some variables using a prop-
agation mechanism. It is based on the reduced cost constraint originally de-
scribed in [38]. After solving the LP relaxation yielding a solution (x), the
following reduced cost inequality can be devised:∑

j:xj=0

|cj |xj +
∑

j:xj=1

|cj |(1− xj) ≤ UB− LB, (3.11)

where c is the reduced cost vector corresponding to x and LB is a primal
lower bound, typically the objective value of a feasible solution.

This approach relies heavily on tight primal bounds, since constraint (3.11)
becomes tighter with increasing values of LB. These bounds come from a so-
phisticated tabu search based hybrid algorithm described in [50]. The search
space is partitioned via additional constraints fixing the total number of items
to be packed. Lower and upper bounds for the number of items are calculated
by solving modified LP relaxations of the original MKP. For each remaining
partition of the search space, tabu search is independently applied, starting
with a solution derived from the LP relaxation of the partial problem. The

80 J. Puchinger, G.R. Raidl, and S. Pirkwieser

whole tabu search approach has further been improved in [51] by additional
variable fixing.

This example demonstrates that a combination of highly developed spe-
cialized methods for computing bounds with the aid of a metaheuristic, gen-
erating dependent cuts, and guiding the search is sometimes able to achieve
exceedingly good results.

3.3.2 B&B Acting as Local Search Based Metaheuristic

Fischetti and Lodi proposed local branching as an extension for generic
branch-and-cut based MIP solvers with the aim of producing good heuristic
solutions early during the exact tree search [19]. Local branching introduces
the spirit of classical k-opt local search in B&B by modifying the branching
rule and the strategy for choosing the next tree node to process. Let us con-
sider MIPs with 0–1 variables; let x = (x1, . . . , xn) be the variable vector and
B ⊆ {1, . . . , n} be the index set of the 0–1 variables. A k-opt neighborhood
around a given incumbent solution x = (x1, . . . , xn) can be defined by the
local branching constraint

∆(x, x) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (3.12)

where S corresponds to the index set of the 0–1 variables that are set to one
in the incumbent solution, i.e., S = {j ∈ B | xj = 1}. ∆(x, x) resembles the
classical Hamming distance between x and x for integer values.

Starting from an initial solution, the search space is partitioned into the
k-opt neighborhood of this incumbent and the remaining part of the search
space by applying the local branching constraint and its inverse ∆(x, x) ≥
k+ 1, respectively. The MIP solver is then forced to find the best solution in
the k-opt neighborhood first. If an improved solution x′ has been found, a new
subproblem ∆(x, x′) corresponding to the search of the k-opt neighborhood
of this new incumbent is split off the remaining search space and solved
in the same way; otherwise a larger k may be tried. The process is repeated
until no further improvement can be achieved. Finally, the remaining problem
corresponding to all yet unconsidered parts of the search space is processed
in a standard way.

This basic mechanism is extended by introducing time limits, automati-
cally modifying the neighborhood size k, and adding diversification strategies
to improve performance. An extension of the branching constraint for gen-
eral integer variables is also described. Results on various MIP benchmark
instances using CPLEX as MIP solver indicate the advantages of the ap-
proach in terms of an earlier identification of high quality solutions.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 81

Hansen et al. [27] suggest a variant of local branching which follows more
closely the classical variable neighborhood search metaheuristic for choos-
ing the next k-opt neighborhood to process. Improved results are reported.
Fischetti et al. [18] describe another variant of the original local branching
where they consider problems in which the set of variables naturally parti-
tions into two levels and fixing the first-level variables to some values yields
substantially easier subproblems.

Danna et al. [9] suggest a different approach called relaxation induced
neighborhood search (RINS) for exploring the neighborhoods of incumbent
solutions more intensively. The central idea is to occasionally devise a sub-
MIP at a node of the B&B tree that corresponds to a special neighborhood
of an incumbent solution: Variables having the same values in the incumbent
and in the current solution of the LP relaxation are fixed, and an objective
cutoff is set based on the objective value of the incumbent. A sub-MIP is
solved on the remaining variables with a given time limit. If a better solution
can be found it is passed to the global MIP-search, which is resumed after
the sub-MIP’s termination. In the authors’ experiments, CPLEX is used as
MIP solver, and RINS is compared to standard CPLEX, local branching,
combinations of RINS and local branching, and guided dives. Results indi-
cate that RINS often performs best. CPLEX includes RINS as a standard
strategy for quickly obtaining good heuristic solutions since version 10. Lo-
cal branching constraints are said to be often less effective as they are dense
inequalities involving all integer variables. In particular, adding the inverse
local branching constraints of already searched k-opt neighborhoods to the
remaining problem is found to be disadvantageous as the reduced node pro-
cessing throughput caused by the series of these dense constraints outweighs
the benefit of avoiding redundant exploration of parts of the search space.

Recently Ghosh [23] proposed a distance induced neighborhood search
(DINS). It is conjectured that better MIP solutions are more likely to be
close to the solution of the LP relaxation than farther away. Hence, an ap-
propriate distance metric is utilized. DINS combines soft fixing of variables
as in local branching as well as hard fixing of variables as in RINS, plus an
additional rebounding procedure, which adapts the lower and upper bounds
of selected variables. Experimental results indicate that DINS outperforms
both local branching and RINS; DINS is also integrated now in CPLEX.

3.3.3 Solution Merging

In solution merging new, possibly better solutions are created from attributes
appearing in two or more promising heuristic solutions. Such an approach
is based on the assumption that high quality solutions often share many
attributes.

82 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Recombination, the primary variation operator in genetic algorithms, can
be seen as a classical solution merging approach. Usually, two parent solutions
are selected and an offspring is derived by simple random inheritance of
parental attributes. Classical recombination operations do not try to optimize
this offspring, which therefore often is worse than its parents. However, these
operations are computationally cheap and can be repeated many times in
order to achieve improvements.

Alternatively, one can put more effort into the derivation of such offspring.
A sometimes effective technique is path relinking [25], which traces a path
in the search space from one parent to a second by repeatedly exchanging a
single attribute only (or more generally by performing a series of moves in a
simple neighborhood structure). An overall best solution found on this path
is finally taken as offspring.

This idea can further be extended by considering not just solutions on a
single path between two parents, but the whole subspace of solutions induced
by the joined attributes appearing in a set of two or more input solutions. An
optimal merging operation returns a best solution from this subspace, i.e., it
identifies a best possible combination of the parents’ attributes. Depending
on the underlying problem, identifying such an optimal offspring is often a
hard optimization problem on its own, but due to the usually quite limited
number of different attributes appearing in the parents, it can often be solved
in reasonable time in practice.

For mixed integer programming, Rothberg [47] suggests a tight integration
of an evolutionary algorithm (EA) including optimal merging in a branch-
and-cut based MIP solver. In regular intervals the EA algorithm is applied
as B&B tree node heuristic. The population of the EA consists of the best
non-identical solutions found so far, which have either been discovered by the
MIP tree search or by previous iterations of the EA.

Mutation selects one parent, fixes a randomly chosen subset of variables,
and calls the MIP solver for determining optimal values for the remaining
problem. Since the number of variables to be fixed is a critical parameter,
an adaptive scheme is applied to control it. In contrast to classical EAs,
mutation is performed before recombination on a fixed number of randomly
chosen solutions, since at the beginning of the optimization only one or very
few solutions will be in the population.

Recombination is performed by first fixing all variables that have the same
values in two selected parental solutions and applying the MIP solver to
this reduced subproblem. The exploration of this subproblem is eventually
truncated when a given node-limit is exceeded. New high quality solutions
discovered during this search are added to the population. This recombination
is further generalized to more than two parents by fixing variable values that
are identical in all of them.

The applied selection strategy simply chooses the first parent from the
population at random, and the second is then chosen randomly amongst the
solutions with a better objective value than the first one. This guarantees a

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 83

certain bias towards better solutions. For mutation the same mechanism is
used, but only the second solution is used.

Experimental results indicate that this hybrid often is able to find signifi-
cantly better solutions than other heuristic methods for several very difficult
MIPs. The method is integrated in the commercial MIP solver CPLEX since
version 10.

3.3.4 Metaheuristics and Lagrangian Relaxation

As mentioned in Section 3.2.1, Lagrangian relaxations may sometimes yield
substantially tighter lower bounds than simpler LP relaxations. Furthermore,
heuristic solutions and, thus, upper bounds are often either automatically
obtained as intermediate by-products from the subgradient procedure or by
applying typically rather simple Lagrangian heuristics such as rounding or
repairing procedures. When embedded in a B&B framework, such Lagrangian
relaxation based methods are frequently turned into highly successful exact
optimization approaches.

To further improve performance by obtaining better upper bounds, more
sophisticated metaheuristics may be applied in combination with Lagrangian
relaxation. For example, a well-working hybrid of a Lagrangian relaxation
approach and variable neighborhood descent has recently been described for
a real-world fiber optic network design problem in Leitner and Raidl [33].

An interesting additional aspect of such combinations is that also the meta-
heuristic may benefit by exploiting diverse intermediate results from the sub-
gradient search. A successful example for this is the hybrid Lagrangian GA for
the prize collecting Steiner tree problem proposed by Haouari and Siala [28].
They apply a Lagrangian relaxation on a minimum spanning tree formulation
of the prize collecting Steiner tree problem and use the volume algorithm for
solving the Lagrangian dual. After termination, the GA is started on a re-
duced problem, consisting only of the edges appearing in all the intermediate
trees derived by the volume algorithm. Furthermore, some of the GA’s initial
solutions are derived from the volume algorithm’s intermediate reduced edge
costs by applying a greedy Lagrangian heuristic. Last but not least, the GA
uses a modified objective function: Instead of the original costs, the reduced
costs that are finally obtained by the volume algorithm are used; in this way,
the metaheuristic search is guided into regions of the search space deemed
promising by the Lagrangian relaxation.

The authors of the present chapter describe a similar approach for the
knapsack constrained maximum spanning tree problem in [40]. Section 3.6
summarizes this work as an exemplary case study.

84 J. Puchinger, G.R. Raidl, and S. Pirkwieser

3.4 Collaborative Hybrids

In collaborative combinations of different types of optimization techniques,
the algorithms exchange information but are not part of each other; i.e.,
there is no clear master containing the other method(s) as subprocedures [42].
The individual algorithms may be executed sequentially, intertwined, or in a
parallel way and exchange information for guidance. In principle, any meta-
heuristic that provides incumbent solutions to a B&B-based approach might
already be considered to fall into this class of approaches. The above men-
tioned hybrid Lagrangian relaxation approach from Haouari and Siala can,
e.g., also be regarded a sequential collaborative combination, where the La-
grangian relaxation provides guidance for the GA.

Intertwined and parallel combinations allow for mutual guidance, i.e., all
participating methods may exploit information from each other. Talukdar et
al. [49] describe a very general agent-based model for such systems, called
asynchronous teams (A-Teams). This problem solving architecture consists
of a collection of agents and memories connected in a strongly cyclic directed
way, and each optimization agent works on the target problem, a relaxation,
or a subclass of the original problem. Denzinger and Offerman [12] describe
a similar framework called TECHS (TEams for Cooperative Heterogeneous
Search). It consists of teams of one or more agents using the same search
paradigm. Communication between the agents is controlled by so-called send-
and receive-referees.

A specific example for a successful intertwined collaboration of an EA and
the branch-and-cut based MIP solver XPRESS MP is the hybrid algorithm
from French et al. [22] for solving general IPs. It starts with a branch-and-
cut phase, in which information from the B&B tree nodes is collected in
order to derive candidate solutions that are added to the originally randomly
initialized EA-population. When a certain criterion is satisfied, the EA takes
over for some time using the augmented initial population. After termination
of the EA, its best solutions are passed back and grafted onto the B&B tree.
Full control is given back to branch-and-cut after the newly added nodes
had been examined to a certain degree. Reported results on instances of the
maximum satisfiability problem show that this hybrid yields better solutions
than XPRESS MP or the EA alone.

Another cooperative approach involving a memetic algorithm and branch-
and-cut has been described by Puchinger et al. [44] for the MKP. Both meth-
ods are performed in parallel and exchange information in a bidirectional
asynchronous way. In addition to promising primal solutions, the memetic
algorithm also receives dual variable values of certain LP relaxations and
uses them for improving its repair and local improvement functions by updat-
ing the items’ pseudo-utility ratios. Results that are often better than those
from [50] and partly competitive to those from [51] have been obtained.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 85

3.5 Metaheuristics for Cut and Column Generation

As already pointed out in Section 3.2, in cut and column generation based
IP methods the dynamic separation of cutting planes and the pricing of
columns can be done by means of (meta-)heuristics in order to speed up
the optimization process. Such approaches are reviewed in more detail in the
following two sections.

3.5.1 Cut Separation

In branch-and-cut algorithms inequalities that are satisfied by feasible integer
solutions but are violated by the current solution to the LP relaxation have
to be derived quickly. Of course, the cuts one wants to find should be strong
in the sense that they cut away “large” portions of the search space, leading
to a significant increase of the LP solution value and thus to relatively few it-
erations until convergence of the cutting plane algorithm. As many classes of
strong cuts are difficult to separate, heuristic separation procedures are com-
monly applied. More sophisticated metaheuristics, however, have so far only
rarely been used for this purpose. A reason might be the usually large num-
ber of cuts that must be generated, and hence the strong requirements w.r.t.
speed. Nevertheless, there exist some examples of successful metaheuristic
cut separation approaches.

Augerat et al. [1] consider a capacitated vehicle routing problem and de-
scribe a branch-and-cut algorithm in which a sequence of methods consisting
of a simple construction heuristic, a randomized greedy method, and a tabu
search is used for separating capacity constraints. The approach starts with
the fastest simple heuristic and switches to the next, more complex strategy
as long as no valid cutting plane could be found.

Another example is the branch-and-cut algorithm by Gruber and Raidl for
the bounded diameter minimum spanning tree problem described in detail in
Chapter 8 of this book. The diameter bound is ensured via an exponentially
large number of so-called jump inequalities. Again, a sequence of methods is
used for their separation, starting from a greedy construction technique over
a local search procedure to a tabu search algorithm. On several benchmark
instances, this algorithm outperforms other state-of-the-art IP approaches
for this problem, and some larger instances than before could be solved to
proven optimality.

Rei et al. [46] describe the acceleration of Benders decomposition by local
branching. The basic principle of Benders decomposition is to project a MIP
into the space of complicating integer variables only; continuous variables and
the constraints involving them are replaced by corresponding constraints on
the integer variables. These constraints, however, are not directly available
but need to be dynamically created. According to the classical method, an

86 J. Puchinger, G.R. Raidl, and S. Pirkwieser

optimal solution to the relaxed master problem (including only the already
separated cuts) is needed and an LP involving this solution must be solved
in order to separate a single new cut. Rei et al. improved this method by
introducing phases of local branching on the original problem in order to
obtain multiple feasible heuristic solutions. These solutions provide improved
upper bounds and further allow to derive multiple additional cuts before the
relaxed master problem needs to be resolved.

3.5.2 Column Generation

In column generation based algorithms the pricing problem often is difficult
by itself, and applying fast (meta-)heuristics can be a meaningful option.
It can be beneficial for the overall performance if most of the columns are
heuristically derived.

Filho and Lorena [16] apply a heuristic column generation approach to
graph coloring. A GA is used to generate initial columns and to solve the
pricing problem at every iteration. Column generation is performed as long
as the GA finds columns with negative reduced costs. The master problem is
solved using CPLEX.

Puchinger and Raidl [41, 43] describe an exact branch-and-price algorithm
for the three-stage two-dimensional bin packing problem. Rectangular items
have to be orthogonally packed into the least number of larger rectangles of
fixed size, and only non-overlapping three-stage guillotine packing patterns
are allowed. The pricing problem occurring in this application is a three-stage
two-dimensional knapsack packing problem. Fast column generation is per-
formed by applying a sequence of four methods: (i) a greedy heuristic, (ii)
an evolutionary algorithm, (iii) solving a restricted, simpler IP-model of the
pricing problem using CPLEX within a certain time-limit, and finally (iv)
solving a complete IP-model by CPLEX. The algorithms coming later in this
sequence are only executed if the previous ones did not find columns with
negative reduced costs. The greedy heuristic is based on the classical finite
first fit heuristic but is adapted to consider additional constraints introduced
by the branching decisions during the search process of the branch-and-price
algorithm. The EA uses a direct set-based representation for solutions mak-
ing it possible to ignore the order of the items to be packed and therefore
avoiding redundancies introduced by many symmetries. Specific recombina-
tion and mutation operators were developed for this problem. The presented
computational experiments show that each pricing algorithm contributes es-
sentially to the whole column generation process. Applied to large problem
instances with limited run-time, better solutions are often obtained by the
sequential pricing compared to using just one strategy. It is conjectured that
also in other applications such combinations of multiple (meta-)heuristic and
exact pricing algorithms may be beneficial.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 87

3.6 Case Study: A Lagrangian Decomposition/EA
Hybrid

This first case study demonstrates a combination of a Lagrangian decompo-
sition approach with an EA for the knapsack constrained maximum spanning
tree problem. The EA exploits information of the Lagrangian decomposition
and improves previously obtained primal solutions. Proven optimal solutions
are obtained in most cases, especially also on large problem instances. More
details on this work can be found in [40].

3.6.1 The Knapsack Constrained Maximum Spanning
Tree Problem

The knapsack constrained maximum spanning tree (KCMST) problem arises
in practical situations where the aim is to design a most profitable commu-
nication network under a strict limit on total costs, e.g. for cable laying or
similar resource constraints. The problem is also referred to as budget or side
constrained minimum spanning tree problem and is NP-hard [54].

It is defined on an undirected connected graph G = (V,E) with node
set V and edge set E ⊆ V × V representing all possible connections. Each
edge e ∈ E has associated a weight we ∈ Z+ (corresponding to costs) and a
profit pe ∈ Z+. In addition, a weight limit (capacity) c > 0 is specified. We
seek a spanning tree GT = (V, T), T ⊆ E, on G that maximizes the total
profit

∑
e∈T pe and where weight

∑
e∈T we does not exceed c. By introducing

binary variables xe, ∀e ∈ E, indicating which edges are part of the solution,
i.e. xe = 1↔ e ∈ T and xe = 0 otherwise, the problem can be stated as:

(KCMST) max p(x) =
∑
e∈E

pexe (3.13)

s.t. x represents a spanning tree on G, (3.14)∑
e∈E

wexe ≤ c, (3.15)

xe ∈ {0, 1}, ∀e ∈ E. (3.16)

Obviously, the problem represents a combination of the classical minimum
spanning tree problem (with changed sign in the objective function) and the
0–1 knapsack problem due to constraint (3.15). Yamada et al. [54] proposed
a straight-forward Lagrangian relaxation where the knapsack constraint is
relaxed and primal solutions are improved by local search. We enhance this
approach in the following.

88 J. Puchinger, G.R. Raidl, and S. Pirkwieser

3.6.2 Lagrangian Decomposition of the KCMST
Problem

The aforementioned natural combination lends itself to obtain tighter upper
bounds via Lagrangian decomposition (LD), which is a special variant of
Lagrangian relaxation that can be meaningful when there is evidence of two
or possibly more intertwined subproblems, and each of them can be efficiently
solved on its own by specialized algorithms.

For this purpose, we duplicate variables xe, ∀e ∈ E, by introducing new,
corresponding variables ye and including linking constraints, leading to the
following reformulation:

max p(x) =
∑
e∈E

pexe (3.17)

s.t. x represents a spanning tree on G, (3.18)∑
e∈E

weye ≤ c, (3.19)

xe = ye, ∀e ∈ E, (3.20)
xe, ye ∈ {0, 1}, ∀e ∈ E. (3.21)

Now we relax the linking constraints (3.20) in a Lagrangian fashion using
Lagrangian multipliers λe ∈ R, ∀e ∈ E, hence obtaining the Lagrangian
decomposition of the original problem, denoted by KCMST-LD(λ):

max p(x) =
∑
e∈E

pexe −
∑
e∈E

λe(xe − ye) (3.22)

s.t. x represents a spanning tree on G, (3.23)∑
e∈E

weye ≤ c, (3.24)

xe, ye ∈ {0, 1}, ∀e ∈ E. (3.25)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now
independent subproblems yields

(MST) max {(p− λ)Tx | x =̂ a spanning tree on G, x ∈ {0, 1}E} + (3.26)
(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (3.27)

For a given λ, the maximum spanning tree (MST) subproblem (3.26) can
be efficiently solved by standard algorithms. The 0–1 knapsack subproblem
(3.27) is known to be weakly NP-hard and we apply the COMBO dynamic
programming algorithm [36] for efficiently solving it.

To obtain the tightest (smallest) upper bound, we have to solve the La-
grangian dual problem:

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 89

minλ∈RE v(KCMST-LD(λ)), (3.28)

where v(KCMST-LD(λ)) denotes the optimal solution value to KCMST-
LD(λ). This is achieved by applying the volume algorithm [4].

3.6.3 Lagrangian Heuristic

We employ several methods to also derive heuristic solutions and correspond-
ing lower bounds. An obvious Lagrangian heuristic is the following: Whenever
the spanning tree created in an iteration of the volume algorithm satisfies the
capacity limit, we already have a feasible KCMST. In order to further im-
prove such solutions we consecutively apply a local search based on an edge
exchange neighborhood. Thereby we select an edge (u, v) not present in the
solution and identify the least profitable edge—choosing an edge with highest
weight in case of ties—of the path that connects nodes u and v in the cur-
rent tree and that may be replaced by (u, v) without violating the capacity
constraint. We then exchange these two edges in case the profit increases or
it stays the same but the overall weight decreases. The edge to be included,
(u, v), is either chosen (i) at random from E \ T , or (ii) at the beginning of
the local search, all edges are sorted according to decreasing p′e = pe−λe (the
reduced profits used to solve the MST subproblem) and in every iteration of
the local search the next less profitable edge not active in the current solution
is chosen. The latter selection scheme results in a greedy search where every
edge is considered at most once. Since Lagrangian multipliers are supposed
to be of better quality in later phases of the optimization process, local search
is only applied when the ratio of the incumbent lower and upper bounds is
larger than a certain threshold τ . Local search stops after 100 consecutive
non-improving iterations have been performed.

3.6.4 Evolutionary Algorithm for the KCMST

The EA for heuristically solving the KCMST is based on a direct edge-set
representation as described in [45]. This encoding and its corresponding vari-
ation operators are known to provide strong locality and heritability, and all
operations can efficiently be performed in time that depends (almost) only
linearly on the number of nodes.

The general framework is steady-state, i.e., in each iteration one feasible
offspring solution is created by means of recombination, mutation, and even-
tually local improvement, and it replaces the worst solution in the population.
Duplicates are not allowed in the population; they are always immediately
discarded. The EA’s operators work as follows.

90 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Initialization: A diversified initial population is obtained via a random
spanning tree construction based on Kruskal’s algorithm with a bias towards
selecting edges with high profits. In case a generated solution is infeasible
with respect to the knapsack constraint, it is stochastically repaired by itera-
tively selecting a not yet included edge at random, adding it to the tree, and
removing an edge with highest weight from the induced cycle.

Recombination: An offspring is derived from two selected parental so-
lutions in such a way that it always exclusively consists of inherited edges:
In a first step all edges contained in both parents are immediately adopted.
The remaining ones are merged into a single candidate list. From this list,
we iteratively select edges by binary tournaments with replacement favoring
high-profit edges again. Selected edges are included in the solution if they do
not introduce a cycle; otherwise, they are discarded. The process is repeated
until a complete spanning tree is obtained. If it exceeds the capacity limit,
the solution is repaired in the same way as during initialization, but only
considering parental edges for inclusion.

Mutation: Mutation is performed by inserting a new randomly selected
edge and removing another edge from the introduced cycle. The choice of the
edge to be included is again biased towards high-profit edges by utilizing a
normally-distributed rank-based selection, see [45]. The edge to be removed
from the induced cycle is chosen at random among those edges whose removal
retains a feasible solution.

Local Search: With a certain probability, a newly derived candidate so-
lution is further improved by the previously described local search procedure.

3.6.5 LD/EA Hybrid

For the LD/EA hybrid we apply similar ideas as described in [28] for the
prize collecting Steiner tree problem, where the EA is used successfully for
finding better final solutions after performing LD. Here, the EA is adapted to
exploit a variety of (intermediate) results from LD. Of course, the EA is only
applied if the best feasible solution obtained by LD does not correspond to
the determined upper bound; otherwise a proven optimal solution is already
found. These steps are performed after LD has terminated and before the EA
is executed:

1. For the selection of edges during initialization, recombination, and muta-
tion, original edge profits pe are replaced by reduced profits p′e = pe−λe. In
this way, Lagrangian dual variables are exploited, and the heuristic search
emphasizes the inclusion of edges that turned out to be beneficial in LD.

2. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions
encountered by LD. For this purpose, LD is extended to mark those edges.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 91

3. The best feasible solution obtained by LD is directly included in the EA’s
initial population.

4. Finally, the upper bound obtained by LD is exploited by the EA as an
additional stopping criterion: When a solution with a corresponding total
profit is found, it is optimal, and the EA terminates.

3.6.6 Experimental Results

The ability of the LD to yield extremely tight upper bounds that are signifi-
cantly better than those resulting from the simple Lagrangian relaxation [54]
is documented in [40]. Here we concentrate on the ability of the involved
heuristics for improving the primal solutions. Therefore, we show and com-
pare results for the pure Lagrangian decomposition (LD), LD with local
search (LD+LS), and the LD/EA hybrid (LD+LS+EA). Due to the ab-
sence of publicly available test instances we generated maximal planar graphs
(P|V |,γ), and random (R|V |,|E|,γ,δ) as well as complete graphs (K|V |,γ,δ) as de-
tailed in [29]. The instances differ in

1. size: number of nodes |V | and edges |E|,
2. profit/weight correlation γ: being uncorrelated, weakly or strongly corre-

lated for maximal planar graphs and of type outliers, weakly or strongly
correlated for the other graph types,

3. and capacity limit δ: low, medium, or high limit.

A detailed treatment of these instances is given in [40]. For the optional
local search, greedy edge selection is used for random and complete graphs
with an application threshold set to τ = 0.99 and random edge selection with
τ = 0.995 for the maximal planar graphs. The EA operates with a population
size of 100 individuals, binary tournament selection is used. Local search
is applied with a probability of 20% on each new candidate solution. The
maximum number of EA iterations is 10000 for maximal planar graphs and
30000 for random and complete graphs. The edge set reduction was applied
only in case of maximal planar graphs, as it turned out to be sometimes too
restricting in the other cases.

All experiments were performed on a 2.2 GHz AMD Athlon 64 PC with
2 GB RAM. The results are given in Table 3.1; ten runs per instance were per-
formed for the stochastic algorithms. We state the CPU-time in seconds t[s],
the number of iterations iter , the average lower bounds (LB), i.e., the objec-
tive values of the best feasible solutions. Upper bounds (UB) are expressed in
terms of the relative gap to these lower bounds: gap = (UB − LB)/LB ; cor-
responding standard deviations are listed in columns σgap . Columns %-Opt
show the percentages of instances for which the gaps are zero and, thus,
optimality has been achieved. For LD+LS+EA, the table additionally lists
the average numbers of EA iterations iterEA, the relative amounts of edges

92 J. Puchinger, G.R. Raidl, and S. Pirkwieser

discarded after performing LD red = (|E| − |E′|)/|E| · 100%, stating (red)
in case no reduction was applied, and the percentages of optimal solutions
%-OptEA, among %-Opt, found by the EA.

As can be seen, the solutions obtained by LD are already quite good
and gaps are small in general. Applying the local search (LD+LS) always
improves the average lower bound and in some cases helps to find more
proven optimal solutions, which in turn reduces the number of iterations
of the volume algorithm. The hybrid approach (LD+LS+EA) further boosts
the average solution quality in almost all cases and substantially increases
the number of solutions for which optimality could be proven; the increase
in running time one has to pay is mostly only moderate. Of course, in order
to solve the very few remaining instances to proven optimality as well, one
could embed LD+LS+EA within a B&B.

3.7 Case Study: Metaheuristic Column Generation

In this section we discuss as a second case study a successful application of
metaheuristics for solving the pricing subproblem within a column generation
approach. The presented results are part of a currently ongoing project of the
authors.

3.7.1 The Periodic Vehicle Routing Problem with
Time Windows

Periodic vehicle routing problems (PVRPs) are generalized variants of the
classical vehicle routing problem (VRP) where customersmust be served sev-
eral times within a given planning period. They occur in real-world appli-
cations as in courier services, grocery distribution or waste collection. The
PVRP considered here is the Periodic Vehicle Routing Problem with Time
Windows (PVRPTW). It is defined on a complete directed graph G = (V,A),
where V = {v0, v1, . . . vn} is the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6=
j} is the arc set. The planning horizon shall be t days, also referred to as
T = {1, . . . , t}. Vertex v0 represents the depot with time window [e0, l0]
at which we have a fleet of m homogeneous vehicles with capacity Q and
maximal daily working time D. Each vertex i ∈ VC , with VC = V \ {v0},
corresponds to a customer and has an associated demand qi ≥ 0, a service
duration di ≥ 0, a time window [ei, li], a service frequency fi and a set Ci of
allowable combinations of visit days. For each arc (vi, vj) ∈ A there are given
travel times (costs) cij ≥ 0. The aim is (i) to select a single visit combination
per customer and (ii) to find at most m vehicle routes on each of the t days
on G, such that

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 93

T
a
b
le

3
.1

R
es

u
lt

s
o
f
L
a
g
ra

n
g
ia

n
d
ec

o
m

p
o
si

ti
o
n

a
n
d

h
y
b
ri

d
a
lg

o
ri

th
m

s
o
n

m
a
x
im

a
l
p
la

n
a
r,

ra
n
d
o
m

,
a
n
d

co
m

p
le

te
g
ra

p
h
s.

In
st

a
n
c
e

L
D

L
D

+
L
S

L
D

+
L
S
+

E
A

t[
s]

it
er

L
B

ga
p

σ
g
a
p

%
-O

p
t

t[
s]

it
er

L
B

ga
p

σ
g
a
p

%
-O

p
t

t[
s]

re
d

it
er

E
A

L
B

ga
p

σ
g
a
p

%
-O

p
t

%
-O

p
t E

A
[·1

0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

P
2
0
0
0
,u

1
.4

8
7
9
1

1
4
7
7
9
9
.5

0
0
.0

6
8
3

0
.2

0
4
9

9
0

2
.2

8
7
8
2

1
4
7
7
9
9
.5

5
0
.0

3
4
2

0
.1

4
8
9

9
5

2
.9

0
4
1
.2

1
1
5
0

1
4
7
7
9
9
.6

0
0

0
1
0
0

5
P

2
0
0
0
,w

1
.5

2
8
5
3

8
5
5
7
0
.5

0
0
.3

5
1
9

0
.7

5
1
3

8
0

2
.3

8
8
4
4

8
5
5
7
0
.6

3
0
.1

9
9
4

0
.5

2
6
1

8
6

4
.2

6
4
2
.6

1
4
5
7

8
5
5
7
0
.7

8
0
.0

2
3
5

0
.1

6
4
3

9
8

1
2

P
2
0
0
0
,s

2
.1

2
1
0
3
0

8
2
5
2
1
.7

0
1
.9

3
8
9

2
.3

1
1
8

4
0

2
.6

6
8
6
8

8
2
5
2
3
.3

0
0

0
1
0
0

2
.6

6
2
1
.9

9
0

8
2
5
2
3
.3

0
0

0
1
0
0

0

P
4
0
0
0
,u

3
.3

5
8
5
9

2
9
4
8
7
2
.0

0
0
.0

3
4
0

0
.1

0
1
9

9
0

5
.5

9
8
4
1

2
9
4
8
7
2
.0

3
0
.0

2
3
8

0
.0

8
6
6

9
3

8
.6

4
4
0
.1

7
3
1
6

2
9
4
8
7
2
.1

0
0

0
1
0
0

7
P

4
0
0
0
,w

4
.1

9
1
0
5
3

1
7
0
9
5
6
.7

0
0
.8

1
9
5

0
.9

1
5
5

4
0

6
.1

5
9
7
8

1
7
0
9
5
7
.7

9
0
.1

8
1
3

0
.3

0
6

7
2

1
4
.6

6
4
3
.8

2
8
4
2

1
7
0
9
5
8
.0

6
0
.0

2
3
4

0
.1

1
4
7

9
6

2
4

P
4
0
0
0
,s

4
.7

1
1
0
6
6

1
6
5
0
4
9
.8

0
1
.0

3
0
0

0
.8

5
9
0

3
0

5
.9

9
9
1
5

1
6
5
0
5
1
.4

4
0
.0

3
6
4

0
.1

4
3
9

9
4

9
.9

5
1
9
.9

2
4
1
0

1
6
5
0
5
1
.4

8
0
.0

1
2
1

0
.0

8
4
8

9
8

4

P
6
0
0
0
,u

5
.6

6
9
1
2

4
4
1
9
7
7
.8

0
0
.0

6
8
0

0
.1

0
3
8

7
0

9
.3

3
8
8
6

4
4
1
9
7
7
.9

6
0
.0

3
1
7

0
.0

7
8
6

8
6

1
5
.4

1
4
0
.2

5
3
3
9

4
4
1
9
7
8
.1

0
0

0
1
0
0

1
4

P
6
0
0
0
,w

6
.5

5
1
0
2
2

2
5
6
3
1
7
.4

0
0
.3

9
0
4

0
.4

6
2
1

5
0

9
.2

5
9
6
4

2
5
6
3
1
8
.0

9
0
.1

2
1
0

0
.2

4
5
2

7
6

2
4
.4

7
4
5
.1

4
9
0
9

2
5
6
3
1
8
.3

6
0
.0

1
5
6

0
.0

7
6
4

9
6

2
0

P
6
0
0
0
,s

8
.1

4
1
1
5
7

2
4
7
5
8
7
.9

0
1
.7

3
6
8

1
.3

0
3
2

2
0

1
0
.4

4
9
9
6

2
4
7
5
9
2
.0

4
0
.0

6
4
6

0
.1

4
8
1

8
4

3
3
.7

3
1
9
.9

4
1
4
0
1

2
4
7
5
9
2
.0

9
0
.0

4
4
4

0
.1

2
6
4

8
9

5

P
8
0
0
0
,u

8
.3

2
9
6
0

5
8
9
4
4
6
.5

0
0
.1

0
1
7

0
.1

3
5
7

6
0

1
3
.8

1
9
1
8

5
8
9
4
4
6
.8

9
0
.0

3
5
6

0
.0

7
7

8
1

2
8
.4

4
3
9
.9

8
5
9
5

5
8
9
4
4
7
.0

9
0
.0

0
1
7

0
.0

1
6
8

9
9

1
8

P
8
0
0
0
,w

9
.7

8
1
1
0
7

3
4
1
9
0
2
.5

0
0
.5

5
5
5

0
.5

1
3
9

3
0

1
4
.1

8
1
0
3
7

3
4
1
9
0
3
.8

5
0
.1

6
0
9

0
.2

1
2
4

5
8

4
8
.4

0
4
4
.8

2
1
3
8
4

3
4
1
9
0
4
.3

7
0
.0

0
8
8

0
.0

4
9
9

9
7

3
9

P
8
0
0
0
,s

1
0
.8

8
1
1
2
5

3
3
0
1
1
7
.1

0
1
.5

1
4
7

1
.3

0
6
5

2
0

1
4
.2

0
9
9
0

3
3
0
1
2
1
.8

6
0
.0

7
2
7

0
.1

2
9
4

7
6

5
7
.0

0
1
7
.9

9
1
7
2
7

3
3
0
1
2
1
.9

6
0
.0

4
2
4

0
.1

0
5
1

8
6

1
0

R
3
0
0
,1

1
2
1
3
,o

,l
9
.5

3
1
7
3
7

5
4
2
8
3
9
.4

0
1
.7

4
7
7

1
.8

3
2
6

1
0

1
1
.7

2
1
7
3
7

5
4
2
8
4
0
.6

0
1
.5

2
7
1

1
.5

9
3
7

1
0

2
9
.9

9
(9

2
.9

3
)

2
7
0
0
0

5
4
2
8
4
3
.6

3
0
.9

7
0
6

0
.6

9
2
8

1
0

0

R
3
0
0
,1

1
2
1
3
,o

,m
7
.1

0
1
5
3
6

5
8
0
7
1
6
.5

0
0
.2

5
8
3

0
.2

4
6
4

3
0

8
.8

9
1
5
0
6

5
8
0
7
1
6
.6

0
0
.2

4
1
1

0
.2

5
7
6

4
0

2
1
.4

3
(9

1
.6

3
)

1
8
0
0
0

5
8
0
7
1
6
.6

4
0
.2

3
4
2

0
.2

4
7
7

4
0

0
R

3
0
0
,1

1
2
1
3
,o

,h
3
.5

7
1
2
6
0

5
9
1
4
0
9
.0

0
0
.1

6
9
0

0
.2

5
0
7

5
0

5
.1

1
1
2
5
9

5
9
1
4
0
9
.3

0
0
.1

1
8
3

0
.1

3
2
0

5
0

1
3
.7

3
(9

1
.0

2
)

1
2
2
8
5

5
9
1
4
0
9
.5

4
0
.0

7
7
8

0
.1

1
3
2

6
4

1
4

R
3
0
0
,1

1
2
1
3
,s

2
,l

2
4
.5

8
1
5
6
3

7
7
4
6
6
.6

0
8
.5

2
0
9

5
.6

0
4
6

2
0

2
4
.4

5
1
4
0
9

7
7
4
7
3
.0

0
0
.2

5
8
1

0
.5

1
6
1

8
0

2
4
.6

9
(8

0
.6

4
)

3
3
6

7
7
4
7
3
.2

0
0

0
1
0
0

2
0

R
3
0
0
,1

1
2
1
3
,s

2
,m

1
5
.3

7
1
3
5
1

1
5
5
2
4
4
.8

0
5
.4

0
6
4

5
.1

1
6
5

0
1
4
.7

7
1
0
5
1

1
5
5
2
5
3
.2

0
0

0
1
0
0

1
4
.7

3
(8

1
.5

4
)

0
1
5
5
2
5
3
.2

0
0

0
1
0
0

0
R

3
0
0
,1

1
2
1
3
,s

2
,h

1
6
.5

2
1
3
3
2

2
3
2
8
7
7
.7

0
6
.5

3
0
5

5
.2

6
6
8

1
0

1
6
.7

4
1
2
3
8

2
3
2
8
9
2
.5

0
0
.1

7
1
8

0
.2

8
4
7

7
0

1
8
.3

4
(8

5
.2

8
)

2
2
2
2

2
3
2
8
9
2
.8

9
0
.0

0
4
3

0
.0

4
2
8

9
9

2
9

R
3
0
0
,2

2
4
2
5
,o

,l
2
6
.3

9
3
3
2
4

5
6
8
7
7
1
.9

0
6
.8

3
8
3

6
.1

4
7
5

1
0

3
2
.1

0
3
3
2
4

5
6
8
7
8
8
.8

0
3
.8

7
1
4

4
.3

3
2
7

1
0

5
2
.0

8
(9

5
.2

4
)

2
6
7
0
0

5
6
8
7
9
6
.0

0
2
.6

0
4
2

3
.3

6
5
4

1
1

1
R

3
0
0
,2

2
4
2
5
,o

,m
1
4
.7

0
1
9
4
3

5
8
8
4
1
0
.3

0
0
.2

2
1
0

0
.2

0
2
0

3
0

1
8
.8

3
1
9
4
3

5
8
8
4
1
0
.5

0
0
.1

8
7
0

0
.1

6
0
5

3
0

3
3
.0

5
(9

5
.4

6
)

1
8
0
7
8

5
8
8
4
1
0
.8

0
0
.1

3
6
0

0
.1

2
7
2

4
0

1
0

R
3
0
0
,2

2
4
2
5
,o

,h
7
.2

8
1
3
5
8

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

1
0
.1

0
1
3
5
8

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

1
2
.4

0
(9

4
.5

4
)

3
0
0
0

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

0

R
3
0
0
,2

2
4
2
5
,s

2
,l

4
4
.0

8
2
0
5
9

7
7
4
4
5
.7

0
1
2
.2

6
2
8

9
.0

1
7
0

0
4
2
.5

8
1
7
9
3

7
7
4
5
5
.2

0
0

0
1
0
0

4
2
.5

8
(8

6
.2

6
)

0
7
7
4
5
5
.2

0
0

0
1
0
0

0
R

3
0
0
,2

2
4
2
5
,s

2
,m

2
9
.6

9
1
6
8
7

1
5
4
9
4
0
.3

0
7
.8

1
8
5

8
.9

0
0
7

1
0

2
8
.8

1
1
3
9
2

1
5
4
9
5
2
.4

0
0

0
1
0
0

2
8
.8

1
(9

3
.7

1
)

0
1
5
4
9
5
2
.4

0
0

0
1
0
0

0

R
3
0
0
,2

2
4
2
5
,s

2
,h

3
4
.6

3
1
9
6
4

2
3
2
4
2
4
.8

0
1
6
.2

7
4
1

1
2
.5

6
5
9

1
0

3
6
.5

5
1
8
8
5

2
3
2
4
6
1
.9

0
0
.3

0
1
3

0
.3

8
7
4

5
0

4
4
.5

9
(8

9
.3

9
)

1
0
6
8
2

2
3
2
4
6
2
.3

7
0
.0

9
9
0

0
.1

8
1
1

7
7

2
7

K
3
0
0
,o

,l
2
4
7
.2

9
1
9
1
6
3

5
8
2
6
4
6
.0

0
4
.0

3
3
4

7
.1

7
4
9

1
0

3
1
6
.3

3
1
9
1
6
3

5
8
2
6
6
0
.3

0
1
.5

7
8
9

1
.4

4
3
5

1
0

3
3
3
.9

8
(9

7
.5

0
)

2
7
0
0
0

5
8
2
6
6
3
.4

6
1
.0

3
6
6

0
.8

5
1
1

1
0

0

K
3
0
0
,o

,m
4
0
.4

4
2
9
0
9

5
9
2
7
9
7
.7

0
0
.1

8
5
6

0
.1

4
0
1

3
0

4
5
.9

6
2
8
6
4

5
9
2
7
9
7
.9

0
0
.1

5
1
8

0
.1

4
0
1

4
0

5
5
.1

9
(9

7
.7

0
)

1
0
2
1
2

5
9
2
7
9
8
.5

0
0
.0

5
0
6

0
.0

7
7
3

7
0

3
0

K
3
0
0
,o

,h
3
0
.1

3
2
3
7
3

5
9
6
0
7
6
.4

0
0
.0

5
0
3

0
.1

0
7
4

8
0

3
5
.4

9
2
3
7
1

5
9
6
0
7
6
.5

0
0
.0

3
3
6

0
.0

6
7
1

8
0

3
6
.1

3
(9

6
.9

4
)

1
2
3
9

5
9
6
0
7
6
.7

0
0

0
1
0
0

2
0

K
3
0
0
,s

2
,l

6
3
.2

0
2
4
9
5

7
7
2
2
5
.7

0
2
8
.6

2
6
9

2
0
.8

4
4
2

0
6
0
.8

0
2
1
9
5

7
7
2
4
7
.8

0
0

0
1
0
0

6
0
.8

0
(9

3
.0

7
)

0
7
7
2
4
7
.8

0
0

0
1
0
0

0

K
3
0
0
,s

2
,m

6
2
.2

5
2
7
0
4

1
5
4
4
4
5
.0

0
1
2
.4

9
5
8

8
.3

3
9
4

0
5
9
.1

1
2
4
0
4

1
5
4
4
6
4
.3

0
0

0
1
0
0

5
9
.1

1
(9

4
.4

8
)

0
1
5
4
4
6
4
.3

0
0

0
1
0
0

0
K

3
0
0
,s

2
,h

7
6
.6

0
3
3
9
6

2
3
1
6
6
5
.0

0
1
5
.9

2
8
5

1
8
.7

4
0
8

1
0

7
8
.1

0
3
1
4
2

2
3
1
7
0
1
.9

0
0

0
1
0
0

7
8
.1

0
(9

2
.7

7
)

0
2
3
1
7
0
1
.9

0
0

0
1
0
0

0

94 J. Puchinger, G.R. Raidl, and S. Pirkwieser

1. each route starts and ends at the depot,
2. each customer i belongs to fi routes over the planning horizon,
3. the total demand of the route for each vehicle does not exceed the capacity

limit Q, and its duration does not exceed the maximal working time D,
4. the service at each customer i begins in the interval [ei, li] and every vehicle

leaves the depot and returns to it in the interval [e0, l0], and
5. the total travel costs of all vehicles are minimized.

We further assume so-called hard time windows, i.e., arriving before ei at
customer i incurs a waiting time at no additional costs, whereas arriving later
than li is not allowed. The PVRPTW has been first mentioned in Cordeau
et al. [8], where a tabu search metaheuristic is described for it.

3.7.2 Set Covering Formulation for the PVRPTW

Among the most successful solution approaches for VRPs in general are al-
gorithms based on column generation. Therefore, we focus on an IP formula-
tion suitable for such an approach and formulate the integer master problem
(IMP) for the PVRPTW as a set covering model:

min
∑
τ∈T

∑
ω∈Ω

γω υωτ (3.29)

s.t.
∑
r∈Ci

yir ≥ 1, ∀i ∈ VC , (3.30)

∑
ω∈Ω

υωτ ≤ m, ∀τ ∈ T, (3.31)∑
ω∈Ω

αiω υωτ −
∑
r∈Ci

βirτ yir ≥ 0, ∀i ∈ VC , ∀τ ∈ T, (3.32)

yir ∈ {0, 1}, ∀i ∈ VC , ∀r ∈ Ci, (3.33)
υωτ ∈ {0, 1}, ∀ω ∈ Ω, ∀τ ∈ T. (3.34)

The set of all feasible individual routes is denoted by Ω, and with each route
ω ∈ Ω we have associated costs γω and variables υωτ , ∀τ ∈ T , representing
the number of times route ω is selected on day τ . For each customer i ∈ VC ,
variable yir indicates whether or not visit combination r ∈ Ci is chosen.
The objective is to minimize the total costs of all routes (3.29). Covering
constraints (3.30) guarantee that at least one visit day combination is selected
per customer, fleet constraints (3.31) restrict the number of daily routes to
not exceed the number of available vehicles m, and visit constraints (3.32)
link the routes and the visit combinations, whereas αiω and βirτ are binary
constants indicating if route ω visits customer i and if day τ belongs to visit
combination r ∈ Ci of customer i, respectively.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 95

3.7.3 Column Generation for Solving the LP
Relaxation

Here, our aim is to derive a lower bound for the IMP by exactly solving its
LP relaxation. An extension of the approach towards an exact branch-and-
price algorithm is part of our ongoing work. Conditions (3.33) and (3.34)
are replaced by yir ≥ 0 and υωτ ≥ 0, yielding the (linear) master prob-
lem (MP). Due to the large number of variables (columns) corresponding to
routes, this LP cannot be solved directly. Instead, we restrict ourselves to
a small number of initial columns Ω′ ⊂ Ω, yielding the corresponding re-
stricted master problem (RMP). Additional columns (routes) that are able
to improve the current LP solution are generated by iteratively solving the
pricing subproblem, which resembles in our case a shortest path problem with
resource constraints (SPPRC) [31] and is NP-hard. Regarding the quality
of the theoretically obtainable lower bound it is beneficial to restrict the
search to elementary paths, hence only considering the elementary SPPRC
(ESPPRC). The following ESPPRC pricing subproblem holds for each day
τ ∈ T and is solved on an auxiliary graph G′ = (V ′, A′), with V ′ = V ∪{vn+1}
and A′ = {(v0, i), (i, vn+1) : i ∈ VC} ∪ {(i, j) : i, j ∈ VC , i 6= j}, where vn+1

is a copy of the (starting) depot v0 and acts as target node:

min
∑
i∈V ′

∑
j∈V ′

ĉijτ xij (3.35)

s.t.
∑

j∈VC

x0j = 1 (3.36)

∑
i∈V ′

xik −
∑
j∈V ′

xkj = 0 ∀k ∈ VC (3.37)

∑
i∈VC

xi,n+1 = 1 (3.38)

∑
i∈VC

∑
j∈V ′

qi xij ≤ Q (3.39)

an+1 − w0 ≤ D (3.40)
ai + wi + di + cij −Mij(1− xij) ≤ aj ∀(i, j) ∈ A′ (3.41)

ei ≤ (ai + wi) ≤ li ∀i ∈ V ′ (3.42)
wi ≥ 0 ∀i ∈ V ′ (3.43)

ai ≥ 0 ∀i ∈ V ′ \ {v0} (3.44)
a0 = 0 (3.45)
xij ∈ {0, 1} ∀(i, j) ∈ A′ (3.46)

96 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Variables xij , ∀(i, j) ∈ A′, denote which arcs from A′ are used, and ĉijτ

are the reduced costs of using arc (i, j) on day τ :

ĉijτ =

{
cij − ρτ if i = v0, j ∈ VC ,

cij − πiτ if i ∈ VC , j ∈ V ′.
(3.47)

with ρτ and πiτ being the dual variable values of constraints (3.31) and (3.32),
respectively. Equalities (3.36) to (3.38) are flow conservation constraints, and
inequalities (3.39) and (3.40) guarantee to not exceed the capacity and dura-
tion limits, respectively. Finally, (3.41) and (3.42) are time constraints, with
variable ai denoting the arrival time at customer i and wi the waiting time
occurring after ai.

3.7.4 Exact and Metaheuristic Pricing Procedures

We apply an exact algorithm as well as metaheuristics for solving the
ESPPRC subproblem. The former is realized by a dynamic programming
approach based on [7, 14]. We use a label correcting algorithm and expand
the partial paths from the depot v0 to the target node vn+1, thereby retain-
ing only non-dominated labels taking into account the cumulated costs, load,
duration, and overall waiting time, as well as the arrival time and the set
of unreachable nodes. To minimize route duration we adhere to the concept
of forward time slack [48] and maximize the waiting time w0 at the depot
without introducing a time window violation. This is also considered when
extending labels and checking the dominance relation. The algorithm can also
be stopped after a certain number of negative cost paths have been found,
i.e., applying a “forced early stop”, c.f. [32].

The first metaheuristic is an instance of iterated local search (ILS) [34]. It
starts with the “empty” path (v0, vn+1) with zero costs and applies in each
iteration a perturbation and a subsequent local improvement phase. Both
phases make use of the following neighborhood structures: inserting, deleting,
moving, replacing, and exchanging individual customers. The local search
selects them in a random fashion and always accepts the first improving
change. Perturbation applies ten random neighborhood moves in a sequence.

Our second, alternative metaheuristic approach can be regarded a greedy
randomized adaptive search procedure (GRASP) [15]: In each iteration we
start with the “empty” path (v0, vn+1) with zero costs and successively try
to add arcs having negative costs, always selecting one at random in case
there are more available; afterwards we also apply the perturbation and local
search phase as described for the ILS algorithm.

Whenever an iteration of the metaheuristics results in a negative cost
path it is stored and returned at the end of the procedure. Once one or more
negative cost routes have been determined for one of the daily subproblems,

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 97

corresponding variables are priced in for all days and the RMP is resolved.
In the following iteration we start the column generation with the same daily
subproblem before considering the others. The whole process is continued
until a full iteration over all days yields no new negative cost routes.

3.7.5 Experimental Results

Benchmark instances were taken from [8]. They are divided in types ‘a’ and
‘b’ having narrow and wide time windows, respectively. We reduced some of
them by selecting only a random subset of the customers and decreasing the
number of vehicles in an appropriate way; in this case we give a subscript
denoting the index of the reduced instance. The initial set of columns is
provided by taking the routes of feasible solutions of a variable neighborhood
search described in [39]. All algorithms have been implemented in C++ using
GCC 4.1 and were executed on a single core of a 2.2GHz AMD Opteron
2214 PC with 4 GB RAM. CPLEX in version 11.1 was used as LP solver.
The ESPPRC subproblem is solved in four alternative ways: (i) by dynamic
programming (DP), (ii) by dynamic programming with a forced early stop
after 1000 generated columns (DPS), (iii) by ILS and a subsequent application
of DP (ILS+DP), and finally (iv) by GRASP and running DP afterwards
(GRASP+DP). The metaheuristics’ iteration limit is originally set to 1000
and extended to 10000 if no new columns have been generated so far (on
a per-run basis). DP is applied after the metaheuristic if less than 100 new
columns have been generated. In all experiments, column generation was
performed until the LP relaxation of the set covering formulation has been
solved to optimality, i.e., it has been proven by DP that no further columns
with negative reduced costs exist.

Table 3.2 shows the instances, the upper bounds (UB) initially provided
by the variable neighborhood search, the (exact) lower bounds (LB) obtained
from column generation, the percentage gaps between them, i.e. %-gap =
(UB − LB)/LB · 100%, the CPU-times of settings DP and DPS, as well as
the minimal and average times of settings ILS+DP and GRASP+DP over
ten runs per instance. It can be observed that DPS is faster than DP for
instances with narrow time windows, whereas it is almost the opposite for
instances with wide time windows. However, using one of the metaheuristic
combinations ILS+DP or GRASP+DP is almost always fastest, especially for
larger instances, when the speed of the heuristic column generation outweighs
the probably higher quality columns of the DP algorithm. Among the two
metaheuristic combinations, no obvious advantage is observable for either of
them.

98 J. Puchinger, G.R. Raidl, and S. Pirkwieser

T
a
b
le

3
.2

E
x
p
er

im
en

ta
l
re

su
lt

s
o
f

co
lu

m
n

g
en

er
a
ti

o
n

w
it
h

d
iff

er
en

t
p
ri

ci
n
g

st
ra

te
g
ie

s
fo

r
th

e
P

V
R

P
T

W
:
C

P
U

-t
im

es
fo

r
ex

a
ct

ly
so

lv
in

g
th

e
L
P

re
la

x
a
ti
o
n

o
f
th

e
se

t
co

v
er

in
g

fo
rm

u
la

ti
o
n
.

In
st

a
n
ce

U
B

L
B

%
-g

a
p

D
P

D
P

S
IL

S
+

D
P

G
R

A
S
P

+
D

P

N
o
.

n
m

t
t[
s]

t[
s]

m
in

t[
s]

a
v
g
.
t[

s]
m

in
t[
s]

a
v
g
.
t[
s]

1
a

4
8

3
4

2
9
0
9
.0

2
2
8
8
2
.0

1
0
.9

4
5
.0

1
4
.8

7
1
1
.4

4
1
3
.9

2
1
3
.4

0
1
8
.5

9
2
a

9
6

6
4

5
0
3
2
.0

6
4
9
9
3
.4

8
0
.7

7
7
2
.2

7
5
3
.9

1
4
8
.3

5
5
5
.8

3
4
5
.3

1
5
7
.0

9

3
a

1
4
4

9
4

7
1
3
8
.6

5
6
8
4
1
.4

4
4
.3

4
3
7
4
.0

7
2
9
1
.6

1
2
3
1
.1

7
2
6
5
.2

8
2
2
3
.0

3
2
6
2
.8

9
4
a
r1

1
6
0

1
0

4
6
9
2
9
.8

4
6
6
4
1
.6

7
4
.3

4
1
2
4
0
.9

6
1
1
3
6
.6

4
6
0
5
.0

6
7
4
4
.6

9
6
4
0
.1

5
7
5
4
.7

1
7
a

7
2

5
6

6
7
8
4
.7

1
6
6
4
1
.3

9
2
.1

6
2
4
.7

8
1
7
.1

0
1
6
.9

8
2
0
.7

7
1
9
.5

8
2
3
.8

2

9
a
r1

9
6

7
6

8
5
4
5
.8

0
8
0
3
5
.0

9
6
.3

6
1
4
6
.8

8
1
3
4
.5

5
8
8
.8

9
1
0
4
.1

7
9
6
.6

0
1
0
3
.7

5
9
a
r2

1
2
0

8
6

8
5
9
8
.4

0
8
1
4
0
.1

5
5
.6

3
8
9
8
.9

0
6
9
3
.4

4
4
4
6
.4

9
5
4
5
.0

9
4
7
5
.9

8
5
2
1
.6

6
8
a

1
4
4

1
0

6
9
7
2
1
.2

5
9
1
5
3
.7

9
6
.2

0
7
4
5
.9

5
5
9
2
.0

7
3
6
7
.8

2
4
1
8
.8

7
3
8
3
.1

8
4
2
1
.6

3

2
b
r1

3
2

2
4

2
7
0
9
.1

5
2
6
8
2
.5

2
1
.0

0
8
9
.6

5
1
2
1
.3

0
4
3
.5

8
6
4
.7

9
2
5
.3

6
5
5
.7

8
1
b

4
8

3
4

2
2
7
7
.4

4
2
2
5
8
.8

5
0
.8

2
1
5
6
.7

7
1
5
8
.6

6
7
6
.6

6
1
0
9
.1

7
9
9
.5

9
1
2
3
.3

5

2
b
r2

6
4

4
4

2
7
7
1
.6

8
2
7
3
3
.5

5
1
.4

0
2
7
7
.7

6
2
5
4
.3

8
1
3
1
.7

2
1
9
2
.1

8
1
6
8
.7

5
1
8
8
.6

1
3
b
r1

7
2

4
4

3
3
0
6
.8

6
3
2
4
1
.9

0
2
.0

0
7
2
6
.3

7
7
4
9
.1

1
4
2
6
.1

0
5
3
3
.6

8
4
1
7
.0

5
4
8
8
.9

5
7
b

r
1

2
4

2
6

3
7
7
6
.2

5
3
6
7
7
.2

1
2
.7

0
0
.5

4
0
.5

5
1
.9

2
2
.2

9
1
.7

2
2
.2

5

8
b

r
1

3
6

2
6

3
6
4
0
.7

9
3
4
7
6
.4

3
4
.7

3
1
0
.0

1
1
0
.1

5
8
.5

0
1
3
.2

6
1
0
.2

4
1
2
.5

5
7
b

r
2

4
8

3
6

3
7
2
3
.1

8
3
5
9
9
.7

2
3
.4

3
4
8
.0

4
3
1
.7

8
3
0
.9

5
4
3
.1

3
3
4
.0

3
4
3
.2

0
8
b

r
2

6
0

3
6

4
6
0
6
.1

7
4
3
2
4
.8

7
6
.5

0
1
5
3
8
.1

8
1
1
9
6
.5

1
8
2
6
.0

8
1
1
2
1
.2

8
8
0
4
.3

5
9
6
7
.8

7

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 99

3.8 Conclusions

The present chapter reviewed important MetaBoosting literature and pre-
sented two exemplary case studies where an in-depth description of successful
hybrid algorithms was given. Many different hybridization approaches exist,
most of them are specialized methods for specific problems, but another sig-
nificant part of the surveyed research considers generic problems such as
mixed integer programming. It is often possible to accelerate exact methods
by introducing (meta-)heuristic knowledge and, if fixed time-limits are given,
the overall solution quality might also benefit from such ideas.

In most exact approaches tight bounds are crucial aspects of success. Thus,
different ways of applying metaheuristics for finding primal bounds were ex-
amined. The obvious way of determining high quality initial solutions can
be beneficial to the overall optimization process, as it has been described for
the multidimensional knapsack problem. General methods for determining
improved primal solutions throughout the search process for generic mixed
integer programming, such as local branching and relaxation or distance in-
duced neighborhood search, have been found so effective that some of them
have been included into the commercial MIP solver CPLEX. Solution merging
approaches based on evolutionary algorithms were also successfully included
in this solver. Other more problem specific methods often yielding optimal or
close to optimal primal solutions based on the hybridization of Lagrangian
relaxation and metaheuristics were also examined.

A multitude of collaborative approaches exist and some intertwined and
parallel combinations were described in this chapter. Parallel combinations
gain importance because of the current hardware developments and the broad
availability of multi-core processors.

Mathematical programming techniques based on problem decomposition,
such as cut and column generation approaches, play an essential role in the
advances of exact methods. Applications where metaheuristic algorithms are
used for such tasks were described. Especially sequential combinations of
fast and simple construction heuristics and more sophisticated metaheuristic
approaches are very promising in both cut and column generation.

Different aspects and difficulties in the development of hybrid methods
were discussed in more detail in the two case studies. The first one describes
a Lagrangian decomposition approach combined with an evolutionary algo-
rithm for solving the knapsack constrained maximum spanning tree problem.
The Lagrangian approach combined with an implicit construction heuristic
and a subsequent local search is already a powerful procedure yielding tight
gaps, but its combination with the EA allows to optimally solve substantially
more of the large-scale instances. The second case study presents a column
generation approach for solving the periodic vehicle routing problem with
time windows. A greedy randomized adaptive search procedure, an iterated
local search, and a dynamic programming algorithm are applied for solving
the pricing subproblem. The inclusion of metaheuristic techniques led to a

100 J. Puchinger, G.R. Raidl, and S. Pirkwieser

significant acceleration of the column generation process compared to using
the dynamic programming subproblem solver alone.

Hybridizing exact algorithms and metaheuristics, and MetaBoosting in
particular are promising research areas. Further exciting results can be ex-
pected since various possible synergies are still unexplored. Especially gener-
ating, exchanging, and translating information about the ongoing optimiza-
tion process by exploiting advanced features of the different algorithms will
possibly lead to further progress in the field.

Acknowledgements This work is supported by the Austrian Science Fund (FWF) under

contract number P20342-N13.

References

1. P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Separating
capacity constraints in the CVRP using tabu search. European Journal of Operational

Research, 106(2):546–557, 1999.
2. E. Balas. An additive algorithm for solving linear programs with zero-one variables.

Operations Research, 13(4):517–549, 1965.

3. E. Balas and C.H. Martin. Pivot and complement – a heuristic for 0–1 programming.
Management Science, 26(1):86–96, 1980.

4. F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a

subgradient method. Mathematical Programming, Series A, 87(3):385–399, 2000.
5. L. Bertaccoa, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general

mixed-integer problems. Discrete Optimization, 4:63–76, 2007.

6. D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1997.

7. A. Chabrier. Vehicle routing problem with elementary shortest path based column

generation. Computers & Operations Research, 33(10):2972–2990, 2006.
8. J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle

routing problems with time windows. Journal of the Operational Research Society,
52:928–936, 2001.

9. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, Series A, 102:71–90, 2005.

10. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large scale traveling

salesman problem. Operations Research, 2:393–410, 1954.
11. G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8(1):101–111, 1960.

12. J. Denzinger and T. Offermann. On cooperation between evolutionary algorithms
and other search paradigms. In Proceedings of the 1999 Congress on Evolutionary
Computation, volume 3, pages 2317–2324. IEEE Press, 1999.

13. O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194(1-3):229–237, 1999.

14. D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-

mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004.

15. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Jour-

nal of Global Optimization, 6:109–133, 1995.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 101

16. G. Ribeiro Filho and L.A. Nogueira Lorena. Constructive genetic algorithm and col-

umn generation: an application to graph coloring. In L.P. Chuen, editor, Proceedings
of the Fifth Conference of the Association of Asian-Pacific Operations Research So-

cieties within IFORS, 2000.
17. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-

ming, 104(1):91–104, 2005.
18. M. Fischetti, C. Polo, and M. Scantamburlo. Local branching heuristic for mixed-

integer programs with 2-level variables, with an application to a telecommunication

network design problem. Networks, 44(2):61–72, 2004.
19. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, Series B,

98:23–47, 2003.
20. M.L. Fisher. The Lagrangian relaxation method for solving integer programming

problems. Management Science, 27(1):1–18, 1981.
21. A. Frangioni. About Lagrangian methods in integer optimization. Annals of Opera-

tions Research, 139(1):163–193, 2005.
22. A.P. French, A.C. Robinson, and J.M. Wilson. Using a hybrid genetic algo-

rithm/branch and bound approach to solve feasibility and optimization integer pro-

gramming problems. Journal of Heuristics, 7:551–564, 2001.
23. S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and D.P. Williamson,

editors, Integer Programming and Combinatorial Optimization: 12th International
IPCO Conference, Proceedings, volume 4513 of Lecture Notes in Computer Science,

pages 310–323. Springer, 2007.
24. P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting stock

problem. Operations Research, 9:849–859, 1961.
25. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path relink-

ing. Control and Cybernetics, 39(3):653–684, 2000.
26. F. Glover. Surrogate constraints. Operations Research, 16(4):741–749, 1968.
27. P. Hansen, N. Mladenović, and D. Urosević. Variable neighborhood search and local

branching. Computers & Operations Research, 33(10):3034–3045, 2006.
28. M. Haouari and J.C. Siala. A hybrid Lagrangian genetic algorithm for the prize

collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–1288,

2006.
29. S.T. Henn. Weight-constrained minimal spanning tree problem. Master’s thesis, Uni-

versity of Kaiserslautern, Department of Mathematics, May 2007.
30. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an

interior. Operations Research, 17(4):600–637, 1969.
31. S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, chap-
ter 2, pages 33–65. Springer, 2005.

32. J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows. PhD
thesis, Technical University of Denmark, 1999.

33. M. Leitner and G.R. Raidl. Lagrangian decomposition, metaheuristics, and hybrid
approaches for the design of the last mile in fiber optic networks. In M.J. Blesa,
C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, A. Roli, and M. Sampels, editors,

Hybrid Metaheuristics 2008, volume 5296 of Lecture Notes in Computer Science, pages
158–174. Springer, 2008.

34. H.R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Aca-

demic Publishers, 2003.
35. M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005.
36. S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for

the 0–1 knapsack problem. Management Science, 45:414–424, 1999.
37. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1988.

102 J. Puchinger, G.R. Raidl, and S. Pirkwieser

38. C. Oliva, P. Michelon, and C. Artigues. Constraint and linear programming: Using

reduced costs for solving the zero/one multiple knapsack problem. In International
Conference on Constraint Programming, Proceedings of the Workshop on Cooperative

Solvers in Constraint Programming, pages 87–98, Paphos, Greece, 2001.

39. S. Pirkwieser and G.R. Raidl. A variable neighborhood search for the periodic vehicle
routing problem with time windows. In C. Prodhon, R. Wolfler-Calvo, N. Labadi, and

C. Prins, editors, Proceedings of the 9th EU/MEeting on Metaheuristics for Logistics

and Vehicle Routing, Troyes, France, 2008.
40. S. Pirkwieser, G.R. Raidl, and J. Puchinger. A Lagrangian decomposition/evolutionary

algorithm hybrid for the knapsack constrained maximum spanning tree problem. In

C. Cotta and J. van Hemert, editors, Recent Advances in Evolutionary Computation
for Combinatorial Optimization, volume 153 of Studies in Computational Intelligence,

pages 69–85. Springer, 2008.
41. J. Puchinger and G.R. Raidl. An evolutionary algorithm for column generation in

integer programming: an effective approach for 2D bin packing. In In X. Yao, E.K.

Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervos, J.A. Bullinaria, J.E. Rowe, P. Tino,
A. Kaban, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN
VIII, volume 3242 of Lecture Notes in Computer Science, pages 642–651. Springer,

2004.
42. J. Puchinger and G.R. Raidl. Combining metaheuristics and exact algorithms in com-

binatorial optimization: A survey and classification. In J. Mira and J.R. Álvarez,

editors, Proceedings of the First International Work-Conference on the Interplay Be-
tween Natural and Artificial Computation, Part II, volume 3562 of Lecture Notes in
Computer Science, pages 41–53. Springer, 2005.

43. J. Puchinger and G.R. Raidl. Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research, 183:1304–1327, 2007.

44. J. Puchinger, G.R. Raidl, and M. Gruber. Cooperating memetic and branch-and-cut
algorithms for solving the multidimensional knapsack problem. In Proceedings of the

6th Metaheuristics International Conference, pages 775–780, Vienna, Austria, 2005.
45. G.R. Raidl and B.A. Julstrom. Edge sets: an effective evolutionary coding of spanning

trees. IEEE Transactions on Evolutionary Computation, 7(3):225–239, 2003.

46. W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders decompo-
sition by local branching. INFORMS Journal on Computing, in press.

47. E. Rothberg. An evolutionary algorithm for polishing mixed integer programming

solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.
48. M.W.P. Savelsbergh. The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing, 4:146–154, 1992.
49. S. Talukdar, L. Baeretzen, A. Gove, and P. de Souza. Asynchronous teams: Coopera-

tion schemes for autonomous agents. Journal of Heuristics, 4:295–321, 1998.
50. M. Vasquez and J.-K. Hao. A hybrid approach for the 0–1 multidimensional knapsack

problem. In B. Nebel, editor, Proceedings of the 17th International Joint Conference
on Artificial Intelligence, pages 328–333. Morgan Kaufman, 2001.

51. M. Vasquez and Y. Vimont. Improved results on the 0–1 multidimensional knapsack
problem. European Journal of Operational Research, 165(1):70–81, 2005.

52. Y. Vimont, S. Boussier, and M. Vasquez. Reduced costs propagation in an efficient
implicit enumeration for the 0–1 multidimensional knapsack problem. Journal of Com-

binatorial Optimization, 15(2):165–178, 2008.
53. L.A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

54. T. Yamada, K. Watanabe, and S. Katakoa. Algorithms to solve the knapsack con-
strained maximum spanning tree problem. International Journal of Computer Math-
ematics, 82(1):23–34, 2005.

	MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics
	Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser
	Introduction
	Integer Programming Techniques
	Relaxations and Duality
	LP-Based Branch-and-Bound
	Cutting Plane Algorithm and Branch-and-Cut
	Column Generation and Branch-and-Price

	Metaheuristics for Finding Primal Bounds
	Initial Solutions
	B&B Acting as Local Search Based Metaheuristic
	Solution Merging
	Metaheuristics and Lagrangian Relaxation

	Collaborative Hybrids
	Metaheuristics for Cut and Column Generation
	Cut Separation
	Column Generation

	Case Study: A Lagrangian Decomposition/EA Hybrid
	The Knapsack Constrained Maximum Spanning Tree Problem
	Lagrangian Decomposition of the KCMST Problem
	Lagrangian Heuristic
	Evolutionary Algorithm for the KCMST
	LD/EA Hybrid
	Experimental Results

	Case Study: Metaheuristic Column Generation
	The Periodic Vehicle Routing Problem with Time Windows
	Set Covering Formulation for the PVRPTW
	Column Generation for Solving the LP Relaxation
	Exact and Metaheuristic Pricing Procedures
	Experimental Results

	Conclusions
	References

