
Chapter 11

A Hybrid Tabu Search for the
m-Peripatetic Vehicle Routing
Problem

Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler Calvo

Abstract This chapter presents a hybridization of a perfect b-matching
within a tabu search framework for the m-Peripatetic Vehicle Routing Prob-
lem (m-PVRP). The m-PVRP models, for example, money transports and
cash machines supply where, for security reasons, no path can be used more
than once during m periods and the amount of money allowed per vehicle is
limited. It consists in finding a set of routes of minimum total cost over m
periods from an undirected graph such that each customer is visited exactly
once per period and each edge can be used at most once during the m pe-
riods. Each route starts and finishes at the depot with a total demand not
greater than the vehicle capacity. The aim is to minimize the total cost of the
routes. The m-PVRP can be considered as a generalization of two well-known
NP-hard problems: the vehicle routing problem (VRP or 1-PVRP) and the
m-Peripatetic Salesman Problem (m-PSP). Computational results on clas-
sical VRP instances and TSPLIP instances show that the hybrid algorithm
obtained improves the tabu search, not only on the m-PVRP in general, but
also on the VRP and the m-PSP.

11.1 Introduction

The m-Peripatetic Vehicle Routing Problem (m-PVRP), introduced for the
first time in [12], models money collection, transfer and dispatch when it is
subcontracted by banks and businesses to specialized companies. These com-
panies need optimized software or applications to organize their van or truck
routes and schedule. For security reasons, peripatetic and capacity constraints
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Fig. 11.1 Example of a solution for a 2-PVRP.

must be satisfied: no path can be used more than once during m periods and
the amount of money allowed per vehicle is limited. The m-PVRP is defined
on a complete graph G = (V,E) where V is the vertex set and E is the edge
set. It consists in finding a set of routes of minimum total cost over m periods
from an undirected graph such that each customer is visited exactly once per
period and each edge can be used at most once during the m periods. Fig-
ure 11.1 shows an example of a feasible solution for a 2-PVRP. Ngueveu et al.
introduced the m-PVRP before proposing two lower bounds and two upper
bounds. The two lower bounds are based upon k edge-disjoint spanning trees
and a perfect b-matching. The first upper bound results from the adaptation
of the Clarke-Wright heuristic [4] and the second from a tabu search with
diversification.

The m-PVRP can be considered as a generalization of two well-known
NP-hard problems: the vehicle routing problem (VRP) and the m-peripatetic
salesman problem (m-PSP). Indeed, the VRP is a particular case of m-PVRP
where m = 1 since it consists in finding the best routes for one single period.
Likewise, any m-PSP is in fact an m-PVRP with an infinite vehicle capacity
since the traveling salesman problem (TSP) is a particular case of the VRP
with one single vehicle. Both problems were widely studied in the literature
with heuristics, metaheuristics and exact methods. The m-PSP, e.g., was
introduced by Krarup [11] and mainly studied in [6, 8, 16]. Amongst the
numerous publications concerning the VRP, we can cite Toth and Vigo [14], a
recent survey of the most effective metaheuristics for VRPs [5], or an effective
exact algorithm based on q-route relaxation [2].

In this chapter we present an efficient algorithm resulting from the hy-
bridization of the perfect b-matching and the tabu search of Ngueveu et al.
It is designed to solve the m-PVRP. However, due to the lack of publicly
available instances for this new problem, the computational analysis was
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performed using instances of the VRP and the m-PSP to compare with the
literature. The remainder of this paper is organized as follows. Section 11.2
presents the tabu components, while Section 11.3 focuses on the hybridiza-
tion with a b-matching. Finally, the computational evaluation is presented in
Section 11.4, before the conclusion.

11.2 Tabu Search

Tabu search [10] is a method that explores the solution space by moving
from a solution st identified at iteration t to the best solution st+1 in the
neighborhood N(st). Since st+1 may not improve st, a tabu mechanism is
implemented to prevent the process from cycling over a sequence of solutions.
An obvious way to prevent cycles would be to forbid the process from going
back to previously encountered solutions, but doing so would typically require
excessive bookkeeping. Instead, some attributes of past solutions are recorded
and solutions possessing these attributes are discarded for τ iterations. This
mechanism is often referred to as short-term memory. Other features like
granularity and diversification (long term memory) are often implemented to
improve speed and efficiency. The algorithm we designed is stopped after a
predefined number of iterations maxt and requires the following components,
described hereafter: the initial solution heuristic, the neighborhood structure,
the penalization component and the tabu list management.

11.2.1 Initial Solution Heuristic and Neighborhood
Structure

Inspired by the idea of Krarup for the m-PSP [11], the procedure of Clarke
and Wright [4] is applied m times to obtain at the end an initial m-PVRP
solution, and the edges already used are removed from the graph before each
iteration. In practice, a penalty is added to the cost of edges already used,
forbidding the reuse of any of them, unless there is no other alternative. This
procedure will be referred to as Heuristic.

To explore the solution space, we try to introduce into the current solution
edges that are not currently used during the m periods. Figure 11.2 illustrates
the eight different ways, derived from classical 2-opt moves, to introduce an
edge [A, B] within a period. There are consequently 8m potential insertion
moves per edge. Moves involving two routes are authorized only if the capacity
constraints are not violated: the total demand on each of the new routes
obtained must not exceed the vehicle capacity Q. In addition to the classical
2-opt neighborhood, this neighborhood authorizes moves that split a route in
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two (see cases 3 and 4 on Figure 11.2) or merge two routes if an edge inserted
connects the extremities of two routes.

Fig. 11.2 Neighborhood definition: eight ways to insert edge [A,B] during a period.
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11.2.2 Penalization and Tabu List Management

To allow our algorithm to start from a non-feasible solution, peripatetic con-
straints are removed and the penalty α×max(0, (

∑
k∈K xe − 1)) is added to

the objective function. Consequently, an edge may be used more than once
during two or more different periods. Within the hybrid tabu search, we set
α to 2c̄max where c̄max is the cost of the most expensive edge of the graph.

To avoid going back to already visited solutions, after each iteration t,
the edges removed from the solution are inserted in the tabu list TL and are
declared tabu until iteration t + τ , where τ is the tabu tenure. During each
iteration, an unused and non-tabu edge e has to be inserted with the best
possible move and the second entering edge e′ is free: e′ can be tabu or be
already used in a period of the solution, in which case it will be penalized
as explained above. The “partial tabu” algorithm obtained in this way is
not very sensitive to the value of τ while it avoids cycling. We also applied
an aspiration criterion, which consists in authorizing a tabu move when the
solution obtained is the best found so far.

11.3 Hybridization with b-Matching and Diversification

Hybridization can in our context consist either in using information provided
by an exact method to guide the metaheuristic, or in combining the features
of two metaheuristics to obtain a more efficient procedure. The hybridization
of b-matching with tabu search, as explained in Section 11.3.2, and the di-
versification procedure, detailed in Section 11.3.3, both improved the speed
and efficiency of the tabu search designed for the m-PVRP.

11.3.1 b-Matching

The b-matching problem, also known as the b-directed flow problem, was in-
troduced by Edmonds [9] within the class of well-solved integer linear prob-
lems. Define ce as the cost of edge e, ye as the binary variable equal to 1
only if edge e is used, and 0 otherwise. If di is the demand of node i and
Q is the vehicle capacity, then the minimal number of vehicles per period is
λ =

⌈
1
Q

∑
i∈V di

⌉
. The mathematical formulation of the b-matching obtained

after relaxing the capacity constraints of the m-PVRP is as follows:

min
∑
e∈E

ceye

s. t.
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e∈δ(i)

ye = bi with bi =
{

2m ∀i ∈ {1...n}
2mλ if i = 0

ye ∈ {0, 1}, ∀e ∈ E

A solution to this problem can be easily computed with a linear pro-
gramming solver. Preliminary results from [12] suggested that the value ob-
tained may be on average about 10% less than the optimal m-PVRP solution.
Therefore, repairing b-matching solutions could lead to potentially good up-
per bounds. However, extracting an m-PVRP solution from a set of edges is
not a straightforward process because it requires to partition the edges be-
tween the m periods and the routes. To overcome this difficulty, we hybridize
the b-matching with a tabu search algorithm: the result of the exact method
guides the metaheuristic in the solution space.

11.3.2 Hybridization

Granularity is a concept introduced in [15], based on the idea of using re-
stricted neighborhoods. It allows only moves that, based on some criterion,
are more likely to produce good feasible solutions. Its implementation for the
VRP consists in delaying the introduction of long edges into the solution. In
our case, the result of the b-matching is used to define the tabu granularity
and guides the metaheuristic in the solution space. The resulting algorithm
is a granular tabu search that uses as candidate list the unused edges that
are in the b-matching solution; these edges have a higher probability of being
part of an optimal solution.

Solving the b-matching produces a set of potentially good edges for the
m-PVRP: the cheapest set of edges that satisfy the aggregated degree con-
straints. However, a small number of edges tends to be selected (e.g. 10%
for instance B-n45-k7 for the 2-PVRP). This leads to a very small candidate
list, which induces a small neighborhood size, counter-effective for the meta-
heuristic efficiency. We found two ways to enlarge this neighborhood without
losing the advantage of the b-matching data:

1. Relax the integrality constraints of the b-matching: this increases the num-
bers of edges selected by edges that still have a higher probability than
others to be in an optimal solution.

2. Complete the b-matching granularity with a short-edge subset: following
Toth and Vigo’s primary idea, short edges disregarded by the b-matching
are added to the candidate list of edges to be inserted into the current
solution.

This latter subset is composed of edges that have a cost not greater than µc̄
and are currently unused; c̄ is the average cost of edges used within the initial
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solution and µ is a parameter. The penalty applied to infeasible solutions (see
Section 11.2.2) has been included in the computation of c̄. The idea behind
keeping the penalty in the calculation is that if α was set to 0, the initial
infeasible solution may be cheaper than feasible solutions. Therefore, edges
included in the candidate list need to be a little more expensive to allow the
metaheuristic to find feasible solutions.

The granularity (relaxed b-matching plus short-edge subset) is applied ev-
ery time the best solution is improved, and removed after GTSmaxk iterations
without improving the best solution. During the search, the algorithm oscil-
lates between intensification phases (when granularity is activated: g = true)
and pseudo-diversification phases (when granularity is removed: g = false).

11.3.3 Diversification Procedure

Diversification ensures that the search process is not restricted to a limited
portion of the search space. An example of implementation, as explained
in [13], penalizes edge costs depending on their frequency of use during the
search. For the m-PVRP, we do not want to penalize edges used very often
because they might be required to reach an optimal solution. Instead, our
diversification procedure searches for the best way to insert into the current
solution the cheapest edge unused so far. To accommodate this component
with the b-matching granularity, the procedure is applied as soon as the
following two conditions are satisfied:

1. At least Max γ iterations have been performed without improving the best
solution since the last removal of the b-matching granularity (described in
the previous subsection).

2. The previous move applied was not an improving move.

The diversification component applied in this way does not disturb the b-
matching granularity, but gives a helpful “kick” when necessary. Let f(S) be
the total cost of solution S, algorithm 1 summarizes the hybrid tabu search
with diversification designed for the m-PVRP.

11.4 Computational Analysis

A computational evaluation was first performed on classical VRP and m-
PSP benchmark problems to compare our results with the literature; next we
applied our algorithms to the m-PVRP with m > 1. The tests were done on
four classes of VRP instances from the literature: A, B, P and vrpnc. Classes
A, B and P [1] contain 27, 23 and 23 instances, respectively, of 19 to 101 nodes.
From class vrpnc [3] we selected the seven instances with 50-199 nodes and
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Algorithm 1: Hybrid Tabu Search
1: Heuristic(S)

2: S′ := S
3: TL := ∅; g := true; t := 1; k := 1; Dec := 1; Freq[e] := 0 ∀e ∈ E
4: repeat

5: FindBestNonTabuSolution(S′,TL, g, f(S),Dec)
6: if f(S′) < f(S) then
7: S := S′

8: k := 1; γ := 1
9: if g = false then

10: g := true

11: end if
12: else

13: γ := γ + 1
14: if g = true then
15: k := k + 1

16: if k > GTSmaxk then
17: g := false
18: k := 1; γ := 1

19: end if
20: end if
21: if γ > Max γ and Dec = −1 then

22: Diversify(S′, F req)
23: end if
24: end if

25: UpdateTabuList(TL, τ)
26: until t > maxt

no additional route length restriction. All VRP instances can be found on
the website http://neo.lcc.uma.es/radi-aeb/WebVRP. We also used the
five Euclidian instances from TSPLIB (http://www.iwr.uni-heidelberg.
de/groups/comopt/software/TSPLIB95/) with 17 to 29 nodes that were
already used for the m-PSP in [7].

The experiments were performed on an Intel Core 2 Duo personal com-
puter at 1.80 GHz with 2 GB of RAM running Windows Vista. Metaheuristics
were coded in C, but the linear b-matching solution required for granularity
was obtained with the open source software GLPK. The tables of this sec-
tion compare four variants of our algorithms, the basic tabu search algorithm
(TS), the tabu search algorithm with the diversification component (TS+D),
the tabu search algorithm hybridized with b-matching (HTS) and the latter
further enhanced by the diversification component (HTS+D). These algo-
rithms are tested on the VRP, the m-PSP and the m-PVRP with m > 1.

Some preliminary experiments were made to tune the parameters of the
upper bounding procedures. Preliminary results led to a different HTS setting
per problem and per class of instances. To limit the number of settings used,
we decided to apply the following HTS settings of the parameters for each
problem solved:

http://neo.lcc.uma.es/radi-aeb/WebVRP
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Table 11.1 Parameter Settings

Algo Param Description Value

(H)TS(+D) α Penalization 2c̄max

(H)TS(+D) maxt Max number of iterations 10000

(H)TS(+D) τ Tabu duration n

HTS(+D) µ Proportion of average edge cost 1.30
HTS(+D) HTSmaxk1 Max it before granularity is removed (using Setting 1) 2n/3

HTS(+D) HTSmaxk2 Max it before granularity is removed (using Setting 2) 2n

(H)TS+D Max γ Max it before diversification 2n

1. VRP and m-PSP with m = 2, 3, 5, 6, 7: Setting 1 (using HTSmaxk1)
2. 4-PVRP: Setting 2 (using HTSmaxk2)

As listed in Table 11.1, Settings 1 and 2 only differ in the value of the
parameter HTSmaxk while all other parameters remain at a fixed value. Once
set up as previously explained, each algorithm is run only once per instance.
All algorithms are deterministic, but the results presented in the subsequent
sections are aggregated per instance class to avoid extensive tables of results.

11.4.1 VRP and m-PSP

Table 11.2 summarizes the results of our algorithms for the VRP, on the
four classes of instances A, B, P and vrpnc. Computational results show that
the metaheuristics designed perform well on this particular problem because
average gaps to optimality are around 0.80%. HTS (+D) performs better
than TS (+D) on three of four instance classes and the hybridization lowers
the average gap to optimality. HTS +D results on the VRP can be further
improved if the diversification procedure is activated a bit later on class A
or sooner on class B: gap for A = 0.48% if Max γ = 3n instead of 2n, and
gap for B = 0.89% if Max γ = 3n/2. As expected, the relaxed b-matching
is computed very fast (0.28s) and it produces only a small number of edges
(4%).

Table 11.3 shows the results of our algorithms for the m-PSP on Eu-
clidean TSPLIB instances already used for assessing m-PSP algorithms in
[7]. Our metaheuristics perform well on this problem because average gaps
remain lower than 0.10%. HTS is the best algorithm, better than HTS +D,
which means that our diversification procedure is used here too soon. The
b-matching selects on average 15% of the edges.
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Table 11.2 Results for the VRP (1-PVRP); m is the number of periods; NbI is the number

of instances available; LB∗ is the ratio between the best known lower and upper bounds,
which is equal to 1 if both are optimal; ∆ (resp. δ) is the average percentage deviation from

the optimal solution value (resp. best known upper bound) for each instance class; σ is the

standard deviation of ∆ (resp. δ); s is the average duration in seconds to reach the best
solution found; sBM is the average computing time of the linear b-matching, in seconds,

to obtain the first set of edges for the b-matching granularity; and Bm = NBm/TNe is the

proportion of edges used by the linear b-matching solution, and used for composing the first
set of edges for the granularity (NBm = number of edges used by the linear b-matching

solution, TNe = total number of edges of the initial graph).

instance m NbI LB∗ TS TS + D HTS HTS + D
class ∆ σ s ∆ σ s ∆ σ s ∆ σ s

A 1 27 1 0.56 0.76 3.28 0.53 0.73 2.80 0.54 0.50 2.88 0.54 0.57 3.43

B 1 23 1 0.84 1.47 1.97 0.95 1.49 2.46 0.96 1.50 3.29 0.93 1.45 3.77
P 1 23 1 0.50 0.56 3.63 0.56 0.61 2.91 0.47 0.54 3.04 0.41 0.53 3.45

vrpnc 1 7 - 1.49 1.71 12.69 1.22 1.52 25.02 1.23 1.37 26.02 1.26 1.85 17.76

Average 80 1 0.85 1.12 5.39 0.81 1.10 8.30 0.80 0.98 8.81 0.78 1.10 7.10

m Bm sBm

A 1 0.05 0.07

B 1 0.05 0.08
P 1 0.06 0.09

vrpnc 1 0.02 0.88

Average 0.04 0.28

11.4.2 m-PVRP with 2 ≤ m ≤ 7

Tables 11.4 to 11.7 summarize our results for them-PVRP with 2 ≤ m ≤ 7 on
four classes of VRP instances: A, B, P and vrpnc. Two important preliminary
remarks have to be made. First, when m increases, the number of instances

Table 11.3 Results for the m-PSP; for an explanation of the table entries, we refer to the

caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D
class ∆ s ∆ s ∆ s ∆ s sBm Bm

bays29 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08
bays29 2 1 1 0.25 0.06 0.25 0.06 0.11 4.31 0.09 0.16 0.14 0.09

fri26 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.10
fri26 2 1 1 0.00 3.28 0.09 0.05 0.00 0.09 0.09 0.05 0.17 0.11
gr17 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.21

gr17 2 1 1 0.08 0.09 0.08 0.20 0.12 0.05 0.08 0.16 0.25 0.21
gr17 3 1 1 0.18 0.12 0.17 0.17 0.18 0.39 0.09 1.25 0.38 0.22
gr17 4 1 1 0.00 1.00 0.00 0.56 0.10 0.17 0.16 0.45 0.50 0.18

gr21 1 1 1 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.10 0.12

gr21 2 1 1 0.00 0.41 0.19 1.37 0.00 1.84 0.25 0.06 0.21 0.14
gr21 3 1 1 0.02 2.15 0.02 1.30 0.07 0.20 0.02 2.56 0.30 0.16

gr24 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.09
gr24 2 1 1 0.00 0.86 0.00 2.93 0.00 0.62 0.00 2.11 0.17 0.13
gr24 3 1 1 0.35 0.39 0.25 0.56 0.27 0.33 0.43 1.47 0.26 0.15

gr24 4 1 1 0.22 0.00 0.22 0.02 0.11 1.53 0.14 1.72 0.35 0.20

Average 0.07 0.56 0.08 0.48 0.06 0.64 0.09 0.67 0.22 0.15
σ 0.12 0.10 0.08 0.12
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Table 11.4 Results for the 2-PVRP; for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

A 2 26 0.97 1.11 0.63 9.37 0.92 0.60 9.53 0.81 0.56 8.55 1.15 0.85 7.76
B 2 23 0.98 1.10 1.14 10.27 0.71 0.56 11.39 0.68 0.73 8.53 0.72 0.66 8.86

P 2 19 0.98 1.08 0.83 10.28 1.03 0.61 7.78 1.16 0.86 8.44 1.02 0.74 10.09

vrpnc 2 7 0.95 1.48 0.67 39.87 1.28 0.64 55.50 1.25 0.76 47.23 1.03 0.78 68.44

Average 75 0.97 1.20 0.82 17.45 0.98 0.60 21.05 0.97 0.73 18.20 0.98 0.76 23.79

m Bm sBm

A 2 0.10 0.15

B 2 0.10 0.14

P 2 0.11 0.16
vrpnc 2 0.04 1.67

Average 0.09 0.53

available decreases because there are only n edges connected to the depot,
and each route uses two of them. Second, gaps are computed from the best
upper bound known. These are not proven to be optimal but LB∗ gives an
idea of their quality. LB∗=0.99% suggests that the best upper bound is very
close to the optimal value. LB∗ = 0.95% means there is a 5% gap between
the best known upper and lower bounds.

Figure 11.3 shows the evolution of the percentage deviation from the best
known solutions over time for vrpnc instances. It suggests that the dominance
of HTS +D over the three other algorithms is reinforced when m increases.
This remark is confirmed by most tables of results: HTS (+D) is the best
performing of the algorithms since it has the lowest gap from the best known
upper bounds on most instances, except for those of 4-PVRP. The relaxed
b-matching necessary is still computed very fast (four seconds for the vrpnc
if m = 5, 6, 7) and the percentage of edges used is quite low (14% overall).
HTS +D results can be significantly improved if a specific setting of Max γ is
applied: e.g., overall average gap of HTS +D on the 2-PVRP can be reduced
from 0.98% to 0.91% if the diversification threshold Max γ is slightly reduced
from 2n to 3n/2.

11.5 Conclusion

The partial tabu algorithm we designed gives good results not only on the
m-Peripatetic Vehicle Routing Problem, but also on two well-known special
cases: the VRP and the m-PSP. Its hybridization with the perfect b-matching
through granularity improves significantly the algorithm efficiency, especially
when it is adequately combined with the diversification procedure.
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Table 11.5 Results for the 3-PVRP; for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D
class δ σ s δ σ s δ σ s δ σ s

A 3 25 0.98 1.28 1.20 14.14 1.05 0.79 12.97 1.07 0.88 11.30 0.84 0.85 13.77

B 3 22 0.98 1.94 1.91 15.51 1.12 0.91 17.27 1.47 1.35 14.51 1.02 0.98 14.86
P 3 14 0.99 0.97 0.45 14.23 0.75 0.33 13.13 0.88 0.49 0.17 0.76 0.36 14.08

vrpnc 3 7 0.95 1.06 0.54 69.59 0.97 0.76 85.80 1.13 0.76 67.50 0.98 0.68 47.44

Average 68 0.97 1.31 1.02 28.37 0.97 0.70 32.29 1.14 0.87 23.37 0.90 0.72 22.54

m Bm sBm

A 3 0.15 0.20

B 3 0.15 0.20
P 3 0.17 0.23

vrpnc 3 0.07 2.44

Average 0.13 0.77

Table 11.6 Results for the 4-PVRP, for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

P 4 8 0.99 0.32 0.24 19.28 0.37 0.33 11.32 0.43 0.19 12.33 0.45 0.20 4.75

vrpnc 4 6 0.96 0.69 0.31 111.30 0.56 0.30 104.92 0.51 0.34 158.50 0.53 0.29 54.92

Average 14 0.97 0.50 0.27 65.29 0.46 0.31 58.12 0.47 0.26 85.41 0.49 0.24 29.83

m Bm sBm

P 4 0.28 0.32

vrpnc 4 0.09 3.65

Average 0.18 1.98

Table 11.7 Results for the m-PVRP with m = 5, 6, 7; for an explanation of the table
entries, we refer to the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

P 5,6,7 11 0.99 0.40 0.24 63.84 0.44 0.31 55.04 0.34 0.24 61.18 0.40 0.24 37.53

vrpnc 5,6,7 10 0.96 1.08 0.92 208.73 0.76 0.43 187.46 0.57 0.47 235.14 0.50 0.46 181.40

Average 21 0.97 0.69 0.58 168.20 0.60 0.37 121.25 0.45 0.35 148.16 0.45 0.35 109.40

m Bm sBm

P 4 0.22 0.94

vrpnc 4 0.11 4.17

Average 0.16 2.55
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