
Chapter 1

Metaheuristics: Intelligent Problem
Solving

Marco Caserta and Stefan Voß

Abstract Metaheuristics support managers in decision making with robust
tools providing high quality solutions to important problems in business,
engineering, economics and science in reasonable time horizons. While find-
ing exact solutions in these applications still poses a real challenge despite
the impact of recent advances in computer technology and the great inter-
actions between computer science, management science/operations research
and mathematics, (meta-) heuristics still seem to be the methods of choice in
many (not to say most) applications. In this chapter we give some insight into
the state of the art of metaheuristics. It focuses on the significant progress
regarding the methods themselves as well as the advances regarding their
interplay and hybridization with exact methods.

1.1 Introduction

The use of heuristics and metaheuristics to solve real world problems is widely
accepted within the operations research community. It is well-known that
the great majority of complex real world decision problems, when modeled
as optimization problems, belong to the class of NP-hard problems. This
implies that exact approaches are doomed to fail when dealing with large
scale instances, whether they arise from business, engineering, economics or
science. Today, decision making processes are increasingly complex and more
encompassing, in the sense that more decision variables are used to model
complex situations and more input data and parameters are available to
capture the complexity of the problems themselves.
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The inherent complexity of real world optimization problems, though,
should be interpreted in the light of what complexity analysis really means:
on the one hand, the fact that a problem belongs to the class of NP-hard
problems implies that there is no knowledge of an algorithm capable of solv-
ing the problem itself to optimality in polynomial time with respect to its
input size (and many believe that there will never be); on the other hand, it is
worth remembering that complexity analysis provides a worst case scenario,
i.e., it indicates that, in the worst case, with the growth of the input size, the
algorithm will require more and more time/steps to provide a definite answer.
However, it is also worth noting that practitioners have observed that it is
possible to design ad-hoc algorithms which, while not guaranteeing optimal
or near-optimal solutions for the whole set of possible instances of a given
problem (and, in many cases, not even a simple, single answer can be guaran-
teed at all), they do provide near-optimal solutions “most” of the times. This
is exactly the goal of a metaheuristic designer (analyst), namely, to design an
algorithm for which, even though no guarantee about the worst case scenario
can be offered, a certain degree of confidence about the performance of the
algorithm “most of the times” can still be asserted.

Consequently, the real challenge of the metaheuristic expert is not only to
objectively measure the algorithm in terms of solution quality and computa-
tional time over problems for which no optimal solution is known (which, in
itself, can be a challenging task due to the lack of any benchmark) but also
to use sound quantitative methods and techniques to assert the robustness of
the algorithm over a wide spectrum of instance types, hence enhancing the
usability of the algorithm itself by industry decision makers, e.g., as “opti-
mization modules” within decision support systems.

A first trade-off emerges here: on the one hand, it is highly desirable to
design “general purpose” metaheuristics, which do not require problem spe-
cific knowledge and can readily be applied to a wide spectrum of problem
classes. This has been the line of research of the last decades, during which
a number of general purpose metaheuristic paradigms have been proposed,
e.g., simulated annealing, genetic algorithms, tabu search, ant colony, etc.
The main argument in favor of such paradigms is exactly their general appli-
cability upon a large set of problems, without requiring major re-design or
any in-depth knowledge of the problem to be tackled. Consequently, general
paradigms seem especially suited for practitioners, who are interested in get-
ting a solution to the problem without investing a huge amount of time in
understanding the mathematical properties of the model and in implement-
ing tailor-made algorithms. However, most successful metaheuristics applied
to specific problems are also tailored to the problem, or fine-tuned. On the
other hand, it has been observed that general purpose metaheuristics are out-
performed by hybrid algorithms, which usually are algorithms that combine
mathematical programming techniques with metaheuristic-based ideas. Al-
gorithms of this class are tailor-made and specifically designed to exploit the
mathematical properties of the problem at hand. While such approaches are
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able to provide enhanced performance, an obvious consequence is a reduction
in the usability of the algorithm itself. In general, a tailor-made algorithm can
be used only for a specific class of problems and, often, the underlying ideas
cannot easily be extended towards operating on a different class of problems.

The discussion on metaheuristic based algorithms is further complicated
by what has been observed in recent years: these algorithms in general seem
to provide varying performance depending upon the sensitivity (skills, exper-
tise, ingenuity, etc.) of the designer in algorithmic fine tuning. In order to
maximize algorithmic performance, an instance specific fine tuning might be
required. The variability in the results of a metaheuristic presents at least
two major drawbacks: (i) On one hand, the issue of reproducibility of results
arises: It is common knowledge that a proposed algorithm implemented by
two different researchers can lead to altogether different results, depending
upon factors such as implementation skills, special usage of data structures,
and ability in parameter settings, among others. For this reason, it is hard
to compare and thoroughly assess a metaheuristic and its performance. (ii)
On the other hand, a problem of performance maximization is envisioned:
One of the commonalities of virtually all proposed metaheuristic paradigms
is that they are characterized by a considerable number of parameters, whose
value(s) strongly affect the overall performance of the algorithm itself. It is
common knowledge that the fine tuning of algorithmic parameters is not only
problem-specific, but even instance-specific, i.e., even for a given problem,
parameter values should be fine-tuned and adjusted according to instance
specific information (e.g., instance size, distribution of its values, etc.).

The purpose of this paper is to provide a survey of the general field of
metaheuristics. While we cannot be fully comprehensive in a single paper, in
line with the above remarks, some of the issues addressed in this paper are:

• In light of the well-known no-free-lunch-theorem [128], which basically
states that, on average, no algorithm outperforms all the others, one might
wonder what strategy to pursue, i.e., whether the goal of a researcher in
the field should be to develop a better general framework able to effectively
solve a wider spectrum of problems or, conversely, to tackle each individual
problem separately, by designing tailor-made algorithms that fully exploit
the mathematical structure and properties of each problem. A recent line
of research in the metaheuristic field is concerned with the design of hybrid
algorithms, where the term hybrid can indicate either the combination of
different metaheuristics or the intertwined usage of metaheuristic features
with mathematical programming techniques. Consequently, a trade-off be-
tween re-usability and performance of an algorithm arises.

• As highlighted before, no heuristic can guarantee high quality solutions
over all possible instances of a given problem class. However, it is at least
desirable to present a robust behavior over a spectrum of instances belong-
ing to the same problem class. One key factor that seems to have a strong
impact on the algorithmic performance is the fine tuning of the algorithm
itself. Since the behavior of a metaheuristic is affected by its parameters,
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one might wonder how to select a good set of parameter values. An im-
portant topic in metaheuristic design is, therefore, the identification and
development of techniques for the fine tuning of algorithmic parameters.

• Due to the stochastic behavior of some metaheuristics and the lack of com-
monly accepted and adopted techniques for the evaluation of algorithmic
performance, given two algorithms designed to tackle the same class of
problems, it is not always possible to “rank” such algorithms in terms of
their performance. One direct consequence is that there is still no clear
understanding about which features are really successful and under which
circumstances. In other words, unless clear standards about metaheuristics
are defined, it will be really hard to have a full grasp of, first, which algo-
rithms are better than others and, second, what is the real contribution of
each feature of the algorithm upon the overall performance.

The structure of this paper is as follows: We first present general con-
cepts about heuristics and metaheuristics, seen from an operations research
perspective. Next, we illustrate some findings from recent research about
hybridization, seen as a combination of exact approaches and mathemati-
cal programming techniques with metaheuristic frameworks. We also include
here some recent contributions about metaheuristic design, i.e., a collection
of ideas and thoughts about what should influence which features of a meta-
heuristic paradigm to be included in the algorithm (e.g., fitness landscape
evaluation). Next, we focus on the important issue of metaheuristics fine tun-
ing and calibrations, by introducing some quantitative methods drawn from
statistics that have been employed with this goal in mind. We also present
some thoughts on the ongoing debate on metaheuristic assessment, i.e., how
an objective evaluation of the performance of a metaheuristic can be carried
out in order to increase objectivity of the evaluation and reproducibility of
the results. Next, we mention some optimization software libraries especially
focused on the implementation of general heuristic and metaheuristic frame-
works. The development of software libraries for metaheuristics is perceived
as a key factor in the emerging of standards in the field. Finally, the last
section presents some concluding remarks.

Earlier survey papers on metaheuristics include [19, 121, 122].1 The general
concepts have not become obsolete, and many changes are mainly based
upon an update to most recent references. A handbook on metaheuristics
is available describing a great variety of concepts by various authors in a
comprehensive manner [59].

1 Here we occasionally rely on [121] and [122] without explicitly quoting at appropriate

places for not “disturbing” the readability.



1 Metaheuristics: Intelligent Problem Solving 5

1.2 Basic Concepts and Discussion

The basic concept of heuristic search as an aid to problem solving was first
introduced by [93]. A heuristic is a technique (consisting of a rule or a set
of rules) which seeks (and hopefully finds) good solutions at a reasonable
computational cost. A heuristic is approximate in the sense that it provides
(hopefully) a good solution for relatively little effort, but it does not guarantee
optimality.

Heuristics provide simple means of indicating which among several alterna-
tives seems to be best. That is, “heuristics are criteria, methods, or principles
for deciding which among several alternative courses of action promises to be
the most effective in order to achieve some goal. They represent compromises
between two requirements: the need to make such criteria simple and, at the
same time, the desire to see them discriminate correctly between good and
bad choices. A heuristic may be a rule of thumb that is used to guide one’s
action.” [91]

Greedy heuristics are simple iterative approaches available for any kind of
(e.g., combinatorial) optimization problem. A good characterization is their
myopic behavior. A greedy heuristic starts with a given feasible or infeasible
solution. In each iteration there is a number of alternative choices (moves)
that can be made to transform the solution. From these alternatives which
consist in fixing (or changing) one or more variables, a greedy choice is made,
i.e., the best alternative according to a given measure is chosen until no such
transformations are possible any longer.

Usually, a greedy construction heuristic starts with an incomplete solution
and completes it in a stepwise fashion. Savings and dual algorithms follow the
same iterative scheme: Dual heuristics change an infeasible low cost solution
until reaching feasibility, savings algorithms start with a high cost solution
and realize the highest savings as long as possible. Moreover, in all three cases,
once an element is chosen this decision is (usually) not reversed throughout
the algorithm, it is kept.

As each alternative has to be measured, in general we may define some
sort of heuristic measure (providing, e.g., some priority values or some ranking
information) which is iteratively followed until a complete solution is build.
Usually this heuristic measure is applied in a greedy fashion.

For heuristics we usually have the distinction between finding initial feasi-
ble solutions and improving them. In that sense we first discuss local search
before characterizing metaheuristics.

1.2.1 Local Search

The basic principle of local search is to successively alter solutions locally. Re-
lated transformations are defined by neighborhoods which for a given solution
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include all solutions that can be reached by one move. That is, neighborhood
search usually is assumed to proceed by moving iteratively from one solution
to another one by performing some sort of operation. More formally, each so-
lution of a problem has an associated set of neighbors called its neighborhood,
i.e., solutions that can be obtained by a single operation called transforma-
tion or move. Most common ideas for transformations are, e.g., to add or drop
some problem specific individual components. Other options are to exchange
two components simultaneously, or to swap them. Furthermore, components
may be shifted from a certain position into other positions. All components
involved within a specific move are called its elements or attributes.

Moves must be evaluated by some heuristic measure to guide the search.
Often one uses the implied change of the objective function value, which
may provide reasonable information about the (local) advantage of moves.
Following a greedy strategy, steepest descent (SD) corresponds to selecting
and performing in each iteration the best move until the search stops at a
local optimum. Obviously, savings algorithms correspond to SD.

As the solution quality of local optima may be unsatisfactory, we need
mechanisms that guide the search to overcome local optimality. For example,
a metaheuristic strategy called iterated local search is used to iterate/restart
the local search process after a local optimum has been obtained, which re-
quires some perturbation scheme to generate a new initial solution (e.g., per-
forming some random moves). Of course, more structured ways to overcome
local optimality may be advantageous.

A general survey on local search can be found in [1] and the references
from [2]. A simple template is provided by [116].

Despite the first articles on this topic already being in the 1970s (cf. Lin
and Kernighan [82]), a variable way of handling neighborhoods is still a topic
within local search. Consider an arbitrary neighborhood structure N , which
defines for any solution s a set of neighbor solutions N1(s) as a neighbor-
hood of depth d = 1. In a straightforward way, a neighborhood Nd+1(s) of
depth d + 1 is defined as the set Nd(s) ∪ {s′|∃s′′ ∈ Nd(s) : s′ ∈ N1(s′′)}. In
general, a large d might be unreasonable, as the neighborhood size may grow
exponentially. However, depths of two or three may be appropriate. Further-
more, temporarily increasing the neighborhood depth has been found to be
a reasonable mechanism to overcome basins of attraction, e.g., when a large
number of neighbors with equal quality exist [12, 13].

Large scale neighborhoods and large scale neighborhood search have be-
come an important topic (see, e.g., [5] for a survey), especially when efficient
ways are at hand for exploring them. Related research can also be found
under various names; see, e.g., [92] for the idea of ejection chains.
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1.2.2 Metaheuristics

The formal definition of metaheuristics is based on a variety of definitions
from different authors derived from [52]. Basically, a metaheuristic is a top-
level strategy that guides an underlying heuristic solving a given problem.
In that sense we distinguish between a guiding process and an application
process. The guiding process decides upon possible (local) moves and forwards
its decision to the application process which then executes the chosen move.
In addition, it provides information for the guiding process (depending on
the requirements of the respective metaheuristic) like the recomputed set of
possible moves.

According to [58] “metaheuristics in their modern forms are based on a
variety of interpretations of what constitutes intelligent search,” where the
term intelligent search has been made prominent by Pearl [91] (regarding
heuristics in an artificial intelligence context; see also [118] regarding an op-
erations research context). In that sense we may also consider the following
definition: “A metaheuristic is an iterative generation process which guides
a subordinate heuristic by combining intelligently different concepts for ex-
ploring and exploiting the search spaces using learning strategies to structure
information in order to find efficiently near-optimal solutions.” [88].

To summarize, the following definition seems to be most appropriate: “A
metaheuristic is an iterative master process that guides and modifies the op-
erations of subordinate heuristics to efficiently produce high quality solutions.
It may manipulate a complete (or incomplete) single solution or a collection
of solutions at each iteration. The subordinate heuristics may be high (or
low) level procedures, or a simple local search, or just a construction method.
The family of metaheuristics includes, but is not limited to, adaptive mem-
ory procedures, tabu search, ant systems, greedy randomized adaptive search,
variable neighborhood search, evolutionary methods, genetic algorithms, scat-
ter search, neural networks, simulated annealing, and their hybrids.” [124],
p. ix.

1.2.2.1 Simulated Annealing

Simulated annealing (SA) extends basic local search by allowing moves to
inferior solutions [80, 35]. A basic SA algorithm may be described as follows:
Iteratively, a candidate move is randomly selected; it is accepted if it leads to
a solution with an improved objective function value compared to the current
solution. Otherwise, the move is accepted with a probability depending on the
deterioration ∆ of the objective function value. The acceptance probability
is computed as e−∆/T , using a temperature T as control parameter. Usually,
T is reduced over time for diversification at an earlier stage of the search and
to intensify later.
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Various authors describe a robust implementation of this general SA ap-
proach; see, e.g., [79], [77]. An interesting variant of SA is to strategically
reheat the process, i.e., to perform a non-monotonic acceptance function.

Threshold accepting [37] is a modification (or simplification) of SA accept-
ing every move that leads to a new solution that is ‘not much worse’ than
the older one (i.e., it deteriorates not more than a certain threshold, which
reduces with a temperature).

1.2.2.2 Tabu Search

The basic paradigm of tabu search (TS) is to use information about the search
history to guide local search approaches to overcome local optimality (see [58]
for a survey on TS). In general, this is done by a dynamic transformation of
the local neighborhood. Based on some sort of memory, certain moves may be
forbidden, i.e., they are set tabu. As for SA, the search may lead to performing
deteriorating moves when no improving moves exist or all improving moves
of the current neighborhood are set tabu. At each iteration, a best admissible
neighbor may be selected. A neighbor, respectively a corresponding move, is
called admissible, if it is not tabu or if an aspiration criterion is fulfilled. An
aspiration criterion is a rule to eventually override a possibly unreasonable
tabu status of a move. For example, a move that leads to a neighbor with a
better objective function value than encountered so far should be considered
as admissible.

The most commonly used TS method is based on a recency-based mem-
ory that stores moves, or attributes characterizing respective moves, of the
recent past (static TS). The basic idea of such approaches is to prohibit an
appropriately defined inversion of performed moves for a given period by
storing attributes of the solution in a tabu list and then preventing moves
that require the use of attributes in such a list.

Strict TS embodies the idea of preventing cycling to formerly traversed
solutions. The goal is to provide necessity and sufficiency with respect to the
idea of not revisiting any solution. Accordingly, a move is classified as tabu
iff it leads to a neighbor that has already been visited during the previous
search. There are two primary mechanisms to accomplish the tabu criterion:
First, we may exploit logical interdependencies between the sequence of moves
performed throughout the search process, as realized by, e.g., the reverse
elimination method (cf., e.g., [53, 120]). Second, we may store information
about all solutions visited so far. This may be carried out either exactly or,
for reasons of efficiency, approximately (e.g., by using hash codes).

Reactive TS aims at the automatic adaptation of the tabu list length of
static TS [15] by increasing the tabu list length when the tabu memory in-
dicates that the search is revisiting formerly traversed solutions. A possible
specification can be described as follows: Starting with a tabu list length l of
1 it is increased every time a solution has been repeated. If there has been
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no repetition for some iterations, we decrease it appropriately. To accomplish
the detection of a repetition of a solution, one may apply a trajectory based
memory using hash codes as for strict TS.

There is a large number of additional ingredients that may make TS work
well. Examples include restricting the number of neighbor solutions to be
evaluated (using candidate list strategies, e.g., [97]), logical tests as well as
diversification mechanisms.

1.2.2.3 Evolutionary Algorithms

Evolutionary algorithms comprise a great variety of different concepts and pa-
radigms including genetic algorithms (see, e.g., [73, 60]), evolutionary strate-
gies (see, e.g., [72, 106]), evolutionary programs [48], scatter search (see, e.g.,
[51, 54]), and memetic algorithms [87]. For surveys and references on evolu-
tionary algorithms see also [49, 9, 85, 99].

Genetic algorithms are a class of adaptive search procedures based on prin-
ciples derived from the dynamics of natural population genetics. One of the
most crucial ideas for a successful implementation of a genetic algorithm (GA)
is the representation of an underlying problem by a suitable scheme. A GA
starts, e.g., with a randomly created initial population of artificial creatures
(strings), a set of solutions. These strings in whole and in part are the base set
for all subsequent populations. Information is exchanged between the strings
in order to find new solutions of the underlying problem. The mechanisms
of a simple GA essentially consist of copying strings and exchanging partial
strings. A simple GA uses three operators which are named according to the
corresponding biological mechanisms: reproduction, crossover, and mutation.
Performing an operator may depend on a fitness function or its value (fit-
ness), respectively. As some sort of heuristic measure, this function defines a
means of measurement for the profit or the quality of the coded solution for
the underlying problem and often depends on the objective function of the
given problem.

GAs are closely related to evolutionary strategies. Whereas the mutation
operator in a GA was argued to serve to protect the search from prema-
ture loss of information [60], evolutionary strategies may incorporate some
sort of local search procedure (such as SD) with self adapting parameters
involved in the procedure. On a simplified scale many algorithms may be
classified as evolutionary once they are reduced to the following frame (see
[71]). First, an initial population of individuals is generated. Second, as long as
a termination criterion does not hold, perform some sort of co-operation and
self-adaptation. Self-adaptation refers to the fact that individuals (solutions)
evolve independently while co-operation refers to an information exchange
among individuals.

Scatter search ideas established a link between early ideas from various
sources—evolutionary strategies, TS and GAs. As an evolutionary approach,
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scatter search originated from strategies for creating composite decision rules
and surrogate constraints (see [51]). Scatter search is designed to operate on a
set of points, called reference points, that constitute good solutions obtained
from previous solution efforts. The approach systematically generates linear
combinations of the reference points to create new points, each of which is
mapped into an associated point that yields integer values for discrete vari-
ables. Scatter search contrasts with other evolutionary procedures, such as
GAs, by providing unifying principles for joining solutions based on general-
ized path constructions in Euclidean space and by utilizing strategic designs
where other approaches resort to randomization. For a very comprehensive
treatment of scatter search see [81].

1.2.2.4 Cross Entropy Method

Initially proposed by [104] for the estimation of rare events, the cross entropy
method (CE) was extended to solve combinatorial optimization problems [28].
The key ingredient in the CE is the identification of a parametric probability
distribution function to be used to generate feasible solutions. Given an initial
probability distribution function φ0, a converging sequence of φt is generated
in such a way that each subsequent probability distribution function better
captures prominent features found in high quality solutions.

At any given iteration t, φt is used to generate a population of a given
cardinality. Each solution is then evaluated according to a specified merit
function (or heuristic measure), e.g., the objective function value associated to
each random variate, and the stochastic parameters are then updated in such
a way that, in the next generation of the population, high quality solutions
will have higher probabilities of being generated under the new model. The
problem of updating the stochastic parameters can be solved by applying
the maximum likelihood estimator method upon a set of “elite solutions”
of the current population. In other words, given the top ρ% of the current
population, the CE aims at identifying the value of the parameters of the
probability distribution function that better “explains” these elite solutions.
This corresponds to adjusting the model to better describe the portion of
the feasible space in which good solutions have been found. The two-phase
process of generation and update is repeated until convergence in probability
is reached.

1.2.2.5 Ant Colony Optimization

The ant colony optimization (ACO) metaheuristic [32, 33] is a stochastic
method based upon the definition of a construction graph and the use of a
set of stochastic procedures called artificial ants. A number of frameworks
for the update of stochastic parameters have been proposed. The ant system
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is a dynamic optimization process reflecting the natural interaction between
ants searching for food (see, e.g., [32, 33]). The ants’ ways are influenced by
two different kinds of search criteria. The first one is the local visibility of
food, i.e., the attractiveness of food in each ant’s neighborhood. Additionally,
each ant’s way through its food space is affected by the other ants’ trails as
indicators for possibly good directions. The intensity of trails itself is time-
dependent: With time passing, parts of the trails are diminishing, meanwhile
the intensity may increase by new and fresh trails. With the quantities of
these trails changing dynamically, an autocatalytic optimization process is
started forcing the ants’ search into most promising regions. This process
of interactive learning can easily be modeled for most kinds of optimization
problems by using simultaneously and interactively processed search trajec-
tories.

A comprehensive treatment of the ant system paradigm can be found
in [33]. To achieve enhanced performance of the ant system it is useful to
hybridize it at least with a local search component.

As pointed out by [133], there are a number of commonalities between the
CE and the ACO method, especially with respect to the parameter updating
rule mechanisms.

1.2.2.6 Corridor Method

The corridor method (CM) has been presented by [109] as a hybrid meta-
heuristic, linking together mathematical programming techniques with heuris-
tic schemes. The basic idea of the CM relies on the use of an exact method
over restricted portions of the solution space of a given problem. Given an
optimization problem P , the basic ingredients of the method are a very large
feasible space X , and an exact method M that could easily solve problem P
if the feasible space were not large. Since, in order to be of interest, problem
P generally belongs to the class of NP-hard problems, the direct application
of method M to solve P becomes unpractical when dealing with real world
instances, i.e., when X is large.

The basic concept of a corridor is introduced to delimit a portion of the
solution space around the incumbent solution. The optimization method will
then be applied within the neighborhood defined by the corridor with the
aim of finding an improved solution. Consequently, the CM defines method-
based neighborhoods, in which a neighborhood is built taking into account
the method M used to explore it. Given a current feasible solution x ∈ X , the
CM builds a neighborhood of x, say N (x), which can effectively be explored
by employing method M . Ideally, N (x) should be exponentially large and
built in such a way that it could be explored in (pseudo) polynomial time
using method M .
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1.2.2.7 Pilot Method

Building on a simple greedy algorithm such as, e.g., a construction heuristic
the pilot method [38, 39] is a metaheuristic not necessarily based on a lo-
cal search in combination with an improvement procedure. It primarily looks
ahead for each possible local choice (by computing a so-called “pilot” solu-
tion), memorizing the best result, and performing the respective move. (Very
similar ideas have been investigated under the acronym rollout method [17].)
One may apply this strategy by successively performing a greedy heuristic for
all possible local steps (i.e., starting with all incomplete solutions resulting
from adding some not yet included element at some position to the current in-
complete solution). The look ahead mechanism of the pilot method is related
to increased neighborhood depths as the pilot method exploits the evaluation
of neighbors at larger depths to guide the neighbor selection at depth one.

In most applications, it is reasonable to restrict the pilot process to some
evaluation depth. That is, the method is performed up to an incomplete so-
lution (e.g., partial assignment) based on this evaluation depth and then
completed by continuing with a conventional heuristic. For a recent study
applying the pilot method to several combinatorial optimization problems
obtaining very good results see [123]. Additional applications can be found,
e.g., in [84, 22].

1.2.2.8 Other Methods

Adaptive memory programming (AMP) coins a general approach (or even
thinking) within heuristic search focusing on exploiting a collection of mem-
ory components [55, 114]. An AMP process iteratively constructs (new) so-
lutions based on the exploitation of some memory, especially when combined
with learning mechanisms supporting the collection and use of the memory.
Based on the idea of initializing the memory and then iteratively generating
new solutions (utilizing the given memory) while updating the memory based
on the search, we may subsume various of the above described metaheuristics
as AMP approaches. This also includes exploiting provisional solutions that
are improved by a local search approach.

The performance as well as the efficiency of a heuristic scheme strongly
depends on its ability to use AMP techniques providing flexible and variable
strategies for types of problems (or special instances of a given problem type)
where standard methods fail. Such AMP techniques could be, e.g., dynamic
handling of operational restrictions, dynamic move selection formulas, and
flexible function evaluations.

Consider, as an example, adaptive memory within TS concepts. Realizing
AMP principles depends on which specific TS application is used. For ex-
ample, the reverse elimination method observes logical interdependencies be-
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tween moves and infers corresponding tabu restrictions, and therefore makes
fuller use of AMP than simple static approaches do.

To discuss the use of AMP in intelligent agent systems, one may use the
simple model of ant systems as an illustrative starting point. As ant systems
are based on combining constructive criteria with information derived from
the pheromone trails, this follows the AMP requirement for using flexible
(dynamic) move selection rules (formulas). However, the basic ant system
exhibits some structural inefficiencies when viewed from the perspective of
general intelligent agent systems, as no distinction is made between successful
and less successful agents, no time-dependent distinction is made, there is
no explicit handling of restrictions providing protection against cycling and
duplication. Furthermore, there are possible conflicts between the information
held in the adaptive memory (diverging trails).

A natural way to solve large optimization problems is to decompose them
into independent sub-problems that are solved with an appropriate proce-
dure. However, such approaches may lead to solutions of moderate quality
since the sub-problems might have been created in a somewhat arbitrary
fashion. Of course, it is not easy to find an appropriate way to decompose a
problem a priori. The basic idea of POPMUSIC is to locally optimize sub-
parts of a solution, a posteriori, once a solution to the problem is available.
These local optimizations are repeated until a local optimum is found. There-
fore, POPMUSIC may be viewed as a local search working with a special,
large neighborhood. While POPMUSIC has been acronymed by [112] other
metaheuristics may be incorporated into the same framework, too (e.g. [107]).
Similarly, in the variable neighborhood search (VNS) [68] the neighborhood
is altered during the search in such a way that different, e.g. increasingly
distant, neighborhoods of a given solution are explored. Such method can be
enhanced via decomposition, as in the variable neighborhood decomposition
search (VNDS) (see, e.g., [69]).

For large optimization problems, it is often possible to see the solutions
as composed of parts (or chunks [129], cf. the term vocabulary building).
Considering as an example the vehicle routing problem, a part may be a tour
(or even a customer). Suppose that a solution can be represented as a set
of parts. Moreover, some parts are more in relation with some other parts
so that a corresponding heuristic measure can be defined between two parts.
The central idea of POPMUSIC is to select a so-called seed part and a set P
of parts that are mostly related with the seed part to form a sub-problem.

Then it is possible to state a local search optimization frame that consists
of trying to improve all sub-problems that can be defined, until the solution
does not contain a sub-problem that can be improved. In the POPMUSIC
frame of [112], the set of parts P corresponds precisely to seed parts that have
been used to define sub-problems that have been unsuccessfully optimized.
Once P contains all the parts of the complete solution, then all sub-problems
have been examined without success and the process stops.
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Basically, the technique is a gradient method that starts from a given
initial solution and stops in a local optimum relative to a large neighborhood
structure. To summarize, both, POPMUSIC as well as AMP may serve as a
general frame encompassing various other approaches.

1.2.3 Miscellaneous

Target analysis may be viewed as a general learning approach. Given a prob-
lem, we first explore a set of sample instances and an extensive effort is made
to obtain a solution which is optimal or close to optimality. The best solutions
obtained provide targets to be sought within the next part of the approach.
For instance, a TS algorithm may be used to bias the search trajectory to-
ward already known solutions (or as close to them as possible). This may give
some information on how to choose parameters for other problem instances.

A different acronym in this context is path relinking (PR) which provides
a useful means of intensification and diversification. Here new solutions are
generated by exploring search trajectories that combine elite solutions, i.e.,
solutions that have proved to be better than others throughout the search.
For references on target analysis and PR see, e.g., [58].

Considering local search based on data perturbation, the acronym noising
method may be related to the following approach, too. Given an initial feasi-
ble solution, the method performs some data perturbation [111] in order to
change the values taken by the objective function of a problem to be solved.
On the perturbed data a local search may be performed (e.g., following a SD
approach). The amount of data perturbation (the noise added) is successively
reduced until it reaches zero. The noising method is applied, e.g., in [23] for
the clique partitioning problem.

The key issue in designing parallel algorithms is to decompose the execution
of the various ingredients of a procedure into processes executable by parallel
processors. Opposite to ant systems or GAs, metaheuristics like TS or SA, at
first glance, have an intrinsic sequential nature due to the idea of performing
the neighborhood search from one solution to the next. However, some effort
has been undertaken to define templates for parallel local search (see, e.g.,
[119, 117, 26, 116]). A comprehensive treatment with successful applications
is provided in [6]. The discussion of parallel metaheuristics has also led to
interesting hybrids such as the combination of a population of individual
processes, agents, in a cooperative and competitive nature (see, e.g., the
discussion of memetic algorithms in [87]) with TS.

Neural networks may be considered as metaheuristics, although we have
not considered them here; see, e.g., [108] for a comprehensive survey on these
techniques for combinatorial optimization. On the contrary, one may use
metaheuristics to speed up the learning process regarding artificial neural
networks; see [7] for a comprehensive consideration.
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Require: xk incumbent solution; Ωk current set of heuristic parameters

Ensure: xk+1 next solution

1. N (xk)← neighborhood definition(xk, Ωk)
2. xk+1 ← neighborhood exploration(N (xk))

3. Ωk+1 ← parameters update()

Fig. 1.1 General Metaheuristic Iteration.

Stochastic local search (SLS) is pretty much all we know about local search
but enhanced by randomizing choices. That is, an SLS algorithm is a local
search algorithm making use of randomized choices in generating or selecting
candidate solutions for given instances of optimization problems. Randomness
may be used for search initialization as well as the computation of search
steps. A comprehensive treatment of SLS is given in [75].

Furthermore, recent efforts on problems with multiple objectives and cor-
responding metaheuristic approaches can be found in [78, 41]. See, e.g., [105]
for some ideas regarding GAs and fuzzy multi-objective optimization.

1.3 A Taxonomy

In this section, we present a taxonomy of metaheuristics along a single di-
mension of analysis. The driving factor is the way in which the neighborhood
is defined with respect to each metaheuristic approach. Alternative classifi-
cations have been proposed, e.g., in [19, 64].

From a general perspective, each metaheuristic paradigm can be seen as
made up by three major ingredients, which are repeatedly used at each itera-
tion until specified stopping criteria are reached. A generalization of a single
iteration of a metaheuristic scheme is given in Figure 1.1.

As illustrated in Step 1 of Figure 1.1, a common ingredient of each meta-
heuristic paradigm is the existence of a rule aimed at iteratively guiding the
search trajectory, i.e., a set of rules to define a neighborhood. In turn, such
neighborhood demarcates which solutions can be reached starting from the
incumbent solution. In line with this observation, a possible dimension along
which a taxonomy of metaheuristics can be created is given by the way in
which neighborhoods are built. A classification of metaheuristics along this
dimension leads to the definition of at least two broad classes:

• model-based heuristics: as in [133], with this term we refer to metaheuris-
tic schemes where new solutions are generated by using a model. Conse-
quently, the neighborhood is implicitly defined by a set of parameters, and
iteratively updated during the search process;
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• method-based heuristics: as in [109], with this term we make reference to
heuristic paradigms in which new solutions are sought in a neighborhood
whose structure is dictated by the method used to explore the neighbor-
hood itself. Consequently, the neighborhood is implicitly defined by the
predetermined method employed.

By observing the underlying philosophy of these two broad classes, a clear
dichotomy arises: on the one hand, model-based heuristics tackle the original
optimization problem by defining and iteratively updating a model aimed
at identifying prominent features in good solutions and at replicating these
features in future solutions. Consequently, what determines whether a point
belongs to the neighborhood is the set of parameters that defines the model
and the ‘probability’ of generating such point under the current model. On
the other hand, method-based heuristics are driven by the technique used to
solve a “reduced” version of the original problem, i.e., a problem in which
only a subset of the original solution space is considered. Consequently, in
method-based heuristics what dictates the structure and shape of the neigh-
borhood is the optimization method employed to explore the neighborhood
itself, whether it be a classical mathematical programming technique, e.g.,
branch and bound, dynamic programming, etc., or a simple enumeration-
based technique.

Model-based heuristics are generally based upon the identification of a
set of parameters, defining a model that, in turn, well captures some fea-
tures of the search space. This type of heuristics heavily relies on a set of
update schemes, used to progressively modify the model itself in such a way
that, after each update, the possibility of obtaining higher quality solutions
under the new model is increased. Consequently, in Step 1 of the general
Metaheuristic_Iteration(), all the solutions that “comply” with the re-
quirements enforced by the model upon the search space are included in the
current neighborhood. A special role is played by Step 3 of the same algo-
rithm, in which the parameters of the model are updated via the application
of learning mechanisms. In this phase, modifications are applied to the model
and/or its parameters to reflect insight collected and generated during the
search phase.

A well-known paradigm that can be interpreted under the philosophy of
the model-based method is the CE, where a stochastic model is continually
updated to reflect the findings of the last iteration of the search process.
Other metaheuristics that can be seen as model-based are ACO (as well as
other methods belonging to the Swarm Intelligence field), where a construc-
tion graph and stochastic procedures called ants are employed; semi-greedy
heuristics [70], including the greedy randomized adaptive search procedure
GRASP [43], where the greedy function that guides the selection of the best
candidates defines a stochastic model; and GAs, where adaptive search proce-
dures based upon genetics are put into place. The GA paradigm heavily relies
on a model, defined by a set of operators, that determines which solutions
will be included in the next generation, i.e., in the current neighborhood.
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More generally, evolutionary algorithms could similarly be included into the
category of model-based metaheuristics.

On the other side of the spectrum we find metaheuristic paradigms driven
by a method, rather than by a model. The basic ingredient of such an ap-
proach is the existence of a search method, whether it be an exact method
or a heuristic method, that is used to explore the neighborhood itself. Conse-
quently, the size and cardinality of the neighborhood depend upon the abil-
ity of the method itself to explore the portion of the search space included
in the neighborhood. Within the class of method-based metaheuristics we
can introduce a further level of classification, according to the nature of the
method employed to explore the neighborhood. Broadly speaking, method-
based heuristics could be divided into two categories, those for which classical
mathematical programming techniques are employed to explore the neighbor-
hood and those for which enumeration-based techniques are used to conduct
the exploration of the basin of solutions.

A cardinal concept for the method-based heuristics is connected to the
introduction of a “distance” metric. A distance is used to draw the bound-
aries of the neighborhood around the incumbent solution, in such a way that
only points whose distance from the incumbent solution is within a threshold
are included in the neighborhood itself. Consequently, the neighborhood is
explicitly defined by the notion of distance adopted. On the other hand, the
definition of the threshold distance is strongly connected with the capabilities
of the method used to explore the neighborhood. In other words, the cardinal-
ity of the neighborhood is chosen in such a way that, on the one hand, it will
be large enough to have a reasonable chance of containing a solution better
than the incumbent one and, on the other hand, small enough to be explored
by employing the method at hand in a reasonable amount of computational
time.

Historically, the first metaheuristics developed might be regarded as be-
longing to this class, e.g., SA or TS. Let us consider, e.g., the TS meta-
heuristic. Given an incumbent solution xi, a distance function d(x1,x2) and
a threshold value δ, only solutions for which d(xi,x) ≤ δ will be included
into the current neighborhood. Once the neighborhood definition phase is
terminated, a method capable of exploring such neighborhood in a reason-
able amount of computational time is employed to find a possibly better
solution. Consequently, while the neighborhood is explicitly defined by the
value of δ, it is possible to say that such neighborhood is implicitly defined
by the method used, since the value of δ depends upon the capabilities of the
method itself.

It is worth noting that these metaheuristics can, and in general, do use a
set of parameters to refine the definition of the neighborhood. For example, let
us once more consider the case of the TS metaheuristic. The neighborhood is
first defined according to a “distance” from the incumbent solution and, then,
refined via the application of, e.g., the tabu list, with the effect of eliminating
some of the solutions from the current neighborhood. However, it should be
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evident that the major ingredient used in determining the neighborhood is
still related to the concept of distance from the incumbent solution.

Other metaheuristics that fit into this category are VNS [68] and the pi-
lot method. In VNS, the neighborhood is altered during the search in such
a way that increasingly distant neighborhoods of a given solution are ex-
plored. However, a “method”, e.g., the local search routine, must be applied
to perform the search over the neighborhood. Thus, the way in which neigh-
borhoods are built is influenced by the method used to explore the portion
of the search space at hand. Similarly, in the pilot method, the core idea is
that the neighborhood is defined by a look-ahead mechanism. Consequently,
there is a method (even a simple local search) that determines the shape, or
the deepness, of the neighborhood itself.

More recently, metaheuristics employing classical mathematical program-
ming techniques to explore the neighborhood have been proposed. Let us
consider the case of the CM. After defining a corridor around the incumbent
solution, an optimization method is then applied within the neighborhood
defined by the corridor with the aim of finding an improved solution. Conse-
quently, in Step 1 of the general metaheuristic iteration of Figure 1.1, only
solutions within the corridor, or within a predefined distance from the in-
cumbent, will be included in the neighborhood. As previously mentioned, an
optional feature of the neighborhood_definition() phase is the applica-
tion of a set of criteria to refine the neighborhood, e.g., a tabu list, aspiration
criteria, etc. Step 2 of the algorithm relies on the use of either an enumeration-
based technique, or a classical mathematical programming technique (branch
and bound, dynamic programming, etc.) to explore the neighborhood. Fi-
nally, Step 3 of the algorithm, parameters_update() can include, e.g., the
dynamic update of distance and corridor parameters, depending upon the
current status of the search.

Beside the corridor method, other concepts that fall into this category are,
e.g., constraint programming [103], in which the corridor is defined by the
subsequent application of constraints and conditions to be satisfied by the
solution, and local branching [47], in which the neighborhood is defined by
introducing linear inequalities, called local branching cuts. Once a restricted
neighborhood is so defined, an exact technique, i.e., linear programming, is
used in the spirit of the branch and bound framework.

A further example which might be interpreted as a method-based tech-
nique is the POPMUSIC framework [112], where one wants to solve, prefer-
ably to optimality, smaller portions of the solution space, based upon an
available feasible solution.

More recently, the relaxation induced neighborhood search method (RINS)
has been introduced [27]. The RINS defines a neighborhood exploiting infor-
mation contained in the linear programming (LP) relaxation and can natu-
rally be seen as a method-based framework for mixed integer programs (MIP).
The central idea of the method is related to the exploitation of a “relaxed”
solution to define a core problem, smaller than the original MIP. The core
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problem is identified at any given node of the branch and cut tree, by first
fixing all variables that have the same values both in the incumbent (feasible)
solution and the relaxed solution. Next, a branch-and-cut framework is used
to solve to optimality the reduced problem on the remaining variables, called
sub-MIP. The process is iteratively applied at any node of the global tree,
since the LP relaxation induced solution is different and, therefore, gives raise
to different sub-MIPs.

1.4 Hybrids with Exact Methods

In recent years, a lot of attention has been devoted to the integration, or
hybridization, of metaheuristics with exact methods (see, e.g., [95, 96] for
a survey and a taxonomy about hybrid approaches in combinatorial opti-
mization, respectively.) In this section, we use the term hybrid in a somehow
restrictive way, since we classify as hybrid approaches only those approaches
that combine the use of exact techniques with metaheuristic frameworks.
Consequently, algorithms that combine together different metaheuristics are
not included in this analysis although they could be and are also termed
hybrid.

This exposition also relates to the term Matheuristics, which describes
works that also are along these lines, e.g., exploiting mathematical program-
ming techniques in (meta)heuristic frameworks or on granting to mathemat-
ical programming approaches the cross-problem robustness and constrained-
CPU-time effectiveness which characterize metaheuristics. Discriminating
landmark is some form of exploitation of the mathematical formulation of
the problems of interest [67].

Generally speaking, hybrid algorithms present a so-called “master-slave”
structure of a guiding process and an application process. Either (i) the meta-
heuristic acts at a higher level and controls the calls to the exact approach,
or (ii) the exact technique acts as the master and calls and controls the use
of the metaheuristic scheme.

Hybrid algorithms of type (i) are such that the definition of the neigh-
borhood follows the logic of a metaheuristic, while the exploration of the
neighborhood itself is left to the exact approach. From this perspective, the
metaheuristic acts as the master by defining the size and boundaries of the
neighborhood and by controlling repeated calls to the exact method, which,
in turn, acts as an application process, by exploring each neighborhood in an
exact fashion. Algorithms that fall into this category are, e.g., those inspired
by the CM, in which large scale neighborhoods are searched exhaustively
through an exact method applied on a sub-portion of the search space. The
call to the exact method is managed by a scheme that heuristically defines a
corridor around an incumbent solution (cf. the previous section).
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A similar philosophy is shared by the large scale neighborhood search (see,
e.g., [5] for a survey), in which exponentially large neighborhoods are searched
to optimality by means of, e.g., ad-hoc enumeration schemes, dynamic pro-
gramming schemes, etc.

Along the same line, the RINS as well as local branching could be seen
as algorithms of type (i), at least in spirit. For example, even though the
RINS is casted into a branch and cut approach, and, therefore, the guid-
ing process is an exact approach, the logic of the method is centered upon
metaheuristic-type features, such as neighborhood definition, diversification
and intensification. It is worth noting, though, that in these two approaches,
no real metaheuristic is ever deployed, since they entirely rely on the branch
and bound framework. However, they can still be seen as hybrid approaches
because of the embedded metaheuristic philosophy that drives the search
process.

On the other hand, we also have hybrid approaches of type (ii), in which
the metaheuristic scheme is embedded into the solver. Modern branch and cut
solvers exploit the potentials of (meta)heuristics to quickly get good quality
solutions, especially at early stages of the tree exploration. Related bounds
are then employed to prune branches of the tree and, consequently, contribute
to speed up the search process and to reduce the overall computational effort.
Since it has been observed that in some important practical cases MIP solvers
spend a large amount of computational time before finding the first feasible
solution, [46] introduced a heuristic scheme, further improved in [3, 16], called
the feasibility pump, aimed at quickly finding good quality initial solutions.
Such initial solutions are obtained via a sequence of roundings, based upon
continuous relaxation solutions, that converge to a feasible MIP solution.
Clearly, such heuristic-type schemes can also be used to quickly find initial
solutions to be fed to type (i) hybrid algorithms, such as the CM, the RINS
as well as local branching (see also [56, 57, 40] for heuristic methods for MIP
feasible solution generation).

In a fashion similar to hybrid approaches of type (ii), some researchers have
also employed metaheuristic schemes for column generation and cut gener-
ation within branch and price and branch and cut frameworks, respectively
(see, e.g., [44] and [94]). In addition, one may investigate hybrids of branch
and bound and metaheuristics, e.g., for deciding upon branching variables or
search paths to be followed within a branch and bound tree (see, e.g., [130]
for an application of reactive TS). Here we may also use the term cooperative
solver.

A key question that arises when designing a hybrid algorithm concerns
which components should be “hybridized” to create an effective algorithm.
While providing an all-encompassing rule for hybridization does not seem to
be a feasible approach, from the analysis of the state of the art of hybrid
algorithms some interesting guidelines emerge.

A method-based approach is centered upon the exploitation of an effective
“method” to solve the problem at hand. Consequently, the starting point lies
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in the identification of the most effective(s) method(s) with respect to the
optimization problem. For example, the design of a CM inspired algorithm
requires previous knowledge about which method could effectively tackle the
problem if this were of reduced size. Thus, the identification of the method
to be used constitutes the central point in the design of the algorithm itself.

A basic ingredient of a method-based algorithm concerns the heuristic rule
used to draw the boundaries of the neighborhood upon which the method will
be applied, which is the design of the neighborhood itself in terms of how large
the neighborhood should be. Size and boundaries of such neighborhood de-
pend on the “power” of the method used, i.e., on its ability to explore large
portions of the solution space in a reasonable amount of computational time.
While determining the appropriate dimension of the neighborhood for the
method at hand is an issue of algorithm fine tuning (as presented in Section
1.6), some general considerations are related to the fitness landscape anal-
ysis as well as the computational complexity of the method itself. Roughly
speaking, given an optimization method and its worst case computational
complexity in terms of size of the input, it is possible to determine the max-
imum size of the neighborhood that guarantees running times below a de-
sired threshold. On the other hand, since computational complexity analysis
mainly deals with worst case scenarios, it seems beneficial to employ fitness
landscape analysis techniques (e.g., connectivity measures) to draw tightest
complexity bounds that translate directly into larger neighborhoods.

Another guideline is provided by the intensification-diversification trade-
off. By reviewing hybrid algorithms proposed in the literature, many times it
is possible to identify a predominant focus, in the sense that some algorithms
put a higher emphasis on diversification of solutions, while others empha-
size the intensification of the search in promising regions. For example, as
illustrated in [47], the application of valid inequalities in the spirit of local
branching fosters the intensification of the search in a given neighborhood,
hence allowing to find good quality solutions early on in the search process.
In a similar fashion, the CM seems to put more emphasis on intensifying the
search within a promising region, without defining specific restarting mech-
anisms to achieve diversification. On the other hand, a method such as the
RINS, based upon a solution of the LP relaxation of the MIP, puts more em-
phasis on diversification, since at each node of the search tree a different LP
induced solution is used and, consequently, different solutions feasible with
respect to the MIP will be produced.

Finally, an interesting line of research aimed at grasping a clearer under-
standing of why some search techniques are successful on a given problem
class is related to the fitness landscape analysis. As mentioned in [18, 115],
a central measure of landscape structure is the fitness-distance correlation,
which captures the correlation between objective function value and the
length of a path to an optimal solution within the fitness landscape. Such
a measure is used to explain why local search techniques perform well in
tackling certain problems. However, the link between problem difficulty and
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fitness landscape is, as of today, not completely understood (see also the idea
of target analysis mentioned above).

Fitness landscape analysis can be used with at least two goals in mind:

• on the one hand, as brought out in [126], this kind of analysis helps to
understand what makes a problem hard or, conversely, well suited, for a
specific search technique. Information such as fitness-distance correlation,
ruggedness, nodes connectivity, and drifting can be exploited to design
an effective metaheuristic scheme as well as to identify which components
should be hybridized;

• on the other hand, as illustrated in [24], fitness landscape analysis can help
to identify which formulation of the same problem will be more suitable
with respect to an available algorithm. For example, [24] were able to
“predict” the behavior of a VNS algorithm upon two different formulations
of the Golomb Ruler problem and, consequently, to select the formulation
that better fitted with the potentials of their algorithm.

While this field of study seems promising in grasping a better understand-
ing of the “hows” and “whys” of metaheuristics, an important issue of gen-
eralization of results has already been noticed. As mentioned in [126], the
results obtained so far have mainly been used a posteriori, to justify the use
of a given algorithm and its features. However, it is unclear how this kind of
analysis can be extended to develop improved algorithms, since there is no
clear understanding about the general validity of the findings of the proposed
models. However, it is worth noting that, from the methodological perspec-
tive, the contribution of the fitness landscape analysis is far from negligible,
since its focus is well oriented toward interpreting and partially explaining
successes and failures of metaheuristic-based algorithms.

1.5 General Frames: A Pool-Template

An important avenue of metaheuristics research refers to general frames (e.g.,
to explain the behavior and the relationship between various methods) as well
as the development of software systems incorporating metaheuristics (even-
tually in combination with other methods). Besides other aspects, this takes
into consideration that in metaheuristics it has very often been appropriate
to incorporate a certain means of diversification versus intensification to lead
the search into new regions of the search space. This requires a meaningful
mechanism to detect situations when the search might be trapped in a certain
area of the solution space. Therefore, within intelligent search the exploration
of memory plays a most important role.

In [64] a pool template (PT) is proposed as can be seen in Figure 1.2. The
following notation is used. A pool of p ≥ 1 solutions is denoted by P . Its
input and output transfer is managed by two functions which are called IF
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1. Initialize P by an external procedure

WHILE termination=FALSE DO BEGIN

2. S := OF (P )
3. IF s > 1 THEN S′ := SCM(S) ELSE S′ := S

4. S′′ := IM (S′)
5. P := IF (S′′)

END

6. Apply a post-optimizing procedure to P

Fig. 1.2 Pool Template.

and OF , respectively. S is a set of solutions with cardinality s ≥ 1. A solution
combination method (procedure SCM ) constructs a solution from a given set
S, and IM is an improvement method.

Depending on the method used, in Step 1 either a pool is completely (or
partially) built by a (randomized) diversification generator or filled with a
single solution which has been provided, e.g., by a simple greedy approach.
Note that a crucial parameter that deserves careful elaboration is the cardi-
nality p of the pool. The main loop, executed until a termination criterion
holds, consists of Steps 2–5. Step 2 is the call of the output function which
selects a set of solutions, S, from the pool. Depending on the kind of method
represented in the PT, these solutions may be assembled (Step 3) to a (set
of) working solution(s) S′ which is the starting point for the improvement
phase of Step 4. The outcome of the improvement phase, S′′, is then evalu-
ated by means of the input function which possibly feeds the new solution
into the pool. Note that a post-optimizing procedure in Step 6 is for faculta-
tive use. It may be a straightforward greedy improvement procedure if used
for single-solution heuristics or a pool method on its own. As an example we
quote a sequential pool method, the TS with PR in [11]. Here a PR phase is
added after the pool has been initialized by a TS. A parallel pool method on
the other hand uses a pool of solutions while it is constructed by the guiding
process (e.g., a GA or scatter search).

Several heuristic and metaheuristic paradigms, whether they are obviously
pool-oriented or not, can be summarized under the common PT frame. We
provide the following examples:

a) Local Search/SD: PT with p = s = 1.
b) SA: p = 2, s = 1 incorporating its probabilistic acceptance criterion in

IM . (It should be noted that p = 2 and s = 1 seems to be unusual at first
glance. For SA we always have a current solution in the pool for which one
or more neighbors are evaluated and eventually a neighbor is found which
replaces the current solution. Furthermore, at all iterations throughout the
search the so far best solution is stored, too (even if no real interaction
between those two stored solutions takes place). The same is also valid for
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a simple TS. As for local search the current solution corresponds to the
best solution of the specific search, we have p = 1.)

c) Standard TS: p = 2, s = 1 incorporating adaptive memory in IM .
d) GAs: p > 1 and s > 1 with population mechanism (crossover, reproduction

and mutation) in SCM of Step 3 and without the use of Step 4. (One might
argue that p ≥ 1 is also possible.)

e) Scatter Search: p > 1 and s > 1 with subset generation in OF of Step 2,
linear combination of elite solutions by means of the SCM in Step 3, e.g.,
a TS for procedure IM and a reference set update method in IF of Step 5.

f) PR (as a parallel pool method): p > 1 and s = 2 with a PR neighborhood
in the SCM . Facultative use of Step 4.

g) CE: p > 1 and s = ρp, with ρ ∈ (0, 1), where the SCM is used to update
the underlying stochastic model by capturing features of solutions in S
and without the use of Step 4.

1.6 Fine Tuning and Evaluation of Algorithms

In this section, we discuss two important issues related to the design and
analysis of metaheuristics and related algorithms. On the one hand, as men-
tioned in the introduction, one key factor that has a bearing on the overall
performance of most of these algorithms is the calibration of the algorithmic
parameters. Thus, a natural question is about how to select an appropri-
ate set of values for these parameters. This important topic in metaheuristic
design goes under the name of fine tuning of algorithmic parameters.

A second relevant issue, related to the analysis of an algorithm, is con-
cerned with the empirical evaluation of the performance of the algorithm it-
self. Due to the stochastic nature of many metaheuristic schemes, a problem
of reproducibility of results arises. Many researchers advocate the definition
of a set of standards to increase the objectivity of the “ranking” and evalu-
ation of metaheuristics. However, the literature does not seem to be mature
with respect to this topic.

1.6.1 Fine Tuning of Metaheuristics

According to [4], there is evidence that 10% of the time required to develop a
new metaheuristic is devoted to the actual development and that the remain-
ing 90% is spent on fine tuning of algorithmic parameters. In addition, fine
tuning of parameters strongly affects the final performance of an algorithm.
For these reasons, it is of paramount importance to make a concerted effort
in identifying and establishing a set of “standard” techniques to fine-tune a
metaheuristic. One of the major achievements of such an effort would be to
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offset parameter specific issues in evaluating an algorithm. In addition, repro-
ducibility of results would also be enhanced by such an approach, by making
transparent the way in which parameter values should be set to tackle a given
problem instance.

In the literature, some attempts to use statistically robust methods have
been presented. For example, in [4], a tool called CALIBRA is proposed as a
procedure that finds good values for up to five algorithmic parameters. They
exploit Taguchi fractional factorial design to reduce the overall number of
trials required to train the model. Interestingly, the authors tested CALI-
BRA on a set of six different algorithms and use hypothesis testing to assert
whether the parameter values suggested by the tool allow to find solutions
which are significantly better than those proposed by the original authors of
the algorithms.

In [25], a four-step procedure is proposed, in which a two-level factorial
design is coupled with linear regression to find a linear approximation of the
response surface of the set of parameters. Subsequently, a gradient descent
technique is employed to find a “good” value for each parameter. Finally, the
method is applied on a set of benchmark problems, and results are collected
to show that a good parameter setting leads to improvements in the objec-
tive function value. A similar technique has been employed in [21], where a
circumscribed central composite design is used to generate observations and
a higher degree polynomial is then used to approximate the response surface
of a set of parameters. Once the response surface is known, a global optimiza-
tion method is employed to find the optimal parameter value with respect
to the surface. The model is built on a set of training instances and then
validated on a different set of testing instances of some lot sizing problems.

In [89], a nonlinear response surface is used to capture the impact of pa-
rameters on a SA algorithm. A good set of values of such parameters is then
determined via a modified simplex method for nonlinear programming, that
can be used to deal with bounds on parameter values. The proposed method
is tested on three different combinatorial optimization problems and the col-
lected results are then compared with those of other SA implementations,
whose fine tuning was achieved via extensive experiments. The results show
that there is no statistical difference in performance between the two types of
SA algorithms and, consequently, that the proposed approach can be used to
conduct an “automatic” fine tuning. A similar approach was followed in [90],
where a full-factorial design was employed to define a response surface for
up to four parameters of a GA. The fine-tuned algorithm was finally tested
on a pool of DNA sequence assembly problems and results were collected to
illustrate the effectiveness of the procedure.

A somehow different approach is proposed in [131], where two statistical
tests are employed to fine-tune a set of algorithmic parameters of a TS al-
gorithm and to validate the proposed statistical model. First, a Friedman
test is used to detect significance of a specific parameter upon the algorithm
performance and, via a series of pairwise comparisons, to identify a good pa-
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rameter value; subsequently, a Wilcoxon test is employed to verify whether
there is a statistically significant difference between any two F-runs of the
algorithm. The TS algorithm is then used upon a set of problems drawn from
the telecommunication network design field.

A relevant issue in fine tuning methods is related to the “budget” available
to carry on the experiments, in the sense that the type of techniques used
depends on the amount of time and computational power available. These
elements affect the number of factors (parameters) and the number of levels
(values) that can be considered in the experimental design. In this regard, as
illustrated in [4], the use of a “fractional factorial design” can help in reducing
the number of runs required to collect results.

A second issue concerns the analysis of results in terms of robustness and
sensitivity. In many circumstances, it is necessary to provide not only a
“good” set of parameter values but also a measure of robustness and sen-
sitivity with respect to those parameters. For this reason, the experiment
should be designed in such a way that training and testing sets are used to
create and to validate the model, respectively.

Finally, an important issue that needs to be addressed when fine tuning
algorithmic parameters is the ultimate goal that one wants to achieve. In
the literature, many times it is implicitly assumed that the goal is to max-
imize solution quality and, with this in mind, one wants to find a good set
of parameters. However, alternative goals could also be desirable, such as,
e.g., minimizing computational time to a target solution, generating a pool
of solutions with maximum “diversification” [63], obtaining good quality so-
lutions early on in the search process, as well as a weighted combination of
such goals. Consequently, the fine tuning process should be designed in such
a way that a trade-off between conflicting goals could be achieved.

In the spirit of what we have seen in the reactive TS fine tuning also
concerns means of autoadaptivity of parameter settings. In a more general
setting an excellent recent treatment is provided in [14].

1.6.2 Empirical Evaluation of Metaheuristics

As stated in [10], it is important to “promote thoughtful, well-planned, and
extensive testing of heuristics, full disclosure of experimental conditions, and
integrity in and reproducibility of the reported results.”

With this aim in mind, a number of interesting issues have been proposed
with respect to how to measure the performance of a metaheuristic. For
example, some relevant issues connected with the evaluation of metaheuristics
are:

• computational experiment design, with a clear objective in mind (e.g., to
illustrate solution quality performance, robustness, quality versus time,
etc.);
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• testing on benchmark instances, if available, or with respect to (dual)
gaps if possible. Results should be reported with measures of variability
and robustness;

• if no comparison with other algorithms from the literature is possible,
the algorithm should at least be compared with a simple random restart
procedure;

• identification of the contribution of each major feature of the algorithm on
the final performance, to detect which features are relevant in achieving
the declared level of performance;

• measurement of statistically significant differences among algorithms, with
the aim of ranking a pool of algorithms designed to tackle the same class
of problems.

In this section, we focus on two major issues: reproducibility and ranking of
an algorithm. On the one hand, the experimental results should be reported
in such a way that reproducibility is ensured while, on the other hand, a
statistically sound comparison of the proposed method with other approaches
from the literature should be presented with the aim of detecting meaningful
improvements in the state of the art.

The issue of reproducibility has been addressed in [10]. In order to be of
any scientific value, the experiments used to assess an algorithm in general,
and a metaheuristic in particular, should be entirely reproducible by oth-
ers. On the one hand, documentation will help in fostering reproducibility.
For this reason, not only the algorithmic steps but also specifics about the
implementation, the data structure employed, the parameter settings, the
random number process generation (if applicable), etc., should be provided.
In addition, making available to the community the source code as well as
the instances used fosters reproducibility and enhances the quality of the
scientific work.

Many statistical tests have been proposed to determine whether one algo-
rithm outperforms another. The way in which this issue should be addressed
is influenced by a number of relevant factors, such as, e.g., the nature of the
algorithm itself (deterministic or stochastic), the size of the available sample
(test bed), and, of course, the measure(s) used to draw conclusions about
the quality of a given algorithm. In [31], a taxonomy of statistical questions,
applied to learning algorithms, is presented and some hints about how to
address the issue of comparing algorithms with respect to each category are
given.

In the operations research field, the issue of comparing two algorithms
with each other arises in at least two different contests:

• on the one hand, one might want to compare two different versions of
the same algorithm using different parameter settings to fine tune the
algorithm itself. In this case, the practitioner aims at detecting whether a
given set of parameters produces better performance;
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• on the other hand, to validate an algorithm, a researcher will have to
compare the performance of the proposed algorithm against, at least, those
of the best algorithm available for a specific class of problems. In this case,
the underlying assumption, quite common in the operations research field,
is that the algorithm is designed to perform in a specific domain, i.e., to
tackle a single class of problems, and that it is possible to identify a state
of the art algorithm.

While the literature on the use of statistical analysis for hypothesis test-
ing is abundant (e.g., [132], [50]), in general, only rudimentary techniques
are used to present results and assert the quality and soundness of the same
results produced by a new metaheuristic. Other fields seem more mature
when it comes to statistical validation of results. For example, the machine
learning community has become increasingly aware of the importance of vali-
dating results with sound statistical analysis [29]. In [31], five statistical tests
for comparison of two different algorithms are presented. These tests are ex-
perimentally compared with respect to the probability of incurring Type I
errors (incorrectly detecting a difference when no difference exists). More so-
phisticated tests are proposed in [29], which can be used to compare multiple
algorithms over multiple data sets.

In the field of metaheuristics, the use of statistical tests is somehow present
when fine tuning algorithms. For example, as mentioned in Section 1.6.1,
[4], [131], [89], use different statistical tests to assert the quality of the fine
tuning technique. However, the literature concerning authors that employ
statistical analysis to compare two, or a set, of metaheuristics upon a given set
of instances is quite scanty. A good introduction to the topic can be found in
[113]. In this paper, only the case in which two algorithms are to be compared
is presented. A number of statistical tests is reviewed, both parametric and
non-parametric tests, and a new non-parametric test is proposed (see also
[110] for some ideas).

The major issue in identifying which test should be used to compare two
algorithms is the identification of the key factor to be used to “judge” such
algorithms. For example, in the contest of optimization, a common measure
of quality is the objective function value. Consequently, one might want to
compare two algorithms, say algorithm A and algorithm B, in terms of a set of
related objective function values, say zA and zB . The null hypothesis is then
defined as H0 : zA − zB = 0 and a one-sided or a two-sided test is designed.
In general, classical parametric approaches are used to test such hypothesis
such as, e.g., a (paired) t-test, which checks whether the average difference in
performance over the data set is significantly different from zero. However, as
brought out by many authors (see, e.g., [29]), the t-test suffers from a number
of weaknesses, mainly that the underlying assumption of normal distributions
of the differences between the two random variables could not be realistic,
especially when the number of benchmark instances available is not large.

An alternative approach relies on the use of non-parametric tests for com-
paring proportions. Let us suppose that we count a success for algorithm A
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every time algorithm A outperforms algorithm B on a given instance (e.g.,
in terms of objective function value, running time, etc.). The researcher is
interested in estimating the success probabilities of the two algorithms, say
pA and pB . After estimating empirically such probabilities, a non-parametric
test (e.g., McNemar test, Fisher exact test) could be used to “rank” such
algorithms in terms of effectiveness, indicating which algorithm is more suc-
cessful on the same data set. A non-parametric test that can be used to
“rank” algorithms based upon the success probabilities is proposed by [113].
In addition, such test overcomes one important limitation of the McNemar
test, namely the fact that these tests require pairwise comparisons. Many
times in the field of metaheuristics researchers test their algorithms on ran-
domly generated instances, whose generation process is described while the
actual instances are not made available to the community. Hence, it is not al-
ways possible to compare two algorithms on the same set of instances and the
McNemar test might not be significant. The test proposed in [113] overcomes
such obstacle by taking into account the total number of runs of algorithm
A and of algorithm B (which might be different) in comparing proportions
and proves to be more powerful than the Fisher test.

More complicated scenarios could be envisioned when more than one di-
mension of evaluation is taken into account. For example, quite often a trade
off between solution quality and computational time arises. Consequently,
one might be interested in evaluating, or ranking, algorithms along these two
conflicting dimensions. In addition, if the metaheuristic is part of a broader
hybrid algorithm, such as those mentioned in Section 1.4, a valid measure of
effectiveness could be the “degree of diversification” of the solutions provided
by the metaheuristic. Thus, one might want to evaluate two algorithms ac-
cording to their ability of generating diversified solutions, which are, then,
fed to a global optimizer. In these cases, where one wants to evaluate the
effect of a pool of factors, a multi-objective problem could be defined, in such
a way that a “weight” is assigned to each criterion and the “success” of an
algorithm is measured as the weighted sum of the different criteria.

Finally, one last word could be spent about which algorithm(s) the pro-
posed metaheuristic should be compared against. Generally speaking, the
goal is to compare the new metaheuristic with established techniques, e.g.,
the best algorithm available in the literature. However, as pointed out in
[10], rather than reporting comparisons with results produced on different
machines and different instances, it is better to obtain or, in its defect, to
recode, existing algorithms and conduct a fair comparison of the two algo-
rithms on the same set of instances and the same machine. On the other hand,
if no algorithms have been proposed for the problem at hand, a more gen-
eral method, e.g., one based on linear programming or integer programming,
could be used to obtain bounds on the objective function values. Whenever
a stochastic scheme is proposed, at least a comparison with a simple random
restart procedure should be carried on, to show that the proposed algorithm
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performs significantly better (in a statistical sense) than the random restart
procedure.

1.7 Optimization Software Libraries

Besides some well-known approaches for reusable software in the field of ex-
act optimization (e.g., CPLEX2 or ABACUS3) some ready-to-use and well-
documented component libraries in the field of local search based heuristics
and metaheuristics have been developed; see the contributions in [125].

The most successful approaches documented in the literature are the
Heuristic OpTimization FRAMEwork HotFrame of [45] and EASYLO-
CAL++ of [30]. HotFrame, as an example, is implemented in C++, which
provides adaptable components incorporating different metaheuristics and an
architectural description of the collaboration among these components and
problem-specific complements. Typical application-specific concepts are trea-
ted as objects or classes: problems, solutions, neighbors, solution attributes
and move attributes. On the other side, metaheuristic concepts such as differ-
ent methods described above and their building-blocks such as tabu criteria or
diversification strategies are also treated as objects. HotFrame uses gener-
icity as the primary mechanism to make these objects adaptable. That is,
common behavior of metaheuristics is factored out and grouped in generic
classes, applying static type variation. Metaheuristics template classes are
parameterized by aspects such as solution spaces and neighborhood struc-
tures.

Another well-known optimization library is the COIN-OR library4, an
open-source suite for the optimization community. An effort in the develop-
ment of standards and interfaces for the interoperability of software compo-
nents has been put forth. Some classes that implement basic ingredients of
metaheuristics, e.g., Tabu Search Project, have been developed. However, the
development of general software frameworks for metaheuristic paradigms, al-
though strategic in defining standards and commonalities among approaches,
is still in its infancy.

1.8 Conclusions

Over the last decades metaheuristics have become a substantial part of the
optimization stockroom with various applications in science and, even more

2 www.ilog.com
3 www.informatik.uni-koeln.de/abacus
4 http://www.coin-or.org

www.ilog.com
www.informatik.uni-koeln.de/abacus
http://www.coin-or.org
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important, in practice. Metaheuristics have become part of textbooks, e.g. in
operations research, and a wealth of monographs (see, e.g., [118, 58, 86, 36]) is
available. Most important in our view are general frames. Adaptive memory
programming, Stochastic Local Search, an intelligent interplay of intensifica-
tion and diversification (such as ideas from POPMUSIC), and the connection
to powerful exact algorithms as subroutines for handable subproblems and
other means of hybridization are avenues to be followed.

Applications of metaheuristics are almost uncountable and appear in var-
ious journals (e.g., Journal of Heuristics), books, and technical reports every
day. A helpful source for a subset of successful applications may be special
issues of journals or compilations such as [98, 124, 100, 34], just to mention
some. Specialized conferences like the Metaheuristics International Confer-
ence (MIC) are devoted to the topic (see, e.g., [88, 124, 102, 101, 76, 34])
and even more general conferences reveal that metaheuristics have become
part of necessary prerequisites for successfully solving optimization problems
(see, e.g., [61]). Moreover, ready to use systems such as class libraries and
frameworks have been developed, although usually restricted to be applied
by the knowledgeable user.

Specialized applications also reveal research needs, e.g., in dynamic envi-
ronments. One example refers to the application of metaheuristics for online
optimization; see, e.g., [65].

From a theoretical point of view, the use of most metaheuristics has not
yet been fully justified. While convergence results regarding solution quality
exist for most metaheuristics once appropriate probabilistic assumptions are
made (see, e.g., [66, 8, 42]), these turn out not to be very helpful in practice
as usually a disproportionate computation time is required to achieve these
results (usually convergence is achieved for the computation time tending to
infinity, with a few exceptions, e.g., for the reverse elimination method within
tabu search or the pilot method where optimality can be achieved with a
finite, but exponential number of steps in the worst case). Furthermore, we
have to admit that theoretically one may argue that none of the described
metaheuristics is on average better than any other. Basically this leaves the
choice of a best possible heuristic or related ingredients to the ingenuity of
the user/researcher. Some researchers related the acronym of hyper heuristics
to the question which (heuristic) method among a given set of methods to
choose for a given problem; see, e.g., [20].

Moreover, despite the widespread success of various metaheuristics, re-
searchers occasionally still have a poor understanding of many key theoret-
ical aspects of these algorithms, including models of the high-level run-time
dynamics and identification of search space features that influence problem
difficulty. Moreover, fitness landscape evaluations are considered in its in-
fancy, too.

From an empirical standpoint it would be most interesting to know which
algorithms perform best under various criteria for different classes of prob-
lems. Unfortunately, this theme is out of reach as long as we do not have any
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well accepted standards regarding the testing and comparison of different
methods.

While most papers on metaheuristics claim to provide ‘high quality’ re-
sults based on some sort of measure, we still believe that there is a great deal
of room for improvement in testing existing as well as new approaches from
an empirical point of view (see, e.g., [10, 74, 83]). In a dynamic research pro-
cess numerical results provide the basis for systematically developing efficient
algorithms. The essential conclusions of finished research and development
processes should always be substantiated (i.e., empirically and, if necessary,
statistically proven) by numerical results based on an appropriate empirical
test cycle. Furthermore, even when excellent numerical results are obtained, it
may still be possible to compare with a simple random restart procedure and
obtain better results in some cases; see, e.g., [62]. However, this comparison
is often neglected.

Usually the ways of preparing, performing and presenting experiments and
their results are significantly different. The failing of a generally accepted
standard for testing and reporting on the testing, or at least a correspond-
ing guideline for designing experiments, unfortunately implies the following
observation: Parts of results can be used only in a restricted way, e.g., be-
cause relevant data are missing, wrong environmental settings are used, or
simply results are glossed over. In the worst case non-sufficiently prepared
experiments provide results that are unfit for further use, i.e., any general-
ized conclusion is out of reach. Future algorithm research needs to provide
effective methods for analyzing the performance of, e.g., heuristics in a more
scientifically founded way (see, e.g., [127, 4] for some steps into this direction).

A final aspect that deserves special consideration is to investigate the use
of information within different metaheuristics. While the adaptive memory
programming frame provides a very good entry into this area, this still pro-
vides an interesting opportunity to link artificial intelligence with operations
research concepts.

References

1. E.H.L. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley, Chichester, 1997.

2. E.H.L. Aarts and M. Verhoeven. Local search. In M. Dell’Amico, F. Maffioli, and
S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages

163–180. Wiley, Chichester, 1997.

3. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiza-
tion, 4:77–86, 2007.

4. B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experi-

mental designs and local search. Operations Research, 54:99–114, 2006.
5. R.K. Ahuja, O. Ergun, J.B. Orlin, and A.B. Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123:75–102, 2002.

6. E. Alba, editor. Parallel Metaheuristics. Wiley, Hoboken, 2005.



1 Metaheuristics: Intelligent Problem Solving 33

7. E. Alba and R. Marti, editors. Metaheuristic Procedures for Training Neural Net-

works. Springer, New York, 2006.
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