Chapter 10
Variable Intensity Local Search

Snezana Mitrovié-Minié¢ and Abraham P. Punnen

Abstract This chapter considers a local search based heuristic framework for
solving the mixed-integer programming problem (MIP) where a general pur-
pose MIP solver is employed to search the associated neighborhoods. The as-
sociated neighborhood search problems are MIPs of smaller sizes. The neigh-
borhoods are explored in varying the intensity by changing time and size
parameters. This local search can be viewed as a combination of very large
scale neighborhood (VLSN) search and variable neighborhood search (VNS).
The approach has been implemented to solve two integer programming prob-
lems: the generalized assignment problem, and the multi-resource generalized
assignment problem. Encouraging computational results have been achieved.

10.1 Introduction

In this chapter we consider a local search algorithm for the mixed-integer
programming problem (MIP) based on the well known k-exchange neighbor-
hood. Unlike traditional k-exchange based local search that considers small
values of k, we use large values k. An MIP solver is used to explore the
neighborhoods for improved solutions. The neighborhoods size and search
intensity are controlled by two search-intensity parameters. Our algorithm
in many cases does not explore the k-exchange neighborhood optimally but
performs only an approximate search. Thus, we are exploring only a partial
k-exchange neighborhood, for various values of k.

Several local search algorithms from the optimization literature that par-
tially explore k-exchange neighborhoods—and are classified as variable depth
methods—include the Lin-Kernighan algorithm for TSP [11] and ejection
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chain algorithms for various combinatorial optimization problems [10]. Al-
though our algorithm is a local search, considering its linkages with VLSN
search [1, 2] and VNS [16], we call it variable intensity local search (VILS).

Using an MIP solver within local search to explore neighborhoods re-
ceived considerable attention in the recent years: [5, 6] for the general
MIP, [3, 22, 21, 23] for variations of the vehicle routing problems, [18, 15, 14]
for the variations of the generalized assignment problem. The algorithm dis-
cussed in this chapter is a generalization of the heuristics developed for the
generalized assignment problem (GAP) [15] and the multi-resource general-
ized assignment problem (MRGAP) [14].

This chapter is organized as follows. In Section 10.2 we introduce the gen-
eral VILS framework. Section 10.3 gives brief description of our experimental
studies on GAP and MRGAP problems whose details are reported in [15, 14].
Concluding remarks are given in Section 10.4.

10.2 The General VILS Framework

The VILS algorithm is a local search algorithm for MIP using the k-exchange
neighborhood for varying values of k, adjusted systematically during the al-
gorithm. The resulting neighborhoods are searched approximately using an
MIP-solver with varying intensity level. Consider the MIP

MIP: Maximize cX
Subject to AX =0
X >0, X integer,

where X7 = (xq,72,...,2,) is a vector of n variables, and the problem
parameters are: A = (a;;) which is an m x n matrix, b7 = (b1, b2, ..., by)
which is an m-vector, and C' = (c¢1,¢o,...,¢,) which is an n-vector. For

simplicity of presentation, we avoid real variables (which are never set to a
fixed value during the course of the algorithm) in the above description of an
MIP. Let X be a feasible solution to the MIP. A binding set S is a subset of
variable indices {1,2,...,n} which defines a k-exchange neighborhood. The
neighborhood N(X) consists of all solutions of the MIP whose ;% variable
is equal to the value of the j** variable in X for all j e S, ie.

N(X)={X | x; =24, Vj€ S and X is a feasible solution to the MIP}

The neighborhood N (X ) can be searched for an improving solution by solving
the following restricted MIP

MIP(S): Maximize Z CiT;
JEN\S
Subject to
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Z aijl'ij:i)i, fori:1,2,...m
JEN\S X
xz; >0, x; integer for j € N\ S

where b; = b; — Zaijjzij. fX={z : jEN\ S} is a feasible solution to
. jes
MIP(S) then the n-vector X defined by

{ﬁsj, ifjes

l‘j = _ .

Z;, otherwise

is a feasible solution to MIP and X € N(X). We call such a solution X the
solution augmented by X.

The complexity of MIP(S’ ) in practice depends primarily on the size of S
although other factors are also involved. If |S] is large (and hence [N\ S| is
small) MIP(S’ ) can normally be solved optimally in reasonable time using an
MIP solver. However, in this case, |[N (X )| is likely to be small, limiting the
power of the local search. If S| is small, then |N(X)| is likely to be large
yielding a more powerful search but the time for searching the neighborhood
using the MIP solver could be large. Thus the efficiency of the local search
using the MIP solver depends on our ability to guide the search appropriately
by controlling the size of S , the time invested in searching N (X ), and the
choice of elements in 3.

In the VILS algorithm, we keep six major parameters: p is the cardinality
of the binding set S , Po is its initial value, Ap is the downward step size to
decrease the value of p; ¢ is the time limit for the MIP solver, tg is its initial
value, and At is the upward step size of ¢.

Initially, we set a large value of p yielding smaller neighborhoods. The
search times for these neighborhoods are set to small values and the local
search is carried out until a decision is made to intensify the search. At this
stage, the value of p is decreased (and thereby increasing the neighborhood
size) and the time limit for searching the neighborhood is increased. This
process is continued until a prescribed stopping criterion is reached.

The control mechanism using the time limits and the systematic intensifi-
cation of the search resulted in good experimental results. Different selections
of the binding sets S yield different neighborhoods, and they are normally
problem specific. Assume that L is the number of different neighborhoods.
If no improvement is obtained after employing several binding set selection
rules, the search intensity is increased by decreasing p and increasing ¢t. A
high level description of the VILS algorithm is given in Figure 10.1.

The neighborhoods and intensity-search schemata are problem specific.
Neighborhoods may be designed using any existing or new strategy for choos-
ing a binding set. Our strategies for choosing binding sets may be summarized
as follows. A criterion for “good” variables is chosen beforehand, and vari-
ables are fixed in order of “goodness”. In the iteration where p variables
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The VILS Algorithm
Input: Problem instance P;
the stopping criterion and the intensity-search change criterion;
po, Ap; to, At
begin
generate feasible solution X
1<=0
P < Ppo
t <= to
while (the stopping criterion is not satisfied) do
choose the binding set S; such that |S;| = p and
generate the neighborhood N;
/* search the neighborhood */
Solve the problem MIP(SS;) by running the MIP solver for time ¢
Let X be the best solution obtained
Compute the augmented solution X’
/* update the current solutions */
if (CX’ < CX) then
X <X/
end if
i< (i+1) mod L
if (the intensity-search change criterion is satisfied) then

p<p—Ap
t<=t+ At
end if
end while

return X
end

Fig. 10.1 Outline of the VILS Algorithm.

have to be fixed, the following are the neighborhoods for the GAP and the
MRGAP with m machines.

1.
2.
3.

© N

For each machine, fix p/m “best” variables out of the value-one variables.
For each machine, fix p/m “worst” of the value-one variables.

For each machine, fix p/(m/2) "best” and p/(m/2) “worst” of the value-
one variables.

For half of the machines, fix p/m “best”, and for the other half of the
machines, fix p/m "worst” of the value-one variables.

Fix “best” p of the value-one variables.

Fix “worst” p of the value-one variables.

Fix p/2 “best” and p/2 “worst” of the value-one variables.

Controlled random fixing: fix p/10 random variables in the “best” 10% of
the value-one variables, fix p/10 random variables in the next “best” 10%
(11% to 20%) of the value-one variables, etc.

. Meta-neighborhood: fix certain sequences of the value-one variables in the

given ”goodness” order.
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The variable “goodness” criteria depends only on the initial problem pa-
rameters, and thus the variables can be ordered by their goodness in a pre-
processing step. An example of a “goodness” criterion we used for the GAP
is: A “good” variable is one with smaller ratio cost per resource needed. Fur-
ther details about the neighborhoods used in our two experimental studies
may be found in [14, 15].

Since the truncation of the current solution X is a feasible solution to
MIP(S;), we supply it to the MIP solver. To test the efficiency of the algo-
rithm we considered two specific problems: the GAP which is well stud-
ied in literature [4, 12, 13, 19, 24, 25] and its generalization the MR-
GAP [7, 8,9, 17, 20]. Our experimental studies, algorithm parameters, and
results are summarized in the next section.

10.3 Experimental Studies

We have implemented the VILS for the GAP and MRGAP in C++ and
tested on a Dell workstation with one Intel Xeon 2.0GHz processor, 512
MB memory, GNU g++ compiler version 3.2, and Linux (Mandrake 9.2)
operating system. To search the neighborhoods we have used CPLEX 9.1
with Concert Technology.

The stopping criterion has been taken according to the time limits used
in [24, 26, 25]. The intensity-search change criterion has been: “solution has
not improved in 3 iterations” although we also experimented with values 2,
4 and 5. Preliminary studies have also shown that an appropriate number of
different neighborhoods (the binding strategies) L should be between 4 and
10, when the intensity-search change criterion is 2 or 3 to assure that each
neighborhood type is searched once in every two or three intensity settings.

We have experimented with different intensity schedules with variety of
combinations of changing time limits and binding set size alternatively and
simultaneously. However, more complicated schedules, as well as more gran-
ular schemas, have not shown any additional advantages. When a number
of iterations does not generate an improving solution, the simple increase in
time limit and neighborhood size almost always produces improved solution.
Further research towards reactive VILS is in progress, where initial neighbor-
hood size and time limit as well as the steps would be chosen automatically.

For the GAP, standard benchmark large instances of types C, D, and E,
with 900 and 1600 jobs, generated by [24] were used as the test bed. Nine
out of eighteen solutions achieved by VILS were equal or better in quality
compared to the solutions when tabu search by [25] was run only once. (Six
solutions were better.) When tabu search was run five times [25], it achieved
better results for all but two instance. In other five instances the solutions
were the same.
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For the MRGAP, our testbed consists of MRGAP instances generated by
[26] from the standard benchmark GAP instances of types C, D and E with
100 and 200 tasks (which were generated by J.E. Beasley). We have tested
the VILS with two different intensification schemes: Schl and Sch2 (details
may be found in [15, 14]). The solutions achieved by VILS are better or equal
in quality compared to the solutions reported in the literature, with a few
exceptions when tabu search by [26] or CPLEX achieved better solutions.

For the D instances, the best solutions were achieved by VILS with in-
tensification schedule Schl in 7 cases, by VILS with intensification schedule
Sch2 in 10 cases, and by CPLEX in 10 cases. Unique best solutions were
achieved by VILS (Schl), VILS (Schl), and CPLEX in 6, 8, and 7 instances,
respectively. For the E instances, the best solutions were achieved by VILS
(Schl), VILS (Schl), tabu search [26], and CPLEX in 16, 14, 8, and 12 in-
stances, respectively. Unique best solutions were achieved by VILS (Schl),
VILS (Schl), tabu search [26], and CPLEX in 6, 3, 2, and 1 instances, re-
spectively.

10.4 Conclusion

In this chapter we proposed an implementation of a local search framework,
called Variable Intensity Local Search, for solving mixed-integer program-
ming problems. The neighborhoods are explored using a general purpose
MIP solver. Depending on the binding sets, the neighborhoods could be of
different structure and hence the algorithm can be viewed as a variable neigh-
borhood search. In addition, since some of the search neighborhoods could
be very large, the algorithm can be viewed as a very large scale neighbor-
hood search as well. We have done two experimental studies solving GAP
and MRGAP which showed that good quality solutions can be reached in a
reasonable time. We are in the process of conducting an experimental study
on a facility location problem and on a general 0-1 MIP.

The major advantage of the approach is its local search framework sim-
plicity, and ability to achieve satisfactory results by controlling the intensity
and depth of the neighborhood search. Furthermore, our heuristic can be
embedded in any metaheuristic.
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