

Matheuristics

For other titles published in this series, go to
www.springer.com/series/7573

Annals of Information Systems

Volume 1:
Managing in the Information Economy: Current Research Issues
Uday Apte, Uday Karmarkar

Volume 2:
Decision Support for Global Enterprises
Uday Kulkarni, Daniel J. Power and Ramesh Sharda

Volume 3:
New Trends in Data Warehousing and Data Analysis
Stanislaw Kozielski, Robert Wremble

Volume 4:
Knowledge Management and Organizational Learning
William R. King

Volume 5:
Information Technology and Product Development
Satish Nambisan

Volume 6:
Web 2.0 & Semantic Web
Vladan Devedžic, Dragan Gaševic

Volume 7:
Web-Based Applications in Healthcare and Biomedicine
Athina Lazakidou

Volume 8:
Data Mining: Special Issue in Annals of Information Systems
Robert Stahlbock, Sven F. Crone and Stefan Lessmann

Volume 9:
Security Informatics
Christopher C. Yang, Michael Chiu-Lung Chau, Jau-Hwang Wang
and Hsinchun Chen

Volume 10:
Matheuristics
Vittorio Maniezzo, Thomas Stützle and Stefan Voß

Matheuristics

Hybridizing Metaheuristics and Mathematical
Programming

edited by

Vittorio Maniezzo
University of Bologna

Thomas Stützle
Université Libre de Bruxelles (ULB)

Stefan Voß
Universität Hamburg

123

Editors
Vittorio Maniezzo
Università di Bologna
Dept. Computer Science
Contrada Sacchi, 3
47023 Cesena
Italy
vittorio.maniezzo@unibo.it

Thomas Stützle
Université Libre de Bruxelles (ULB)
CoDE, IRIDIA, CP 194/6
Av. F. Roosevelt 50
1050 Brussels
Belgium
stuetzle@ulb.ac.be

Stefan Voß
Universität Hamburg
Dept. Wirtschaftwsissenschaften
Inst. Wirtschaftsinformatik
Von-Melle-Park 5
20146 Hamburg
Germany
stefan.voss@uni-hamburg.de

ISSN 1934-3221 e-ISSN 1934-3213
ISBN 978-1-4419-1305-0 e-ISBN 978-1-4419-1306-7
DOI 10.1007/978-1-4419-1306-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009935392

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The field of metaheuristics has traditionally been very receptive to proposals
about how to structure algorithms in order to effectively solve optimization
problems. Innovation of solution approaches has always been one of the traits
of the field, and design paradigms have succeeded as inspiration for algorithm
designers: inspiration from nature, improvements of local search, logics and
probability, etc. The paradigm put forth in this book represents a “back to
the roots” for computational optimization: use mathematics!

Albeit people working on metaheuristics have always been full citizens of
the mathematical programming and operations research community and the
main results have always been well-known, interactions (cross-fertilizations as
it used to be fashionable to say) have always been limited. Core mathematical
programming (MP) approaches have little to share with metaheuristics and
mainstream metaheuristics include little or no mathematics.

This book shows how both metaheuristics and MP can leverage on one an-
other. It shows how it is possible both to include MP techniques into meta-
heuristic frameworks and metaheuristic concepts inside MP systems. This
follows a trend in hybridization, which appeared in several forms in the last
years: metaheuristics are being hybridized with artificial intelligence, with
constraint programming, with statistics, not to mention among themselves.
However, the combination of metaheuristics and MP has a set-apart condi-
tion. Including MP techniques for a metaheuristic designer does not mean
looking for contributions, which could possibly derive from another research
area, it means looking inside one’s own cultural baggage, it means using in a
different way something one has already had experience with.

The contributions included in this collection comprise invited chapters
that give an overview on specific topics in matheuristics and articles that
were selected among the presentations at the Matheuristics 2008 workshop.
This was the second edition of a workshop series centered on the above ideas,
having the stated objective of giving group identity to all researchers who
share the interest in the synergies existing between the two related research
lines metaheuristics and MP. The success of the first edition, which was upon

v

vi Preface

invitation only, suggested to open to submissions for the second. We scored
an higher than 30% rejection rate at the conference, and acceptance barriers
were high also for the present volume. We thus believe to have collected a set
of good quality contributions, which will help in increasing the awareness of
the possibilities offered by this new research direction.

The book includes 11 contributions, which span over a variety of topics.
Caserta and Voß open with an up-to-date overview of the field of meta-

heuristics, which helps to frame the matheuristics contributions in the more
general context of metaheuristics advances.

Fischetti, Lodi and Salvagnin provide a survey on the use of mixed integer
programming (MIP) solvers as subroutines for solving NP-hard subproblems,
which arise while solving a more complex problem. Different success cases are
reported, which follow this general idea.

Puchinger, Raidl and Pirkwieser review possibilities of how to use greedy
heuristics, iterative improvement algorithms, and metaheuristics to improve
the performance of MIP solvers. The possibilities for doing so are varied, and
range from providing good quality starting solutions to using metaheuristics
for cut separation or column generation.

Dumitrescu and Stützle review approaches that combine local search and
metaheuristics with MP techniques. In particular, they focus on algorithms
where the metaheuristic is the master solver and MP techniques are used to
solve subproblems arising in the search process.

Boschetti, Maniezzo and Roffilli show how it is possible to use decom-
position techniques, which were originally conceived as tools for exact opti-
mization, as metaheuristic frameworks. The general structure of each of the
best known decomposition approaches (Lagrangean, Benders and Dantzig-
Wolfe) can, in fact, be considered as a general structure for a corresponding
metaheuristic.

Gutjahr proposes a more theoretical contribution. His chapter gives an
overview on techniques for proving convergence of metaheuristics to optimal
or sufficiently good solutions. Two particularly interesting topics that are cov-
ered are convergence of metaheuristic algorithms for stochastic combinatorial
optimization, and estimation of expected runtime, i.e., of the time needed by
a metaheuristic to hit the first time a solution of a required quality.

The remaining papers address specific problems by means of matheuristic
algorithms, rather than presenting general overviews as the ones above.

Dolgui, Eremeev and Guschinskaya address the problem of balancing
transfer lines with multi-spindle machines. They present two algorithms that
integrate traditional metaheuristics and a MIP solver. Specifically, they de-
sign a GRASP and a genetic algorithm, which both use a MIP solver as a
subroutine for solving subproblems arising in the search process of the meta-
heuristics.

Gruber and Raidl work on exact algorithms for the bounded diameter min-
imum spanning tree problem. They use simple heuristics and a tabu search
algorithm for solving the separation problem in their branch-and-cut algo-

Preface vii

rithm. Moreover, they include in their approach a variable neighborhood
descent for finding good primal solutions.

Liberti, Nannicini and Mladenović present a work in mixed integer non-
linear programming, having the objective of identifying good quality, or at
least feasible solutions for difficult instances. They propose a method, called
RECIPE (for Relaxed-Exact Continuous-Integer Problem Exploration), com-
bining variable neighborhood search, local branching, sequential quadratic
programming and branch-and-bound.

Mitrović-Minić and Punnen present their method consisting in a local
search where large neighborhoods are explored by means of ancillary MIP
subproblems. They present results on the basic generalized assignment prob-
lem (GAP) and on the multi-resource GAP showing the potential of the
approach.

Finally, Ulrich-Ngueveu, Prins, and Wolfler-Calvo study the m-peripatetic
vehicle routing problem, which is a special vehicle routing problem, asking
that each arc is used in the solution at most once for each set of m periods
considered in the plan. The approach uses a perfect b-matching to define the
candidate sets used in a granular tabu search algorithm.

We conclude expressing our gratitude to all authors who submitted their
works to Matheuristics 2008 and to this post-conference collection, to the
members of the international program committee and to all external review-
ers. We are confident that this book, as a result of their joint effort, will
provide a basis to support the increasing interest on the covered topics. We
hope and believe that the result constitutes a significant achievement in the
direction of establishing matheuristics as a credible tool for obtaining fast
and reliable solutions to real-world problems.

Bologna, Brussels, Hamburg, Vittorio Maniezzo
April 2009 Thomas Stützle

Stefan Voß

Contents

1 Metaheuristics: Intelligent Problem Solving 1
Marco Caserta and Stefan Voß
1.1 Introduction . 1
1.2 Basic Concepts and Discussion . 5

1.2.1 Local Search . 5
1.2.2 Metaheuristics . 7
1.2.3 Miscellaneous . 14

1.3 A Taxonomy. 15
1.4 Hybrids with Exact Methods . 19
1.5 General Frames: A Pool-Template . 22
1.6 Fine Tuning and Evaluation of Algorithms 24

1.6.1 Fine Tuning of Metaheuristics 24
1.6.2 Empirical Evaluation of Metaheuristics 26

1.7 Optimization Software Libraries . 30
1.8 Conclusions . 30
References . 32

2 Just MIP it! . 39
Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin
2.1 Introduction . 40
2.2 MIPping Cut Separation . 41

2.2.1 Pure Integer Cuts . 43
2.2.2 Mixed Integer Cuts . 44
2.2.3 A Computational Overview . 47

2.3 MIPping Heuristics . 50
2.3.1 Local Branching and Feasibility Pump 51
2.3.2 LB with Infeasible Reference Solutions 54
2.3.3 Computational Results . 55

2.4 MIPping the Dominance Test . 61
2.4.1 Borrowing Nogoods from Constraint Programming . 63
2.4.2 Improving the Auxiliary Problem 64

ix

x Contents

2.4.3 Computational Results . 65
References . 68

3 MetaBoosting: Enhancing Integer Programming
Techniques by Metaheuristics . 71
Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser
3.1 Introduction . 71
3.2 Integer Programming Techniques . 73

3.2.1 Relaxations and Duality . 73
3.2.2 LP-Based Branch-and-Bound . 75
3.2.3 Cutting Plane Algorithm and Branch-and-Cut 76
3.2.4 Column Generation and Branch-and-Price 77

3.3 Metaheuristics for Finding Primal Bounds 78
3.3.1 Initial Solutions . 78
3.3.2 B&B Acting as Local Search Based Metaheuristic . . 80
3.3.3 Solution Merging . 81
3.3.4 Metaheuristics and Lagrangian Relaxation 83

3.4 Collaborative Hybrids . 84
3.5 Metaheuristics for Cut and Column Generation 85

3.5.1 Cut Separation . 85
3.5.2 Column Generation . 86

3.6 Case Study: A Lagrangian Decomposition/EA Hybrid 87
3.6.1 The Knapsack Constrained Maximum Spanning

Tree Problem . 87
3.6.2 Lagrangian Decomposition of the KCMST Problem 88
3.6.3 Lagrangian Heuristic . 89
3.6.4 Evolutionary Algorithm for the KCMST 89
3.6.5 LD/EA Hybrid . 90
3.6.6 Experimental Results . 91

3.7 Case Study: Metaheuristic Column Generation 92
3.7.1 The Periodic Vehicle Routing Problem with Time

Windows . 92
3.7.2 Set Covering Formulation for the PVRPTW 94
3.7.3 Column Generation for Solving the LP Relaxation . 95
3.7.4 Exact and Metaheuristic Pricing Procedures 96
3.7.5 Experimental Results . 97

3.8 Conclusions . 99
References . 100

4 Usage of Exact Algorithms to Enhance Stochastic Local
Search Algorithms . 103
Irina Dumitrescu and Thomas Stützle
4.1 Introduction . 103
4.2 Exploring large neighborhoods . 106

4.2.1 NSP Example: Cyclic and Path Exchange
Neighborhoods . 108

Contents xi

4.2.2 NSP Example: Dynasearch . 111
4.2.3 PNSP Example: Hyperopt Neighborhoods 112
4.2.4 Other Approaches . 113
4.2.5 Discussion . 114

4.3 Enhancing Metaheuristics . 115
4.3.1 Example: Perturbation in Iterated Local Search 115
4.3.2 Other Approaches . 117
4.3.3 Discussion . 118

4.4 Using Branch-and-Bound Techniques in Constructive
Search Heuristics . 118
4.4.1 Example: Approximate Nondeterministic Tree

Search (ANTS) . 119
4.4.2 Other Approaches . 121

4.5 Exploiting the Structure of Good Solutions 121
4.5.1 Example: Heuristic Concentration 122
4.5.2 Example: Tour Merging . 123
4.5.3 Discussion . 124

4.6 Exploiting Information from Relaxations in Metaheuristics . 125
4.6.1 Example: Simplex and Tabu Search Hybrid 125
4.6.2 Discussion . 127

4.7 Conclusions . 128
References . 129

5 Decomposition Techniques as Metaheuristic Frameworks . 135
Marco Boschetti, Vittorio Maniezzo, and Matteo Roffilli
5.1 Introduction . 135
5.2 Decomposition Methods . 137

5.2.1 Lagrangean Relaxation . 137
5.2.2 Dantzig-Wolfe Decomposition 138
5.2.3 Benders Decomposition . 139

5.3 Metaheuristics Derived from Decompositions 141
5.3.1 A Lagrangean Metaheuristic . 142
5.3.2 A Dantzig-Wolfe Metaheuristic 142
5.3.3 A Benders Metaheuristic . 143

5.4 Single Source Capacitated Facility Location 144
5.4.1 Solving the SCFLP with a Lagrangean

Metaheuristic . 146
5.4.2 Solving the SCFLP with a Dantzig-Wolfe

Metaheuristic . 147
5.4.3 Solving the SCFLP with a Benders Metaheuristic . . 149

5.5 Computational Results . 150
5.5.1 Lagrangean Metaheuristic . 151
5.5.2 Dantzig-Wolfe Metaheuristic . 153
5.5.3 Benders Metaheuristic . 153

5.6 Conclusions . 155
References . 156

xii Contents

6 Convergence Analysis
of Metaheuristics . 159
Walter J. Gutjahr
6.1 Introduction . 159
6.2 A Generic Metaheuristic Algorithm . 161
6.3 Convergence . 164

6.3.1 Convergence Notions . 164
6.3.2 Best-So-Far Convergence . 165
6.3.3 Model Convergence . 167

6.4 Proving Convergence . 169
6.4.1 Proving Best-So-Far Convergence 169
6.4.2 Proving Model Convergence . 169

6.5 Convergence for Problems with Noise . 175
6.6 Convergence Speed . 178
6.7 Conclusions . 183
References . 184

7 MIP-based GRASP and Genetic Algorithm for Balancing
Transfer Lines . 189
Alexandre Dolgui, Anton Eremeev, and Olga Guschinskaya
7.1 Introduction . 189
7.2 Problem Statement . 191
7.3 Greedy Randomized Adaptive Search Procedure 195

7.3.1 Construction Phase . 195
7.3.2 Improvement Phase . 197

7.4 Genetic Algorithm. 198
7.5 Experimental Results . 200

7.5.1 Problem Instances . 200
7.5.2 Experimental Settings . 201
7.5.3 Results . 202

7.6 Conclusions . 206
References . 207

8 (Meta-)Heuristic Separation of Jump Cuts in a
Branch&Cut Approach for the Bounded Diameter
Minimum Spanning Tree Problem . 209
Martin Gruber and Günther R. Raidl
8.1 Introduction . 209
8.2 Previous Work . 210
8.3 The Jump Model . 211
8.4 Jump Cut Separation . 213

8.4.1 Exact Separation Model . 214
8.4.2 Simple Construction Heuristic CA 215
8.4.3 Constraint Graph Based Construction Heuristic CB 216
8.4.4 Local Search and Tabu Search 219

8.5 Primal Heuristics . 220
8.6 Computational Results . 222

Contents xiii

8.7 Conclusions and Future Work . 228
References . 228

9 A Good Recipe for Solving MINLPs . 231
Leo Liberti, Giacomo Nannicini, and Nenad Mladenović
9.1 Introduction . 231
9.2 The Basic Ingredients . 233

9.2.1 Variable Neighbourhood Search 233
9.2.2 Local Branching . 234
9.2.3 Branch-and-Bound for cMINLPs 234
9.2.4 Sequential Quadratic Programming 235

9.3 The RECIPE Algorithm . 236
9.3.1 Hyperrectangular Neighbourhood Structure 236

9.4 Computational Results . 238
9.4.1 MINLPLib . 239

9.5 Conclusion . 242
References . 243

10 Variable Intensity Local Search . 245
Snežana Mitrović-Minić and Abraham P. Punnen
10.1 Introduction . 245
10.2 The General VILS Framework . 246
10.3 Experimental Studies . 249
10.4 Conclusion . 250
References . 251

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle
Routing Problem . 253
Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler
Calvo
11.1 Introduction . 253
11.2 Tabu Search . 255

11.2.1 Initial Solution Heuristic and Neighborhood
Structure . 255

11.2.2 Penalization and Tabu List Management 257
11.3 Hybridization with b-Matching and Diversification 257

11.3.1 b-Matching . 257
11.3.2 Hybridization . 258
11.3.3 Diversification Procedure . 259

11.4 Computational Analysis . 259
11.4.1 VRP and m-PSP . 261
11.4.2 m-PVRP with 2 ≤ m ≤ 7 . 262

11.5 Conclusion . 263
References . 264

Index . 267

List of Contributors

Marco Boschetti
Department of Mathematics, Università di Bologna, Bologna, Italy
e-mail: marco.boschetti@unibo.it

Marco Caserta
Institute of Information Systems (Wirtschaftsinformatik), University of
Hamburg, Hamburg, Germany
e-mail: marco.caserta@uni-hamburg.de

Alexandre Dolgui
Department Scientific Methods for Industrial Management, Ecole Nationale
Supérieure des Mines de Saint Etienne, Saint Etienne, France
e-mail: dolgui@emse.fr

Irina Dumitrescu
School of Mathematics, University of New South Wales, Sydney, Australia
e-mail: irina.dumitrescu@unsw.edu.au

Anton Eremeev
Omsk Branch of Sobolev Institute of Mathematics, Omsk, Russia
e-mail: eremeev@ofim.oscsbras.ru

Matteo Fischetti
DEI, Università di Padova, Padua, Italy
e-mail: matteo.fischetti@unipd.it

Martin Gruber
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Vienna, Austria
e-mail: gruber@ads.tuwien.ac.at

xv

marco.boschetti@unibo.it
marco.caserta@uni-hamburg.de
dolgui@emse.fr
irina.dumitrescu@unsw.edu.au
eremeev@ofim.oscsbras.ru
matteo.fischetti@unipd.it
gruber@ads.tuwien.ac.at

xvi List of Contributors

Olga Guschinskaya
Department Scientific Methods for Industrial Management, Ecole Nationale
Supérieure des Mines de Saint Etienne, Saint Etienne, France
e-mail: guschinskaya@emse.fr

Walter J. Gutjahr
Department of Statistics and Decision Support Systems, University of
Vienna, Vienna, Austria
e-mail: walter.gutjahr@univie.ac.at

Andrea Lodi
DEIS, Università di Bologna, Bologna, Italy
e-mail: andrea.lodi@unibo.it

Leo Liberti
LIX, École Polytechnique, Palaiseau, France
e-mail: liberti@lix.polytechnique.fr

Vittorio Maniezzo
Department of Computer Science, Università di Bologna, Cesena, Italy
e-mail: vittorio.maniezzo@unibo.it

Snežana Mitrović-Minić
Department of Mathematics, Simon Fraser University, Surrey, Canada
e-mail: snezanam@sfu.ca

Nenad Mladenović
Department of Mathematical Sciences, Brunel University, London, UK and
Institute of Mathematics, Academy of Sciences, Belgrade, Serbia
e-mail: nenad.mladenovic@brunel.ac.uk,nenad@turing.mi.sanu.ac.yu

Giacomo Nannicini
LIX, École Polytechnique, Palaiseau, France
e-mail: giacomon@lix.polytechnique.fr

Sandra Ulrich Ngueveu
Institut Charles Delaunay—LOSI, Université de Technologie de Troyes
(UTT), Troyes, France
e-mail: ngueveus@utt.fr

Sandro Pirkwieser
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Vienna, Austria
e-mail: pirkwieser@ads.tuwien.ac.at

Christian Prins
Institut Charles Delaunay—LOSI, Université de Technologie de Troyes
(UTT), Troyes, France
e-mail: christian.prins@utt.fr

guschinskaya@emse.fr
walter.gutjahr@univie.ac.at
andrea.lodi@unibo.it
liberti@lix.polytechnique.fr
vittorio.maniezzo@unibo.it
snezanam@sfu.ca
nenad.mladenovic@brunel.ac.uk,nenad@turing.mi.sanu.ac.yu
giacomon@lix.polytechnique.fr
ngueveus@utt.fr
pirkwieser@ads.tuwien.ac.at
christian.prins@utt.fr

List of Contributors xvii

Jakob Puchinger
arsenal research, Vienna, Austria
e-mail: jakob.puchinger@arsenal.ac.at

Abraham P. Punnen
Department of Mathematics, Simon Fraser University, Surrey, Canada
e-mail: apunnen@sfu.ca

Günther R. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Vienna, Austria
e-mail: raidl@ads.tuwien.ac.at

Matteo Roffilli
Department of Computer Science, University of Bologna, Cesena, Italy
e-mail: roffilli@csr.unibo.it

Domenico Salvagnin
DMPA, Università di Padova, Padua, Italy
e-mail: dominiqs@gmail.com

Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: stuetzle@ulb.ac.be

Stefan Voß
Institute of Information Systems (Wirtschaftsinformatik), University of
Hamburg, Hamburg, Germany
e-mail: stefan.voss@uni-hamburg.de

Roberto Wolfler Calvo
Institut Charles Delaunay—LOSI, Université de Technologie de Troyes
(UTT), Troyes, France
e-mail: roberto.wolfler_calvo@utt.fr

jakob.puchinger@arsenal.ac.at
apunnen@sfu.ca
raidl@ads.tuwien.ac.at
roffilli@csr.unibo.it
dominiqs@gmail.com
stuetzle@ulb.ac.be
stefan.voss@uni-hamburg.de
roberto.wolfler_calvo@utt.fr

Chapter 1

Metaheuristics: Intelligent Problem
Solving

Marco Caserta and Stefan Voß

Abstract Metaheuristics support managers in decision making with robust
tools providing high quality solutions to important problems in business,
engineering, economics and science in reasonable time horizons. While find-
ing exact solutions in these applications still poses a real challenge despite
the impact of recent advances in computer technology and the great inter-
actions between computer science, management science/operations research
and mathematics, (meta-) heuristics still seem to be the methods of choice in
many (not to say most) applications. In this chapter we give some insight into
the state of the art of metaheuristics. It focuses on the significant progress
regarding the methods themselves as well as the advances regarding their
interplay and hybridization with exact methods.

1.1 Introduction

The use of heuristics and metaheuristics to solve real world problems is widely
accepted within the operations research community. It is well-known that
the great majority of complex real world decision problems, when modeled
as optimization problems, belong to the class of NP-hard problems. This
implies that exact approaches are doomed to fail when dealing with large
scale instances, whether they arise from business, engineering, economics or
science. Today, decision making processes are increasingly complex and more
encompassing, in the sense that more decision variables are used to model
complex situations and more input data and parameters are available to
capture the complexity of the problems themselves.

Marco Caserta · Stefan Voß

Institute of Information Systems (Wirtschaftsinformatik), University of Hamburg,
Von-Melle-Park 5, 20146 Hamburg, Germany

e-mail: {marco.caserta,stefan.voss}@uni-hamburg.de

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 1

DOI 10.1007/978-1-4419-1306-7 1, c© Springer Science+Business Media, LLC 2009

{marco.caserta,stefan.voss}@uni-hamburg.de

2 M. Caserta and S. Voß

The inherent complexity of real world optimization problems, though,
should be interpreted in the light of what complexity analysis really means:
on the one hand, the fact that a problem belongs to the class of NP-hard
problems implies that there is no knowledge of an algorithm capable of solv-
ing the problem itself to optimality in polynomial time with respect to its
input size (and many believe that there will never be); on the other hand, it is
worth remembering that complexity analysis provides a worst case scenario,
i.e., it indicates that, in the worst case, with the growth of the input size, the
algorithm will require more and more time/steps to provide a definite answer.
However, it is also worth noting that practitioners have observed that it is
possible to design ad-hoc algorithms which, while not guaranteeing optimal
or near-optimal solutions for the whole set of possible instances of a given
problem (and, in many cases, not even a simple, single answer can be guaran-
teed at all), they do provide near-optimal solutions “most” of the times. This
is exactly the goal of a metaheuristic designer (analyst), namely, to design an
algorithm for which, even though no guarantee about the worst case scenario
can be offered, a certain degree of confidence about the performance of the
algorithm “most of the times” can still be asserted.

Consequently, the real challenge of the metaheuristic expert is not only to
objectively measure the algorithm in terms of solution quality and computa-
tional time over problems for which no optimal solution is known (which, in
itself, can be a challenging task due to the lack of any benchmark) but also
to use sound quantitative methods and techniques to assert the robustness of
the algorithm over a wide spectrum of instance types, hence enhancing the
usability of the algorithm itself by industry decision makers, e.g., as “opti-
mization modules” within decision support systems.

A first trade-off emerges here: on the one hand, it is highly desirable to
design “general purpose” metaheuristics, which do not require problem spe-
cific knowledge and can readily be applied to a wide spectrum of problem
classes. This has been the line of research of the last decades, during which
a number of general purpose metaheuristic paradigms have been proposed,
e.g., simulated annealing, genetic algorithms, tabu search, ant colony, etc.
The main argument in favor of such paradigms is exactly their general appli-
cability upon a large set of problems, without requiring major re-design or
any in-depth knowledge of the problem to be tackled. Consequently, general
paradigms seem especially suited for practitioners, who are interested in get-
ting a solution to the problem without investing a huge amount of time in
understanding the mathematical properties of the model and in implement-
ing tailor-made algorithms. However, most successful metaheuristics applied
to specific problems are also tailored to the problem, or fine-tuned. On the
other hand, it has been observed that general purpose metaheuristics are out-
performed by hybrid algorithms, which usually are algorithms that combine
mathematical programming techniques with metaheuristic-based ideas. Al-
gorithms of this class are tailor-made and specifically designed to exploit the
mathematical properties of the problem at hand. While such approaches are

1 Metaheuristics: Intelligent Problem Solving 3

able to provide enhanced performance, an obvious consequence is a reduction
in the usability of the algorithm itself. In general, a tailor-made algorithm can
be used only for a specific class of problems and, often, the underlying ideas
cannot easily be extended towards operating on a different class of problems.

The discussion on metaheuristic based algorithms is further complicated
by what has been observed in recent years: these algorithms in general seem
to provide varying performance depending upon the sensitivity (skills, exper-
tise, ingenuity, etc.) of the designer in algorithmic fine tuning. In order to
maximize algorithmic performance, an instance specific fine tuning might be
required. The variability in the results of a metaheuristic presents at least
two major drawbacks: (i) On one hand, the issue of reproducibility of results
arises: It is common knowledge that a proposed algorithm implemented by
two different researchers can lead to altogether different results, depending
upon factors such as implementation skills, special usage of data structures,
and ability in parameter settings, among others. For this reason, it is hard
to compare and thoroughly assess a metaheuristic and its performance. (ii)
On the other hand, a problem of performance maximization is envisioned:
One of the commonalities of virtually all proposed metaheuristic paradigms
is that they are characterized by a considerable number of parameters, whose
value(s) strongly affect the overall performance of the algorithm itself. It is
common knowledge that the fine tuning of algorithmic parameters is not only
problem-specific, but even instance-specific, i.e., even for a given problem,
parameter values should be fine-tuned and adjusted according to instance
specific information (e.g., instance size, distribution of its values, etc.).

The purpose of this paper is to provide a survey of the general field of
metaheuristics. While we cannot be fully comprehensive in a single paper, in
line with the above remarks, some of the issues addressed in this paper are:

• In light of the well-known no-free-lunch-theorem [128], which basically
states that, on average, no algorithm outperforms all the others, one might
wonder what strategy to pursue, i.e., whether the goal of a researcher in
the field should be to develop a better general framework able to effectively
solve a wider spectrum of problems or, conversely, to tackle each individual
problem separately, by designing tailor-made algorithms that fully exploit
the mathematical structure and properties of each problem. A recent line
of research in the metaheuristic field is concerned with the design of hybrid
algorithms, where the term hybrid can indicate either the combination of
different metaheuristics or the intertwined usage of metaheuristic features
with mathematical programming techniques. Consequently, a trade-off be-
tween re-usability and performance of an algorithm arises.

• As highlighted before, no heuristic can guarantee high quality solutions
over all possible instances of a given problem class. However, it is at least
desirable to present a robust behavior over a spectrum of instances belong-
ing to the same problem class. One key factor that seems to have a strong
impact on the algorithmic performance is the fine tuning of the algorithm
itself. Since the behavior of a metaheuristic is affected by its parameters,

4 M. Caserta and S. Voß

one might wonder how to select a good set of parameter values. An im-
portant topic in metaheuristic design is, therefore, the identification and
development of techniques for the fine tuning of algorithmic parameters.

• Due to the stochastic behavior of some metaheuristics and the lack of com-
monly accepted and adopted techniques for the evaluation of algorithmic
performance, given two algorithms designed to tackle the same class of
problems, it is not always possible to “rank” such algorithms in terms of
their performance. One direct consequence is that there is still no clear
understanding about which features are really successful and under which
circumstances. In other words, unless clear standards about metaheuristics
are defined, it will be really hard to have a full grasp of, first, which algo-
rithms are better than others and, second, what is the real contribution of
each feature of the algorithm upon the overall performance.

The structure of this paper is as follows: We first present general con-
cepts about heuristics and metaheuristics, seen from an operations research
perspective. Next, we illustrate some findings from recent research about
hybridization, seen as a combination of exact approaches and mathemati-
cal programming techniques with metaheuristic frameworks. We also include
here some recent contributions about metaheuristic design, i.e., a collection
of ideas and thoughts about what should influence which features of a meta-
heuristic paradigm to be included in the algorithm (e.g., fitness landscape
evaluation). Next, we focus on the important issue of metaheuristics fine tun-
ing and calibrations, by introducing some quantitative methods drawn from
statistics that have been employed with this goal in mind. We also present
some thoughts on the ongoing debate on metaheuristic assessment, i.e., how
an objective evaluation of the performance of a metaheuristic can be carried
out in order to increase objectivity of the evaluation and reproducibility of
the results. Next, we mention some optimization software libraries especially
focused on the implementation of general heuristic and metaheuristic frame-
works. The development of software libraries for metaheuristics is perceived
as a key factor in the emerging of standards in the field. Finally, the last
section presents some concluding remarks.

Earlier survey papers on metaheuristics include [19, 121, 122].1 The general
concepts have not become obsolete, and many changes are mainly based
upon an update to most recent references. A handbook on metaheuristics
is available describing a great variety of concepts by various authors in a
comprehensive manner [59].

1 Here we occasionally rely on [121] and [122] without explicitly quoting at appropriate

places for not “disturbing” the readability.

1 Metaheuristics: Intelligent Problem Solving 5

1.2 Basic Concepts and Discussion

The basic concept of heuristic search as an aid to problem solving was first
introduced by [93]. A heuristic is a technique (consisting of a rule or a set
of rules) which seeks (and hopefully finds) good solutions at a reasonable
computational cost. A heuristic is approximate in the sense that it provides
(hopefully) a good solution for relatively little effort, but it does not guarantee
optimality.

Heuristics provide simple means of indicating which among several alterna-
tives seems to be best. That is, “heuristics are criteria, methods, or principles
for deciding which among several alternative courses of action promises to be
the most effective in order to achieve some goal. They represent compromises
between two requirements: the need to make such criteria simple and, at the
same time, the desire to see them discriminate correctly between good and
bad choices. A heuristic may be a rule of thumb that is used to guide one’s
action.” [91]

Greedy heuristics are simple iterative approaches available for any kind of
(e.g., combinatorial) optimization problem. A good characterization is their
myopic behavior. A greedy heuristic starts with a given feasible or infeasible
solution. In each iteration there is a number of alternative choices (moves)
that can be made to transform the solution. From these alternatives which
consist in fixing (or changing) one or more variables, a greedy choice is made,
i.e., the best alternative according to a given measure is chosen until no such
transformations are possible any longer.

Usually, a greedy construction heuristic starts with an incomplete solution
and completes it in a stepwise fashion. Savings and dual algorithms follow the
same iterative scheme: Dual heuristics change an infeasible low cost solution
until reaching feasibility, savings algorithms start with a high cost solution
and realize the highest savings as long as possible. Moreover, in all three cases,
once an element is chosen this decision is (usually) not reversed throughout
the algorithm, it is kept.

As each alternative has to be measured, in general we may define some
sort of heuristic measure (providing, e.g., some priority values or some ranking
information) which is iteratively followed until a complete solution is build.
Usually this heuristic measure is applied in a greedy fashion.

For heuristics we usually have the distinction between finding initial feasi-
ble solutions and improving them. In that sense we first discuss local search
before characterizing metaheuristics.

1.2.1 Local Search

The basic principle of local search is to successively alter solutions locally. Re-
lated transformations are defined by neighborhoods which for a given solution

6 M. Caserta and S. Voß

include all solutions that can be reached by one move. That is, neighborhood
search usually is assumed to proceed by moving iteratively from one solution
to another one by performing some sort of operation. More formally, each so-
lution of a problem has an associated set of neighbors called its neighborhood,
i.e., solutions that can be obtained by a single operation called transforma-
tion or move. Most common ideas for transformations are, e.g., to add or drop
some problem specific individual components. Other options are to exchange
two components simultaneously, or to swap them. Furthermore, components
may be shifted from a certain position into other positions. All components
involved within a specific move are called its elements or attributes.

Moves must be evaluated by some heuristic measure to guide the search.
Often one uses the implied change of the objective function value, which
may provide reasonable information about the (local) advantage of moves.
Following a greedy strategy, steepest descent (SD) corresponds to selecting
and performing in each iteration the best move until the search stops at a
local optimum. Obviously, savings algorithms correspond to SD.

As the solution quality of local optima may be unsatisfactory, we need
mechanisms that guide the search to overcome local optimality. For example,
a metaheuristic strategy called iterated local search is used to iterate/restart
the local search process after a local optimum has been obtained, which re-
quires some perturbation scheme to generate a new initial solution (e.g., per-
forming some random moves). Of course, more structured ways to overcome
local optimality may be advantageous.

A general survey on local search can be found in [1] and the references
from [2]. A simple template is provided by [116].

Despite the first articles on this topic already being in the 1970s (cf. Lin
and Kernighan [82]), a variable way of handling neighborhoods is still a topic
within local search. Consider an arbitrary neighborhood structure N , which
defines for any solution s a set of neighbor solutions N1(s) as a neighbor-
hood of depth d = 1. In a straightforward way, a neighborhood Nd+1(s) of
depth d + 1 is defined as the set Nd(s) ∪ {s′|∃s′′ ∈ Nd(s) : s′ ∈ N1(s′′)}. In
general, a large d might be unreasonable, as the neighborhood size may grow
exponentially. However, depths of two or three may be appropriate. Further-
more, temporarily increasing the neighborhood depth has been found to be
a reasonable mechanism to overcome basins of attraction, e.g., when a large
number of neighbors with equal quality exist [12, 13].

Large scale neighborhoods and large scale neighborhood search have be-
come an important topic (see, e.g., [5] for a survey), especially when efficient
ways are at hand for exploring them. Related research can also be found
under various names; see, e.g., [92] for the idea of ejection chains.

1 Metaheuristics: Intelligent Problem Solving 7

1.2.2 Metaheuristics

The formal definition of metaheuristics is based on a variety of definitions
from different authors derived from [52]. Basically, a metaheuristic is a top-
level strategy that guides an underlying heuristic solving a given problem.
In that sense we distinguish between a guiding process and an application
process. The guiding process decides upon possible (local) moves and forwards
its decision to the application process which then executes the chosen move.
In addition, it provides information for the guiding process (depending on
the requirements of the respective metaheuristic) like the recomputed set of
possible moves.

According to [58] “metaheuristics in their modern forms are based on a
variety of interpretations of what constitutes intelligent search,” where the
term intelligent search has been made prominent by Pearl [91] (regarding
heuristics in an artificial intelligence context; see also [118] regarding an op-
erations research context). In that sense we may also consider the following
definition: “A metaheuristic is an iterative generation process which guides
a subordinate heuristic by combining intelligently different concepts for ex-
ploring and exploiting the search spaces using learning strategies to structure
information in order to find efficiently near-optimal solutions.” [88].

To summarize, the following definition seems to be most appropriate: “A
metaheuristic is an iterative master process that guides and modifies the op-
erations of subordinate heuristics to efficiently produce high quality solutions.
It may manipulate a complete (or incomplete) single solution or a collection
of solutions at each iteration. The subordinate heuristics may be high (or
low) level procedures, or a simple local search, or just a construction method.
The family of metaheuristics includes, but is not limited to, adaptive mem-
ory procedures, tabu search, ant systems, greedy randomized adaptive search,
variable neighborhood search, evolutionary methods, genetic algorithms, scat-
ter search, neural networks, simulated annealing, and their hybrids.” [124],
p. ix.

1.2.2.1 Simulated Annealing

Simulated annealing (SA) extends basic local search by allowing moves to
inferior solutions [80, 35]. A basic SA algorithm may be described as follows:
Iteratively, a candidate move is randomly selected; it is accepted if it leads to
a solution with an improved objective function value compared to the current
solution. Otherwise, the move is accepted with a probability depending on the
deterioration ∆ of the objective function value. The acceptance probability
is computed as e−∆/T , using a temperature T as control parameter. Usually,
T is reduced over time for diversification at an earlier stage of the search and
to intensify later.

8 M. Caserta and S. Voß

Various authors describe a robust implementation of this general SA ap-
proach; see, e.g., [79], [77]. An interesting variant of SA is to strategically
reheat the process, i.e., to perform a non-monotonic acceptance function.

Threshold accepting [37] is a modification (or simplification) of SA accept-
ing every move that leads to a new solution that is ‘not much worse’ than
the older one (i.e., it deteriorates not more than a certain threshold, which
reduces with a temperature).

1.2.2.2 Tabu Search

The basic paradigm of tabu search (TS) is to use information about the search
history to guide local search approaches to overcome local optimality (see [58]
for a survey on TS). In general, this is done by a dynamic transformation of
the local neighborhood. Based on some sort of memory, certain moves may be
forbidden, i.e., they are set tabu. As for SA, the search may lead to performing
deteriorating moves when no improving moves exist or all improving moves
of the current neighborhood are set tabu. At each iteration, a best admissible
neighbor may be selected. A neighbor, respectively a corresponding move, is
called admissible, if it is not tabu or if an aspiration criterion is fulfilled. An
aspiration criterion is a rule to eventually override a possibly unreasonable
tabu status of a move. For example, a move that leads to a neighbor with a
better objective function value than encountered so far should be considered
as admissible.

The most commonly used TS method is based on a recency-based mem-
ory that stores moves, or attributes characterizing respective moves, of the
recent past (static TS). The basic idea of such approaches is to prohibit an
appropriately defined inversion of performed moves for a given period by
storing attributes of the solution in a tabu list and then preventing moves
that require the use of attributes in such a list.

Strict TS embodies the idea of preventing cycling to formerly traversed
solutions. The goal is to provide necessity and sufficiency with respect to the
idea of not revisiting any solution. Accordingly, a move is classified as tabu
iff it leads to a neighbor that has already been visited during the previous
search. There are two primary mechanisms to accomplish the tabu criterion:
First, we may exploit logical interdependencies between the sequence of moves
performed throughout the search process, as realized by, e.g., the reverse
elimination method (cf., e.g., [53, 120]). Second, we may store information
about all solutions visited so far. This may be carried out either exactly or,
for reasons of efficiency, approximately (e.g., by using hash codes).

Reactive TS aims at the automatic adaptation of the tabu list length of
static TS [15] by increasing the tabu list length when the tabu memory in-
dicates that the search is revisiting formerly traversed solutions. A possible
specification can be described as follows: Starting with a tabu list length l of
1 it is increased every time a solution has been repeated. If there has been

1 Metaheuristics: Intelligent Problem Solving 9

no repetition for some iterations, we decrease it appropriately. To accomplish
the detection of a repetition of a solution, one may apply a trajectory based
memory using hash codes as for strict TS.

There is a large number of additional ingredients that may make TS work
well. Examples include restricting the number of neighbor solutions to be
evaluated (using candidate list strategies, e.g., [97]), logical tests as well as
diversification mechanisms.

1.2.2.3 Evolutionary Algorithms

Evolutionary algorithms comprise a great variety of different concepts and pa-
radigms including genetic algorithms (see, e.g., [73, 60]), evolutionary strate-
gies (see, e.g., [72, 106]), evolutionary programs [48], scatter search (see, e.g.,
[51, 54]), and memetic algorithms [87]. For surveys and references on evolu-
tionary algorithms see also [49, 9, 85, 99].

Genetic algorithms are a class of adaptive search procedures based on prin-
ciples derived from the dynamics of natural population genetics. One of the
most crucial ideas for a successful implementation of a genetic algorithm (GA)
is the representation of an underlying problem by a suitable scheme. A GA
starts, e.g., with a randomly created initial population of artificial creatures
(strings), a set of solutions. These strings in whole and in part are the base set
for all subsequent populations. Information is exchanged between the strings
in order to find new solutions of the underlying problem. The mechanisms
of a simple GA essentially consist of copying strings and exchanging partial
strings. A simple GA uses three operators which are named according to the
corresponding biological mechanisms: reproduction, crossover, and mutation.
Performing an operator may depend on a fitness function or its value (fit-
ness), respectively. As some sort of heuristic measure, this function defines a
means of measurement for the profit or the quality of the coded solution for
the underlying problem and often depends on the objective function of the
given problem.

GAs are closely related to evolutionary strategies. Whereas the mutation
operator in a GA was argued to serve to protect the search from prema-
ture loss of information [60], evolutionary strategies may incorporate some
sort of local search procedure (such as SD) with self adapting parameters
involved in the procedure. On a simplified scale many algorithms may be
classified as evolutionary once they are reduced to the following frame (see
[71]). First, an initial population of individuals is generated. Second, as long as
a termination criterion does not hold, perform some sort of co-operation and
self-adaptation. Self-adaptation refers to the fact that individuals (solutions)
evolve independently while co-operation refers to an information exchange
among individuals.

Scatter search ideas established a link between early ideas from various
sources—evolutionary strategies, TS and GAs. As an evolutionary approach,

10 M. Caserta and S. Voß

scatter search originated from strategies for creating composite decision rules
and surrogate constraints (see [51]). Scatter search is designed to operate on a
set of points, called reference points, that constitute good solutions obtained
from previous solution efforts. The approach systematically generates linear
combinations of the reference points to create new points, each of which is
mapped into an associated point that yields integer values for discrete vari-
ables. Scatter search contrasts with other evolutionary procedures, such as
GAs, by providing unifying principles for joining solutions based on general-
ized path constructions in Euclidean space and by utilizing strategic designs
where other approaches resort to randomization. For a very comprehensive
treatment of scatter search see [81].

1.2.2.4 Cross Entropy Method

Initially proposed by [104] for the estimation of rare events, the cross entropy
method (CE) was extended to solve combinatorial optimization problems [28].
The key ingredient in the CE is the identification of a parametric probability
distribution function to be used to generate feasible solutions. Given an initial
probability distribution function φ0, a converging sequence of φt is generated
in such a way that each subsequent probability distribution function better
captures prominent features found in high quality solutions.

At any given iteration t, φt is used to generate a population of a given
cardinality. Each solution is then evaluated according to a specified merit
function (or heuristic measure), e.g., the objective function value associated to
each random variate, and the stochastic parameters are then updated in such
a way that, in the next generation of the population, high quality solutions
will have higher probabilities of being generated under the new model. The
problem of updating the stochastic parameters can be solved by applying
the maximum likelihood estimator method upon a set of “elite solutions”
of the current population. In other words, given the top ρ% of the current
population, the CE aims at identifying the value of the parameters of the
probability distribution function that better “explains” these elite solutions.
This corresponds to adjusting the model to better describe the portion of
the feasible space in which good solutions have been found. The two-phase
process of generation and update is repeated until convergence in probability
is reached.

1.2.2.5 Ant Colony Optimization

The ant colony optimization (ACO) metaheuristic [32, 33] is a stochastic
method based upon the definition of a construction graph and the use of a
set of stochastic procedures called artificial ants. A number of frameworks
for the update of stochastic parameters have been proposed. The ant system

1 Metaheuristics: Intelligent Problem Solving 11

is a dynamic optimization process reflecting the natural interaction between
ants searching for food (see, e.g., [32, 33]). The ants’ ways are influenced by
two different kinds of search criteria. The first one is the local visibility of
food, i.e., the attractiveness of food in each ant’s neighborhood. Additionally,
each ant’s way through its food space is affected by the other ants’ trails as
indicators for possibly good directions. The intensity of trails itself is time-
dependent: With time passing, parts of the trails are diminishing, meanwhile
the intensity may increase by new and fresh trails. With the quantities of
these trails changing dynamically, an autocatalytic optimization process is
started forcing the ants’ search into most promising regions. This process
of interactive learning can easily be modeled for most kinds of optimization
problems by using simultaneously and interactively processed search trajec-
tories.

A comprehensive treatment of the ant system paradigm can be found
in [33]. To achieve enhanced performance of the ant system it is useful to
hybridize it at least with a local search component.

As pointed out by [133], there are a number of commonalities between the
CE and the ACO method, especially with respect to the parameter updating
rule mechanisms.

1.2.2.6 Corridor Method

The corridor method (CM) has been presented by [109] as a hybrid meta-
heuristic, linking together mathematical programming techniques with heuris-
tic schemes. The basic idea of the CM relies on the use of an exact method
over restricted portions of the solution space of a given problem. Given an
optimization problem P , the basic ingredients of the method are a very large
feasible space X , and an exact method M that could easily solve problem P
if the feasible space were not large. Since, in order to be of interest, problem
P generally belongs to the class of NP-hard problems, the direct application
of method M to solve P becomes unpractical when dealing with real world
instances, i.e., when X is large.

The basic concept of a corridor is introduced to delimit a portion of the
solution space around the incumbent solution. The optimization method will
then be applied within the neighborhood defined by the corridor with the
aim of finding an improved solution. Consequently, the CM defines method-
based neighborhoods, in which a neighborhood is built taking into account
the method M used to explore it. Given a current feasible solution x ∈ X , the
CM builds a neighborhood of x, say N (x), which can effectively be explored
by employing method M . Ideally, N (x) should be exponentially large and
built in such a way that it could be explored in (pseudo) polynomial time
using method M .

12 M. Caserta and S. Voß

1.2.2.7 Pilot Method

Building on a simple greedy algorithm such as, e.g., a construction heuristic
the pilot method [38, 39] is a metaheuristic not necessarily based on a lo-
cal search in combination with an improvement procedure. It primarily looks
ahead for each possible local choice (by computing a so-called “pilot” solu-
tion), memorizing the best result, and performing the respective move. (Very
similar ideas have been investigated under the acronym rollout method [17].)
One may apply this strategy by successively performing a greedy heuristic for
all possible local steps (i.e., starting with all incomplete solutions resulting
from adding some not yet included element at some position to the current in-
complete solution). The look ahead mechanism of the pilot method is related
to increased neighborhood depths as the pilot method exploits the evaluation
of neighbors at larger depths to guide the neighbor selection at depth one.

In most applications, it is reasonable to restrict the pilot process to some
evaluation depth. That is, the method is performed up to an incomplete so-
lution (e.g., partial assignment) based on this evaluation depth and then
completed by continuing with a conventional heuristic. For a recent study
applying the pilot method to several combinatorial optimization problems
obtaining very good results see [123]. Additional applications can be found,
e.g., in [84, 22].

1.2.2.8 Other Methods

Adaptive memory programming (AMP) coins a general approach (or even
thinking) within heuristic search focusing on exploiting a collection of mem-
ory components [55, 114]. An AMP process iteratively constructs (new) so-
lutions based on the exploitation of some memory, especially when combined
with learning mechanisms supporting the collection and use of the memory.
Based on the idea of initializing the memory and then iteratively generating
new solutions (utilizing the given memory) while updating the memory based
on the search, we may subsume various of the above described metaheuristics
as AMP approaches. This also includes exploiting provisional solutions that
are improved by a local search approach.

The performance as well as the efficiency of a heuristic scheme strongly
depends on its ability to use AMP techniques providing flexible and variable
strategies for types of problems (or special instances of a given problem type)
where standard methods fail. Such AMP techniques could be, e.g., dynamic
handling of operational restrictions, dynamic move selection formulas, and
flexible function evaluations.

Consider, as an example, adaptive memory within TS concepts. Realizing
AMP principles depends on which specific TS application is used. For ex-
ample, the reverse elimination method observes logical interdependencies be-

1 Metaheuristics: Intelligent Problem Solving 13

tween moves and infers corresponding tabu restrictions, and therefore makes
fuller use of AMP than simple static approaches do.

To discuss the use of AMP in intelligent agent systems, one may use the
simple model of ant systems as an illustrative starting point. As ant systems
are based on combining constructive criteria with information derived from
the pheromone trails, this follows the AMP requirement for using flexible
(dynamic) move selection rules (formulas). However, the basic ant system
exhibits some structural inefficiencies when viewed from the perspective of
general intelligent agent systems, as no distinction is made between successful
and less successful agents, no time-dependent distinction is made, there is
no explicit handling of restrictions providing protection against cycling and
duplication. Furthermore, there are possible conflicts between the information
held in the adaptive memory (diverging trails).

A natural way to solve large optimization problems is to decompose them
into independent sub-problems that are solved with an appropriate proce-
dure. However, such approaches may lead to solutions of moderate quality
since the sub-problems might have been created in a somewhat arbitrary
fashion. Of course, it is not easy to find an appropriate way to decompose a
problem a priori. The basic idea of POPMUSIC is to locally optimize sub-
parts of a solution, a posteriori, once a solution to the problem is available.
These local optimizations are repeated until a local optimum is found. There-
fore, POPMUSIC may be viewed as a local search working with a special,
large neighborhood. While POPMUSIC has been acronymed by [112] other
metaheuristics may be incorporated into the same framework, too (e.g. [107]).
Similarly, in the variable neighborhood search (VNS) [68] the neighborhood
is altered during the search in such a way that different, e.g. increasingly
distant, neighborhoods of a given solution are explored. Such method can be
enhanced via decomposition, as in the variable neighborhood decomposition
search (VNDS) (see, e.g., [69]).

For large optimization problems, it is often possible to see the solutions
as composed of parts (or chunks [129], cf. the term vocabulary building).
Considering as an example the vehicle routing problem, a part may be a tour
(or even a customer). Suppose that a solution can be represented as a set
of parts. Moreover, some parts are more in relation with some other parts
so that a corresponding heuristic measure can be defined between two parts.
The central idea of POPMUSIC is to select a so-called seed part and a set P
of parts that are mostly related with the seed part to form a sub-problem.

Then it is possible to state a local search optimization frame that consists
of trying to improve all sub-problems that can be defined, until the solution
does not contain a sub-problem that can be improved. In the POPMUSIC
frame of [112], the set of parts P corresponds precisely to seed parts that have
been used to define sub-problems that have been unsuccessfully optimized.
Once P contains all the parts of the complete solution, then all sub-problems
have been examined without success and the process stops.

14 M. Caserta and S. Voß

Basically, the technique is a gradient method that starts from a given
initial solution and stops in a local optimum relative to a large neighborhood
structure. To summarize, both, POPMUSIC as well as AMP may serve as a
general frame encompassing various other approaches.

1.2.3 Miscellaneous

Target analysis may be viewed as a general learning approach. Given a prob-
lem, we first explore a set of sample instances and an extensive effort is made
to obtain a solution which is optimal or close to optimality. The best solutions
obtained provide targets to be sought within the next part of the approach.
For instance, a TS algorithm may be used to bias the search trajectory to-
ward already known solutions (or as close to them as possible). This may give
some information on how to choose parameters for other problem instances.

A different acronym in this context is path relinking (PR) which provides
a useful means of intensification and diversification. Here new solutions are
generated by exploring search trajectories that combine elite solutions, i.e.,
solutions that have proved to be better than others throughout the search.
For references on target analysis and PR see, e.g., [58].

Considering local search based on data perturbation, the acronym noising
method may be related to the following approach, too. Given an initial feasi-
ble solution, the method performs some data perturbation [111] in order to
change the values taken by the objective function of a problem to be solved.
On the perturbed data a local search may be performed (e.g., following a SD
approach). The amount of data perturbation (the noise added) is successively
reduced until it reaches zero. The noising method is applied, e.g., in [23] for
the clique partitioning problem.

The key issue in designing parallel algorithms is to decompose the execution
of the various ingredients of a procedure into processes executable by parallel
processors. Opposite to ant systems or GAs, metaheuristics like TS or SA, at
first glance, have an intrinsic sequential nature due to the idea of performing
the neighborhood search from one solution to the next. However, some effort
has been undertaken to define templates for parallel local search (see, e.g.,
[119, 117, 26, 116]). A comprehensive treatment with successful applications
is provided in [6]. The discussion of parallel metaheuristics has also led to
interesting hybrids such as the combination of a population of individual
processes, agents, in a cooperative and competitive nature (see, e.g., the
discussion of memetic algorithms in [87]) with TS.

Neural networks may be considered as metaheuristics, although we have
not considered them here; see, e.g., [108] for a comprehensive survey on these
techniques for combinatorial optimization. On the contrary, one may use
metaheuristics to speed up the learning process regarding artificial neural
networks; see [7] for a comprehensive consideration.

1 Metaheuristics: Intelligent Problem Solving 15

Require: xk incumbent solution; Ωk current set of heuristic parameters

Ensure: xk+1 next solution

1. N (xk)← neighborhood definition(xk, Ωk)
2. xk+1 ← neighborhood exploration(N (xk))

3. Ωk+1 ← parameters update()

Fig. 1.1 General Metaheuristic Iteration.

Stochastic local search (SLS) is pretty much all we know about local search
but enhanced by randomizing choices. That is, an SLS algorithm is a local
search algorithm making use of randomized choices in generating or selecting
candidate solutions for given instances of optimization problems. Randomness
may be used for search initialization as well as the computation of search
steps. A comprehensive treatment of SLS is given in [75].

Furthermore, recent efforts on problems with multiple objectives and cor-
responding metaheuristic approaches can be found in [78, 41]. See, e.g., [105]
for some ideas regarding GAs and fuzzy multi-objective optimization.

1.3 A Taxonomy

In this section, we present a taxonomy of metaheuristics along a single di-
mension of analysis. The driving factor is the way in which the neighborhood
is defined with respect to each metaheuristic approach. Alternative classifi-
cations have been proposed, e.g., in [19, 64].

From a general perspective, each metaheuristic paradigm can be seen as
made up by three major ingredients, which are repeatedly used at each itera-
tion until specified stopping criteria are reached. A generalization of a single
iteration of a metaheuristic scheme is given in Figure 1.1.

As illustrated in Step 1 of Figure 1.1, a common ingredient of each meta-
heuristic paradigm is the existence of a rule aimed at iteratively guiding the
search trajectory, i.e., a set of rules to define a neighborhood. In turn, such
neighborhood demarcates which solutions can be reached starting from the
incumbent solution. In line with this observation, a possible dimension along
which a taxonomy of metaheuristics can be created is given by the way in
which neighborhoods are built. A classification of metaheuristics along this
dimension leads to the definition of at least two broad classes:

• model-based heuristics: as in [133], with this term we refer to metaheuris-
tic schemes where new solutions are generated by using a model. Conse-
quently, the neighborhood is implicitly defined by a set of parameters, and
iteratively updated during the search process;

16 M. Caserta and S. Voß

• method-based heuristics: as in [109], with this term we make reference to
heuristic paradigms in which new solutions are sought in a neighborhood
whose structure is dictated by the method used to explore the neighbor-
hood itself. Consequently, the neighborhood is implicitly defined by the
predetermined method employed.

By observing the underlying philosophy of these two broad classes, a clear
dichotomy arises: on the one hand, model-based heuristics tackle the original
optimization problem by defining and iteratively updating a model aimed
at identifying prominent features in good solutions and at replicating these
features in future solutions. Consequently, what determines whether a point
belongs to the neighborhood is the set of parameters that defines the model
and the ‘probability’ of generating such point under the current model. On
the other hand, method-based heuristics are driven by the technique used to
solve a “reduced” version of the original problem, i.e., a problem in which
only a subset of the original solution space is considered. Consequently, in
method-based heuristics what dictates the structure and shape of the neigh-
borhood is the optimization method employed to explore the neighborhood
itself, whether it be a classical mathematical programming technique, e.g.,
branch and bound, dynamic programming, etc., or a simple enumeration-
based technique.

Model-based heuristics are generally based upon the identification of a
set of parameters, defining a model that, in turn, well captures some fea-
tures of the search space. This type of heuristics heavily relies on a set of
update schemes, used to progressively modify the model itself in such a way
that, after each update, the possibility of obtaining higher quality solutions
under the new model is increased. Consequently, in Step 1 of the general
Metaheuristic_Iteration(), all the solutions that “comply” with the re-
quirements enforced by the model upon the search space are included in the
current neighborhood. A special role is played by Step 3 of the same algo-
rithm, in which the parameters of the model are updated via the application
of learning mechanisms. In this phase, modifications are applied to the model
and/or its parameters to reflect insight collected and generated during the
search phase.

A well-known paradigm that can be interpreted under the philosophy of
the model-based method is the CE, where a stochastic model is continually
updated to reflect the findings of the last iteration of the search process.
Other metaheuristics that can be seen as model-based are ACO (as well as
other methods belonging to the Swarm Intelligence field), where a construc-
tion graph and stochastic procedures called ants are employed; semi-greedy
heuristics [70], including the greedy randomized adaptive search procedure
GRASP [43], where the greedy function that guides the selection of the best
candidates defines a stochastic model; and GAs, where adaptive search proce-
dures based upon genetics are put into place. The GA paradigm heavily relies
on a model, defined by a set of operators, that determines which solutions
will be included in the next generation, i.e., in the current neighborhood.

1 Metaheuristics: Intelligent Problem Solving 17

More generally, evolutionary algorithms could similarly be included into the
category of model-based metaheuristics.

On the other side of the spectrum we find metaheuristic paradigms driven
by a method, rather than by a model. The basic ingredient of such an ap-
proach is the existence of a search method, whether it be an exact method
or a heuristic method, that is used to explore the neighborhood itself. Conse-
quently, the size and cardinality of the neighborhood depend upon the abil-
ity of the method itself to explore the portion of the search space included
in the neighborhood. Within the class of method-based metaheuristics we
can introduce a further level of classification, according to the nature of the
method employed to explore the neighborhood. Broadly speaking, method-
based heuristics could be divided into two categories, those for which classical
mathematical programming techniques are employed to explore the neighbor-
hood and those for which enumeration-based techniques are used to conduct
the exploration of the basin of solutions.

A cardinal concept for the method-based heuristics is connected to the
introduction of a “distance” metric. A distance is used to draw the bound-
aries of the neighborhood around the incumbent solution, in such a way that
only points whose distance from the incumbent solution is within a threshold
are included in the neighborhood itself. Consequently, the neighborhood is
explicitly defined by the notion of distance adopted. On the other hand, the
definition of the threshold distance is strongly connected with the capabilities
of the method used to explore the neighborhood. In other words, the cardinal-
ity of the neighborhood is chosen in such a way that, on the one hand, it will
be large enough to have a reasonable chance of containing a solution better
than the incumbent one and, on the other hand, small enough to be explored
by employing the method at hand in a reasonable amount of computational
time.

Historically, the first metaheuristics developed might be regarded as be-
longing to this class, e.g., SA or TS. Let us consider, e.g., the TS meta-
heuristic. Given an incumbent solution xi, a distance function d(x1,x2) and
a threshold value δ, only solutions for which d(xi,x) ≤ δ will be included
into the current neighborhood. Once the neighborhood definition phase is
terminated, a method capable of exploring such neighborhood in a reason-
able amount of computational time is employed to find a possibly better
solution. Consequently, while the neighborhood is explicitly defined by the
value of δ, it is possible to say that such neighborhood is implicitly defined
by the method used, since the value of δ depends upon the capabilities of the
method itself.

It is worth noting that these metaheuristics can, and in general, do use a
set of parameters to refine the definition of the neighborhood. For example, let
us once more consider the case of the TS metaheuristic. The neighborhood is
first defined according to a “distance” from the incumbent solution and, then,
refined via the application of, e.g., the tabu list, with the effect of eliminating
some of the solutions from the current neighborhood. However, it should be

18 M. Caserta and S. Voß

evident that the major ingredient used in determining the neighborhood is
still related to the concept of distance from the incumbent solution.

Other metaheuristics that fit into this category are VNS [68] and the pi-
lot method. In VNS, the neighborhood is altered during the search in such
a way that increasingly distant neighborhoods of a given solution are ex-
plored. However, a “method”, e.g., the local search routine, must be applied
to perform the search over the neighborhood. Thus, the way in which neigh-
borhoods are built is influenced by the method used to explore the portion
of the search space at hand. Similarly, in the pilot method, the core idea is
that the neighborhood is defined by a look-ahead mechanism. Consequently,
there is a method (even a simple local search) that determines the shape, or
the deepness, of the neighborhood itself.

More recently, metaheuristics employing classical mathematical program-
ming techniques to explore the neighborhood have been proposed. Let us
consider the case of the CM. After defining a corridor around the incumbent
solution, an optimization method is then applied within the neighborhood
defined by the corridor with the aim of finding an improved solution. Conse-
quently, in Step 1 of the general metaheuristic iteration of Figure 1.1, only
solutions within the corridor, or within a predefined distance from the in-
cumbent, will be included in the neighborhood. As previously mentioned, an
optional feature of the neighborhood_definition() phase is the applica-
tion of a set of criteria to refine the neighborhood, e.g., a tabu list, aspiration
criteria, etc. Step 2 of the algorithm relies on the use of either an enumeration-
based technique, or a classical mathematical programming technique (branch
and bound, dynamic programming, etc.) to explore the neighborhood. Fi-
nally, Step 3 of the algorithm, parameters_update() can include, e.g., the
dynamic update of distance and corridor parameters, depending upon the
current status of the search.

Beside the corridor method, other concepts that fall into this category are,
e.g., constraint programming [103], in which the corridor is defined by the
subsequent application of constraints and conditions to be satisfied by the
solution, and local branching [47], in which the neighborhood is defined by
introducing linear inequalities, called local branching cuts. Once a restricted
neighborhood is so defined, an exact technique, i.e., linear programming, is
used in the spirit of the branch and bound framework.

A further example which might be interpreted as a method-based tech-
nique is the POPMUSIC framework [112], where one wants to solve, prefer-
ably to optimality, smaller portions of the solution space, based upon an
available feasible solution.

More recently, the relaxation induced neighborhood search method (RINS)
has been introduced [27]. The RINS defines a neighborhood exploiting infor-
mation contained in the linear programming (LP) relaxation and can natu-
rally be seen as a method-based framework for mixed integer programs (MIP).
The central idea of the method is related to the exploitation of a “relaxed”
solution to define a core problem, smaller than the original MIP. The core

1 Metaheuristics: Intelligent Problem Solving 19

problem is identified at any given node of the branch and cut tree, by first
fixing all variables that have the same values both in the incumbent (feasible)
solution and the relaxed solution. Next, a branch-and-cut framework is used
to solve to optimality the reduced problem on the remaining variables, called
sub-MIP. The process is iteratively applied at any node of the global tree,
since the LP relaxation induced solution is different and, therefore, gives raise
to different sub-MIPs.

1.4 Hybrids with Exact Methods

In recent years, a lot of attention has been devoted to the integration, or
hybridization, of metaheuristics with exact methods (see, e.g., [95, 96] for
a survey and a taxonomy about hybrid approaches in combinatorial opti-
mization, respectively.) In this section, we use the term hybrid in a somehow
restrictive way, since we classify as hybrid approaches only those approaches
that combine the use of exact techniques with metaheuristic frameworks.
Consequently, algorithms that combine together different metaheuristics are
not included in this analysis although they could be and are also termed
hybrid.

This exposition also relates to the term Matheuristics, which describes
works that also are along these lines, e.g., exploiting mathematical program-
ming techniques in (meta)heuristic frameworks or on granting to mathemat-
ical programming approaches the cross-problem robustness and constrained-
CPU-time effectiveness which characterize metaheuristics. Discriminating
landmark is some form of exploitation of the mathematical formulation of
the problems of interest [67].

Generally speaking, hybrid algorithms present a so-called “master-slave”
structure of a guiding process and an application process. Either (i) the meta-
heuristic acts at a higher level and controls the calls to the exact approach,
or (ii) the exact technique acts as the master and calls and controls the use
of the metaheuristic scheme.

Hybrid algorithms of type (i) are such that the definition of the neigh-
borhood follows the logic of a metaheuristic, while the exploration of the
neighborhood itself is left to the exact approach. From this perspective, the
metaheuristic acts as the master by defining the size and boundaries of the
neighborhood and by controlling repeated calls to the exact method, which,
in turn, acts as an application process, by exploring each neighborhood in an
exact fashion. Algorithms that fall into this category are, e.g., those inspired
by the CM, in which large scale neighborhoods are searched exhaustively
through an exact method applied on a sub-portion of the search space. The
call to the exact method is managed by a scheme that heuristically defines a
corridor around an incumbent solution (cf. the previous section).

20 M. Caserta and S. Voß

A similar philosophy is shared by the large scale neighborhood search (see,
e.g., [5] for a survey), in which exponentially large neighborhoods are searched
to optimality by means of, e.g., ad-hoc enumeration schemes, dynamic pro-
gramming schemes, etc.

Along the same line, the RINS as well as local branching could be seen
as algorithms of type (i), at least in spirit. For example, even though the
RINS is casted into a branch and cut approach, and, therefore, the guid-
ing process is an exact approach, the logic of the method is centered upon
metaheuristic-type features, such as neighborhood definition, diversification
and intensification. It is worth noting, though, that in these two approaches,
no real metaheuristic is ever deployed, since they entirely rely on the branch
and bound framework. However, they can still be seen as hybrid approaches
because of the embedded metaheuristic philosophy that drives the search
process.

On the other hand, we also have hybrid approaches of type (ii), in which
the metaheuristic scheme is embedded into the solver. Modern branch and cut
solvers exploit the potentials of (meta)heuristics to quickly get good quality
solutions, especially at early stages of the tree exploration. Related bounds
are then employed to prune branches of the tree and, consequently, contribute
to speed up the search process and to reduce the overall computational effort.
Since it has been observed that in some important practical cases MIP solvers
spend a large amount of computational time before finding the first feasible
solution, [46] introduced a heuristic scheme, further improved in [3, 16], called
the feasibility pump, aimed at quickly finding good quality initial solutions.
Such initial solutions are obtained via a sequence of roundings, based upon
continuous relaxation solutions, that converge to a feasible MIP solution.
Clearly, such heuristic-type schemes can also be used to quickly find initial
solutions to be fed to type (i) hybrid algorithms, such as the CM, the RINS
as well as local branching (see also [56, 57, 40] for heuristic methods for MIP
feasible solution generation).

In a fashion similar to hybrid approaches of type (ii), some researchers have
also employed metaheuristic schemes for column generation and cut gener-
ation within branch and price and branch and cut frameworks, respectively
(see, e.g., [44] and [94]). In addition, one may investigate hybrids of branch
and bound and metaheuristics, e.g., for deciding upon branching variables or
search paths to be followed within a branch and bound tree (see, e.g., [130]
for an application of reactive TS). Here we may also use the term cooperative
solver.

A key question that arises when designing a hybrid algorithm concerns
which components should be “hybridized” to create an effective algorithm.
While providing an all-encompassing rule for hybridization does not seem to
be a feasible approach, from the analysis of the state of the art of hybrid
algorithms some interesting guidelines emerge.

A method-based approach is centered upon the exploitation of an effective
“method” to solve the problem at hand. Consequently, the starting point lies

1 Metaheuristics: Intelligent Problem Solving 21

in the identification of the most effective(s) method(s) with respect to the
optimization problem. For example, the design of a CM inspired algorithm
requires previous knowledge about which method could effectively tackle the
problem if this were of reduced size. Thus, the identification of the method
to be used constitutes the central point in the design of the algorithm itself.

A basic ingredient of a method-based algorithm concerns the heuristic rule
used to draw the boundaries of the neighborhood upon which the method will
be applied, which is the design of the neighborhood itself in terms of how large
the neighborhood should be. Size and boundaries of such neighborhood de-
pend on the “power” of the method used, i.e., on its ability to explore large
portions of the solution space in a reasonable amount of computational time.
While determining the appropriate dimension of the neighborhood for the
method at hand is an issue of algorithm fine tuning (as presented in Section
1.6), some general considerations are related to the fitness landscape anal-
ysis as well as the computational complexity of the method itself. Roughly
speaking, given an optimization method and its worst case computational
complexity in terms of size of the input, it is possible to determine the max-
imum size of the neighborhood that guarantees running times below a de-
sired threshold. On the other hand, since computational complexity analysis
mainly deals with worst case scenarios, it seems beneficial to employ fitness
landscape analysis techniques (e.g., connectivity measures) to draw tightest
complexity bounds that translate directly into larger neighborhoods.

Another guideline is provided by the intensification-diversification trade-
off. By reviewing hybrid algorithms proposed in the literature, many times it
is possible to identify a predominant focus, in the sense that some algorithms
put a higher emphasis on diversification of solutions, while others empha-
size the intensification of the search in promising regions. For example, as
illustrated in [47], the application of valid inequalities in the spirit of local
branching fosters the intensification of the search in a given neighborhood,
hence allowing to find good quality solutions early on in the search process.
In a similar fashion, the CM seems to put more emphasis on intensifying the
search within a promising region, without defining specific restarting mech-
anisms to achieve diversification. On the other hand, a method such as the
RINS, based upon a solution of the LP relaxation of the MIP, puts more em-
phasis on diversification, since at each node of the search tree a different LP
induced solution is used and, consequently, different solutions feasible with
respect to the MIP will be produced.

Finally, an interesting line of research aimed at grasping a clearer under-
standing of why some search techniques are successful on a given problem
class is related to the fitness landscape analysis. As mentioned in [18, 115],
a central measure of landscape structure is the fitness-distance correlation,
which captures the correlation between objective function value and the
length of a path to an optimal solution within the fitness landscape. Such
a measure is used to explain why local search techniques perform well in
tackling certain problems. However, the link between problem difficulty and

22 M. Caserta and S. Voß

fitness landscape is, as of today, not completely understood (see also the idea
of target analysis mentioned above).

Fitness landscape analysis can be used with at least two goals in mind:

• on the one hand, as brought out in [126], this kind of analysis helps to
understand what makes a problem hard or, conversely, well suited, for a
specific search technique. Information such as fitness-distance correlation,
ruggedness, nodes connectivity, and drifting can be exploited to design
an effective metaheuristic scheme as well as to identify which components
should be hybridized;

• on the other hand, as illustrated in [24], fitness landscape analysis can help
to identify which formulation of the same problem will be more suitable
with respect to an available algorithm. For example, [24] were able to
“predict” the behavior of a VNS algorithm upon two different formulations
of the Golomb Ruler problem and, consequently, to select the formulation
that better fitted with the potentials of their algorithm.

While this field of study seems promising in grasping a better understand-
ing of the “hows” and “whys” of metaheuristics, an important issue of gen-
eralization of results has already been noticed. As mentioned in [126], the
results obtained so far have mainly been used a posteriori, to justify the use
of a given algorithm and its features. However, it is unclear how this kind of
analysis can be extended to develop improved algorithms, since there is no
clear understanding about the general validity of the findings of the proposed
models. However, it is worth noting that, from the methodological perspec-
tive, the contribution of the fitness landscape analysis is far from negligible,
since its focus is well oriented toward interpreting and partially explaining
successes and failures of metaheuristic-based algorithms.

1.5 General Frames: A Pool-Template

An important avenue of metaheuristics research refers to general frames (e.g.,
to explain the behavior and the relationship between various methods) as well
as the development of software systems incorporating metaheuristics (even-
tually in combination with other methods). Besides other aspects, this takes
into consideration that in metaheuristics it has very often been appropriate
to incorporate a certain means of diversification versus intensification to lead
the search into new regions of the search space. This requires a meaningful
mechanism to detect situations when the search might be trapped in a certain
area of the solution space. Therefore, within intelligent search the exploration
of memory plays a most important role.

In [64] a pool template (PT) is proposed as can be seen in Figure 1.2. The
following notation is used. A pool of p ≥ 1 solutions is denoted by P . Its
input and output transfer is managed by two functions which are called IF

1 Metaheuristics: Intelligent Problem Solving 23

1. Initialize P by an external procedure

WHILE termination=FALSE DO BEGIN

2. S := OF (P)
3. IF s > 1 THEN S′ := SCM(S) ELSE S′ := S

4. S′′ := IM (S′)
5. P := IF (S′′)

END

6. Apply a post-optimizing procedure to P

Fig. 1.2 Pool Template.

and OF , respectively. S is a set of solutions with cardinality s ≥ 1. A solution
combination method (procedure SCM) constructs a solution from a given set
S, and IM is an improvement method.

Depending on the method used, in Step 1 either a pool is completely (or
partially) built by a (randomized) diversification generator or filled with a
single solution which has been provided, e.g., by a simple greedy approach.
Note that a crucial parameter that deserves careful elaboration is the cardi-
nality p of the pool. The main loop, executed until a termination criterion
holds, consists of Steps 2–5. Step 2 is the call of the output function which
selects a set of solutions, S, from the pool. Depending on the kind of method
represented in the PT, these solutions may be assembled (Step 3) to a (set
of) working solution(s) S′ which is the starting point for the improvement
phase of Step 4. The outcome of the improvement phase, S′′, is then evalu-
ated by means of the input function which possibly feeds the new solution
into the pool. Note that a post-optimizing procedure in Step 6 is for faculta-
tive use. It may be a straightforward greedy improvement procedure if used
for single-solution heuristics or a pool method on its own. As an example we
quote a sequential pool method, the TS with PR in [11]. Here a PR phase is
added after the pool has been initialized by a TS. A parallel pool method on
the other hand uses a pool of solutions while it is constructed by the guiding
process (e.g., a GA or scatter search).

Several heuristic and metaheuristic paradigms, whether they are obviously
pool-oriented or not, can be summarized under the common PT frame. We
provide the following examples:

a) Local Search/SD: PT with p = s = 1.
b) SA: p = 2, s = 1 incorporating its probabilistic acceptance criterion in

IM . (It should be noted that p = 2 and s = 1 seems to be unusual at first
glance. For SA we always have a current solution in the pool for which one
or more neighbors are evaluated and eventually a neighbor is found which
replaces the current solution. Furthermore, at all iterations throughout the
search the so far best solution is stored, too (even if no real interaction
between those two stored solutions takes place). The same is also valid for

24 M. Caserta and S. Voß

a simple TS. As for local search the current solution corresponds to the
best solution of the specific search, we have p = 1.)

c) Standard TS: p = 2, s = 1 incorporating adaptive memory in IM .
d) GAs: p > 1 and s > 1 with population mechanism (crossover, reproduction

and mutation) in SCM of Step 3 and without the use of Step 4. (One might
argue that p ≥ 1 is also possible.)

e) Scatter Search: p > 1 and s > 1 with subset generation in OF of Step 2,
linear combination of elite solutions by means of the SCM in Step 3, e.g.,
a TS for procedure IM and a reference set update method in IF of Step 5.

f) PR (as a parallel pool method): p > 1 and s = 2 with a PR neighborhood
in the SCM . Facultative use of Step 4.

g) CE: p > 1 and s = ρp, with ρ ∈ (0, 1), where the SCM is used to update
the underlying stochastic model by capturing features of solutions in S
and without the use of Step 4.

1.6 Fine Tuning and Evaluation of Algorithms

In this section, we discuss two important issues related to the design and
analysis of metaheuristics and related algorithms. On the one hand, as men-
tioned in the introduction, one key factor that has a bearing on the overall
performance of most of these algorithms is the calibration of the algorithmic
parameters. Thus, a natural question is about how to select an appropri-
ate set of values for these parameters. This important topic in metaheuristic
design goes under the name of fine tuning of algorithmic parameters.

A second relevant issue, related to the analysis of an algorithm, is con-
cerned with the empirical evaluation of the performance of the algorithm it-
self. Due to the stochastic nature of many metaheuristic schemes, a problem
of reproducibility of results arises. Many researchers advocate the definition
of a set of standards to increase the objectivity of the “ranking” and evalu-
ation of metaheuristics. However, the literature does not seem to be mature
with respect to this topic.

1.6.1 Fine Tuning of Metaheuristics

According to [4], there is evidence that 10% of the time required to develop a
new metaheuristic is devoted to the actual development and that the remain-
ing 90% is spent on fine tuning of algorithmic parameters. In addition, fine
tuning of parameters strongly affects the final performance of an algorithm.
For these reasons, it is of paramount importance to make a concerted effort
in identifying and establishing a set of “standard” techniques to fine-tune a
metaheuristic. One of the major achievements of such an effort would be to

1 Metaheuristics: Intelligent Problem Solving 25

offset parameter specific issues in evaluating an algorithm. In addition, repro-
ducibility of results would also be enhanced by such an approach, by making
transparent the way in which parameter values should be set to tackle a given
problem instance.

In the literature, some attempts to use statistically robust methods have
been presented. For example, in [4], a tool called CALIBRA is proposed as a
procedure that finds good values for up to five algorithmic parameters. They
exploit Taguchi fractional factorial design to reduce the overall number of
trials required to train the model. Interestingly, the authors tested CALI-
BRA on a set of six different algorithms and use hypothesis testing to assert
whether the parameter values suggested by the tool allow to find solutions
which are significantly better than those proposed by the original authors of
the algorithms.

In [25], a four-step procedure is proposed, in which a two-level factorial
design is coupled with linear regression to find a linear approximation of the
response surface of the set of parameters. Subsequently, a gradient descent
technique is employed to find a “good” value for each parameter. Finally, the
method is applied on a set of benchmark problems, and results are collected
to show that a good parameter setting leads to improvements in the objec-
tive function value. A similar technique has been employed in [21], where a
circumscribed central composite design is used to generate observations and
a higher degree polynomial is then used to approximate the response surface
of a set of parameters. Once the response surface is known, a global optimiza-
tion method is employed to find the optimal parameter value with respect
to the surface. The model is built on a set of training instances and then
validated on a different set of testing instances of some lot sizing problems.

In [89], a nonlinear response surface is used to capture the impact of pa-
rameters on a SA algorithm. A good set of values of such parameters is then
determined via a modified simplex method for nonlinear programming, that
can be used to deal with bounds on parameter values. The proposed method
is tested on three different combinatorial optimization problems and the col-
lected results are then compared with those of other SA implementations,
whose fine tuning was achieved via extensive experiments. The results show
that there is no statistical difference in performance between the two types of
SA algorithms and, consequently, that the proposed approach can be used to
conduct an “automatic” fine tuning. A similar approach was followed in [90],
where a full-factorial design was employed to define a response surface for
up to four parameters of a GA. The fine-tuned algorithm was finally tested
on a pool of DNA sequence assembly problems and results were collected to
illustrate the effectiveness of the procedure.

A somehow different approach is proposed in [131], where two statistical
tests are employed to fine-tune a set of algorithmic parameters of a TS al-
gorithm and to validate the proposed statistical model. First, a Friedman
test is used to detect significance of a specific parameter upon the algorithm
performance and, via a series of pairwise comparisons, to identify a good pa-

26 M. Caserta and S. Voß

rameter value; subsequently, a Wilcoxon test is employed to verify whether
there is a statistically significant difference between any two F-runs of the
algorithm. The TS algorithm is then used upon a set of problems drawn from
the telecommunication network design field.

A relevant issue in fine tuning methods is related to the “budget” available
to carry on the experiments, in the sense that the type of techniques used
depends on the amount of time and computational power available. These
elements affect the number of factors (parameters) and the number of levels
(values) that can be considered in the experimental design. In this regard, as
illustrated in [4], the use of a “fractional factorial design” can help in reducing
the number of runs required to collect results.

A second issue concerns the analysis of results in terms of robustness and
sensitivity. In many circumstances, it is necessary to provide not only a
“good” set of parameter values but also a measure of robustness and sen-
sitivity with respect to those parameters. For this reason, the experiment
should be designed in such a way that training and testing sets are used to
create and to validate the model, respectively.

Finally, an important issue that needs to be addressed when fine tuning
algorithmic parameters is the ultimate goal that one wants to achieve. In
the literature, many times it is implicitly assumed that the goal is to max-
imize solution quality and, with this in mind, one wants to find a good set
of parameters. However, alternative goals could also be desirable, such as,
e.g., minimizing computational time to a target solution, generating a pool
of solutions with maximum “diversification” [63], obtaining good quality so-
lutions early on in the search process, as well as a weighted combination of
such goals. Consequently, the fine tuning process should be designed in such
a way that a trade-off between conflicting goals could be achieved.

In the spirit of what we have seen in the reactive TS fine tuning also
concerns means of autoadaptivity of parameter settings. In a more general
setting an excellent recent treatment is provided in [14].

1.6.2 Empirical Evaluation of Metaheuristics

As stated in [10], it is important to “promote thoughtful, well-planned, and
extensive testing of heuristics, full disclosure of experimental conditions, and
integrity in and reproducibility of the reported results.”

With this aim in mind, a number of interesting issues have been proposed
with respect to how to measure the performance of a metaheuristic. For
example, some relevant issues connected with the evaluation of metaheuristics
are:

• computational experiment design, with a clear objective in mind (e.g., to
illustrate solution quality performance, robustness, quality versus time,
etc.);

1 Metaheuristics: Intelligent Problem Solving 27

• testing on benchmark instances, if available, or with respect to (dual)
gaps if possible. Results should be reported with measures of variability
and robustness;

• if no comparison with other algorithms from the literature is possible,
the algorithm should at least be compared with a simple random restart
procedure;

• identification of the contribution of each major feature of the algorithm on
the final performance, to detect which features are relevant in achieving
the declared level of performance;

• measurement of statistically significant differences among algorithms, with
the aim of ranking a pool of algorithms designed to tackle the same class
of problems.

In this section, we focus on two major issues: reproducibility and ranking of
an algorithm. On the one hand, the experimental results should be reported
in such a way that reproducibility is ensured while, on the other hand, a
statistically sound comparison of the proposed method with other approaches
from the literature should be presented with the aim of detecting meaningful
improvements in the state of the art.

The issue of reproducibility has been addressed in [10]. In order to be of
any scientific value, the experiments used to assess an algorithm in general,
and a metaheuristic in particular, should be entirely reproducible by oth-
ers. On the one hand, documentation will help in fostering reproducibility.
For this reason, not only the algorithmic steps but also specifics about the
implementation, the data structure employed, the parameter settings, the
random number process generation (if applicable), etc., should be provided.
In addition, making available to the community the source code as well as
the instances used fosters reproducibility and enhances the quality of the
scientific work.

Many statistical tests have been proposed to determine whether one algo-
rithm outperforms another. The way in which this issue should be addressed
is influenced by a number of relevant factors, such as, e.g., the nature of the
algorithm itself (deterministic or stochastic), the size of the available sample
(test bed), and, of course, the measure(s) used to draw conclusions about
the quality of a given algorithm. In [31], a taxonomy of statistical questions,
applied to learning algorithms, is presented and some hints about how to
address the issue of comparing algorithms with respect to each category are
given.

In the operations research field, the issue of comparing two algorithms
with each other arises in at least two different contests:

• on the one hand, one might want to compare two different versions of
the same algorithm using different parameter settings to fine tune the
algorithm itself. In this case, the practitioner aims at detecting whether a
given set of parameters produces better performance;

28 M. Caserta and S. Voß

• on the other hand, to validate an algorithm, a researcher will have to
compare the performance of the proposed algorithm against, at least, those
of the best algorithm available for a specific class of problems. In this case,
the underlying assumption, quite common in the operations research field,
is that the algorithm is designed to perform in a specific domain, i.e., to
tackle a single class of problems, and that it is possible to identify a state
of the art algorithm.

While the literature on the use of statistical analysis for hypothesis test-
ing is abundant (e.g., [132], [50]), in general, only rudimentary techniques
are used to present results and assert the quality and soundness of the same
results produced by a new metaheuristic. Other fields seem more mature
when it comes to statistical validation of results. For example, the machine
learning community has become increasingly aware of the importance of vali-
dating results with sound statistical analysis [29]. In [31], five statistical tests
for comparison of two different algorithms are presented. These tests are ex-
perimentally compared with respect to the probability of incurring Type I
errors (incorrectly detecting a difference when no difference exists). More so-
phisticated tests are proposed in [29], which can be used to compare multiple
algorithms over multiple data sets.

In the field of metaheuristics, the use of statistical tests is somehow present
when fine tuning algorithms. For example, as mentioned in Section 1.6.1,
[4], [131], [89], use different statistical tests to assert the quality of the fine
tuning technique. However, the literature concerning authors that employ
statistical analysis to compare two, or a set, of metaheuristics upon a given set
of instances is quite scanty. A good introduction to the topic can be found in
[113]. In this paper, only the case in which two algorithms are to be compared
is presented. A number of statistical tests is reviewed, both parametric and
non-parametric tests, and a new non-parametric test is proposed (see also
[110] for some ideas).

The major issue in identifying which test should be used to compare two
algorithms is the identification of the key factor to be used to “judge” such
algorithms. For example, in the contest of optimization, a common measure
of quality is the objective function value. Consequently, one might want to
compare two algorithms, say algorithm A and algorithm B, in terms of a set of
related objective function values, say zA and zB . The null hypothesis is then
defined as H0 : zA − zB = 0 and a one-sided or a two-sided test is designed.
In general, classical parametric approaches are used to test such hypothesis
such as, e.g., a (paired) t-test, which checks whether the average difference in
performance over the data set is significantly different from zero. However, as
brought out by many authors (see, e.g., [29]), the t-test suffers from a number
of weaknesses, mainly that the underlying assumption of normal distributions
of the differences between the two random variables could not be realistic,
especially when the number of benchmark instances available is not large.

An alternative approach relies on the use of non-parametric tests for com-
paring proportions. Let us suppose that we count a success for algorithm A

1 Metaheuristics: Intelligent Problem Solving 29

every time algorithm A outperforms algorithm B on a given instance (e.g.,
in terms of objective function value, running time, etc.). The researcher is
interested in estimating the success probabilities of the two algorithms, say
pA and pB . After estimating empirically such probabilities, a non-parametric
test (e.g., McNemar test, Fisher exact test) could be used to “rank” such
algorithms in terms of effectiveness, indicating which algorithm is more suc-
cessful on the same data set. A non-parametric test that can be used to
“rank” algorithms based upon the success probabilities is proposed by [113].
In addition, such test overcomes one important limitation of the McNemar
test, namely the fact that these tests require pairwise comparisons. Many
times in the field of metaheuristics researchers test their algorithms on ran-
domly generated instances, whose generation process is described while the
actual instances are not made available to the community. Hence, it is not al-
ways possible to compare two algorithms on the same set of instances and the
McNemar test might not be significant. The test proposed in [113] overcomes
such obstacle by taking into account the total number of runs of algorithm
A and of algorithm B (which might be different) in comparing proportions
and proves to be more powerful than the Fisher test.

More complicated scenarios could be envisioned when more than one di-
mension of evaluation is taken into account. For example, quite often a trade
off between solution quality and computational time arises. Consequently,
one might be interested in evaluating, or ranking, algorithms along these two
conflicting dimensions. In addition, if the metaheuristic is part of a broader
hybrid algorithm, such as those mentioned in Section 1.4, a valid measure of
effectiveness could be the “degree of diversification” of the solutions provided
by the metaheuristic. Thus, one might want to evaluate two algorithms ac-
cording to their ability of generating diversified solutions, which are, then,
fed to a global optimizer. In these cases, where one wants to evaluate the
effect of a pool of factors, a multi-objective problem could be defined, in such
a way that a “weight” is assigned to each criterion and the “success” of an
algorithm is measured as the weighted sum of the different criteria.

Finally, one last word could be spent about which algorithm(s) the pro-
posed metaheuristic should be compared against. Generally speaking, the
goal is to compare the new metaheuristic with established techniques, e.g.,
the best algorithm available in the literature. However, as pointed out in
[10], rather than reporting comparisons with results produced on different
machines and different instances, it is better to obtain or, in its defect, to
recode, existing algorithms and conduct a fair comparison of the two algo-
rithms on the same set of instances and the same machine. On the other hand,
if no algorithms have been proposed for the problem at hand, a more gen-
eral method, e.g., one based on linear programming or integer programming,
could be used to obtain bounds on the objective function values. Whenever
a stochastic scheme is proposed, at least a comparison with a simple random
restart procedure should be carried on, to show that the proposed algorithm

30 M. Caserta and S. Voß

performs significantly better (in a statistical sense) than the random restart
procedure.

1.7 Optimization Software Libraries

Besides some well-known approaches for reusable software in the field of ex-
act optimization (e.g., CPLEX2 or ABACUS3) some ready-to-use and well-
documented component libraries in the field of local search based heuristics
and metaheuristics have been developed; see the contributions in [125].

The most successful approaches documented in the literature are the
Heuristic OpTimization FRAMEwork HotFrame of [45] and EASYLO-
CAL++ of [30]. HotFrame, as an example, is implemented in C++, which
provides adaptable components incorporating different metaheuristics and an
architectural description of the collaboration among these components and
problem-specific complements. Typical application-specific concepts are trea-
ted as objects or classes: problems, solutions, neighbors, solution attributes
and move attributes. On the other side, metaheuristic concepts such as differ-
ent methods described above and their building-blocks such as tabu criteria or
diversification strategies are also treated as objects. HotFrame uses gener-
icity as the primary mechanism to make these objects adaptable. That is,
common behavior of metaheuristics is factored out and grouped in generic
classes, applying static type variation. Metaheuristics template classes are
parameterized by aspects such as solution spaces and neighborhood struc-
tures.

Another well-known optimization library is the COIN-OR library4, an
open-source suite for the optimization community. An effort in the develop-
ment of standards and interfaces for the interoperability of software compo-
nents has been put forth. Some classes that implement basic ingredients of
metaheuristics, e.g., Tabu Search Project, have been developed. However, the
development of general software frameworks for metaheuristic paradigms, al-
though strategic in defining standards and commonalities among approaches,
is still in its infancy.

1.8 Conclusions

Over the last decades metaheuristics have become a substantial part of the
optimization stockroom with various applications in science and, even more

2 www.ilog.com
3 www.informatik.uni-koeln.de/abacus
4 http://www.coin-or.org

www.ilog.com
www.informatik.uni-koeln.de/abacus
http://www.coin-or.org

1 Metaheuristics: Intelligent Problem Solving 31

important, in practice. Metaheuristics have become part of textbooks, e.g. in
operations research, and a wealth of monographs (see, e.g., [118, 58, 86, 36]) is
available. Most important in our view are general frames. Adaptive memory
programming, Stochastic Local Search, an intelligent interplay of intensifica-
tion and diversification (such as ideas from POPMUSIC), and the connection
to powerful exact algorithms as subroutines for handable subproblems and
other means of hybridization are avenues to be followed.

Applications of metaheuristics are almost uncountable and appear in var-
ious journals (e.g., Journal of Heuristics), books, and technical reports every
day. A helpful source for a subset of successful applications may be special
issues of journals or compilations such as [98, 124, 100, 34], just to mention
some. Specialized conferences like the Metaheuristics International Confer-
ence (MIC) are devoted to the topic (see, e.g., [88, 124, 102, 101, 76, 34])
and even more general conferences reveal that metaheuristics have become
part of necessary prerequisites for successfully solving optimization problems
(see, e.g., [61]). Moreover, ready to use systems such as class libraries and
frameworks have been developed, although usually restricted to be applied
by the knowledgeable user.

Specialized applications also reveal research needs, e.g., in dynamic envi-
ronments. One example refers to the application of metaheuristics for online
optimization; see, e.g., [65].

From a theoretical point of view, the use of most metaheuristics has not
yet been fully justified. While convergence results regarding solution quality
exist for most metaheuristics once appropriate probabilistic assumptions are
made (see, e.g., [66, 8, 42]), these turn out not to be very helpful in practice
as usually a disproportionate computation time is required to achieve these
results (usually convergence is achieved for the computation time tending to
infinity, with a few exceptions, e.g., for the reverse elimination method within
tabu search or the pilot method where optimality can be achieved with a
finite, but exponential number of steps in the worst case). Furthermore, we
have to admit that theoretically one may argue that none of the described
metaheuristics is on average better than any other. Basically this leaves the
choice of a best possible heuristic or related ingredients to the ingenuity of
the user/researcher. Some researchers related the acronym of hyper heuristics
to the question which (heuristic) method among a given set of methods to
choose for a given problem; see, e.g., [20].

Moreover, despite the widespread success of various metaheuristics, re-
searchers occasionally still have a poor understanding of many key theoret-
ical aspects of these algorithms, including models of the high-level run-time
dynamics and identification of search space features that influence problem
difficulty. Moreover, fitness landscape evaluations are considered in its in-
fancy, too.

From an empirical standpoint it would be most interesting to know which
algorithms perform best under various criteria for different classes of prob-
lems. Unfortunately, this theme is out of reach as long as we do not have any

32 M. Caserta and S. Voß

well accepted standards regarding the testing and comparison of different
methods.

While most papers on metaheuristics claim to provide ‘high quality’ re-
sults based on some sort of measure, we still believe that there is a great deal
of room for improvement in testing existing as well as new approaches from
an empirical point of view (see, e.g., [10, 74, 83]). In a dynamic research pro-
cess numerical results provide the basis for systematically developing efficient
algorithms. The essential conclusions of finished research and development
processes should always be substantiated (i.e., empirically and, if necessary,
statistically proven) by numerical results based on an appropriate empirical
test cycle. Furthermore, even when excellent numerical results are obtained, it
may still be possible to compare with a simple random restart procedure and
obtain better results in some cases; see, e.g., [62]. However, this comparison
is often neglected.

Usually the ways of preparing, performing and presenting experiments and
their results are significantly different. The failing of a generally accepted
standard for testing and reporting on the testing, or at least a correspond-
ing guideline for designing experiments, unfortunately implies the following
observation: Parts of results can be used only in a restricted way, e.g., be-
cause relevant data are missing, wrong environmental settings are used, or
simply results are glossed over. In the worst case non-sufficiently prepared
experiments provide results that are unfit for further use, i.e., any general-
ized conclusion is out of reach. Future algorithm research needs to provide
effective methods for analyzing the performance of, e.g., heuristics in a more
scientifically founded way (see, e.g., [127, 4] for some steps into this direction).

A final aspect that deserves special consideration is to investigate the use
of information within different metaheuristics. While the adaptive memory
programming frame provides a very good entry into this area, this still pro-
vides an interesting opportunity to link artificial intelligence with operations
research concepts.

References

1. E.H.L. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley, Chichester, 1997.

2. E.H.L. Aarts and M. Verhoeven. Local search. In M. Dell’Amico, F. Maffioli, and
S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages

163–180. Wiley, Chichester, 1997.

3. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiza-
tion, 4:77–86, 2007.

4. B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experi-

mental designs and local search. Operations Research, 54:99–114, 2006.
5. R.K. Ahuja, O. Ergun, J.B. Orlin, and A.B. Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123:75–102, 2002.

6. E. Alba, editor. Parallel Metaheuristics. Wiley, Hoboken, 2005.

1 Metaheuristics: Intelligent Problem Solving 33

7. E. Alba and R. Marti, editors. Metaheuristic Procedures for Training Neural Net-

works. Springer, New York, 2006.
8. I. Althöfer and K.-U. Koschnick. On the convergence of ‘threshold accepting’. Applied

Mathematics and Optimization, 24:183–195, 1991.
9. T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Com-

putation. Institute of Physics Publishing, Bristol, 1997.
10. R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart. Designing

and reporting on computational experiments with heuristic methods. Journal of

Heuristics, 1:9–32, 1995.
11. M.B. Bastos and C.C. Ribeiro. Reactive tabu search with path relinking for the

Steiner problem in graphs. In C.C. Ribeiro and P. Hansen, editors, Essays and
Surveys in Metaheuristics, pages 39–58. Kluwer, Boston, 2002.

12. R. Battiti. Machine learning methods for parameter tuning in heuristics. Position
paper for the 5th DIMACS Challenge Workshop: Experimental Methodology Day,
1996.

13. R. Battiti. Reactive search: Toward self-tuning heuristics. In V.J. Rayward-Smith,

I.H. Osman, C.R. Reeves, and G.D. Smith, editors, Modern Heuristic Search Methods,

pages 61–83. Wiley, Chichester, 1996.
14. R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent Optimization.

Springer, New York, 2009.
15. R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,

pages 126–140, 1994.
16. L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general mixed

integer problems. Discrete Optimization, 4(1):77–86, 2007.
17. D.P. Bertsekas, J.N. Tsitsiklis, and C. Wu. Rollout algorithms for combinatorial

optimization. Journal of Heuristics, 3:245–262, 1997.
18. C. Bierwirth, D.C. Mattfeld, and J.P. Watson. Landscape regularity and random

walks for the job-shop scheduling problem. In J. Gottlieb and G.R. Raidl, editors,

Evolutionary Computation in Combinatorial Optimization, 4th European Confer-
ence, EvoCOP 2004, volume 3004 of Lecture Notes in Computer Science, pages 21–

30. Springer, 2004.
19. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys, 35:268–308, 2003.
20. E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-

heuristics: An emerging direction in modern search technology. In F.W. Glover and
G.A. Kochenberger, editors, Handbook of Metaheuristics, pages 457–474. Kluwer,
Boston, 2003.

21. M. Caserta and E. Quiñonez Rico. A cross entropy-lagrangean hybrid algorithm
for the multi-item capacitated lot sizing problem with setup times. Computers &

Operations Research, 36(2):530–548, 2009.
22. R. Cerulli, A. Fink, M. Gentili, and S. Voß. Extensions of the minimum labelling

spanning tree problem. Journal of Telecommunications and Information Technology,
4/2006:39–45, 2006.

23. I. Charon and O. Hudry. The noising method: A new method for combinatorial
optimization. Operations Research Letters, 14:133–137, 1993.

24. C. Cotta and A. Fernández. Analyzing fitness landscapes for the optimal golomb

ruler problem. In G.R. Raidl and J. Gottlieb, editors, Evolutionary Computation in
Combinatorial Optimization, 5th European Conference, EvoCOP 2005, volume 3448
of Lecture Notes in Computer Science, pages 68–79. Springer, 2005.

25. S. P. Coy, B.L. Golden, G.C. Rungen, and E.A. Wasil. Using experimental design to

find effective parameter settings for heuristics. Journal of Heuristics, 7:77–97, 2000.
26. T.G. Crainic, M. Toulouse, and M. Gendreau. Toward a taxonomy of parallel tabu

search heuristics. INFORMS Journal on Computing, 9:61–72, 1997.
27. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods

to improve MIP solutions. Mathematical Programming A, 102:71–90, 2005.

34 M. Caserta and S. Voß

28. P. De Boer, D.P. Kroese, S. Mannor, and R.Y. Rubinstein. A tutorial on the cross-

entropy method. Annals of Operations Research, 134:19–67, 2005.
29. J. Dems̆ar. Statistical comparison of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.
30. L. Di Gaspero and A. Schaerf. EASYLOCAL++: An object-oriented framework for

the flexible design of local-search algorithms. Software – Practice and Experience,

33:733–765, 2003.
31. T.G. Dietterich. Approximate statistical test for comparing supervised classification

learning algorithms. Neural Computation, 10(7):1895–1923, 1998.
32. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, B -
26:29–41, 1996.

33. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, 2004.
34. K.F. Dörner, M. Gendreau, P. Greistorfer, W.J. Gutjahr, R.F. Hartl, and M. Rei-

mann, editors. Metaheuristics: Progress in Complex Systems Optimization. Springer,
New York, 2007.

35. K.A. Dowsland. Simulated annealing. In C. Reeves, editor, Modern Heuristic Tech-
niques for Combinatorial Problems, pages 20–69. Halsted, Blackwell, 1993.

36. J. Dreo, A. Petrowski, P. Siarry, and E. Taillard. Metaheuristics for Hard Optimiza-
tion. Springer, Berlin, 2006.

37. G. Dueck and T. Scheuer. Threshold accepting: a general purpose optimization algo-

rithm appearing superior to simulated annealing. Journal of Computational Physics,
90:161–175, 1990.

38. C.W. Duin and S. Voß. Steiner tree heuristics - a survey. In H. Dyckhoff, U. Derigs,
M. Salomon, and H.C. Tijms, editors, Operations Research Proceedings 1993, pages

485–496, Berlin, 1994. Springer.
39. C.W. Duin and S. Voß. The pilot method: A strategy for heuristic repetition with

application to the Steiner problem in graphs. Networks, 34:181–191, 1999.
40. J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer

programming. Journal of Heuristics, 13:471–503, 2007.
41. M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization

problems. Computers & Operations Research, 34(9):2674–2694, 2007.
42. U. Faigle and W. Kern. Some convergence results for probabilistic tabu search. ORSA

Journal on Computing, 4:32–37, 1992.
43. P. Festa and M.G.C. Resende. An annotated bibliography of GRASP. Technical

report, AT&T Labs Research, 2004.
44. G.R. Filho and L.A. Lorena. Constructive genetic algorithm and column generation:

an application to graph coloring. In Proceedings of APORS 2000 - The Fifth Confer-

ence of the Association of Asian-Pacific Operations Research Society within IFORS

2000.
45. A. Fink and S. Voß. HotFrame: A heuristic optimization framework. In S. Voß

and D.L. Woodruff, editors, Optimization Software Class Libraries, pages 81–154.
Kluwer, Boston, 2002.

46. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-
ming, A 104:91–104, 2005.

47. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, B 98:23–47,
2003.

48. D.B. Fogel. On the philosophical differences between evolutionary algorithms and
genetic algorithms. In D.B. Fogel and W. Atmar, editors, Proceedings of the Sec-

ond Annual Conference on Evolutionary Programming, pages 23–29. Evolutionary

Programming Society, La Jolla, 1993.
49. D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine In-

telligence. IEEE Press, New York, 1995.
50. A. M. Glenberg. Learning from Data: An Introduction to Statistical Reasoning.

Lawrence Erlbaum Associates, Mahwah, New Jersey, 1996.

1 Metaheuristics: Intelligent Problem Solving 35

51. F. Glover. Heuristics for integer programming using surrogate constraints. Decision

Sciences, 8:156–166, 1977.
52. F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 13:533–549, 1986.

53. F. Glover. Tabu search – Part II. ORSA Journal on Computing, 2:4–32, 1990.
54. F. Glover. Scatter search and star-paths: beyond the genetic metaphor. OR Spektrum,

17:125–137, 1995.

55. F. Glover. Tabu search and adaptive memory programming – Advances, applications
and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Advances

in Metaheuristics, Optimization, and Stochastic Modeling Technologies, pages 1–75.

Kluwer, Boston, 1997.
56. F. Glover and M. Laguna. General purpose heuristics for integer programming - part

I. Journal of Heuristics, 2(4):343–358, 1997.
57. F. Glover and M. Laguna. General purpose heuristics for integer programming - part

II. Journal of Heuristics, 3(2):161–179, 1997.

58. F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1997.
59. F.W. Glover and G.A. Kochenberger, editors. Handbook of Metaheuristics. Kluwer,

Boston, 2003.

60. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, 1989.

61. B.L. Golden, S. Raghavan, and E.A. Wasil, editors. The Next Wave in Computing,

Optimization, and Decision Technologies. Kluwer, Boston, 2005.
62. A.M. Gomes and J.F. Oliveira. Solving irregular strip packing problems by hybridis-

ing simulated annealing and linear programming. European Journal of Operational

Research, 171:811–829, 2006.
63. P. Greistorfer, A. Lokketangen, D.L. Woodruff, and S. Voß. Sequential versus simul-

taneous maximization of objective and diversity. Journal of Heuristics, 14:613–625,
2008.

64. P. Greistorfer and S. Voß. Controlled pool maintenance for meta-heuristics. In
C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory and Evo-
lution, pages 387–424. 2005.

65. K. Gutenschwager, C. Niklaus, and S. Voß. Dispatching of an electric monorail
system: Applying meta-heuristics to an online pickup and delivery problem. Trans-
portation Science, 38:434–446, 2004.

66. B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations
Research, 13:311–329, 1988.

67. P. Hansen, V. Maniezzo, and S. Voß. Special issue on mathematical contributions to
metaheuristics editorial. Journal of Heuristics, 15(3):197–199, 2009.

68. P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In
S. Voß, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, pages 433–458. Kluwer,
Boston, 1999.

69. P. Hansen, N. Mladenović, and D. Perez-Brito. Variable neighborhood decomposition
search. Journal of Heuristics, 7(4):335–350, 2001.

70. J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations
Research Letters, 6:107–114, 1987.

71. A. Hertz and D. Kobler. A framework for the description of evolutionary algorithms.
European Journal of Operational Research, 126:1–12, 2000.

72. F. Hoffmeister and T. Bäck. Genetic algorithms and evolution strategies: Similarities
and differences. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving
from Nature, volume 496 of Lecture Notes in Computer Science, pages 455–469.
Springer, 1991.

73. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michi-

gan Press, Ann Arbor, 1975.

36 M. Caserta and S. Voß

74. J.N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1:33–42,

1995.
75. H.H. Hoos and T. Stützle. Stochastic Local Search – Foundations and Applications.

Elsevier, Amsterdam, 2005.

76. T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics: Progress as Real
Problem Solvers. Springer, New York, 2005.

77. L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control and Cy-

bernetics, 25:33–54, 1996.
78. A. Jaszkiewicz. A comparative study of multiple-objective metaheuristics on the

bi-objective set covering problem and the pareto memetic algorithm. Annals of Op-

erations Research, 131:215–235, 2004.
79. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simu-

lated annealing: An experimental evaluation; part i, graph partitioning. Operations
Research, 37:865–892, 1989.

80. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated anneal-

ing. Science, 220:671–680, 1983.
81. M. Laguna and R. Mart́ı. Scatter Search. Kluwer, Boston, 2003.
82. S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21:498–516, 1973.
83. C. McGeoch. Toward an experimental method for algorithm simulation. INFORMS

Journal on Computing, 8:1–15, 1996.

84. C. Meloni, D. Pacciarelli, and M. Pranzo. A rollout metaheuristic for job shop schedul-
ing problems. Annals of Operations Research, 131:215–235, 2004.

85. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer, Berlin, 3 edition, 1999.
86. Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer, Berlin,

2 edition, 2004.
87. P. Moscato. An introduction to population approaches for optimization and hierarchi-

cal objective functions: A discussion on the role of tabu search. Annals of Operations
Research, 41:85–121, 1993.

88. I.H. Osman and J.P. Kelly, editors. Meta-Heuristics: Theory and Applications.

Kluwer, Boston, 1996.
89. M.W. Park and Y.D. Kim. A systematic procedure for setting parameters in simulated

annealing algorithms. Computers & Operations Research, 25(3):207–217, 1998.

90. R. Parson and M.E. Johnson. A case study in experimental design applied to ge-
netic algorithms with applications to DNA sequence assembly. American Journal of
Mathematical and Management Sciences, 17(3):369–396, 1997.

91. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, 1984.

92. E. Pesch and F. Glover. TSP ejection chains. Discrete Applied Mathematics, 76:165–
182, 1997.

93. G. Polya. How to solve it. Princeton University Press, Princeton, 1945.
94. J. Puchinger and G.R. Raidl. An evolutionary algorithm for column generation in in-

teger programming: an effective approach for 2D bin packing. In X. Yao, E.K. Burke,
J.A. Lozano, J. Smith, J.J. Merelo-Guervos, J.A. Bullinaria, J.E. Rowe, P. Tino,
A. Kaban, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN

VIII, volume 3242 of Lecture Notes in Computer Science, pages 642–651. Springer
Verlag, 2004.

95. J. Puchinger and G.R. Raidl. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. In J. Mira and J.R. Álvarez,
editors, Proceedings of the First International Work-Conference on the Interplay
Between Natural and Artificial Computation, Part II, volume 3562 of Lecture Notes
in Computer Science, pages 41–53. Springer, 2005.

1 Metaheuristics: Intelligent Problem Solving 37

96. G.R. Raidl. A unified view on hybrid metaheuristics. In F. Almeida, M.J. Blesa,

C. Blum, J.M. Moreno-Vega, M.M. Pérez, A. Roli, and M. Sampels, editors, Hy-
brid Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 1–12.

Springer, 2006.

97. B. Rangaswamy, A. S. Jain, and F. Glover. Tabu search candidate list strategies in
scheduling. pages 215–233, 1998.

98. V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors. Modern

Heuristic Search Methods. Wiley, Chichester, 1996.
99. C.R. Reeves and J.E. Rowe. Genetic Algorithms: Principles and Perspectives.

Kluwer, Boston, 2002.

100. C. Rego and B. Alidaee, editors. Metaheuristic Optimization via Memory and Evo-
lution. 2005.

101. M.G.C. Resende and J.P. de Sousa, editors. Metaheuristics: Computer Decision-
Making. Kluwer, Boston, 2004.

102. C.C. Ribeiro and P. Hansen, editors. Essays and Surveys in Metaheuristics. Kluwer,

Boston, 2002.
103. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming

(Foundations of Artificial Intelligence). Elsevier, 2006.

104. R.Y. Rubinstein. Optimization of Computer Simulation Models with Rare Events.
European Journal of Operational Research, 99:89–112, 1997.

105. M. Sakawa. Genetic Algorithms and Fuzzy Multiobjective Optimization. Kluwer,

Boston, 2001.
106. H.-P. Schwefel and T. Bäck. Artificial evolution: How and why? In D. Quagliarella,

J. Périaux, C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution

Strategy in Engineering and Computer Science: Recent Advances and Industrial Ap-
plications, pages 1–19. Wiley, Chichester, 1998.

107. P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. Working paper, ILOG S.A., Gentilly, France, 1998.

108. K. Smith. Neural networks for combinatorial optimisation: A review of more than a
decade of research. INFORMS Journal on Computing, 11:15–34, 1999.

109. M. Sniedovich and S. Voß. The corridor method: A dynamic programming inspired

metaheuristic. Control and Cybernetics, 35:551–578, 2006.
110. L. Sondergeld. Performance Analysis Methods for Heuristic Search Optimization

with an Application to Cooperative Agent Algorithms. Shaker, Aachen, 2001.

111. R.H. Storer, S.D. Wu, and R. Vaccari. Problem and heuristic space search strategies
for job shop scheduling. ORSA Journal on Computing, 7:453–467, 1995.

112. E. Taillard and S. Voß. POPMUSIC — partial optimization metaheuristic under
special intensification conditions. In C.C. Ribeiro and P. Hansen, editors, Essays and
Surveys in Metaheuristics, pages 613–629. Kluwer, Boston, 2002.

113. E. Taillard, P. Waelti, and J. Zuber. Few statistical tests for proportions comparison.
European Journal of Operational Research, 185(3):1336–1350, 2006.

114. É.D. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive memory
programming: A unified view of meta-heuristics. European Journal of Operational
Research, 135:1–16, 2001.

115. J. Tavares, F. Pereira, and E. Costa. Multidimensional knapsack problem: A fitness
landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cynernetics, 38(3):604–616, 2008.
116. R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. A local search template. Computers

& Operations Research, 25:969–979, 1998.
117. M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search techniques. Journal of

Heuristics, 1:43–65, 1995.
118. S. Voß. Intelligent Search. Manuscript, TU Darmstadt, 1993.
119. S. Voß. Tabu search: applications and prospects. In D.-Z. Du and P. Pardalos, editors,

Network Optimization Problems, pages 333–353. World Scientific, Singapore, 1993.

38 M. Caserta and S. Voß

120. S. Voß. Observing logical interdependencies in tabu search: Methods and results.

In V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors, Modern
Heuristic Search Methods, pages 41–59, Chichester, 1996. Wiley.

121. S. Voß. Meta-heuristics: The state of the art. In A. Nareyek, editor, Local Search

for Planning and Scheduling, volume 2148 of Lecture Notes in Artificial Intelligence,
pages 1–23. Springer, 2001.

122. S. Voß. Metaheuristics. In C.A. Floudas and P.M. Pardalos, editors, Encyclopedia of

Optimization. Springer, New York, 2008.
123. S. Voß, A. Fink, and C. Duin. Looking ahead with the pilot method. Annals of

Operations Research, 136:285–302, 2005.

124. S. Voß, S. Martello, I.H Osman, and C. Roucairol, editors. Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization. Kluwer, Boston, 1999.

125. S. Voß and D.L. Woodruff, editors. Optimization Software Class Libraries. Kluwer,
Boston, 2002.

126. J. P. Watson, L. D. Whitley, and A. E. Howe. Linking search space structure, run-time

dynamics, and problem difficulty: A step toward demystifying tabu search. Journal
of Artificial Intelligence Research, 24:221–261, 2005.

127. D. Whitley, S. Rana, J. Dzubera, and K.E. Mathias. Evaluating evolutionary algo-

rithms. Artificial Intelligence, 85:245–276, 1996.
128. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1:67–82, 1997.

129. D.L. Woodruff. Proposals for chunking and tabu search. European Journal of Oper-
ational Research, 106:585–598, 1998.

130. D.L. Woodruff. A chunking based selection strategy for integrating meta-heuristics

with branch and bound. In S. Voß, S. Martello, I.H. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
pages 499–511. Kluwer, Boston, 1999.

131. J. Xu, S.Y. Chiu, and F. Glover. Fine-tuning a tabu search algorithm with statistical

tests. International Transactions in Operational Research, 5(3):233–244, 1998.
132. J.H. Zar. Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey,

1999.

133. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for com-
binatorial optimization. Annals of Operations Research, 131(1):373–395, 2004.

Chapter 2

Just MIP it!

Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin

Abstract Modern Mixed-Integer Programming (MIP) solvers exploit a rich
arsenal of tools to attack hard problems. It is widely accepted by the OR
community that the solution of very hard MIPs can take advantage from
the solution of a series of time-consuming auxiliary Linear Programs (LPs)
intended to enhance the performance of the overall MIP solver. For instance,
auxiliary LPs may be solved to generate powerful disjunctive cuts, or to
implement a strong branching policy. Also well established is the fact that
finding good-quality heuristic MIP solutions often requires a computing time
that is just comparable to that needed to solve the LP relaxations. So, it
makes sense to think of a new generation of MIP solvers where auxiliary
MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim of
bringing the MIP technology under the chest of the MIP solver itself. This
leads to the idea of “translating into a MIP model” (MIPping) some crucial
decisions to be taken within a MIP algorithm (How to cut? How to improve
the incumbent solution? Is the current node dominated?). In this paper we
survey a number of successful applications of the above approach.

Matteo Fischetti

DEI, Università di Padova, Padua, Italy

e-mail: matteo.fischetti@unipd.it

Andrea Lodi
DEIS, Università di Bologna, Bologna, Italy
e-mail: andrea.lodi@unibo.it

Domenico Salvagnin
DMPA, Università di Padova, Padua, Italy

e-mail: dominiqs@gmail.com

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 39

DOI 10.1007/978-1-4419-1306-7 2, c© Springer Science+Business Media, LLC 2009

matteo.fischetti@unipd.it
andrea.lodi@unibo.it
dominiqs@gmail.com

40 M. Fischetti, A. Lodi, and D. Salvagnin

2.1 Introduction

Modern MIP solvers exploit a rich arsenal of tools to attack hard problems.
Some successful examples involve the solution of LP models to control the
branching strategy (strong branching), the cut generation (lift-and-project),
and the heuristics (reduced costs). As a matter of fact, it is well known by
the OR community that the solution of very hard MIPs can take advantage
of the solution of a series of auxiliary LPs intended to guide the main steps
of the MIP solver.

Also well known is the fact that finding good-quality heuristic MIP solu-
tions often requires a computing time that is just comparable to that needed
to solve the LP relaxation of the problem at hand. This leads to the idea
of “translating into a MIP model” (MIPping) some crucial decisions to be
taken within a MIP algorithm (in particular: How to cut? How to improve
the incumbent solution? Is the current node dominated?), with the aim of
bringing the MIP technology well inside the MIP solver.

The present paper gives a survey of three successful applications of the
MIPping approach. In Section 2.2 we address the generation of strong cutting
planes. In this context, the MIPping approach has been extensively applied
to modeling and solving (possibly in a heuristic way) the NP-hard separa-
tion problems of famous classes of valid inequalities for mixed integer linear
programs. Besides the theoretical interest in evaluating the strength of these
classes of cuts computationally, the approach proved successful also in prac-
tice, and allowed the solution of very hard MIPLIB instances [2] that could
not be solved before.

In Section 2.3 we address enhanced (primal) heuristic approaches for the
solution of hard MIP models. An example of the benefits deriving from the
use of a black-box MIP solver to produce heuristic primal solutions for a
generic MIP is the recently-proposed local branching paradigm that uses a
general-purpose MIP solver to explore large solution neighborhoods defined
through the introduction in the MIP model of invalid linear inequalities called
local branching cuts [25]. More recently, a different heuristic approach called
Feasibility Pump has been proposed to address the problem of finding an
initial feasible solution and of improving it. In Section 2.3 we describe a
hybrid algorithm that uses the feasibility pump method to provide, at very
low computational cost, an initial (possibly infeasible) solution to the local
branching procedure.

In Section 2.4 we finally address the general-purpose dominance procedure
proposed in the late 80’s by Fischetti and Toth [30], that overcomes some of
the drawbacks of the classical dominance definition. Given the current node α
of the search tree, let Jα be the set of variables fixed to some value. Following
the MIPping paradigm, we construct an auxiliary problem XPα that looks
for a new partial assignment involving the variables in Jα and such that
(i) the objective function value is not worse than the one associated with the
original assignment, and (ii) every completion of the old partial assignment

2 Just MIP it! 41

is also a valid completion of the new one. If such a new partial assignment is
found (and a certain tie-breaking rule is satisfied), one is allowed to fathom
node α.

The present survey is based on previous published work; in particular,
Sections 2.2, 2.3 and 2.4 are largely based on [26], [28] and [54], respectively.

2.2 MIPping Cut Separation

In this section we first introduce our basic notation and definitions and review
some classical results on cutting planes for pure and mixed integer problems.
Then, we discuss in Section 2.2.1 the separation of pure integer cuts, i.e., those
cuts in which (i) all coefficients are integer and (ii) continuous variables (if
any) have null coefficients. In Section 2.2.2 we address the more general (and
powerful) family of split cuts which are instead mixed integer inequalities
because the two conditions above do not apply. Finally, in Subsection 2.2.3
we discuss computational aspects of these models and we report results on
the strength of the addressed cuts.

Consider first the pure integer linear programming problem min{cTx :
Ax ≤ b, x ≥ 0, x integral} where A is an m× n rational matrix, b ∈ Qm, and
c ∈ Qn, along with the two associated polyhedra P := {x ∈ Rn

+ : Ax ≤ b}
and PI := conv{x ∈ Zn

+ : Ax ≤ b} = conv(P ∩ Zn).
A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) [35,

13] is an inequality of the form buTAcx ≤ buT bc where u ∈ Rm
+ is a vector of

multipliers, and b·c denotes the lower integer part. Chvátal-Gomory cuts are
valid inequalities for PI . The Chvátal closure of P is defined as

P 1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buT bc for all u ∈ Rm
+}. (2.1)

Thus PI ⊆ P 1 ⊆ P . By the well-known equivalence between optimization
and separation [37], optimizing over the first Chvátal closure is equivalent to
solving the CG separation problem where we are given a point x∗ ∈ Rn and
are asked to find a hyperplane separating x∗ from P 1 (if any). Without loss
of generality we can assume that x∗ ∈ P , since all other points can be cut by
simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in reads:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated
by x∗, i.e., find u ∈ Rm

+ such that buTAcx∗ > buT bc, or prove that no such
u exists.

It was proved by Eisenbrand [23] that CG-SEP is NP-hard, so optimizing
over P 1 also is.

Moreover, Gomory [36] proposed a stronger family of cuts, the so-called
Gomory Mixed Integer (GMI) cuts, that apply to both the pure integer and

42 M. Fischetti, A. Lodi, and D. Salvagnin

the mixed integer case. Such a family of inequalities has been proved to be
equivalent to two other families, the so-called split cuts defined by Cook et al.
[15], and the Mixed Integer Rounding (MIR) cuts introduced by Nemhauser
and Wolsey [50]. The reader is referred to Cornuéjols and Li [17] for formal
proofs of the correspondence among those families, and to Cornuéjols [16] for
a very recent survey on valid inequalities for mixed integer linear programs.
Let us consider a generic MIP of the form:

min{cTx+ fT y : Ax+ Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (2.2)

where A and C are m× n and m× r rational matrices respectively, b ∈ Qm,
c ∈ Qn, and f ∈ Qr. We also consider the two following polyhedra in the
(x, y)-space:

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy ≤ b}, (2.3)
PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (2.4)

Split cuts are obtained as follows. For any π ∈ Zn and π0 ∈ Z, the dis-
junction πTx ≤ π0 or πTx ≥ π0 + 1 is of course valid for PI(x, y), i.e.,
PI(x, y) ⊆ conv(Π0 ∪Π1) where

Π0 := P (x, y) ∩ {(x, y) : πTx ≤ π0}, (2.5)
Π1 := P (x, y) ∩ {(x, y) : πTx ≥ π0 + 1}. (2.6)

A valid inequality for conv(Π0 ∪ Π1) is called a split cut. The convex set
obtained by intersecting P (x, y) with all the split cuts is called the split
closure of P (x, y). Cook et al. proved that the split closure of P (x, y) is a
polyhedron.

Nemhauser and Wolsey [50] introduced the family of MIR cuts, whose basic
(2-dimensional) version can be obtained in the following way. Let 1 < b̂ < 0
and b̄ ∈ Z, and consider the two-variable mixed integer program T = {(x, y) :
x+ y ≥ b̂+ b̄, y ≥ 0}. Then, it is easily seen that the points in T with x ∈ Z
satisfy the basic MIR inequality:

b̂x+ y ≥ b̂(b̄+ 1), (2.7)

that turns out to be a split cut derived from the disjunction x ≤ b̄ and x ≥
b̄+1. The hardness of separation of split cuts (and hence of MIR inequalities)
has been established by Caprara and Letchford [11].

While Chvátal-Gomory cuts are by definition integer inequalities, split/
GMI/MIR inequalities are instead mixed integer cuts in the sense that the
coefficients are generally not integer and the continuous variables (if any)
might have nonzero coefficients.

2 Just MIP it! 43

2.2.1 Pure Integer Cuts

As just mentioned, Chvátal-Gomory cuts are of course pure integer inequal-
ities because of the rounding mechanism and since they do apply only to the
pure integer case. In the following section we discuss their separation through
a MIP model while in Section 2.2.1.2 we show that a closely related model
has been used to separate a new class of pure integer cuts for mixed integer
problems.

2.2.1.1 Chvátal-Gomory Cuts

Fischetti and Lodi [27] addressed the issue of evaluating the practical strength
of P 1 in approximating PI . The approach was to model the CG separation
problem as a MIP, which is then solved through a general-purpose MIP solver.
To be more specific, given an input point x∗ ∈ P to be separated1, CG-SEP
calls for a CG cut αTx ≤ α0 which is (maximally) violated by x∗, where
α = buTAc and α0 = buT bc for some u ∈ Rm

+ . Hence, if Aj denotes the jth
column of A, CG-SEP can be modeled as:

max αTx∗ − α0 (2.8)
αj ≤ uTAj ∀j = 1, . . . , n (2.9)
α0 + 1− ε ≥ uT b (2.10)
ui ≥ 0 ∀i = 1, . . . ,m (2.11)
αj integer ∀j = 0, . . . , n, (2.12)

where ε is a small positive value. In the model above, the integer variables
αj (j = 1, . . . , n) and α0 play the role of coefficients buTAjc and buT bc
in the CG cut, respectively. Hence the objective function (2.8) gives the
amount of violation of the CG cut evaluated for x = x∗, that is what has
to be maximized. Because of the sign of the objective function coefficients,
the rounding conditions αj = buTAjc can be imposed through upper bound
conditions on variables αj (j = 1, . . . , n), as in (2.9), and with a lower bound
condition on α0, as in (2.10). Note that this latter constraint requires the
introduction of a small value ε so as to prevent an integer uT b being rounded
to uT b− 1.

Model (2.8)-(2.12) can also be explained by observing that αTx ≤ α0 is
a CG cut if and only if (α, α0) is an integral vector, as stated in (2.12), and
αTx ≤ α0 +1− ε is a valid inequality for P , as stated in (2.9)-(2.11) by using
the well-known characterization of valid inequalities for a polyhedron due to
Farkas.

1 Recall that Gomory’s work [35] implies that CG-SEP is easy when x∗ is an extreme point

of P .

44 M. Fischetti, A. Lodi, and D. Salvagnin

2.2.1.2 Projected Chvátal-Gomory Cuts

Bonami et al. [10] extended the concept of Chvátal-Gomory cuts to the mixed
integer case. Such an extension is interesting in itself and has the advantage of
identifying a large class of cutting planes whose resulting separation problem
retains the simple structure of model (2.8)-(2.12) above. One can define the
projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax+ Cy ≤ b} (2.13)

= {x ∈ Rn
+ : ukA ≤ ukb, k = 1, . . . ,K} (2.14)

=: {x ∈ Rn
+ : Āx ≤ b̄}, (2.15)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone
{u ∈ Rm

+ : uTC ≥ 0T }. Note that the rows of the linear system Āx ≤ b̄ are of
Chvátal rank 0 with respect to P (x, y), i.e., no rounding argument is needed
to prove their validity.

We define a projected Chvátal-Gomory (pro-CG) cut as a CG cut derived
from the system Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤
bwT b̄c for some w ≥ 0. Since any row of Āx ≤ b̄ can be obtained as a
linear combination of the rows of Ax ≤ b with multipliers ū ≥ 0 such that
ūTC ≥ 0T , it follows that a pro-CG cut can equivalently (and more directly)
be defined as an inequality of the form:

buTAcx ≤ buT bc for any u ≥ 0 such that uTC ≥ 0T . (2.16)

As such, its associated separation problem can be modeled as a simple ex-
tension of the system (2.8)-(2.12) by amending it through the following set
of inequalities:

uTCj ≥ 0 ∀j = 1, . . . , r. (2.17)

Projected Chvátal-Gomory cuts are dominated by split cuts, and therefore
P 1(x, y) contains the split closure of P (x, y). More precisely, P 1(x, y) is the
intersection of P (x, y) with all the split cuts where one of the sets Π0, Π1

defined in (2.5) and (2.6) is empty (see [10]).

2.2.2 Mixed Integer Cuts

The computational results reported in [27] and [10] showed that P 1 often
gives a surprisingly tight approximation of PI , thus triggering research in the
attempt of extending the approach to (more powerful) mixed integer cuts.

Unfortunately, model (2.8)-(2.12) does not extend immediately to the
mixed integer case if one wants to concentrate on split/MIR/GMI cuts where
coefficients are not necessarily integer and the continuous variables might as-

2 Just MIP it! 45

sume nonzero coefficients in the cut. A natural mixed integer nonlinear model
has been suggested in [11]. Variants of such a model have been solved with two
different approaches: by solving either a parametric mixed integer problem
[7] (Section 2.2.2.1) or a nonlinear mixed integer problem [19, 20] (Section
2.2.2.2).

Finally, it is not difficult to see that one can use the multipliers u computed
as in (2.8)-(2.12) or (2.8)-(2.12),(2.17) and write a GMI inequality instead
of a CG or pro-CG cut. However, such an a posteriori strengthening did not
turn out to be very effective (see [10]).

2.2.2.1 Split Cuts Solving a Parametric MIP

Balas and Saxena [7] directly addressed the separation problem of the most
violated split cut of the form αTx+ γT y ≥ β by looking at the union of the
two polyhedra (2.5) and (2.6). In particular, they addressed a generic MIP
of the form:

min{cTx+ fT y : Ax+ Cy ≥ b, x integral}, (2.18)

where the variable bounds are included among the explicit constraints, and
wrote a first nonlinear separation model for split cuts as follows:

min αTx∗ + γT y∗ − β (2.19)
αj = uTAj − u0πj ∀j = 1, . . . , n (2.20)
γj = uTCj ∀j = 1, . . . , r (2.21)
αj = vTAj + v0πj ∀j = 1, . . . , n (2.22)
γj = vTCj ∀j = 1, . . . , r (2.23)
β = uT b− u0π0 (2.24)
β = vT b+ v0(π0 + 1) (2.25)
1 = u0 + v0 (2.26)

u, v, u0, v0 ≥ 0 (2.27)
π, π0 integer. (2.28)

Normalization constraint (2.26) allows one to simplify the model to the form
below:

minuT (Ax∗ + Cy∗ − b) − u0(πTx∗ − π0) (2.29)
uTAj − vTAj − πj = 0 ∀j = 1, . . . , n (2.30)

uTCj − vTCj = 0 ∀j = 1, . . . , r (2.31)
−uT b+ vT b+ π0 = u0 − 1 (2.32)

0 < u0 < 1 , u, v ≥ 0 (2.33)
π, π0 integer, (2.34)

46 M. Fischetti, A. Lodi, and D. Salvagnin

where v0 has been removed by using constraint (2.26), and one explicitly
uses the fact that any nontrivial cut has u0 < 1 and v0 < 1 (see Balas
and Perregaard [6]). Note that the nonlinearity only arises in the objective
function. Moreover, for any fixed value of parameter u0 the model becomes
a regular MIP.

The continuous relaxation of the above model yields a parametric linear
program which can be solved by a variant of the simplex algorithm (see, e.g.,
Nazareth [49]). Balas and Saxena [7] however avoided solving the parametric
MIP through a specialized algorithm, and considered a grid of possible values
for parameter u0, say u1

0 < u2
0 < · · · < uk

0 . The grid is initialized by means of
the set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and then is enriched, on the fly, by bisecting
a certain interval [ut

0, u
t+1
0] through the insertion of the new grid point u′0 :=

(ut
0 + ut+1

0)/2.

2.2.2.2 Split Cuts Solving a Nonlinear MIP

Dash et al. [19, 20] addressed the optimization over the split closure by looking
at the corresponding MIR inequalities and, more precisely, developed a mixed
integer nonlinear model and linearized it in an effective way.

For the ease of writing the model, we slightly change the definition of
polyhedron P (x, y) by putting the constraints in equality form as:

P (x, y) = {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy + Is = b, s ≥ 0}, (2.35)

through the addition of nonnegative slack variables s.
One is looking for an MIR inequality in the form:

u+s+ γ̂T y + (α̂T + β̂ᾱT)x ≥ β̂(β̄ + 1), (2.36)

where ᾱ and β̄ are vectors of integer variables, u+, α̂ and γ̂ are vectors of
nonnegative variables, and 0 < β̂ < 1.

Let
∑

k∈K εk < 1 (e.g., εk = 2−k). We approximate β̂ with
∑

k∈K̄ εk for
some K̄ ⊂ K and write the RHS of the MIR inequality as

∑
k∈K̄ εk∆ where

∆ = β̄ + 1− ᾱTx∗. Using the fact that there is a violated MIR inequality if
and only if there is one with ∆ < 1, we have the following formulation for
the separation of the most violated MIR inequality, where for each k ∈ K we
set πk = 1 if k ∈ K̄, and πk = 0 otherwise.

2 Just MIP it! 47

minu+s∗ − εTΦ + γ̂T y∗ + α̂Tx∗ (2.37)
γ̂j ≥ uTCj ∀j = 1, . . . , r (2.38)

α̂j + ᾱj ≥ uTAj ∀j = 1, . . . , n (2.39)

β̂ + β̄ ≤ uT b (2.40)

β̂ =
∑
k∈K

εkπk (2.41)

∆ = (β̄ + 1)− ᾱTx∗ (2.42)
Φk ≤ ∆ ∀k ∈ K (2.43)
Φk ≤ πk ∀k ∈ K (2.44)
u+

i ≥ ui ∀i = 1, . . . ,M (2.45)

u+, α̂, β̂, γ̂ ≥ 0 (2.46)
ᾱ, β̄ integer, π ∈ {0, 1}|K| (2.47)

where u+
i = max{ui, 0} and M := {i : s∗i > 0, i = 1, . . . ,m}, i.e., we define

a variable u+
i only if the corresponding constraint i written in ‘less or equal

form’ is not tight.
The validity of inequality (2.36) can be easily shown. Inequality uT s +

(ᾱT + α̂T)x + γ̂T y ≥ uT b is valid by Farkas derivation. It remains of course
valid by replacing ui,∀i ∈ M with u+

i and then one can use the basic MIR
inequality (2.7) to obtain the MIR form (2.36) by having as a continuous
(nonnegative) part the term u+s+ α̂Tx+ γ̂T y.

The approximate model (2.37)–(2.47) turns out to be an exact model if K
is chosen appropriately (see [19, 20]).

2.2.3 A Computational Overview

In this section we discuss some simple issues that turn out to be crucial to
make the presented models solvable and the MIPping approach successful.
Moreover, we show their strength by reporting computational results on MIPs
included in the MIPLIB 3.0 [9].

2.2.3.1 Making the Models Solvable

All papers discussed in the previous sections implement pure cutting plane
approaches in which (as usual) the following steps are iteratively repeated:

1. the continuous relaxation of the mixed integer program at hand is solved;
2. the separation problem is (heuristically) solved and a set of violated con-

straints is eventually found;
3. the constraints are added to the original formulation.

48 M. Fischetti, A. Lodi, and D. Salvagnin

Of course, the original formulation becomes larger and larger but in order
to provide cuts of rank 1, the separation problem solved at step 2 above
only uses the original constraints in the cut derivation. For what concerns
the solution of those separation problems, it is important that state-of-the-
art MIP solvers such as ILOG-Cplex or Xpress Optimizer are used, as they
incorporate very powerful heuristics that are able to find (and then improve)
feasible solutions in short computing times. Indeed, good heuristic solutions
are enough for step 2 above, where the NP-hard separation problem does not
need to be solved to optimality2 since any feasible solution provides a valid
inequality cutting off the current solution of step 1 above.

In order to make these MIPs solvable, a few issues have to be addressed.
All authors noted that only integer variables in the support of the frac-

tional solution of step 1 above have to be considered, e.g., a constraint
αj ≤ uTAj for j such that x∗j = 0 is redundant because αj (times x∗j)
does not contribute to the violation of the cut, while it can be computed a
posteriori by an efficient post-processing procedure. It is easy to see that this
is also the case of integer variables whose value is at the upper bound, as
these variables can be complemented before separation.

The ultimate goal of the cutting plane sketched above is to find, for each
fractional point (x∗, y∗) to be cut off, a “round” of cuts that are significantly
violated and whose overall effect is as strong as possible in improving the
current LP relaxation. A major practical issue for accomplishing such a goal
is the strength of the returned cuts. As a matter of fact, several equivalent
solutions of the separation problems typically exist, some of which produce
very weak cuts for the MIP model. This is because the separation problem
actually considers the face F (x∗, y∗) of PI where all the constraints that are
tight at (x∗, y∗) (including the variable bounds) are imposed as equalities.
Hence, for this face there exist several formulations of each cut, which are
equivalent for F (x∗, y∗) but not for PI .

The computational experiments in [27] have shown a relation between the
strength of a cut and the sparsity of the vector of multipliers u generating it.
In particular, the introduction of a penalty term −

∑
i wiui (where i denotes

the index of a constraint) in the objective function (2.8), has the effect of
making the cut itself sparser. The sparser the cuts the better for the LP
problems solved on step 1 of the cutting plane procedure.3 The importance
of making the cuts as sparse as possible has been also documented by Balas
and Saxena [7], who noticed that split disjunctions with sparse support tend
to give rise to sparse split cuts.

Another important issue in order to accelerate the cutting plane procedure
is the cut selection, i.e., finding a set of cuts whose overall behavior is as
effective as possible. Cut selection is somehow related to finding a set of cuts
which are “as diverse as possible”, possibly more effective together. One can

2 Except eventually in the last step, in which one needs a proof that no additional violated

cut exists.
3 The same sparsification trick is also used in Bonami et al. [10].

2 Just MIP it! 49

Table 2.1 Results for 25 pure integer linear programs in the MIPLIB 3.0.

Split closure CG closure

% Gap closed Average 71.71 62.59
% Gap closed 98-100 9 instances 9 instances

% Gap closed 75-98 4 instances 2 instances

% Gap closed 25-75 6 instances 7 instances
% Gap closed < 25 6 instances 7 instances

expect that such kind of diversification can be strongly improved with cuts
obtained by heuristically solving two or more of the discussed separation
models; promising results in this direction have been obtained by combining
either CG or pro-CG cuts with MIR inequalities [19, 20].

2.2.3.2 Strength of the Closures

The strength of the closures, namely CG, pro-CG and split (or MIR), have
been evaluated by running cutting plane algorithms for large (sometimes
huge) computing times. Indeed, the goal of the investigation was in all cases
to show the tightness of the closures, rather than investigating the practical
relevance of the separation MIPping idea when used within a MIP solver.
On the other hand, as discussed in the previous section, several techniques
can be implemented to speed up the computation and, even in the current
status, the MIPping separation approach is not totally impractical. Indeed,
one can easily implement a hybrid approach in which the MIP-based separa-
tion procedures are applied (for a fixed amount of time) in a preprocessing
phase, resulting in a tighter MIP formulation to be solved at a later time
by a standard MIP solver. Using this idea, two unsolved MIPLIB 2003 [2]
instances, namely nsrand-ipx and arki001, have been solved to proven op-
timality for the first time by Fischetti and Lodi [27] and by Balas and Saxena
[7], respectively. In other words, for very difficult and challenging problems it
does pay to improve the formulation by adding cuts in these closures before
switching to either general- or special-purpose solution algorithms.

In Tables 2.1 and 2.2 we report, in an aggregated fashion, the tightness
of the closures for MIPLIB 3.0 [9] instances, in terms of percentage of gap
closed4 for pure integer and mixed integer linear programs, respectively.

Most of the results reported in the previous tables give a lower approx-
imation of the exact value of the closures5, due to the time limits imposed
on the cutting plane algorithms. Nevertheless, the picture is pretty clear and

4 Computed as 100−100(opt value(PI)−opt value(P 1))/(opt value(PI)−opt value(P)).
5 In particular, the time limit in [10] to compute a bound of the pro-CG closure is rather
short, 20 CPU minutes, and there are pathological instances for which such a closure is

ineffective, see [10] for details.

50 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.2 Results for 33 mixed integer linear programs in the MIPLIB 3.0.

Split closure pro-CG closure

% Gap closed Average 84.34 36.38
% Gap closed 98-100 16 instances 3 instances

% Gap closed 75-98 10 instances 3 instances

% Gap closed 25-75 2 instances 11 instances
% Gap closed < 25 5 instances 17 instances

shows that, although one can construct examples in which the rank of the
facets for a polyhedron is very large, in most practical cases the inequalities
of rank 1 already give a very tight approximation of the convex hull of integer
and mixed integer programs.

2.3 MIPping Heuristics

In this section we consider the problem of finding a feasible (primal) solution
to a generic mixed-integer linear program with 0-1 variables of the form:

(P) min cTx (2.48)
s.t. Ax ≤ b (2.49)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (2.50)
xj ≥ 0, integer ∀j ∈ G (2.51)
xj ≥ 0 ∀j ∈ C, (2.52)

where A is an m×n input matrix, and b and c are input vectors of dimension
m and n, respectively. Here, the variable index set N := {1, . . . , n} is parti-
tioned into (B,G, C), where B 6= ∅ is the index set of the 0-1 variables, while
the possibly empty sets G and C index the general integer and the continuous
variables, respectively. Note that we assume the existence of 0-1 variables, as
one of the components of the method we actually implemented (namely, the
local branching heuristic) is based on this assumption. Our approach can,
however, be extended to remove this limitation, as outlined in the concluding
remarks of [25]. Also note that constraints (2.49), though stated as inequali-
ties, can involve equalities as well. Let I := B ∪ G denote the index set of all
integer-constrained variables.

Heuristics for general-purpose MIPs include [4, 5, 8, 18, 22, 29, 32, 33, 34,
38, 39, 40, 43, 44], among others. Recently, we proposed in [25] a heuristic
approach, called Local Branching (LB), to improve the quality of a given fea-
sible solution. This method, as well as other refining heuristics (including the
recently-proposed RINS approach [18]), requires the availability of a starting

2 Just MIP it! 51

feasible solution, which is an issue for some difficult MIPs. This topic was
investigated by Fischetti et al. [24], who introduced the so-called Feasibility
Pump (FP) scheme for finding a feasible (or, at least, an “almost feasible”)
solution to general MIPs through a clever sequence of roundings.

We analyze computationally a simple variant of the original LB method
that allows one to deal with infeasible reference solutions, such as those re-
turned by the FP method. Our approach is to start with an “almost feasible”
reference solution x̄, as available at small computational cost through the
FP method. We then relax the MIP model by introducing for each violated
constraint: (i) an artificial continuous variable in the constraint itself, (ii) a
binary (also artificial) variable, and (iii) a constraint stating that, if the artifi-
cial variable has to be used to satisfy the constraint satisfied, then the binary
variable must be set to 1. Finally, the objective function is replaced, in the
spirit of the first phase of the primal simplex algorithm, by the sum of the
artificial binary variables. The initial solution turns out now to be feasible for
the relaxed model and its value coincides with the number of initial violated
constraints. We then apply the standard LB framework to reduce the value
of the objective function, i.e., the number of infeasibilities and a solution of
value 0 turns out to be feasible for the initial problem. Note that, although
a continuous artificial variable for each violated constraint could be enough,
binary variables are better exploited by LB as it will be made clear in Section
2.3.1 and discussed in detail in Section 2.3.2.

Our approach also produces, as a byproduct, a small-cardinality set of
constraints whose relaxation (removal) converts a given MIP into a feasible
one–a very important piece of information in the analysis of infeasible MIPs.
In other words, our method can be viewed as a tool for repairing infeasible
MIP models, and not just as a heuristic for repairing infeasible MIP solutions.
This is in the spirit of the widely-studied approaches to find maximum feasible
(or minimum infeasible) subsystems of LP models, as addressed e.g. in [3, 12,
31], but is applied here to MIP models. This may be a useful technique in
practice.

The section is organized as follows. In Subsection 2.3.1 we review the
LB and FP methods. In Subsection 2.3.2 we describe the LB extension we
propose to deal with infeasible reference solutions. Computational results
are presented in Subsection 2.3.3, where we compare the LB performance
with that of the commercial software ILOG-Cplex on two sets of hard 0-1
MIPs, specifically 44 problems taken from the MIPLIB 2003 library [2] and
39 additional instances already considered in [24].

2.3.1 Local Branching and Feasibility Pump

We next review the LB and FP methods. The reader is referred to [25] and
[24] for more details.

52 M. Fischetti, A. Lodi, and D. Salvagnin

2.3.1.1 Local Branching

The Local Branching approach works as follows. Suppose a feasible reference
solution x̄ of the MIP is given, and one aims at finding an improved solution
that is “not too far” from x̄. Let S := {j ∈ B : x̄j = 1} denote the binary
support of x̄. For a given positive integer parameter k, we define the k-OPT
neighborhood N (x̄, k) of x̄ as the set of the feasible solutions of the MIP
satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (2.53)

where the two terms in the left-hand side count the number of binary variables
flipping their value (with respect to x̄) either from 1 to 0 or from 0 to 1,
respectively. As its name suggests, the local branching constraint (2.53) can
be used as a branching criterion within an enumerative scheme for the MIP.
Indeed, given the incumbent solution x̄, the solution space associated with
the current branching node can be partitioned by means of the disjunction:

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch), (2.54)

where the neighborhood-size parameter k is chosen so as to make the neigh-
borhood N (x̄, k) “sufficiently small” to be optimized within short computing
time, but still “large enough” to likely contain better solutions than x̄ (typi-
cally, k = 10 or k = 20).

In [25], we investigated the use of a general-purpose MIP solver as a black-
box “tactical” tool to explore effectively suitable solution subspaces defined
and controlled at a “strategic” level by a simple external branching frame-
work. The procedure is in the spirit of well-known local search metaheuris-
tics, but the neighborhoods are obtained through the introduction in the
MIP model of the local branching constraints (2.53). This allows one to work
within a perfectly general MIP framework, and to take advantage of the im-
pressive research and implementation effort that nowadays are devoted to the
design of MIP solvers. The new solution strategy is exact in nature, though
it is designed to improve the heuristic behavior of the MIP solver at hand. It
alternates high-level strategic branchings to define solution neighborhoods,
and low-level tactical branchings (performed within the MIP solver) to ex-
plore them. The result can then be viewed as a two-level branching strategy
aimed at favoring early updatings of the incumbent solution, hence producing
improved solutions at early stages of the computation. The computational re-
sults reported in [25] show the effectiveness of the LB approach. These have
also been confirmed by the recent works of Hansen et al. [38] (where LB is used
within a Variable Neighborhood Search metaheuristic [48]) and of Fischetti
et al. [29] (where MIPs with a special structure are investigated).

2 Just MIP it! 53

2.3.1.2 Feasibility Pump

Let P := {x ∈ Rn : Ax ≤ b} denote the polyhedron associated with the
LP relaxation of the given MIP, and assume without loss of generality that
system Ax ≤ b includes the variable bounds:

lj ≤ xj ≤ uj , ∀j ∈ I,

where lj = 0 and uj = 1 for all j ∈ B. With a little abuse of terminology, we
say that a point x is integer if xj ∈ Zn for all j ∈ I (no matter the value of
the other components). Analogously, the rounding x̃ of a given x is obtained
by setting x̃j := [xj] if j ∈ I and x̃j := xj otherwise, where [·] represents
scalar rounding to the nearest integer. The (L1-norm) distance between a
generic point x ∈ P and a given integer vector x̃ is defined as

Φ(x, x̃) =
∑
j∈I
|xj − x̃j |,

(notice that continuous variables xj , j 6∈ I, if any, are immaterial) and can
be modeled as:

Φ(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−j),

where the additional variables x+
j and x−j require the introduction into the

MIP model of the additional constraints:

xj = x̃j + x+
j − x

−
j , x+

j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj . (2.55)

It follows that the closest point x∗ ∈ P to x̃ can easily be determined by
solving the LP:

min{Φ(x, x̃) : Ax ≤ b}. (2.56)

If Φ(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ is a feasible MIP
solution. Conversely, given a point x∗ ∈ P , the integer point x̃ closest to x∗

is easily determined by just rounding x∗.
The FP heuristic works with a pair of points (x∗, x̃) with x∗ ∈ P and x̃

integer, that are iteratively updated with the aim of reducing as much as
possible their distance Φ(x∗, x̃). To be more specific, one starts with any
x∗ ∈ P , and initializes a (typically infeasible) integer x̃ as the rounding of
x∗. At each FP iteration, called a pumping cycle, x̃ is fixed and one finds
through linear programming the point x∗ ∈ P which is as close as possible
to x̃. If Φ(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and the heuristic
stops. Otherwise, x̃ is replaced by the rounding of x∗ so as to further reduce
Φ(x∗, x̃), and the process is iterated.

The basic FP scheme above tends to stall and stop prematurely. This hap-
pens whenever Φ(x∗, x̃) > 0 is not reduced when replacing x̃ by the rounding

54 M. Fischetti, A. Lodi, and D. Salvagnin

of x∗, meaning that all the integer-constrained components of x̃ remained
unchanged in this iteration. In the original FP approach [24], this situation
is dealt with by heuristically choosing a few components x̃j to be modified,
even if this operation increases the current value of Φ(x∗, x̃). A different ap-
proach, to be elaborated in the next section, is to switch to a method based
on enumeration, in the attempt to explore a small neighborhood of the cur-
rent “almost feasible” x̃ (that typically has a very small distance Φ(x∗, x̃)
from P).

2.3.2 LB with Infeasible Reference Solutions

The basic idea of the method presented in this section is that the LB algorithm
does not necessarily need to start with a feasible solution—a partially feasible
one can be a valid warm start for the method. Indeed, by relaxing the model
in a suitable way, it is always possible to consider any infeasible solution, say
x̂, to be “feasible”, and penalize its cost so the LB heuristic can drive it to
feasibility.

The most natural way to implement this idea is to add a continuous arti-
ficial variable for each constraint violated by x̂, and then penalize the use of
such variables in the objective function by means of a very large cost M . We
tested this approach and found it performs reasonably well on most of the
problems. However, it has the drawback that finding a proper value for M
may not be easy in practice. Indeed, for a substantial set of problems in the
MIPLIB 2003 [2] collection, the value of the objective function is so large that
it is difficult to define a value for M that makes any infeasible solution worse
than any feasible one. Moreover, the way the LB method works suggests the
use of the following, more combinatorial, framework.

Let T be the set of the indices of the constraints aT
i x ≤ bi that are violated

by x̂. For each i ∈ T , we relax the original constraint aT
i x ≤ bi into aT

i x−σi ≤
bi, where σi ≥ 0 is a nonnegative continuous artificial variable, and add the
constraint:

σi ≤ δiyi, yi ∈ {0, 1}, (2.57)

where δi is a sufficiently large value, and yi is a binary artificial variable at-
taining value 1 for each violated constraint.6 Finally, we replace the original
objective function cTx by

∑
i∈T yi, so as to count the number of violated

constraints. It has to be noted that the set of binary variables in the relaxed
model is B ∪ Y, where Y := {yi : i ∈ T}, hence the structure of the re-
laxation turns out to be particularly suited for the LB approach, where the

6 Note that when the violated constraint is in equality form two nonnegative artificial
variables, σ+

i and σ−
i , are added with opposite signs and the corresponding constraint

(2.57) becomes σ+
i + σ−

i ≤ δiyi.

2 Just MIP it! 55

local branching constraint affects precisely the binary variables (including the
artificial ones).

An obvious drawback of the method above is that the original objective
function is completely disregarded, thus the feasible solution obtained can
be arbitrarily bad. A way of avoiding this situation could be to put a term
in the artificial objective function that takes the original costs into account.
However, a proper balancing of the two contributions (original cost and in-
feasibility penalty) may not be easy to achieve although promising results in
this direction have been reported very recently by Achterberg and Berthold
[1]. As a matter of fact, the outcome of a preliminary computational study is
that a better overall performance is obtained by using the artificial objective
function (alone) until feasibility is reached, and then improving the quality
of this solution by using a standard LB or RINS approach. This can be done
by recovering the original objective function and simply using the computed
feasible solution in the usual LB way. In other words, the overall algorithm
remains in principle exact (see [25] for details) and the proposed scheme is
used to provide an initial solution.

2.3.3 Computational Results

In this section, we report on computational results comparing the proposed
method with both the FP heuristic and the commercial software ILOG-Cplex
9.0.3. In our experiments, we used the “asymmetric” version of the local
branching constraint (2.53), namely:

∆(x, x̄) :=
∑
j∈S

(1− xj). (2.58)

Indeed, as discussed in [25], this version of the constraint seems to be par-
ticularly suited for set covering problems where LB aims at finding solutions
with a small binary support—which is precisely the case of interest in our
context.

Our testbed is made up of 33 among the 45 0-1 MIP instances from MIP-
LIB 2003 [2] and described in Table 2.3, plus an additional set of 39 hard
0-1 MIPs described in Table 2.4. (The 0-1 MIPLIB instance stp3d was not
considered since the computing time required for the first LP relaxation
is larger than one hour, while 11 instances, namely fixnet6, markshare1,
markshare2, mas74, mas76, modglob, pk1, pp08a, pp08aCUTS, set1ch and
vpm2 have been removed because all tested algorithms found a feasible solu-
tion within 0.0 CPU seconds.) The two tables report the name, total number
of variables (n), number of 0-1 variables (|B|), and number of constraints (m)
for each instance.

56 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.3 Set of 33 among the 45 0-1 MIP instances collected in MIPLIB 2003 [2].

Name n |B| m Name n |B| m
10teams 2025 1800 230 mod011 10958 96 4480

A1C1S1 3648 192 3312 momentum1 5174 2349 42680
aflow30a 842 421 479 net12 14115 1603 14021

aflow40b 2728 1364 1442 nsrand ipx 6621 6620 735

air04 8904 8904 823 nw04 87482 87482 36
air05 7195 7195 426 opt1217 769 768 64

cap6000 6000 6000 2176 p2756 2756 2756 755
dano3mip 13873 552 3202 protfold 1835 1835 2112
danoint 521 56 664 qiu 840 48 1192

ds 67732 67732 656 rd-rplusc-21 622 457 125899
fast0507 63009 63009 507 seymour 1372 1372 4944
fiber 1298 1254 363 sp97ar 14101 14101 1761

glass4 322 302 396 swath 6805 6724 884
harp2 2993 2993 112 t1717 73885 73885 551
liu 1156 1089 2178 tr12-30 1080 360 750

misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411

Table 2.4 The additional set of 39 0-1 MIP instances.

Name n |B| msource Name n |B| msource
biella1 7328 61101203 [25] blp-ar98 1602115806 1128 [43]
NSR8K 38356320406284 [25] blp-ic97 9845 9753 923 [43]

dc1c 10039 83801649 [21] blp-ic98 1364013550 717 [43]
dc1l 37297356381653 [21] blp-ir98 6097 6031 486 [43]
dolom1 11612 97201803 [21] CMS750 4 11697 719616381 [42]

siena1 13741117752220 [21] berlin 5 8 0 1083 794 1532 [42]
trento1 7687 64151265 [21] railway 8 1 0 1796 1177 2527 [42]
rail507 6301963009 509 [25] usAbbrv.8.25 70 2312 1681 3291 [42]

rail2536c 15293152842539 [25] manpower1 105651056425199 [53]
rail2586c 13226132152589 [25] manpower2 100091000823881 [53]
rail4284c 21714217054284 [25] manpower3 100091000823915 [53]

rail4872c 24656246454875 [25] manpower3a 100091000823865 [53]
A2C1S1 3648 1923312 [25] manpower4 100091000823914 [53]

B1C1S1 3872 2883904 [25] manpower4a 100091000823866 [53]

B2C1S1 3872 2883904 [25] ljb2 771 681 1482 [18]
sp97ic 12497124971033 [25] ljb7 4163 3920 8133 [18]

sp98ar 15085150851435 [25] ljb9 4721 4460 9231 [18]
sp98ic 1089410894 825 [25] ljb10 5496 519610742 [18]
bg512142 792 2401307 [47] ljb12 4913 4633 9596 [18]

dg012142 2080 6406310 [47]

The framework described in the previous section has been tested by using
different starting solutions x̂ provided by FP. In particular, we wanted to test
the sensitivity of our modified LB algorithm with respect to the degree of
infeasibility of the starting solution, as well as its capability for improving it.
Thus, we executed the FP code for 0, 10 and 100 iterations and passed to LB
the integer (infeasible) solution x̂ with minimum distance Φ(x∗, x̂) from P .
(The case with 0 iterations actually corresponds to starting from the solution

2 Just MIP it! 57

of the continuous relaxation, rounded to the nearest integer.) The resulting
three versions of the modified LB are called LB0, LB10, and LB100, respectively.

In our experiments, we avoided any parameter tuning; FP was implemented
exactly as in [24], and for the modified LB code we used a time limit of 30
CPU seconds for the exploration of each local branching neighborhood. As
to the value of the neighborhood-size parameter k in LB, we implemented
an adaptive procedure: at each neighborhood exploration, we try to reduce
the number of violated constraints in the current solution by half, i.e., we
set k = b|T ′|/2c, where |T ′| is the value of the current solution. (Since the
support of the solution also takes into account non-artificial binary variables,
when the number of violated constraints becomes less than 20 we fix k = 10,
i.e., we use the value suggested in [25] for the asymmetric version of the local
branching constraint.) The motivation for this choice is that the number of
violated constraints in an initial solution can be extremely large, in which
case the use of a small value of k would result in a very slow convergence. A
possible drawback is that, in some cases, some of the neighborhoods in the LB
sequence can contain no feasible solutions (with respect to the original model)
because we do not allow enough artificial variables y to change. The approach
can therefore appear counterintuitive, but the idea is that of reducing the
neighborhood size iteratively so as to eventually converge.

All codes are written in ANSI C and use the ILOG-Cplex callable libraries.
The three modified LB codes (LB0, LB10, and LB100) are compared with FP
and ILOG-Cplex 9.0.3 in Table 2.5 for the MIPLIB 2003 instances, and in
Table 2.6 for the additional set of instances. Computing times are expressed
in CPU seconds, and refer to a Pentium M 1.6 GHz notebook with 512 MByte
of main memory. A time limit of 1,800 CPU seconds was provided for each
instance with each algorithm and the computation was halted as soon as a
first feasible solution was found.

For each instance, we report in both tables: for ILOG-Cplex, the number
of nodes (nodes) needed to find an initial solution and the corresponding
computing time (time); for FP, the number of iterations (FPit) and its com-
puting time (time); for each of the three variants of LB, the computing time
spent in the FP preprocessing phase (FP time), the initial number of violated
constraints (|T |), the number of LB iterations (LBit), and the overall com-
puting time (time). Note that we define an LB iteration as the exploration,
generally within a time limit, of the neighborhood of the current solution.
Moreover, the time reported is the sum of the time of the FP initialization
plus the LB time, thus it can be larger than 1,800 CPU seconds. When one
of the algorithms was not able to find a feasible solution in the given time
limit, we wrote (*) in column “nodes” (for ILOG-Cplex) or “FPit” (for FP),
or wrote (µ) in column “|T |” near the number of initial infeasible constraints
(for LB), where µ is the number of violated constraints in the final solution.

As expected, the degree of infeasibility of the starting solution plays an
important role in the LB methods—the better the initial solution, the faster
the method. In this view, the FP approach seems to fit particularly well in

58 M. Fischetti, A. Lodi, and D. Salvagnin

T
a
b
le

2
.5

C
o
n
v
er

g
en

ce
to

a
fi
rs

t
fe

a
si

b
le

so
lu

ti
o
n

o
n

th
e

M
IP

L
IB

2
0
0
3

in
st

a
n
ce

s.

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e

1
0
te

a
m

s
3
3
5

8
.4

7
0

1
1
.7

0
.1

7
5

2
9

6
6
7
.7

1
.1

1
8

1
1

1
7
7
.4

1
1
.7

–
–

1
1
.7

A
1
C

1
S
1

1
5
0

4
.1

8
3
.8

0
.1

6
3

5
0
.8

3
.8

–
–

3
.8

3
.8

–
–

3
.8

a
fl
o
w

3
0
a

0
0
.1

1
8

0
.1

0
.0

2
9

4
3
.0

0
.1

2
9

4
0
.3

0
.1

–
–

0
.1

a
fl
o
w

4
0
b

3
7
0

5
.9

6
0
.3

0
.1

4
0

5
5
7
.6

0
.3

–
–

0
.3

0
.3

–
–

0
.3

a
ir

0
4

4
0

8
.6

6
7
4
.7

3
.4

1
2
5

2
4

6
7
1
.8

7
4
.7

–
–

7
4
.7

7
4
.7

–
–

7
4
.7

a
ir

0
5

7
0

3
.4

2
5

8
3
.8

0
.8

2
0
8

1
2

1
3
5
.0

2
2
.8

1
4

3
2
5
.0

8
3
.8

–
–

8
3
.8

ca
p
6
0
0
0

0
0
.2

2
0
.2

0
.1

1
1

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
a
n
o
3
m

ip
0

6
7
.7

2
8
6
.3

6
5
.0

9
4
6

(1
0
5
)

3
1

1
,8

6
5
.0

8
6
.3

–
–

8
6
.3

8
6
.3

–
–

8
6
.3

d
a
n
o
in

t
4
0

1
.7

2
3

1
.5

0
.1

1
2
5

6
1
6
.9

0
.6

1
2
0

5
3
.7

1
.5

–
–

1
.5

d
s

0
5
5
.0

1
3
3

(*
)

1
,8

0
0
.0

5
4
.5

6
5
6

1
6

5
8
2
.8

2
2
9
.9

3
5
0

8
3
0
2
.1

1
,3

5
8
.6

1
3
3

6
1
,3

8
5
.0

fa
st

0
5
0
7

0
3
9
.0

3
4
6
.7

4
3
.4

1
4
8

1
4
5
.8

4
6
.7

–
–

4
6
.7

4
6
.7

–
–

4
6
.7

fi
b
er

0
0
.1

2
0
.0

0
.0

4
1

5
0
.5

0
.0

–
–

0
.0

0
.0

–
–

0
.0

g
la

ss
4

5
3
8
9

1
.6

1
2
4

0
.3

0
.0

5
2

5
0
.9

0
.0

4
5

4
0
.1

0
.2

4
5

4
0
.3

h
a
rp

2
0

0
.0

6
5
4

5
.0

0
.0

9
3

0
.9

0
.1

6
1

0
.1

0
.8

6
1

0
.8

li
u

0
0
.1

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
is

c0
7

6
7

0
.2

7
8

0
.4

0
.0

1
3
5

7
1
.7

0
.1

8
1

6
0
.6

0
.4

–
–

0
.4

m
k
c

0
0
.2

2
0
.2

0
.1

9
3

2
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

m
o
d
0
1
1

0
0
.2

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
o
m

en
tu

m
1

3
1
4

(*
)

1
,8

0
0
.0

5
0
2

1
,3

2
9
.6

1
.8

6
9
7

(1
0
6
)

1
8

1
,8

0
1
.8

4
2
.6

8
9
5

(1
5
)

5
8

1
,8

4
2
.6

1
7
8
.8

8
9
5

(1
5
)

5
8

1
,9

7
8
.8

n
et

1
2

2
0
3

(*
)

1
,8

0
0
.0

1
5
0
7

2
2
5
.0

1
.8

4
0
6

1
4

2
4
6
.2

1
2
.9

2
3
9

7
1
6
.8

2
1
.8

2
3
9

7
2
5
.5

n
sr

a
n
d

ip
x

0
0
.5

4
0
.9

1
1
.3

3
9
0

8
1
4
.1

0
.9

–
–

0
.9

0
.9

–
–

0
.9

n
w

0
4

0
4
.9

1
4
.6

0
.3

6
2

6
.8

4
.6

–
–

4
.6

4
.6

–
–

4
.6

o
p
t1

2
1
7

1
1
7

0
.1

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

p
2
7
5
6

0
0
.1

1
5
0
0
2
3

(*
)

1
,8

0
0
.0

0
.0

4
1

6
0
.8

0
.1

1
9

1
0
.2

1
.2

1
9

1
1
.3

p
ro

tf
o
ld

1
9
0

6
4
0
.9

3
6
7

5
0
2
.0

2
.7

3
7

(3
7
)

7
1
,8

0
2
.7

1
6
.1

1
3

(1
)

5
0

1
,8

1
6
.1

1
2
5
.6

7
(1

)
5
5

1
,9

2
5
.6

q
iu

0
0
.2

5
0
.3

0
.1

1
3
2

1
0
.2

0
.3

–
–

0
.3

0
.3

–
–

0
.3

rd
-r

p
lu

sc
-2

1
1
0
9
7
8
(*

)
1
,8

0
0
.0

4
0
1

(*
)

1
,8

0
0
.0

3
.9

1
1
9
0
2
1

(7
0
9
4
)

2
3

1
,8

0
3
.9

3
6
.8

1
1
9
0
1
7

(1
)

7
1

1
,8

3
6
.8

4
4
9
.5

1
1
9
0
1
7

(2
)

7
5

2
,2

4
9
.5

se
y
m

o
u
r

0
3
.5

7
3
.6

3
.0

9
2
1

1
3
.8

3
.6

–
–

3
.6

3
.6

–
–

3
.6

sp
9
7
a
r

0
3
.4

4
4
.2

2
.9

2
2
2

1
3
.8

4
.2

–
–

4
.2

4
.2

–
–

4
.2

sw
a
th

0
0
.2

4
9

2
.9

0
.1

2
0

6
1
2
4
.6

1
.0

2
0

6
7
0
.8

2
.9

–
–

2
.9

t1
7
1
7

7
1
0

3
0
1
.0

4
0

8
1
4
.8

1
0
.7

4
4
5

(5
0
)

2
5

1
,8

1
0
.7

1
3
3
.2

1
0
8

(5
)

3
5

1
,9

3
3
.2

8
1
4
.8

–
–

8
1
4
.8

tr
1
2
-3

0
1
7
9

0
.9

8
0
.1

0
.0

3
4
8

8
0
.6

0
.1

–
–

0
.1

0
.1

–
–

0
.1

v
a
n

0
8
7
2
.8

1
0

3
0
0
.5

2
7
.4

1
9
2

(1
2
8
)

9
1
,8

2
7
.4

3
0
0
.5

–
–

3
0
0
.5

3
0
0
.5

–
–

3
0
0
.5

2 Just MIP it! 59

T
a
b
le

2
.6

C
o
n
v
er

g
en

ce
to

a
fi
rs

t
fe

a
si

b
le

so
lu

ti
o
n

o
n

th
e

a
d
d
it
io

n
a
l
se

t
o
f
0
-1

M
IP

in
st

a
n
ce

s.

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e
F
P
ti
m

e
|T
|
L
B
it

ti
m

e

b
ie

ll
a
1

5
9
4

1
0
8
.4

4
2
.8

2
.3

1
1
9
3

9
1
8
.2

2
.8

–
–

2
.8

2
.8

–
–

2
.8

N
S
R

8
K

5
(*

)
1
,8

0
0
.0

3
1
9
5
.5

1
8
5
.8

5
4
8
8

(5
4
8
8
)

1
1
,9

8
5
.8

1
9
5
.5

–
–

1
9
5
.5

1
9
5
.5

–
–

1
9
5
.5

d
c1

c
4
7
4
9

4
7
4
.0

2
1
2
.7

1
1
.6

1
4
8
3

1
1

8
1
.6

1
2
.7

–
–

1
2
.7

1
2
.7

–
–

1
2
.7

d
c1

l
0

8
0
.8

2
1
6
.2

1
4
.0

1
5
6
7

1
1
4
.8

1
6
.2

–
–

1
6
.2

1
6
.2

–
–

1
6
.2

d
o
lo

m
1

3
6
7

5
0
4
.4

2
2

2
2
.6

1
1
.9

1
4
1
0

1
2

2
7
7
.1

1
7
.7

6
3
2

8
4
9
.4

2
2
.6

–
–

2
2
.6

si
en

a
1

6
0
0

1
,3

7
1
.5

3
4
3
.7

4
0
.6

1
7
5
0

1
2

2
7
1
.2

4
3
.7

–
–

4
3
.7

4
3
.7

–
–

4
3
.7

tr
en

to
1

3
4
0

2
7
6
.8

7
1
1
.0

9
.3

6
0
3

8
2
2
.6

1
1
.0

–
–

1
1
.0

1
1
.0

–
–

1
1
.0

ra
il
5
0
7

0
3
2
.8

2
8
.7

6
.5

2
1
8

1
7
.4

8
.7

–
–

8
.7

8
.7

–
–

8
.7

ra
il
2
5
3
6
c

0
1
6
.8

1
1
5
.2

1
4
.3

2
0
0
8

1
1
4
.9

1
5
.2

–
–

1
5
.2

1
5
.2

–
–

1
5
.2

ra
il
2
5
8
6
c

0
6
3
.9

1
8
.3

7
.6

1
8
7
1

1
7
.9

8
.3

–
–

8
.3

8
.3

–
–

8
.3

ra
il
4
2
8
4
c

0
2
0
4
.9

2
5
6
.7

5
3
.5

3
3
0
5

1
5
4
.2

5
6
.7

–
–

5
6
.7

5
6
.7

–
–

5
6
.7

ra
il
4
8
7
2
c

0
1
8
6
.4

2
1
9
.3

1
7
.5

3
2
5
4

1
1
8
.3

1
9
.3

–
–

1
9
.3

1
9
.3

–
–

1
9
.3

A
2
C

1
S
1

0
0
.1

5
4
.7

0
.1

6
0

1
0
.2

4
.7

–
–

4
.7

4
.7

–
–

4
.7

B
1
C

1
S
1

0
0
.1

6
5
.0

0
.1

2
0
8

1
0
.2

5
.0

–
–

5
.0

5
.0

–
–

5
.0

B
2
C

1
S
1

0
0
.1

7
4
.7

0
.1

2
1
7

1
0
.3

4
.7

–
–

4
.7

4
.7

–
–

4
.7

sp
9
7
ic

0
2
.4

3
3
.1

1
.7

1
7
3

1
2
.4

3
.1

–
–

3
.1

3
.1

–
–

3
.1

sp
9
8
a
r

0
3
.8

3
5
.2

3
.5

2
6
0

7
2
3
.6

5
.2

–
–

5
.2

5
.2

–
–

5
.2

sp
9
8
ic

0
2
.1

2
2
.6

1
.8

1
4
7

6
6
.0

2
.6

–
–

2
.6

2
.6

–
–

2
.6

b
lp

-a
r9

8
8
3
0
0

1
5
8
.3

8
3
5

1
2
2
.9

0
.5

2
1
2

8
3
1
.7

2
.5

2
0
4

7
1
6
.4

1
5
.7

2
0
5

7
2
5
.9

b
lp

-i
c9

7
1
1
2
0

1
6
.2

8
1
.3

0
.3

5
9

5
5
.5

1
.3

–
–

1
.3

1
.3

–
–

1
.3

b
lp

-i
c9

8
1
5
7
0

3
3
.6

3
1
.5

0
.9

7
6

5
5
.0

1
.5

–
–

1
.5

1
.5

–
–

1
.5

b
lp

-i
r9

8
1
2
3
0

8
.1

4
0
.4

0
.1

3
7

4
1
.3

0
.4

–
–

0
.4

0
.4

–
–

0
.4

C
M

S
7
5
0

4
9
4
0

2
7
.2

1
6

6
.5

0
.7

2
4
4
6

1
9
.2

3
.3

2
4
4
1

1
1
1
.7

6
.5

–
–

6
.5

b
er

li
n

5
8

0
1
5
2

0
.4

1
3

0
.2

0
.0

1
7
0

2
0

2
7
5
.4

0
.1

1
6
7

1
0
.2

0
.2

–
–

0
.2

ra
il
w

a
y

8
1

0
3
5
0

1
.3

1
2

0
.3

0
.1

3
7
4

1
7

3
5
8
.4

0
.2

3
7
3

1
0
.5

0
.3

–
–

0
.3

u
sA

b
b
rv

.8
.2

5
7
0

2
7
4
5
8
1

1
,3

7
1
.5

3
1

0
.7

0
.1

4
0
0

1
0
.6

0
.3

3
7
6

1
0
.8

0
.7

–
–

0
.7

b
g
5
1
2
1
4
2

0
0
.3

0
0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
g
0
1
2
1
4
2

0
1
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

m
a
n
p
o
w

er
1

1
5
4

(*
)

1
,8

0
0
.0

3
0

1
8
.8

8
.4

1
1
4
2

1
5

1
0
8
.7

1
3
.4

3
3
6

9
5
2
.0

1
8
.8

–
–

1
8
.8

m
a
n
p
o
w

er
2

1
5
0

3
6
4
.6

9
2

1
3
7
.5

3
9
.5

1
1
8
1

3
0

7
7
4
.2

7
3
.6

3
0
9

1
3

3
9
4
.8

1
3
7
.5

–
–

1
3
7
.5

m
a
n
p
o
w

er
3

1
8
1

3
2
6
.9

4
2

7
6
.2

2
7
.1

1
1
6
0

2
3

5
3
4
.7

5
5
.5

4
2
7

1
7

3
6
3
.3

7
6
.2

–
–

7
6
.2

m
a
n
p
o
w

er
3
a

1
8
1

9
2
5
.1

2
9
3

2
9
4
.1

3
0
.6

1
3
2
7

(7
)

5
7

1
,8

3
0
.6

5
3
.3

3
6
9

1
8

4
9
1
.2

1
1
4
.8

9
2

3
7
2
.1

m
a
n
p
o
w

er
4

1
8
5

6
7
1
.0

2
0
8

1
3
8
.9

1
4
.3

1
1
0
5

3
4

1
,0

1
0
.8

4
1
.8

6
0
4

1
9

4
2
7
.7

8
0
.5

4
0

8
3
8
3
.8

m
a
n
p
o
w

er
4
a

1
9
4

1
,0

3
9
.9

3
0
8

2
8
9
.2

3
6
.4

1
2
2
6

3
7

8
1
4
.8

6
9
.1

4
8
3

1
8

4
4
0
.0

1
5
9
.3

7
4

2
0
6
.2

lj
b
2

3
0

0
.2

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

lj
b
7

1
0
0

3
.8

0
0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

lj
b
9

1
8
0

7
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

lj
b
1
0

9
0

5
.9

0
1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

lj
b
1
2

1
1
0

5
.8

0
0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

60 M. Fischetti, A. Lodi, and D. Salvagnin

our context, in that it is able to provide very good solutions (as far as the
degree of infeasibility is concerned) in very short computing times. Among the
three LB implementations, LB0 failed eight times in finding a feasible solution
within the time limit, LB10 four times, and LB0 only three times. Among the
64 instances for which the three LB implementations found a feasible solution
within the time limit, LB0 was at least as fast as the other two in 26 cases,
LB10 in 34 cases, and LB100 in 42 cases. Overall, LB100 qualifies as the most
effective (and stable) of the three methods.

A comparison between ILOG-Cplex and LB100 shows that:

1. ILOG-Cplex was not able to find any feasible solution (within the 1,800
second time limit) in five cases, whereas LB100 was unsuccessful three times;

2. among the 66 instances for which both algorithms found a feasible solution
within the time limit, ILOG-Cplex was strictly faster in 21 cases, while the
opposite holds in 41 cases;

3. among the same 66 instances, the average computing time for finding a
feasible solution for ILOG-Cplex was 146.7 CPU seconds, while for LB100

it was 65.0 CPU seconds.

As expected, the quality of the initial ILOG-Cplex solution (not reported
in the tables) is typically better than that provided by the LB methods. More
precisely, the geometric mean of the ratio between the solution found by
an algorithm and best solution is 2.28, 2.22, 2.11 and 1.13 for the three LB
implementations and ILOG-Cplex, respectively. As noted in Section 2.3.2,
however, the first solution can be easily improved by standard use of the LB
algorithm. As an example, on instance dc1c the ratio of the solution obtained
by algorithm LB0 with respect to the first solution computed by ILOG-Cplex
is 12.16. However, the ratio reduces significantly by applying LB, and becomes
4.83, 2.74, and 1.02 in the first three iterations, respectively, and reaches value
0.77 (i.e., the ILOG-Cplex solution is eventually improved) in the fourth one.
Those four iterations take 138.1 CPU seconds, plus 81.6 seconds to find the
first solution, thus the overall computing time of 219.7 CPU seconds is less
than a half of the time spent by ILOG-Cplex to find its first solution, namely
474.0 CPU seconds.

This very satisfactory behavior is unfortunately not confirmed on other
instances, though local search heuristics such as LB or RINS [18] generally
improve the first solution considerably. On the other hand, an effective ex-
ploitation of a first feasible solution within an enumerative algorithm is by
itself a relevant (and difficult) research topic, that recently started to receive
considerable attention in the field.

2 Just MIP it! 61

2.4 MIPping the Dominance Test

In the standard B&B (or B&C) framework, a node is fathomed in two situ-
ations:

1. the LP relaxation of the node is infeasible;
2. the LP relaxation optimum is not better than the value of the incumbent

optimal solution.

There is, however, a third way of pruning a node, by using dominances.
According to [51], a dominance relation is defined as follows: if we can show
that the best descendant of a node β is at least as good as the best descendant
of a node α, then we say that node β dominates node α, meaning that
the latter can be fathomed (in case of ties, an appropriate rule has to be
taken into account in order to avoid fathoming cycles). Unfortunately, this
definition may become useless in the context of general MIPs, where we do
not actually know how to perform the dominance test without storing huge
amounts of information for all the previously-generated nodes — which is
often impractical.

Fischetti and Toth [30] proposed a different (and more “local”) dominance
procedure which overcomes many of the drawbacks of the classical definition,
and resembles somehow the isomorphic-pruning introduced recently by Mar-
got [45]. Here is how the procedure works.

Let the MIP problem at hand denoted as:

min{cTx : x ∈ Rn
+, Ax ≤ b, xj integer for all j ∈ J}, (2.59)

where J ⊆ I := {1, · · · , n} is the index-set of the integer variables. For any
J ′ ⊆ J and for any x′ ∈ Rn

+, we denote as:

c(J ′, x′) :=
∑
j∈J′

cjx
′
j ,

the contribution of the variables in J ′ to the overall cost cTx′. Now, let us
suppose to solve problem (2.59) by an enumerative (B&B or B&C) algorithm
whose branching rule fixes some of the integer-constrained variables to some
values. For every node k of the search tree, let Jk ⊆ J denote the set of
indices of the variables xj fixed to a certain value xk

j (say). Every solution
x such that xj = xk

j for all j ∈ Jk (i.e., belonging to the subtree rooted at
node k) is called a completion of the partial solution associated at node k.

Definition 1. Let α and β be two nodes of the search tree. Node β dominates
node α if:

1. Jβ = Jα;
2. c(Jβ , xβ) ≤ c(Jα, xα), i.e., the cost of the partial solution at node β is not

worse than that at node α;

62 M. Fischetti, A. Lodi, and D. Salvagnin

3. every completion of the partial solution associated with node α is also a
completion of the partial solution associated with node β.

Clearly, according to the classical dominance theory, the existence of a node β
unfathomed that dominates node α is a sufficient condition to fathom node
α. A key question at this point is: Given the current node α, how can we
check the existence of a dominating node β? Fischetti and Toth answered
this question by modeling the search of dominating nodes as a structured
optimization problem, to be solved exactly or heuristically. For generic MIP
models, this leads to the following auxiliary problem:

XPα : min
∑

j∈Jα cjxj

s.t.
∑

j∈Jα Ajxj ≤ bα :=
∑

j∈Jα Ajx
α
j

xj integer for all j ∈ Jα

(2.60)

If a solution xβ (say) of the auxiliary problem having a cost strictly smaller
than c(Jα, xα) is found, then it defines a dominating node β and the current
node α can be fathomed.

It is worth noting that the auxiliary problem is of the same nature as
the original MIP problem, but with a smaller size and thus it is often easily
solved (possibly in a heuristic way) by a general-purpose MIP solver, so we
are indeed “MIPping the dominance test”.

The Fischetti-Toth dominance procedure, called Local Dominance (LD)
procedure in the sequel to stress its local nature, has several useful properties:

• there is no need to store any information about the set of previously gen-
erated nodes;

• there is no need to make any time-consuming comparison of the current
node with other nodes;

• a node can be fathomed even if the corresponding dominating one has not
been generated yet;

• the correctness of the enumerative algorithm does not depend on the
branching rule; this is a valuable property since it imposes no constraints
on the B&B parameters (though an unappropriate branching strategy
could prevent several dominated nodes to be fathomed).

In addition, the LD test needs not be applied at every node. This is a crucial
property from the practical point of view, as the dominance test introduces
some overhead and it would make the algorithm uncompetitive if applied at
every node. Note that skipping a LD test at a given node is not likely to
induce a great pruning loss, since the following inheritance property holds
(see [54] for the proof):

Proposition 1. Let α and β be two nodes of the search tree and let β domi-
nate α. Then for every α′ successor of α there exists a node β′ such that β′

dominates α′.

2 Just MIP it! 63

As a consequence, if β dominates α and α is not fathomed because the corre-
sponding dominance test was skipped, we still have the possibility to prune
some descendant nodes of α.

An important issue to be addressed when implementing the LD test is
to avoid fathoming cycles arising when the auxiliary problem actually has
a solution xβ different from xα but of the same cost, in which case one
is allowed to fathom node α only if a tie-break rule is used to guarantee
that node β itself is not fathomed for the same reason. In order to prevent
these “tautological” fathoming cycles the following criterion (among others)
has been proposed in [30]: In case of cost equivalence, define as unfathomed
the node β corresponding to the solution found by a deterministic7 exact
or heuristic algorithm used to solve the auxiliary problem. Unfortunately,
this criterion can be misleading for two important reasons. First of all, it is
not easy to define a “deterministic” algorithm for MIP. In fact, besides the
possible effects of randomized steps, the output of the MIP solver typically
depends, e.g., on the order in which the variables are listed on input, that can
affect the choice of the branching variables as well as the internal heuristics.

In view of the considerations above, in our implementation we used a
different tie-break rule, also described in [30], that consists in ranking cost-
equivalent solutions in lexicographical order. To be more specific, in case of
cost ties we fathom node α if and only if the partial solution xβ associated
with the dominating node β is lexicographically smaller8 than xα. Using
this tie-breaking rule, it is easy to prove [54] the correctness of the overall
enumerative method.

2.4.1 Borrowing Nogoods from Constraint
Programming

The computational overhead related to the LD test can be reduced consid-
erably if we exploit the notion of nogoods taken from Constraint Program-
ming. A nogood is a partial assignment of the problem variables such that
every completion is either infeasible (for constraint satisfaction problems) or
nonoptimal (for constraint optimization problems). The key observation here
is that whenever we discover (through the solution of the auxiliary problem)
that the current node α is dominated, we have indeed found a nogood con-
figuration [Jα, xα] that we want to exclude from being re-analyzed at a later
time.

There are two possible ways of exploiting nogoods in the context of MIP
solvers:

7 In our context, an algorithm is said to be deterministic if it always provides the same

output solution for the same input set.
8 We use the standard definition of lexicographic order on vectors of fixed size over a totally

ordered set.

64 M. Fischetti, A. Lodi, and D. Salvagnin

• Generate a constraint αTx ≤ α0 cutting the nogood configuration off, so
as to prevent it appears again in a later fractional solution. This is always
possible (for both binary and general-integer linear problems) through a
local branching constraint [25], and leads to the so-called combinatorial
Benders cuts studied by Codato and Fischetti [14].

• Maintain explicitly a pool of previously found nogood configurations and
solve the following problem (akin to separation) at each node α to be
tested: Find, if any, a nogood configuration [J ′, x′] stored in the pool, such
that J ′ ⊆ Jα and x′j = xα

j for all j ∈ J ′. If the test is successful, we can
of course fathom node α without the need of constructing and solving the
auxiliary problem XPα.

In our implementation we use the nogood-pool option, that according to
our computational experience outperforms the cut options. It is worth noting
that we are interested in minimal (with respect to set inclusion) nogoods, so
as to improve both for efficiency and effectiveness of the method. Indeed, if
node β dominates node α and J ′ := {j ∈ Jα : xα

j 6= xβ
j }, then clearly the

restriction of xβ onto J ′ dominates the restriction of xα onto J ′. If applied
at every node, our procedure guarantees automatically the minimality of the
nogood configurations found. If this is not the case, instead, minimality is no
longer guaranteed, and is enforced by a simple post-processing step before
storing any new nogood in the pool.

2.4.2 Improving the Auxiliary Problem

The effectiveness of the LD test presented in the previous section heavily
depends on the auxiliary problem that is constructed at a given node α. In
particular, it is crucial for its solution set to be as large as possible, so as to
increase the chances of finding a dominating partial solution. Moreover, we
aim at finding a partial solution different from (and hopefully lexicographi-
cally better than) the one associated with the current node; finding the same
solution xα is of no use within the LD context. For these reasons, several im-
provements of the original auxiliary-problem formulation have been proposed
in [54], as outlined below.

The auxiliary problem XPα constructed at node α is always feasible, as
the partial assignment xα corresponding to node α itself is always feasible.
This is not a desired behavior, for two main reasons:

• Often xα turns out to be the only feasible solution to XPα—for our pur-
poses, it would be better to consider it as infeasible, meaning that the
node cannot be fathomed by our procedure.

• When solving the auxiliary problem, the solver often finds solution xα

(even if it is not provided explicitly on input for initializing the incum-

2 Just MIP it! 65

bent) and proves its optimality without looking for alternative (hopefully
lexicographically better) optimal solutions.

Moreover, as the depth of the nodes in the B&B increases, the auxiliary
problem grows in size and becomes heavier to solve. In addition, the resulting
nogood (if any) may be of little applicability in the remaining part of the
search because it may involve too many variables.

For these reasons one can heuristically limit the search space of the aux-
iliary problem to alternative assignments that are not too far from the cur-
rent one, but different from it. This can be achieved again with two local
branching [25] constraints, which however, in the most general case, could
need the introduction of complicating auxiliary variables. According to our
computational experience, a good compromise is to consider local branching
constraints involving only the (binary or general integer) variables fixed to
their lower or upper bound, namely:∑

j∈U

(uj − xj) +
∑
j∈L

(xj − lj) ≤ k, (2.61)

∑
j∈U

(uj − xj) +
∑
j∈L

(xj − lj) ≥ 1, (2.62)

where

U = {j ∈ Jα | xα
j = uj} and L = {j ∈ Jα | xα

j = lj}.

It is worth noting that the above constraint may exclude some feasible
solutions that differ from xα with respect to variables fixed to values different
from a lower or upper bound. In this case, our fathoming test can become
less powerful, but the overall method remains correct. Finally, we found it
useful to add the following optimality constraint∑

j∈Jα

cjxj ≤
∑

j∈Jα

cjx
α
j .

2.4.3 Computational Results

The enhanced dominance procedure presented in the previous section has
been implemented in C++ within the ILOG-Cplex [41] framework on a Linux
platform. Here are some implementation issues that deserve further descrip-
tion.

One of the main drawbacks of LD tests is that they postpone finding a
better incumbent solution, thus increasing the number of nodes needed to
solve the problem. This behavior is quite undesirable, especially in the first
phase of the algorithm, when we have no incumbent and no nodes can be

66 M. Fischetti, A. Lodi, and D. Salvagnin

fathomed through bounding criteria. A practical solution to this problem is
to skip the dominance test until the first feasible solution is found.

The systematic application of the dominance test to every node of the
search tree can become too heavy to be worthwhile in practice. A first con-
sideration is that we should skip the dominance test on nodes near the top
or the bottom of the search tree. Indeed, in the first case only a few variables
have been fixed, hence there are little chances of finding a dominating partial
assignment. In the latter case, instead, it is likely that the node would be
pruned anyway by standard bounding tests; moreover, at the bottom of the
tree the number of fixed variables is large and the auxiliary problem may be
quite heavy to solve. In our implementation, we provide two thresholds on
the tree depth of the nodes, namely depthmin and depthmax, a node α being
tested for dominance only if depthmin ≤ depth(α) ≤ depthmax. Moreover,
we decided to test for dominance a node only if its depth is a multiple of a
given parameter, depth interval. The three parameters above have been set
as relative percentages on the number of variables. Finally, we set a limit on
the computing time spent by the black-box MIP solver used for solving each
auxiliary problem.

In our computational experiments we tested ILOG-Cplex 9.0 [41] commer-
cial code with and without our LD test. All runs were performed on a AMD
Athlon64 3500+ PC with 4GB of RAM, under Linux. The ILOG-Cplex code
was run with its default options, and the overall time limit for processing
each instance was set to 2,000 CPU seconds. As to LD tests, we used the
following parameters:

• depth min = 0.3 times the total number of variables;
• depth max = 0.8 times the total number of variables;
• depth interval = 0.1 times the total number of variables.

Moreover, in this implementation we did not use local branching constraint
(2.61). The definition of the test-bed for testing the potentiality of our ap-
proach is a delicate issue. As a matter of fact, one cannot realistically expect
any dominance relationship to be effective on all types of MIPs. Therefore,
we looked for classes of problems whose structure can trigger the dominance
relationship, and measured the speedup that can be achieved by using our
specific LD procedure. In particular, we next give results on single and mul-
tiple knapsack problems [46]. We generated hard single knapsack instances
according to the so-called spanner instances method in combination with
the almost strongly correlated profit generation technique; see Pisinger [52]
for details. Multiple knapsack instances were generated in a similar way, by
choosing a same capacity for all the containers.

The results on hard single knapsack instances with 60 to 90 items are given
in Table 2.7.

According to the table, LD tests are very effective on this class of problems,
yielding consistently a large speedup and solving to optimality three instances
where the standard code reached the time limit. It is worth noting that little

2 Just MIP it! 67

Table 2.7 Computational results for hard single knapsack instances.

Standard Cplex Dominance Code Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60 1 286,056 9.60 0 725 0.04 0 394.56 240.00

kp60 2 27,108,819 2,050.82 0.016 773,890 2,067.44 0.028 35.03 1.00

kp60 3 718,887 24.89 0 1330 0.34 0 540.52 73.21
kp60 4 804,304 26.32 0 28,947 12.17 0 27.79 2.16

kp60 5 688,122 24.36 0 48,895 4.87 0 14.07 5.00
kp70 1 23,671,129 2,050.52 0.406 1,638,641 2,047.53 0.406 14.45 1.00

kp70 2 1,060,259 35.43 0 153,552 61.54 0 6.90 0.58

kp70 3 665,668 23.12 0 147,899 28.00 0 4.50 0.83
kp70 4 23,037,172 2,048.61 0.399 935,986 2,065.34 0.216 24.16 1.00

kp70 5 424,815 15.17 0 19,685 0.89 0 21.58 17.04

kp80 1 413,489 13.98 0 249,582 10.39 0 1.66 1.35
kp80 2 587,456 22.54 0 140,191 7.25 0 4.19 3.11

kp80 3 673,318 22.61 0 26,803 2.13 0 25.12 10.62

kp80 4 529,026 17.56 0 5,274 0.24 0 100.31 73.17
kp80 5 32,604,432 2,050.79 0.328 460,908 109.26 0 70.74 18.77

kp90 1 25,409,911 2,047.65 0.065 928,586 2,034.52 0.065 27.36 1.00
kp90 2 37,650,100 2,041.93 0.137 3,957,332 167,81 0 9.51 12.17
kp90 3 3,024,346 126.59 0 266,137 16.82 0 11.36 7.53

kp90 4 1,926,498 81.39 0 134,385 10.25 0 14.34 7.94
kp90 5 26,510,264 2,052.64 0.263 1,047,483 551.93 0 25.31 3.72

Total 207,794,071 14,787.34 - 10,966,231 9,198.76 - 18.95 1.61

Table 2.8 Parameter tuning on specific hard single knapsack instances.

Problem Nodes Time (s) Gap Depth Min Depth Max

kp60 2 1,653,691 68.24 0 0.3 0.6
kp70 2 7,763 1.02 0 0.3 0.8

kp80 2 11,171 0.57 0 0.3 0.8
kp80 3 2,955 0.30 0 0.3 0.6

parameter tuning would have produced better results in terms of elapsed time
and/or final gap for four instances, as in Table 2.8.

As to hard multiple knapsack problems, we have generated instances with
a number of items ranging from 20 to 40 and a number of knapsacks ranging
form 3 to 5. The LD parameters were set to:

• depth min = 0.3 times the total number of variables;
• depth max = 0.5 times the total number of variables;
• depth interval = 0.1 times the total number of variables.

For these problems, the time limit was increased to one hour.
The results on multiple knapsack problems are available in Table 2.9.
In the multiple knapsack case, LD was not as effective as in the single

case, yielding some improvements only on the smallest instances. It is how-

68 M. Fischetti, A. Lodi, and D. Salvagnin

Table 2.9 Computational results for hard multiple knapsack problems.

Standard Cplex Dominance Code Ratio
Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

mkp20 3.lp 187,713 16.13 0 129,516 12.18 0 1.45 1.32

mkp20 4.lp 80,845 11.20 0 79,650 10.20 0 1.02 1.10
mkp20 5.lp 1,639,251 171.07 0 1,563,925 181.96 0 1.05 0.94

mkp30 3.lp 33,205,268 3,652.63 0.627 31,141,581 3,654.65 0.632 1.07 1.00
mkp30 4.lp 5,414,529 650.24 0 26,707,752 3,649.55 0.439 0.20 0.18

mkp30 5.lp 28,159,141 3,644.38 0.515 25,653,218 3,649.69 0.515 1.10 1.00

mkp40 3.lp 40,576,080 3,654.31 0.515 22,963,265 3,699.83 0.515 1.77 0.99
mkp40 4.lp 25,354,639 3,645.51 0.437 21,250,331 3,652.06 0.437 1.19 1.00

mkp40 5.lp 777,810 160.81 0 389,427 128.98 0 2.00 1.25

Total 135,395,276 15,606.28 - 129,878,665 18,639.10 - 1.04 0.84

ever worth mentioning that the ratio dominated nodes/dominance tests was
quite good also for these problems (though lower than in the single knapsack
case) and that the effectiveness of LD could have been hidden by the limited
computational time given to the solvers.

Acknowledgements This work was supported by the Future and Emerging Technologies
unit of the EC (IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and
by MiUR, Italy.

References

1. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimiza-
tion, 4:77–86, 2007.

2. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34:361–372, 2006. Problems available at http://miplib.zib.de.

3. E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem
problem, IISs and IIS-hypergraphs. Mathematical Programming, 95:533–554, 2003.

4. E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A new heuristic
for pure 0–1 programs. Operations Research, 49:207–225, 2001.

5. E. Balas and C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming.

Management Science, 26:86–96, 1980.
6. E. Balas and M. Perregaard. Lift-and-project for mixed 0-1 programming: Recent

progress. Discrete Applied Mathematics, 123:129–154, 2002.

7. E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming,
113:219–240, 2008.

8. E. Balas, S. Schmieta, and C. Wallace. Pivot and shift — a mixed integer programming
heuristic. Discrete Optimization, 1:3–12, 2004.

9. R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed

integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.
10. P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected Chvátal–

Gomory cuts for mixed integer linear programs. Mathematical Programming, 113:241–

257, 2008.

2 Just MIP it! 69

11. A. Caprara and A.N. Letchford. On the separation of split cuts and related inequalities.

Mathematical Programming, 94:279–294, 2002.
12. J.W. Chinneck. Fast heuristics for the maximum feasible subsystem problem. IN-

FORMS Journal on Computing, 13:210–223, 2001.

13. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 5:305–337, 1973.

14. G. Codato and M. Fischetti. Combinatorial Benders cuts. In D. Bienstock and

G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, IPCO
X, volume 3064 of Lecture Notes in Computer Science, pages 178–195. Springer, 2004.

15. W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer program-

ming problems. Mathematical Programming, 47:155–174, 1990.
16. G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical

Programming, 112:3–44, 2008.
17. G. Cornuéjols and Y. Li. On the rank of mixed 0,1 polyhedra. Mathematical Pro-

gramming, 91:391–397, 2002.

18. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.

19. S. Dash, O. Günlük, and A. Lodi. On the MIR closure of polyhedra. In M. Fis-

chetti and D.P. Williamson, editors, Integer Programming and Combinatorial Op-
timization, IPCO XII, volume 4513 of Lecture Notes in Computer Science, pages
337–351. Springer, 2007.

20. S. Dash, O. Günlük, and A. Lodi. MIR closures of polyhedral sets. Mathematical
Programming, DOI 10.1007/s10107-008-0225-x, 2008.

21. Double-Click sas. personal communication, 2001.

22. J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13:471–503, 2007.

23. F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron.
Combinatorica, 19:297–300, 1999.

24. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-
ming, 104:91–104, 2005.

25. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,

2003.
26. M. Fischetti and A. Lodi. MIPping Closures: An instant survey. Graphs and Combi-

natorics, 23:233–243, 2007.

27. M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical
Programming, 110:3–20, 2007.

28. M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Com-
puters & Operations Research, 35:1436–1445, 2008.

29. M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-
integer programs with 2-level variables, with an application to a telecommunication
network design problem. Networks, 44:61–72, 2004.

30. M. Fischetti and P. Toth. A New Dominance Procedure for Combinatorial Optimiza-
tion Problems. Operations Research Letters, 7:181–187, 1988.

31. J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.
ORSA Journal on Computing, 2:61–63, 1990.

32. F. Glover and M. Laguna. General purpose heuristics for integer programming – part

I. Journal of Heuristics, 2:343–358, 1997.
33. F. Glover and M. Laguna. General purpose heuristics for integer programming – part

II. Journal of Heuristics, 3:161–179, 1997.
34. F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
35. R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, 64:275–278, 1958.
36. R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-

2597, The Rand Corporation, 1960.

70 M. Fischetti, A. Lodi, and D. Salvagnin

37. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer-Verlag, 1988.
38. P. Hansen, N. Mladenović, and D. Urosevic. Variable neighborhood search and local

branching. Computers & Operations Research, 33:3034–3045, 2006.

39. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an
interior. Operations Research, 17:600–637, 1969.

40. T. Ibaraki, T. Ohashi, and F. Mine. A heuristic algorithm for mixed-integer program-

ming problems. Mathematical Programming Study, 2:115–136, 1974.
41. ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007.

http://www.ilog.com.

42. G.W. Klau. personal communication, 2002.
43. A. Løkketangen. Heuristics for 0-1 mixed-integer programming. In P.M. Pardalos and

M.G.C. Resende, editors, Handbook of Applied Optimization, pages 474–477. Oxford
University Press, 2002.

44. A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems

using tabu search. European Journal of Operational Research, 106:624–658, 1998.
45. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming,

94:71–90, 2002.

46. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York, 1990.

47. A.J. Miller. personal communication, 2003.

48. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24:1097–1100, 1997.

49. J.L. Nazareth. The homotopy principle and algorithms for linear programming. SIAM

Journal on Optimization, 1:316–332, 1991.
50. G. Nemhauser and L. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed

integer programs. Mathematical Programming, 46:379–390, 1990.
51. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, 1982.
52. D. Pisinger. Where are the hard knapsack problems? Computers & Operations Re-

search, 32:2271–2284, 2005.

53. E. Rothberg. personal communication, 2002.
54. D. Salvagnin. A dominance procedure for integer programming. Master’s thesis,

University of Padua, October 2005.

http://www.ilog.com

Chapter 3

MetaBoosting: Enhancing Integer
Programming Techniques by
Metaheuristics

Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser

Abstract This chapter reviews approaches where metaheuristics are used to
boost the performance of exact integer linear programming (IP) techniques.
Most exact optimization methods for solving hard combinatorial problems
rely at some point on tree search. Applying more effective metaheuristics
for obtaining better heuristic solutions and thus tighter bounds in order to
prune the search tree in stronger ways is the most obvious possibility. Besides
this, we consider several approaches where metaheuristics are integrated more
tightly with IP techniques. Among them are collaborative approaches where
various information is exchanged for providing mutual guidance, metaheuris-
tics for cutting plane separation, and metaheuristics for column generation.
Two case studies are finally considered in more detail: (i) a Lagrangian decom-
position approach that is combined with an evolutionary algorithm for ob-
taining (almost always) proven optimal solutions to the knapsack constrained
maximum spanning tree problem and (ii) a column generation approach for
the periodic vehicle routing problem with time windows in which the pricing
problem is solved by local search based metaheuristics.

3.1 Introduction

When considering optimization approaches that combine aspects from meta-
heuristics with mathematical programming techniques, the resulting hybrid

Jakob Puchinger

arsenal research, Vienna, Austria
e-mail: jakob.puchinger@arsenal.ac.at

Günther R. Raidl · Sandro Pirkwieser

Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna,
Austria

e-mail: {raidl,pirkwieser}@ads.tuwien.ac.at

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 71

DOI 10.1007/978-1-4419-1306-7 3, c© Springer Science+Business Media, LLC 2009

72 J. Puchinger, G.R. Raidl, and S. Pirkwieser

system may either be of exact or heuristic nature. Exact approaches are guar-
anteed to yield proven optimal solutions when they are given enough com-
putation time. In contrast, heuristics only aim at finding reasonably good
approximate solutions usually in a more restricted time; performance guar-
antees are typically not provided. Most of the existing hybrid approaches are
of heuristic nature, and mathematical programming techniques are used to
boost the performance of a metaheuristic. Exploiting solutions to exactly
solvable relaxations of the original problem, or searching large neighbor-
hoods by means of mathematical programming techniques are examples for
such approaches; see also Chapter 4. On the other hand, there are also sev-
eral highly successful ways to exploit metaheuristic strategies for enhancing
the performance of mathematical programming techniques, and often these
methods retain their exactness. We refer to such improvement techniques as
MetaBoosting and study them in detail in the present chapter.

Most exact approaches for solving hard combinatorial optimization prob-
lems (COPs) are based on a tree search, where the search space is recursively
partitioned in a divide-and-conquer manner into mutually disjoint subspaces
by fixing certain variables or imposing additional constraints. In a naive enu-
meration tree each subspace is further divided as long as it contains more
than one feasible solution. Obviously, the size of such a naive search tree
increases rapidly with the problem size, and naive enumeration is therefore
inefficient. The key to successfully approach larger problem instances is to
have some mechanism for substantially pruning the search tree. This is usu-
ally done by identifying subspaces that need not to be further pursued, as
they cannot contain a feasible solution that is better than a solution already
found before. The scalability of a tree search thus depends essentially on the
efficiency of this pruning mechanism.

In branch-and-bound (B&B), upper and lower bounds are determined for
the objective values of solutions, and subspaces for which the lower bounds
exceed the upper bounds are discarded. Considering a minimization problem,
any feasible solution provides a (global) upper bound. Thus, any (meta-)
heuristic that is able to determine good heuristic solutions in reasonable time
may be an essential help in B&B for pruning the search tree, even when the
heuristic itself does not provide any performance guarantee.

Applying an effective metaheuristic to obtain better upper bounds for
B&B is the most obvious way how one can boost the performance of an
exact optimization technique by means of a metaheuristic. When consid-
ering established integer (linear) programming techniques including cutting
plane methods, column generation, and diverse variants of relaxation based
approaches in more detail, we can observe several further possibilities for
exploiting the strengths of metaheuristics.

The next section will introduce our basic notations and briefly review
important IP techniques. In Sections 3.3 to 3.5 we describe various successful
MetaBoosting strategies. Two exemplary case studies are presented together
with some practical results in more detail in Sections 3.6 and 3.7. First, we

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 73

consider a Lagrangian decomposition/evolutionary algorithm hybrid for the
knapsack constrained maximum spanning tree problem, and second, a column
generation approach that uses metaheuristics for solving the pricing problem
is discussed for the periodic vehicle routing problem with time windows.
Conclusions are drawn in Section 3.8.

3.2 Integer Programming Techniques

This section introduces some basic notations and gives a short introduction
into prominent IP techniques. For an in-depth coverage of the subject we
refer to the books on linear optimization by Bertsimas and Tsitsiklis [6] and
on combinatorial and integer optimization by Nemhauser and Wolsey [37]
and Wolsey [53].

We consider IP problems of the form

zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}, (3.1)

where x is an n-dimensional integer variable vector in column form and
c ∈ Qn an n-dimensional row vector. Their dot-product cx is the objective
function that should be minimized. Matrix A ∈ Qm×n and them-dimensional
column vector b ∈ Qm together define m inequality constraints. A mixed in-
teger program (MIP) would involve a combination of integer and real-valued
variables.

Maximization problems can be transformed into minimization problems
by simply changing the sign of c. Less-than constraints are similarly brought
into greater-than-or-equal form by changing the sign of the corresponding
coefficients, and equalities can be translated to pairs of inequalities. Thus,
we can handle all kinds of linear constraints by appropriate transformations.
Without loss of generality, we may therefore restrict our following consider-
ations to minimization problems of this standard form.

3.2.1 Relaxations and Duality

One of the most important concepts in integer programming are relaxations,
where some or all constraints of a problem are loosened or omitted. Relax-
ations are mostly used to obtain related, simpler problems that can be solved
efficiently yielding bounds and approximate (not necessarily feasible) solu-
tions for the original problem. Embedded within a B&B framework, these
techniques may lead to effective exact solution techniques.

The linear programming (LP) relaxation of the IP (3.1) is obtained by
relaxing the integrality constraints, yielding

74 J. Puchinger, G.R. Raidl, and S. Pirkwieser

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}. (3.2)

Large instances of such LPs can be efficiently solved using simplex-based
or interior-point algorithms. The solution to the LP relaxation provides a
lower bound for the original minimization problem, i.e. zIP ≥ zLP, since the
search space of the IP is contained within the one of the LP and the objective
function remains the same.

We can further associate a dual problem to an LP (3.2), which is defined
by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ Rm} (3.3)

with u being the m-dimensional dual variable row vector. The dual of the
dual LP is the original (primal) LP again. Important relations between the
primal problem and its dual are known as weak and strong duality theorems,
respectively:

• Weak duality theorem: The value of every finite feasible solution to the
dual problem is a lower bound for the primal problem, and each value of
a finite feasible solution to the primal problem is an upper bound for the
dual problem. As a consequence, if the dual is unbounded, the primal is
infeasible and vice versa.

• Strong duality theorem: If the primal has a finite optimal solution with
value z∗LP, than its dual has the same optimal solution value w∗LP = z∗LP

and vice versa.

In case of an IP we have to distinguish between weak and strong duals: A
weak dual of an IP (3.1) is any maximization problem w = max{w(u) | u ∈
SD} such that w(u) ≤ cx for all x ∈ {Ax ≥ b, x ≥ 0, x ∈ Zn}. An obvious
weak dual of (3.1) is the dual (3.3) of its LP relaxation (3.2). A strong dual
is a weak dual that further has an optimal solution u∗ such that w(u∗) = cx∗

for an optimal solution x∗ of (3.1). For solving IPs, weak duals which are
iteratively strengthened during the course of the optimization process are
often utilized.

Another commonly used relaxation of IPs, which often yields significantly
tighter bounds than the LP relaxation, is Lagrangian relaxation [20, 21].
Consider the IP

zIP = min{cx | Ax ≥ b,Dx ≥ d, x ≥ 0, x ∈ Zn}, (3.4)

where constraints Ax ≥ b are “easy” in the sense that the problem can be ef-
ficiently solved when the m′ “complicating” constraints Dx ≥ b are dropped.
Simply removing these constraints yields a relaxation, but the resulting bound
will usually be weak because of this complete ignorance. In Lagrangian re-
laxation, constraints Dx ≥ d are replaced by corresponding penalty terms in
the objective function:

zLR(λ) = min{cx+ λ(d−Dx) | Ax ≥ b, x ≥ 0, x ∈ Zn}. (3.5)

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 75

Vector λ ∈ Rm′
is the vector of Lagrangian multipliers, and for any λ ≥ 0,

zLR(λ) ≤ zIP, i.e., we have a valid relaxation of the IP. We are now interested
in finding a specific vector λ yielding the best, i.e. largest, possible lower
bound, which leads to the Lagrangian dual problem

z∗LR = max
λ≥0
{zLR(λ)}. (3.6)

This Lagrangian dual is a piecewise linear, convex function which can usually
be well solved by iterative procedures like a subgradient method. A more
elaborate algorithm that has been reported to converge faster on several
problems is the volume algorithm [4], whose name is inspired by the fact that
primal solutions are also considered, whose values come from approximating
the volumes below active faces of the dual problem.

Given a solution λ to the Lagrangian dual problem (3.6) and a corre-
sponding optimal solution x∗ to the Lagrangian relaxation (3.5) that is also
feasible to the original problem (3.4), i.e. Dx∗ ≥ d, the following comple-
mentary slackness condition holds: x∗ is an optimal solution to the original
problem (3.4) if and only if

λ(d−Dx∗) = 0. (3.7)

Provided that the Lagrangian dual problem is solved to optimality, it can
be shown that the Lagrangian relaxation always yields a bound that is at
least as good as the one of the corresponding linear relaxation.

A third general-purpose relaxation technique for IPs is surrogate relax-
ation [26]. Here, some or all constraints are scaled by surrogate multipliers
and cumulated into a single inequality by adding the coefficients. Similarly
as in Lagrangian relaxation, the ultimate goal is to find surrogate multipliers
yielding the overall best bound. Unfortunately, this surrogate dual problem
usually has not such nice properties as the Lagrangian dual problem and
solving it is often difficult. However, if one is able to determine optimal sur-
rogate multipliers, the bound obtained for the IP is always at least as good
as (and often better than) those obtained from the corresponding linear and
Lagrangian relaxations.

3.2.2 LP-Based Branch-and-Bound

By solving the LP relaxation of an IP we obtain a lower bound on the optimal
IP solution value and the solution in general will contain fractional variable
values. (If all variable values would be integer, we already would have solved
the IP.) The standard way to continue towards an optimal integer solution is
the already mentioned B&B. Branching usually takes place over some vari-
able xi with a fractional LP-value x∗i , defining as first subproblem the IP with

76 J. Puchinger, G.R. Raidl, and S. Pirkwieser

the additional inequality xi ≤ bx∗i c and as second subproblem the IP with
inequality xi ≥ dx∗i e. For these subproblems with the additional branching
constraints, the LP relaxations are resolved leading to increased lower bounds
and eventually solutions where all integer variables have integral values. As
mentioned in the introduction, primal heuristics are usually also applied to
each subproblem in order to find improved feasible solutions and correspond-
ing global upper bounds, enabling a stronger pruning of the search tree.

3.2.3 Cutting Plane Algorithm and Branch-and-Cut

When modeling COPs as IPs an important goal is to find a strong formu-
lation, for which the solution value of the LP relaxation in general provides
a tight bound. For many COPs it is possible to strengthen an existing IP
formulation significantly by including further inequalities, which would actu-
ally be redundant w.r.t. the integer optimum. In general it is even possible to
strengthen a model such that the LP relaxation already yields an integer opti-
mum. However, the number of required constraints often grows exponentially
with the problem size. Naively solving such an LP by standard techniques
might quickly become too costly in practice.

Dantzig et al. [10] proposed the cutting plane algorithm for this purpose,
which usually only considers a fraction of all constraints explicitly but is
nevertheless able to determine an optimal solution to the whole LP.

The cutting plane approach starts by solving a reduced LP consisting only
of a small subset of initial inequalities. It then tries to find inequalities that
are violated by the obtained solution but are valid for the original problem
(i.e. contained in the full LP). These valid inequalities are called cuts or
cutting planes, and they are added to the current reduced LP, which is then
resolved. The whole process is iterated until no further cutting planes can
be determined. If the algorithm computing the cuts provides a proof that no
further violated inequality exists, the final solution is optimal for the original
full LP. The subproblem of identifying cuts is called separation problem. In
practice it is crucial to have an efficient method for separating cuts as usually
a significant number of valid inequalities must be derived until the cutting
plane algorithm terminates.

From a theoretical point of view it is possible to solve any IP using a pure
cutting plane approach with appropriate classes of cuts. There exist generic
types of cuts, such as the Chvatal-Gomory cuts [53], which guarantee such a
result. In practice, however, it may take a too long time for such a cutting
plane approach to converge to the optimum, partly because it is often a hard
subproblem to separate effective cuts and partly because of the large number
of needed cuts.

The combination of B&B with cutting plane methods yields the highly
effective class of branch-and-cut algorithms which are widely used. Specialized

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 77

branch-and-cut approaches have been described for many applications and
are known for their effectiveness. Cut separation is usually applied at each
node of the B&B tree to tighten the bounds of the LP relaxation and to
exclude infeasible solutions as far as possible.

For cutting plane separation effective heuristic methods come into play
once again: For strengthening the LP relaxations it is often sufficient to gen-
erate cuts heuristically since the correctness of the final solution does not
depend on the generated cuts as long as they are valid. Almost all modern
MIP solvers include sophisticated generic cut separation heuristics, and they
play a major role in the success of these solvers.

3.2.4 Column Generation and Branch-and-Price

Often it is possible to model COPs via strong formulations involving a huge
number of variables. Dantzig-Wolfe decomposition [11] is a technique for ob-
taining such models from compact formulations in a systematic way. It re-
places the original problem variables by linear combinations of the extreme
points and extreme rays of the original search space, yielding a potentially
exponential number of new variables. The obtained models can result in much
stronger relaxations than their compact counterparts.

Despite the many variables, the LP relaxations of such formulations can
often be efficiently calculated. The column generation approach starts with
only a small subset of all variables (corresponding to columns in the matrix
notation of the IP) and solves the corresponding restricted LP relaxation. It
is then tried to identify one or more so far ignored variables whose inclusion
may lead to an improved solution. This subproblem is called pricing problem.
For a minimization problem a variable can eventually improve the current
LP solution if it has negative reduced costs. After adding such a new variable
to the restricted LP, it is resolved and the process iterated until no further
variables with negative reduced costs exist. The final solution is an optimal
solution for the complete LP.

Column generation can be seen as dual to the cutting plane approach,
since inequalities correspond to variables in the dual LP. For a recent review
on column generation see [35]. The cutting stock problem is an early exam-
ple for the successful application of column generation based methods [24].
Every possible cutting pattern is represented by a variable and the pricing
problem corresponds to the classical 0–1 knapsack problem, which can be
solved efficiently in pseudo-polynomial time.

As the column generation algorithm only solves the LP relaxation, it must
in general also be combined with B&B in order to obtain optimal integer
solutions. When column generation is performed for each node of the B&B
tree, the approach is called branch-and-price. One of the main difficulties in
the implementation of such methods lies in the development of appropriate

78 J. Puchinger, G.R. Raidl, and S. Pirkwieser

branching rules. Furthermore, the individual LPs may sometimes be degen-
erated, or newly added columns may only improve the solutions marginally
leading to many iterations until convergence. In the latter cases, stabilization
techniques as discussed in [13] often improve the situation.

Similarly as cutting plane separation may be performed by effective heuris-
tics, one can also heuristically solve the pricing problem in column generation.
Care must be taken that in the final iteration it is necessary to prove that
no further columns with negative reduced costs exist so that the obtained
solution value is guaranteed to be a lower bound for the original IP.

Finally, it occasionally makes sense to combine a cutting plane approach
with column generation and embed both in B&B. Such methods, called
branch-and-cut-and-price, are sometimes extremely successful but are typ-
ically also rather complex and highly specialized.

3.3 Metaheuristics for Finding Primal Bounds

Branch-and-bound based approaches rely on tight primal bounds that are
most commonly obtained from feasible solutions. Obviously, heuristics and
metaheuristics can be applied to the original problem before starting the B&B
process, providing initial solutions. The search space of the exact method is
immediately reduced, usually improving overall computation times. Such an
approach has the practical advantage of also providing feasible solutions at
an early stage of the optimization process.

Furthermore (meta-)heuristics can be repeatedly applied throughout the
whole tree search, providing possibly improved solutions. Again, this can
speed up the overall optimization essentially by further pruning the search
tree. Even the optimal solution might be discovered by one of those heuristics.
On the other hand, when heuristics are applied too often and have rather long
run-times, they might slow down the overall process. Thus, an appropriate
balance is required.

3.3.1 Initial Solutions

Generic MIP based heuristics for computing initial solutions are widely used.
They range from early heuristics such as described in [2, 30] over pivot and
complement [3] to the recent feasibility pump [17, 5], which is also discussed
in Chapter 2 of this book. The major commercial generic MIP solvers such
as CPLEX1 or XPRESS MP2 have very strong heuristics for finding initial

1 http://www.ilog.com
2 http://www.dashoptimization.com

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 79

feasible solutions, often outperforming simple problem-specific heuristics in
terms of solution quality and speed. Unfortunately, not much is publicly
known about these heuristics.

An interesting approach specifically tailored to the multidimensional knap-
sack problem (MKP) involving metaheuristics is presented in Vimont et
al. [52]. The MKP can be defined by the following IP:

(MKP) maximize z =
n∑

j=1

pjxj (3.8)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . ,m, (3.9)

xj ∈ {0, 1}, j = 1, . . . , n. (3.10)

A set of n items with profits pj > 0 and m resources with capacities ci > 0
are given. Each item j consumes an amount wij ≥ 0 from each resource i.
Variables xj indicate which items are selected. The objective is to choose a
subset of items with maximum total profit that does not violate any of the
capacity constraints (3.9).

An exact algorithm based on implicit enumeration and reduced cost prop-
agation is applied. The enumeration algorithm tries to first handle the un-
promising parts of the search space, with the goal of reducing it substantially.
After computing an initial solution yielding a lower bound, the problem is
first partitioned by fixing the number of selected items to certain values [50].
Each of the resulting subproblems is then explored by B&B with a special
branching strategy based on the solution to the LP relaxation and reduced
costs at each search tree node.

The search space is further reduced by fixing some variables using a prop-
agation mechanism. It is based on the reduced cost constraint originally de-
scribed in [38]. After solving the LP relaxation yielding a solution (x), the
following reduced cost inequality can be devised:∑

j:xj=0

|cj |xj +
∑

j:xj=1

|cj |(1− xj) ≤ UB− LB, (3.11)

where c is the reduced cost vector corresponding to x and LB is a primal
lower bound, typically the objective value of a feasible solution.

This approach relies heavily on tight primal bounds, since constraint (3.11)
becomes tighter with increasing values of LB. These bounds come from a so-
phisticated tabu search based hybrid algorithm described in [50]. The search
space is partitioned via additional constraints fixing the total number of items
to be packed. Lower and upper bounds for the number of items are calculated
by solving modified LP relaxations of the original MKP. For each remaining
partition of the search space, tabu search is independently applied, starting
with a solution derived from the LP relaxation of the partial problem. The

80 J. Puchinger, G.R. Raidl, and S. Pirkwieser

whole tabu search approach has further been improved in [51] by additional
variable fixing.

This example demonstrates that a combination of highly developed spe-
cialized methods for computing bounds with the aid of a metaheuristic, gen-
erating dependent cuts, and guiding the search is sometimes able to achieve
exceedingly good results.

3.3.2 B&B Acting as Local Search Based Metaheuristic

Fischetti and Lodi proposed local branching as an extension for generic
branch-and-cut based MIP solvers with the aim of producing good heuristic
solutions early during the exact tree search [19]. Local branching introduces
the spirit of classical k-opt local search in B&B by modifying the branching
rule and the strategy for choosing the next tree node to process. Let us con-
sider MIPs with 0–1 variables; let x = (x1, . . . , xn) be the variable vector and
B ⊆ {1, . . . , n} be the index set of the 0–1 variables. A k-opt neighborhood
around a given incumbent solution x = (x1, . . . , xn) can be defined by the
local branching constraint

∆(x, x) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (3.12)

where S corresponds to the index set of the 0–1 variables that are set to one
in the incumbent solution, i.e., S = {j ∈ B | xj = 1}. ∆(x, x) resembles the
classical Hamming distance between x and x for integer values.

Starting from an initial solution, the search space is partitioned into the
k-opt neighborhood of this incumbent and the remaining part of the search
space by applying the local branching constraint and its inverse ∆(x, x) ≥
k+ 1, respectively. The MIP solver is then forced to find the best solution in
the k-opt neighborhood first. If an improved solution x′ has been found, a new
subproblem ∆(x, x′) corresponding to the search of the k-opt neighborhood
of this new incumbent is split off the remaining search space and solved
in the same way; otherwise a larger k may be tried. The process is repeated
until no further improvement can be achieved. Finally, the remaining problem
corresponding to all yet unconsidered parts of the search space is processed
in a standard way.

This basic mechanism is extended by introducing time limits, automati-
cally modifying the neighborhood size k, and adding diversification strategies
to improve performance. An extension of the branching constraint for gen-
eral integer variables is also described. Results on various MIP benchmark
instances using CPLEX as MIP solver indicate the advantages of the ap-
proach in terms of an earlier identification of high quality solutions.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 81

Hansen et al. [27] suggest a variant of local branching which follows more
closely the classical variable neighborhood search metaheuristic for choos-
ing the next k-opt neighborhood to process. Improved results are reported.
Fischetti et al. [18] describe another variant of the original local branching
where they consider problems in which the set of variables naturally parti-
tions into two levels and fixing the first-level variables to some values yields
substantially easier subproblems.

Danna et al. [9] suggest a different approach called relaxation induced
neighborhood search (RINS) for exploring the neighborhoods of incumbent
solutions more intensively. The central idea is to occasionally devise a sub-
MIP at a node of the B&B tree that corresponds to a special neighborhood
of an incumbent solution: Variables having the same values in the incumbent
and in the current solution of the LP relaxation are fixed, and an objective
cutoff is set based on the objective value of the incumbent. A sub-MIP is
solved on the remaining variables with a given time limit. If a better solution
can be found it is passed to the global MIP-search, which is resumed after
the sub-MIP’s termination. In the authors’ experiments, CPLEX is used as
MIP solver, and RINS is compared to standard CPLEX, local branching,
combinations of RINS and local branching, and guided dives. Results indi-
cate that RINS often performs best. CPLEX includes RINS as a standard
strategy for quickly obtaining good heuristic solutions since version 10. Lo-
cal branching constraints are said to be often less effective as they are dense
inequalities involving all integer variables. In particular, adding the inverse
local branching constraints of already searched k-opt neighborhoods to the
remaining problem is found to be disadvantageous as the reduced node pro-
cessing throughput caused by the series of these dense constraints outweighs
the benefit of avoiding redundant exploration of parts of the search space.

Recently Ghosh [23] proposed a distance induced neighborhood search
(DINS). It is conjectured that better MIP solutions are more likely to be
close to the solution of the LP relaxation than farther away. Hence, an ap-
propriate distance metric is utilized. DINS combines soft fixing of variables
as in local branching as well as hard fixing of variables as in RINS, plus an
additional rebounding procedure, which adapts the lower and upper bounds
of selected variables. Experimental results indicate that DINS outperforms
both local branching and RINS; DINS is also integrated now in CPLEX.

3.3.3 Solution Merging

In solution merging new, possibly better solutions are created from attributes
appearing in two or more promising heuristic solutions. Such an approach
is based on the assumption that high quality solutions often share many
attributes.

82 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Recombination, the primary variation operator in genetic algorithms, can
be seen as a classical solution merging approach. Usually, two parent solutions
are selected and an offspring is derived by simple random inheritance of
parental attributes. Classical recombination operations do not try to optimize
this offspring, which therefore often is worse than its parents. However, these
operations are computationally cheap and can be repeated many times in
order to achieve improvements.

Alternatively, one can put more effort into the derivation of such offspring.
A sometimes effective technique is path relinking [25], which traces a path
in the search space from one parent to a second by repeatedly exchanging a
single attribute only (or more generally by performing a series of moves in a
simple neighborhood structure). An overall best solution found on this path
is finally taken as offspring.

This idea can further be extended by considering not just solutions on a
single path between two parents, but the whole subspace of solutions induced
by the joined attributes appearing in a set of two or more input solutions. An
optimal merging operation returns a best solution from this subspace, i.e., it
identifies a best possible combination of the parents’ attributes. Depending
on the underlying problem, identifying such an optimal offspring is often a
hard optimization problem on its own, but due to the usually quite limited
number of different attributes appearing in the parents, it can often be solved
in reasonable time in practice.

For mixed integer programming, Rothberg [47] suggests a tight integration
of an evolutionary algorithm (EA) including optimal merging in a branch-
and-cut based MIP solver. In regular intervals the EA algorithm is applied
as B&B tree node heuristic. The population of the EA consists of the best
non-identical solutions found so far, which have either been discovered by the
MIP tree search or by previous iterations of the EA.

Mutation selects one parent, fixes a randomly chosen subset of variables,
and calls the MIP solver for determining optimal values for the remaining
problem. Since the number of variables to be fixed is a critical parameter,
an adaptive scheme is applied to control it. In contrast to classical EAs,
mutation is performed before recombination on a fixed number of randomly
chosen solutions, since at the beginning of the optimization only one or very
few solutions will be in the population.

Recombination is performed by first fixing all variables that have the same
values in two selected parental solutions and applying the MIP solver to
this reduced subproblem. The exploration of this subproblem is eventually
truncated when a given node-limit is exceeded. New high quality solutions
discovered during this search are added to the population. This recombination
is further generalized to more than two parents by fixing variable values that
are identical in all of them.

The applied selection strategy simply chooses the first parent from the
population at random, and the second is then chosen randomly amongst the
solutions with a better objective value than the first one. This guarantees a

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 83

certain bias towards better solutions. For mutation the same mechanism is
used, but only the second solution is used.

Experimental results indicate that this hybrid often is able to find signifi-
cantly better solutions than other heuristic methods for several very difficult
MIPs. The method is integrated in the commercial MIP solver CPLEX since
version 10.

3.3.4 Metaheuristics and Lagrangian Relaxation

As mentioned in Section 3.2.1, Lagrangian relaxations may sometimes yield
substantially tighter lower bounds than simpler LP relaxations. Furthermore,
heuristic solutions and, thus, upper bounds are often either automatically
obtained as intermediate by-products from the subgradient procedure or by
applying typically rather simple Lagrangian heuristics such as rounding or
repairing procedures. When embedded in a B&B framework, such Lagrangian
relaxation based methods are frequently turned into highly successful exact
optimization approaches.

To further improve performance by obtaining better upper bounds, more
sophisticated metaheuristics may be applied in combination with Lagrangian
relaxation. For example, a well-working hybrid of a Lagrangian relaxation
approach and variable neighborhood descent has recently been described for
a real-world fiber optic network design problem in Leitner and Raidl [33].

An interesting additional aspect of such combinations is that also the meta-
heuristic may benefit by exploiting diverse intermediate results from the sub-
gradient search. A successful example for this is the hybrid Lagrangian GA for
the prize collecting Steiner tree problem proposed by Haouari and Siala [28].
They apply a Lagrangian relaxation on a minimum spanning tree formulation
of the prize collecting Steiner tree problem and use the volume algorithm for
solving the Lagrangian dual. After termination, the GA is started on a re-
duced problem, consisting only of the edges appearing in all the intermediate
trees derived by the volume algorithm. Furthermore, some of the GA’s initial
solutions are derived from the volume algorithm’s intermediate reduced edge
costs by applying a greedy Lagrangian heuristic. Last but not least, the GA
uses a modified objective function: Instead of the original costs, the reduced
costs that are finally obtained by the volume algorithm are used; in this way,
the metaheuristic search is guided into regions of the search space deemed
promising by the Lagrangian relaxation.

The authors of the present chapter describe a similar approach for the
knapsack constrained maximum spanning tree problem in [40]. Section 3.6
summarizes this work as an exemplary case study.

84 J. Puchinger, G.R. Raidl, and S. Pirkwieser

3.4 Collaborative Hybrids

In collaborative combinations of different types of optimization techniques,
the algorithms exchange information but are not part of each other; i.e.,
there is no clear master containing the other method(s) as subprocedures [42].
The individual algorithms may be executed sequentially, intertwined, or in a
parallel way and exchange information for guidance. In principle, any meta-
heuristic that provides incumbent solutions to a B&B-based approach might
already be considered to fall into this class of approaches. The above men-
tioned hybrid Lagrangian relaxation approach from Haouari and Siala can,
e.g., also be regarded a sequential collaborative combination, where the La-
grangian relaxation provides guidance for the GA.

Intertwined and parallel combinations allow for mutual guidance, i.e., all
participating methods may exploit information from each other. Talukdar et
al. [49] describe a very general agent-based model for such systems, called
asynchronous teams (A-Teams). This problem solving architecture consists
of a collection of agents and memories connected in a strongly cyclic directed
way, and each optimization agent works on the target problem, a relaxation,
or a subclass of the original problem. Denzinger and Offerman [12] describe
a similar framework called TECHS (TEams for Cooperative Heterogeneous
Search). It consists of teams of one or more agents using the same search
paradigm. Communication between the agents is controlled by so-called send-
and receive-referees.

A specific example for a successful intertwined collaboration of an EA and
the branch-and-cut based MIP solver XPRESS MP is the hybrid algorithm
from French et al. [22] for solving general IPs. It starts with a branch-and-
cut phase, in which information from the B&B tree nodes is collected in
order to derive candidate solutions that are added to the originally randomly
initialized EA-population. When a certain criterion is satisfied, the EA takes
over for some time using the augmented initial population. After termination
of the EA, its best solutions are passed back and grafted onto the B&B tree.
Full control is given back to branch-and-cut after the newly added nodes
had been examined to a certain degree. Reported results on instances of the
maximum satisfiability problem show that this hybrid yields better solutions
than XPRESS MP or the EA alone.

Another cooperative approach involving a memetic algorithm and branch-
and-cut has been described by Puchinger et al. [44] for the MKP. Both meth-
ods are performed in parallel and exchange information in a bidirectional
asynchronous way. In addition to promising primal solutions, the memetic
algorithm also receives dual variable values of certain LP relaxations and
uses them for improving its repair and local improvement functions by updat-
ing the items’ pseudo-utility ratios. Results that are often better than those
from [50] and partly competitive to those from [51] have been obtained.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 85

3.5 Metaheuristics for Cut and Column Generation

As already pointed out in Section 3.2, in cut and column generation based
IP methods the dynamic separation of cutting planes and the pricing of
columns can be done by means of (meta-)heuristics in order to speed up
the optimization process. Such approaches are reviewed in more detail in the
following two sections.

3.5.1 Cut Separation

In branch-and-cut algorithms inequalities that are satisfied by feasible integer
solutions but are violated by the current solution to the LP relaxation have
to be derived quickly. Of course, the cuts one wants to find should be strong
in the sense that they cut away “large” portions of the search space, leading
to a significant increase of the LP solution value and thus to relatively few it-
erations until convergence of the cutting plane algorithm. As many classes of
strong cuts are difficult to separate, heuristic separation procedures are com-
monly applied. More sophisticated metaheuristics, however, have so far only
rarely been used for this purpose. A reason might be the usually large num-
ber of cuts that must be generated, and hence the strong requirements w.r.t.
speed. Nevertheless, there exist some examples of successful metaheuristic
cut separation approaches.

Augerat et al. [1] consider a capacitated vehicle routing problem and de-
scribe a branch-and-cut algorithm in which a sequence of methods consisting
of a simple construction heuristic, a randomized greedy method, and a tabu
search is used for separating capacity constraints. The approach starts with
the fastest simple heuristic and switches to the next, more complex strategy
as long as no valid cutting plane could be found.

Another example is the branch-and-cut algorithm by Gruber and Raidl for
the bounded diameter minimum spanning tree problem described in detail in
Chapter 8 of this book. The diameter bound is ensured via an exponentially
large number of so-called jump inequalities. Again, a sequence of methods is
used for their separation, starting from a greedy construction technique over
a local search procedure to a tabu search algorithm. On several benchmark
instances, this algorithm outperforms other state-of-the-art IP approaches
for this problem, and some larger instances than before could be solved to
proven optimality.

Rei et al. [46] describe the acceleration of Benders decomposition by local
branching. The basic principle of Benders decomposition is to project a MIP
into the space of complicating integer variables only; continuous variables and
the constraints involving them are replaced by corresponding constraints on
the integer variables. These constraints, however, are not directly available
but need to be dynamically created. According to the classical method, an

86 J. Puchinger, G.R. Raidl, and S. Pirkwieser

optimal solution to the relaxed master problem (including only the already
separated cuts) is needed and an LP involving this solution must be solved
in order to separate a single new cut. Rei et al. improved this method by
introducing phases of local branching on the original problem in order to
obtain multiple feasible heuristic solutions. These solutions provide improved
upper bounds and further allow to derive multiple additional cuts before the
relaxed master problem needs to be resolved.

3.5.2 Column Generation

In column generation based algorithms the pricing problem often is difficult
by itself, and applying fast (meta-)heuristics can be a meaningful option.
It can be beneficial for the overall performance if most of the columns are
heuristically derived.

Filho and Lorena [16] apply a heuristic column generation approach to
graph coloring. A GA is used to generate initial columns and to solve the
pricing problem at every iteration. Column generation is performed as long
as the GA finds columns with negative reduced costs. The master problem is
solved using CPLEX.

Puchinger and Raidl [41, 43] describe an exact branch-and-price algorithm
for the three-stage two-dimensional bin packing problem. Rectangular items
have to be orthogonally packed into the least number of larger rectangles of
fixed size, and only non-overlapping three-stage guillotine packing patterns
are allowed. The pricing problem occurring in this application is a three-stage
two-dimensional knapsack packing problem. Fast column generation is per-
formed by applying a sequence of four methods: (i) a greedy heuristic, (ii)
an evolutionary algorithm, (iii) solving a restricted, simpler IP-model of the
pricing problem using CPLEX within a certain time-limit, and finally (iv)
solving a complete IP-model by CPLEX. The algorithms coming later in this
sequence are only executed if the previous ones did not find columns with
negative reduced costs. The greedy heuristic is based on the classical finite
first fit heuristic but is adapted to consider additional constraints introduced
by the branching decisions during the search process of the branch-and-price
algorithm. The EA uses a direct set-based representation for solutions mak-
ing it possible to ignore the order of the items to be packed and therefore
avoiding redundancies introduced by many symmetries. Specific recombina-
tion and mutation operators were developed for this problem. The presented
computational experiments show that each pricing algorithm contributes es-
sentially to the whole column generation process. Applied to large problem
instances with limited run-time, better solutions are often obtained by the
sequential pricing compared to using just one strategy. It is conjectured that
also in other applications such combinations of multiple (meta-)heuristic and
exact pricing algorithms may be beneficial.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 87

3.6 Case Study: A Lagrangian Decomposition/EA
Hybrid

This first case study demonstrates a combination of a Lagrangian decompo-
sition approach with an EA for the knapsack constrained maximum spanning
tree problem. The EA exploits information of the Lagrangian decomposition
and improves previously obtained primal solutions. Proven optimal solutions
are obtained in most cases, especially also on large problem instances. More
details on this work can be found in [40].

3.6.1 The Knapsack Constrained Maximum Spanning
Tree Problem

The knapsack constrained maximum spanning tree (KCMST) problem arises
in practical situations where the aim is to design a most profitable commu-
nication network under a strict limit on total costs, e.g. for cable laying or
similar resource constraints. The problem is also referred to as budget or side
constrained minimum spanning tree problem and is NP-hard [54].

It is defined on an undirected connected graph G = (V,E) with node
set V and edge set E ⊆ V × V representing all possible connections. Each
edge e ∈ E has associated a weight we ∈ Z+ (corresponding to costs) and a
profit pe ∈ Z+. In addition, a weight limit (capacity) c > 0 is specified. We
seek a spanning tree GT = (V, T), T ⊆ E, on G that maximizes the total
profit

∑
e∈T pe and where weight

∑
e∈T we does not exceed c. By introducing

binary variables xe, ∀e ∈ E, indicating which edges are part of the solution,
i.e. xe = 1↔ e ∈ T and xe = 0 otherwise, the problem can be stated as:

(KCMST) max p(x) =
∑
e∈E

pexe (3.13)

s.t. x represents a spanning tree on G, (3.14)∑
e∈E

wexe ≤ c, (3.15)

xe ∈ {0, 1}, ∀e ∈ E. (3.16)

Obviously, the problem represents a combination of the classical minimum
spanning tree problem (with changed sign in the objective function) and the
0–1 knapsack problem due to constraint (3.15). Yamada et al. [54] proposed
a straight-forward Lagrangian relaxation where the knapsack constraint is
relaxed and primal solutions are improved by local search. We enhance this
approach in the following.

88 J. Puchinger, G.R. Raidl, and S. Pirkwieser

3.6.2 Lagrangian Decomposition of the KCMST
Problem

The aforementioned natural combination lends itself to obtain tighter upper
bounds via Lagrangian decomposition (LD), which is a special variant of
Lagrangian relaxation that can be meaningful when there is evidence of two
or possibly more intertwined subproblems, and each of them can be efficiently
solved on its own by specialized algorithms.

For this purpose, we duplicate variables xe, ∀e ∈ E, by introducing new,
corresponding variables ye and including linking constraints, leading to the
following reformulation:

max p(x) =
∑
e∈E

pexe (3.17)

s.t. x represents a spanning tree on G, (3.18)∑
e∈E

weye ≤ c, (3.19)

xe = ye, ∀e ∈ E, (3.20)
xe, ye ∈ {0, 1}, ∀e ∈ E. (3.21)

Now we relax the linking constraints (3.20) in a Lagrangian fashion using
Lagrangian multipliers λe ∈ R, ∀e ∈ E, hence obtaining the Lagrangian
decomposition of the original problem, denoted by KCMST-LD(λ):

max p(x) =
∑
e∈E

pexe −
∑
e∈E

λe(xe − ye) (3.22)

s.t. x represents a spanning tree on G, (3.23)∑
e∈E

weye ≤ c, (3.24)

xe, ye ∈ {0, 1}, ∀e ∈ E. (3.25)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now
independent subproblems yields

(MST) max {(p− λ)Tx | x =̂ a spanning tree on G, x ∈ {0, 1}E} + (3.26)
(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (3.27)

For a given λ, the maximum spanning tree (MST) subproblem (3.26) can
be efficiently solved by standard algorithms. The 0–1 knapsack subproblem
(3.27) is known to be weakly NP-hard and we apply the COMBO dynamic
programming algorithm [36] for efficiently solving it.

To obtain the tightest (smallest) upper bound, we have to solve the La-
grangian dual problem:

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 89

minλ∈RE v(KCMST-LD(λ)), (3.28)

where v(KCMST-LD(λ)) denotes the optimal solution value to KCMST-
LD(λ). This is achieved by applying the volume algorithm [4].

3.6.3 Lagrangian Heuristic

We employ several methods to also derive heuristic solutions and correspond-
ing lower bounds. An obvious Lagrangian heuristic is the following: Whenever
the spanning tree created in an iteration of the volume algorithm satisfies the
capacity limit, we already have a feasible KCMST. In order to further im-
prove such solutions we consecutively apply a local search based on an edge
exchange neighborhood. Thereby we select an edge (u, v) not present in the
solution and identify the least profitable edge—choosing an edge with highest
weight in case of ties—of the path that connects nodes u and v in the cur-
rent tree and that may be replaced by (u, v) without violating the capacity
constraint. We then exchange these two edges in case the profit increases or
it stays the same but the overall weight decreases. The edge to be included,
(u, v), is either chosen (i) at random from E \ T , or (ii) at the beginning of
the local search, all edges are sorted according to decreasing p′e = pe−λe (the
reduced profits used to solve the MST subproblem) and in every iteration of
the local search the next less profitable edge not active in the current solution
is chosen. The latter selection scheme results in a greedy search where every
edge is considered at most once. Since Lagrangian multipliers are supposed
to be of better quality in later phases of the optimization process, local search
is only applied when the ratio of the incumbent lower and upper bounds is
larger than a certain threshold τ . Local search stops after 100 consecutive
non-improving iterations have been performed.

3.6.4 Evolutionary Algorithm for the KCMST

The EA for heuristically solving the KCMST is based on a direct edge-set
representation as described in [45]. This encoding and its corresponding vari-
ation operators are known to provide strong locality and heritability, and all
operations can efficiently be performed in time that depends (almost) only
linearly on the number of nodes.

The general framework is steady-state, i.e., in each iteration one feasible
offspring solution is created by means of recombination, mutation, and even-
tually local improvement, and it replaces the worst solution in the population.
Duplicates are not allowed in the population; they are always immediately
discarded. The EA’s operators work as follows.

90 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Initialization: A diversified initial population is obtained via a random
spanning tree construction based on Kruskal’s algorithm with a bias towards
selecting edges with high profits. In case a generated solution is infeasible
with respect to the knapsack constraint, it is stochastically repaired by itera-
tively selecting a not yet included edge at random, adding it to the tree, and
removing an edge with highest weight from the induced cycle.

Recombination: An offspring is derived from two selected parental so-
lutions in such a way that it always exclusively consists of inherited edges:
In a first step all edges contained in both parents are immediately adopted.
The remaining ones are merged into a single candidate list. From this list,
we iteratively select edges by binary tournaments with replacement favoring
high-profit edges again. Selected edges are included in the solution if they do
not introduce a cycle; otherwise, they are discarded. The process is repeated
until a complete spanning tree is obtained. If it exceeds the capacity limit,
the solution is repaired in the same way as during initialization, but only
considering parental edges for inclusion.

Mutation: Mutation is performed by inserting a new randomly selected
edge and removing another edge from the introduced cycle. The choice of the
edge to be included is again biased towards high-profit edges by utilizing a
normally-distributed rank-based selection, see [45]. The edge to be removed
from the induced cycle is chosen at random among those edges whose removal
retains a feasible solution.

Local Search: With a certain probability, a newly derived candidate so-
lution is further improved by the previously described local search procedure.

3.6.5 LD/EA Hybrid

For the LD/EA hybrid we apply similar ideas as described in [28] for the
prize collecting Steiner tree problem, where the EA is used successfully for
finding better final solutions after performing LD. Here, the EA is adapted to
exploit a variety of (intermediate) results from LD. Of course, the EA is only
applied if the best feasible solution obtained by LD does not correspond to
the determined upper bound; otherwise a proven optimal solution is already
found. These steps are performed after LD has terminated and before the EA
is executed:

1. For the selection of edges during initialization, recombination, and muta-
tion, original edge profits pe are replaced by reduced profits p′e = pe−λe. In
this way, Lagrangian dual variables are exploited, and the heuristic search
emphasizes the inclusion of edges that turned out to be beneficial in LD.

2. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions
encountered by LD. For this purpose, LD is extended to mark those edges.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 91

3. The best feasible solution obtained by LD is directly included in the EA’s
initial population.

4. Finally, the upper bound obtained by LD is exploited by the EA as an
additional stopping criterion: When a solution with a corresponding total
profit is found, it is optimal, and the EA terminates.

3.6.6 Experimental Results

The ability of the LD to yield extremely tight upper bounds that are signifi-
cantly better than those resulting from the simple Lagrangian relaxation [54]
is documented in [40]. Here we concentrate on the ability of the involved
heuristics for improving the primal solutions. Therefore, we show and com-
pare results for the pure Lagrangian decomposition (LD), LD with local
search (LD+LS), and the LD/EA hybrid (LD+LS+EA). Due to the ab-
sence of publicly available test instances we generated maximal planar graphs
(P|V |,γ), and random (R|V |,|E|,γ,δ) as well as complete graphs (K|V |,γ,δ) as de-
tailed in [29]. The instances differ in

1. size: number of nodes |V | and edges |E|,
2. profit/weight correlation γ: being uncorrelated, weakly or strongly corre-

lated for maximal planar graphs and of type outliers, weakly or strongly
correlated for the other graph types,

3. and capacity limit δ: low, medium, or high limit.

A detailed treatment of these instances is given in [40]. For the optional
local search, greedy edge selection is used for random and complete graphs
with an application threshold set to τ = 0.99 and random edge selection with
τ = 0.995 for the maximal planar graphs. The EA operates with a population
size of 100 individuals, binary tournament selection is used. Local search
is applied with a probability of 20% on each new candidate solution. The
maximum number of EA iterations is 10000 for maximal planar graphs and
30000 for random and complete graphs. The edge set reduction was applied
only in case of maximal planar graphs, as it turned out to be sometimes too
restricting in the other cases.

All experiments were performed on a 2.2 GHz AMD Athlon 64 PC with
2 GB RAM. The results are given in Table 3.1; ten runs per instance were per-
formed for the stochastic algorithms. We state the CPU-time in seconds t[s],
the number of iterations iter , the average lower bounds (LB), i.e., the objec-
tive values of the best feasible solutions. Upper bounds (UB) are expressed in
terms of the relative gap to these lower bounds: gap = (UB − LB)/LB ; cor-
responding standard deviations are listed in columns σgap . Columns %-Opt
show the percentages of instances for which the gaps are zero and, thus,
optimality has been achieved. For LD+LS+EA, the table additionally lists
the average numbers of EA iterations iterEA, the relative amounts of edges

92 J. Puchinger, G.R. Raidl, and S. Pirkwieser

discarded after performing LD red = (|E| − |E′|)/|E| · 100%, stating (red)
in case no reduction was applied, and the percentages of optimal solutions
%-OptEA, among %-Opt, found by the EA.

As can be seen, the solutions obtained by LD are already quite good
and gaps are small in general. Applying the local search (LD+LS) always
improves the average lower bound and in some cases helps to find more
proven optimal solutions, which in turn reduces the number of iterations
of the volume algorithm. The hybrid approach (LD+LS+EA) further boosts
the average solution quality in almost all cases and substantially increases
the number of solutions for which optimality could be proven; the increase
in running time one has to pay is mostly only moderate. Of course, in order
to solve the very few remaining instances to proven optimality as well, one
could embed LD+LS+EA within a B&B.

3.7 Case Study: Metaheuristic Column Generation

In this section we discuss as a second case study a successful application of
metaheuristics for solving the pricing subproblem within a column generation
approach. The presented results are part of a currently ongoing project of the
authors.

3.7.1 The Periodic Vehicle Routing Problem with
Time Windows

Periodic vehicle routing problems (PVRPs) are generalized variants of the
classical vehicle routing problem (VRP) where customersmust be served sev-
eral times within a given planning period. They occur in real-world appli-
cations as in courier services, grocery distribution or waste collection. The
PVRP considered here is the Periodic Vehicle Routing Problem with Time
Windows (PVRPTW). It is defined on a complete directed graph G = (V,A),
where V = {v0, v1, . . . vn} is the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6=
j} is the arc set. The planning horizon shall be t days, also referred to as
T = {1, . . . , t}. Vertex v0 represents the depot with time window [e0, l0]
at which we have a fleet of m homogeneous vehicles with capacity Q and
maximal daily working time D. Each vertex i ∈ VC , with VC = V \ {v0},
corresponds to a customer and has an associated demand qi ≥ 0, a service
duration di ≥ 0, a time window [ei, li], a service frequency fi and a set Ci of
allowable combinations of visit days. For each arc (vi, vj) ∈ A there are given
travel times (costs) cij ≥ 0. The aim is (i) to select a single visit combination
per customer and (ii) to find at most m vehicle routes on each of the t days
on G, such that

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 93

T
a
b
le

3
.1

R
es

u
lt

s
o
f
L
a
g
ra

n
g
ia

n
d
ec

o
m

p
o
si

ti
o
n

a
n
d

h
y
b
ri

d
a
lg

o
ri

th
m

s
o
n

m
a
x
im

a
l
p
la

n
a
r,

ra
n
d
o
m

,
a
n
d

co
m

p
le

te
g
ra

p
h
s.

In
st

a
n
c
e

L
D

L
D

+
L
S

L
D

+
L
S
+

E
A

t[
s]

it
er

L
B

ga
p

σ
g
a
p

%
-O

p
t

t[
s]

it
er

L
B

ga
p

σ
g
a
p

%
-O

p
t

t[
s]

re
d

it
er

E
A

L
B

ga
p

σ
g
a
p

%
-O

p
t

%
-O

p
t E

A
[·1

0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

[·1
0
−

5
]

P
2
0
0
0
,u

1
.4

8
7
9
1

1
4
7
7
9
9
.5

0
0
.0

6
8
3

0
.2

0
4
9

9
0

2
.2

8
7
8
2

1
4
7
7
9
9
.5

5
0
.0

3
4
2

0
.1

4
8
9

9
5

2
.9

0
4
1
.2

1
1
5
0

1
4
7
7
9
9
.6

0
0

0
1
0
0

5
P

2
0
0
0
,w

1
.5

2
8
5
3

8
5
5
7
0
.5

0
0
.3

5
1
9

0
.7

5
1
3

8
0

2
.3

8
8
4
4

8
5
5
7
0
.6

3
0
.1

9
9
4

0
.5

2
6
1

8
6

4
.2

6
4
2
.6

1
4
5
7

8
5
5
7
0
.7

8
0
.0

2
3
5

0
.1

6
4
3

9
8

1
2

P
2
0
0
0
,s

2
.1

2
1
0
3
0

8
2
5
2
1
.7

0
1
.9

3
8
9

2
.3

1
1
8

4
0

2
.6

6
8
6
8

8
2
5
2
3
.3

0
0

0
1
0
0

2
.6

6
2
1
.9

9
0

8
2
5
2
3
.3

0
0

0
1
0
0

0

P
4
0
0
0
,u

3
.3

5
8
5
9

2
9
4
8
7
2
.0

0
0
.0

3
4
0

0
.1

0
1
9

9
0

5
.5

9
8
4
1

2
9
4
8
7
2
.0

3
0
.0

2
3
8

0
.0

8
6
6

9
3

8
.6

4
4
0
.1

7
3
1
6

2
9
4
8
7
2
.1

0
0

0
1
0
0

7
P

4
0
0
0
,w

4
.1

9
1
0
5
3

1
7
0
9
5
6
.7

0
0
.8

1
9
5

0
.9

1
5
5

4
0

6
.1

5
9
7
8

1
7
0
9
5
7
.7

9
0
.1

8
1
3

0
.3

0
6

7
2

1
4
.6

6
4
3
.8

2
8
4
2

1
7
0
9
5
8
.0

6
0
.0

2
3
4

0
.1

1
4
7

9
6

2
4

P
4
0
0
0
,s

4
.7

1
1
0
6
6

1
6
5
0
4
9
.8

0
1
.0

3
0
0

0
.8

5
9
0

3
0

5
.9

9
9
1
5

1
6
5
0
5
1
.4

4
0
.0

3
6
4

0
.1

4
3
9

9
4

9
.9

5
1
9
.9

2
4
1
0

1
6
5
0
5
1
.4

8
0
.0

1
2
1

0
.0

8
4
8

9
8

4

P
6
0
0
0
,u

5
.6

6
9
1
2

4
4
1
9
7
7
.8

0
0
.0

6
8
0

0
.1

0
3
8

7
0

9
.3

3
8
8
6

4
4
1
9
7
7
.9

6
0
.0

3
1
7

0
.0

7
8
6

8
6

1
5
.4

1
4
0
.2

5
3
3
9

4
4
1
9
7
8
.1

0
0

0
1
0
0

1
4

P
6
0
0
0
,w

6
.5

5
1
0
2
2

2
5
6
3
1
7
.4

0
0
.3

9
0
4

0
.4

6
2
1

5
0

9
.2

5
9
6
4

2
5
6
3
1
8
.0

9
0
.1

2
1
0

0
.2

4
5
2

7
6

2
4
.4

7
4
5
.1

4
9
0
9

2
5
6
3
1
8
.3

6
0
.0

1
5
6

0
.0

7
6
4

9
6

2
0

P
6
0
0
0
,s

8
.1

4
1
1
5
7

2
4
7
5
8
7
.9

0
1
.7

3
6
8

1
.3

0
3
2

2
0

1
0
.4

4
9
9
6

2
4
7
5
9
2
.0

4
0
.0

6
4
6

0
.1

4
8
1

8
4

3
3
.7

3
1
9
.9

4
1
4
0
1

2
4
7
5
9
2
.0

9
0
.0

4
4
4

0
.1

2
6
4

8
9

5

P
8
0
0
0
,u

8
.3

2
9
6
0

5
8
9
4
4
6
.5

0
0
.1

0
1
7

0
.1

3
5
7

6
0

1
3
.8

1
9
1
8

5
8
9
4
4
6
.8

9
0
.0

3
5
6

0
.0

7
7

8
1

2
8
.4

4
3
9
.9

8
5
9
5

5
8
9
4
4
7
.0

9
0
.0

0
1
7

0
.0

1
6
8

9
9

1
8

P
8
0
0
0
,w

9
.7

8
1
1
0
7

3
4
1
9
0
2
.5

0
0
.5

5
5
5

0
.5

1
3
9

3
0

1
4
.1

8
1
0
3
7

3
4
1
9
0
3
.8

5
0
.1

6
0
9

0
.2

1
2
4

5
8

4
8
.4

0
4
4
.8

2
1
3
8
4

3
4
1
9
0
4
.3

7
0
.0

0
8
8

0
.0

4
9
9

9
7

3
9

P
8
0
0
0
,s

1
0
.8

8
1
1
2
5

3
3
0
1
1
7
.1

0
1
.5

1
4
7

1
.3

0
6
5

2
0

1
4
.2

0
9
9
0

3
3
0
1
2
1
.8

6
0
.0

7
2
7

0
.1

2
9
4

7
6

5
7
.0

0
1
7
.9

9
1
7
2
7

3
3
0
1
2
1
.9

6
0
.0

4
2
4

0
.1

0
5
1

8
6

1
0

R
3
0
0
,1

1
2
1
3
,o

,l
9
.5

3
1
7
3
7

5
4
2
8
3
9
.4

0
1
.7

4
7
7

1
.8

3
2
6

1
0

1
1
.7

2
1
7
3
7

5
4
2
8
4
0
.6

0
1
.5

2
7
1

1
.5

9
3
7

1
0

2
9
.9

9
(9

2
.9

3
)

2
7
0
0
0

5
4
2
8
4
3
.6

3
0
.9

7
0
6

0
.6

9
2
8

1
0

0

R
3
0
0
,1

1
2
1
3
,o

,m
7
.1

0
1
5
3
6

5
8
0
7
1
6
.5

0
0
.2

5
8
3

0
.2

4
6
4

3
0

8
.8

9
1
5
0
6

5
8
0
7
1
6
.6

0
0
.2

4
1
1

0
.2

5
7
6

4
0

2
1
.4

3
(9

1
.6

3
)

1
8
0
0
0

5
8
0
7
1
6
.6

4
0
.2

3
4
2

0
.2

4
7
7

4
0

0
R

3
0
0
,1

1
2
1
3
,o

,h
3
.5

7
1
2
6
0

5
9
1
4
0
9
.0

0
0
.1

6
9
0

0
.2

5
0
7

5
0

5
.1

1
1
2
5
9

5
9
1
4
0
9
.3

0
0
.1

1
8
3

0
.1

3
2
0

5
0

1
3
.7

3
(9

1
.0

2
)

1
2
2
8
5

5
9
1
4
0
9
.5

4
0
.0

7
7
8

0
.1

1
3
2

6
4

1
4

R
3
0
0
,1

1
2
1
3
,s

2
,l

2
4
.5

8
1
5
6
3

7
7
4
6
6
.6

0
8
.5

2
0
9

5
.6

0
4
6

2
0

2
4
.4

5
1
4
0
9

7
7
4
7
3
.0

0
0
.2

5
8
1

0
.5

1
6
1

8
0

2
4
.6

9
(8

0
.6

4
)

3
3
6

7
7
4
7
3
.2

0
0

0
1
0
0

2
0

R
3
0
0
,1

1
2
1
3
,s

2
,m

1
5
.3

7
1
3
5
1

1
5
5
2
4
4
.8

0
5
.4

0
6
4

5
.1

1
6
5

0
1
4
.7

7
1
0
5
1

1
5
5
2
5
3
.2

0
0

0
1
0
0

1
4
.7

3
(8

1
.5

4
)

0
1
5
5
2
5
3
.2

0
0

0
1
0
0

0
R

3
0
0
,1

1
2
1
3
,s

2
,h

1
6
.5

2
1
3
3
2

2
3
2
8
7
7
.7

0
6
.5

3
0
5

5
.2

6
6
8

1
0

1
6
.7

4
1
2
3
8

2
3
2
8
9
2
.5

0
0
.1

7
1
8

0
.2

8
4
7

7
0

1
8
.3

4
(8

5
.2

8
)

2
2
2
2

2
3
2
8
9
2
.8

9
0
.0

0
4
3

0
.0

4
2
8

9
9

2
9

R
3
0
0
,2

2
4
2
5
,o

,l
2
6
.3

9
3
3
2
4

5
6
8
7
7
1
.9

0
6
.8

3
8
3

6
.1

4
7
5

1
0

3
2
.1

0
3
3
2
4

5
6
8
7
8
8
.8

0
3
.8

7
1
4

4
.3

3
2
7

1
0

5
2
.0

8
(9

5
.2

4
)

2
6
7
0
0

5
6
8
7
9
6
.0

0
2
.6

0
4
2

3
.3

6
5
4

1
1

1
R

3
0
0
,2

2
4
2
5
,o

,m
1
4
.7

0
1
9
4
3

5
8
8
4
1
0
.3

0
0
.2

2
1
0

0
.2

0
2
0

3
0

1
8
.8

3
1
9
4
3

5
8
8
4
1
0
.5

0
0
.1

8
7
0

0
.1

6
0
5

3
0

3
3
.0

5
(9

5
.4

6
)

1
8
0
7
8

5
8
8
4
1
0
.8

0
0
.1

3
6
0

0
.1

2
7
2

4
0

1
0

R
3
0
0
,2

2
4
2
5
,o

,h
7
.2

8
1
3
5
8

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

1
0
.1

0
1
3
5
8

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

1
2
.4

0
(9

4
.5

4
)

3
0
0
0

5
9
4
3
7
3
.5

0
0
.0

1
6
8

0
.0

5
0
5

9
0

0

R
3
0
0
,2

2
4
2
5
,s

2
,l

4
4
.0

8
2
0
5
9

7
7
4
4
5
.7

0
1
2
.2

6
2
8

9
.0

1
7
0

0
4
2
.5

8
1
7
9
3

7
7
4
5
5
.2

0
0

0
1
0
0

4
2
.5

8
(8

6
.2

6
)

0
7
7
4
5
5
.2

0
0

0
1
0
0

0
R

3
0
0
,2

2
4
2
5
,s

2
,m

2
9
.6

9
1
6
8
7

1
5
4
9
4
0
.3

0
7
.8

1
8
5

8
.9

0
0
7

1
0

2
8
.8

1
1
3
9
2

1
5
4
9
5
2
.4

0
0

0
1
0
0

2
8
.8

1
(9

3
.7

1
)

0
1
5
4
9
5
2
.4

0
0

0
1
0
0

0

R
3
0
0
,2

2
4
2
5
,s

2
,h

3
4
.6

3
1
9
6
4

2
3
2
4
2
4
.8

0
1
6
.2

7
4
1

1
2
.5

6
5
9

1
0

3
6
.5

5
1
8
8
5

2
3
2
4
6
1
.9

0
0
.3

0
1
3

0
.3

8
7
4

5
0

4
4
.5

9
(8

9
.3

9
)

1
0
6
8
2

2
3
2
4
6
2
.3

7
0
.0

9
9
0

0
.1

8
1
1

7
7

2
7

K
3
0
0
,o

,l
2
4
7
.2

9
1
9
1
6
3

5
8
2
6
4
6
.0

0
4
.0

3
3
4

7
.1

7
4
9

1
0

3
1
6
.3

3
1
9
1
6
3

5
8
2
6
6
0
.3

0
1
.5

7
8
9

1
.4

4
3
5

1
0

3
3
3
.9

8
(9

7
.5

0
)

2
7
0
0
0

5
8
2
6
6
3
.4

6
1
.0

3
6
6

0
.8

5
1
1

1
0

0

K
3
0
0
,o

,m
4
0
.4

4
2
9
0
9

5
9
2
7
9
7
.7

0
0
.1

8
5
6

0
.1

4
0
1

3
0

4
5
.9

6
2
8
6
4

5
9
2
7
9
7
.9

0
0
.1

5
1
8

0
.1

4
0
1

4
0

5
5
.1

9
(9

7
.7

0
)

1
0
2
1
2

5
9
2
7
9
8
.5

0
0
.0

5
0
6

0
.0

7
7
3

7
0

3
0

K
3
0
0
,o

,h
3
0
.1

3
2
3
7
3

5
9
6
0
7
6
.4

0
0
.0

5
0
3

0
.1

0
7
4

8
0

3
5
.4

9
2
3
7
1

5
9
6
0
7
6
.5

0
0
.0

3
3
6

0
.0

6
7
1

8
0

3
6
.1

3
(9

6
.9

4
)

1
2
3
9

5
9
6
0
7
6
.7

0
0

0
1
0
0

2
0

K
3
0
0
,s

2
,l

6
3
.2

0
2
4
9
5

7
7
2
2
5
.7

0
2
8
.6

2
6
9

2
0
.8

4
4
2

0
6
0
.8

0
2
1
9
5

7
7
2
4
7
.8

0
0

0
1
0
0

6
0
.8

0
(9

3
.0

7
)

0
7
7
2
4
7
.8

0
0

0
1
0
0

0

K
3
0
0
,s

2
,m

6
2
.2

5
2
7
0
4

1
5
4
4
4
5
.0

0
1
2
.4

9
5
8

8
.3

3
9
4

0
5
9
.1

1
2
4
0
4

1
5
4
4
6
4
.3

0
0

0
1
0
0

5
9
.1

1
(9

4
.4

8
)

0
1
5
4
4
6
4
.3

0
0

0
1
0
0

0
K

3
0
0
,s

2
,h

7
6
.6

0
3
3
9
6

2
3
1
6
6
5
.0

0
1
5
.9

2
8
5

1
8
.7

4
0
8

1
0

7
8
.1

0
3
1
4
2

2
3
1
7
0
1
.9

0
0

0
1
0
0

7
8
.1

0
(9

2
.7

7
)

0
2
3
1
7
0
1
.9

0
0

0
1
0
0

0

94 J. Puchinger, G.R. Raidl, and S. Pirkwieser

1. each route starts and ends at the depot,
2. each customer i belongs to fi routes over the planning horizon,
3. the total demand of the route for each vehicle does not exceed the capacity

limit Q, and its duration does not exceed the maximal working time D,
4. the service at each customer i begins in the interval [ei, li] and every vehicle

leaves the depot and returns to it in the interval [e0, l0], and
5. the total travel costs of all vehicles are minimized.

We further assume so-called hard time windows, i.e., arriving before ei at
customer i incurs a waiting time at no additional costs, whereas arriving later
than li is not allowed. The PVRPTW has been first mentioned in Cordeau
et al. [8], where a tabu search metaheuristic is described for it.

3.7.2 Set Covering Formulation for the PVRPTW

Among the most successful solution approaches for VRPs in general are al-
gorithms based on column generation. Therefore, we focus on an IP formula-
tion suitable for such an approach and formulate the integer master problem
(IMP) for the PVRPTW as a set covering model:

min
∑
τ∈T

∑
ω∈Ω

γω υωτ (3.29)

s.t.
∑
r∈Ci

yir ≥ 1, ∀i ∈ VC , (3.30)

∑
ω∈Ω

υωτ ≤ m, ∀τ ∈ T, (3.31)∑
ω∈Ω

αiω υωτ −
∑
r∈Ci

βirτ yir ≥ 0, ∀i ∈ VC , ∀τ ∈ T, (3.32)

yir ∈ {0, 1}, ∀i ∈ VC , ∀r ∈ Ci, (3.33)
υωτ ∈ {0, 1}, ∀ω ∈ Ω, ∀τ ∈ T. (3.34)

The set of all feasible individual routes is denoted by Ω, and with each route
ω ∈ Ω we have associated costs γω and variables υωτ , ∀τ ∈ T , representing
the number of times route ω is selected on day τ . For each customer i ∈ VC ,
variable yir indicates whether or not visit combination r ∈ Ci is chosen.
The objective is to minimize the total costs of all routes (3.29). Covering
constraints (3.30) guarantee that at least one visit day combination is selected
per customer, fleet constraints (3.31) restrict the number of daily routes to
not exceed the number of available vehicles m, and visit constraints (3.32)
link the routes and the visit combinations, whereas αiω and βirτ are binary
constants indicating if route ω visits customer i and if day τ belongs to visit
combination r ∈ Ci of customer i, respectively.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 95

3.7.3 Column Generation for Solving the LP
Relaxation

Here, our aim is to derive a lower bound for the IMP by exactly solving its
LP relaxation. An extension of the approach towards an exact branch-and-
price algorithm is part of our ongoing work. Conditions (3.33) and (3.34)
are replaced by yir ≥ 0 and υωτ ≥ 0, yielding the (linear) master prob-
lem (MP). Due to the large number of variables (columns) corresponding to
routes, this LP cannot be solved directly. Instead, we restrict ourselves to
a small number of initial columns Ω′ ⊂ Ω, yielding the corresponding re-
stricted master problem (RMP). Additional columns (routes) that are able
to improve the current LP solution are generated by iteratively solving the
pricing subproblem, which resembles in our case a shortest path problem with
resource constraints (SPPRC) [31] and is NP-hard. Regarding the quality
of the theoretically obtainable lower bound it is beneficial to restrict the
search to elementary paths, hence only considering the elementary SPPRC
(ESPPRC). The following ESPPRC pricing subproblem holds for each day
τ ∈ T and is solved on an auxiliary graph G′ = (V ′, A′), with V ′ = V ∪{vn+1}
and A′ = {(v0, i), (i, vn+1) : i ∈ VC} ∪ {(i, j) : i, j ∈ VC , i 6= j}, where vn+1

is a copy of the (starting) depot v0 and acts as target node:

min
∑
i∈V ′

∑
j∈V ′

ĉijτ xij (3.35)

s.t.
∑

j∈VC

x0j = 1 (3.36)

∑
i∈V ′

xik −
∑
j∈V ′

xkj = 0 ∀k ∈ VC (3.37)

∑
i∈VC

xi,n+1 = 1 (3.38)

∑
i∈VC

∑
j∈V ′

qi xij ≤ Q (3.39)

an+1 − w0 ≤ D (3.40)
ai + wi + di + cij −Mij(1− xij) ≤ aj ∀(i, j) ∈ A′ (3.41)

ei ≤ (ai + wi) ≤ li ∀i ∈ V ′ (3.42)
wi ≥ 0 ∀i ∈ V ′ (3.43)

ai ≥ 0 ∀i ∈ V ′ \ {v0} (3.44)
a0 = 0 (3.45)
xij ∈ {0, 1} ∀(i, j) ∈ A′ (3.46)

96 J. Puchinger, G.R. Raidl, and S. Pirkwieser

Variables xij , ∀(i, j) ∈ A′, denote which arcs from A′ are used, and ĉijτ

are the reduced costs of using arc (i, j) on day τ :

ĉijτ =

{
cij − ρτ if i = v0, j ∈ VC ,

cij − πiτ if i ∈ VC , j ∈ V ′.
(3.47)

with ρτ and πiτ being the dual variable values of constraints (3.31) and (3.32),
respectively. Equalities (3.36) to (3.38) are flow conservation constraints, and
inequalities (3.39) and (3.40) guarantee to not exceed the capacity and dura-
tion limits, respectively. Finally, (3.41) and (3.42) are time constraints, with
variable ai denoting the arrival time at customer i and wi the waiting time
occurring after ai.

3.7.4 Exact and Metaheuristic Pricing Procedures

We apply an exact algorithm as well as metaheuristics for solving the
ESPPRC subproblem. The former is realized by a dynamic programming
approach based on [7, 14]. We use a label correcting algorithm and expand
the partial paths from the depot v0 to the target node vn+1, thereby retain-
ing only non-dominated labels taking into account the cumulated costs, load,
duration, and overall waiting time, as well as the arrival time and the set
of unreachable nodes. To minimize route duration we adhere to the concept
of forward time slack [48] and maximize the waiting time w0 at the depot
without introducing a time window violation. This is also considered when
extending labels and checking the dominance relation. The algorithm can also
be stopped after a certain number of negative cost paths have been found,
i.e., applying a “forced early stop”, c.f. [32].

The first metaheuristic is an instance of iterated local search (ILS) [34]. It
starts with the “empty” path (v0, vn+1) with zero costs and applies in each
iteration a perturbation and a subsequent local improvement phase. Both
phases make use of the following neighborhood structures: inserting, deleting,
moving, replacing, and exchanging individual customers. The local search
selects them in a random fashion and always accepts the first improving
change. Perturbation applies ten random neighborhood moves in a sequence.

Our second, alternative metaheuristic approach can be regarded a greedy
randomized adaptive search procedure (GRASP) [15]: In each iteration we
start with the “empty” path (v0, vn+1) with zero costs and successively try
to add arcs having negative costs, always selecting one at random in case
there are more available; afterwards we also apply the perturbation and local
search phase as described for the ILS algorithm.

Whenever an iteration of the metaheuristics results in a negative cost
path it is stored and returned at the end of the procedure. Once one or more
negative cost routes have been determined for one of the daily subproblems,

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 97

corresponding variables are priced in for all days and the RMP is resolved.
In the following iteration we start the column generation with the same daily
subproblem before considering the others. The whole process is continued
until a full iteration over all days yields no new negative cost routes.

3.7.5 Experimental Results

Benchmark instances were taken from [8]. They are divided in types ‘a’ and
‘b’ having narrow and wide time windows, respectively. We reduced some of
them by selecting only a random subset of the customers and decreasing the
number of vehicles in an appropriate way; in this case we give a subscript
denoting the index of the reduced instance. The initial set of columns is
provided by taking the routes of feasible solutions of a variable neighborhood
search described in [39]. All algorithms have been implemented in C++ using
GCC 4.1 and were executed on a single core of a 2.2GHz AMD Opteron
2214 PC with 4 GB RAM. CPLEX in version 11.1 was used as LP solver.
The ESPPRC subproblem is solved in four alternative ways: (i) by dynamic
programming (DP), (ii) by dynamic programming with a forced early stop
after 1000 generated columns (DPS), (iii) by ILS and a subsequent application
of DP (ILS+DP), and finally (iv) by GRASP and running DP afterwards
(GRASP+DP). The metaheuristics’ iteration limit is originally set to 1000
and extended to 10000 if no new columns have been generated so far (on
a per-run basis). DP is applied after the metaheuristic if less than 100 new
columns have been generated. In all experiments, column generation was
performed until the LP relaxation of the set covering formulation has been
solved to optimality, i.e., it has been proven by DP that no further columns
with negative reduced costs exist.

Table 3.2 shows the instances, the upper bounds (UB) initially provided
by the variable neighborhood search, the (exact) lower bounds (LB) obtained
from column generation, the percentage gaps between them, i.e. %-gap =
(UB − LB)/LB · 100%, the CPU-times of settings DP and DPS, as well as
the minimal and average times of settings ILS+DP and GRASP+DP over
ten runs per instance. It can be observed that DPS is faster than DP for
instances with narrow time windows, whereas it is almost the opposite for
instances with wide time windows. However, using one of the metaheuristic
combinations ILS+DP or GRASP+DP is almost always fastest, especially for
larger instances, when the speed of the heuristic column generation outweighs
the probably higher quality columns of the DP algorithm. Among the two
metaheuristic combinations, no obvious advantage is observable for either of
them.

98 J. Puchinger, G.R. Raidl, and S. Pirkwieser

T
a
b
le

3
.2

E
x
p
er

im
en

ta
l
re

su
lt

s
o
f

co
lu

m
n

g
en

er
a
ti

o
n

w
it
h

d
iff

er
en

t
p
ri

ci
n
g

st
ra

te
g
ie

s
fo

r
th

e
P

V
R

P
T

W
:
C

P
U

-t
im

es
fo

r
ex

a
ct

ly
so

lv
in

g
th

e
L
P

re
la

x
a
ti
o
n

o
f
th

e
se

t
co

v
er

in
g

fo
rm

u
la

ti
o
n
.

In
st

a
n
ce

U
B

L
B

%
-g

a
p

D
P

D
P

S
IL

S
+

D
P

G
R

A
S
P

+
D

P

N
o
.

n
m

t
t[
s]

t[
s]

m
in

t[
s]

a
v
g
.
t[

s]
m

in
t[
s]

a
v
g
.
t[
s]

1
a

4
8

3
4

2
9
0
9
.0

2
2
8
8
2
.0

1
0
.9

4
5
.0

1
4
.8

7
1
1
.4

4
1
3
.9

2
1
3
.4

0
1
8
.5

9
2
a

9
6

6
4

5
0
3
2
.0

6
4
9
9
3
.4

8
0
.7

7
7
2
.2

7
5
3
.9

1
4
8
.3

5
5
5
.8

3
4
5
.3

1
5
7
.0

9

3
a

1
4
4

9
4

7
1
3
8
.6

5
6
8
4
1
.4

4
4
.3

4
3
7
4
.0

7
2
9
1
.6

1
2
3
1
.1

7
2
6
5
.2

8
2
2
3
.0

3
2
6
2
.8

9
4
a
r1

1
6
0

1
0

4
6
9
2
9
.8

4
6
6
4
1
.6

7
4
.3

4
1
2
4
0
.9

6
1
1
3
6
.6

4
6
0
5
.0

6
7
4
4
.6

9
6
4
0
.1

5
7
5
4
.7

1
7
a

7
2

5
6

6
7
8
4
.7

1
6
6
4
1
.3

9
2
.1

6
2
4
.7

8
1
7
.1

0
1
6
.9

8
2
0
.7

7
1
9
.5

8
2
3
.8

2

9
a
r1

9
6

7
6

8
5
4
5
.8

0
8
0
3
5
.0

9
6
.3

6
1
4
6
.8

8
1
3
4
.5

5
8
8
.8

9
1
0
4
.1

7
9
6
.6

0
1
0
3
.7

5
9
a
r2

1
2
0

8
6

8
5
9
8
.4

0
8
1
4
0
.1

5
5
.6

3
8
9
8
.9

0
6
9
3
.4

4
4
4
6
.4

9
5
4
5
.0

9
4
7
5
.9

8
5
2
1
.6

6
8
a

1
4
4

1
0

6
9
7
2
1
.2

5
9
1
5
3
.7

9
6
.2

0
7
4
5
.9

5
5
9
2
.0

7
3
6
7
.8

2
4
1
8
.8

7
3
8
3
.1

8
4
2
1
.6

3

2
b
r1

3
2

2
4

2
7
0
9
.1

5
2
6
8
2
.5

2
1
.0

0
8
9
.6

5
1
2
1
.3

0
4
3
.5

8
6
4
.7

9
2
5
.3

6
5
5
.7

8
1
b

4
8

3
4

2
2
7
7
.4

4
2
2
5
8
.8

5
0
.8

2
1
5
6
.7

7
1
5
8
.6

6
7
6
.6

6
1
0
9
.1

7
9
9
.5

9
1
2
3
.3

5

2
b
r2

6
4

4
4

2
7
7
1
.6

8
2
7
3
3
.5

5
1
.4

0
2
7
7
.7

6
2
5
4
.3

8
1
3
1
.7

2
1
9
2
.1

8
1
6
8
.7

5
1
8
8
.6

1
3
b
r1

7
2

4
4

3
3
0
6
.8

6
3
2
4
1
.9

0
2
.0

0
7
2
6
.3

7
7
4
9
.1

1
4
2
6
.1

0
5
3
3
.6

8
4
1
7
.0

5
4
8
8
.9

5
7
b

r
1

2
4

2
6

3
7
7
6
.2

5
3
6
7
7
.2

1
2
.7

0
0
.5

4
0
.5

5
1
.9

2
2
.2

9
1
.7

2
2
.2

5

8
b

r
1

3
6

2
6

3
6
4
0
.7

9
3
4
7
6
.4

3
4
.7

3
1
0
.0

1
1
0
.1

5
8
.5

0
1
3
.2

6
1
0
.2

4
1
2
.5

5
7
b

r
2

4
8

3
6

3
7
2
3
.1

8
3
5
9
9
.7

2
3
.4

3
4
8
.0

4
3
1
.7

8
3
0
.9

5
4
3
.1

3
3
4
.0

3
4
3
.2

0
8
b

r
2

6
0

3
6

4
6
0
6
.1

7
4
3
2
4
.8

7
6
.5

0
1
5
3
8
.1

8
1
1
9
6
.5

1
8
2
6
.0

8
1
1
2
1
.2

8
8
0
4
.3

5
9
6
7
.8

7

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 99

3.8 Conclusions

The present chapter reviewed important MetaBoosting literature and pre-
sented two exemplary case studies where an in-depth description of successful
hybrid algorithms was given. Many different hybridization approaches exist,
most of them are specialized methods for specific problems, but another sig-
nificant part of the surveyed research considers generic problems such as
mixed integer programming. It is often possible to accelerate exact methods
by introducing (meta-)heuristic knowledge and, if fixed time-limits are given,
the overall solution quality might also benefit from such ideas.

In most exact approaches tight bounds are crucial aspects of success. Thus,
different ways of applying metaheuristics for finding primal bounds were ex-
amined. The obvious way of determining high quality initial solutions can
be beneficial to the overall optimization process, as it has been described for
the multidimensional knapsack problem. General methods for determining
improved primal solutions throughout the search process for generic mixed
integer programming, such as local branching and relaxation or distance in-
duced neighborhood search, have been found so effective that some of them
have been included into the commercial MIP solver CPLEX. Solution merging
approaches based on evolutionary algorithms were also successfully included
in this solver. Other more problem specific methods often yielding optimal or
close to optimal primal solutions based on the hybridization of Lagrangian
relaxation and metaheuristics were also examined.

A multitude of collaborative approaches exist and some intertwined and
parallel combinations were described in this chapter. Parallel combinations
gain importance because of the current hardware developments and the broad
availability of multi-core processors.

Mathematical programming techniques based on problem decomposition,
such as cut and column generation approaches, play an essential role in the
advances of exact methods. Applications where metaheuristic algorithms are
used for such tasks were described. Especially sequential combinations of
fast and simple construction heuristics and more sophisticated metaheuristic
approaches are very promising in both cut and column generation.

Different aspects and difficulties in the development of hybrid methods
were discussed in more detail in the two case studies. The first one describes
a Lagrangian decomposition approach combined with an evolutionary algo-
rithm for solving the knapsack constrained maximum spanning tree problem.
The Lagrangian approach combined with an implicit construction heuristic
and a subsequent local search is already a powerful procedure yielding tight
gaps, but its combination with the EA allows to optimally solve substantially
more of the large-scale instances. The second case study presents a column
generation approach for solving the periodic vehicle routing problem with
time windows. A greedy randomized adaptive search procedure, an iterated
local search, and a dynamic programming algorithm are applied for solving
the pricing subproblem. The inclusion of metaheuristic techniques led to a

100 J. Puchinger, G.R. Raidl, and S. Pirkwieser

significant acceleration of the column generation process compared to using
the dynamic programming subproblem solver alone.

Hybridizing exact algorithms and metaheuristics, and MetaBoosting in
particular are promising research areas. Further exciting results can be ex-
pected since various possible synergies are still unexplored. Especially gener-
ating, exchanging, and translating information about the ongoing optimiza-
tion process by exploiting advanced features of the different algorithms will
possibly lead to further progress in the field.

Acknowledgements This work is supported by the Austrian Science Fund (FWF) under

contract number P20342-N13.

References

1. P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Separating
capacity constraints in the CVRP using tabu search. European Journal of Operational

Research, 106(2):546–557, 1999.
2. E. Balas. An additive algorithm for solving linear programs with zero-one variables.

Operations Research, 13(4):517–549, 1965.

3. E. Balas and C.H. Martin. Pivot and complement – a heuristic for 0–1 programming.
Management Science, 26(1):86–96, 1980.

4. F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a

subgradient method. Mathematical Programming, Series A, 87(3):385–399, 2000.
5. L. Bertaccoa, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general

mixed-integer problems. Discrete Optimization, 4:63–76, 2007.

6. D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1997.

7. A. Chabrier. Vehicle routing problem with elementary shortest path based column

generation. Computers & Operations Research, 33(10):2972–2990, 2006.
8. J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle

routing problems with time windows. Journal of the Operational Research Society,
52:928–936, 2001.

9. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, Series A, 102:71–90, 2005.

10. G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large scale traveling

salesman problem. Operations Research, 2:393–410, 1954.
11. G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8(1):101–111, 1960.

12. J. Denzinger and T. Offermann. On cooperation between evolutionary algorithms
and other search paradigms. In Proceedings of the 1999 Congress on Evolutionary
Computation, volume 3, pages 2317–2324. IEEE Press, 1999.

13. O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194(1-3):229–237, 1999.

14. D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-

mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004.

15. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Jour-

nal of Global Optimization, 6:109–133, 1995.

3 MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics 101

16. G. Ribeiro Filho and L.A. Nogueira Lorena. Constructive genetic algorithm and col-

umn generation: an application to graph coloring. In L.P. Chuen, editor, Proceedings
of the Fifth Conference of the Association of Asian-Pacific Operations Research So-

cieties within IFORS, 2000.
17. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Program-

ming, 104(1):91–104, 2005.
18. M. Fischetti, C. Polo, and M. Scantamburlo. Local branching heuristic for mixed-

integer programs with 2-level variables, with an application to a telecommunication

network design problem. Networks, 44(2):61–72, 2004.
19. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, Series B,

98:23–47, 2003.
20. M.L. Fisher. The Lagrangian relaxation method for solving integer programming

problems. Management Science, 27(1):1–18, 1981.
21. A. Frangioni. About Lagrangian methods in integer optimization. Annals of Opera-

tions Research, 139(1):163–193, 2005.
22. A.P. French, A.C. Robinson, and J.M. Wilson. Using a hybrid genetic algo-

rithm/branch and bound approach to solve feasibility and optimization integer pro-

gramming problems. Journal of Heuristics, 7:551–564, 2001.
23. S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and D.P. Williamson,

editors, Integer Programming and Combinatorial Optimization: 12th International
IPCO Conference, Proceedings, volume 4513 of Lecture Notes in Computer Science,

pages 310–323. Springer, 2007.
24. P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting stock

problem. Operations Research, 9:849–859, 1961.
25. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path relink-

ing. Control and Cybernetics, 39(3):653–684, 2000.
26. F. Glover. Surrogate constraints. Operations Research, 16(4):741–749, 1968.
27. P. Hansen, N. Mladenović, and D. Urosević. Variable neighborhood search and local

branching. Computers & Operations Research, 33(10):3034–3045, 2006.
28. M. Haouari and J.C. Siala. A hybrid Lagrangian genetic algorithm for the prize

collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–1288,

2006.
29. S.T. Henn. Weight-constrained minimal spanning tree problem. Master’s thesis, Uni-

versity of Kaiserslautern, Department of Mathematics, May 2007.
30. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an

interior. Operations Research, 17(4):600–637, 1969.
31. S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, chap-
ter 2, pages 33–65. Springer, 2005.

32. J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows. PhD
thesis, Technical University of Denmark, 1999.

33. M. Leitner and G.R. Raidl. Lagrangian decomposition, metaheuristics, and hybrid
approaches for the design of the last mile in fiber optic networks. In M.J. Blesa,
C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, A. Roli, and M. Sampels, editors,

Hybrid Metaheuristics 2008, volume 5296 of Lecture Notes in Computer Science, pages
158–174. Springer, 2008.

34. H.R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Aca-

demic Publishers, 2003.
35. M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005.
36. S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for

the 0–1 knapsack problem. Management Science, 45:414–424, 1999.
37. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, 1988.

102 J. Puchinger, G.R. Raidl, and S. Pirkwieser

38. C. Oliva, P. Michelon, and C. Artigues. Constraint and linear programming: Using

reduced costs for solving the zero/one multiple knapsack problem. In International
Conference on Constraint Programming, Proceedings of the Workshop on Cooperative

Solvers in Constraint Programming, pages 87–98, Paphos, Greece, 2001.

39. S. Pirkwieser and G.R. Raidl. A variable neighborhood search for the periodic vehicle
routing problem with time windows. In C. Prodhon, R. Wolfler-Calvo, N. Labadi, and

C. Prins, editors, Proceedings of the 9th EU/MEeting on Metaheuristics for Logistics

and Vehicle Routing, Troyes, France, 2008.
40. S. Pirkwieser, G.R. Raidl, and J. Puchinger. A Lagrangian decomposition/evolutionary

algorithm hybrid for the knapsack constrained maximum spanning tree problem. In

C. Cotta and J. van Hemert, editors, Recent Advances in Evolutionary Computation
for Combinatorial Optimization, volume 153 of Studies in Computational Intelligence,

pages 69–85. Springer, 2008.
41. J. Puchinger and G.R. Raidl. An evolutionary algorithm for column generation in

integer programming: an effective approach for 2D bin packing. In In X. Yao, E.K.

Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervos, J.A. Bullinaria, J.E. Rowe, P. Tino,
A. Kaban, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN
VIII, volume 3242 of Lecture Notes in Computer Science, pages 642–651. Springer,

2004.
42. J. Puchinger and G.R. Raidl. Combining metaheuristics and exact algorithms in com-

binatorial optimization: A survey and classification. In J. Mira and J.R. Álvarez,

editors, Proceedings of the First International Work-Conference on the Interplay Be-
tween Natural and Artificial Computation, Part II, volume 3562 of Lecture Notes in
Computer Science, pages 41–53. Springer, 2005.

43. J. Puchinger and G.R. Raidl. Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research, 183:1304–1327, 2007.

44. J. Puchinger, G.R. Raidl, and M. Gruber. Cooperating memetic and branch-and-cut
algorithms for solving the multidimensional knapsack problem. In Proceedings of the

6th Metaheuristics International Conference, pages 775–780, Vienna, Austria, 2005.
45. G.R. Raidl and B.A. Julstrom. Edge sets: an effective evolutionary coding of spanning

trees. IEEE Transactions on Evolutionary Computation, 7(3):225–239, 2003.

46. W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders decompo-
sition by local branching. INFORMS Journal on Computing, in press.

47. E. Rothberg. An evolutionary algorithm for polishing mixed integer programming

solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.
48. M.W.P. Savelsbergh. The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing, 4:146–154, 1992.
49. S. Talukdar, L. Baeretzen, A. Gove, and P. de Souza. Asynchronous teams: Coopera-

tion schemes for autonomous agents. Journal of Heuristics, 4:295–321, 1998.
50. M. Vasquez and J.-K. Hao. A hybrid approach for the 0–1 multidimensional knapsack

problem. In B. Nebel, editor, Proceedings of the 17th International Joint Conference
on Artificial Intelligence, pages 328–333. Morgan Kaufman, 2001.

51. M. Vasquez and Y. Vimont. Improved results on the 0–1 multidimensional knapsack
problem. European Journal of Operational Research, 165(1):70–81, 2005.

52. Y. Vimont, S. Boussier, and M. Vasquez. Reduced costs propagation in an efficient
implicit enumeration for the 0–1 multidimensional knapsack problem. Journal of Com-

binatorial Optimization, 15(2):165–178, 2008.
53. L.A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

54. T. Yamada, K. Watanabe, and S. Katakoa. Algorithms to solve the knapsack con-
strained maximum spanning tree problem. International Journal of Computer Math-
ematics, 82(1):23–34, 2005.

Chapter 4

Usage of Exact Algorithms to Enhance
Stochastic Local Search Algorithms

Irina Dumitrescu and Thomas Stützle

Abstract Exact mathematical programming techniques such as branch-and-
bound or dynamic programming and stochastic local search techniques have
traditionally been seen as being two general but distinct approaches for the
effective solution of combinatorial optimization problems, each having par-
ticular advantages and disadvantages. In several research efforts true hybrid
algorithms, which exploit ideas from both fields, have been proposed. In this
chapter we review some of the main ideas of several such combinations and
illustrate them with examples from the literature. Our focus here is on algo-
rithms that have the main framework given by the local search and use exact
algorithms to solve subproblems.

4.1 Introduction

Many problems arising in areas such as scheduling and production planning,
location and distribution management, Internet routing or bioinformatics are
combinatorial optimization problems (COPs). COPs are intriguing because
they are often easy to state but often very difficult to solve, which is captured
by the fact that many of them are NP-hard [48]. This difficulty and, at the
same time, their enormous practical importance, have led to a large num-
ber of solution techniques for them. The available solution techniques can be
classified as being either exact or approximate algorithms. Exact algorithms
are guaranteed to find an optimal solution and prove its optimality for every

Irina Dumitrescu
School of Mathematics, University of New South Wales, Sydney, Australia
e-mail: irina.dumitrescu@unsw.edu.au

Thomas Stützle
IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium

e-mail: stuetzle@ulb.ac.be

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 103

DOI 10.1007/978-1-4419-1306-7 4, c© Springer Science+Business Media, LLC 2009

irina.dumitrescu@unsw.edu.au
stuetzle@ulb.ac.be

104 I. Dumitrescu and T. Stützle

finite size instance of a COP within an instance-dependent, finite run-time,
or prove that no feasible solution exists. If optimal solutions cannot be com-
puted efficiently in practice, it is usual to trade the guarantee of optimality
for efficiency. In other words, the guarantee of finding optimal solutions is
sacrificed for the sake of getting very good solutions in reasonably short time
by using approximate algorithms.

Two solution method classes that have significant success are integer pro-
gramming (IP) methods as an exact approach, and stochastic local search
(SLS) algorithms [61] as an approximate approach. IP methods rely on the
characteristic of the decision variables being integers. Some well known IP
methods are branch-and-bound, branch-and-cut, branch-and-price, and dy-
namic programming [86]. In recent years, remarkable improvements have been
reported for IP methods when applied to some problems (see, e.g. [11] for
the TSP). Important advantages of exact methods for IP are that (i) proven
optimal solutions can be obtained if the algorithm succeeds, (ii) valuable in-
formation on upper/lower bounds on the optimal solution are obtained even if
the algorithm is stopped before completion (IP methods can become approx-
imate if we define a criterion of stopping them before solving the problem),
and (iii) IP methods allow to provably prune parts of the search space in
which optimal solutions cannot be located. A more practical advantage of IP
methods is that research code such as Minto [85] or GLPK [54], or powerful,
general-purpose commercial tools such as CPLEX [63] or Xpress-MP [113]
are available. However, despite the known successes, exact methods have a
number of disadvantages. Firstly, for many problems the size of the instances
that are practically solvable is rather limited and, even if an application is
feasible, the variance of the computation times is typically very large when
applied to different instances of a same size. Secondly, the memory consump-
tion of exact algorithms can be very large and lead to the early abortion of a
program. Thirdly, for many COPs the best performing algorithms are prob-
lem specific and they require large development times by experts in integer
programming. Finally, high performing exact algorithms for one problem are
often difficult to extend if some details of the problem formulation change.
The state-of-the art for exact algorithms is that for some NP-hard problems
very large instances can be solved fast, while for other problems even small
size instances are out of reach.

SLS is probably the most successful class of approximate algorithms. When
applied to hard COPs, local search yields high-quality solutions by iteratively
applying small modifications (local moves) to a solution in the hope of find-
ing a better one. Embedded into higher-level guidance mechanisms, which are
called (general-purpose) SLS methods [61]or, more commonly, metaheuristics,
this approach has been shown to be very successful in achieving near-optimal
(and often optimal) solutions to a number of difficult problems [1, 61, 108].
Examples of well-known general-purpose SLS methods (or metaheuristics)
are simulated annealing, tabu search, memetic algorithms, ant colony op-
timization or iterated local search [52]. Advantages of SLS algorithms are

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 105

that (i) they are the best performing algorithms available for a variety of
problems, (ii) they can examine a huge number of possible solutions in short
computation time, (iii) they are often more easily adapted to slight variants
of problems and are therefore more flexible, and (iv) they are typically easier
to understand and implement by the common user than exact methods. How-
ever, local search based algorithms have several disadvantages. Firstly, they
cannot prove optimality and typically do not give bounds on the quality of
the solutions they return. Secondly, they typically cannot provably reduce the
search space. Thirdly, they do not have well defined stopping criteria (this
is particularly true for metaheuristics). Finally, local search methods often
have problems with highly constrained problems where feasible areas of the
solution space are disconnected. Another problem that occurs in practice is
that, with very few exceptions [110], there are no efficient general-purpose
local search solvers available. Hence, although one can typically develop an
SLS algorithms of reasonable performance rather quickly, many applications
of SLS algorithms can require considerable development and implementation
efforts if very high performance is required.

It should be clear by now that IP and SLS approaches have their par-
ticular advantages and disadvantages and can be seen as complementary.
Therefore, it appears to be a good idea to try to combine these two distinct
techniques into more powerful algorithms. Many articles use the probably
most straightforward of these combinations, which is the use of an SLS algo-
rithm to compute good intial upper bounds (in the minimization case) that
allow an early pruning of non-optimal solutions. Intuitively, one would expect
more advanced combinations of exact and local search methods to result in
even stronger algorithms.

In this chapter we focus on approaches that strive for an integration of
IP and SLS techniques. In particular, we describe ways of integrating IP
methods (or methods derived from an IP approach) into SLS methods. In
other words, we focus on approaches where the main algorithm (the master)
is the local search technique and the IP method is typically used to solve some
subproblems. For an overview of methods where as the master method can be
considered the IP method and SLS techniques are used to solve subproblems,
we refer to Chapter 3 of this book. We refer to this chapter and Chapter 2 for
methods that use the spirit of local search inside IP methods (such as local
branching [46]).

More in detail, we will cover the following five ideas that can be abstracted
from the various true hybrid algorithms proposed in the literature: (i) the us-
age of exact algorithms to explore large neighborhoods in SLS algorithms, (ii)
ways of enhancing metaheuristics by solving some subproblems exactly, (iii)
the usage of techniques taken from branch-and-bound to enhance construc-
tive SLS methods, (iv) the exploitation of the structure of good solutions
identified by SLS algorithms, and (v) the exploitation of information from
relaxations in SLS algorithms. In fact, the first three ways of combining local
search and exact algorithms are classified in [96] as integrative combinations,

106 I. Dumitrescu and T. Stützle

while the last two are classified as collaborative combinations: the two meth-
ods are executed in sequence. For each of these five groups, we will describe
some general ideas, give one or more detailed examples, and give pointers to
literature for other ideas following the corresponding idea.

Before proceeding with our discussion we need to clarify the notion of
solution component and decision variable that we will use in our chapter.
We explain what we mean by using the example of the symmetric traveling
salesman problem (TSP). The TSP can be defined on an undirected graph
G = (V,E), where V is the set of nodes and E the set of edges. An edge
represents a pair of nodes between which travel is possible. Every edge {i, j}
has an associated cost dij and the goal in the TSP is to find a Hamiltonian
circuit of minimal length. When applying local search to the TSP, a solution
component usually refers to a single edge in a tour; each tour contains exactly
n such solution components. More generally, a solution component can be
seen as an atomic item and a set of such atomic items defines a problem
solution. The analogue to a solution component in IP formulations is the
notion of decision variable. For example, in the usual IP formulations of the
TSP (see [86] for an overview), a variable xij ∈ {0, 1} is associated with each
edge {i, j}. The variable xij is equal to 1, if the edge {i, j} is included in a
tour and zero, otherwise. The xij variables are called decision variables. In
the following sections, if we say that a decision variable is fixed to one (zero),
we mean that we consider only those solutions in which this variable is set
to one (zero). Analogously, in the local search case we say that a solution
component is forced to always occur (not occur) in any solution considered.
In the case of the TSP, this corresponds to an edge always (never) being used
in any of the solutions considered. If a variable is free, it can take any value
in {0, 1}.

4.2 Exploring large neighborhoods

Given a current solution s, (perturbative) local search [61] explores the neigh-
borhood N (s) of s iteratively and tries to replace s by a solution s′ ∈ N (s)
according to some criterion. In local search, it is appealing to search large
neighborhoods because much better solutions can be reached in one local
search step than when using simple, small neighborhoods. However, large
neighborhoods have the associated disadvantage that a considerable amount
of time may be spent to search them in order to find some or the best improv-
ing neighboring solution. More than that, many of the large neighborhoods
proposed in the literature are exponentially large with respect to instance
size [51, 70, 93, 106, 107] and the main potential bottleneck for local search
in large neighborhoods is the task of searching for a better or the best solution
in the neighborhood of the current one.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 107

Local search algorithms for large neighborhoods can be classified roughly
into two classes. The first class comprises those where the large neighbor-
hood is searched heuristically in some problem-specific way. Examples of this
class of local search algorithms are variable-depth search algorithms [70, 65]
or ejection chains [51]. The second are local search algorithms where the
neighborhood is searched exactly, i.e. the central idea of these algorithms is
to model the problem of searching a large neighborhood as an optimization
problem, which is solved exactly. The solution of the resulting search problem
will determine the neighbor that will replace the current solution in the local
search.

Two main possibilities are considered for defining the neighborhood search
problem. The first one is to define a special-purpose neighborhood and to
model the exploration of the full neighborhood as an optimization problem.
In this case, a search problem is defined such that each feasible solution
of it induces a move of the local search algorithm. Clearly, the task of the
exact algorithm in this case will be to solve the resulting neighborhood search
problem (NSP). A general algorithmic outline of this idea can be given as
follows:

Algorithm 4.2.1 Neighborhood search

Step 1: Initialization
Let s be a feasible initial solution.

Step 2: Local search
while stopping criterion is not met do

Define a search problem P(s) that depends on s.
Find opt(P(s)), an optimal solution of P(s).
Let s′ be the solution induced by opt(P(s)).
if s′ is better than s w.r.t. the objective function then s = s′.

enddo
Step 3: Return s.

The stopping criterion may be triggered, e.g., if no improved solution s can
be obtained or the solutions to P(s) are infeasible etc. The first two examples
that we present, very large scale neighborhood search and Dynasearch, fall in
this class of NSP hybrids. Typically, algorithms that are based on NSP try
to determine composite moves, which are composed of a sequence or set of
simpler moves.

The second “possibility” is that at each step of the local search a part of
the current solution s is maintained fixed, thus defining a partial solution,
while the values of the rest of the decision variables are left free. The free
part is then rearranged optimally, subject to the constraint that the fixed part
cannot be altered. In this sense, the task of the exact algorithm is to solve
the partial neighborhood search problem (PNSP). The following algorithmic
outline gives a high level view of such a procedure in a first-improvement
style of local search. The outline sketches an iterative improvement algorithm

108 I. Dumitrescu and T. Stützle

that stops in the first locally optimal solution encountered. The operator ⊗,
which is used below, joins two partial solutions into a complete solution. A
distinctive feature to the NSP type algorithms is that the final move is not
considered to be composed of simple underlying moves.

Algorithm 4.2.2 Partial neighborhood search

Step 1: Initialization
Let s be an initial solution.

Step 2: Neighborhood search
while improvement found do

Step 3: Neighborhood scan
while not full neighborhood examined do

Delete solution components from solution s resulting
in a partial solution: sp = s \ r.

Define a search problem P(r).
Find opt(P(r)), the optimal solution of P(r).
Perform the move induced by opt(P(r)), resulting in
solution s̄′; s′ = sp ⊗ s̄′.
if s′ is better than s w.r.t. the objective function then s = s′.

enddo
enddo

Step 4: Return s.

We illustrate the partial neighborhood search principle on the hyperopt
local search algorithm. In fact, hyperopt is only one example of such methods.
They can be traced back to Applegate and Cook’s shuffle heuristic [12].

4.2.1 NSP Example: Cyclic and Path Exchange
Neighborhoods

One application of NSP is the very large scale neighborhood (VLSN) search
that was introduced by Ahuja et al. [5, 6] in the context of solving parti-
tioning problems. Examples of partitioning problems include graph coloring,
vehicle routing, generalized assignment, parallel machine scheduling, cluster-
ing, aggregation, and graph partitioning. Next, we briefly describe the type of
problems to which VLSN search is applied and how the neighborhood search
problem is defined.

A partition T of a set W of n elements is a set of subsets T = {T1, . . . , TK}
such that W = T1 ∪ · · · ∪ TK and Tk ∩ Tk′ = ∅, k, k′ = 1, . . . ,K. To each
set Tk one can associate a cost ck(Tk). Then, the partitioning problem is to
search for a partition of W such that the sum of the costs of the partitions
is minimal. The properties of the cost function are not important for now,
except that it is separable over subsets.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 109

Fig. 4.1 Example of a cyclic exchange for a partitioning problem.

The one-exchange neighborhood, which is based on the move of one ele-
ment of W from one partition into another one, and the two-exchange neigh-
borhood, which is based on exchanges of two elements of two different parti-
tions, are typical simple neighborhoods for partitioning problems. Cyclic ex-
change neighborhoods generalize the two-exchange neighborhood [6, 106, 107]
by exchanging not only two elements from two different subsets but moving
several elements, each of a different subset. An illustration of this neighbor-
hood is given in Figure 4.1. A path exchange is similar to a cyclic exchange
except that from the last subset of the path no element is removed.

The cyclic (path) exchange neighborhood of a partition T is then the set of
all partitions T ′ that can be obtained by a cyclic (path) exchange as described
above. In what follows we focus on the cyclic exchange neighborhood. A
cyclic exchange modifies the cost of the partitions involved in the move. If
the cost function is separable over subsets, the cost of a cyclic exchange can
be obtained as the sum of the cost differences of all subsets that are modified
by the move.

Ahuja et al. define an improvement graph on which a search problem is
solved in order to find an improving cyclic exchange. The node set V of the
improvement graph is defined as the collection of integers 1, . . . , n such that
each node in V is in one-to-one correspondence to an element of W . For
each pair of elements that do not belong to the same subset in T , an arc
(i, j) between the corresponding nodes is added in the improvement graph if
and only if the subset to which the element corresponding to node j belongs
remains feasible after the removal of the element corresponding to j and
the addition of the element corresponding to i. The partition U of V is the
collection of subsets U1, . . . , UK that corresponds to the subsets in T . Hence,
we have that a cyclic exchange in T corresponds to a subset disjoint cycle
in the improvement graph with respect to U . The cost associated to any
arc (i, j) is defined to be equal to the difference between the cost of the set
after the removal of the element corresponding to j and the addition of the
element corresponding to i, and the cost of the original set that contains the
element corresponding to j. Thompson and Orlin [106] showed that there is

110 I. Dumitrescu and T. Stützle

a one-to-one correspondence between the cyclic exchanges with respect to T
and the subset-disjoint cycles in the improvement graph (with respect to U)
and that both have the same cost.

The search for a best neighboring solution can then be modeled as a search
problem on the improvement graph. In fact, for determining an improving
cyclic exchange move, a subset disjoint negative cost cycle (SDNCC) needs to
be found in the improvement graph, i.e. a cycle that uses at most one node
from every subset of the partition of the set of nodes. Determining the best
among the improving neighbors corresponds to finding the most negative such
cylce (this problem is called the SDNCCP) and needs to be solved exactly.
Several exact methods for the SDNCCP are proposed by Dumitrescu [40].
She also proposes algorithms for the more general problem of determining a
subset disjoint minimum cost cycle (SDMCC), which includes the case when
such a minimum cost cycle need not be negative (i.e., it does not correspond
to an improvement). Such cases are important if, e.g. the VLSN technique is
embedded into a tabu search. The algorithms for determining the optimal so-
lutions to SDNCCP and SDMCCP can be seen as generalizations of dynamic
programming algorithms for shortest path problems. An acceleration method
that exploits symmetries for the SDMCCP is given, and an elegant theorem
of Lin and Kernighan [70] is exploited in the SDNCCP case. Although both
problems are NP-hard, the proposed algorithms have been shown to be very
efficient for the subproblems that arise in practical applications of VLSN
search methods. Dumitrescu also proposes heuristics that are obtained by
limiting or truncating the exact methods in some way.

An exact solution of SDNCCP was also presented by Ahuja et al. [7].
They integrated the exact solution of the SDNCCP into a VLSN local search
for the capacitated minimum spanning tree problem and obtained very good
results, improving the best known solutions for 36% of the tested bench-
mark instances. A more recent study of an exact evaluation of cyclic and
path exchange neighborhoods for graph coloring has been presented in [33].
Although the usage of these neighborhoods gave significant improvements
with respect to the solution quality reachable for iterative improvement algo-
rithms for graph coloring [33], once these neighborhoods have been integrated
into metaheuristic algorithms, the overhead in computation time made the
approach undesirable. Since this may happen also for other problems, it is
not surprising that the exact solution of the neighborhood search problem in
cyclic and path exchange neighborhoods is sometimes replaced by a heuris-
tic solution to the SDNCCP or SDMCCP, which are, however, often derived
from a possible exact solution of the neighborhood search problem.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 111

4.2.2 NSP Example: Dynasearch

Dynasearch is a local search technique that uses a dynamic programming
algorithm to search for the best possible combination of mutually indepen-
dent, simple search moves to be executed in one local search iteration. In the
context of dynasearch, the independence of the simple moves refers to the
requirements that they do not interfere with each other with respect to (i)
the evaluation function being used and (ii) the feasibility of a solution after
the execution of the moves. In particular, the independence of the moves
with respect to the evaluation function implies that the gain obtained by a
dynasearch move can be obtained as the sum of the gains of the simple moves.

So far, various applications of dynasearch to permutation problems have
been proposed. The independence between simple search moves is typically
related to the fact that the indices affected by the simple moves are not
overlapping. Let π = (π(1), . . . , π(n)) be the current permutation. Two moves
that involve elements from π(i) to π(j) and π(k) to π(l), with 1 ≤ i < j ≤ n
and 1 ≤ k < l ≤ n need to have that either j < k or l < i.

The best combination of independent moves can be obtained by a dynamic
programming algorithm, which gives the name of this technique. Let ∆(j) be
the maximum total cost reduction obtained from independent moves affecting
only positions 1 to j of the current permutation and let δ(i, j) be the cost
reduction by a move involving positions between i and j, including i and j.
The idea of the algorithm is to compute the maximum total cost reduction
obtained by either appending element π(j) to the partial permutation of the
elements π(1) to π(j−1) or by appending element π(j) and applying a move
involving element π(j) (and possibly elements from π(i) onwards).

The values of ∆(j), j = 0, . . . , 1 can be computed in a dynamic program-
ming fashion. Let π be the current solution and set ∆(0) = 0 and ∆(1) = 0.
Then, ∆(j), j = 1, . . . , n− 1 can be obtained in a forward evaluation by the
recursive formula

∆(j + 1) = max{max
1≤i≤j

{∆(i− 1) + δ(i, j + 1)},∆(j)}. (4.1)

∆(n) gives the largest reduction in solution cost. The compound move to
be executed can then be determined by tracing back the computation steps.

When applying the algorithm, the particularities of the problem and of
the moves may have to be taken into account to slightly adapt the dynamic
programming recursion given by Equation (4.1). (Note that the dynasearch
algorithm can be cast in terms of a search for a shortest path in an appro-
priately defined improvement graph [3].)

Current applications of dynasearch comprise the TSP [34], the single ma-
chine total weighted tardiness problem (SMTWTP) [34, 35, 55] and a time-
dependent variant of it [8], and the linear ordering problem (LOP) [34]. A
general observation is that dynasearch, on average, is faster than a standard
best-improvement descent algorithm and may return slightly better qual-

112 I. Dumitrescu and T. Stützle

i1

k+1

j1jk+1

i1

i i k+1

j 1j
k+1

(a) (b) (c)

i1

jk+1 j1

ik+1

Fig. 4.2 (a) A feasible tour can be seen as the union of H(i1, ik+1), H(ik+1, j1),

H(j1, jk+1), andH(jk+1, i1). (b) The hyperedgesH(i1, ik+1) andH(j1, jk+1) are removed.
(c) A new feasible tour is constructed.

ity solutions. Particularly good performance is reported when dynasearch is
used as a local search routine inside other metaheuristics such as iterated lo-
cal search [73]. Currently, iterated dynasearch is the state-of-the-art method
for SMTWTP [55], and very good results were obtained for the TSP and the
LOP [34].

4.2.3 PNSP Example: Hyperopt Neighborhoods

A relatively simple example of a PNSP approach is the hyperopt local search
approach applied to the TSP [27, 37, 28]. To keep the presentation as simple
as possible, we will only consider its application to the symmetric TSP.

The hyperopt neighborhood is based on the notion of hyperedges. Given
a tour of the TSP, a hyperedge is defined to be a subpath of the tour; in
other words, a sequence of successive edges of the tour [37]. If i is the start
node and j the end node of the hyperedge, we denote the hyperedge by
H(i, j). The length of a hyperedge is given by the number of edges in it.
Let t be a feasible tour of the TSP and H(i1, ik+1) and H(j1, jk+1) two
hyperedges of length k such that H(i1, ik+1) ∩ H(j1, jk+1) = ∅ with re-
spect to the nodes contained. We assume that the tour t can be written
as t = (i1, . . . , ik+1, . . . , j1, . . . , jk+1, . . . , i1). It is obvious that the tour t
can be described completely by four hyperedges: H(i1, ik+1), H(ik+1, j1),
H(j1, jk+1), and H(jk+1, i1), as shown in Figure 4.2(a). A k-hyperopt move is
defined as a composition of the two following steps: remove H(i1, ik+1) and
H(j1, jk+1) from the tour t, then add edges to H(ik+1, j1) and H(jk+1, i1)
such that a new feasible tour is constructed (see Figure 4.2 for an example).
The k-hyperopt neighborhood consists of all k-hyperopt moves.

The size of the k-hyperopt neighborhood increases exponentially with k.
The authors propose an “optimal” construction of a k-hyperopt move by

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 113

solving exactly a subproblem: the TSP defined on the graph G′ = (V ′, E′),
where V ′ is the set of nodes included in H(i1, ik+1) and H(j1, jk+1) and E′ is
the set of edges in the original TSP that have both ends in V ′. However, this
approach is bound to be efficient only when k is relatively small. Otherwise,
a large size TSP would have to be solved as a subproblem. To avoid this, the
authors propose to use a dynamic programming algorithm for the case k ≥ 3
[28, 37], but no details of the algorithm are given.

For a given hyperedge H(i1, ik+1) the k-hyperopt move to be performed is
determined in [28, 37] in a first descent form. Hence, a sequence of subprob-
lems is generated and solved, one subproblem for every hyperedge that does
not intersect with H(i1, ik+1). To speed up computations, usual TSP speed-
up techniques such as “don’t look bits” are used [19]. In addition, extensions
based on embeddings of the hyperopt local search into iterated local search
and variable neighborhood search algorithms are considered. However, the
currently available results suggest that the resulting hyperopt local search
for the ATSP is somewhat inferior to current state-of-the-art local search
techniques [64]. In spite of this, the k-hyperopt approach may have potential
if the size of the neighborhood is greatly enlarged and truly efficient algo-
rithms such as Concorde [10] are used to solve the resulting subproblems.

4.2.4 Other Approaches

The two NSP techniques for exploring a neighborhood that we have de-
scribed in this section have been applied to a variety of problems. For a
recent overview of VLSN search applications we refer to the book chapter
by Ahuja et al. [4]. Recently, the corridor method has been proposed by
Sniedovich and Voß [103]. The central idea put forward is to define constraints
on the problems, such that efficient exact methods can be designed to solve
the neighborhood search problem efficiently. Another example of an NSP
method is the constraint programming approach by Pesant and Gendreau
[89, 90], where the exploration of the neighborhood is modeled as a prob-
lem that is then solved with constraint programming techniques [78, 109].
Constraint programming is an especially promising approach, if the resulting
search problems are tightly constrained.

PNSP algorithms have been more widely applied. As mentioned before,
one of the first PNSP algorithms is the shuffle heuristic of Applegate and
Cook [12], which was applied to the job-shop scheduling problem. Briefly,
their approach consists of defining a partial solution by leaving the sequence
fixed for one or a few machines. The subproblem of completing the sched-
ule is then solved by branch-and-bound. Another example is the MIMAUSA
algorithm, introduced by Mautor and Michelon [79, 80, 81], applied to the
quadratic assignment problem. In MIMAUSA, at each step k variables are
“freed”. The subproblem of assigning values to the free variables, such that

114 I. Dumitrescu and T. Stützle

the rest of the solution is kept fixed, is solved to optimality. A similar ap-
proach has been applied by Büdenbender et al. [26] to the direct flight network
design problem. Hu et al. [62] search large neighborhoods for the generalized
minimum spanning tree problem. In particular, they implemented a vari-
able neighborhood descent algorithm, where in the largest neighborhood a
mixed-integer program (MIP) solver is used to determine optimal solutions
to the subproblems arising in the local search. Computational results show
that their approach obtained excellent performance. A similar approach of
searching large neighborhoods by a MIP solver is applied by Prandtstetter
and Raidl to a car sequencing problem [94]. PNSP methods have been suc-
cessfully applied in combination with constraint programming techniques.
Some noteworthy examples are the work of Caseau and Laburthe [31] for
the job-shop scheduling problem or that of Shaw [102] for the vehicle rout-
ing problem, where a branch-and-bound algorithm is integrated into tabu
search. An earlier overview of combinations of local search and constraint
programming is given in an article by Focacci et al. [47].

4.2.5 Discussion

In general, the use of exact algorithms for exploring large neighborhoods is
appealing. For some problems the resulting neighborhoods can be explored
fully by polynomial time algorithms, a noteworthy example being here the dy-
nasearch approach. If the large neighborhoods cannot be explored in provably
polynomial time, often the resulting neighborhood search problems, whether
corresponding to full or partial neighborhood, can be solved efficiently by
exact algorithms. This is mainly due to the exact algorithms being, in most
cases, rather quick if the problem size is not too large and to the fact that the
resulting subproblems often have a special structure that can be exploited
efficiently.

Despite the usefulness of exact algorithms in these methods, it is clear
that the resulting subproblems could be solved by approximate algorithms.
In fact, this is often done. A general framework for this idea of defining
subproblems and exploring them heuristically, POPMUSIC, was defined in a
paper of Taillard and Voß [104]. Similar ideas were put forward in variable
neighborhood decomposition search [58]. It would be interesting to study
more carefully the use of heuristics versus the use of exact algorithms for
exploring the large neighborhoods using sound experimental designs and try
to derive more general insights into when one is prefered of the other.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 115

4.3 Enhancing Metaheuristics

Occasionally, exact methods are employed to implement central sub-procedures
in a metaheuristic, typically with the goal of adding specific features of di-
versification or intensification of the search that are beyond the reach of local
search algorithms. One early example of such a combination is the usage of
exact algorithms as perturbation operators in iterated local search.

4.3.1 Example: Perturbation in Iterated Local Search

A successful approach to solving difficult COPs is iterated local search (ILS)
[73]. ILS consists of running a local search procedure, starting from solutions
obtained by perturbing available local optima. A simple form of an ILS is
given in Algorithm 4.3.1.

Algorithm 4.3.1 Iterated Local Search

Step 1: Let s be an initial solution.
Step 2: while stopping criterion is not met do
(i) Let s′ be the solution obtained from s after a perturbation.
(ii) Call local search(s′) to produce the solution s′′.
(iii) if s′′ is accepted as the new incumbent solution then s = s′′.

enddo
Step 3: Return s.

The main role of the perturbation in ILS is to introduce significant changes
in the current solution in order to allow the local search to explore different
local optima, while still conserving good characteristics of a current solution.
Simple ways of introducing such perturbations, like applying a random move
in a large neighborhood, are usually enough to obtain good performance.
However, state-of-the-art performance is often reached by more problem spe-
cific perturbations and when the perturbations introduce some structural
changes that cannot be reversed easily by a local search [73].

One possibility of combining exact algorithms with ILS is to let an exact
algorithm determine the perturbation. This may be very useful, since the
exact algorithm may introduce larger structural changes, which cannot be
easily undone by the local search. The implementation of this idea can be
done by first fixing some part of the solution and leaving the rest free. Next,
the free part is optimized, and the solution to the free part is reinserted into
the fixed part, possibly after restoring feasibility if this should be necessary.
In other words, at Step 2(i) of Algorithm 4.3.1 a subproblem is solved to
optimality. Formally, Step 2(i) is replaced by:

Algorithm 4.3.2 Solving a subproblem to determine the perturbation (new
Step 2(i) of ILS)

116 I. Dumitrescu and T. Stützle

begin
Let s′′ = s \ r, where r ⊂ s.
Define P(r), a subproblem that depends on r.
Let opt(P(r)) be the optimal solution of P(r).
Let s̄′ = s′′ ∪ opt(P(r)).
Modify s̄′ such that feasibility is restored.
Return s′, be the modified feasible solution.

end

An early example of how to determine a perturbation by solving a sub-
problem exactly is given by Lourenço [72]. In her paper, Lourenço conducts
an extensive computational study of ILS applied to the job-shop scheduling
problem (JSP). The JSP is defined for m machines and n jobs. Each job con-
sists of a sequence of operations that have to be performed in a given order.
Each operation has to be executed for a specified, uninterrupted time (i.e.
preemption is not allowed). In the JSP, precedence constraints induce a total
order on the operations of each job. Additional constraints require that each
machine handles at most one job at a time. A feasible schedule is a schedule
that satisfies all the precedence and capacity constraints. The JSP consists
in finding a feasible schedule that minimizes the overall job completion time.

The JSP can be modeled using the disjunctive graph G = (V,A,E) repre-
sentation, where V is the vertex set corresponding to the operations, A is the
arc set corresponding to the job precedence constraints, and E is the edge
set corresponding to the machine capacity constraints [101]. In this graph,
the scheduling decision corresponds to orienting each edge in E.

Lourenço experimentally tested several ways of defining the perturbation.
One perturbation procedure proposed by Lourenço is making use of Carlier’s
algorithm [30], which is a branch-and-bound method applied to a one-machine
scheduling problem. The particular problem solved here can be seen as a very
simple version of the JSP: a number of operations need to be scheduled on
one machine in the presence of temporal constraints. Lourenço’s idea is to
modify the directed graph corresponding to the current solution of the JSP by
removing all the directions given to the edges associated with two randomly
chosen machines. Then Carlier’s algorithm is applied to one of the machines.
The problem to solve is therefore a one-machine scheduling problem. Next,
the edges corresponding to that machine are oriented according to the opti-
mal solution obtained. Finally, the same treatment is applied to the second
machine. Lourenço mentions that this perturbation idea can create cycles in
the graph and suggests a way of obtaining a feasible schedule from the graph
with cycles (see [72] for details). In conclusion, at each iteration of the ILS,
two subproblems are solved in order to construct a new initial solution for
the local search procedure. Lourenço proposed similar perturbation schemes
for her ILS algorithm for the JSP; for details we refer to [71, 72].

Finally, it should be said that the computational results of Lourenço can-
not be considered state-of-the-art performance. The main reason probably is
that she used a rather weak local search algorithm when compared to the

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 117

effective tabu search algorithms proposed by Nowicki and Smutnicki [87] or
the local search procedure of Balas and Vazacopoulos [15]. However, it would
be interesting to see how the performance of these two algorithms would be
affected by the addition of the perturbation steps proposed by Lourenço.

4.3.2 Other Approaches

Exact algorithms can be used within particular metaheuristics for specific
operations that are to be done while searching for solutions. An example in a
somewhat similar spirit as the previously described one is followed in the re-
cent paper by Fernandes and Lourenço [43]. They introduce occasional large
perturbations into a tabu search algorithm, which consists in a partial de-
struction of a solution and a reconstruction of a new one. The reconstruction
is guided by using violated valid inequalities that enforce some specific order
among unscheduled operations. Apart from the perturbations in ILS, other
examples can be found in applications of genetic algorithms. Here, exact algo-
rithms are typically used in the recombination operation, in which two solu-
tions s and s′ are combined to form one or several new solutions (also called
offspring). The main idea is to define a subproblem Recombination(s, s′)
that comprises all the solutions that can result following a particular way of
combining s and s′, and then to search for the best solution of the resulting
subproblem.

The subproblem can be obtained by keeping common solution features of
the two “parent” solutions fixed and to try to find the best solution for the free
parts. A second possibility is to define a subproblem consisting of the union
of the solution components contained in the two parent solutions s and s′.
An example for the first approach is presented by Yagiura and Ibaraki [114].
They apply this idea to permutation problems using a dynamic programming
algorithm for finding an optimal permutation subject to the constraint that
a partial order common to the two parent solutions s and s′ is maintained by
the new solution. Other examples include the MIP-recombination operator
for a specific supply management problem [24] and for the balancing transfer
lines problem described in Chapter 7. There, many of the variables that
have the same value in the parents are fixed and the resulting subproblem
is solved by a mixed-integer programming solver. The complexity of optimal
recombination when solutions are represented as bitstrings is studied in [42].
Examples of the second idea are the papers of Balas and Niehaus [14] on the
maximum clique problem (MCP), and of Aggarwal et al. [2] on the maximum
independent set problem (MISP). The MCP and MISP are subset problems
in graphs, where a subset of the vertices needs to be chosen. Hence, in both
cases, a solution corresponds to a subset of the vertices of the original graph
G = (V,A), i.e. we have s, s′ ⊂ V . In both cases, the subproblem consists
of a subgraph comprising all the vertices in s ∪ s′ and all edges that connect

118 I. Dumitrescu and T. Stützle

them. It can be shown that the resulting subproblem is a matching problem
in a bipartite graph. Hence, it can be solved in polynomial time [2, 13].
Another paper following these lines is that of Lourenço et al. [74] on a multi-
objective bus driver scheduling problem, where analogous ideas are applied
to the offspring determination of a genetic algorithm applied to a set covering
problem.

4.3.3 Discussion

Clearly, the techniques discussed here are specific to particular metaheuris-
tics. However, these examples indicate possible areas of interest, where such
combinations can be useful. In general, mainly hybrid metaheuristics will be
candidates for possible combinations. We call hybrid metaheuristics those
metaheuristics that consist of the combination of several clearly distinct pro-
cedures like perturbation and local search in the ILS case or recombination,
mutation, and (possibly) local search in the genetic algorithm case. In fact,
the examples outlined above illustrate well the potential of such combina-
tions. Other metaheuristics that could profit from such combinations are ant
colony optimization [38], e.g. by optimizing partial solutions or extending
partial solutions in an optimal way, or scatter search [53], in a way analogous
to what is described for the genetic algorithms.

4.4 Using Branch-and-Bound Techniques in
Constructive Search Heuristics

Construction heuristics build solutions starting from an empty partial solu-
tion. They iteratively add solution components until a complete solution is
obtained. Construction heuristics typically rate the desirability of adding a
solution component based on a heuristic measure of its objective function
contribution. Then, they either add a solution component greedily, i.e. by
choosing the best rated component, or probabilistically, biased by the heuris-
tic information.

In construction heuristics partial solutions are typically only extended and
never reduced. However, construction heuristics can easily by transformed
into tree search algorithms, e.g. by adding a backtracking-type mechanism
and usages of lower and upper bounds. This finally leads to branch-and-bound
algorithms [61].Hence, a somewhat natural hybrid is to extend construction
heuristics or metaheuristics that are based on the repeated construction of
solutions such as ant colony optimization [39] by tree search techniques.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 119

4.4.1 Example: Approximate Nondeterministic Tree
Search (ANTS)

Ant Colony Optimization (ACO) [39] is a recent metaheuristic approach for
solving hard COPs. In ACO, (artificial) ants are stochastic solution construc-
tion procedures that probabilistically build a solution by iteratively adding
solution components to partial solutions while taking into account (i) heuris-
tic information on the problem instance being solved, if available, and (ii)
(artificial) pheromone trails. Pheromone trails in ACO serve as distributed,
numerical information which is adapted during the execution of the algo-
rithm to reflect the search experience. Of the available ACO algorithms, the
approximate nondeterministic tree search (ANTS) algorithm [75] was the first
to integrate branch-and-bound techniques into ACO.

ANTS was first applied to the quadratic assignment problem (QAP). In
the QAP, a set of objects has to be assigned to a set of locations with given
distances between the locations and given flows between the objects. The
goal in the QAP is to place the objects on locations in such a way that the
sum of the product between flows and distances is minimal. More formally,
in the QAP one is given n objects and n locations, values aij representing
the distance between locations i and j, and brs representing the flow between
objects r and s. Let xij be a binary variable which takes value 1 if object i
is assigned to location j, and 0 otherwise. The problem can be formulated as
follows:

min
n∑

i=1

n∑
j=1

n∑
l=1

n∑
k=1

aijbklxikxjl (4.2)

subject to the constraints

n∑
i=1

xij = 1 j = 1, . . . , n (4.3)

n∑
j=1

xij = 1 i = 1, . . . , n (4.4)

xij ∈ {0, 1} i, j = 1, . . . , n (4.5)

In ANTS, each ant constructs a solution by iteratively assigning objects
to a free location. Hence, the solution components to be considered are pair-
ings between objects and locations (there are n2 such solution components).
Given a location j, an ant decides to assign object i to this location with a
probability given by

pk
ij(t) =

α · τij(t) + (1− α) · ηij∑
l∈Nk

j
α · τlj(t) + (1− α) · ηlj

if i ∈ Nj . (4.6)

120 I. Dumitrescu and T. Stützle

Here, τij(t) is the pheromone trail associated to the assignment of object i
to a location j, which gives the “learned” desirability of choosing this assign-
ment (pheromones vary at run-time), ηij is the heuristic desirability of this
assignment, α is a weighting factor between pheromone and heuristic, and Nj

is the feasible neighborhood, i.e. the set of objects that are not yet assigned
to a location.

Lower bound computations are exploited at various places in ANTS. Be-
fore starting the solution process, ANTS first computes the Gilmore-Lawler
lower bound (GLB) [49, 68]. The GLB is defined to be the solution to the as-
signment problem min

∑n
i=1

∑
j=1 cijxij subject to constraints (4.3) to (4.5).

The coefficients cij are defined as a function of distances and flows and the
variables xij are binary. It is known that the assignment problem has the inte-
grality property. Therefore a solution of it can be obtained by simply solving
its linear programming relaxation. Along with the lower bound computation
one gets the values of the dual variables ui and vi, i = 1, . . . , n, corresponding
to the constraints (4.3) and (4.4), respectively. The dual variables vi are used
to define a pre-ordering on the locations: the higher the value of the dual
variable associated to a location, the higher the impact of the location on the
QAP solution cost is assumed to be. Hence, the assignment of an object to
that location is tried earlier.

The essential idea of ANTS is to use computations on the lower bounds
on the completion cost of a partial solution in order to define the heuristic
information about the attractiveness of adding a specific solution component
(i, j) in (4.6). This is achieved by tentatively adding the solution component
to the current partial solution and by estimating the cost of a complete
solution, (containing that solution component), by means of a lower bound.
This estimate is then used to influence the probabilistic decisions taken by
the ant during the solution construction: the lower the estimate, the more
attractive the addition of a specific pair. A further advantage of the usage of
a lower bound is that an extension of a partial solution, for which the lower
bound estimate is higher than the cost of the best solution found so far, can
be discarded.

A disadvantage of the GLB, which is computed in an initialization phase of
the algorithm, is that its computation isO(n3). This is clearly expensive, since
a lower bound has to be computed at each step during a solution construction
of an ant. Therefore, Maniezzo proposes a lower bound weaker than GLB,
the so-called LBD bound, which exploits the values of the dual variables to
estimate the completion cost of a partial solution. Although LBD can be
shown to be weaker than GLB, the main advantage of using LBD is its low
computational complexity, which is O(n). For details on the lower bound
computation we refer to [75]. Experimental results have shown that ANTS
was at the time it was proposed one of the best available algorithms for the
QAP. The good performance of the ANTS algorithm has been confirmed in
a variety of further applications [77, 76].

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 121

4.4.2 Other Approaches

The integration of tree search techniques into constructive algorithms is
an appealing possibility of hybridization. Given that ACO is, apart from
GRASP, probably the most widespread used constructive metaheuristic, it
is not astonishing that a number of other hybrids between ACO and tree
search algorithms have been proposed. Probably the most noteworthy is the
beam-ACO algorithm, which combines ACO with beam search, a derivative
of branch-and-bound algorithms. beam search is a tree search algorithm that
keeps at each iteration a set of nodes of a search tree and expands each of
them in several directions according to a selection based on lower bounds [88].
beam-ACO takes from ACO the probabilistic extension of partial solutions
and uses a beam search type of management of partial solutions. It has shown
very high performance for problems such as open shop scheduling [20] and
assembly line balancing [21]. More details on beam-ACO and similar hybrid
algorithms can be found in [22]. A combination of a GRASP algorithm with
a branch-and-bound algorithm is described in [44] for an application to the
JSP.

Another active area of hybridization is the integration of constraint pro-
gramming techniques into constructive algorithms and, again, in particular
into ACO. Such approaches have been described first by Meyer and Ernst [84]
and in some more detail in a book chapter [83]. More recently, the integration
of ACO into constraint programming languages has been considered [66].

4.5 Exploiting the Structure of Good Solutions

Many optimization problems show some type of structure in the sense that
high quality solutions have a large number of solution components in com-
mon with optimal solutions. This observation is exploited by some hybrid
methods. These define appropriate subproblems of the original problem by
using the information obtained from high quality solutions. Often the result-
ing subproblems are small enough to be solved rather efficiently by exact
algorithms.

This approach consists of two phases, which are executed in sequence. In
the first phase, an approximate algorithm is used repeatedly to collect a num-
ber of high-quality solutions of the problem under consideration. Based on
the solution components that are included in the set of solutions, a subprob-
lem of the original problem is defined. It is expected that the subproblem
still contains all or, if not all, most of the “important” decision variables and
that the subproblem can be solved relatively easily by an exact algorithm.
The optimal solution for the subproblem provides an upper bound for the
optimal solution of the original problem.

122 I. Dumitrescu and T. Stützle

An algorithmic outline of the type of methods falling into this framework
is given next.

Algorithm 4.5.1 Exploiting structure by collecting information

Step 1: Initialization
Let I = ∅, where I is the set of collected solutions.

Step 2: Approximate algorithm
while stopping criterion is not met do

Let s be the solution returned after running an approximate
algorithm.
Add s to I.

enddo
Reduce I according to some criteria (optional).

Step 3: Optimization
Define a subproblem P(I) that depends on I.
Find opt(P(I)), the optimal solution of P(I).

Step 4: Return opt(P(I)).

Here we discuss two well known examples where this idea was successfully
applied to the p-median problem and the TSP.

4.5.1 Example: Heuristic Concentration

Rosing and ReVelle designed the heuristic concentration algorithm for the
solution of the p-median problem [99]. Given a graph G = (V,A), where
V = {1, . . . , n}, a weight associated with each node, and a distance associated
with each arc, and given a positive integer p, the p-median problem consists
of finding p nodes in the graph, called facilities, such that the sum of the
weighted distances between every node and its closest facility is minimized.
The nodes that are not facilities are called demand nodes.

The technique developed by Rosing and ReVelle is called heuristic concen-
tration. In the first phase, a local search procedure, in this case the Teitz and
Bart heuristic [105], is run repeatedly with different random starts. Every
solution obtained in this process is recorded in a set I. The number of times
the heuristic is run is determined after conducting numerical experiments.

The second phase starts with the selection of a subset I ′ of the solutions
in I. I ′ contains only the best solutions of I with respect to the objective
function. The number of solutions in I ′ is again determined by numerical
experiments. The facility locations used in these “best” solutions form a
subset of the set of all nodes. They will be collected in what the authors
call the concentration set (CS). Finally, a restricted p-median problem, with
the facility locations restricted to those contained in the concentration set, is
solved.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 123

Clearly, this method is built on the assumption that a near-optimal or
optimal solution must have the facilities located at sites from CS. However,
this is only an assumption based on experimental results. An even stronger
assumption is made by the authors in order to further reduce the dimension
of the subproblem being solved. This is the claim that the nodes that are
facilities in all solutions considered must be facilities. The rest of the CS
contains possible locations. Therefore, they split CS into two subsets: one
contains the locations where there are facilities in all solutions, called CS
open (CS0), and the other one contains the nodes where there is a facility in
at least one but not all solutions. The latter subset of CS is called CS free
(CSf). The authors exploit the fact that each demand node not in CS must
be assigned to the closest facility. For every node, variables are needed only
for that node in CS0 that is closest to the demand node, and only for those
nodes in CSf that are even closer than that member of the CS0.

It is clear that when CS can be split, the size of the second subproblem
is smaller than the size of the first one. However, there is no guarantee that
such a partition of CS exists. When CS0 = ∅, the only possibility is to use
the first subproblem. Since in most cases the solution of the LP relaxation
of the binary integer model of a p-median problem is integer, Rosing and
ReVelle solve the LP relaxation of the restricted problem using an LP solver
(in this case CPLEX). Even when the solution is fractional, an integer so-
lution is found very easily. Numerical results are provided in both [99] and
subsequent papers [98, 100]. They prove that the heuristic concentration is a
viable technique that obtains very good results in practice.

4.5.2 Example: Tour Merging

Applegate et al. [9] proposed the tour merging approach, which was further
refined by Cook and Seymour [36]. Tour merging is a two phase procedure
following the steps outlined above.

The first phase consists of generating a number of high quality tours for
the TSP instance that needs to be solved. While Applegate et al. [9] used
their chained Lin-Kernighan (LK) algorithm, in the later study in [36] the
iterated version of Helsgaun’s LK implementation [60] is used. This heuristic
reaches significantly better quality solutions and using it to define the set
of tours I in the first stage was found to result in better quality tours in
the second stage. Additionally, given that for the same number of tours the
number of decision variables is smaller, larger instances can be tackled in this
way.

The second phase consists of solving the TSP on the graph induced by the
set of tours I on the original graph. In other words, a TSP is solved on a
restricted graph that has the same set of nodes as the original graph, but its
set of edges consists of the edges that appear at least once in any of the tours

124 I. Dumitrescu and T. Stützle

in I. Formally, if the original graph is G = (V,A), where V is the set of nodes
and A the set of arcs, the reduced graph can be described as G′ = (V,A′),
where A′ = {a ∈ A : ∃t ∈ I, a ∈ t}.

Several possibilities of solving the TSP on the reduced graph G′ can be
considered. In [9], an exact solver part of the Concorde package, was used.
When Concorde was applied to medium sized instances (with up to 5000
cities), the tour merging method could identify optimal solutions for all in-
stances at least twice out of ten independent trials. However, on few instances
the computation time was large, with most of it being taken by the optimiza-
tion code applied in the second stage. Another possibility of solving the TSP
on G′ is to use special purpose algorithms that exploit the structure of the
graph G′. In particular, G′ is a very sparse graph and it is likely to have a
low branch-width [97]. In [36], a dynamic programming algorithm that ex-
ploits this property is presented and computational results on a wide range
of large TSP instances (2,000 up to about 20,000 cities) show excellent per-
formance, resulting in computation times for the second stage that are much
shorter than the times required by a general purpose TSP solver. In fact, the
tour merging approach is currently one of the best performing approximate
algorithms for medium to large TSP instances.

4.5.3 Discussion

The two examples show that approaches based on collected information can
result in highly efficient hybrid algorithms in practice. For the approach to
work on specific problems, high-quality solutions need to have specific char-
acteristics. Firstly, it is important that these solutions have many compo-
nents in common. Then the resulting subproblem will have a small number
of decision variables and will be amenable to solving with exact algorithms.
Secondly, the resulting subproblem is required to contain most of (ideally, all)
the important decision variables to ensure that the second stage can return
a very high quality solution. Such properties appear to hold in the TSP case:
it is a well known property that local minima cluster in a small region of the
search space and that the better their quality, the more edges they have in
common with an optimal solution [23, 67, 82]. Some evidence exists that sim-
ilar conclusions hold for the p-median problem [57]. Notions of search space
analysis are important in this context. Intuitively, problems with a high fit-
ness distance correlation are more likely to be amenable for such algorithmic
approaches. Roughly speaking, a high fitness distance correlation indicates
that the better the solutions the closer they are to an optimal solution in
terms of an appropriate distance definition.

Clearly, the ideas outlined in this section are not necessarily restricted
to using an exact algorithm in the second stage. For example, in the case
of the set covering problem (SCP), Finger et al. [45] first provide a fitness

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 125

distance correlation analysis of the SCP search space. Based on the result
that for some classes of SCP instances the characteristics mentioned above
were satisfied, a subproblem is defined by the solutions returned by several
local searches and then solved by simulated annealing [25]. Puchinger et al.
[95] study the “core” concept [16, 92] for the multidimensional knapsack
problem and apply SLS algorithms (a memetic algorithm and a relaxation
guided variable neighborhood search) and exact algorithms to the resulting
reduced instances. They obtain very high quality solutions and show that the
SLS algorithms reach better quality solutions on the “core” instances than
when applying them directly to the original instances. (Note that the concept
of “cores” is often defined through linear relaxations, e.g. by fixing variables
that are integer in the relaxation; these approaches are related to those that
are discussed in Section 4.6.)

Finally, it should be mentioned that the approaches described in this sec-
tion are related to some already discussed in Section 4.3. The “optimized
crossover” algorithms described there define a new problem similar to the
union of solution components in tour merging or heuristic concentration.
In fact, the latter two could be seen as an “optimized multi-parent recom-
bination” operator. A difference is that the approaches presented here were
originally conceived as consisting of two stages that are executed in sequence.
However, alternative and intermediate approaches can easily be conceived.

4.6 Exploiting Information from Relaxations in
Metaheuristics

A more frequent way of combining elements from exact algorithms and meta-
heuristics is the exploitation of some type of information obtained from a
relaxation of the original problem to bias in some way the SLS algorithm.
Various possibilities have been explored from rather straightforward uses to
more complex ones. From the latter ones we present an example given by
Vasquez and Hao [111] for the multidimensional knapsack problem. We then
give some pointers to more literature on the exploitation of relaxations.

4.6.1 Example: Simplex and Tabu Search Hybrid

Vasquez and Hao [111] combine a tabu search with an exact method, in this
case a simplex algorithm that solves some linear programming subproblems.
Given m resources, each having a corresponding resource limit, n objects,
each with an associated profit, and an associated vector of resource con-
sumption, the 0-1 multidimensional knapsack problem seeks to maximize the
total profit made by using the objects such that the amount of resources con-

126 I. Dumitrescu and T. Stützle

sumed is within the resource limits. In what follows we will denote the profit
associated with object i by pi, the amount of resource j consumed by select-
ing object i by rji, and the limit of resource j by Rj . The standard integer
programming formulation of the 0-1 multidimensional knapsack problem can
be written as:

max
n∑

i=1

pixi

s.t.
n∑

i=1

rjixi ≤ Rj , ∀j = 1, . . . ,m (4.7)

xi ∈ {0, 1}, ∀i = 1, . . . , n, (4.8)

where xi = 1 if object i is used and xi = 0 otherwise.
The method starts by relaxing the integrality constraint. Since the solution

of the linear programming relaxation of an integer programming problem can
be far away from the integer optimal solution, the linear programming relax-
ation is then “strengthened” by the addition of an extra constraint. It is clear
that the integer optimal solution of the 0-1 multidimensional knapsack prob-
lem can have only a certain number of components that are not zero. Based
on this observation, the constraint added to the linear programming relax-
ation enforces the number of non-zero components to be equal to k, where
0 ≤ k ≤ n (see constraint (4.9) below). Therefore n+ 1 linear programming
problems are obtained (one for each value of k):

max
n∑

i=1

pixi

s.t.
n∑

i=1

rjixi ≤ Rj , ∀j = 1, . . . ,m

n∑
i=1

xi = k (4.9)

xi ∈ [0, 1], ∀i = 1, . . . , n (4.10)

We denote such a subproblem by P(k). Clearly, the solutions of these prob-
lems can be fractional. However, it is hoped that the optimal solution of the
original problem is close to one of the optimal solutions obtained after solving
the relaxed problems. (To reduce the number of subproblems that need to be
solved, Vasquez and Hao compute bounds on k; for details see [111].)

After the reduction, each linear program is solved by the simplex algo-
rithm. The solutions returned are then used to generate starting solutions to
a following tabu search phase. More precisely, an initial solution is obtained
from a possibly fractional solution x[k] to P(k) by fixing its largest k elements
to one and the rest to zero. The solution x[k] of P(k) has the additional use

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 127

to restrict the search space explored by a tabu search procedure. In fact,
the subsequently run tabu search algorithm, which is based on the reverse
elimination method [50], is restricted to explore only solutions x for which
it holds that

∑n
i=1 |xi − x[k]

i | ≤ δmax, i.e. the solutions explored by the tabu
search are limited to a ball of radius δmax around x[k]. The radius δmax is
computed heuristically as follows. Let no int denote the number of integer
components of x[k] and no frac the number of fractional components; then,
the radius is set to a value of δmax ≈ 2× (no int+ no frac− k). Note that
δmax = 0 corresponds to the case when an integer solution is returned by sim-
plex. The search space is further reduced by limiting the number of objects
taken into configurations. For each k, the number of non-zero components of
a candidate solution is considered to be exactly k and only the integer candi-
date solutions are considered. This actually corresponds to a partitioning of
the search space. The neighborhoods are defined as add/drop neighborhoods.
The neighborhood of a given configuration is the set of configurations that
differ by exactly two elements from the initial configuration, while keeping
the number of non-zero elements constant.

An extensive computational study of the final algorithm is provided. The
authors report many improved results compared to the best known results
at the time of publication; however, they acknowledge large computational
time of about three days on a set of computers with Pentium 300MHz or 500
MHz computers for very large instances with as many as 2,500 items and 100
constraints. Further improvements on this approach are described in [112].

4.6.2 Discussion

The paper of Hao and Vasquez is an example of how information of solutions
of relaxations of IP formulations can be used to restrict the area of the search
space examined by local search and to provide good initial solutions for the
local search. As said before, there are a number of other approaches that
in some form make use of relaxations and information derived from them.
How relaxations and problem decompositions can be used to define heuristic
methods and metaheuristics is shown in Chapter 5 of this book.

A particularly active area appears to be the exploitation of lower bound
computations through Lagrangean relaxation (LR). (For an introduction to
Lagrangean relaxation and its use in combinatorial optimization we refer to
[18].) Such approaches have been proposed for a variety of problems and for
several they result in state-of-the-art algorithms. The central idea in these
approaches is to use Lagrangean multipliers and costs to guide construction
or local search type heuristics. Among the first approaches that use LR is
the heuristic of Beasley [17]. Currently, state-of-the-art algorithms for the
set covering problem are, at least in part, based on exploiting information
from LR [29, 32]. Ways of integrating information gained in LR into a tabu

128 I. Dumitrescu and T. Stützle

search algorithm is given in [56] and computational results are presented
for an example application to the capacitated warehouse location problem.
Other, recent examples of using LR to direct SLS algorithms include a ge-
netic algorithm for the prize collecting Steiner tree problem [59], exploiting
Lagrangean decomposition for an evolutionary algorithm for the knapsack
constrained maximum spanning tree problem [91], or hybrid approaches to
the design of the last mile in fiber optic networks [69].

4.7 Conclusions

In this chapter we reviewed existing approaches that combine stochastic local
search and methods from the area of integer programming for the solution of
NP-hard combinatorial optimization problems, extending significantly over
our earlier review [41]. We focused on techniques where the “master” routine
is based on some stochastic local search method and strengthened by the use
of exact algorithms; see Chapter 3 for the case where the IP method is the
master. In the terms used in [96], the discussed approaches can be classified
as integrative or as collaborative, sequential approaches. In the former class
(covered here in Sections 4.2 – 4.4), the exact algorithms are used to repeat-
edly solve subproblems that arise in the SLS algorithm. In the latter type of
approaches (discussed in Sections 4.5 and 4.6), an exact methods is executed
either before the start of the SLS part, typically, to produce information that
is later used to bias the local search, or used as a post-processing facility to
improve solutions generated by typically several local search processes.

The main conclusion we can make here is that there are many research
opportunities to develop algorithms that integrate local search and exact
techniques. Despite the fact that local search and exact algorithms have some-
what complementary advantages and disadvantages, relatively few researches
present algorithms that try to combine the two areas. One reason for this may
be that such combined methods are often rather complex and hence they may
involve significantly long development times. A possibly more important ob-
stacle is that they require strong knowledge about the techniques available in
two rather different techniques, which are often treated in different research
streams. Fortunately, this situation appears to be improving, as exemplified
by the contributions in this book. In general, we strongly believe that com-
binations of exact methods and stochastic local search methods are a very
promising direction for future research in combinatorial optimization.

Acknowledgements This work has been supported by META-X, an ARC project funded
by the French Community of Belgium. TS acknowledges support from the fund for scientific
research F.R.S.-FNRS of the French Community of Belgium, of which he is a research

associate.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 129

References

1. E.H.L. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.

John Wiley & Sons, Chichester, 1997.
2. C.C. Aggarwal, J.B. Orlin, and R.P. Tai. An optimized crossover for the maximum

independent set. Operations Research, 45:226–234, 1997.

3. R.K. Ahuja, Ö.Ergun, J.B. Orlin, and A.P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1–3):75–102,

2002.
4. R.K. Ahuja, Ö. Ergun, J.B. Orlin, and A.P. Punnen. Very large-scale neighborhood

search: Theory, algorithms, and applications. In T.F. Gonzalez, editor, Handbook
of Approximation Algorithms and Metaheuristics, pages 20–1—20–15. Chapman &
Hall/CRC, Boca Raton, FL, 2007.

5. R.K. Ahuja, J.B. Orlin, and D. Sharma. Multi-exchange neighbourhood structures
for the capacitated minimum spaning tree problem. Working Paper, 2000.

6. R.K. Ahuja, J.B. Orlin, and D. Sharma. Very large-scale neighbourhood search.

International Transactions in Operational Research, 7(4–5):301–317, 2000.
7. R.K. Ahuja, J.B. Orlin, and D. Sharma. A composite very large-scale neighborhood

structure for the capacitated minimum spanning tree problem. Operations Research

Letters, 31(3):185–194, 2003.
8. E. Angel and E. Bampis. A multi-start dynasearch algorithm for the time dependent

single-machine total weighted tardiness scheduling problem. European Journal of

Operational Research, 162(1):281–289, 2005.
9. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding Tours in the TSP.

Technical Report 99885, Forschungsinstitut für Diskrete Mathematik, University of

Bonn, Germany, 1999.
10. D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Concorde TSP solver. http:

//www.tsp.gatech.edu//concorde, last visited December 2008.

11. D. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton, NJ, 2006.

12. D. Applegate and W. Cook. A computational study of the job-shop scheduling prob-

lem. ORSA Journal on Computing, 3:149–156, 1991.
13. E. Balas and W. Niehaus. Finding large cliques in arbitrary graphs by bipartite

matching. In D. S. Johnson and M. A. Trick, editors, Cliques, Coloring, and Satisfi-

ability: Second DIMACS Implementation Challenge, 1993, volume 26, pages 29–53.
American Mathematical Society, 1996.

14. E. Balas and W. Niehaus. Optimized crossover-based genetic algorithms for the
maximum cardinality and maximum weight clique problems. Journal of Heuristics,
4(2):107–122, 1998.

15. E. Balas and A. Vazacopoulos. Guided local search with shifting bottleneck for job
shop scheduling. Management Science, 44(2):262–275, 1998.

16. E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Opera-

tions Research, 28(5):1130–1154, 1980.
17. J.E. Beasley. A Lagrangian heuristic for set covering problems. Naval Research

Logistics, 37:151–164, 1990.

18. J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern heuristic tech-
niques for combinatorial problems, pages 243–303. Blackwell Scientific Publications,
1993.

19. J.L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing, 4(4):387–411, 1992.

20. C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search: An
application to open shop scheduling. Computers & Operations Research, 32(6):1565–
1591, 2005.

http://www.tsp.gatech.edu//concorde
http://www.tsp.gatech.edu//concorde

130 I. Dumitrescu and T. Stützle

21. C. Blum. Beam-ACO for simple assembly line balancing. INFORMS Journal on

Computing, 20(4):618–627, 2008.
22. C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, and M. Mastrolilli. Hybridiza-

tions of metaheuristics with branch & bound derivatives. In C. Blum, M.J. Blesa,
A. Roli, and M. Sampels, editors, Hybrid Metaheuristics—An Emergent Approach
to Optimization, volume 117 of Studies in Computational Intelligence, pages 85–116.
Springer Verlag, Berlin, 2008.

23. K.D. Boese, A.B. Kahng, and S. Muddu. A new adaptive multi-start technique for
combinatorial global optimization. Operations Research Letters, 16:101–113, 1994.

24. P. Borisovsky, A. Dolgui, and A. Eremeev. Genetic algorithms for a supply manage-

ment problem: MIP-recombination vs. greedy decoder. European Journal of Opera-
tional Research, 195(3):770–779, 2009.

25. M.J. Brusco, L.W. Jacobs, and G.M. Thompson. A morphing procedure to supple-
ment a simulated annealing heuristic for cost- and coverage-correlated set covering
problems. Annals of Operations Research, 86:611–627, 1999.

26. K. Büdenbender, T. Grünert, and H.-J. Sebastian. A hybrid tabu search/branch-

and-bound algorithm for the direct flight network design problem. Transportation
Science, 34(4):364–380, 2000.

27. E.K. Burke, P. Cowling, and R. Keuthen. Embedded local search and variable neigh-

bourhood search heuristics applied to the travelling salesman problem. Technical
report, University of Nottingham, 2000.

28. E.K. Burke, P.I. Cowling, and R. Keuthen. Effective local and guided variable neigh-
bourhood search methods for the asymmetric travelling salesman problem. In E.J.W.
Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R. Raidl, and

H. Tijink, editors, Applications of Evolutionary Computing, volume 2037 of Lecture
Notes in Computer Science, pages 203–212. Springer Verlag, Berlin, 2001.

29. A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering

problem. Operations Research, 47:730–743, 1999.
30. J. Carlier. The one-machine sequencing problem. European Journal of Operational

Research, 11:42–47, 1982.
31. Y. Caseau and F. Laburthe. Disjunctive scheduling with task intervals. Technical

Report LIENS 95-25, Ecole Normale Superieure Paris, France, July 1995.
32. S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale set

covering problems. Mathematical Programming, 81(2):215–228, 1995.
33. M. Chiarandini, I. Dumitrescu, and T. Stützle. Very large-scale neighborhood search:

Overview and case studies on coloring problems. In C. Blum, M.J. Blesa, A. Roli, and
M. Sampels, editors, Hybrid Metaheuristics—An Emergent Approach to Optimiza-

tion, volume 117 of Studies in Computational Intelligence, pages 117–150. Springer

Verlag, Berlin, 2008.
34. R.K. Congram. Polynomially Searchable Exponential Neighbourhoods for Sequenc-

ing Problems in Combinatorial Optimization. PhD thesis, Southampton University,

Faculty of Mathematical Studies, Southampton, UK, 2000.
35. R.K. Congram, C.N. Potts, and S.L. Van de Velde. An iterated dynasearch algorithm

for the single–machine total weighted tardiness scheduling problem. INFORMS Jour-
nal on Computing, 14(1):52–67, 2002.

36. W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS

Journal on Computing, 15(3):233–248, 2003.
37. P.I. Cowling and R. Keuthen. Embedded local search approaches for routing opti-

mization. Computers & Operations Research, 32(3):465–490, 2005.
38. M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Algorithms,

applications and advances. In Glover and Kochenberger [52], pages 251–285.
39. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,

2004.
40. I. Dumitrescu. Constrained Shortest Path and Cycle Problems. PhD thesis, The

University of Melbourne, 2002.

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 131

41. I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms. In

G.R. Raidl, J.A. Meyer, M. Middendorf, S. Cagnoni, J.J.R. Cardalda, D.W. Corne,
J. Gottlieb, A. Guillot, E. Hart, C.G. Johnson, and E. Marchiori, editors, Applications

of Evolutionary Computing, volume 2611 of Lecture Notes in Computer Science,

pages 211–223. Springer Verlag, Berlin, 2003.
42. A.V. Eremeev. On complexity of optimal recombination for binary representations

of solutions. Evolutionary Computation, 16(1):127–147, 2008.

43. S. Fernandes and H.R. Lourenço. Optimised search heuristic combining valid in-
equalities and tabu search. In M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández, J.E.

Gallardo, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, 5th International

Workshop, HM 2008, volume 5296 of Lecture Notes in Computer Science, pages
87–101. Springer Verlag, Berlin, 2008.

44. S. Fernandes and H.R. Lourençou. A simple optimised search heuristic for the job
shop scheduling problem. In C. Cotta and J.I. van Hemert, editors, Recent Advances
in Evolutionary Computation for Combinatorial Optimization, volume 153 of Studies

in Computational Intelligence, pages 203–218. Springer Verlag, Berlin, 2008.
45. M. Finger, T. Stützle, and H.R. Lourençou. Exploiting fitness distance correlation

of set covering problems. In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and

G.R. Raidl, editors, Applications of Evolutionary Computing, volume 2279 of Lecture
Notes in Computer Science, pages 61–71. Springer Verlag, Berlin, 2002.

46. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, Series B,

98:23–47, 2003.
47. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming. In

Glover and Kochenberger [52], pages 369–403.

48. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, 1979.

49. P.C. Gilmore. Optimal and suboptimal algorithms for the quadratic assignment
problem. Journal of the SIAM, 10:305–313, 1962.

50. F. Glover. Tabu search. ORSA Journal on Computing, 2:4–32, 1990.
51. F. Glover. Ejection chains, reference structures and alternating path methods for

traveling salesman problems. Discrete Applied Mathematics, 65:223–253, 1996.

52. F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics. Kluwer Aca-
demic Publishers, Norwell, MA, 2002.

53. F. Glover, M. Laguna, and R. Mart́ı. Scatter search and path relinking: Advances

and applications. In Glover and Kochenberger [52], pages 1–35.
54. GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/glpk.

html, last visited December 2008.
55. A. Grosso, F. Della Croce, and R. Tadei. An enhanced dynasearch neighborhood for

the single-machine total weighted tardiness scheduling problem. Operations Research
Letters, 32(1):68–72, 2004.

56. T. Grünert. Lagrangean tabu search. In P. Hansen and C.C. Ribeiro, editors, Essays
and Surveys on Metaheuristics, pages 379–397. Kluwer Academic Publishers, Boston,
MA, 2002.

57. P. Hansen and N. Mladenoviç. Variable neighbourhood search for the p-median.
Location Science, 5(4):207–226, 1998.

58. P. Hansen, N. Mladenovic, and D. Perez-Britos. Variable neighborhood decomposition

search. Journal of Heuristics, 7(4):335–350, 2001.
59. M. Haouari and J.C. Siala. A hybrid Lagrangian genetic algorithm for the prize

collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–1288,
2006.

60. K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

61. H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.

Morgan Kaufmann Publishers, San Francisco, CA, 2005.

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

132 I. Dumitrescu and T. Stützle

62. B. Hu, M. Leitner, and G.R. Raidl. Combining variable neighborhood search with in-

teger linear programming for the generalized minimum spanning tree problem. Jour-
nal of Heuristics, pages 473–499, 2008.

63. ILOG. http://www.ilog.com/products/cplex/, 2008.
64. D.S. Johnson and L.A. McGeoch. Experimental analysis of heuristics for the STSP.

In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Vari-

ations, pages 369–443. Kluwer Academic Publishers, 2002.
65. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.

Bell Systems Technology Journal, 49:213–219, 1970.
66. M. Khichane, P. Albert, and C. Solnon. Integration of ACO in a constraint pro-

gramming language. In M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle,
and A.F.T. Winfield, editors, Ant Colony Optimization and Swarm Intelligence, 6th

International Conference, ANTS 2008, volume 5217 of Lecture Notes in Computer
Science, pages 84–95. Springer Verlag, Berlin, 2008.

67. S. Kirkpatrick and G. Toulouse. Configuration space analysis of travelling salesman
problems. Journal de Physique, 46(8):1277–1292, 1985.

68. E.L. Lawler. The quadratic assignment problem. Management Science, 9:586–599,
1963.

69. M. Leitner and G.R. Raidl. Lagrangian decomposition, metaheuristics, and hybrid
approaches for the design of the last mile in fiber optic networks. In M.J. Blesa,
C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, A. Roli, and M. Sampels, edi-

tors, Hybrid Metaheuristics, 5th International Workshop, HM 2008, volume 5296 of
Lecture Notes in Computer Science, pages 158–174. Springer Verlag, Berlin, 2008.

70. S. Lin and B.W. Kernighan. An effective heuristic algorithm for the travelling sales-

man problem. Operations Research, 21:498–516, 1973.
71. H.R. Lourenço. A Computational Study of the Job-Shop and the Flow-Shop Schedul-

ing Problems. PhD thesis, School of Or & IE, Cornell University, Ithaca, NY, 1993.
72. H.R. Lourenço. Job-shop scheduling: Computational study of local search and large-

step optimization methods. European Journal of Operational Research, 83:347–367,
1995.

73. H.R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In Glover and
Kochenberger [52], pages 321–353.

74. H.R. Lourenço, J.P. Paixão, and R. Portugal. Multiobjective metaheuristics for the
bus driver scheduling problem. Transportation Science, 35(3):331–343, 2001.

75. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for

the quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–
369, 1999.

76. V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency assignment
problem. Future Generation Computer Systems, 16(8):927–935, 2000.

77. V. Maniezzo, A. Carbonaro, M. Golfarelli, and S. Rizzi. An ANTS algorithm for
optimizing the materialization of fragmented views in data warehouses: Preliminary

results. In Applications of Evolutionary Computing, EvoWorkshops 2001, volume
2037 of Lecture Notes in Computer Science, pages 80–89. Springer Verlag, Berlin,

2001.
78. K. Marriott and P. Stuckey. Programming with Constraints. MIT Press, Cambridge,

MA, 1998.
79. T. Mautor. Intensification neighbourhoods for local search methods. In C.C. Ribeiro

and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 493–508. Kluwer
Academic Publishers, Norwell, MA, 2002.

80. T. Mautor and P. Michelon. MIMAUSA: A new hybrid method combining exact

solution and local search. In Extended abstracts of the 2nd International Conference
on Meta-heuristics, page 15, Sophia-Antipolis, France, 1997.

81. T. Mautor and P. Michelon. MIMAUSA: an application of referent domain optimiza-
tion. Technical Report 260, Laboratoire d’Informatique, Université d’Avignon et des

Pays de Vaucluse, Avignon, France, 2001.

http://www.ilog.com/products/cplex/

4 Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms 133

82. P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm design. In

D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 244–
260. McGraw Hill, London, UK, 1999.

83. B. Meyer. Hybrids of constructive metaheuristics and constraint programming. In

C. Blum, M.J. Blesa, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics—
An Emergent Approach to Optimization, volume 117 of Studies in Computational

Intelligence, pages 85–116. Springer Verlag, Berlin, 2008.

84. B. Meyer and A. Ernst. Integrating ACO and constraint propagation. In M. Dorigo,
M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, and T. Stützle, editors, Ant

Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS

2004, volume 3172 of Lecture Notes in Computer Science, pages 166–177. Springer
Verlag, Berlin, 2004.

85. MINTO - Mixed INTeger Optimizer. http://coral.ie.lehigh.edu/minto, last vis-
ited December 2008.

86. G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley

& Sons, 1988.
87. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop problem.

Management Science, 42(2):797–813, 1996.

88. P.S. Ow and T.E. Morton. Filtered beam search in scheduling. International Journal
of Production Research, 26:297–307, 1988.

89. G. Pesant and M. Gendreau. A view of local search in constraint programming.

In E. Freuder, editor, Proceedings of Constraint Programming 1996, volume 1118 of
Lecture Notes in Computer Science, pages 353–366. Springer Verlag, Berlin, 1996.

90. G. Pesant and M. Gendreau. A constraint programming framework for local search

methods. Journal of Heuristics, 5:255–279, 1999.
91. S. Pirkwieser, G.R. Raidl, and J. Puchinger. A Lagrangian decomposition / evolution-

ary algorithm hybrid for the knapsack constrained maximum spanning tree problem.
In C. Cotta and J.I. van Hemert, editors, Recent Advances in Evolutionary Com-

putation for Combinatorial Optimization, volume 153 of Studies in Computational
Intelligence, pages 69–85. Springer Verlag, Berlin, 2008.

92. D. Pisinger. Core problems in knapsack algorithms. Operations Research, 47(4):570–

575, 1999.
93. C.N. Potts and S. van de Velde. Dynasearch: Iterative local improvement by dynamic

programming; part I, the traveling salesman problem. Technical Report LPOM–9511,

Faculty of Mechanical Engineering, University of Twente, Enschede, The Netherlands,
1995.

94. M. Prandtstetter and G.R. Raidl. An integer linear programming approach and
a hybrid variable neighborhood search for the car sequencing problem. European
Journal of Operational Research, 191(3):1004–1022, 2008.

95. J. Puchinger, G.R. Raidl, and U. Pferschy. The core concept for the multidimensional
knapsack problem. In J. Gottlieb and G.R. Raidl, editors, Evolutionary Computa-
tion in Combinatorial Optimization–EvoCOP 2006, volume 3906 of Lecture Notes in
Computer Science, pages 195–208. Springer Verlag, Berlin, 2006.

96. G.R. Raidl and J. Puchinger. Combining (integer) linear programming techniques
and metaheuristics for combinatorial optimization. In C. Blum, M.J. Blesa, A. Roli,
and M. Sampels, editors, Hybrid Metaheuristics—An Emergent Approach to Opti-

mization, volume 117 of Studies in Computational Intelligence, pages 31–62. Springer
Verlag, Berlin, 2008.

97. N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, 52:153–190, 1991.

98. K.E. Rosing. Heuristic concentration: a study of stage one. Environment and Plan-
ning B: Planning and Design, 27(1):137–150, 2000.

99. K.E. Rosing and C.S. ReVelle. Heuristic concentration: Two stage solution construc-

tion. European Journal of Operational Research, pages 955–961, 1997.

http://coral.ie.lehigh.edu/minto

134 I. Dumitrescu and T. Stützle

100. K.E. Rosing and C.S. ReVelle. Heuristic concentration and tabu search: A head to

head comparison. European Journal of Operational Research, 117(3):522–532, 1998.
101. B. Roy and B. Sussmann. Les problemes d’ordonnancement avec constraintes dis-

jonctives. Notes DS no. 9 bis, SEMA.

102. P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming - CP98,

4th International Conference, volume 1520 of Lecture Notes in Computer Science,

pages 417–431. Springer Verlag, Berlin, 1998.
103. M. Sniedovich and S. Voß. The corridor method: A dynamic programming inspired

metaheuristic. Control and Cybernetics, 35:551–578, 2006.

104. É.D. Taillard and S. Voß. POPMUSIC: Partial optimization metaheuristic under
special intensification conditions. In C.C. Ribeiro and P. Hansen, editors, Essays

and Surveys in metaheuristics, pages 613–629. Kluwer Academic Publishers, Boston,
MA, 2002.

105. M.B. Teitz and P. Bart. Heuristic methods for estimating the generalized vertex

median of a weighted graph. Operations Research, 16:955–961, 1968.
106. P.M. Thompson and J.B. Orlin. The theory of cycle transfers. Working Paper No.

OR 200-89, 1989.

107. P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithm for multivehicle routing
and scheduling problems. Operations Research, 41:935–946, 1993.

108. P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society for Industrial

and Applied Mathematics, 2002.
109. P. van Hentenryck. The OPL Optimization Programming Language. MIT Press,

Cambridge, MA, 1999.

110. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, Cam-
bridge, MA, 2005.

111. M. Vasquez and J.-K. Hao. A hybrid approach for the 0-1 multidimensional knapsack
problem. In B. Nebel, editor, Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, pages 328–333. Morgan Kaufmann Publishers,
San Francisco, CA, 2001.

112. M. Vasquez and Y. Vimont. Improved results on the 0-1 multidimensional knapsack

problem. European Journal of Operational Research, 165(1):70–81, 2005.
113. Xpress-MP. http://www.dashoptimization.com/home//products/products_

optimizer.html, last visited December 2008.

114. M. Yagiura and T. Ibaraki. The use of dynamic programming in genetic algorithms
for permutation problems. European Journal of Operational Research, 92:387–401,
1996.

http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.dashoptimization.com/home//products/products_optimizer.html

Chapter 5

Decomposition Techniques
as Metaheuristic Frameworks

Marco Boschetti, Vittorio Maniezzo, and Matteo Roffilli

Abstract Decomposition techniques are well-known as a means for obtain-
ing tight lower bounds for combinatorial optimization problems, and thus
as a component for solution methods. Moreover a long-established research
literature uses them for defining problem-specific heuristics. More recently
it has been observed that they can be the basis also for designing metaheu-
ristics. This tutorial elaborates this last point, showing how the three main
decomposition techniques, namely Dantzig-Wolfe, Lagrangean and Benders
decompositions, can be turned into model-based, dual-aware metaheuristics.
A well known combinatorial optimization problem, the Single Source Ca-
pacitated Facility Location Problem, is then chosen for validation, and the
implemented codes of the proposed algorithms are benchmarked on standard
instances from literature.

5.1 Introduction

Traditionally, heuristic methods, and metaheuristics in particular, have been
primal-only methods. They are usually quite effective in solving the given
problem instances, and they terminate providing the best feasible solution
found during the allotted computation time. However, disregarding dual in-
formation implies some obvious drawbacks, first of all not knowing the quality
of the proposed solution, but also having possibly found an optimal solution
at the beginning of the search and having wasted CPU time ever since, having

Marco Boschetti
Department of Mathematics, University of Bologna, Bologna, Italy
e-mail: marco.boschetti@unibo.it

Vittorio Maniezzo · Matteo Roffilli
Department of Computer Science, University of Bologna, Bologna, Italy

e-mail: vittorio.maniezzo@unibo.it,roffilli@csr.unibo.it

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 135

DOI 10.1007/978-1-4419-1306-7 5, c© Springer Science+Business Media, LLC 2009

marco.boschetti@unibo.it
vittorio.maniezzo@unibo.it, roffilli@csr.unibo.it

136 M. Boschetti, V. Maniezzo, and M. Roffilli

searched a big search space that could have been much reduced, or having
disregarded important information that could have been very effective for
constructing good solutions.

Dual information is also tightly connected with the possibility of obtain-
ing good lower bounds (making reference, here and forward, to minimization
problems), another element which is not a structural part of current meta-
heuristics. On the contrary, most mathematical programming literature ded-
icated to exact methods is strongly based on these elements for achieving the
obtained results. There is nothing, though, that limits the effectiveness of
dual/bounding procedures to exact methods. There are in fact wide research
possibilities both in determining how to convert originally exact methods into
efficient heuristics and in designing new, intrinsically heuristic techniques,
which include dual information.

In this tutorial we examine a possibility from the second alternative. There
are many ways in which bounds can be derived, one of the most effective
of these is the use of decomposition techniques [6]. These are techniques
primarily meant to exploit the possibility of identifying a subproblem in the
problem to solve and to decompose the whole problem in a master problem
and a subproblem, which communicate via dual or dual-related information.
The popularity of these techniques derives both from their effectiveness in
providing efficient bounds and from the observation that many real-world
problems lead themselves to a decomposition.

Unfortunately, despite their prolonged presence in the optimization lit-
erature, there is as yet no clear-cut recipe for determining which problems
should be solved with decompositions and which are better solved by other
means. Clearly, decomposition techniques are foremost candidates for prob-
lems which are inherently structured as a master and different subproblems,
but it is at times possible to effectively decompose the formulation of a prob-
lem which does not show such structure and enjoy advantages. Examples
from the literature of effective usage of decomposition techniques (mainly
Lagrangean) on single-structure problems include, e.g., set covering [13, 14],
set partitioning [3, 32, 12] and crew scheduling [11, 18, 19, 24].

In a previous paper [9] we observed that the general structure of decompo-
sition techniques can be extended from bound computation to include feasible
solution construction. According to this, decompositions such as Dantzig-
Wolfe, Benders or Lagrangean provide a rich framework for designing meta-
heuristics. In this work we elaborate this point, showing how the three men-
tioned approaches can be practically applied to a well-known combinatorial
optimization problem, namely the Single Source Capacitated Facility Loca-
tion Problem.

The structure of the chapter is as follows. In Section 5.2 we introduce
the three basic decomposition techniques: Lagrangean relaxation, Dantzig-
Wolfe decomposition, and Benders decomposition. Section 5.3 shows, for each
of the three methods, how to derive a possible metaheuristic. Section 5.4
introduces the Single Source Capacitated Facility Location Problem, which

5 Decomposition Techniques as Metaheuristic Frameworks 137

will be used for benchmarking the algorithms. Finally, Section 5.5 shows
the computational results obtained with our implementation of the proposed
metaheuristics.

5.2 Decomposition Methods

This section briefly overviews the three decomposition techniques we will use
as a basis for metaheuristics design. These decompositions can be applied
to continuous, mixed-integer and pure integer linear programming problems.
Since decomposition is a basic operations research topic, which can be found
in any mathematical programming textbook, we only present here the basic
formulae in the general case of a mixed integer problem. The discussion is for
a minimization problem, being trivial to apply it to a maximization one.

The problem to solve, called P, has the following structure:

zP = min c1x + c2y (5.1)
s.t. Ax + By ≥ b (5.2)

Dy ≥ d (5.3)
x ≥ 0 (5.4)
y ≥ 0 and integer (5.5)

We assume, for ease of presentation, that the feasibility region is non-null
and bounded.

5.2.1 Lagrangean Relaxation

Lagrangean relaxation permits to obtain a lower bound to problem P by
removing some difficult constraints and by dualizing them into the objective
function by means of Lagrangean penalties. For example, if in problem P we
relax constraints (5.2) using the non-negative Lagrangean penalty vector λλλ,
we obtain the following formulation LR:

zLR(λλλ) = min c1x + c2y + λλλ(b−Ax−By) (5.6)
s.t. Dy ≥ d (5.7)

x ≥ 0 (5.8)
y ≥ 0 and integer (5.9)

zLR(λλλ) is a valid lower bound to the optimal value of P, i.e., zLR(λλλ) ≤
zP , for every λλλ ≥ 000. To identify the penalty vector λλλ that maximizes the
lower bound zLR(λλλ), we solve the so-called Lagrangean dual, which can be

138 M. Boschetti, V. Maniezzo, and M. Roffilli

formulated as follows:

zLR = max {zLR(λλλ) : λλλ ≥ 0} (5.10)

For solving the Lagrangean dual, an internal subproblem LR must be solved
for each penalty vector λ. LR is as follows:

zLR(λλλ) = min (c1 − λλλA)x + (c2 − λλλB)y + λλλb (5.11)
s.t. Dy ≥ d (5.12)

x ≥ 0 (5.13)
y ≥ 0 and integer (5.14)

If the subproblem is solved to integrality, it is possible that the lower bound
provided by zLR is tighter than the linear relaxation of problem P.

Notice that it is possible to add to the LR formulation constraints that
are redundant in the original formulation, but that can help the convergence.
Moreover, it is sometimes possible to obtain feasible dual solutions directly
from the Lagrangean penalties. Approaches based on this property have been
used, e.g., to generate reduced problems which consider only the variables of
k-least reduced costs (e.g., [11, 12, 24]).

5.2.2 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition [16] is an iterative procedure which successively
approximates the linear relaxation of problem P by decomposing it into a
sequence of smaller and/or easier subproblems. The subproblems dynamically
generate the columns of a master problem corresponding to the LP relaxation
of P.

In order to use the same decomposition as in Section 5.2.1, let F be the
feasible region induced by constraints (5.3)–(5.5), i.e. F = {(x,y) : Dy ≥
d,x ≥ 0,y ≥ 0 and integer}, which we assume finite and non-null, and let
{(xt,yt) : t = 1, . . . , T} be the set of the extreme points of F . Dantzig-Wolfe
proceeds by identifying optimal (with respect to the current cost function)
extreme points of F , computed as solutions of a subproblem, then passing
them to the master problem in order to check them against the relaxed con-
straints, i.e., those not F -defining. The master problem is formulated as a
constrained linear combination of the proposed extreme points. After having
computed the cost of the best combination of the so far proposed extreme
points of F , taking into consideration also the relaxed constraints retained in
the master, the subproblem costs are updated, and are computed as reduced
costs derived from the dual values of the relaxed constraints. The subproblem
is then solved again, to see whether a new, less expensive extreme point can
be found.

5 Decomposition Techniques as Metaheuristic Frameworks 139

In the case of problem P, a possible master problem, obtained again by
relaxing the “difficult” constraints (5.2) is as follows:

zMDW = min
T∑

t=1

(c1xt + c2yt)µt (5.15)

s.t.
T∑

t=1

(Axt + Byt)µt ≥ b (5.16)

T∑
t=1

µt = 1 (5.17)

µt ≥ 0, t = 1, . . . , T (5.18)

The corresponding subproblem is:

zSDW (u, α) = min (c1 − uA)x + (c2 − uB)y − α (5.19)
s.t. Dy ≥ d (5.20)

x ≥ 0 (5.21)
y ≥ 0 and integer (5.22)

where u and α are the dual variables corresponding to constraints (5.16) and
(5.17) of the master problem, respectively.

If the subproblem optimal solution (x∗,y∗) has a value zSDW (u, α) < 0,
we can add the corresponding column (Ax∗ + By∗) of cost (c1x∗ + c2y∗)
into the master problem, otherwise we have reached the optimal solution of
MDW. Notice that subproblem SDW is identical to LR if we replace u and
α with λλλ and −λλλb, respectively.

At each iteration of the procedure, a valid lower bound to the optimal
solution value of the original problem is given by zMDW + zSDW (see [6]
for further details). This lower bound is not monotonically nondecreasing.
Therefore, we need to maintain the best value obtained through the iterations.

5.2.3 Benders Decomposition

Benders decomposition [8] computes a lower bound to the optimal cost of the
original problem by solving a master problem which fixes some of its variables.
Then, to improve the lower bound, it solves a subproblem which adds new
constraints to the master.

Let w and v be the dual variables of problem P associated to constraints
(5.2) and (5.3), respectively. The dual of P is as follows:

140 M. Boschetti, V. Maniezzo, and M. Roffilli

zD = max wb + vd (5.23)
s.t. wA ≤ c1 (5.24)

wB + vD ≤ c2 (5.25)
w ≥ 0 (5.26)
v ≥ 0 (5.27)

The dual D can be also rewritten as zD = max {zSD(w) : wA ≤ c1,w ≥ 0},
where

zSD(w) = max wb + vd (5.28)
s.t. vD ≤ c2 −wB (5.29)

v ≥ 0 (5.30)

Let y be the dual variables associated to constraints (5.29). The dual of SD
becomes:

zSP (w) = min (c2 −wB)y + wb (5.31)
s.t. Dy ≥ d (5.32)

y ≥ 0 and integer (5.33)

Upon denoting W = {w : wA ≤ c1,w ≥ 0} and Y = {y : Dy ≥ d,y ≥
0 and integer}, we can rewrite problem D as:

zD = max
w∈W

min
y∈Y

(c2 −wB)y + wb. (5.34)

Let {wt, t = 1, . . . , T} be the set of the extreme points of W . Since we
have assumed the feasible region to be finite and non-null, we have that
zD = min

y∈Y
max

t=1,...,T
(c2 −wtB)y +wtb, which is equivalent to the following for-

mulation MB:

zMB = min z (5.35)

s.t. z ≥ (c2 −wtB)y + wtb, t = 1, . . . , T (5.36)
y ∈ Y (5.37)

Problem MB is the Benders master problem and constraints (5.36) are the so-
called Benders cuts. The number of Benders cuts T is usually huge; therefore,
the master problem is initially solved considering only a small number T ′ of
Benders cuts, i.e., T ′ � T . In order to ascertain whether the solution is
already optimal or an additional cut should be added to the master, we need
to solve a subproblem SB. Since problem D defined in (5.34) is equivalent to:

zD = min
y∈Y

(
c2y + max

w∈W
w(b−By)

)
(5.38)

5 Decomposition Techniques as Metaheuristic Frameworks 141

the subproblem SB is:

zSB(y) = max w(b−By) (5.39)
s.t. wA ≤ c1 (5.40)

w ≥ 0 (5.41)

Notice that a primal solution (x,y) of problem P, useful for the metaheuristics
discussed in Section 5.3, can be obtained by the dual of SB defined as:

zSP (y) = min c1x (5.42)
s.t. Ax ≤ b−By (5.43)

x ≥ 0 (5.44)

Also for problems MB and SB, it is possible to add constraints that are
redundant in the original formulation, but can help convergence.

It is interesting to show that also for Benders decomposition we can have
a subproblem equivalent to the ones of Lagrangean relaxation and Dantzig-
Wolfe decomposition. In fact, if the dual D, (5.23)–(5.27), is rewritten as:

zD = max {zSD′(w) : w ≥ 0} (5.45)

where

zSD′(w) = max wb + vd (5.46)
s.t. 0 ≤ c1 −wA (5.47)

vD ≤ c2 −wB (5.48)
v ≥ 0 (5.49)

the dual of SD′ is identical to subproblem LR, defined by (5.11)–(5.14), after
replacing the penalty vector λλλ with w.

5.3 Metaheuristics Derived from Decompositions

In this section we show how metaheuristic frameworks can be directly derived
from the three decomposition methods previously described. Notice that the
proposed algorithms are not the only ones that could be derived from the
used decompositions, but they represent reasonable frameworks, which we
have already used with success on different problems. We hope that this
chapter may serve as a means to foster research on different or more general
metaheuristic frameworks, including other approaches deriving from decom-
position techniques.

142 M. Boschetti, V. Maniezzo, and M. Roffilli

5.3.1 A Lagrangean Metaheuristic

The literature is rich with heuristics based on the Lagrangean decomposition
structure outlined above. An excellent introduction to the whole topic of
Lagrangean relaxation, and of related heuristics, can be found in [7]. A general
structure of a Lagrangean heuristic, common to most applications, is given
in Algorithm 1.

Algorithm 1: LagrHeuristic

identify an “easy” subproblem LR(λλλ)1

repeat2

solve subproblem LR(λλλ) obtaining solution x3

check for unsatisfied constraints4

update penalties λλλ5

construct problem solution using x and λλλ6

until (end condition) ;7

This pseudocode is obviously underspecified for a direct application, being
at an abstraction level where metaheuristics are usually presented. However,
notice that this structure already shows the essential ingredients of a meta-
heuristic, i.e., it is “an iterative master process that guides and modifies the
operations of a subordinate heuristic” at Step 6.

Steps 1 and 3 are problem-dependent, such as neighborhood definition or
crossover implementation in other contexts. Step 4 is trivial, while Step 5 can
be implemented by means of any state-of-the-art technique, usually subgradi-
ent optimization or bundle methods. Moreover, some of these techniques have
been proved to converge not only to the optimal λλλ, but also to the optimal
x of the linear relaxation (see Sherali and Choi [29] and Barahona and Anbil
[4]), thereby possibly providing a particularly “intelligent” starting point for
Step 6.

5.3.2 A Dantzig-Wolfe Metaheuristic

As for any metaheuristic, also for Dantzig-Wolfe we can propose a general
structure that will have to be detailed in some of its steps in order to apply
it to specific problems. Here, we propose one possible effective structure, but
again, alternative ones are possible.

The master problem MDW should be defined to be easy to solve to op-
timality, while the subproblem SDW can be difficult and it could be needed
to solve it heuristically. The proposed pseudocode for algorithm DWHeu-
ristic tries to generate feasible solutions making use of the dual solutions
(u, α) provided by MDW and of the primal solution (x,y) =

∑T
t=1 (xt,yt)µt

5 Decomposition Techniques as Metaheuristic Frameworks 143

Algorithm 2: DWHeuristic

identify a master MDW and an “easy” subproblem SDW(u,α), set T=01

repeat2

solve master problem MDW3

given the solution µ of MDW define (x,y) =
∑T

t=1 (xt,yt)µt4

solve problem SDW(u,α), where (u,α) is the dual solution of MDW5

construct feasible solutions using (x,y) and/or (u,α), generated by MDW,6

and/or (x′,y′), generated by SDW(u,α)7

if (no more columns can be added) then8

STOP9

else10

set T = T + 111

add the column (x′,y′) generated at step 512

until (end condition) ;13

and (x′,y′) generated by solving MDW and SDW(u,α), respectively. How-
ever, it is possible to include other local search algorithms, based on different
neighborhoods. For example, we can generate a feasible solution using the so-
lutions (xt,yt) associated to the columns of MDW with µt > 0 in its current
solution.

5.3.3 A Benders Metaheuristic

The identification of a common structure for Benders based heuristics is more
difficult than for Lagrangean or Dantzig-Wolfe ones, since the proposals in
the literature vary much, and usually Benders decomposition is used in a very
problem-dependent fashion. We propose here one possible structure, which
already proved effective, but again, alternative ones are possible.

The structure can be applied both to MIP problems, as sketched in Section
5.2, and to pure IP problems. The subproblem SP (see Equation (5.42)) could
be defined over integer or binary variables, in both cases it is necessary to
use its linear relaxation in order to obtain its dual SB (Equation (5.39)).

Taking into account the intrinsic difficulty of both MB and SB, we propose
to consider solving them both heuristically. The effect of solving heuristically
MB at step 3 is that it is not guaranteed to produce a lower bound to problem
P. When a lower bound is needed, MB must be solved to optimality, or
approximated from below. Notice, however, that the main purpose of MB is
to produce alternative y sets, of possibly increasing qualities, and this can
be effectively accomplished by heuristic solutions. Step 5 provides an upper
bound, i.e., a feasible solution, to the whole problem. Step 6 finds a lower
bound to the problem obtained by fixing the y variables.

144 M. Boschetti, V. Maniezzo, and M. Roffilli

Algorithm 3: BendHeuristic

identify a master MB and an “easy” subproblem SB(y), set T = 01

repeat2

solve (heuristically) master problem MB obtaining the solution (z,y)3

if (x are requested to be integer) then4

solve (heuristically) master problem MB obtaining the solution (z,y)5

solve problem SB(y) obtaining the dual solution w6

if (no more columns can be added) then7

STOP8

else9

set T = T + 110

add to MB the Benders cut generated by problem SB(y)11

until (end condition) ;12

The terminating condition at Step 7 depends on whether the master is
solved heuristically or to optimality. In this last case, the condition would be
“if zt ≥ zd”, which in fact implies the impossibility of generating new cuts.
However, in a heuristic context such as admitted by Steps 3 and 5, new cuts
could be further generated, which could prove useful for continuing search.

5.4 Single Source Capacitated Facility Location

The algorithms presented in Section 5.3 are meant as metaheuristics. They
are relatively simple, yet effective and robust approaches. To get state-of-the-
art results some sophisticated elements are needed, for these as for any other
metaheuristic. However, a straightforward application of these pseudocodes
already produces results, which are close to the state-of-the-art. In order to
show the robustness and the ease to arrive to fully-defined, problem-specific
codes, we report in this section on the application of each proposed approach
to the Single Source Capacitated Facility Location Problem (SCFLP).

The SCFLP is a well-known problem that arises in many applications,
from clustering problems in data mining to networks design. The problem
asks to locate a number of facilities (e.g., plants, warehouses or hubs), that
must provide a service to a set of customers, minimizing a global cost. The
cost includes fixed charges for opening the facilities and service costs for
satisfying customer demands.

Let J = {1, . . . , n} be the index sets of customers and I = {1, . . . ,m} the
index set of possible facility locations. Each customer j has an associated
demand, qj , that must be served by a single facility; a facility located at
site i has an overall capacity of Qi. The costs are composed of a cost cij for
supplying the demand of a customer j from a facility established at location i
and of a fixed cost, fi, for opening a facility at location i. Let xij , i = 1, . . . ,m,

5 Decomposition Techniques as Metaheuristic Frameworks 145

j = 1, . . . , n, be binary variables such that xij = 1 if customer j is assigned
to a facility located at i, 0 otherwise, and let yi, i = 1, . . . ,m, be binary
variables such that yi = 1 if a facility is located at site i, 0 otherwise.

A mathematical formulation of the SCFLP is as follows:

zSCFLP = min
∑

i∈I,j∈J

cijxij +
∑
i∈I

fiyi (5.50)

s.t.
∑
i∈I

xij = 1, j ∈ J (5.51)∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.52)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.53)
yi ∈ {0, 1}, i ∈ I (5.54)

The objective function (5.50) asks to minimize the sum of fixed and service
costs. Assignment constraints (5.51) ensure that all customers are serviced
by exactly one facility; knapsack constraints (5.52) are the facility capacity
constraints and, finally, (5.53) and (5.54) are the integrality constraints.

SCFLP is an NP-hard problem and often the optimal value of its LP
relaxation, obtained by removing the integrality constraints, is much worse
than the optimum integer solution value. In order to improve the optimal
value of the LP-relaxation, as suggested in [20], we can add the following
additional constraints, redundant in SCFLP:

xij − yi ≤ 0, for each i ∈ I and j ∈ J (5.55)

Given its simple structure, the SCFLP has often been used for benchmarking
new approaches. Some variants of it exist, the most studied one permits a split
assignment of customers to location, thus relaxing constraints (5.53) to xij ≥
0, i ∈ I, j ∈ J . Most approximation results, such as Chudak and Shmoys’s
3-approximation algorithm [15], refer to this problem version. Closely related
problems are also the Capacitated p-median and the Generalized Assignment
Problems. Several exact approaches have been proposed for the SCFLP, one
of the best known being [25], where a branch and bound scheme based on a
partitioning formulation is proposed. However, exact methods do not scale
up to large instance sizes.

Large instances have been tackled by means of different kinds of heuristics,
from very large scale neighborhood (VLSN) search [2] to reactive GRASP and
tabu search [17]. Extensive research has been devoted to Lagrangean heuris-
tics for the SCFLP. Most authors start by relaxing assignment constraints,
obtaining a Lagrangean subproblem which separates into n knapsack prob-
lems, one for each facility, whose combined solutions provide a lower bound
to the problem [5, 26, 31, 20, 28]. However, different relaxations have also
been used. Klincewicz and Luss [21] relax the capacity constraints (5.52),

146 M. Boschetti, V. Maniezzo, and M. Roffilli

thereby obtaining as Lagrangean subproblem an uncapacitated facility loca-
tion problem, which is solved heuristically. Beasley [7] and Agar and Salhi [1]
relax both the assignment and the capacity constraints, and obtain a very ro-
bust solution approach, which provides good quality solutions to a number of
different location problems, including p-median, uncapacitated, capacitated
and single source facility location problems.

Having introduced the basic techniques and the problem they have been
applied to, we move on describing how the basic pseudocodes for the La-
grangean, Dantzig-Wolfe and Benders metaheuristics can be specialized for
the SCFLP.

5.4.1 Solving the SCFLP with a Lagrangean
Metaheuristic

We present here a very straightforward application of LagrHeuristic to the
SCFLP. The resulting algorithm is not enough to produce edge-level results,
but it shows that already by means of such a simple code it is possible to get
quite good performance. The steps of LagrHeuristic for the SCFLP can
be specified as follows. (Note that the step numbers refer to the lines in the
pseudocode of the metaheuristic.)

Step 1: Identify an “easy” subproblem LR. The relaxation of the assignment
constraints (5.51) in problem SCFLP yields the following problem.

zLR(λλλ) = min
∑

i∈I,j∈J

(cij − λj)xij +
∑
i∈I

fiyi +
∑
j∈J

λj (5.56)

s.t.
∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.57)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.58)
yi ∈ {0, 1}, i ∈ I (5.59)

where λj , j ∈ J , are unrestricted penalties.

Step 3: Solve subproblem LR. Problem LR decomposes naturally into |I|
knapsack problems, with objective function

∑
i∈I

(∑
j∈J(cij − λj)xij + fiyi

)
.

Thus, for each i ∈ I for which
∑

j∈J(cij − λj)xij < −fi, the corresponding
yi is set to 1, otherwise to 0.

Step 4: Check for unsatisfied constraints. The solution of LR can have cus-
tomers assigned to multiple or to no location. This can be determined by
direct inspection.

5 Decomposition Techniques as Metaheuristic Frameworks 147

Step 5: Update penalties λλλ. We used a standard subgradient algorithm [26]
for updating penalties.

Step 6: construct problem solution using x and λλλ. Let Ī be the set of locations
chosen in the solution obtained at Step 3. The SCFLP becomes a Generalized
Assignment Problem (GAP) as follows:

zGAP = min
∑

i∈Ī,j∈J

cijxij (5.60)

s.t.
∑
i∈Ī

xij = 1, j ∈ J (5.61)

∑
j∈J

qjxij ≤ Qi, i ∈ Ī (5.62)

xij ∈ {0, 1}, i ∈ Ī , j ∈ J (5.63)

This is still an NP-hard problem, but efficient codes exist to solve it, which
we did once per Lagrangean iteration (see the subsequent computational
results section for further details).

We formulate the GAP using the original costs {cij} instead of the pe-
nalized costs {cij − λj}, which could seem to be an obvious bonus granted
by using the Lagrangean relaxation in a heuristic context. This is because in
this case, having fixed the set of chosen locations Ī, solving the GAP to opti-
mality generates the best possible solution. However, in other circumstances,
we can take advantage of using penalized (thus dual-related) costs instead
of the original ones (e.g., the fully distributed Lagrangean metaheuristic for
a P2P Overlay Network Design Problem described in [10, 22]) obtaining a
considerable computational advantage.

Notice that for some iterations, Step 3 may provide a set of locations Ī
for which the GAP is unfeasible. In this case no feasible SCFLP solution is
generated and LagrHeuristic simply goes on.

5.4.2 Solving the SCFLP with a Dantzig-Wolfe
Metaheuristic

We have a number of possibilities to decompose our model for the SCFLP.
Among them we chose to decompose the problem in such a way as to have
a subproblem equivalent to LR, defined for the Lagrangean relaxation de-
scribed in the previous subsection. The specific steps of DWHeuristic for
the SCFLP result as follows.

Step 1: Identify a master MDW and an “easy” subproblem SDW. A possi-
ble Dantzig-Wolfe decomposition of the SCFLP maintains the assignment

148 M. Boschetti, V. Maniezzo, and M. Roffilli

constraints in the master problem:

zMDW = min
t∑

k=1

 ∑
i∈I,j∈J

cijx
k
ij +

∑
i∈I

fiy
k
i

λk (5.64)

s.t.
t∑

k=1

(∑
i∈I

xk
ij

)
λk = 1, j ∈ J (5.65)

t∑
k=1

λk = 1 (5.66)

λk ≥ 0, k = 1, . . . , t (5.67)

and the subproblem is:

zSDW (u, α) = min
∑

i∈I,j∈J

(cij − uj)xij +
∑
i∈I

fiyi − α (5.68)

s.t.
∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.69)

xij ∈ {0, 1}, i ∈ I, j ∈ J (5.70)
yi ∈ {0, 1}, i ∈ I (5.71)

where uj and α are the dual variables of the master problem corresponding
to constraints (5.65) and (5.66), respectively.

Step 3: Solve master problem MDW. As the master problem is relatively easy
to solve, we solve it to optimality at each iteration.

Step 5: Solve subproblem SDW. The xij and yi are required to be in-
teger, but subproblem SDW is equivalent to LR, (5.56)–(5.59), and it
can be decomposed into |I| knapsack problems, with objective function∑

i∈I

(∑
j∈J(cij − uj)xij + fiyi

)
. Thus, for each i ∈ I for which

∑
j∈J(cij −

uj)xij < −fi, the corresponding yi is set to 1, otherwise to 0.

Step 6: Construct a feasible solution. We generate a feasible SCFLP solution
using the same procedure used for the Lagrangean metaheuristic by solving
problem GAP, (5.60)–(5.63), defined according to the SDW solution.

Step 8: Stop condition. If zSDW (u, α) ≥ 0 we stop because we have reached
the optimal solution of the master problem MDW. Otherwise, we add the
new column generated by SDW to the master problem MDW and we go on.

5 Decomposition Techniques as Metaheuristic Frameworks 149

5.4.3 Solving the SCFLP with a Benders Metaheuristic

Also a Benders metaheuristic approach offers a number of possibilities to
decompose our model and to generate feasible solutions for the SCFLP. The
implementation of BendHeuristic that we have chosen is as follows.

Step 1: Identify a master MB and an “easy” subproblem SP. A possible Ben-
ders decomposition of SCFLP involves keeping in the master the decision of
which facilities to open, and assigning clients to open facilities as a subprob-
lem. The subproblem is therefore a GAP again.

More in detail, the master problem is:

zMB = min
∑
i∈I

fiyi + zSP (y) (5.72)

s.t. yi ∈ {0, 1}, i ∈ I (5.73)

and the subproblem becomes:

zSP (y) = min
∑

i∈I,j∈J

cijxij (5.74)

s.t.
∑
i∈I

xij = 1, j ∈ J (5.75)∑
j∈J

qjxij ≤ Qiyi, i ∈ I (5.76)

xij ≤ yi, i ∈ I, j ∈ J (5.77)
xij ∈ {0, 1}, i ∈ I, j ∈ J (5.78)

where constraints (5.77) are considered only if the integrality constraints
(5.73) are relaxed.

Step 3: Solve master problem MB. As the master problem, even though NP-
hard after the addition of Bender’s cuts, was relatively easy to solve for the
benchmark instances from the literature, we solved it to optimality at each
iteration.

Step 6: Solve subproblem SP. The xij are required to be integer, but the
subproblem is the same GAP we met in Subsection 5.4.1. The same consid-
erations apply.

Step 11: Add to MB the Benders cut generated by problem SB. To get the
subproblem’s dual we relaxed constraints (5.78) into xij ≥ 0, i ∈ I, j ∈ J .
After associating dual variables w′j , j ∈ J , to constraints (5.75), w′′i , i ∈ I,
to constraints (5.76) and w′′′ij , i ∈ I, j ∈ J , to constraints (5.77), problem SB
becomes:

150 M. Boschetti, V. Maniezzo, and M. Roffilli

zSB(y) = max
∑
j∈J

w′j +
∑
i∈I

Qiyiw
′′
i +

∑
i∈I

∑
j∈J

yiw
′′′
ij (5.79)

s.t. w′j + qjw
′′
i + w′′′ij ≤ cij , i ∈ I, j ∈ J (5.80)

w′′i ≤ 0, i ∈ I (5.81)
w′′′ij ≤ 0, i ∈ I, j ∈ J (5.82)

The master formulation, which includes the added cut, is as follows:

zMB = min z

s.t. z ≥
∑
i∈I

fi +Qiw
′′
i +

∑
j∈J

w′′′ij

 yi +
∑
j∈J

w′j (5.83)

yi ∈ {0, 1}, i ∈ I (5.84)

5.5 Computational Results

We implemented the above described algorithms in C# and Fortran, this
last was used by linking algorithms MT1R for solving knapsack problems
and MTHG for getting a heuristic solution of GAP problems [23] (codes
can be freely downloaded from the page http://www.or.deis.unibo.it/
knapsack.html). The code was run on a 1.7 GHz laptop with 1Gb of RAM
and .NET framework 2.0. Ilog CPLEX 11.1 was used as LP and MIP solver
where required.

The benchmark instances are those used by Holmberg et al. [20]; they
consist of 71 instances whose size ranges from 50 to 200 customers and from 10
to 30 candidate facility locations. The instances are divided into four subsets.
Set 1 has customers and locations with coordinates randomly generated in
the interval [10, 200], problems p1 to p12 have 50 customers and 10 possible
locations, problems p13 to p24 have 50 customers and 20 possible locations.
Set 2 has locations generated in the interval [10, 300]. The assignment costs
are based on a vehicle routing problem cost distribution (see [20] for details).
Set 3 is based on vehicle routing test problems used by Solomon [30], while
set 4 is generated as set 1 but the number of potential locations is 30 and
the number of customers is 200.

In this section we present computational results for the three proposed
metaheuristic procedures, namely, LagrHeuristic, DWHeuristic and
BendHeuristic, and compare them with those obtained by the “dfs” variant
of the VLSN heuristic proposed by [2], which is the best performing meta-
heuristic algorithm known for the SCFLP. The CPU times reported for dfs
have been obtained on a PC with an Athlon/1200Mhz processor and 512 Mb
RAM, under RedHat Linux 7.1.

http://www.or.deis.unibo.it/knapsack.html
http://www.or.deis.unibo.it/knapsack.html

5 Decomposition Techniques as Metaheuristic Frameworks 151

Table 5.1 Computational results obtained with procedure LagrHeuristic.

Problem Lagrangean Metaheuristic dfs
Sets GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.01 0.12 0.16 4.38 0.00 0.54

p1-p24 max 2.19 0.06 0.66 0.85 14.80 0.00 1.85

p25-p40 avg 0.77 0.55 0.69 1.51 51.04 0.13 12.67
p25-p40 max 2.02 2.95 1.86 10.77 107.21 0.79 34.08

p41-p55 avg 0.84 0.30 0.31 0.91 10.46 0.03 1.62

p41-p55 max 2.00 2.02 1.86 3.68 31.55 0.18 5.47

p56-p71 avg 0.57 0.21 0.57 27.27 475.15 0.02 15.97
p56-p71 max 2.28 1.06 1.95 201.74 1731.80 0.14 46.60

Let zMIP and zLP be the optimal solutions of problem SCFLP, (5.50)–
(5.54), and of its LP relaxation, respectively. Let zUB and zLB be the upper
and the lower bounds provided by the proposed procedures, respectively. In
Tables 5.1, 5.2 and 5.3, for each set of test instances, we report the following
average and maximum values:

GLP: the percentage gap between the optimal MIP solution and the optimal
LP solution, i.e., GLP = zMIP−zLP

zMIP
× 100;

GH : the percentage gap between the heuristic solution provided by the
proposed procedure and the optimal MIP solution, i.e., GH = zUB−zMIP

zMIP
×

100;
GL: the percentage gap between the lower bound provided by the proposed

procedure and the optimal MIP solution, i.e., GL = zMIP−zLB

zMIP
× 100;

TBest: the computing time in seconds required by the proposed procedure
to reach the best heuristic solution found;

TTot: the total computing time in seconds required by the proposed proce-
dure;

Gdfs: the percentage distance from optimality of dfs;
Tdfs: the CPU time in seconds taken by dfs.

5.5.1 Lagrangean Metaheuristic

Procedure LagrHeuristic was used with the α subgradient step control
parameter (see [27]) initially set to 0.5, and multiplied by 0.9 when five con-
secutive non-improving iterations were detected. LagrHeuristic terminated
either when an optimal solution was found, i.e., when zLB = zUB, when 5000
subgradient iterations were made, or when a time limit of 3600 seconds was
reached.

The computational results for procedure LagrHeuristic are reported in
Table 5.1. Figure 5.1 shows the evolution of the upper bound zUB and of the
lower bounds zLB when LagrHeuristic is applied to instance p11. Proce-

152 M. Boschetti, V. Maniezzo, and M. Roffilli

7,000

7,500

8,000

8,500

9,000

9,500

10,000

0 10 20 30 40 50 60 70 80 90

Iterations

Lagrangean Metaheuristic: instance p11

MIP

zLB

zLB Best

zUB

zUB Best

Fig. 5.1 Upper and lower bounds evolution of LagrHeuristic for the instance p11.

dure LagrHeuristic shows on all test problems a performance qualitatively
similar to the one reported in Figure 5.1.

As repeatedly pointed out, the results we report here are not for showing
that we have the best heuristic in the literature, but for showing that even a
straightforward implementation of algorithm LagrHeuristic can get close
to the state-of-the-art. This is apparent on Table 5.1 where there are not big
differences with respect to dfs and where the existing gap is mainly due to
few instances. It would be rather easy to close that gap by means of some
trick on the subgradient algorithm, such as an α-restart or an adaptive anneal
(not to mention a local search on the upper bound), but again, this would
obfuscate our point.

We mention here again how the inclusion of dual information into the
metaheuristic permits to determine the quality of the best solution found,
and possibly its optimality. In our case, out of the 71 instances, 3 could be
solved to optimality by the subgradient alone, which evolved weights that lead
to the satisfaction also of the relaxed constraints, while 21 other ones were
solved to proven optimality since the lower and the upper bound converged
to the same cost. In all these cases the computation terminated before the
maximum available CPU time, an option which is not available for primal-
only heuristics.

5 Decomposition Techniques as Metaheuristic Frameworks 153

Table 5.2 Computational results obtained with procedure DWHeuristic.

Problem Dantzig-Wolfe Metaheuristic dfs
Name GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.04 0.14 11.39 825.22 0.00 0.54

p1-p24 max 2.19 0.76 0.67 32.20 2558.42 0.00 1.85

p25-p40 avg 0.77 0.55 4.83 1096.97 3581.77 0.13 12.67
p25-p40 max 2.02 2.95 12.48 2028.75 3600.72 0.79 34.08

p41-p55 avg 0.84 0.42 0.60 231.95 2793.80 0.03 1.62

p41-p55 max 2.00 2.02 2.48 1246.37 3600.96 0.18 5.47

p56-p71 avg 0.57 9.19 50.19 2875.35 3600.47 0.02 15.97
p56-p71 max 2.28 34.81 100.00 3555.17 3603.10 0.14 46.60

5.5.2 Dantzig-Wolfe Metaheuristic

We initialized the master problem by adding a column corresponding to a
dummy facility with a sufficient capacity to serve all customers, but with a
fixed cost equal to a known upper bound to the optimal solution cost.

Procedure DWHeuristic terminates when no further columns can be
added to the master problem. However, since the convergence can be slow,
procedure DWHeuristic was also stopped when 20000 columns were gen-
erated or when a time limit of 3600 seconds was reached.

The computational results reported in Table 5.2 show that the conver-
gence of our basic DWHeuristic is slow and is not competitive with the
Lagrangean metaheuristic. This behavior is mainly due to the large number
of iterations required to obtain a good lower bound and, building on it, good
solutions. Figure 5.2 shows a trace in the case of instance p11, where about
700 iterations are required to reach a good primal solution and about 1100
iterations to reach a good lower bound. Figure 5.2 confirms the convergence
of upper and lower bounds.

DWHeuristic finds difficulties in solving set 2 and set 4, where the given
time limit is not enough to provide a sufficiently good lower bound. For
set 4 the average gap between the primal solution and the lower bound is
unsatisfactory.

Clearly this basic schema is not competitive and some modifications are
required. For example, our basic implementation of DWHeuristic can be
improved by adding more columns at each iteration and/or solving heuristi-
cally the subproblem SDW, given by (5.68)–(5.71).

5.5.3 Benders Metaheuristic

We initialize the BendHeuristic in the same way as the master problem in
the DWHeuristic. Procedure BendHeuristic terminates when either no

154 M. Boschetti, V. Maniezzo, and M. Roffilli

6,000

7,000

8,000

9,000

10,000

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Iterations

Dantzig-Wolfe Metaheuristic: instance p11

MIP

zLB

zLB Best

zUB

zUB Best

Fig. 5.2 Upper and lower bounds evolution of DWHeuristic for the instance p11.

further cuts can be added to the master problem, or when 5000 cuts were
added or when a time limit of 3600 seconds was reached.

The computational results reported in Table 5.3 show a lower compet-
itiveness of the basic BendHeuristic, when compared to its Lagrangean
counterpart. The basic BendHeuristic outperforms procedure DWHeu-
ristic, requiring less computing time to reach upper and lower bounds of
similar quality. Figure 5.3 shows a trace in the case of instance p11, where
it is evident that a good primal solution is generated quite quickly but the
convergence of the lower bound is slow.

BendHeuristic finds difficulties in solving set 3 and particularly set 4,
which has a cost structure that makes the master hard to solve when cuts
start to be added. Clearly this basic schema is not competitive on these
instances, more sophisticated considerations are required.

However, we believe that, since research on Benders based heuristics counts
much less contributions than for instance Lagrange based ones, there is a wide
room available for gaining insight on how to improve this basic functioning.
For example, in our basic implementation of BendHeuristic we had the
master solved to optimality, while it would be worthwhile to solve the master
only heuristically.

5 Decomposition Techniques as Metaheuristic Frameworks 155

Table 5.3 Computational results obtained with procedure BendHeuristic.

Problem Benders Metaheuristic dfs
Name GLP GH GL TBest TTot Gdfs Tdfs

p1-p24 avg 0.79 0.04 4.26 0.96 1612.28 0.00 0.54

p1-p24 max 2.19 0.76 13.30 6.90 3616.98 0.00 1.85

p25-p40 avg 0.77 0.55 0.34 17.26 2634.50 0.13 12.67
p25-p40 max 2.02 2.95 0.71 48.13 3602.35 0.79 34.08

p41-p55 avg 0.84 0.58 19.80 214.82 1781.79 0.03 1.62

p41-p55 max 2.00 2.02 68.66 1584.98 3611.57 0.18 5.47

p56-p71 avg 0.57 2.89 53.94 277.85 3636.65 0.02 15.97
p56-p71 max 2.28 14.20 80.52 1576.34 3836.41 0.14 46.60

6,000

6,500

7,000

7,500

8,000

8,500

9,000

9,500

10,000

0 10 20 30 40 50 60 70 80 90
Iterations

Benders Metaheuristic: instance p11

MIP

zLB

zLB

Best

zUB

zUB

Best

Fig. 5.3 Upper and lower bounds evolution of BendHeuristic for the instance p11.

5.6 Conclusions

This tutorial has shown a possibility to derive metaheuristic frameworks
from the three main decomposition techniques from the literature, namely
Lagrangean, Benders and Dantzig-Wolfe. This is an example, expanding a
proposal first published in [9], of how techniques, originally designed for ex-
act methods, could be included in a purely metaheuristic structure which
shows the usual properties of simplicity, robustness and effectiveness.

156 M. Boschetti, V. Maniezzo, and M. Roffilli

The main point behind our argument is that research on metaheuristic
methods should include elements from the mathematical programming lit-
erature in order to get a possibility to overcome the current computational
limits, whenever these limits are felt to diminish the practical effectiveness
of the available procedures.

We believe that the principal contribution of mathematically elaborate
techniques comes from the use of bounds to the cost of optimal solutions
and from dual information, two elements that can greatly help in directing
search for better-than-current solutions and for determining the quality of
the results achieved at any moment during search.

The computational results reported in Section 5.5 show that the heuristic
solutions provided by the proposed metaheuristics can be of good quality even
when the used dual information corresponds to a lower bound far from the
optimal solution. Therefore, we can have good results also when the conver-
gence is slow, with the only disadvantage of failing in reliably evaluating the
quality. In the proposed frameworks it is mandatory to solve to optimality the
subproblem. This can be a serious limitation when the relaxed problem is still
difficult and a valid lower bound is not produced. In this case we can further
relax the problem until the resulting problem is computationally tractable.
However, this is an interesting issue that deserves further investigations to
identify other approaches able to overcome all difficulties.

Research on how metaheuristics should make a strong point of mathemat-
ical modules is still at an embryonal level. We hope that this tutorial may
help in fostering research along this line, that we believe to be promising.

References

1. M. Agar and S. Salhi. Lagrangean heuristics applied to a variety of large capacitated
plant location problems. Journal of the Operational Research Society, 49:1072–1084,

1998.
2. R.K. Ahuja, J.B. Orlin, S. Pallottino, M.P. Scaparra, and M.G. Scutellà. A multi-

exchange heuristic for the single source capacitated facility location problem. Man-

agement Science, 50(6):749–760, 2003.
3. A. Atamtürk, G. Nemhauser, and M.W.P. Savelsbergh. A combined Lagrangian, lin-

ear programming, and implication heuristic for large-scale set partitioning problems.

Journal of Heuristics, 1:247–259, 1996.
4. F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with a

subgradient method. Mathematical Programming, 87:385–399, 2000.

5. J. Barcelo and J. Casanovas. A heuristic Lagrangean algorithm for the capacitated
plant location problem. European Journal of Operational Research, 15:212–226, 1984.

6. M.S. Bazaraa, J. Jarvis, and H.D. Sherali. Linear Programming and Network Flows.
John Wiley & Sons, 1990.

7. J.E. Beasley. Lagrangean relaxation. In C.R. Reeves, editor, Modern heuristic tech-

niques for combinatorial problems, pages 243–303. Blackwell Scientific Publ., 1993.
8. J.F. Benders. Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik, 4:280–322, 1962.

5 Decomposition Techniques as Metaheuristic Frameworks 157

9. M.A. Boschetti and V. Maniezzo. Benders decomposition, Lagrangean relaxation and

metaheuristic design. Journal of Heuristics, 15(3):283–312, 2009.
10. M.A. Boschetti, V. Maniezzo, and M. Roffilli. A fully distributed Lagrangean solution

for a P2P overlay network design problem. Submitted for publication, 2009.

11. M.A. Boschetti, A. Mingozzi, and S. Ricciardelli. An exact algorithm for the simplified
multi depot crew scheduling problem. Annals of Operations Research, 127:177–201,

2004.

12. M.A. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for the set
partitioning problem. Discrete Optimization, 5(4):735–747, 2008.

13. A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem.

Operations Research, 47:730–743, 1999.
14. S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale set

covering problems. Mathematical Programming, 81:215–228, 1995.
15. F.A. Chudak and D.B. Shmoys. Improved approximation algorithms for a capaci-

tated facility location problem. In Proc. 10th Annu. ACM-SIAM Sympos. Discrete

Algorithms, pages S875–S876, 1999.
16. G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8:101–111, 1960.

17. H. Delmaire, J.A. Diaz, E. Fernandez, and M. Ortega. Reactive GRASP and tabu
search based heuristics for the single source capacitated plant location problem. IN-
FOR, 37:194–225, 1999.

18. R. Freling, D. Huisman, and A.P.M. Wagelmans. Models and algorithms for integration
of vehicle and crew scheduling. Journal of Scheduling, 6:63–85, 2003.

19. K.L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-

and-cut. Management Science, 39:657–682, 1993.
20. K. Holmberg, M. Ronnqvist, and D. Yuan. An exact algorithm for the capacitated

facility location problems with single sourcing. European Journal of Operational Re-
search, 113:544–559, 1999.

21. J. Klincewicz and H. Luss. A Lagrangean relaxation heuristic for capacitated facility
location with single-source constraints. Journal of the Operational Research Society,
37:495–500, 1986.

22. V. Maniezzo, M.A. Boschetti, and M. Jelasity. A fully distributed Lagrangean meta-
heuristic for a P2P overlay network design problem. In Proceedings of the 6th Meta-
heuristics International Conference (MIC 2005), Vienna, Austria, 2005.

23. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley, 1990.

24. A. Mingozzi, M.A. Boschetti, S. Ricciardelli, and L. Bianco. A set partitioning ap-
proach to the crew scheduling problem. Operations Research, 47:873–888, 1999.

25. A. Neebe and M. Rao. An algorithm for the fixed-charge assigning users to sources
problem. Journal of the Operational Research Society, 34:1107–1113, 1983.

26. H. Pirkul. Efficient algorithm for the capacitated concentrator location problem. Com-
puters & Operations Research, 14:197–208, 1987.

27. B.T. Polyak. Minimization of unsmooth functionals. USSR Computational Mathe-
matics and Mathematical Physics, 9:14–29, 1969.

28. M. Ronnqvist, S. Tragantalerngsak, and J. Holt. A repeated matching heuristic for the
single source capacitated facility location problem. European Journal of Operational

Research, 116:51–68, 1999.
29. H.D. Sherali and G. Choi. Recovery of primal solutions when using subgradient opti-

mization methods to solve Lagrangian duals of linear programs. Operations Research
Letters, 19:105–113, 1996.

30. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35:254–365, 1987.

31. R. Sridharan. A Lagrangian heuristic for the capacitated plant location problem with

single source constraints. European Journal of Operational Research, 66:305–312, 1991.

158 M. Boschetti, V. Maniezzo, and M. Roffilli

32. M.G.C. Van Krieken, H. Fleuren, and R. Peeters. A Lagrangean relaxation based

algorithm for solving set partitioning problems. Technical Report 2004-44, CentER
Discussion Paper, 2004.

Chapter 6

Convergence Analysis
of Metaheuristics

Walter J. Gutjahr

Abstract In this tutorial, an overview on the basic techniques for proving
convergence of metaheuristics to optimal (or sufficiently good) solutions is
given. The presentation is kept as independent of special metaheuristic fields
as possible by the introduction of a generic metaheuristic algorithm. Different
types of convergence of random variables are discussed, and two specific fea-
tures of the search process to which the notion “convergence” may refer, the
“best-so-far solution” and the “model”, are distinguished. Some core proof
ideas as applied in the literature are outlined. We also deal with extensions
of metaheuristic algorithms to stochastic combinatorial optimization, where
convergence is an especially relevant issue. Finally, the important aspect of
convergence speed is addressed by a recapitulation of some methods for ana-
lytically estimating the expected runtime until solutions of sufficient quality
are detected.

6.1 Introduction

Metaheuristic algorithms (see, e.g., the standard textbook [19]) are general-
purpose solvers for optimization problems. Their use is prevalent in modern
applications of computational intelligence because of their broad flexibility,
their intuitive structures and their applicability even in the case of problem
instances for which classical optimization techniques fail. A huge amount of
knowledge about the empirical performance of diverse metaheuristics on nu-
merous classes of optimization problems has been accumulated within the last
two decades. Theoretical analysis lags behind this development. While some
aspects of the performance of metaheuristics are already well-understood,

Department of Statistics and Decision Support Systems, University of Vienna,
Vienna, Austria

e-mail: walter.gutjahr@univie.ac.at

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 159

DOI 10.1007/978-1-4419-1306-7 6, c© Springer Science+Business Media, LLC 2009

walter.gutjahr@univie.ac.at

160 W.J. Gutjahr

some other issues still wait for an analytical treatment. One of the most ba-
sic issues is the question whether or not the current solutions proposed by
a metaheuristic converge to an optimal or at least to a “sufficiently good”
solution—and if yes, how fast this happens.

Especially the recent attempts of combining metaheuristic techniques with
the well-established methods from mathematical programming (MP) to pow-
erful hybrids give the convergence issue a new relevance. Researchers from the
MP field are used to be sure that their algorithms reach an optimal solution
within finite time. More than that, even a proof of optimality is delivered by
an MP method, typically within a computation time that can be bounded
from above (although the bound may be very large). In contrast to that,
metaheuristics are not only unable to produce proven optimality; some often
applied variants cannot even guarantee that an optimal solution (or a solu-
tion of a certain minimum quality) will be eventually found if an unlimited
amount of computation time is invested. An algorithm embedding an MP
component within a metaheuristic inherits this weakness.

Fortunately, however, convergence to the optimum can be shown for sev-
eral variants (or parameterizations) of metaheuristic algorithms, and usually,
convergence of an algorithm can even be ensured simultaneously for a very
broad range of problems, e.g., for all combinatorial optimization (CO) prob-
lems. Identifying conditions that entail convergence provides a starting point
also for the practically very relevant question of convergence speed.

In this tutorial, we give an introduction to the basic ideas of convergence
proofs for metaheuristics. The scope will be restricted by two limitations:
First, we shall focus on global convergence instead of converge to local optima.
In particular, dynamical-systems approaches to the analysis of metaheuristics
(cf. [20] or [60, 9]) are not addressed here because of their orientation towards
local convergence. Secondly, we concentrate on discrete finite search spaces,
i.e., on the CO case. There is a large amount of literature on convergence of
search algorithms on continuous search spaces, let us only refer to [56, 59, 45]
for some recent examples. Because of the specific aspects occurring in this
scenario, however, we must consider a discussion of this type of investigations
as outside of the scope of this article.

Since we do not restrict ourselves to some specific metaheuristic algorithm
but would rather like to discuss the topic in a general context, we have to
start with a generic framework encompassing most (or all) existing meta-
heuristics. This is done in Section 6.2. Section 6.3 addresses convergence
definitions and different types of convergence of metaheuristic algorithms. In
Section 6.4, core ideas of convergence proofs are outlined and illustrated by
examples concerning different metaheuristics. Section 6.5 deals with conver-
gence of metaheuristic variants for Stochastic CO problems, and Section 6.6
shortly discusses the issue of convergence speed. The final Section 6.7 contains
concluding remarks and open research topics.

6 Convergence Analysis of Metaheuristics 161

6.2 A Generic Metaheuristic Algorithm

We consider optimization problems of the form

f(x)→ min such that x ∈ S, (6.1)

where S is a search space and f is a real-valued function called objective
function or cost function. Maximization problems are reformulated as mini-
mization problems in a straightforward way. We shall assume S to be a finite
set, which puts the problem (6.1) into the field of CO.

To give a unified framework within which convergence may be discussed for
a large class of metaheuristics, we present in the following a generic algorithm
that includes most (perhaps all) currently used metaheuristic algorithms as
special cases (cf. also [28]). In some sense, the proposed generic algorithm
extends the generic black-box optimizer presented by Droste et al. [13], but
it is not restricted to black-box optimization, and it does not consider prior
function samples in their raw form, but rather in an already condensed form,
which is closer to existing metaheuristics and automatically addresses space
restrictions.

The algorithm (say, in a concrete instantiation A) works in an iterative
way. In iteration t (t ≥ 1), algorithm A uses a memory mt and a list Lt of
solutions xi ∈ S. We call the elements of Lt sample points. The structure of
the procedure is the following:

1. Initialize m1 according to some rule.
2. In iteration t = 1, 2, . . ., until some stopping criterion is satisfied,

a. determine the list Lt as a function g(mt, ξt) of the memory state mt

and of a random influence ξt;
b. determine the objective function values f(xi) of all xi ∈ Lt, and form

a list L+
t containing the pairs (xi, f(xi));

c. determine the new memory state mt+1 as a function h(mt, L
+
t , ξ

′
t) of

the current memory state mt, of the list of solution-value pairs L+
t , and

of a random influence ξ′t.

The memory state mt can be decomposed as mt = (ms
t ,m

r
t) into two compo-

nents ms
t and mr

t , where ms
t , the sample-generating part, contains all infor-

mation in mt that is actually used by the function g for generating the list Lt

of sample points, and mr
t , the reporting part, contains that information that

is not used for this purpose. The function h is allowed to use both parts ms
t

and mr
t for updating the memory. Typically1, the reporting part contains at

least the best-so-far solution xbsf
t which is initialized arbitrarily for t = 1, and

set to xi each time when in some iteration t, some xi ∈ Lt is evaluated to an
objective function value f(xi) better than f(xbsf

t). The best-so-far solution

1 An exception is the context of optimization under noise discussed in Section 6.5, where

the best-so-far solution cannot be determined with certainty.

162 W.J. Gutjahr

is used as the currently proposed approximation to the optimal solution in
iteration t.

The elements ξt and ξ′t can be imagined as vectors of (pseudo-)random
numbers that are used by the metaheuristic. Thus, the function g(mt, ξt)
specifies, to given memory mt, a probability distribution for the list of new
sample points, whereas the function h(mt, L

+
t , ξ

′
t) specifies, to given memory

mt and current list L+
t of solution-value pairs, a probability distribution for

the new state of the memory. If the functions g and h are independent of ξt
resp. ξ′t, we obtain the special case of a deterministic search algorithm. Most
metaheuristics, however, are stochastic search algorithms.

Contrary to [13], in our formalism, the functions g and h may use any
information on the problem instance. (In order not to overload notation,
the problem instance is not written explicitly as an additional argument of
g and h.) The important special case where g and h are only allowed to
use the knowledge of the search space S and of the problem type, but not
of the actual problem instance, is denoted as black-box optimization. Some
variants of metaheuristics are black-box optimization algorithms, some are
not. In particular, algorithms combining a metaheuristic with mathematical
programming (see Section 6.1) are typical cases of algorithms that are not of
black-box type.

The states (mt, L
+
t) generated during the execution of the algorithm form

a Markov process in discrete time, since the distribution of the next state
(mt+1, L

+
t+1) only depends on the current state (mt, L

+
t). For fixed objective

function f , we can consider already the sequence (mt) (t = 1, 2, . . .) of mem-
ory states as a Markov process, since (via L+

t , which results from mt) the
distribution of mt+1 only depends on mt.

To illustrate that the generic algorithm above is able to cover well-known
metaheuristics as special cases, let us look at some examples:

Generalized Hillclimbing Algorithms: This class of metaheuristics,
which we shortly denote as GHCs (generalized hillclimbers), was introduced
by Jacobson et al. [43] and contains the well-known Simulated Annealing (SA)
algorithm and some other stochastic local search algorithms as a special cases.
Here, a neighborhood structure N assigning to each x ∈ S a set N (x) ⊆ S
of neighbor solutions is used. The sample-generating part ms

t of the memory
consists of a single element, the current search point xt. The reporting part
mr

t contains xbsf
t as well as the current iteration counter t. The list Lt of

sample points consists of a single element, the currently investigated neighbor
solution y ∈ N (x) to x.

• To determine Lt from ms
t , choose a random neighbor y to the element x

in ms
t .

• To update mt to mt+1, decide by the following stochastic acceptance rule
whether y is accepted or not: Draw a random variable R from a distribution
Dt depending on t. If R ≥ f(y) − f(x), accept y, i.e., set ms

t+1 = {y}. If

6 Convergence Analysis of Metaheuristics 163

R < f(y) − f(x), reject y, i.e., set ms
t+1 = {x}. The new reporting part

mr
t+1 is obtained by updating xbsf

t to xbsf
t+1 and by incrementing t.

SA is the special case where the random variable R is chosen as −ct ln(ζ),
where ct is the temperature parameter of SA in iteration t, and ζ is a random
number distributed uniformly on [0, 1]. The acceptance probability of worse
neighbors results then as exp(−(f(y)− f(x))/ct).

In other stochastic local search algorithms such as Iterated Local Search
(ILS) or the Variable Neighborhood Search (VNS) algorithm developed by
Hansen and Mladenović [33], the memory is slightly extended, e.g., by the
addition of an incumbent solution. Contrary to GHCs and to ILS, VNS works
with a family of neighborhoods Nk of varying sizes k = 1, . . . , kmax. In all
these metaheuristics, the number of elements in the memory is fixed (and
usually small) and is not tuned to the problem instance. This is different in
the next example:

Genetic Algorithms (GAs): For the canonical GA according to the
definition in [54], ms

t consists of a current population of k solutions, mr
t

contains only xbsf
t , and also Lt consists of k solutions.

• To determine Lt fromms
t , apply the well-known genetic operators mutation

and crossover to the solutions in mt. This yields Lt.
• To update mt to mt+1, apply fitness-proportional selection to the popula-

tion contained in Lt by using the corresponding objective function values.
The result is stored as ms

t+1. The new reporting part is obtained by up-
dating xbsf

t to xbsf
t+1.

Other GAs are represented as obvious modifications of this procedure.

Ant Colony Optimization (ACO): Both the Ant System (AS) vari-
ant by Dorigo et al. [10] and the Max-Min Ant System (MMAS) variant by
Stützle and Hoos [58] can be represented in the following form: The sample-
generating part ms

t of the memory consists of a vector (or matrix) of real-
valued parameters, called pheromone values. The reporting part mr

t contains
xbsf

t and (depending on the special MMAS version) possibly also an iteration-
best solution xib

t . The list Lt consists of k solutions.

• To determine Lt from ms
t , let k “ants” construct k random solutions by

traversing random paths in a “construction graph”, where the probabilities
of the moves are governed by the pheromone values in ms

t .
• To update mt to mt+1, start by updating xbsf

t and xib
t based on the k new

solutions in L+
t . Then, apply the specific pheromone update rule of the

ACO variant under consideration in order to determine the new pheromone
values from the current values by reinforcing the components of the solu-
tion(s) contained in xbsf

t and/or xib
t . This gives ms

t+1.

The macro-structure of Estimation-of-Distribution Algorithms (EDAs, see,
e.g., Gonzalez et al. [20]) is very similar to that of ACO. The parameters of

164 W.J. Gutjahr

the distribution used for sampling replace here the pheromone values of ACO.
Also the Cross Entropy Optimization metaheuristic introduced by Rubinstein
[53] shows the same macro-structure.

Finally, let us mention that also metaheuristics as Particle Swarm Opti-
mization (PSO) (developed by Kennedy and Eberhart [47]) fit into the frame-
work above, although in the standard version of PSO, search is not performed
on a discrete finite search space, but on a continuous search space instead.
PSO versions for CO problems as the Binary PSO algorithm proposed in [48]
have a structure related to that just described for ACO. Here, ms

t contains
real-valued positions and velocities of a set of particles.

6.3 Convergence

6.3.1 Convergence Notions

The mathematical definition of convergence of a series (x1, x2, . . .) of elements
in a space X with a distance function d is the following: The series (xn)
converges to a limit x∗, if for each ε > 0, there is an integer N such that
d(xn, x

∗) < ε for all n ≥ N . This definition considerably simplifies if the
space X is finite. In this case, xn converges to x∗ if and only if there is some
N such that xn = x∗ for all n ≥ N . It should be mentioned, however, that
although we restrict ourselves to finite search spaces in this paper, we shall
also have to do with convergence of non-discrete random variables.

Most metaheuristics are stochastic search algorithms, such that the defi-
nition above is not sufficient. We need a generalization to a notion of con-
vergence of a series of random variables. Let us start with a recapitulation of
two important established definitions of stochastic convergence. After that,
we proceed to a consideration of different types of convergence of a meta-
heuristic.

We consider a stochastic process (X1, X2, . . .), i.e., a sequence of random
variables with a common distribution. In general, the random variables are
not independent.

Definition 1.

(i) A sequence of random variables (X1, X2, . . .) converges with probability
one (short: w. pr. 1) or almost surely2 to a random variable X∗, if

Pr{Xt → X∗} = 1, (6.2)

2 The last term is very usual in the probabilistic literature. We avoid it in this paper
because the word “almost” can be misunderstood. If Xt → X w. pr. 1, it’s quite sure that

the sequence converges.

6 Convergence Analysis of Metaheuristics 165

i.e., if with probability one, the realization (x1, x2, . . .) of the sequence
(Xt) converges to the realization x∗ of X∗.

(ii) A sequence of random variables (X1, X2, . . .) converges in probability
to a random variable X∗, if for all ε > 0,

Pr{ d(Xt, X
∗) ≥ ε} → 0 as t→∞, (6.3)

where d is the distance function on the space X in which the random
variables Xt take their values.

It can be shown that convergence notion (i) is stronger than convergence no-
tion (ii): if Xt → X∗ w. pr. 1, then also Xt → X∗ in probability. In general,
the converse does not hold. Let us construct, e.g., a sequence X1, X2, . . . of
binary random variables as follows. Initialize each Xt by the value 0. Decom-
pose the index set {1, 2, . . .} into blocks k = 1, 2, . . . of increasing length k,
such that the first block is {1}, the second block is {2, 3}, the third block is
{4, 5, 6}, etc. Now select within each block k a position t uniformly at ran-
dom and set the corresponding variable Xt to the value 1. Then, Xt → 0 in
probability as t→∞, but Xt → 0 w. pr. 1 does not hold, since a realization
(x1, x2, . . .) of this stochastic process never converges.

Usually, these definitions are specialized to the case where the limiting X∗

is a constant, deterministic element x∗. If X is a finite set, convergence of Xt

to x∗ w. pr. 1 holds exactly if

Pr{there is a u ≥ 1 such that Xt = x∗ for all t ≥ u} = 1,

and convergence of Xt in probability holds exactly if Pr{Xt = x∗} → 1 as
t → ∞. In the finite case, we can also slightly generalize the definition of
convergence in probability by saying that Xt converges to a subset X ∗ of X
in probability, if Pr{Xt ∈ X ∗} → 1 as t→∞.

We shall apply these definitions to components of the current state
(mt, L

+
t) of the Markov process associated with algorithm A. However, which

components should be considered, and how is the limiting element supposed
to look like?

6.3.2 Best-So-Far Convergence

A natural choice consists in considering the best-so-far solution xbsf
t and to

ask whether or not it converges to some optimal solution, as t→∞. In a finite
search space and with xbsf

t defined as in Section 6.2, convergence of xbsf
t to an

optimal solution amounts to convergence of the cost function values f(xbsf
t)

(t = 1, 2, . . .) to the optimal cost function value. Thus, we may ask under
which conditions it can be guaranteed that f(xbsf

t) converges (“w. pr. 1” or
“in probability”) to f∗ = min{f(x) : x ∈ S}.

166 W.J. Gutjahr

Restricting the discussion to the case of finite S, we can simplify the defin-
ing conditions (6.2) – (6.3) for convergence of f(xbsf

t) to the optimum f∗ by
introducing the nondecreasing sequence of indicator variables

Zt = I(f(xbsf
t) = f∗) (t = 1, 2, . . .),

where I denotes the indicator function. The success indicator Zt is 1 if an
optimal solution is found in one of the iterations 1, . . . , t, and 0 otherwise.
The first hitting time is given as

T1 = min{t ≥ 1 : Zt = 1}. (6.4)

Furthermore, with E denoting the mathematical expectation, we define

µt = E(Zt) = Pr{Zt = 1} = Pr{T1 ≤ t} (t = 1, 2, . . .) (6.5)

as the probability that algorithm A finds an optimal solution in one of the
iterations 1, . . . , t. (In some articles such as [35] or [64], the sequence of num-
bers 1 − µt is called the convergence rate.) It is easy to see that with this
notation and with the ordinary absolute difference on the set of reals as the
distance function,

• f(xbsf
t) converges to f∗ w. pr. 1 if and only if Pr{Zt = 0 for all t} = 0

(which is the same as Pr{T1 <∞} = 1), and
• f(xbsf

t) converges to f∗ in probability if and only if µt → 1 (t→∞).

It follows that for best-so-far convergence, the two convergence notions coin-
cide, since Pr{Zt = 0 for all t} ≤ Pr{Zu = 0} = 1 − µu for all iterations u,
such that µu → 1 as u→∞ implies convergence w. pr. 1.

The convergence concept above may look nice. However, it has a seri-
ous disadvantage: It turns out that under this concept, even very inefficient
search algorithms converge to the optimum, which makes the concept too
“generous”. The standard example for this observation is random search.

In our framework, (pure) random search can be described as that instan-
tiation of our generic algorithm where the sample-generating part ms

t of the
memory is empty, the reporting part mr

t consists only of xbsf
t , and the list Lt

consists of a single sample point xt that is chosen at random from S accord-
ing to some fixed distribution. Because ms

t does not contain any information,
the choice of xt has to be performed independently of the memory state mt

(and hence of the previous iterations).
It is well-known that random search on a finite set S ensures convergence of

the best-so-far solution value to the optimum, as long as every solution x ∈ S
has a nonzero probability p(x) > 0 of being chosen as the sample point xt.
We will derive this quickly in Subsection 6.4.1. Furthermore, however, it will
be shown that the expected value E(T1) of the first hitting time is usually
very large for random search, such that convergence is here of no help for
practice.

6 Convergence Analysis of Metaheuristics 167

Informally, the reason why convergence in the best-so-far sense does not
go hand in hand with a good runtime behavior is that for demonstrating this
type of convergence, it is only required that the algorithm performs a suffi-
cient amount of exploration of the search space. The feature of exploitation of
the information obtained in previous iterations (stored in the memory mt),
as it is incorporated in most well-performing metaheuristics, does not alle-
viate the convergence proof; quite contrary, it rather hampers it. Of course,
however, exploitation is an advantage for the runtime of the algorithm! Thus,
convergence of the best-so-far solution value is not an indicator for a good
runtime behavior. It only ensures that the part of the search space containing
the optimal solution is not excluded from the search a priori, such that at
least in the absence of limits on computation time, search is “complete”.3

Several investigations on the convergence of diverse metaheuristics have
started with results concerning the best-so-far concept. Let us give examples
from two metaheuristic fields: Hartl [34] and Rudolph [54] showed conver-
gence of f(xbsf

t) to the optimum for certain variants of GAs transferring
“elite” solutions (best solutions in a current population) from generation to
generation. If, e.g., one elite solution is always preserved within the popula-
tion, this solution is identical to xbsf

t . Brimberg et al. [7] showed convergence
results of best-so-far type for ILS as well as for a VNS parametrization where
the parameter kmax defining the largest neighborhood is sufficiently large to
cover the whole search space S. The proofs provided in the mentioned ar-
ticles are possible starting points for the derivation of stronger convergence
properties (cf. the remarks in the next subsection).

6.3.3 Model Convergence

The chance that provable convergence properties are correlated with good
runtime behavior are considerably increased if we do not focus on the best-
so-far solution xbsf

t , but on the sample-generating part ms
t of the memory.

In an efficient metaheuristic, exploitation of the search experience should
concentrate the search more and more on the most promising areas of the
search space S, with the consequence that the average cost function values
of the sample points in Lt tend to decrease (not necessarily monotonically)
over time. The case where the expected cost function values in Lt remain
constant is essentially the exploitation-less random search case.

Borrowing from the concept of “model-based search” as developed by
Zlochin et al. [65], we may alternatively denote the sample-generating part
ms

t of the memory as the current model for the search distribution. In the
model-based view, search points are generated in dependence of the model,

3 Hoos [39] and Hoos and Stützle [40] call a search algorithm with Pr{T1 <∞} < 1 for a

class of problems essentially incomplete for this class.

168 W.J. Gutjahr

cost function values are evaluated, and the obtained information is then fed
back into a modification of the model. Basically, this corresponds to the mech-
anism of our generic algorithm, with the difference that we also extend this
view to classical search algorithms with discrete state spaces instead of re-
stricting it to metaheuristics as ACO, EDAs or Cross Entropy Optimization,
where the model is described by a vector of real-valued parameters.

By the argumentation above, a runtime behavior superior to that of ran-
dom search can be expected if it can be shown that the model ms

t converges,
as t→∞, to some limiting state (ms)∗ that supports only the generation of
optimal or at least high quality sample points. We denote this type of con-
vergence as model convergence as opposed to best-so-far convergence. Note
that the model can be very small: in a GHC, e.g., it contains only the current
search point xt. Nevertheless, convergence of this search point to a solution
in S∗ is more relevant than convergence of xbsf

t resp. f(xbsf
t) only, since it

indicates that the search is gradually directed towards more promising areas
of the search space.4

Contrary to proofs of best-so-far convergence which are technically the eas-
ier the more emphasis the considered algorithm puts on exploration (as op-
posed to exploitation), model convergence proofs have to take the exploration-
exploitation tradeoff explicitly into account and only succeed under parameter
assumptions ensuring a proper balance between these two factors. Typically,
the results yield rather narrow conditions for parameter schemes within which
model convergence holds; outside the balanced regime, either a surplus of ex-
ploitation yields premature convergence to a suboptimal solution, or a surplus
of exploration produces random-search-type behavior without model conver-
gence (although best-so-far convergence may hold).

Historically, the first model convergence results have been found in the SA
field (see, e.g., Gelfand and Mitter [17], Hajek [32], or Aarts and Korst [1]).
In Subsection 6.4.2, we shall outline the key ideas of the proofs in the more
general context of modern GHC results. Also for some ACO variants and for
a variant of Cross Entropy Optimization, results of model convergence type
are known. Empirical evidence suggests that such results should be possible
for several other metaheuristics as well.

In the GA case, model convergence would mean that the population tends
to “positive stagnation” in the long run by being filled with optimal solutions
only. Since mutation counteracts this effect, a model-convergent variant of a
GA would presumably have to gradually decrease the mutation rate and/or
to increase the selection pressure. This would have to be done slowly enough

4 Convergence analysis of metaheuristics has been questioned by the argument that every
randomized search algorithm can easily be made convergent to the optimum by repeatedly
calling it with randomly chosen start solutions. This is trivial for best-so-far convergence,

as already the series of start solutions yields a random search run in itself. However, model

convergence typically does not hold in this scenario, since during each restart, the current
information in ms

t is thrown away. Thus, the expected average cost function value in the

sample points does not improve from run to run.

6 Convergence Analysis of Metaheuristics 169

to prevent premature convergence and fast enough to ensure convergence.
Similarly investigation could be performed for the VNS case. (Convergence of
the Markov process of VNS visits in local optima has been shown in Brimberg
et al. [7].)

6.4 Proving Convergence

6.4.1 Proving Best-So-Far Convergence

Convergence of xbsf
t to the optimum can usually be shown easily. We shall

illustrate this for the simple case of random search. Let Zt be defined as in
Section 6.3, and let p =

∑
x∈S∗ p(x) > 0 denote the probability of hitting

an optimal solution in a single iteration of the random search algorithm.
Because of the independence of the trials in different iterations, Pr{Zt =
0} = (1 − p)t → 0 as t → ∞, and therefore µt → 1 as t → ∞. In other
words, convergence in probability to the optimum holds (and by the remark
in Subsection 6.3.2 on the special situation for best-so-far convergence, even
convergence w. pr. 1).

In some more interesting algorithms, the hitting probability is time-
dependent: p = pt. If a strictly positive lower bound pmin > 0 for pt can
be shown, convergence immediately results as above. However, even in some
cases where pt tends to 0, convergence still holds: E.g., if pt = ct−1/2 (c > 0),
we still get convergence in probability since limt→∞(1 − ct−1/2)t = 0. For
pt = c/t, this does not hold anymore, since (1 − c/t)t → e−c > 0. Lower
bounds on the hitting probability have been used, e.g., in the convergence
analysis of the MMAS variant of ACO given by Stützle and Dorigo [57].

For time-independent p, the expected value E(T1) of the first hitting time
computes as 1/p by the standard calculation of the expected value of a geo-
metric distribution, which is typically a very large number even for medium-
sized search spaces, unless if the distribution p(·) of the random trials can be
focused around the set S∗ of optimal solutions by means of prior information.

6.4.2 Proving Model Convergence

We outline the ideas of model convergence proofs by presenting some char-
acteristic examples.

170 W.J. Gutjahr

6.4.2.1 Generalized Hillclimbers and Simulated Annealing

The results by Jacobson and Yücesan [44] concerning convergence of GHCs
are especially instructive as, on the one hand, GHCs contain SA (for which
the first model convergence theorems have been shown) as a special case,
and on the other hand, the article works already on a more general level
such that metaheuristic-independent features become visible. In [44], it is as-
sumed that subsequent iterations of a GHC are comprised to macro iterations
k = 1, 2, (We shall choose a simple, special way of defining macro itera-
tions later.) During each macro iteration, the random variable R deciding on
acceptance (see Section 6.2) has the same distribution. With t(k) denoting
the last “micro” iteration of macro iteration k, let xk denote xt(k), i.e., the
current search point as it is obtained at the end of macro iteration k. We
introduce the following abbreviations:

• C(k) is the event that xk ∈ S∗, i.e., the event that macro iteration k
produces an optimal solution. The complementary event is denoted by
Cc(k).

• B(k) is the event Cc(1) ∩ Cc(2) ∩ . . . ∩ Cc(k), i.e., the event that none of
the macro iterations 1, . . . , k produces an optimal solution. The comple-
mentary event to B(k) is Bc(k).

• B =
⋂∞

k=1B(k) is the event that no iteration at all produces an optimal
solution.

• r(k) = Pr{Bc(k) |B(k − 1)} is the probability that in macro iteration k,
an optimal solution is produced, although it has not yet been produced in
any of the previous macro iterations.

Convergence of xk in probability to the set X∗ of optimal solutions can be
expressed as Pr(C(k))→ 1 as k →∞. It is now possible to show the following
criterion:

Theorem 1 (Jacobson and Yücesan [44]). For a GHC, x∗ converges to S∗

in probability if and only if the two following two conditions are satisfied:

(i)
∑∞

k=1 r(k) =∞,
(ii) Pr(Cc(k) |Bc(k − 1)} → 0 as k →∞

Let us present the proof idea of the part of the theorem stating that the two
conditions above are sufficient for convergence in probability. The idea is not
too complicated, but very informative, because it recurs in some variations in
related proofs in the literature. First, we show that condition (i) is equivalent
to Pr(B) = 0. This results as follows:

Pr(B) = Pr(B(1)) · Pr(B(2)|B(1)) · Pr(B(3)|B(1) ∩B(2)) · . . .

= (1− r(1)) · (1− r(2)) · (1− r(3)) ·

Therefore,

6 Convergence Analysis of Metaheuristics 171

Pr(B) = 0 ⇔
∞∏

k=1

(1− r(k)) = 0 ⇔
∞∑

k=1

log(1− r(k)) = −∞,

where the second equivalence follows by taking logarithm on both sides. Since
log(1− r(k)) ∼ −r(k) for small r(k), the latter is equivalent to

∑∞
k=1 r(k) =

∞. (To make the proof precise, the approximation has to be replaced by
bounds.)

Now, by the law of total probability,

Pr(Cc(k)) = Pr(Cc(k)|Bc(k − 1)) · Pr(Bc(k − 1))

+Pr(Cc(k)|B(k − 1)) · Pr(B(k − 1))

= Pr(Cc(k)|Bc(k − 1)) · Pr(Bc(k − 1)) + P (B(k)).

By condition (ii), the first term in the last expression tends to 0 as k → ∞.
Because of the equivalence derived above, condition (i) yields Pr(B) = 0.
Because B(1) ⊆ B(2) ⊆ . . ., by the Monotone Convergence Theorem,

Pr(B(k))→ Pr

(∞⋂
k=1

B(k)

)
= Pr(B) = 0,

and therefore also the second term tends to zero. This shows Pr(Cc(k))→ 0,
which completes the proof.

Theorem 1 can be nicely interpreted in terms of the exploration-exploitation
tradeoff: Condition (i) guarantees that enough exploration is performed in or-
der to be sure to find a globally optimal solution eventually. Condition (ii),
on the other hand, ensures that enough exploitation is done in order to pre-
serve an optimal solution with a high probability, once it has been found, and
enables convergence in this way.5

Consider now the special case of SA. We choose macro iterations of equal
length, consisting of L micro iterations each, where L is the maximum of the
minimum number of transitions to neighbors required to reach an optimal
solution from an arbitrary initial solution x over all x ∈ S. Then it is possible
to reach from an arbitrary point x ∈ S an optimal solution in exactly L micro

5 The decomposition of the process into a phase before and a phase after an optimal

solution x∗ has been found may appear as a cheap trick: One might be tempted to construct

a “model-convergent” metaheuristic by letting it perform random search before x∗ has
been found, and to freeze the current solutions xt to x∗ after that time. The point is,

however, that the decomposition into these two phases only exists at the level of analysis
and cannot be done by the algorithm itself, which does not know when it has detected an
optimal solution, such that it cannot use the attainment of the optimum as the criterion

for switching from exploration to exploitation. Thus, in order to preserve x∗ after it has

been discovered, the algorithm has to do a sufficient amount of exploitation already before
this event — which, on the other hand, makes it nontrivial to guarantee that the global

optimum is not missed.

172 W.J. Gutjahr

iterations (i.e., in one macro iteration), either by moving with the search point
xt towards x∗ or by letting it stay in x∗, rejecting neighbor solutions. We shall
focus on the process (xk) defined by the macro iterations, but mention that
corresponding results can also be derived for the process (xt) on the level of
micro iterations.

It is easy to see that if the temperature parameter is fixed at some constant
level c, either condition (i) or condition (ii) of Theorem 1 are violated: If c > 0,
then r(k) has a strictly positive lower bound, such that condition (i) holds; in
this case, however, condition (ii) is not satisfied, since even after an optimal
solution has been visited, suboptimal solutions will always be produced with
probabilities larger than some positive constant. On the other hand, if c = 0,
then only better neighbor solutions are accepted, with the consequence that
condition (ii) is satisfied (once an optimal solution has been found, it is
not left anymore), but condition (i) is violated, because usually an optimal
solution is not found.

The stunt of satisfying the two conditions simultaneously is achieved by de-
creasing the temperature parameter with a suitable speed. Choose a temper-
ature scheme ck with ck → 0 (k →∞) and ck ≥ L∆/ log(k+1) (k = 1, 2, . . .),
where ∆ = maxx,y∈S(f(x)− f(y)). It is easily seen that as soon as the tem-
perature has become low enough,

r(k) ≥
[

1
|S|
· exp

(
−∆
ck

)]L

≥ C

k

with some constant C > 0, which implies that
∑
r(k) =∞ and hence condi-

tion (i) of Theorem 1 is satisfied.
To show that the above temperature scheme is also sufficient for satisfying

condition (ii) needs some technicalities from the theory of inhomogeneous
Markov chains, which we omit here; the interested reader is referred to [1].
Let us only provide the rough picture. The sequence (xt) is an inhomogeneous
Markov chain with transition matrix P (k) on temperature level ck. Condi-
tion (i) above ensures weak ergodicity of this Markov chain, which essentially
means that the dependence on the initial solution vanishes over time. To sat-
isfy also condition (ii), it has to be shown that (a) for all k, there exists a left
eigenvector π(k) of P (k) with eigenvalue 1, (b) the eigenvectors π(k) satisfy∑∞

k=1 ||π(k)−π(k+1)|| <∞, and (c) the eigenvectors πk converge as k →∞
to a limiting vector π∗ containing probabilities of the solutions x ∈ S such
that only the probabilities in S∗ have nonzero values. These properties can
be demonstrated to be satisfied indeed for the given temperature scheme,
which implies that the Markov chain is strongly ergodic and converges in
distribution to π∗.

6 Convergence Analysis of Metaheuristics 173

6.4.2.2 Ant Colony Optimization and Cross Entropy Optimization

The convergence proofs for special ACO variants in [21, 22] and for a partic-
ular variant of Cross Entropy Optimization in [49] have a similar structure
as the results for GHCs outlined above. Let us explain this for the ACO case.

The algorithmic variants investigated in [22] are derived from the MMAS
variant of ACO proposed in [58]. MMAS provides the possibility of applying a
lower pheromone bound τmin > 0 which prevents that the components of the
pheromone vector τt contained in ms

t approach zero. In this way, exploitation
is limited to a certain degree in favor of exploration. The update of the
pheromone values is done by a reinforcement of the components of the best-so-
far solution xbsf

t , sometimes also the components of the iteration-best solution
xib

t are reinforced. The degree of reinforcement is controlled by a parameter
ρ ∈]0, 1[called evaporation rate, which can be considered as a learning rate.
The new pheromone vector results as

τt+1 = (1− ρ)τt + ρψt,

where ψt is the vector of the rewards in the current iteration. If ρ is high,
the observations made in the current iteration (the “presence”) have a high
influence on the new pheromone vector, compared to former iterations (the
“past”), whereas in the more conservative case of low ρ, the past is given a
higher influence than the presence.

In [22], two particular variants are considered: The first of them, “algo-
rithm 1”, does not use a pheromone bound, but decreases the learning rate ρ
over time, choosing it as ρ = ρt. The second one, “algorithm 2”, uses a time-
dependent lower pheromone bound τmin

t . In both algorithms, iteration-best
reinforcement is not done, i.e., xib

t is not used.
The following result is shown: Both for algorithm 1 and for algorithm 2, as

t→∞, xbsf
t converges w. pr. 1 to an optimal solution x∗, and the current state

τt of the sample-generating part ms
t of the memory converges w. pr. 1 to a

pheromone vector τ∗ allowing only the generation of the optimal solution x∗,
provided that the following conditions are satisfied:

• In the case of algorithm 1:

ρt ≤ 1− log t
log(t+ 1)

and
∞∑

t=1

ρt =∞.

This can be achieved, e.g., by the parameter scheme ρt = c/(t log t) with
0 < c < 1.

• In the case of algorithm 2:

τmin
t = ct/ log(t+ 1) with lim

t→∞
ct > 0.

This can be achieved, e.g., by constant ct = c > 0.

174 W.J. Gutjahr

The line of the proof is similar to the general scheme implicit in the proof
of Theorem 1. Also here, the first part of the proof consists in ensuring that
eventually, an optimal solution x∗ is found. For this purpose, it is demon-
strated that from the indicated conditions, a counterpart to condition (i) in
Theorem 1 follows. After that, it has to be ensured that w. pr. 1, pheromone
concentrates on the components of x∗ and vanishes elsewhere. (That the op-
timal solution x∗ is not left anymore after the first visit is trivial here by
construction of xbsf

t .) The convergence of the pheromone vector results by a
deterministic consideration for an arbitrary realization of the stochastic pro-
cess, such that we even obtain convergence w. pr. 1 in this scenario. Note that
the conditions for algorithm 1 require that ρt decreases neither too fast nor
too slow, and the conditions for algorithm 2 require an analogous property
for the lower pheromone bounds τmin

t .
Whereas in [22] it was assumed that the rewards for the components of

the best-so-far solution are of a constant amount, Sebastiani and Torrisi [55]
gave convergence conditions for the modification of the MMAS algorithm
where the size of the rewards is chosen “fitness-proportional”, i.e., decreasing
in the cost function value of the solution to be reinforced. (This modification
is frequently used in practice.)

Margolin [49] was able to provide a convergence proof for a certain Cross
Entropy Optimization variant. Both convergence conditions and proof tech-
nique are closely related to the results in [22], so that we omit the details
here.

6.4.2.3 Practical Aspects

What do the outlined results imply for applications of metaheuristics? We
do not claim that it is always advisable to use a model-convergent parameter
scheme when implementing a metaheuristic. Rather than that, our claim is
that it can be helpful to know how such a scheme looks like. Let us justify
this by an informal argument: In some sense, a model-convergent parameter
scheme is a scheme maximizing exploitation under the constraint that there
is still a sufficient amount of exploration in order to keep the promise of
finally achieving the globally optimal solution alive. In cases of large problem
instances with many good local optima, it may be more efficient to sacrifice
the warranty of finding the global optimum “at the end of the day” for the
benefit of accelerating the search for good local optima “in the course of
the day”. In such a case, one may decide to apply a parametrization of the
algorithm that is slightly below the model-convergent scheme with respect to
the degree of exploration. This means slightly faster cooling in SA or slightly
less restrictive lower pheromone bounds in ACO, compared to the conditions
in the theoretical convergence results.

Future research, both on a theoretical and on an experimental level, may
possibly concretize this consideration by quantitative results.

6 Convergence Analysis of Metaheuristics 175

6.5 Convergence for Problems with Noise

There is a situation where the concept of best-so-far convergence is not ap-
plicable at all. It is the scenario of Stochastic Combinatorial Optimization
characterized by the property that the parameters of either cost function or
constraints are not known with certainty, such that stochastic models are
required to represent these parameters as random variables. We restrict our-
selves to the special (but frequently occurring) case where only the cost func-
tion is uncertain, and the objective is to minimize its expected value. If this
expected value can be computed efficiently, the situation reduces to that of
deterministic CO and can be treated by ordinary metaheuristics. Otherwise,
a solution algorithm has to be based on concrete observations (realizations)
of the cost function values in certain points x ∈ S, but these observations do
not represent the expected value, but deviate from it by “noise”. A typical
case is that where expected costs are estimated by (Monte Carlo) simula-
tion, as it is frequently done, e.g., in queuing systems or in stochastic vehicle
routing.

The SCO problem has then the following general form:

E(f(x, ω))→ min such that x ∈ S. (6.6)

Therein, ω denotes a random influence (with a distribution given by the
stochastic model of the problem), which has to be distinguished from the
random variables ξ and ξ′ used by the metaheuristic solution procedure (see
Section 6.2), and E is the expectation with respect to the distribution of ω.
For surveys on the solution of problems of this type by metaheuristics, see
Jin and Branke [46] and Bianchi et al. [3].

A sample average estimator (SAE) approximates the true objective func-
tion value F (x) = E(f(x, ω)) by the average over a random sample:

F̃ (x) = (1/s)
s∑

ν=1

f(x, ων) ≈ E(f(x, ω)). (6.7)

Therein, ων (ν = 1, . . . , s) represent s independent sample observations, e.g.,
s runs of a simulation routine. It is immediately seem that E(F̃ (x)) = F (x),
i.e., the SAE is always unbiased. We can apply the SAE during a meta-
heuristic optimization run every time when an objective function evaluation
is required, but we have to keep in mind that F̃ (x) usually deviates from
F (x), and this is so even more if the sample size s is small. Increasing the
sample size s improves the accuracy of the SAE, but this comes at the price of
increasing the runtime. The resulting tradeoff has to be addressed by efficient
metaheuristic variants.

Several modifications of different metaheuristics have been proposed in the
literature for the treatment of SCO problems, e.g., in the SA field [18, 30, 2], in
the ACO field [23, 24, 4] or in the VNS field [29]. These techniques are usually

176 W.J. Gutjahr

variable-sample approaches extending the generic algorithm of Section 6.2 in
the following way: In step 2b of the generic algorithm, the evaluation of
the objective function values f(xi) is replaced by the determination of an
SAE F̃ (xi). Typically, the sample size s = st is increased from iteration to
iteration, but there are also variants where s is kept constant.

A crucial observation is that in this scenario, the best-so-far solution xbsf
t

cannot be determined anymore, since we cannot decide with certainty which
of two solutions x and y has the better objective function value; by increas-
ing s, a guess based on the SAEs F̃ (x) and F̃ (y) becomes more trustable,
but never certain. Convergence issues get very important in this framework,
because in a non-convergent situation, we would neither know which of the
visited solutions to deliver as the proposed solution nor when to stop the
algorithm: diminishing marginal gains of f(xbsf

t), as they can be used as a
stopping criterion in the deterministic context, do not give us a hint here.

The key idea to obtain convergence in the outlined stochastic context is to
carefully control the accuracy of the estimates F̃ (x) = F̃t(x) as t increases by
corresponding increments of the sample size s = st in iteration t, such that
the influence of randomness is gradually reduced while the metaheuristic
under consideration turns to more promising areas of the search space. As
a consequence, it becomes more probable in later phases that the global
optimum is recognized as such by the search procedure, whereas in earlier
phases, where the average solution quality is only small, it would be a waste
of time to strive for a very good accuracy in objective function evaluation.

In [30], this idea is carried out by proving that, on some conditions, con-
vergence in probability of SA carries over to the stochastic context. The
most essential condition is that the standard deviations of the noise variables
F̃t(x) − F (x) decrease as t → ∞ with an order O(t−γ) where γ > 1. Since
the variance of the SAE is inversely proportional to the sample size, this can
be achieved by letting the sample size st grow faster than quadratically in t.

A related approach has been followed in [23] for proving convergence of a
variant S-ACO of ACO proposed for SCO problems. In the design of S-ACO,
an attempt has been made to improve performance by considering, instead
of the current search point xt, something that corresponds to the best-so-
far solution xbsf

t in the deterministic context: Let x̂bsf
t denote the presumably

best-so-far solution in iteration t, defined by an arbitrary initialization in
iteration 1 and a replacement of x̂bsf

t each time when in some subsequent
iteration, the SAE F̃t(xt) of the current solution xt found in this iteration
turns out as better than the SAE F̃t(x̂

bsf
t). In other words, at the end of

each iteration t, we perform a tournament between the current x̂bsf
t and the

current xt, based on a sample of size st, and define the new presumably best-
so-far solution as the winner of this tournament. It is shown in [23] that for a
modification of the MMAS “algorithm 2” described above with a sample size
st growing at least linearly in t, convergence of x̂bsf

t to the optimal solution
of (6.6) is ensured.

6 Convergence Analysis of Metaheuristics 177

The tournament concept has also been used in [29] to present a provably
convergent version S-VNS of VNS for SCO problems. In the proof, a general
theorem by Homem-de-Mello [8] is applied, which can possibly also be useful
in the convergence analysis of other SCO-metaheuristics. Therefore, let us
shortly outline its idea.

Denote the vector of independent random numbers that are used in the
tournament of iteration t for the evaluation of F̃ (x̂bsf

t) and of F̃ (xt) (we
can take the same vector for both SAEs) by ωt = (ωt

1, . . . , ω
t
st

). The same
solution x can take part in the tournament in several iterations, possibly
even infinitely often. An interesting question is how fast the sample sizes st

have to be increased such that we can be sure that after sufficient time, a
suboptimal x is distinguished reliably from an optimal x, and (if present) only
optimal solutions will win the tournament in the future. Homem de Mellos’s
theorem, which is proved by large-deviations theory, answers this question:

Theorem 2 (Homem-de-Mello [8], Proposition 3.2). Suppose that for a
scheme (s1, s2, . . .) of sample sizes and independent random variables ωt

ν ,

(i) for each x ∈ S, the variances var[f(x, ωt
1)] are bounded by some constant

M(x) > 0,
(ii) the variables ωt

ν are identically distributed, and the SAEs

F̃t(x) = (1/st)
st∑

ν=1

f(x, ωt
ν)

are unbiased6, i.e., E(F̃t(x)) = F (x) for all x,
(iii)

∑∞
t=1 α

st <∞ for all α ∈]0, 1[.

Then for each x, we have F̃t(x)→ F (x) (t→∞) w. pr. 1.

In the S-VNS algorithm [29], a tournament is only performed at the end
of each macro iteration, where a macro iteration consists of a shaking step
followed by local search. For simplicity, let us apply t as an index for macro
iterations in the following. Convergence of S-VNS is shown as follows: First
of all, it is demonstrated that with a probability larger than zero, a macro
iteration finds an optimal solution x∗ and exposes it to the tournament. With
probability one, this even happens in infinitely many macro iterations. By
using Theorem 2, it is verified that for a specific realization of the stochastic
process, among all macro iterations where x∗ is exposed to the tournament,
there is one (say, macro iteration t∗) from which on the sampling error is
already small enough to distinguish reliably between optimal and suboptimal
solutions. In t∗ and in all subsequent macro iterations, an optimal solution
will win the tournament, which proves the assertion.

6 [8] also refers to a more general situation where E(f(x, ωt
ν)) can be different from F (x).

In our context, unbiasedness follows by definition.

178 W.J. Gutjahr

Condition (iii) of Theorem 1 requires that st grows fast enough. It is easy
to see that a growth proportional to t1/2 already satisfies condition (iii),
whereas a growth proportional to log t is yet too slow. The other conditions
of Theorem 2 are usually automatically satisfied.

We see that the proof relies on a convergence property of (only) best-so-far
type for the underlying deterministic VNS algorithm, which makes the result
weaker than those for SA and for ACO. It would be desirable to extend it to
a result of model-convergence type.

6.6 Convergence Speed

After having ensured convergence of a metaheuristic algorithm A, the natural
next question is “How fast does A converge on a given problem instance?”7

We have seen in the previous sections that for several metaheuristics, very
general convergence results, covering the whole range of CO problems, can
be derived. Unfortunately, it is rather unlikely that the next step can be to
show comparably broad positive results for the speed of convergence. The
reason lies in the so-called No-Free-Lunch Theorems (NFLTs) by Wolpert
and Macready [63] stating that in the average over all cost functions f :
S → W , where W is some value range, the expected performance of every
black-box optimization algorithm is the same. In particular, in this average,
no metaheuristic A is better than random search, and to every function f1
where A outperforms random search, there must be another function f2 where
random search outperforms A.

The chance to prove a convergence speed faster than that of random search
for an algorithm increases for restricted sets of problems or problem instances.
NFLTs do not hold within problem classes with restricted computational
complexity (see [11, 14, 15, 5]) or for objective functions with certain fit-
ness landscape properties (see [41, 42]). At the moment, however, it has not
yet been achieved to derive general convergence speed bounds using these
observations. Rather than that, the literature on the optimization time of
metaheuristic algorithms is split into a large number of single results for spe-
cial algorithms applied to special (usually rather simple) objective functions.
It cannot be the goal of this paper to survey these results. Overviews have re-
cently been given in [51] for evolutionary algorithms with the exception of the
swarm-intelligence algorithms ACO and PSO, and in [26] for ACO. However,

7 It does not make too much sense to raise the second question before the first is answered
at least for special problem instances and in the weakest possible meaning. E.g., if for an
algorithm A on a given problem instance, xbsf

t does not converge in probability to a set S̃ of

solutions considered as sufficiently good (which can be the set S∗), then the expected first

hitting time of S̃ is ∞. The concept of convergence or runtime “with overwhelming prob-
ability” has been used to deal with situations where non-convergence cannot be excluded,

but its interpretations are distinctly less intuitive than those of expected runtimes.

6 Convergence Analysis of Metaheuristics 179

a short recapitulation of some main tools for analyzing convergence speed
applicable to several metaheuristics may be helpful.

For the sake of brevity, we focus on the possibly most important perfor-
mance measure, the expected first hitting time E(T1) of the optimal solution,
where T1 is defined by (6.4). Note that in view of (6.5), the distribution func-
tion of T1 is given by t 7→ µt. If, from the viewpoint of application, it is
sufficient to reach a solution of some fixed minimum quality instead of the
exact optimum, the concept can easily be modified by considering E(T̃1) in-
stead of E(T1), where T̃1 is given as min{t ≥ 1 : f(xbsf

t) ≤ c} with some
aspiration level c for the cost function.

The following outline of methods is neither intended to be complete nor to
present all the formal details. Rather than that, the aim is the presentation
of some often applied basic ideas.

(1) Markov Chain Analysis
In the case where the memory content mt can only take finitely many

values, the property that the stochastic process (mt) is a Markov process can
be used directly for computing E(T1) — at least in principle. In this case,
(mt) is a (homogeneous) Markov chain. Examples are GHCs (including SA)
and GAs. For the ease of notation, let us assume in the sequel that the optimal
solution x∗ is unique, and that even the state m∗ of the memory producing
the optimal solution is unique; this scenario can easily be generalized to the
existence of several optimal memory states. We ask for the expected time
until state m∗ is visited first. Let P = (pij) (1 ≤ i, j ≤ N) denote the
transition matrix of the Markov chain. Arrange the indices of the possible
memory states in such a way that the largest index N corresponds to m∗, and
let P̂ denote the matrix obtained from P by deleting the Nth column and
the Nth line. Then it is well-known (see, e.g., Mühlenbein and Zimmermann
[50] or He and Yao [37]) that the vector ϑ = (ϑ1, . . . , ϑN−1) of the values for
E(T1) after a start in memory state 1, . . . , N − 1, respectively, computes as

ϑ = (I − P̂)−1 · 1N−1, (6.8)

where I is the identity matrix, and 1N−1 is the vector consisting of N − 1
ones. The inversion of the matrix I − P̂ may cause difficulties, but in some
special cases, explicit formulas can be derived. E.g., [50] gives a formula for
the case where I− P̂ has a tri-diagonal form, i.e., contains only three nonzero
elements in each line.

(2) State Space Decomposition and Subgoals
Usually, the state space becomes to large to be tractable directly by (6.8).

However, in some cases, it can be decomposed into subsets that are treated
equivalently by the metaheuristic under consideration. If the transition prob-
ability between an element of subset i and an element of subset j only depends
on i and j, then the Markov property is also satisfied for the “embedded”
chain which has the subsets as its states. This can reduce the size of the state

180 W.J. Gutjahr

space considerably. To give a simple concrete example, let us consider the
function

σα,β,n(y) =

 y, if 0 ≤ y < α,
−y + 2α, if α ≤ y < β,
y + 2α− 2β, if β ≤ y ≤ n

on {0, . . . , n}, where 0 < α < β < n and β < 2α. The function σ has a global
minimum at y = 0 and a local minimum at y = β. Furthermore, we define
the cost function

fα,β,n(x) = σα,β,n(|x|) (6.9)

on the set S = {0, 1}n of binary strings of length n, where |x| denotes the
number of 1-bits in x ∈ {0, 1}n. For minimizing f(x), we apply a GHC
where the random variable R takes the value 0 with probability 1 − p and
the value ∞ with probability p, such that better neighbors are always ac-
cepted, whereas worse neighbors are only accepted with probability p. (For
our special example, this can also be formulated in terms of SA.) A neighbor
solution to x is obtained by flipping a single bit in x. As subset i of the state
space, we consider all x ∈ S with |x| = i. Figure 6.1 shows the plot of the
expected first hitting time (assuming random initial states) in dependence of
the parameter p for the special case α = 8, β = 11 and n = 15, computed by
means of the formulas in [50]. The exploration-exploitation tradeoff is clearly
seen: Both for large p, where exploration dominates, and for small p, where
exploitation dominates, the runtime behavior of the GHC is suboptimal. For
a certain p = p∗, the expected first hitting time is minimized; in our example,
this happens for p∗ ≈ 0.215, resulting in E(T1) ≈ 234.3. Note that we have
set the parameter p to a fixed, time-independent value; gradually decreasing
it would possibly produce improved performance.8

Unfortunately, it is rather the exception than the regular case that af-
ter a decomposition of the space of memory states into subsets, the Markov
property remains valid for the subsets. The level reaching method for obtain-
ing runtime bounds, which has been developed in articles on evolutionary
algorithms (EAs) (cf. Droste et al. [12] or Borisovsky and Eremeev [6]), is
applicable in a broader range of cases. The basic idea of this method is to
define subgoals for the final goal of attaining a setM∗ of memory states pro-
ducing optimal solutions (or solutions considered as of sufficient quality). In
our generic framework, the method can be formulated as follows: Let M be
the set of all possible memory states. A hierarchy

H1 ⊇ H2 ⊇ . . . ⊇ HK =M∗

is defined, where Hk ⊆M stands for the set of all memory states on a certain
“quality level” k, and reaching this quality level is considered as “subgoal” k
(k = 1, . . . ,K). The algorithm under consideration must fulfill the mono-
tonicity constraint mt ∈ Hk ⇒ mt+1 ∈ Hk. The expected first hitting time

8 For the runtime analysis of SA with decreasing temperature, cf. Wegener [62].

6 Convergence Analysis of Metaheuristics 181

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

4

p

ex
pe

ct
ed

 fi
rs

t h
itt

in
g

tim
e

Fig. 6.1 Expected first hitting time of the GHC in dependence of the acceptance proba-
bility p for the illustration example.

tk of subset Hk, i.e., the expected time until subgoal k is reached for the first
time, is given by tk = E(min{t : mt ∈ Hk}).

In the analysis of a considered algorithm on a special problem instance,
one tries to identify upper bounds ηij for the expected runtime until satis-
fying subgoal j, provided that the algorithm starts in an arbitrary memory
state m ∈ Hi. Then, e.g., it holds that

tK ≤
K−1∑
i=1

ηi,i+1. (6.10)

Often, the algorithm performs independent trials to achieve Hi+1 from Hi.
Let in this situation αij > 0 be a lower bound for the probability that Hj

is reached after one iteration if the current state is in Hi. Then, we can set
ηi,i+1 = 1/αi,i+1 and apply (6.10). Borisovsky and Eremeev [6] also provide
stronger bounds on the values (t1, . . . , tK) derived from the matrix A = (αij)
in this more specific context.

A natural definition of subgoals derives from the possible cost function
values: Let φ1 > . . . > φK be the cost function values in decreasing order.
Assume that the current memory state mt contains xbsf

t as a component. By
defining Hk as the set of all memory states m for which f(xbsf) ≤ φk, the
required monotonicity property is satisfied. This principle has enabled the
derivation of several runtime results for EAs (cf. [61, 51]).

Recently, it has been shown that the level-reaching approach can also be
extended to continuous memory state spaces, as they occur in ACO, EDAs

182 W.J. Gutjahr

or PSO. The article [31] provides general lemmas to ensure the mathematical
validity of this extension, and derives expected first hitting time results for the
MMAS variant of ACO on several standard test functions analyzed previously
in the EA field.

(3) Martingales and Supermartingales
Let us consider again the Markov process (mt) and assume that the cur-

rently proposed solution xt is derived from the current state mt ∈ M,
i.e., xt = ψ(mt) with some function ψ. Furthermore, let us assume that
a distance function d on M is given, which allows it in particular to de-
fine the distance d(m,M∗) = min{d(m,m∗)|m∗ ∈ M∗} of a state m to the
set M∗ of memory states producing an optimal solution as the currently
proposed solution. A possible way to define d may, e.g., consist in setting
d(m,m′) = |f(ψ(m))−f(ψ(m′))|. For givenM∗, let us abbreviate d(m,M∗)
by d(m). We restrict the discussion to the case where M is a discrete finite
set. He and Yao [36, 38] define the one-step mean drift in state m as the
conditional expectation

E(d(mt)− d(mt+1) |mt = m) = d(m)−
∑
m′

p(m,m′)d(m′),

where p(m,m′) is the transition probability from state m to state m′. In the
case where the mean drift is always zero, the process (d(mt)) is a martingale,
which is a stochastic process (Yt) with the property E(Yt+1|Y1, . . . , Yt) =
Yt. For problem instances, however, that are not deceptive in the sense of
systematically misleading the search, it can happen that the drift is always
positive. In this case, (d(mt)) becomes a supermartingale, i.e., a process (Yt)
with E(Yt+1|Y1, . . . , Yt) ≤ Yt.

In [36, 38], drift analysis is applied to the runtime analysis of EAs on some
special functions, and general conditions for classifying a problem instance as
“easy” or “hard” for the considered algorithm are given, where “easy” and
“hard” mean expected first hitting times of polynomial and exponential order
in the problem instance size n, respectively. E.g., in [38], the following theorem
is shown: A problem belongs to the “easy” class if and only if there exists a
distance function d(m) such that (i) d(mt) ≤ g1(n) with a polynomial g1(n),
and E(d(mt)−d(mt+1) |mt) ≥ clow with a constant clow > 0 for any state mt

in any iteration t.

(4) ODE Approximations
The scenario of a continuous memory state space M causes particular

problems for the analysis, especially in the case where the search mechanism
does not rely on the best-so-far solution xbsf

t , but on other parts of the current
state, such that in a natural definition of the sets Hk defining subgoals, the
monotonicity property mentioned above is not satisfied anymore. An example
is the Ant System variant of ACO, introduced in [10]. In the analysis of this
algorithm, it is not clear how to define subgoals in a helpful way.

6 Convergence Analysis of Metaheuristics 183

A tool to enable a mathematical runtime analysis also in such cases is
the asymptotic approximation of the stochastic process by a limiting process
obtained by letting some parameter tend to a boundary value. In the Ant
System case, this can be done for the evaporation rate ρ, as shown in [25, 27]:
If ρ → 0 (which is a meaningful asymptotic for ACO in view of one of the
convergence results outlined in Section 6.4 which has ρt → 0), the Ant System
process approaches a limiting process where the pheromone vector (i.e., the
current memory state) follows a deterministic dynamic, described by a system
of ordinary differential equations (ODEs). On the other hand, the sample
points in Lt still remain stochastic, which means that the explorative capacity
of the algorithm is not reduced. Conclusions on convergence and on expected
first hitting time for special test functions can be derived, see [25, 27]. A
similar approach has been presented in [52]. This technique is still relatively
new in the literature on analysis of metaheuristics, such that its potential
will yet have to be explored in the future.

6.7 Conclusions

In this paper, several notions of convergence in the context of optimization
by metaheuristics have been discussed, and some fundamental mathematical
proof ideas for showing convergence of special metaheuristic algorithms for
all CO problems have been presented. In particular, we have distinguished
between a weaker form of convergence termed best-so-far convergence, and a
stronger form termed model convergence. Examples of algorithms owing one
or both of these types of convergence properties have been given.

Let us shortly outline some open research topics. Several metaheuristic
variants have not even been shown to converge in a best-so-far sense; as
an example, let us mention ACO variants without pheromone bounds and
working only with iteration-best reinforcement. It would be interesting to find
out under which conditions these variants converge to the optimum at all.
An obvious other topic of future research is of course to strengthen existing
convergence results of best-so-far type, as available for a large class of other
metaheuristic variants, to results of model convergence type.

Another open problem has already been outlined at the end of Subsec-
tion 6.4.2: the investigation of the connections between convergent or “sub-
convergent” parameter schemes for an algorithm to its performance within
finite time (measured, e.g., by the average achieved solution quality).

In the field of convergence speed analysis, it seems that at the moment,
the area of open problems is much larger that that of available results. Be-
sides the challenging goal of analyzing the performance of metaheuristics on
NP-complete problems, it may also be important to strive for more gen-
eral results than those available at present. Although no-free-lunch theorems
(cf. Section 6.6) set limits to generalizability, one might attempt to identify

184 W.J. Gutjahr

runtime-relevant properties common to larger classes of different problems
(e.g., fitness landscape properties) and to study the impacts of these proper-
ties on the runtime behavior in depth.

A final remark concerns “mat-heuristic” algorithms combining a meta-
heuristic approach with mathematical programming techniques. At the mo-
ment, convergence results for such algorithms (as an example, let us mention
the well-known Local Branching algorithm by Fischetti and Lodi [16]) seem
to be yet unavailable. As mentioned in the introduction, a rigorous math-
ematical analysis of algorithms would be especially desirable in this field
overlapping with that of traditional mathematical optimization.

References

1. E.H.M. Aarts and J.H.L. Korst. Simulated Annealing and Boltzmann Machines. John

Wiley and Sons, Chichester, UK, 1990.
2. M.H. Alrefaei and S. Andradóttir. A simulated annealing algorithm with constant

temperature for discrete stochastic optimization. Management Science, 45:748–764,
1999.

3. L. Bianchi, M. Dorigo, L.M. Gambardella, and W.J. Gutjahr. A survey on metaheu-
ristics for stochastic combinatorial optimization. Natural Computing, to appear.

4. M. Birattari, P. Balaprakash, and M. Dorigo. The ACO/F-Race algorithm for com-
binatorial optimization under uncertainty. In K.F. Doerner, M. Gendreau, P. Greis-
torfer, W.J. Gutjahr, R.F. Hartl, and M. Reimann, editors, Metaheuristics—Progress

in Complex Systems Optimization, pages 189–203. Springer Verlag, Berlin, Germany,
2006.

5. Y. Borenstein and R. Poli. Information perspective of optimization. In T.P. Runarsson,
H.-G. Beyer, E.K. Burke, J.J. Merelo Guervós, L.D. Whitley, and X. Yao, editors,
Proceedings of the 9th Conference on Parallel Problem Solving from Nature, volume

4193 of Lecture Note in Computer Science, pages 102–111. Springer Verlag, Berlin,
Germany, 2006.

6. P.A. Borisovsky and A.V. Eremeev. A study on the performance of the (1+1)-

evolutionary algorithm. In K.A. De Jong, R. Poli, and J.E. Rowe, editors, Proceedings
of Foundations of Genetic Algorithms, volume 7, pages 271–287. Morgan Kaufmann
Publishers, San Mateo, CA, 2003.

7. J. Brimberg, P. Hansen, and N. Mladenović. Convergence of variable neighborhood
search. Les Cahiers du GERAD G-2002-21, Groupe d’études et de recherche en analyse

des décisions (GERAD), Montréal, Canada, 2002.
8. T. Homem de Mello. Variable-sample methods for stochastic optimization. ACM

Transactions on Modeling and Computer Simulation, 13:108–133, 2003.
9. F. Van den Bergh and A.P. Engelbrecht. A study of particle swarm optimization

particle trajectories. Information Sciences, 176:937–971, 2006.
10. M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, 26:1–13,

1996.
11. S. Droste, T. Jansen, and I. Wegener. Perhaps not a free lunch but at least a free appe-

tizer. In W. Banzhaf, J.M. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M.J. Jakiela,
and R.E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation

Conference 1999, pages 833–839. Morgan Kaufmann, San Mateo, CA, 1999.
12. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary

algorithm. Theoretical Computer Science, 276:51–81, 2002.

6 Convergence Analysis of Metaheuristics 185

13. S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for randomized search

heuristics in black-box optimization. Theory of Computing Systems, 39(4):525–544,
2006.

14. T. English. Optimization is easy and learning is hard in the typical function. In

Proceedings of the 2000 Congress on Evolutionary Computation, volume 2, pages 924–
931. IEEE Press, Piscataway, NJ, 2000.

15. T. English. On the structure of sequential search: beyond no free lunch. In J. Gottlieb

and G.R. Raidl, editors, Evolutionary Computation in Combinatorial Optimization,
4th European Conference, EvoCOP 2004, volume 3004 of Lecture Notes in Computer

Science, pages 95–103. Springer Verlag, Berlin, Germany, 2004.

16. M. Fischetti and A. Lodi. Local branching. Mathematical Programming Ser. B, 98:23–
47, 2003.

17. S.B. Gelfand and S.K. Mitter. Analysis of simulated annealing for optimization. In
Proceedings of the 24th IEEE Conference on Decision and Control, pages 779–786,
1985.

18. S.B. Gelfand and S.K. Mitter. Simulated annealing with noisy or imprecise measure-
ments. Journal of Optimization Theory and Applications, 69:49–62, 1989.

19. F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of

International Series in Operations Research & Management Science. Springer, 2003.
20. C. Gonzalez, J.A. Lozano, and P. Larrañaga. Analyzing the PBIL algorithm by means

of discrete dynamical systems. Complex Systems, 11:1–15, 1997.

21. W.J. Gutjahr. A graph–based ant system and its convergence. Future Generation
Computer Systems, 16:873–888, 2000.

22. W.J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution.

Information Processing Letters, 82:145–153, 2002.
23. W.J. Gutjahr. A converging ACO algorithm for stochastic combinatorial optimization.

In A.A. Albrecht and K. Steinhöfel, editors, Stochastic Algorithms: Foundations and
Applications, Second International Symposium, SAGA 2003, volume 2827 of Lecture

Notes in Computer Science, pages 10–25. Springer Verlag, Berlin, Germany, 2003.
24. W.J. Gutjahr. An ant-based approach to combinatorial optimization under uncer-

tainty. In M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari, and

C. Blum, editors, ANTS’2004, Fourth International Workshop on Ant Algorithms
and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages
238–249. Springer Verlag, Berlin, Germany, 2004.

25. W.J. Gutjahr. On the finite-time dynamics of ant colony optimization. Methodology
and Computing in Applied Probability, 8:105–133, 2006.

26. W.J. Gutjahr. Mathematical runtime analysis of ACO algorithms: survey on an emerg-
ing issue. Swarm Intelligence, 1:59–79, 2007.

27. W.J. Gutjahr. First steps to the runtime complexity analysis of ant colony optimiza-
tion. Computers & Operations Research, 35:2711–2727, 2008.

28. W.J. Gutjahr. Stochastic search in metaheuristics. Technical report, Department of
Statistics and Decision Support Systems, University of Vienna, 2008.

29. W.J. Gutjahr, S. Katzensteiner, and P. Reiter. A VNS algorithm for noisy prob-
lems and its application to project portfolio analysis. In J. Hromkovic, R. Královic,
M. Nunkesser, and P. Widmayer, editors, Stochastic Algorithms: Foundations and
Applications, Second International Symposium, SAGA 2007, volume 4665 of Lecture

Notes in Computer Science, pages 93–104. Springer Verlag, Berlin, Germany, 2007.
30. W.J. Gutjahr and G. Pflug. Simulated annealing for noisy cost functions. Journal of

Global Optimization, 8:1–13, 1996.
31. W.J. Gutjahr and G. Sebastiani. Runtime analysis of ant colony optimization with

best-so-far reinforcement. Methodology and Computing in Applied Probability, 10:409–
433, 2008.

32. B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Re-

search, 13:311–329, 1988.

186 W.J. Gutjahr

33. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applica-

tions. European Journal of Operational Research, 130:449–467, 2001.
34. R.F. Hartl. A global convergence proof for a class of genetic algorithms. Technical

report, Institut für Ökonometrie & Operations Research, Technische Universität Wien,
1990.

35. J. He and X. Yao. Conditions for the convergence of evolutionary algorithms. Journal
of Systems Architecture, 47:601–612, 2001.

36. J. He and X. Yao. Drift analysis and average time complexity of evolutionary algo-

rithms. Artificial Intelligence, 127:57–85, 2003.
37. J. He and X. Yao. Towards an analytic framework for analysing the computation time

of evolutionary algorithms. Artificial Intelligence, 145:59–97, 2003.
38. J. He and X. Yao. A study of drift analysis for estimating computation time of

evolutionary algorithms. Natural Computing, 3:21–35, 2004.
39. H.H. Hoos. On the runtime behavior of stochastic local search algorithms for SAT.

In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages

661–666. AAAI Press / The MIT Press, Menlo Park, CA, USA, 1999.
40. H.H. Hoos and T. Stützle. Local search algorithms for SAT: an empirical investigation.

Journal of Automated Reasoning, 24:421–481, 2000.
41. C. Igel and M. Toussaint. On classes of functions for which no free lunch results hold.

Information Processing Letters, 86:317–321, 2003.
42. C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform distributions of

target functions. Journal of Mathematical Modelling and Algorithms, 3:313–322, 2004.
43. S.H. Jacobson, K.A. Sullivan, and A.W. Johnson. Discrete manufacturing process de-

sign optimization using computer simulation and generalized hill climbing algorithms.
Engineering Optimization, 31:147–260, 1998.

44. S.H. Jacobson and E. Yuecesan. Analyzing the performance of generalized hill climbers.
Journal of Heuristics, 10:387–405, 2004.

45. J. Jaegerskuepper. Lower bonds for hit-and-run direct search. In J. Hromkovic,

R. Královic, M. Nunkesser, and P. Widmayer, editors, Stochastic Algorithms: Founda-
tions and Applications, Second International Symposium, SAGA 2007, volume 4665 of
Lecture Notes in Computer Science, pages 118–129. Springer Verlag, Berlin, Germany,

2007.
46. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments—a survey.

IEEE Transactions on Evolutionary Computation, 9:303–317, 2005.
47. J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of the

IEEE International Conference on Neural Networks, pages 1942–1948. IEEE Press,
Piscataway, NJ, 1995.

48. J. Kennedy and R.C. Eberhart. A discrete binary version of the particle swarm algo-
rithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man,
and Cybernetics, volume 5, pages 4104–4109. IEEE Press, Piscataway, NJ, 1997.

49. L. Margolin. On the convergence of the cross-entropy method. Annals of Operations

Research, 134:201–214, 2005.
50. H. Muehlenbein and J. Zimmermann. Size of neighborhood more important than

temperature for stochastic local search. In Proceedings of the 2000 Congress on Evo-

lutionary Computation, volume 2, pages 1017–1024. IEEE Press, Piscataway, NJ, 2000.
51. P.S. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algorithms for

combinatorial optimization: a decade of results. International Journal of Automation
and Computing, 4:281–293, 2007.

52. P. Purkayastha and J.S. Baras. Convergence results for ant routing algorithms via
stochastic approximation and optimization. In Proceedings of the 46th IEEE Confer-

ence on Decision and Control, pages 340–345. IEEE Press, Piscataway, NJ, 2007.
53. R.Y. Rubinstein. The cross-entropy method for combinatorial and continuous opti-

mization. Methodology and Computing in Applied Probability, pages 127–170, 1999.
54. G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions

on Neural Networks, 5:96–101, 1994.

6 Convergence Analysis of Metaheuristics 187

55. G. Sebastiani and G.L. Torrisi. An extended ant colony algorithm and its convergence

analysis. Methodology and Computing in Applied Probability, 7:249–263, 2005.
56. J.C. Spall, S.D. Hill, and D.R. Stark. Theoretical framework for comparing sev-

eral stochastic optimization algorithms. In G. Calafiore and F. Dabbene, editors,

Probabilistic and Randomized Methods for Design under Uncertainty, pages 99–117.
Springer Verlag, London, UK, 2006.

57. T. Stützle and M. Dorigo. A short convergence proof for a class of ACO algorithms.

IEEE Transactions on Evolutionary Computation, 6:358–365, 2002.
58. T. Stützle and H.H. Hoos. MAX −MIN ant system. Future Generation Computer

Systems, 16:889–914, 2000.

59. A.S. Thikomirov. On the convergence rate of the Markov homogeneous monotone
optimization method. Computational Mathematics and Mathematical Physics, 47:817–

828, 2007.
60. I.C. Trelea. The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information Processing Letters, 85:317–325, 2003.

61. I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. In R. Sarker, M. Mohammadia, and X. Yao, editors, Evolutionary Opti-
mization, volume 48 of International Series in Operations Research & Management

Science. Kluwer Academic Publishers, Norwell, MA, 2003.
62. I. Wegener. Simulated annealing beats metropolis in combinatorial optimization. In

L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Automata,

Languages and Programming, 32nd International Colloquium, ICALP 2005, volume
3580 of Lecture Notes in Computer Science, pages 589–601. Springer Verlag, Berlin,
Germany, 2005.

63. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1:67–82, 1997.

64. Y. Yu and Z.-H. Zhou. A new approach to estimating the expected first hitting time
of evolutionary algorithms. In Proceedings of the Twentyfirst National Conference on

Artificial Intelligence, pages 555–560. AAAI Press / The MIT Press, Menlo Park, CA,
USA, 2006.

65. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combi-

natorial optimization: a critical survey. Annals of Operations Research, 131:373–379,
2004.

Chapter 7

MIP-based GRASP and Genetic
Algorithm for Balancing Transfer Lines

Alexandre Dolgui, Anton Eremeev, and Olga Guschinskaya

Abstract In this chapter, we consider a problem of balancing transfer lines
with multi-spindle machines. The problem has a number of distinct features
in comparison with the well-studied assembly line balancing problem, such as
parameterized operation times, non-strict precedence constraints, and paral-
lel operations execution. We propose a mixed-integer programming (MIP)-
based greedy randomized adaptive search procedure (GRASP) and a genetic
algorithm (GA) for this problem using a MIP formulation. Both algorithms
are implemented in GAMS using the CPLEX MIP solver and compared
to problem-specific heuristics on randomly generated instances of different
types. The results of computational experiments indicate that on large-scale
problem instances the proposed methods have an advantage over the methods
from literature for finding high quality solutions. The MIP-based recombi-
nation operator that arranges the elements of parent solutions in the best
possible way is shown to be useful in the GA.

7.1 Introduction

The problem considered in this chapter consists in balancing a transfer line
where multi-spindle transfer machines without intermediate buffers are used.
This problem is referred to as the transfer line balancing problem (TLBP)
[5]. Machining transfer lines are usually paced and serial. They consist of
a sequence of stations linked by an automated material handling device. In

Alexandre Dolgui · Olga Guschinskaya
Ecole Nationale Supérieure des Mines de Saint Etienne, Saint Etienne, France
e-mail: {dolgui,guschinskaya}@emse.fr

Anton Eremeev
Omsk Branch of Sobolev Institute of Mathematics SB RAS, Omsk, Russia

e-mail: eremeev@ofim.oscsbras.ru

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 189

DOI 10.1007/978-1-4419-1306-7 7, c© Springer Science+Business Media, LLC 2009

{dolgui,guschinskaya}@emse.fr
eremeev@ofim.oscsbras.ru

190 A. Dolgui, A. Eremeev, and O. Guschinskaya

lines of this type, each station is equipped by a special machine-tool which
performs machining operations block by block. All operations of each block
are executed simultaneously using one multi-spindle head. The parallel execu-
tion of operations in a block is possible due to the fact that the multi-spindle
heads carry several simultaneously activated tools. When machining at the
current station is finished (all blocks installed on this machine have been ac-
tivated) the part is moved to the next station. The time span between two
movements can not exceed the given time value T0 referred to as line cycle
time. The balancing problem consists in assigning the given set of operations
to parallel blocks and stations under given assignment restrictions.

The line balancing problem in the assembly environment is well-studied
in the literature. Several reviews of different formulations and used solution
methods are available e.g. in [1, 2, 9]. The TLBP has a number of unique
characteristics such as parameterized operation times, non-strict precedence
constraints, and parallel operations execution. These features make it impos-
sible to use directly the optimization methods developed for assembly line
balancing problems; for details see [5]. Several exact (e.g. mixed-integer pro-
gramming and graph approaches) and heuristic (e.g. FSIC (First Satisfy In-
clusion Constraints) and multi-start decomposition algorithm) methods have
been developed for the TLBP. A description of these methods is given in
[10]. Later, in [11] it was proposed to use greedy randomized adaptive search
procedures (GRASP) for solving this problem.

In this chapter, we propose a MIP-based greedy randomized adaptive
search procedure (GRASP) and a genetic algorithm (GA) for the TLBP,
using the MIP formulation [5] of the TLBP in both algorithms. The solution
construction and the local improvement stages of GRASP are based on solv-
ing sub-problems of smaller size. The same solution construction method is
used for building the initial population in the GA. The crossover and mu-
tation in the GA are combined in a MIP-recombination operator, similar to
the recombination proposed in [3].

Both algorithms are implemented in GAMS using the CPLEX MIP solver
and compared to problem-specific heuristics [10] on randomly generated in-
stances of different types. The results of computational experiments indicate
that on large problem instances the methods proposed offer an advantage
over the methods from literature in finding high quality solutions. The capa-
bility of the MIP-recombination operator to arrange the elements of parent
solutions in the best possible way is shown to be useful in the GA.

The chapter is organized as follows. The problem statement in the MIP
formulation is given in Section 7.2. The solution methods are discussed in
Sections 7.3 and 7.4. The results of computational experiments are presented
in Section 7.5. Concluding remarks are given in Section 7.6.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 191

7.2 Problem Statement

For the TLBP the following input data are assumed to be given [5]:

• N is the set of all operations involved in machining of a part;
• T0 is the maximal admissible line cycle time;
• τS and τ b are the auxiliary times needed for activation of a station and a

spindle head (block), respectively;
• C1 and C2 are the relative costs of one station and one spindle head (block);
• m0 is the maximal admissible number of stations;
• n0 is the maximal number of spindle heads (blocks) per station;
• Precedence constraints between the operations. These constraints define

a non-strict partial order relation over the set of operations N. They are
represented by a digraph G = (N, D). An arc (i, j) ∈ N2 belongs to
the set D if and only if the block with operation j cannot precede the
block with operation i. (If (i, j) ∈ D then the operations i and j can be
performed simultaneously in a common block.)

• Inclusion constraints defining the groups of operations that must be as-
signed to the same station, because of a required machining tolerance.
These constraints can be represented by a family ES of subsets of N, such
that all operations of the same subset e ∈ ES must be assigned to the
same station;

• Station exclusion constraints defining the groups of operations that cannot
be assigned to the same station because of their technological incompati-
bility. These constraints are represented by a family ES of subsets of N,
such that all elements of the same subset e ∈ ES cannot be assigned to
the same station.

• Block exclusion constraints defining the groups of operations that cannot
be assigned to the same block because of their technological incompatibil-
ity. These constraints are represented by a family EB of subsets from N,
such that all elements of the same subset e ∈ EB cannot be assigned to
the same block.

• For each operation j, its processing time tj is given or, alternatively, it may
be characterized by two parameters: the required working stroke length λj

and the maximal admissible feed per minute sj . The working stroke length
includes the required depth of cut and the distance between the tool and
the part surface.

A MIP formulation for solving the TLBP was suggested in [5]. Here, we
reproduce this model with the improvements proposed in [10].

Let us denote the set of all operations assigned to station k by Nk and
let the set of operations grouped into block l of station k be Nkl. Station
processing time tS(Nk) equals the sum of its block processing times: tS(Nk) =∑nk

l=1 t
b(Nkl) + τS .

We will consider two definitions of block processing time. A simplified
definition [10] uses the assumption that the block processing time tb(Nkl) is

192 A. Dolgui, A. Eremeev, and O. Guschinskaya

equal to the duration of the longest operation in the block:

tb(Nkl) = max{tj |j ∈ Nkl}+ τ b. (7.1)

A more general definition [12] does not use the processing times of opera-
tions tj , but rather the parameters λj and sj :

tb(Nkl) =
max{λi|i ∈ Nkl}
min{si|i ∈ Nkl}

+ τ b. (7.2)

Note that the latter definition covers the first case, assuming λj = tj , sj = 1
for all j. Besides that, it suits better the practical situations where the oper-
ations assigned to several tools fixed within one block may require different
depths of their cuts and different maximal admissible feed speeds.

In the MIP formulation below we use the following notation:

• q is the block index; q = (k − 1)n0 + l is the l-th block of a station k;
• q0 is the maximal possible value of q, q0 = m0n0;
• S(k) = {(k − 1)n0 + 1, . . . , kn0} is the set of block indices for a station k;
• Q(j) is the set of indices q (blocks) where operation j can be assigned;
• K(j) is the set of indices k (stations) where operation j can be assigned;
• e is a set of operations which is an element of ES, ES or EB;
• j(e) is an arbitrarily fixed operation from the set e.
• tj is the execution time of operation j if it is performed alone in a block.

In the simplified formulation, tj is given as input data. Otherwise, tj = λj

sj
.

• tij = max{λi,λj}
min{si,sj} is the execution time of two operations i, j if they are

performed in one block. In the simplified formulation this value is not
used.

The following variables will be involved:

• Xjq is a binary decision variable (1 if operation j is assigned to block q
and 0 otherwise);

• Fq is an auxiliary real-valued variable for determining the time of process-
ing the block q;

• Yq is an auxiliary binary variable that indicates if the block q exists;
• Zk is an auxiliary binary variable that indicates if the station k exists.

The variables Yq and Zk are used to count the number of blocks and
stations, respectively. To reduce the number of decision variables and con-
straints, the sets of possible block and station indices Q(j), K(j) for each
operation j are obtained by means of the procedure described in [5].

The problem consists in the minimization of investment costs incurred by
construction of stations and spindle heads (blocks):

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 193

Min C1

m0∑
k=1

Zk + C2

q0∑
q=1

Yq (7.3)

subject to ∑
q∈Q(j)

(q − 1)Xjq ≥
∑

s∈Q(i)

(s− 1)Xis, (i, j) ∈ D, (7.4)

∑
q∈Q(j)

Xjq = 1, j ∈ N, (7.5)

∑
j∈e\{j(e)}

∑
q∈S(k)∩Q(j)

Xjq = (|e| − 1)
∑

q∈S(k)

Xj(e)q, e ∈ ES, k ∈ K(j(e)),

(7.6)∑
j∈e

Xjq ≤ |e| − 1, e ∈ EB, q ∈ ∩j∈eQ(j), (7.7)

∑
j∈e

∑
q∈S(k)∩Q(j)

Xjq ≤ |e| − 1, e ∈ ES, k ∈ ∩j∈eK(j), (7.8)

Fq ≥ (ti + τ b)Xiq, i ∈ N, q ∈ Q(i), (7.9)

Fq ≥ (tij + τ b)(Xiq +Xjq − 1), i, j ∈ N, i < j, q ∈ Q(i) ∩Q(j), (7.10)

τS +
∑

q∈S(k)

Fq ≤ T0, k = 1, 2, . . . ,m0, (7.11)

Yq ≥ Xjq, j ∈ N, q ∈ Q(j), (7.12)

Zk = Y(k−1)n0+1, k = 1, 2, . . . ,m0, (7.13)

Yq−1 − Yq ≥ 0, q ∈ S(k)\{(k − 1)n0 + 1}, k = 1, 2, . . . ,m0, (7.14)

Zk−1 − Zk ≥ 0, k = 2, 3, . . . ,m0, (7.15)

Xjq, Yq, Zk,∈ {0, 1}, j ∈ N, q = 1, 2, . . . , q0, k = 1, . . . ,m0, (7.16)

194 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fq ∈ [0, T0 − τS − τ b], q = 1, 2, . . . , q0. (7.17)

Here inequalities (7.4) impose the precedence constraints; equalities (7.5) re-
flect the fact that each operation must be assigned to exactly one block; con-
straints (7.6) determine the necessity of grouping certain operations in the
same station; constraints (7.7)-(7.8) deal with the impossibility of grouping
certain operations in one block or executing certain operations at the same
station, respectively; constraints (7.9) and (7.10) determine the block pro-
cessing times according to (7.1) or (7.2): here condition (7.9) corresponds to
the case of a single operation in a block, while (7.10) covers the cases of two
or more operations (note that in the simplified formulation with block time
defined by (7.1), inequality (7.10) is redundant); constraint (7.11) imposes
the bound on cycle time; constraints (7.12) ensure that block q exists in the
design decision if and only if Xjq = 1 for some j; equalities (7.13) ensure
that a station k exists in the design decision if and only if at least one block
is assigned to it; constraints (7.14) guarantee that block q is created in sta-
tion k only if block q−1 exists for this station; constraints (7.15) ensure that
station k can be created only if station k − 1 is created.

Inequalities (7.14) and (7.15) mainly serve as symmetry-breaking cuts in
this model (note that by a simple modification of (7.13) one could make
these inequalities redundant). Bounds (7.16) are also imposed to reduce the
polyhedron of the linear relaxation. One could assume that all variables Yq

and Zk are real values from the interval [0,1] but we do not use this assump-
tion, because our preliminary experiments indicate that binary variables Yq

and Zk yield a more appropriate problem formulation for the CPLEX MIP
solver.

Another modification that can improve the performance of branch-and-cut
algorithms consists in adding a relatively small penalty term to the objective
function. The greater is the block number where an operation is assigned,
the greater penalty is given:

Min C1

m0∑
k=1

Zk + C2

q0∑
q=1

Yq + C3

q0∑
q=1

∑
j∈N

(1− q)Xjq. (7.18)

Here, the weight C3 may be chosen sufficiently small, so that the opti-
mal solution of the modified problem (7.4)–(7.18) is also optimal for prob-
lem (7.3)–(7.17). The penalty term breaks some symmetries of the problem
and provides appropriate bias when the branching is made. Our experiments
indicate that for faster search of approximate solutions the value C3 may be
chosen adaptively (see the details in Section 7.5).

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 195

7.3 Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start metaheuristic algorithm, where each iteration con-
sists of two phases: constructing a feasible solution and improving it. Both
phases are repeated interchangeably until a stopping criterion is satisfied.
Extensive bibliographies on GRASP were published in [8, 16]. The general
scheme of GRASP is as follows:

GRASP method
Until a stopping criterion is satisfied do:
1. Construct a random feasible solution.
2. If a feasible solution is constructed,

apply a local improvement procedure to it.
3. Update the best found solution.

7.3.1 Construction Phase

In the case of the TLBP, a feasible solution at Step 1 can be obtained by
applying a randomized greedy heuristic algorithm (see, e.g., [13]). The MIP-
based greedy algorithm for the TLBP starts from a transfer line with an
empty set of blocks, and then the blocks are created consecutively. A feasible
solution is constructed by adding a set N t

add of one or more operations at each
step t of the greedy algorithm. We will denote by N t the set of operations
that have been assigned to stations on steps 1, . . . , t assuming N0 = ∅.

The set N t
add is constructed by a randomized procedure which has two

tunable parameters α ∈ [0, 1] and β ∈ {1, . . . , |N|}. Adjustment of α and
β will be discussed in Section 7.5. At the beginning of step t it is assumed
that N t

add = ∅, then it is extended in the following loop:

1. Compute the set of candidate operations NCL, consisting of all operations
that can be allocated after the set of operations N t−1 ∪ N t

add in view of
inclusion and precedence constraints. To this end, we use a supplementary
digraph G′ = (N, D′) which is obtained from G by adding the arcs (i, i′)
for all pairs i, i′ such that i ∈ e, i′ ∈ e for some e ∈ ES, and by taking the
transitive closure of this extended digraph. The inclusion and precedence
constraints will not be violated if a new operation j is executed after all
operations of the set N t−1 ∪N t

add, provided that N t−1 ∪N t
add contains all

such i that (i, j) ∈ D′ and (j, i) 6∈ D′. The graph G′ may be computed
by means of Warshall’s algorithm in time O(|N|3), before the GRASP
iterations begin.

2. Rank the operations in NCL according to the values of greedy function g(j)
(this function will be described later). Find

196 A. Dolgui, A. Eremeev, and O. Guschinskaya

gmax = max{g(j) : j ∈ NCL} and gmin = min{g(j) : j ∈ NCL}.

3. Place the well-ranked candidate operations j with g(j) ≥ gmax−α(gmax−
gmin) into a set NRCL, called restricted candidate list. The parameter α
controls the trade-off between randomness and greediness in the construc-
tion process.

4. Select an element j uniformly at random from NRCL and add j to the
set N t

add.
5. Include into N t

add all operations i such that (i, j) ∈ D′ and (j, i) ∈ D′ (the
precedence and inclusion constraints imply that these operations must be
placed in the same block with j).

This loop continues until β iterations are made or there are no more opera-
tions to add, i.e. N t−1 ∪N t

add = N.
The iterations of the greedy algorithm continue until either all operations

are assigned and a feasible solution is obtained or it is impossible to create a
new station since m+ 1 > m0.

The greedy function g(j) measures the impact of assigning operation j
at the current iteration. Several greedy heuristics were elaborated for the
simple assembly line balancing problem with the greedy functions based on
priority rules; see, e.g., [17]. However, all previously considered priority rules
are based on the hypothesis that all operations are executed sequentially
and the operation times are cumulated. This hypothesis is not right for the
TLBP, where operations can be executed in parallel. As a consequence, the
greedy function can hardly be based on the known priority rules. We use
a simple greedy function g(j) equal to the lower bound on the number of
blocks required to assign all successors of operation j. This lower bound is
calculated by the algorithm suggested in [5].

Once the set N t
add is chosen, the operations of this set are appended to the

current partial solution which has been computed on the previous iterations.
Let us define for all j ∈ N, q = 1, . . . , q0 the set of values x(t)

jq , such that

x
(t)
jq = 1 if operation j is assigned to block q in the partial solution obtained

at iteration t, and x(t)
jq = 0 otherwise. Allocation of the new operations can be

carried out by means of a supplementary MIP problem. This MIP problem
is formulated by the set of constraints (7.4)–(7.17) and the objective func-
tion (7.18) but a large number of binary variables are fixed equal to zero as
described below.

Let kuse denote the number of the last station to which operations have
been assigned at the latest partial solution, i.e.

kuse = max

k | ∑
j∈N

∑
q∈S(k)

x
(t−1)
jq ≥ 1

 .

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 197

We aim to allocate the operations of the setN t
add to the stations with numbers

not greater than kmax = kuse + β (this is always possible if the problem is
solvable and kmax ≤ m0). To this end, we do not fix the variables Xjq with
j ∈ N t

add and q ≤ qmax, where qmax = kmaxn0. We also do not fix the
variables Xjq such that x(t−1)

jq = 1 or q = 1 + max{q|
∑

j∈N x
(t−1)
jq ≥ 1} to

allow some previously allocated operations to be moved into the first new
block, if it allows to save the cost. All the rest of the variables Xjq are fixed
to zero value. The resulting sub-problem at each step t of the greedy heuristic
is solved by a MIP solver. The value of parameter β is chosen experimentally
so that the resulting sub-problems involve as many operations as possible,
but the computational cost of the MIP solver in each iteration t is “not too
large”.

7.3.2 Improvement Phase

The improvement heuristic starts with a feasible solution obtained at the
construction phase in order to improve it. For this purpose, a MIP-based
modification of the decomposition algorithm with aggregate solving of sub-
problems (DAASS) [12] is used. The algorithm DAASS has already been used
with heuristic FSIC [4], which constructs a feasible solution without applying
any greedy function, in [10, 12].

The decomposition consists in cutting the sequence of stations correspond-
ing to the given feasible solution into several non-intersecting subsequences.
The size of each subsequence is chosen at random, as it is described below.
The total number w of such subsequences is known only at the end of the de-
composition procedure. A subsequence Kr, r = 1, . . . , w involving a random
number of stations kr, is used to generate a sub-problem SPr.

In DAASS, each sub-problem SPr is solved exactly by the graph approach
described in [6]. The results of previously solved sub-problems in DAASS
are taken into account while solving the next sub-problem: each block of
operations existing in the solution to SPr is replaced by a macro-operation
and all macro-operations are included in the consecutive sub-problem SPr+1.

In contrast to the DAASS method, the local improvement procedure used
in the present chapter is based on solving a series of sub-problems in MIP
formulation (7.4)–(7.18). To simplify the algorithm, at step r, r = 1, . . . , w
we do not construct the macro-operations in this heuristic, but simply fix all
binary variables non-related to the stations of setKr, equal to the correspond-
ing values of the best found solution. The remaining variables Xjq, Yq, q ∈
∪k∈Kr

S(k), and Zk, k ∈ Kr are optimized by a MIP solver.
In the randomized choice of the sets Kr we have to ensure that on one

hand, the size of a sub-problem is not “too small” and the solver can often
improve the heuristic solution, on the other hand, the size of a sub-problem is
not “too large” and it is possible to apply the solver in reasonable CPU time.

198 A. Dolgui, A. Eremeev, and O. Guschinskaya

The following parameters, are used to limit the size of the sub-problems [12]:
(i) the maximal number of stations kmax within one subsequence, that is the
maximum possible value of kr; (ii) the maximal number of operations nmax

within one subsequence.
The value kr is chosen uniformly at random within [1, kmax] and then can

be modified so that the total number of operations in the sub-problem does
not exceed Nmax and

∑w
r=1 kr is not greater than the number of stations in

the current heuristic solution.

7.4 Genetic Algorithm

A genetic algorithm is a random search method that models a process of
evolving a population of individuals [14, 15]. Each individual corresponds to
some solution of the problem (feasible or infeasible) and it is characterized
by the fitness which reflects the objective function value and the satisfaction
of problem constraints. The better the fitness value, the more chances are
given for the individual to be selected as a parent. New individuals are built
by means of a reproduction operator that usually consists of crossover and
mutation procedures. The crossover procedure produces the offspring from
two parent individuals by combining and exchanging their elements. The
mutation procedure adds small random changes to an individual. The formal
scheme of the GA with steady state replacement is as follows:

Steady-state scheme of the GA
1. Generate the initial population.
2. Assign t := 1.
3. Until a termination condition becomes true do:

3.1 Selection: choose p1, p2 from the population.
3.2 Produce a child c applying mutation and crossover to p1 and p2.

The crossover is used with probability Pc.
3.3 Choose the worst individual in population w.r.t. the fitness function

and replace it by c.
3.4 t:=t+1.

4. Result is the best found solution w.r.t. fitness function.

In our implementation of the GA the fitness function is identical with
the objective function. The choice of each parent on Step 3.1 is done by the
s-tournament selection: take s individuals at random from the population
(uniformly distributed, repetitions allowed) and select the best one w.r.t. the
objective function. The population size remains constant during the execution
of the GA - this parameter is denoted by Nind.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 199

In each iteration of a steady-state GA, most of the individuals of the
current population are kept unchanged, which is different from the canonical
GA proposed by Holland [14]. In many implementations of the steady-state
GA the offspring replace the worst individuals of the population, but there
are alternative replacement rules as well [15].

In this chapter, we will assume that the GA is restarted every time the
termination condition halts it. This continues until the overall execution time
will reach the limit T . The best solution found over all runs is returned as the
final output. In our computational experiments we have tested an alternative
approach, where the GA runs for the whole period T without restarts (see
Subsection 7.5.2) but it turned to be inferior to the GA with this restart rule.

Let θ be the iteration when the latest solution improvement took place.
The termination condition of GA is: restart if during the last θ iterations
there was no best-found solution improvement and t > Nind.

Encodings of solutions in a GA are usually called genotypes. One of the
most essential issues in the development of a GA is the choice of represen-
tation of solutions in genotypes. In the GA proposed in this chapter, the
genotype consists of values of the binary variables Xjq which describe the
whole assignment of operations. The genotypes of the initial population are
generated at random by Nind runs of the GRASP heuristic described in Sec-
tion 7.3.

MIP-Recombination

As proposed in [3], we combine mutation and crossover into a MIP-recom-
bination operator applied instead of Step 3.2 in the steady-state GA. In the
case of TLBP the MIP-recombination operator consists in solving a MIP
problem, which is obtained from the original problem (7.3)–(7.17) as follows:

MIP-recombination operator
1. Fix all Boolean variables equal to their values in p1.
2. Release all Boolean variables where p1 differs from p2

(analog of crossover).
3. Release a random subset of fixed variables independently with

probability Pm (analog of mutation).

In our implementation, the MIP-solver of CPLEX 11.1 is used to find the
optimum of the sub-problem emerging in the MIP-recombination. To avoid
time-consuming computations we set a time limit Trec for each call to the
solver. Unlike the standard GA crossover, the described MIP-recombination
procedure produces only one new individual at each iteration. If the parent
solutions are feasible, the solver always returns a feasible solution to the MIP-

200 A. Dolgui, A. Eremeev, and O. Guschinskaya

recombination sub-problem because the genotype of one of the parents is sent
to CPLEX as a MIP-start feasible solution.

The initial value of mutation parameter Pm is set to P 0
m and adapted in

the process of GA execution. Every time the MIP-recombination sub-problem
is solved to optimality, the parameter Pm is multiplied by 1.1. Whenever the
solver is unable to find an optimal solution within the time limit Trec, and
Pm > P 0

m, parameter Pm is divided by 1.1. This adaptive mechanism keeps
the complexity of the MIP-recombination problems close to the limit where
the solver is able to obtain exact solutions within the given time Trec.

7.5 Experimental Results

In this section, we compare the genetic algorithm and MIP-based GRASP
proposed in this chapter (further referred to as GA and MIP-GRASP, re-
spectively) to the following three heuristic and exact methods:

• the multi-start hybrid decomposition algorithm (henceforth denoted by
HD) combining DAASS [10, 12] with the FSIC heuristic, where FSIC is
used for construction of a feasible solution;

• the exact graph-based shortest path method [6, 10], denoted by SP;
• CPLEX 11.1 MIP-solver applied to problem (7.3)–(7.17) with the default

solver settings, denoted below by CPLEX.

7.5.1 Problem Instances

In the experiments, we use five test series S1-S5 from [10], each one containing
50 randomly generated instances and two new series S6 and S7, also randomly
generated but with more realistic data sets. Both series S6 and S7 consist of
20 instances. The number of operations and the upper bound m0 on the num-
ber of stations are shown in Table 7.1. Also, this table gives the precedence
constraints density, measured by the order strength (OS) of graph G. Here,
by order strength we mean the number of edges in the transitive closure of
graph G divided by |N|(|N| − 1)/2. In series S1-S5 we have C1 = 10, C2 = 2,
τ b = τS = 0, n0 = 4. In S6 and S7, C1 = 1, C2 = 0.5, τ b = 0.2, τS = 0.4,
n0 = 4.

The details on the random generation of series S1-S5 can be found in [10].
The series S6 and S7 consist of more realistic instances for two reasons. Firstly,
they contain non-trivial input data for parameters λj , sj , while series S1-
S5 in effect consist of problems in simplified formulation defined in terms
of operation times tj . Secondly, in S6 and S7 the pseudo-random choice of
operations was not performed independently and uniformly as in Series S1-
S5, but based on real-life data of typical shapes of the parts manufactured in

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 201

mechanical transfer lines. The random choice is applied to the shape of parts,
which further defines the parameters and mutual compatibility of operations.
The input data of the benchmarks in GAMS format can be found in the
Discrete Location Problems Benchmarks Library by http://www.math.nsc.
ru/AP/benchmarks/english.html.

7.5.2 Experimental Settings

The experiments were carried out on a Pentium-IV computer (3 GHz, 2.5 Gb
RAM). Both the GA and the MIP-GRASP were programmed in GAMS 22.8,
the rest of the algorithms being considered were coded in C++.

The tunable parameters of the constructive heuristic in MIP-GRASP and
in the GA initialization were chosen as follows: α = 0.25, β = 10. This tuning
was based on preliminary experiments with different values of α and β on
series S5. The frequency of finding best-known objective as a function for
different values of α and β in these trials can be seen on Figure 7.1. The
95% confidence intervals for probability of finding the best-known objective
value are displayed for β = 20. It follows from this figure that β = 20 is
preferable for series S5. We chose β = 10 for all subsequent experiments only
because on large problems of series S6 and S7 usage of β = 20 leads to so
hard sub-problems, that MIP-GRASP is sometimes unable to find a feasible
solution in the given amount of time.

On the basis of similar considerations, the parameters of the improvement
heuristic in MIP-GRASP were set to kmax = 15, nmax = 50.

We also found that the value of the penalty term C3 has a statistically
significant impact (p < 0.05) on the quality of MIP-GRASP results. In order
to choose C3 adaptively while solving a given instance in GA or MIP-GRASP,
we set it initially to such a small value that it does not change the optimal line
design (by solving two supplementary MIP problems). Further, parameter C3

is optimized by a simple one-dimensional search routine. This is done in MIP-
GRASP restarts or in the construction of the initial population for the GA,
using the average quality of solutions of the constructive heuristic as the
optimization criterion.

The CPLEX tolerance parameter optca in the greedy heuristic was set
to 2; parameter mipstart was set to 1 in the improvement heuristic and in

Table 7.1 Testing series

Series 1 2 3 4 5 6 7

|N| 25 25 50 50 100 46 - 92 94 - 125

OS 0.5 0.15 0.9 0.45 0.25 - -
m0 15 4 10 15 15 23 - 46 43 - 62

http://www.math.nsc.ru/AP/benchmarks/english.html
http://www.math.nsc.ru/AP/benchmarks/english.html

202 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fig. 7.1 Frequency of finding solutions with best-known objective value as a function of
parameter α for different values of β in MIP-GRASP on series S5.

the MIP recombination operator, the rest of CPLEX options were set as the
default. The termination conditions of the main loop in MIP-GRASP and in
the GA were triggered by reaching the given CPU time limit (see the tables
below).

In the experiments with the GA, we set the tournament size s = 5, and
the initial mutation probability P 0

m = 0.1. The time given for each call to the
MIP-recombination operator was Trec = 5 sec. The population size Nind was
set to 20 for all problems.

The GA restarting rule, described in Section 7.4, has been compared to
straightforward running GA for the whole period T without restarts. The
comparisons were carried out on the sets S3, S5 and S6, using the algorithmic
settings described in Subsection 7.5.3 below. The GA with restarts obtained
the best-known solutions more frequently on all three series. Besides that, on
series S5, its advantage was shown to be statistically significant with level
p < 0.02 in Wilcoxon matched pairs test. This motivated our choice of the
restarting rule.

7.5.3 Results

In the presentation of the obtained results, we use the following notation:
NS is the number of instances for which feasible solutions were found; NO
and NB are the number of instances where the optimal and the best-known
solutions were obtained, respectively; ∆max, ∆avg, ∆min are the percentage
of maximal, average and minimal deviation of the cost of solution from the
optimal or the best-known objective value, respectively; Tmax, Tav, Tmin are

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 203

Table 7.2 Results for series S1 and S2

Series 1 Series 2

SP CPLEX HD MIP-GRASP SP CPLEX HD MIP-GRASP

NS 50 50 50 50 50 50 50 50
NO 50 50 39 49 50 50 35 50

∆max 0 0 5.26 4.16 0 0 11.1 0

∆av 0 0 1.0 0.08 0 0 1.7 0
∆min 0 0 0.0 0.0 0 0 0 0

Tmax 11 841 90 90 1638 3.53 90 90

Tav 1.4 38 90 90 292 0.86 90 90
Tmin 0.03 0.39 90 90 3.77 0.06 90 90

the maximal, average and minimal running time. T ′av is the average time till
the final solution was found. Symbol ”-” stands for unavailable data. The
best result of a series is emphasized in bold.

7.5.3.1 Small Sized Instances

For the first two series, the available computational time was limited to 1800
seconds for the exact methods and to 90 seconds for the heuristics. The results
for series S1 and S2 are reported in Table 7.2. In both series the two exact
algorithms found the optima for all instances. One can see that the shortest
path method performs best on series S1 in terms of computational time.

For series S2, CPLEX is the best in terms of computational time. The
MIP-GRASP found all optima, outperforming HD, but these heuristics were
given more CPU time than CPLEX used. In fact the average time of finding
the optimal solution for MIP-GRASP was also greater than the CPLEX time.
The precision of MIP-GRASP is higher on this series than on series S1, which
is due to better performance of CPLEX solver on problems with low order
strength (see e.g. [10]). The GA was not tested on series S1 and S2 since they
are simple even for MIP-GRASP.

7.5.3.2 Medium Sized Instances

For solving the medium sized instances of series S3 and S4, the available
computational time was limited to 1800 seconds for the exact methods and
to 300 seconds for the heuristics. The results for series S3 and S4 are reported
in Tables 7.3 and 7.4.

On series S3, the shortest path method is again the best one both in terms
of the computation time and the quality of provided solutions. CPLEX found
the optimal solutions in all cases and MIP-GRASP missed the optimum twice.
The average and maximal time of finding the final solution for MIP-GRASP

204 A. Dolgui, A. Eremeev, and O. Guschinskaya

Table 7.3 Results for series S3

SP CPLEX HD MIP-GRASP GA

NS 50 50 50 50 50

NO 50 50 28 48 49

∆max 0 0 4.2 2.27 1.72
∆av 0 0 1.0 0.09 0.03

∆min 0 0 0 0 0

Tmax 0.09 463.4 300 300 300
Tav 0.04 41.1 300 300 300

Tmin 0.01 0.1 300 300 300

Table 7.4 Results for series S4

SP CPLEX HD MIP-GRASP GA

NS 14 20 50 50 50
NO 14 13 39 42 48

∆max - - 13.15 13.15 2.7
∆av - - 0.86 0.64 0.11

∆min - - 0 0 0

Tmax 1800 1800 300 300 300
Tav 1490.3 1519.0 300 300 300

Tmin 13.0 31.5 300 300 300

was 5.02 seconds and 66 seconds, respectively, which is much shorter than the
given running time. The GA demonstrated a similar behavior, slightly out-
performing MIP-GRASP. The results of the hybrid method HD are inferior
to those of all other algorithms in terms of the solution quality.

In series S4, the exact algorithms found feasible solutions in less than half
of the cases; see Table 7.4. The CPU times were similar for these methods. In
contrast, the heuristics were able to find feasible solutions in all cases, given a
six times shorter computation time. The overall quality of solutions is better
in the case of the GA. In general, this table shows that in cases of low density
of constraints even for the medium size problems the heuristic methods are
preferable, when the computational time is limited.

7.5.3.3 Large Sized Instances

The results for series S5 are reported in Table 7.5. The available compu-
tational time was limited to 5400 seconds for the exact methods and to 600
seconds for the heuristics. Both exact algorithms found less than 10 solutions;
therefore, they are excluded from the table. The heuristics found feasible solu-
tions in all 50 cases. In this series MIP-GRASP and GA demonstrate similar
behavior and it is hard to tell which one is better, while HD is definitely
inferior.

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 205

Table 7.5 Results for series S5

HD MIP-GRASP GA

NB 11 37 36

∆max 35.9 30.8 12.8

∆av 5.02 1.6 1.5
T ′

av - 93.4 102.9

Table 7.6 Results for series S6 and S7

Series 6 Series 7

HD MIP-GRASP GA HD MIP-GRASP GA

NB 10 8 15 6 2 17
∆max 7.6 5.55 4.35 6 5.26 1.28
∆av 1.76 1.59 0.72 2.26 1.87 0.16
T ′

av - 360.4 423.57 - 1603 1323.5

Table 7.6 contains the results for series S6 and S7 with a more complex
formulation based on Equation (7.2). The stand-alone CPLEX MIP solver
was able to solve these problems only in several cases within 5400 seconds,
so the exact results are not displayed. The computational time given to the
heuristics was 900 seconds for S6 and 3000 seconds for S7. This table indicates
that HD is performing similar to MIP-GRASP for what concerns the average
and worst case solution quality, but HD outperforms MIP-GRASP concerning
the number of best-known solutions it has found.

The GA, however, tends to outperform significantly the two other heuris-
tics on both series S6 and S7. Most likely, this advantage of the GA is due
to the effect of the MIP-recombination which constitutes the main difference
of the GA from MIP-GRASP. In order to evaluate the significance of com-
bining traits of the parent solutions in the MIP-recombination, we modified
the GA so that the full MIP-recombination is performed only with a given
probability Pr, otherwise we skip Step 2 in the MIP-recombination routine
(this corresponds to mutation without crossover). In Figure 7.2 one can see
the frequency of finding the best seen solution as a function of probability Pr

for series S3, S5, S6 and S7. This figure indicates that except for the simplest
set of instances S3, the capability to combine the features of both parents in
a best possible way provides better output of the algorithm. This observa-
tion is also supported by the Wilcoxon matched pairs test (p < 0.1 for S5,
p < 0.05 for S6).

206 A. Dolgui, A. Eremeev, and O. Guschinskaya

Fig. 7.2 Frequency of finding solutions with best-known objective values as a function of

probability Pr.

7.6 Conclusions

In our study, firstly a GRASP approach has been developed in the MIP
framework for balancing the transfer lines with multi-spindle transfer ma-
chines. The solution construction and local improvement procedures have
been implemented in the GAMS environment and the results of computa-
tional experiments indicate that the method obtained is quite competitive,
especially, for large-scale instances. It is important that due to the flexibil-
ity of the MIP modelling tools and robustness of the modern MIP solvers,
this approach is applicable to many other large-scale problems, where the
straightforward usage of branch-and-cut techniques does not yield satisfac-
tory results.

After that, the research was aimed at the development of a more complex
genetic algorithm for the TLBP, using GRASP as a supplementary heuristic
for building the initial population. Although for the TLBP instances of small
size this approach is not helpful, for the most difficult series of benchmarks,
which are not solvable by exact methods in a reasonable amount of time, this
method has a significant advantage.

The MIP-based recombination operator is shown to be useful in the genetic
algorithm. In view of the wide applicability of general-purpose MIP solvers,
we expect that the MIP-recombination approach may be successfully applied
for many other problems (see e.g. [3]). However, in the cases where the optimal

7 MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines 207

recombination can be carried out by polynomial-time algorithms [7], these
algorithms should be preferable to general purpose MIP solvers.

In subsequent research it would be valuable to compare the MIP-based
approach for GRASP and GA with alternative approaches to metaheuristics,
which use the shortest path method in a supplementary graph. Also, it might
be helpful to implement grouping of operations into macro-operations in the
improvement phase of the MIP-based GRASP. Questions of parameters tun-
ing should be considered as well.

Acknowledgements The authors thank Michael R. Bussieck for helpful discussions on
better usage of GAMS potential. The research is supported by the Russian Foundation for

Basic Research, grant 07-01-00410.

References

1. I. Baybars. A survey of exact algorithms for the simple assembly line balancing.
Management Science, 32:909–932, 1986.

2. C. Becker and A. Scholl. A survey on problems and methods in generalized assembly
line balancing. European Journal of Operational Research, 168:694–715, 2006.

3. P. Borisovsky, A. Dolgui, and A. Eremeev. Genetic algorithms for a supply manage-

ment problem: MIP-recombination vs. greedy decoder. European Journal of Opera-
tional Research, 195:770–779, 2009.

4. A. Dolgui, B. Finel, F. Vernadat, N. Guschinsky, and G. Levin. A heuristic approach

for transfer lines balancing. Journal of Intelligent Manufacturing, 16:159–172, 2005.
5. A. Dolgui, B. Finel, N. Guschinsky, G. Levin, and F. Vernadat. MIP approach to

balancing transfer lines with blocks of parallel operations. IIE Transactions, 38:869–
882, 2006.

6. A. Dolgui, N. Guschinsky, and G. Levin. A special case of transfer lines balancing by
graph approach. European Journal of Operational Research, 168:732–746, 2006.

7. A. Eremeev. On complexity of optimal recombination for binary representations of
solutions. Evolutionary Computation, 16:127–147, 2008.

8. P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro
and P. Hansen, editors, Essays and surveys on metaheuristics, pages 325–367. Kluwer,
Boston, 2001.

9. S. Ghosh and R. Gagnon. A comprehensive literature review and analysis of the de-
sign, balancing and scheduling of assembly lines. International Journal of Production
Research, 27(4):637–670, 1989.

10. O. Guschinskaya and A. Dolgui. A comparative evaluation of exact and heuristic
methods for transfer lines balancing problem. In A. Dolgui, G. Morel, and C. Pereira,
editors, Information Control Problems in Manufacturing 2006: A Proceedings volume
from the 12th IFAC International Symposium, volume 2, pages 395–400. Elsevier,

2006.
11. O. Guschinskaya and A. Dolgui. Balancing transfer lines with multiple-spindle ma-

chines using GRASP. Unpublished manuscript, 2007.
12. O. Guschinskaya, A. Dolgui, N. Guschinsky, and G. Levin. A heuristic multi-start

decomposition approach for optimal design of serial machining lines. European Journal
of Operational Research, 189:902–913, 2008.

208 A. Dolgui, A. Eremeev, and O. Guschinskaya

13. J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations

Research Letters, 6:107–114, 1987.
14. J. Holland. Adaptation in natural and artificial systems. University of Michigan Press,

1975.

15. C.R. Reeves. Genetic algorithms for the operations researcher. INFORMS Journal on
Computing, 9(3):231–250, 1997.

16. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In

F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249.
Kluwer Academic Publishers, 2003.

17. A. Scholl. Balancing and sequencing of assembly lines. Physica, Heidelberg, 1999.

Chapter 8

(Meta-)Heuristic Separation of
Jump Cuts in a Branch&Cut
Approach for the Bounded Diameter
Minimum Spanning Tree Problem

Martin Gruber and Günther R. Raidl

Abstract The bounded diameter minimum spanning tree problem is an NP-
hard combinatorial optimization problem arising, for example, in network de-
sign when quality of service is of concern. We solve a strong integer linear pro-
gramming formulation based on so-called jump inequalities by a Branch&Cut
algorithm. As the separation subproblem of identifying currently violated
jump inequalities is difficult, we approach it heuristically by two alternative
construction heuristics, local search, and optionally tabu search. We also in-
troduce a new type of cuts, the center connection cuts, to strengthen the
formulation in the more difficult to solve odd diameter case. In addition, pri-
mal heuristics are used to compute initial solutions and to locally improve
incumbent solutions identified during Branch&Cut. The overall algorithm
performs excellently, and we were able to obtain proven optimal solutions for
some test instances that were too large to be solved so far.

8.1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a combi-
natorial optimization problem appearing in applications such as wire-based
communication network design when quality of service is of concern and,
e.g., a signal between any two nodes in the network should not pass more
than a fixed number of routers. It also arises in ad-hoc wireless networks
[1] and in the areas of data compression and distributed mutual exclusion
algorithms [19, 2].

Martin Gruber · Günther R. Raidl

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Vienna, Austria

e-mail: {gruber,raidl}@ads.tuwien.ac.at

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 209

DOI 10.1007/978-1-4419-1306-7 8, c© Springer Science+Business Media, LLC 2009

{gruber,raidl}@ads.tuwien.ac.at

210 M. Gruber and G.R. Raidl

The goal is to identify a tree structure of minimum cost connecting all
nodes of a network where the number of links between any two nodes is
limited by a maximum diameterD. More formally, we are given an undirected
connected graph G = (V,E) with node set V and edge set E and associated
costs ce ≥ 0, ∀e ∈ E. We seek a spanning tree T = (V,ET) with edge
set ET ⊆ E whose diameter does not exceed D, where D ≥ 2, and whose
total cost

∑
e∈ET

ce is minimal. This problem is known to be NP-hard for
4 ≤ D < |V | − 1 [7].

8.2 Previous Work

The algorithms already published for this problem range from greedy con-
struction heuristics, e.g. [14, 20], to various exact (mixed) integer linear pro-
gramming (ILP) approaches. The latter include formulations based on Miller-
Tucker-Zemlin inequalities [6], a compact Branch&Cut approach strength-
ened by connection and cycle elimination cuts [11], and in particular hop-
indexed multi-commodity network flow models [8, 9] whose linear program-
ming (LP) relaxations yield tight bounds but which involve a huge number of
variables. Recently, a constraint programming approach has been proposed
in [16]. Due to the complexity of the problem, exact algorithms are lim-
ited to relatively small instances with considerably less than 100 nodes when
dealing with complete graphs. For larger instances, metaheuristics have been
designed, e.g., evolutionary algorithms [18, 20] and a variable neighborhood
search (VNS) [12]. The so far leading metaheuristics to address instances up
to 1000 nodes are to our knowledge the evolutionary algorithm and the ant
colony optimization algorithm from [13], which are based on a special level
encoding of solutions and strong local improvement procedures.

Strongly related to the BDMST problem is the hop constrained minimum
spanning tree (HCMST) problem, in which a root node is specified and the
number of edges (hops) on each path from the root to some other node
must not exceed a limit H. An overview on several ILP models and solution
approaches for this problem can be found in [5]. A well working approach in
particular for smaller H is the reformulation of the problem as a Steiner tree
problem on a layered graph [10]. Another strong formulation is based on so-
called jump inequalities [4]. Unfortunately, their number grows exponentially
with |V |, and the problem of separating them in a cutting plane algorithm
is conjectured to be NP-hard. Therefore, Dahl et al. [4] exploited them in
a Relax&Cut algorithm where violated jump inequalities only need to be
identified for integer solutions, which is straightforward.

In this work, we adopt the concept of jump inequalities to formulate a
strong model for the BDMST problem, which we then solve by Branch&Cut.
A hierarchy of two alternative construction heuristics, local search, and tabu
search is used for efficiently separating jump cuts.

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 211

8.3 The Jump Model

Our ILP model is defined on a directed graph G+ = (V +, A+), with the arc
set A+ being derived from E by including for each undirected edge (u, v) ∈ E
two oppositely directed arcs (u, v) and (v, u) with the same costs cu,v = cv,u.
In addition, we introduce an artificial root node r that is connected to every
other node with zero costs, i.e. V + = V ∪{r} and {(r, v) | v ∈ V } ⊂ A+. This
artificial root allows us to model the BDMST problem as a special directed
outgoing HCMST problem on G+ with root r, hop limit (i.e., maximum
height) H = bD

2 c + 1, and the additional constraint that the artificial root
must have exactly one outgoing arc in the case of even diameter D and two
outgoing arcs in the case D is odd. From a feasible HCMST T+ = (V +, A+

T),
the associated BDMST T on G is derived by choosing all edges for which a
corresponding arc is contained in A+

T . In the odd diameter case, an additional
center edge connecting the two nodes adjacent to the artificial root is further
included.

We make use of the following variables: Arc variables xu,v ∈ {0, 1},
∀(u, v) ∈ A+, which are set to one iff (u, v) ∈ T+, and center edge vari-
ables zu,v ∈ {0, 1}, ∀(u, v) ∈ E, which are only relevant for the odd diameter
case and are set to one iff (u, v) forms the center of the BDMST.

The even diameter case is formulated as follows:

minimize
∑

(u,v)∈A

cu,v · xu,v (8.1)

subject to
∑

u|(u,v)∈A+

xu,v = 1 ∀ v ∈ V (8.2)

∑
v∈V

xr,v = 1 (8.3)∑
(u,v)∈δ+(V ′)

xu,v ≥ 1 ∀ V ′ ⊂ V + | r ∈ V ′ (8.4)

∑
(u,v)∈J(P)

xu,v ≥ 1 ∀ P ∈ P (V +) | r ∈ S0. (8.5)

The objective is to minimize the total costs of all selected arcs (8.1). All
nodes of the original graph (without artificial root node r) have exactly one
predecessor (8.2), and just one node is successor of r (8.3). To achieve a
connected, cycle free solution we include the widely used directed connection
cuts (8.4), where δ+(V ′) denotes all arcs (u, v) with u ∈ V ′ and v ∈ V + \V ′,
see also [15].

The diameter restriction is enforced by the jump inequalities (8.5) from
[4] as follows. Consider a partitioning P of V + into H + 2 pairwise disjoint
nonempty sets S0 to SH+1 with S0 = {r}. Let σ(v) denote the index of the
partition a node v is assigned to. Jump J(P) is defined as the set of arcs

212 M. Gruber and G.R. Raidl

S0 S1 S2 S3=H SH+1

r

J(P)

1 2 3=H H+1

Fig. 8.1 Partitioning P of the nodes in V + into H + 2 nonempty sets S0, . . . , SH+1. The

jump J(P) contains all arcs leading from a partition to a higher indexed one skipping at

least one in-between (curved arcs). A path connecting the artificial root r with nodes in
SH+1 without any arc from J(P) would consist of at least H + 1 arcs and thus violate the

hop constraint H.

(u, v) ∈ A+ with σ(u) < σ(v)− 1, i.e., J(P) contains all arcs leading from a
partition to a higher indexed one and skipping at least one in-between, see
Fig. 8.1. The jump inequality associated with this partitioning states that
in a feasible HCMST T+ at least one of these arcs in J(P) must appear.
Otherwise, there would be a path connecting the root contained in S0 to a
node in SH+1 with length at least H + 1 violating the hop constraint. Such
jump inequalities must hold for all possible partitions P (V +) of V + with r
being element of set S0.

The odd diameter case additionally makes use of the center edge vari-
ables zu,v:

minimize
∑

(u,v)∈A

cu,v · xu,v +
∑

(u,v)∈E

cu,v · zu,v (8.6)

subject to
∑
v∈V

xr,v = 2 (8.7)∑
v|(u,v)∈E

zu,v = xr,u ∀ u ∈ V (8.8)

2 ·
∑

(u,v)∈δ+(V \V ′′)

xu,v +
∑

v∈V ′′

xr,v +
∑

(u,v)∈δ(V ′′)

zu,v ≥ 2 ∀ ∅ 6= V ′′ ⊂ V (8.9)

(8.2), (8.4), and (8.5) are adopted unchanged.

Now, two nodes are to be connected to the artificial root node r (8.7), and
they are interlinked via the center edge (8.8). The cost of this edge is also
accounted for in the extended objective function (8.6).

The new connection inequalities (8.9), which we call center connection
inequalities, are not necessary for the validity of the model but strengthen
it considerably. They are essentially derived from observations in [9]: The
HCMST T+ together with the center edge linking the two center nodes con-
nected to r forms a special structure, a so-called triangle tree. In such a tree

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 213

...
. . .

...
...
. . .

...
...
. . .

...
...
. . .

...

r r

v v

(a) Two different paths from r to v.

...
. . .

...

r

...
. . .

...

...
. . .

...

r

...
. . .

...
V

′′
V

′′

(b) Center connection inequalities.

Fig. 8.2 Triangle tree: In the odd diameter case there are two paths connecting r with

any node v ∈ V . This leads to the center connection inequalities involving the center edge.

every node v ∈ V can be reached from r by two different – not necessarily
completely arc disjoint – directed paths: The first path directly connects r
with v via one center node, whereas the second one visits the second center
node first and crosses the center edge, see Fig. 8.2. This idea is captured in
these inequalities: Two paths from r have to reach each subset V ′′ of nodes
of V , either from other non-center nodes (first term) or – in case a center
node v is contained in V ′′ – directly from r and via the center edge (second
and third terms).

As there are exponentially many directed and center connection inequal-
ities (8.4, 8.9) and jump inequalities (8.5), directly solving these models is
not a practical option. Instead, we start without these inequalities and apply
Branch&Cut, thus, separating inequalities that are violated by optimal LP
solutions on the fly. Directed connection cuts – including our special variants
(8.9) – can efficiently be separated: In each LP solution |V | max-flow/min-
cut computations have to be performed between the artificial root r and any
node of the instance graph. To compute these maximum flows in a directed
graph we used the algorithm by Cherkassky and Goldberg [3]. Unfortunately,
solving the separation problem for the jump inequalities is conjectured to be
NP-hard [4].

8.4 Jump Cut Separation

In order to find a valid jump cut, we have to identify a node partitioning P
and corresponding jump J(P) for which the current LP solution (xLP, zLP)
violates

∑
(u,v)∈J(P) x

LP
u,v ≥ 1.

214 M. Gruber and G.R. Raidl

8.4.1 Exact Separation Model

In a first attempt we formulate the separation problem as an ILP, making
use of the following variables: yv,i ∈ {0, 1}, ∀v ∈ V +, i = 0, . . . ,H + 1, is set
to one iff node v is assigned to partition Si, and xu,v ∈ {0, 1}, ∀(u, v) ∈ ALP

is set to one iff arc (u, v) is contained in the jump J(P); let ALP = {(u, v) ∈
A+ | xLP

u,v > 0}. This leads to the following model:

minimize
∑

(u,v)∈ALP

xLP
u,v · xu,v (8.10)

subject to
H+1∑
i=1

yv,i = 1 ∀ v ∈ V (8.11)

yr,0 = 1 (8.12)∑
v∈V

yv,H+1 = 1 (8.13)

yu,i − 1 +
H+1∑

j=i+2

yv,j ≤ xu,v ∀ i ∈ {1, . . . ,H − 1}, (u, v) ∈ ALP(8.14)

H+1∑
i=2

yv,i ≤ xr,v ∀v ∈ V | (r, v) ∈ ALP (8.15)

The objective is to minimize the total weight of the arcs in the jump
J(P) (8.10). Each node in V is assigned to exactly one of the sets S1 to
SH+1 (8.11), whereas the artificial root r is the only node in set S0 (8.12).
Exactly one node is assigned to set SH+1 (8.13), as Dahl et al. [4] showed
that a jump inequality is facet-defining iff the last set is singleton. Finally,
an arc (u, v) (8.14), respectively (r, v) (8.15), is part of the jump J(P) iff it
leads from a set Si to a set Sj with j ≥ i+ 2.

Note that, according to the following theorem, it is not necessary to ex-
plicitly address the condition that no partition may be empty:

Theorem 1. In case all directed connection cuts are separated in advance,
no partition Si, i ∈ {1, . . . ,H}, will be empty in an optimal solution to the
ILP model described by (8.10) to (8.15).

Proof. Assume Si, i ∈ {1, . . . ,H}, is an empty set in an otherwise valid (ac-
cording to the rules defined for jump inequalities) partitioning P ,

∑
(u,v)∈J(P)

xLP
u,v < 1. Then V + can be partitioned into two sets V ′ and V + \ V ′, with
V ′ = {v ∈ V + | σ(v) < i} (including r). The sets V ′ and V + \ V ′ de-
fine a cut where all arcs from V ′ to V + \ V ′ belong to the jump J(P); it
follows that

∑
(u,v)∈δ+(V ′) x

LP
u,v < 1. Consequently, every partitioning with∑

(u,v)∈J(P) x
LP
u,v < 1 and an empty set Si, i ∈ {1, . . . ,H}, can be trans-

formed into a violated directed connection inequality, see Fig. 8.3. Since such

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 215

S0 Si−1 Si Si+1 SH+1

r

V
′

V
+\V′

Fig. 8.3 A partitioning P with
∑

J(P) xLP < 1 and an empty set Si corresponds to a

violated directed connection cut.

a violated directed connection inequality does not exist in the current LP
solution by assumption, no set Si can be empty. �

This observation reveals the possibility to avoid time-consuming max-flow/
min-cut computations to separate directed connection cuts. By not forcing
the sets S1, . . . , SH to be nonempty, violated directed connection and jump
constraints can be identified by only one single separation procedure, depend-
ing on whether the node partitioning P contains an empty partition Si or
not.

The exact jump cut separation model contains O(H · |V |+ |ALP|) variables
and O(|V | + H · |ALP|) constraints. Solving it by a general purpose solver
each time when a jump cut should be separated is, however, only applicable
for small problem instances as the computation times are high and increase
dramatically with the problem size. According to our experiments, between
about 85% and almost 100% of the total time for solving the BDMST problem
is spent in this exact separation procedure for jump cuts.

To speed up computation, we developed heuristic procedures for this sep-
aration problem and apply them in the following sequence: Two alternative
construction heuristics are used to find initial partitions; they are improved
by local search and, in case a violated jump inequality has not yet been
encountered, finally by tabu search.

8.4.2 Simple Construction Heuristic CA

Heuristic CA greedily assigns the nodes V + to sets S1, . . . , SH+1 trying to
keep the number of arcs that become part of the jump J(P) as small as possi-
ble, see Algorithm 1. An independent partitioning is computed for each node
v ∈ V initially placed in the last set SH+1, and the overall best solution is re-
turned. To derive one such partitioning, all nodes u connected to r via an arc
(r, u) ∈ ALP with xLP

r,u exceeding a certain threshold (0.5 in our experiments)
are assigned to set S1. Then the algorithm iterates through partitions SH+1

216 M. Gruber and G.R. Raidl

Algorithm 1: Simple Construction Heuristic CA

input : V +, ALP

output: partitioning P of V +

forall nodes v ∈ V do1

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;2

forall arcs (r, u) | u 6= v do3

if xLP
r,u > 0.5 then S1 ← S1 ∪ {u};4

for i = H + 1, . . . , 3 do5

foreach node u ∈ Si do6

foreach arc (w, u) ∈ ALP | w not already assigned do7

Si−1 ← Si−1 ∪ {w};8

forall still unassigned nodes u ∈ V + do9

S1 ← S1 ∪ {u};10

derive jump J(P) for current partitioning P = (S0, . . . , SH+1);11

evaluate J(P) and store P if best so far;12

return best found partitioning;13

down to S3. For each of these sets Si all arcs (w, u) ∈ ALP with target node
u ∈ Si are further examined. In case w is still free (i.e., not already assigned
to a set), it is placed in Si−1, in order to avoid (w, u) becoming part of J(P).
At the end, eventually remaining free nodes are assigned to set S1.

Results achieved with heuristic CA were encouraging, but also left room
for improvement when compared to the exact separation. In particular, this
heuristic does (almost) not consider differences in arc weights xLP

u,v when
deciding upon the assignment of nodes.

8.4.3 Constraint Graph Based Construction Heuristic
CB

To exploit arc weights in a better way, we developed the more sophisticated
construction heuristic CB which makes use of an additional constraint graph
GC = (V +, AC). To avoid that an arc (u, v) ∈ ALP becomes part of J(P),
the constraint σ(u) ≥ σ(v) − 1 must hold in partitioning P . Heuristic CB

iterates through all arcs in ALP in decreasing LP-value order (ties are broken
arbitrarily) and checks for each arc whether or not its associated constraint
on the partitioning can be realized, i.e., if it is compatible with previously
accepted arcs and their induced constraints. Compatible arcs are accepted
and collected within the constraint graph, while arcs raising contradictions
w.r.t. previously accepted arcs in GC are rejected and will be part of J(P).
After checking each arc in this way, a partitioning P respecting all constraints

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 217

represented by GC is derived. Algorithm 2 shows this heuristic in pseudo-
code.

In more detail, graph GC not only holds compatible arcs but for each
node u ∈ V + also an integer assignment interval bu = [αu, βu] indicating
the feasible range of partitions; i.e., u may be assigned to one of the sets
{Si | i = αu, . . . , βu}. When an arc (u, v) is inserted into AC , the implied new
constraint σ(u) ≥ σ(v)− 1 makes the following interval updates necessary:

bu ← [max(αu, αv − 1), βu] and bv ← [αv, min(βv, βu + 1)]. (8.16)

Changes of interval bounds must further be propagated through the con-
straint graph by recursively following adjacent arcs until all bounds are fea-
sible again w.r.t. the constraints.

Figure 8.4 gives an example of such an update procedure after inserting
an arc into the constraint graph. It visualizes the relevant part of GC in
an instance with a diameter constraint of six, including the artificial root
node r assigned to S0 (br = [0, 0]), node vn in partition SH+1 (bvn = [5, 5]),
six additional nodes v1 to v6 which still are allowed to be assigned to any
partition Si, i = 1, . . . , 4, and already some compatible arcs. In Fig. 8.4(a) a
new arc from r to v1 should be inserted into the constraint graph. To prevent
this arc to become part of the jump J(P) we have to restrict the assignment
interval of v1 (r is already fixed to a single partition): If v1 would be assigned
to any partition Si with i ≥ 2, the arc (r, v1) would skip at least S1 making
it a jump arc. Therefore, the upper bound βv1 has to be decreased to one
(bv1 = [1,min(4, 0+1)]), see Fig. 8.4(b). Now this update has to be propagated

Algorithm 2: Constraint Graph Based Construction Heuristic CB

input : V +, ALP

output: partitioning P of V +

sort ALP according to decreasing LP values;1

forall nodes v ∈ V do2

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;3

br = [0, 0]; bv = [H + 1, H + 1]; ∀w ∈ V \ {v}: bw ← [1, H];4

initialize GC : AC ← ∅;5

initialize jump J(P)← ∅;6

forall arcs (u, v) ∈ ALP according to decreasing xLP
u,v do7

if AC ∪ (u, v) allows for a feasible assignment of all nodes then8

AC ← AC ∪ (u, v);9

perform recursive update of bounds starting at bu and bv ;10

else11

J(P)← J(P) ∪ (u, v);12

assign nodes to partitions according to the constraints in GC ;13

evaluate jump J(P) and store P if best so far;14

return best found partitioning;15

218 M. Gruber and G.R. Raidl

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1, 4]

r

(a) GC : Inserting (r, v1).

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1,1]

r

(b) Feasible update of bv1 .

v3

vnv6

[0, 0]

[1,2]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1,3]

v4 v1 v2

v5

[1, 1]

r

(c) Recursive update.

Fig. 8.4 Insertion of arc (r, v1) into the constraint graph GC , including all necessary
updates to the assignment intervals.

through the constraint graph as shown in Fig. 8.4(c). Nothing has to be done
for node v2 (and so for v3), it still can be assigned to any of the partitions S1

to S4 since the arc (v2, v1) can no longer become part of J(P) (σ(v2) ∈ [1, 4]
will always be greater than or equal to σ(v1)− 1 = 1− 1 = 0). On the other
hand, the upper interval bound of v4 has to be set to two (to avoid that arc
(v1, v4) skips at least partition S2), and – analogously – βv5 has to be set to
three. After this recursive update procedure the constraint graph is in a valid
state again, i.e., all nodes can be assigned to partitions without violating
constraints implied by the collected arcs AC .

An arc (u, v) can be feasibly added to the graph GC without raising con-
flicts with any stored constraint as long as the assignment intervals bu and
bv do not become empty, i.e., αu ≤ βu ∧ αv ≤ βv must always hold. In Algo-
rithm 2 this condition is tested in line 8, and the arc (u, v) is either accepted
for AC or added to J(P), respectively.

Theorem 2. The recursive update of the assignment interval bounds in GC

after inserting an arc (u, v) always terminates and cannot fail if it succeeded
at nodes u and v.

Proof. Let GC be valid, i.e., it contains no contradicting constraints, and
it was possible to insert arc (u, v) into the graph without obtaining empty
assignment intervals for nodes u and v. Let (s, t) be any other arc ∈ GC ,
implying αs ≥ αt−1, and βt ≤ βs +1. Now, assume that αt was updated, i.e.
increased, to α′t, with α′t ≤ βt. If the lower bound of s must be modified, it is
set to α′s = α′t − 1 according to the update rules. To prove that the interval
at s will not become empty we have to show that α′s ≤ βs:

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 219

Algorithm 3: Local Search
input : V +, ALP, current partitioning P and implied jump J(P)

output: possibly improved partitioning P of V +

repeat1

improved ← false;2

forall arcs (u, v) ∈ J(P) do3

if moving u to Sσ(v)−1 or v to Sσ(u)+1 is valid and improves solution then4

perform move; update P and J(P) correspondingly;5

improved ← true;6

break;7

until improved = false ;8

return partitioning P ;9

α′s
(update rule)

= α′t − 1
α′t≤βt

≤ βt − 1
βt≤βs+1

≤ βs (8.17)

The feasibility of the upper bound propagation can be argued in an anal-
ogous way. This also proves that the recursive update procedure terminates,
even when there are cycles in GC (intervals cannot become empty, and up-
dates increase respectively decrease lower and upper bounds by at least one).
�

8.4.4 Local Search and Tabu Search

Although the construction heuristics usually find many violated jump in-
equalities, there is still room for improvement using local search. The neigh-
borhood of a current partitioning P is in principle defined by moving one node
to some other partition. As this neighborhood would be relatively large and
costly to search, we restrict it as follows: Each arc (u, v) ∈ J(P) induces two
allowed moves to remove it from the associated jump J(P): reassigning node
u to set Sσ(v)−1 and reassigning node v to set Sσ(u)+1, respectively. Moves
modifying S0 or SH+1 are not allowed. The local search is performed in a
first improvement manner until a local optimum is reached; see Algorithm 3.

In most cases, the construction heuristics followed by local search are able
to identify a jump cut if one exists. In the remaining cases, we give tabu
search a try to eventually detect still undiscovered violated jump inequalities.
Algorithm 4 shows our tabu search procedure in pseudo-code.

The neighborhood structure as well as the valid moves are defined as in
the local search, but now a best improvement strategy is applied. Having
performed a movement of a node v, we file as tabu the node v in combination
with its inverted direction of movement (to a lower or higher indexed set,
respectively).

220 M. Gruber and G.R. Raidl

Algorithm 4: Tabu Search
input : V +, ALP, current partitioning P and implied jump J(P)

output: possibly improved partitioning P of V +

tabu list L← ∅;1

repeat2

search neighborhood of P for best move m considering tabu list L;3

perform move m; update P and J(P) correspondingly;4

file move m−1 in tabu list: L← L ∪ {m−1};5

remove from L entries older than max(lmin, γ · |J(P)|) iterations;6

until no new best partitioning found during the last imax iterations ;7

return best encountered partitioning;8

The tabu tenure is dynamically controlled by the number of arcs in jump
J(P): Tabu entries older than max(lmin, γ · |J(P)|) iterations are discarded,
where lmin and γ are strategy parameters.

We consider the following aspiration criterion: The tabu status of a move is
ignored if the move leads to a new so far best node partitioning. Tabu search
terminates when a predefined number imax of iterations without improvement
of the overall best partitioning is reached.

8.5 Primal Heuristics

In order to further improve the performance of our Branch&Cut approach we
make use of additional fast heuristics to set an initial solution and to locally
improve incumbent solutions.

In [14] Julstrom describes two different construction heuristics for the
BDMST problem, the center based tree construction (CBTC) and the ran-
domized tree construction (RTC) heuristic. Both are primarily based on
Prim’s MST algorithm [17] and compute, after determining a center, a height
restricted tree.

CBTC simply grows a BDMST from a randomly chosen or predefined
center by always adding the node with the cheapest available connection to
the so long build tree without violating the height constraint. This heuristic
is well suited for instances with more or less randomly generated edge weights
whereas it fails miserably on Euclidean instances. The problem is that CBTC
is too greedy and tends to create a backbone – the edges near the center – of
extremely short edges instead of one consisting of some few but long edges
spanning the whole area. As a consequence, the leaves of the BDMST have to
be attached to the backbone with relatively long edges leading to a extremely
poor solution as can be seen in Fig. 8.5.

To overcome this problem on Euclidean instances the RTC heuristic cre-
ates a random permutation of all nodes. The first (two) node(s) will form

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 221

(a) CBTC (8.284). (b) RTC (5.725). (c) Optimum (5.195).

Fig. 8.5 Diameter constrained trees computed by two different construction heuristics,
CBTC and RTC (best solution from 100 runs), and the optimal solution (complete, Eu-
clidean graph with 40 nodes distributed randomly in the unit square, D = 6). Correspond-

ing objective values are given in parenthesis. Heuristics were forced to use the center of
the optimum.

the center of the BDMST, the remaining ones are connected to the tree in
the cheapest possible way in the order given by the permutation and without
violating the height restriction. This approach at least increases the chance
to bring longer edges into the backbone, thus leading to better final solutions.

Both construction heuristics are designed to operate on complete graphs.
Whereas CBTC can handle incomplete graphs easily we modified RTC to
increase the possibility of identifying a valid BDMST also on sparse graphs
in the following way: Every node of the permutation not feasibly connectable
is stored within a queue. After the whole permutation of nodes has been
processed each node in the queue is again checked if it could be connected to
the tree without violating the height restriction. This procedure is stopped
when either the queue becomes empty or none of the nodes in the queue
can be added feasibly to the tree. In addition, in case the diameter is odd a
permutation is only accepted if the first two nodes, which should form the
center, are linked via an edge.

Solutions of both construction heuristics as well as all incumbent solu-
tions found during the optimization are further improved by the variable
neighborhood descent (VND) from [13] utilizing four different neighborhood
structures:

Arc exchange neighborhood: Neighboring solutions are all feasible trees that
differ in exactly one arc from the current one.

Node swap neighborhood: This neighborhood contains all solutions that are
obtained by exchanging the position of a node with one of its direct suc-
cessors in the tree structure.

Level change neighborhood: In a neighboring solution the depth of exactly
one node has been increased or decreased by one. All affected nodes are
newly connected in a locally optimal way by choosing cheapest available
arcs.

222 M. Gruber and G.R. Raidl

Center exchange level neighborhood: In neighboring solutions, the one or
two center node(s) are exchanged by other nodes. The former center nodes
are reconnected by cheapest possible arcs.

8.6 Computational Results

For our computational experiments we utilize Euclidean (TE) and random
(TR) instances as described and used by Gouveia et al. [8, 9] as well as com-
plete and sparse Euclidean instances of Santos et al. [6, 16]. The instance
type, together with the number of nodes (|V |) and edges (|E|) and the diam-
eter bound (D) is specified for each test case in the following results tables.
All experiments have been performed on a dual-core AMD Opteron 2214 ma-
chine (2.2GHz), and CPLEX 11.1 has been used as ILP solver and framework
for Branch&Cut. Since most of the heuristic components are not determin-
istic, the median and/or the mean value of at least 30 independent runs is
listed for each experiment (when not otherwise specified). To verify statistical
significance Wilcoxon rank tests with an error level of 5% (if not indicated
otherwise) have been performed.

The experiments were executed with modified jump cut heuristics to si-
multaneously identify violated directed connection cuts to avoid additional
time-consuming max-flow/min-cut computations (see proof of Theorem 1).
Although a polynomial time exact separation procedure is replaced by a
heuristic approach, preliminary tests demonstrated a significant enhancement
in running time. Violated directed connection cuts were only identified sep-
arately in case the exact ILP model was used to separate jump cuts.

Table 8.1 demonstrates the clear advantages of applying primal heuristics:
For a set of small and medium-sized instances the running times in seconds
are given (heuristic jump cut separation using construction heuristic CB with
local search), as well as the mean values (including the gaps to the optimal so-
lutions opt) and the standard deviations of the initial solutions. For instances
with random edge costs (TR) the CBTC construction heuristic was used to
compute initial solutions, RTC for all others. Since CBTC gives deterministic
results for a given center it was executed once for each node ∈ V for even
diameter bounds. Otherwise, both construction heuristics were iterated until
no better solution could be found for 100 runs; the finally best solution was
utilized as initial solution in Branch&Cut.

The results are clear: Primal heuristics boost the optimization noticeable,
especially if D is even. Significantly better results are highlighted in gray, the
error probability obtained by the Wilcoxon tests is always less than 0.01%,
except for instance TR 60/600/7 (0.789%). The parts of the overall running
times of CBTC/RTC and the VND to improve incumbent solutions are negli-
gibly, much less than one second for all instances. Only in some rare cases the

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 223

Table 8.1 Optimization with and without primal heuristics, running times t (in seconds),

and quality of solutions, compared to the optimum (opt), obtained by the construction
heuristics RTC (Euclidean instances TE and Santos) or CBTC (instances with random

weights TR); significantly better results according to Wilcoxon tests are highlighted gray.

Since not all of the applied heuristics are not deterministic, 30 independent runs have been
performed for each instance.

t(primal heuristics) t(no primal heuristics) quality RTC/CBTC

Instance |V | |E| D median min max median min max opt mean stddev gap(mean)

TE 30 200 4 11.78 11.59 12.03 21.57 21.36 21.85 599 599.13 0.34 0.02%

6 8.92 8.63 12.68 12.84 12.70 13.11 482 483.97 2.98 0.41%
8 1.99 1.89 2.27 2.41 2.33 2.51 437 437.35 1.05 0.08%

TR 30 200 4 1.37 1.35 1.41 2.13 2.08 2.20 234 234.00 0.00 0.00%

6 0.61 0.59 0.63 0.78 0.74 0.80 157 160.00 0.00 1.91%
8 0.12 0.10 0.13 0.15 0.14 0.16 135 135.00 0.00 0.00%

Santos 25 300 4 2.07 2.02 2.12 4.06 3.98 4.12 500 500.00 0.00 0.00%

6 0.70 0.66 0.93 1.07 1.05 1.11 378 378.55 1.15 0.15%
10 0.48 0.40 0.56 0.59 0.55 0.62 379 383.06 2.13 1.07%

40 100 4 1.16 1.10 1.29 1.34 1.27 1.38 755 759.26 11.45 0.56%

6 0.43 0.40 0.45 0.43 0.41 0.44 599 621.32 2.87 3.73%
10 0.38 0.36 0.41 0.39 0.37 0.41 574 589.42 5.58 2.69%

TE 40 400 4 27.98 27.18 46.24 91.98 91.23 93.60 672 674.32 3.35 0.35%

6 126.62 93.23 243.96 182.59 181.73 189.06 555 558.97 1.96 0.71%
8 81.78 42.37 98.84 154.92 154.01 162.29 507 514.94 3.05 1.57%

TR 60 600 4 1739.10 1647.47 1828.58 3494.98 3464.51 3645.16 326 368.00 0.00 12.88%

6 561.53 537.10 607.79 901.11 894.57 937.41 175 179.00 0.00 2.29%

8 4.66 4.53 4.89 4.74 4.67 4.89 127 148.00 0.00 16.54%

TE 30 200 5 67.50 45.67 69.34 52.96 52.54 53.74 534 534.29 0.90 0.05%
7 28.98 24.91 31.95 28.34 27.92 28.91 463 464.68 1.58 0.36%

TR 30 200 5 2.67 2.36 3.64 2.39 2.35 2.44 195 196.52 3.11 0.78%

7 0.29 0.27 0.34 0.32 0.31 0.33 144 145.26 3.20 0.87%

Santos 25 300 5 10.42 10.27 10.59 10.65 10.52 10.88 429 429.00 0.00 0.00%

7 2.13 2.11 2.16 3.85 3.79 3.92 408 408.00 0.00 0.00%

9 1.11 1.08 1.41 1.62 1.58 1.64 336 337.19 1.83 0.36%
40 100 5 0.93 0.87 1.02 1.06 1.02 1.10 729 739.35 14.37 1.42%

7 3.38 2.90 4.30 4.52 4.47 4.65 667 684.87 7.12 2.68%
9 3.44 3.30 3.81 3.95 3.90 4.05 552 570.77 8.79 3.40%

TE 40 400 5 348.51 335.09 618.57 466.34 464.20 478.88 612 613.55 2.41 0.25%

7 463.89 244.64 808.79 605.31 601.90 623.02 527 532.84 3.38 1.11%

9 181.40 111.62 822.45 527.47 524.99 544.38 495 502.74 3.68 1.56%
TR 60 600 5 1286.76 652.53 2546.96 811.16 804.56 835.89 256 265.71 11.09 3.79%

7 33.37 17.44 52.10 27.31 27.01 28.06 150 163.35 3.90 8.90%
9 5.99 5.33 20.88 10.32 10.17 10.62 124 136.35 2.74 9.96%

primal heuristics can mislead CPLEX, although the minimal running times
achieved are still better or at least comparable.

The solutions computed by CBTC and RTC for these small instances are
in general of high quality (average objective value less than 2% from the
optimum) when the graph is complete or at least dense. On sparse graphs
(Santos 40/100, TR 60/600) already finding a feasible solution is difficult.
An interesting observation is that the running times are much more stable
when no primal heuristics are used, so differences in the jump cuts identified
by CB plus local search have only a relatively small impact in this case. For
all remaining experiments primal heuristics were activated.

For smaller instances where the exact ILP-based jump cut separation can
also be applied, Table 8.2 lists success rates SR(·) for finding existing violated
jump inequalities in LP solutions for the two construction heuristics (CA and

224 M. Gruber and G.R. Raidl

Table 8.2 Success rates SR (%) for separating jump cuts by construction heuristics CA

and CB , optionally followed by local search L and tabu search T, in comparison to the
exact separation approach on the same LP solutions.

Instance |V | |E| D #exact SR(CA) SR(CAL) SR(CB) SR(CBL) SR(CBLT)

TE 30 200 4 817 99.02% 100.00% 99.14% 99.39% 99.39%

6 991 97.17% 99.80% 97.07% 97.58% 98.63%

8 560 65.87% 92.94% 95.08% 95.42% 96.35%
TR 30 200 4 272 100.00% 100.00% 100.00% 100.00% 100.00%

6 152 98.03% 100.00% 100.00% 100.00% 100.00%

8 22 100.00% 100.00% 100.00% 100.00% 100.00%

Santos 25 300 4 316 100.00% 100.00% 100.00% 100.00% 100.00%

6 126 99.21% 99.21% 100.00% 100.00% 100.00%

10 77 100.00% 100.00% 100.00% 100.00% 100.00%
40 100 4 204 100.00% 100.00% 100.00% 100.00% 100.00%

6 112 100.00% 100.00% 100.00% 100.00% 100.00%

10 85 64.71% 90.59% 96.47% 96.47% 96.47%

TE 30 200 5 2786 89.75% 98.39% 92.41% 95.36% 95.36%

7 3353 64.04% 91.88% 94.06% 95.41% 96.99%
TR 30 200 5 377 79.05% 91.51% 96.55% 97.35% 97.35%

7 89 80.90% 85.39% 92.13% 94.38% 95.51%

Santos 25 300 5 794 83.50% 97.10% 97.73% 98.36% 99.46%
7 188 81.38% 88.83% 95.21% 95.74% 96.81%

9 115 91.30% 93.91% 97.39% 97.39% 98.26%

40 100 5 186 100.00% 100.00% 100.00% 100.00% 100.00%
7 445 81.88% 93.82% 95.58% 96.15% 96.16%

9 485 67.80% 73.35% 92.66% 93.04% 94.02%

CB), optionally followed by local search (L) and tabu search (T) with the
strategy parameters lmin = 5, γ = 0.75, and imax = 25. The number of cuts
identified by the exact model is given in column “#exact”. As can be seen,
for even diameter already the simple construction heuristic CA gives excel-
lent results, in most cases further improved by local search. The statistically
significantly better heuristic CB (error level < 0.01%) leaves not much room
for local and tabu search to enhance the success rate. A more differentiated
situation can be observed for odd diameter bounds. The number of jump cuts
identified directly by CB is significantly higher in contrast to CA (error level
< 0.01%), whereas local search flattens the differences in the construction
phase to a greater or lesser extent. On almost all test instances, tabu search
further improves the success rate to more than 95%. In total, heuristic CB

followed by local search and tabu search was able to separate all existing
jump cuts for 9 out of 22 instances.

The consequences of the success to reliably identify violated jump inequal-
ities can be seen in Table 8.3, where for the various approaches CPU-times
t(·) to identify proven optimal integer solutions are listed. It can clearly be
seen that the excessive running times of the exact jump cut separation pro-
hibit its usage on larger instances. Times of the overall optimization process
are in general magnitudes higher as when using our heuristics for jump cut
separation, sometimes even the given CPU-time limit of one hour is exceeded.
Since tabu search is only executed in case the construction heuristic followed

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 225

Table 8.3 Optimal solution values, median running times t (in seconds) to find and prove

these solutions when using different strategies for jump cut separation, and optimality gaps
of the final LP relaxations in the root nodes of the Branch&Cut search trees when using

heuristic CB followed by local search and tabu search. The last column gives running times

in case directed connection cuts (dc) are separated exactly using multiple max-flow/min-
cut computations.

Instance |V | |E| D opt t(exact) t(CAL) t(CBL) t(CBLT) gap(CBLT) t(dc+CBLT)

TE 30 200 4 599 3522.73 13.03 11.78 11.39 1.69% 18.73

6 482 > 1h 32.06 8.92 9.09 2.59% 13.73

8 437 > 1h 2.16 1.99 2.12 1.98% 3.25
TR 30 200 4 234 328.09 1.63 1.37 1.38 0.00% 3.28

6 157 185.65 0.96 0.61 0.63 0.00% 1.16

8 135 0.59 0.11 0.12 0.11 0.00% 0.30

Santos 25 300 4 500 809.86 7.03 2.07 2.10 0.00% 3.58

6 378 215.30 1.04 0.70 0.71 0.53% 0.86

10 379 419.03 0.58 0.48 0.48 0.00% 0.64
40 100 4 755 105.34 0.98 1.16 1.18 0.00% 2.14

6 599 41.07 0.37 0.43 0.43 0.00% 0.93

10 574 440.55 0.34 0.38 0.36 0.13% 0.70

TE 30 200 5 534 > 1h 57.85 67.50 62.14 7.20% 148.88

7 463 > 1h 28.87 28.98 28.35 6.63% 38.16
TR 30 200 5 195 831.31 2.86 2.67 2.85 9.40% 5.36

7 144 139.08 0.27 0.29 0.30 4.56% 1.31

Santos 25 300 5 429 1122.52 7.20 10.42 6.08 8.87% 20.08
7 408 2489.67 1.69 2.13 1.98 4.65% 6.10

9 336 66.66 1.01 1.11 1.12 0.89% 1.28

40 100 5 729 238.24 0.79 0.93 1.02 0.00% 2.98
7 667 988.36 2.47 3.38 3.22 1.50% 5.32

9 552 > 1h 7.47 3.44 3.98 3.22% 5.70

by local search fails to identify a violated jump inequality, running times of
CBL and CBLT considerably differ only on few instances, especially when D
is odd.

On these relatively small instances it is difficult to draw conclusions on the
performance of the various heuristics, even though the time required to solve
all instances to proven optimality is lowest for CB with local search and tabu
search (141.02s), followed by CBL (150.86s) and CAL (170.77s). The picture
becomes more apparent when investigating slightly larger instances (sparse,
dense, and complete graphs), see Table 8.4. Again, statistically significantly
better results are highlighted gray; the error probability is always less than
0.01% except for instances TE 30/435/9 (0.5%), TR 40/480/7 (2.73%; CAL
is significantly faster although median(CBL)<median(CAL)), TR 40/480/9
(4.17%), and TR 40/780/7 (1.72%). With increasing instance size the higher
success rates of CBL in identifying jump cuts show a considerable impact on
running times.

To achieve a good runtime behavior using tabu search a lot of parameter
tuning for lmin, γ, and imax is necessary. A parameter set working for all in-
stance types and sizes very well does not exist. In addition, when the number
of nodes and edges in the graph increases, the benefit of identifying more vi-
olated jump inequalities is increasingly undone. Especially this is true when

226 M. Gruber and G.R. Raidl

Table 8.4 Running times t (in seconds) on larger instances (sparse, dense, complete)

when separating jump cuts using heuristics CA and CB including local search; statistically
significantly better results are highlighted gray.

Instance |V | |E| D t(CAL) t(CBL) D t(CAL) t(CBL)

sparse TE 30 175 4 9.40 9.31 5 112.39 72.05

6 28.66 6.62 7 23.07 28.65

8 2.09 1.62 9 1.49 1.49

dense 305 4 98.95 27.08 5 35.38 33.51
6 24.01 11.28 7 12.09 27.10

8 2.70 2.01 9 1.47 1.80

complete 435 4 98.68 30.74 5 54.49 32.64
6 47.57 13.18 7 13.00 19.73

8 2.68 2.60 9 2.37 2.64

sparse TR 40 175 4 63.59 24.27 5 174.60 20.03
6 10.28 2.08 7 3.82 1.63

8 0.46 0.47 9 0.84 0.72

dense 480 4 173.81 27.55 5 24.63 20.78
6 8.34 2.71 7 3.21 3.09

8 0.77 0.72 9 1.15 1.10
complete 780 4 206.48 27.75 5 100.00 68.67

6 7.60 3.61 7 15.27 15.50

8 1.08 1.10 9 9.13 8.96

sum: 787.15 194.70 588.40 360.09

D is odd since a lot of computational effort is invested into LP solutions in
which no jump cuts exist. Therefore, we abstained from using tabu search
on larger instances since the performance of the construction heuristics with
local search is already excellent.

Table 8.3 also lists optimal solution values (“opt”) as well as optimal-
ity gaps of the LP relaxations at the root nodes of the Branch&Cut search
trees for CBLT. Whereas our model is quite tight in the even diameter
case, the gaps for odd diameters reveal potential for further investigations
to strengthen the formulation. In the last column, Table 8.3 finally gives run-
ning times for CBLT when directed connection cuts (dc) are separated for
LP solutions before jump cuts using an exact max-flow/min-cut algorithm,
which proved to be definitely much more time consuming by a factor of at
least 1.2 up to 4 and more.

Last but not least, Table 8.5 compares our approach to the so far lead-
ing hop-indexed multi-commodity flow formulations from [8] (even diameter
cases) and [9] (odd diameter cases) on larger instances. The columns list
for each instance the optimal objective value if known, otherwise an upper
bound (opt/UB∗), the LP relaxation value for construction heuristic CB with
local search (LP(CBL)), the gaps for this approach and for the best model
from [8] and [9] whenever the optimum is available resp. the corresponding
values were published (gap(CBL), gap(GMR)), as well as the running time
to proven optimality (t(CBL)); a time limit of 10 hours was used for these
experiments.

We were able to discover and prove previously unknown optima (bold)
and could show that instance TE 80/800/4 is infeasible. Concerning the LP

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 227

Table 8.5 Optimal values resp. upper bounds, LP relaxation values, LP gaps (for CBL

and GMR, the tightest models from [8] and [9]), and running times on Euclidean and
random instances with 40, 60, and 80 nodes.

t(CBL)

Instance |V | |E| D opt/UB∗ LP(CBL) gap(CBL) gap(GMR) median min max

TE 40 400 4 672 672.00 0.00% 0.04% 27.98 27.18 46.24

6 555 544.33 1.92% 0.60% 126.62 93.23 243.96
8 507 500.14 1.35% 0.50% 81.78 42.37 98.84

60 600 4 1180 1178.50 0.13% 0.10% 1062.03 673.11 1154.82

6 837 816.85 2.41% 0.50% 9244.26 5331.65 16389.33
8 755 736.60 2.44% 18844.98 15815.31 25913.07

80 800 4 infeasible infeasible 1871.81 1857.74 2098.96

6 1066 1044.87 1.98% > 10h
8 963∗ 925.32 ∗3.91% > 10h

TR 40 400 4 309 309.00 0.00% 0.00% 23.35 22.84 23.99

6 189 189.00 0.00% 0.00% 2.82 2.78 2.90
8 161 161.00 0.00% 0.00% 0.76 0.72 0.79

60 600 4 326 323.49 0.77% 0.70% 1739.10 1647.47 1828.58

6 175 171.16 2.19% 1.30% 561.53 537.10 607.79
8 127 127.00 0.00% 0.00% 4.66 4.53 4.89

80 800 4 424 399.67 5.74% 5.70% > 10h
6 210 206.41 1.71% 1904.19 1891.74 2181.73

8 166 164.33 1.00% 25.56 24.83 27.24

TE 40 400 5 612 578.42 5.49% 0.00% 348.51 335.09 618.57
7 527 495.09 6.06% 0.30% 463.89 244.64 808.79

9 495 468.08 5.44% 0.30% 181.40 111.62 822.45
60 600 5 965 899.79 6.76% 0.00% 34288.91 31383.42 > 10h

7 789 742.23 5.93% 0.00% > 10h

9 738 690.88 6.38% 0.50% > 10h 30869.08 > 10h
80 800 5 1313 1205.82 8.16% > 10h

7 1010 942.60 6.67% > 10h

9 950∗ 871.90 ∗8.22% > 10h

TR 40 400 5 253 224.90 11.11% 1.00% 17.94 17.66 22.49

7 171 169.11 1.10% 0.00% 2.16 2.00 2.26

9 154 154.00 0.00% 0.00% 1.06 0.86 1.20
60 600 5 256 217.14 15.18% 3.20% 1286.76 652.53 2546.96

7 150 138.50 7.67% 0.30% 33.37 17.44 52.10

9 124 119.84 3.35% 0.00% 5.99 5.33 20.88
80 800 5 323 272.42 15.66% > 10h

7 185 176.44 4.62% 153.57 126.16 300.28

9 158 154.57 2.17% 15.97 13.81 133.14

gaps, the results are comparable on even diameter instances, while for odd
diameters the flow models are significantly better. A fair runtime comparison
to [8] and [9] is not possible since the used hardware is too different (dual-core
AMD Opteron 2214 (2.2GHz) compared to an Intel Pentium II (450MHz)).
A rough estimation indicates that the flow formulations have their strengths
on small diameter bounds (4 to 6), whereas Branch&Cut dominates when the
diameter bound is looser (6 and above). To give an example: In [9] Gouveia et
al. report for their best odd diameter formulation, the Longest-Path model,
on instance TE 40/400/5 a running time of 345 seconds to prove optimality,
the Branch&Cut approach requires about the same time on a much faster
machine (median: 348.51 seconds). On the same instance with a diameter

228 M. Gruber and G.R. Raidl

bound of 9 the situation changes, Gouveia et al. list 44600 seconds for their
model whereas Branch&Cut in general only requires about 181.40 seconds
(median).

8.7 Conclusions and Future Work

In this work we presented a new ILP formulation for the BDMST problem
utilizing jump inequalities to ensure the diameter constraint and solve it
with Branch&Cut. The odd diameter case is further strengthened by new
center connection inequalities. For the separation of jump inequalities we
considered an exact ILP approach and two greedy construction heuristics
followed by local and tabu search. While our exact separation prohibits its
use in practice due to its excessive computation times, the heuristic methods
are substantially faster and achieve convincing success rates in identifying
violated jump inequalities; they lead to an excellent overall performance of
the Branch&Cut.

The usage of primal heuristics for determining initial solutions and for lo-
cally improving new incumbent solutions enhances our approach significantly.
The gain received by replacing an exact polynomial time separation proce-
dure for directed connection cuts by fast (meta-)heuristics was surprisingly
high and can be an interesting field for further research also for other types
of cuts and problems. Having an exact algorithm at hand to solve BDMST
instances of moderate size in reasonable time also opens up new opportuni-
ties in combining it with leading metaheuristics. Smaller subproblems arising
can now be solved to proven optimality, or specially designed neighborhoods
can be searched making use of the Branch&Cut approach.

References

1. K. Bala, K. Petropoulos, and T.E. Stern. Multicasting in a linear lightwave network. In
Proc. of the 12th IEEE Conference on Computer Communications, pages 1350–1358.
IEEE Press, 1993.

2. A. Bookstein and S. T. Klein. Compression of correlated bit-vectors. Information
Systems, 16(4):387–400, 1991.

3. B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method for

the maximum flow problem. Algorithmica, 19(4):390–410, 1997. Code available at

http://www.avglab.com/andrew/CATS/maxflow_solvers.htm.
4. G. Dahl, T. Flatberg, N. Foldnes, and L. Gouveia. Hop-constrained spanning trees:

The jump formulation and a relax-and-cut method. Technical report, University of

Oslo, Centre of Mathematics for Applications (CMA), 2005.
5. G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-

constrained minimum spanning tree problem. In Handbook of Optimization in
Telecommunications, chapter 19, pages 493–515. Springer Science + Business Media,

2006.

http://www.avglab.com/andrew/CATS/maxflow_solvers.htm

8 (Meta-)Heuristic Jump-Cut Separation for the BDMST Problem 229

6. A.C. dos Santos, A. Lucena, and C.C. Ribeiro. Solving diameter constrained minimum

spanning tree problems in dense graphs. In Proceedings of the International Workshop
on Experimental Algorithms, volume 3059 of LNCS, pages 458–467. Springer Verlag,

Berlin, 2004.

7. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

8. L. Gouveia and T.L. Magnanti. Network flow models for designing diameter-

constrained minimum spanning and Steiner trees. Networks, 41(3):159–173, 2003.
9. L. Gouveia, T.L. Magnanti, and C. Requejo. A 2-path approach for odd-diameter-

constrained minimum spanning and Steiner trees. Networks, 44(4):254–265, 2004.

10. L. Gouveia, L. Simonetti, and E. Uchoa. Modelling the hop-constrained minimum
spanning tree problem over a layered graph. In Proceedings of the International Net-

work Optimization Conference, pages 1–6, Spa, Belgium, 2007.
11. M. Gruber and G.R. Raidl. A new 0–1 ILP approach for the bounded diameter

minimum spanning tree problem. In L. Gouveia and C. Mourão, editors, Proceedings of

the International Network Optimization Conference, volume 1, pages 178–185, Lisbon,
Portugal, 2005.

12. M. Gruber and G.R. Raidl. Variable neighborhood search for the bounded diameter

minimum spanning tree problem. In P. Hansen, N. Mladenović, J.A. Moreno Pérez, ed-
itors, Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search,
Tenerife, Spain, 2005.

13. M. Gruber, J. van Hemert, and G.R. Raidl. Neighborhood searches for the bounded
diameter minimum spanning tree problem embedded in a VNS, EA, and ACO. In
Proceedings of the Genetic and Evolutionary Computation Conference 2006, volume 2,

pages 1187–1194, 2006.
14. B.A. Julstrom. Greedy heuristics for the bounded-diameter minimum spanning tree

problem. Technical report, St. Cloud State University, 2004.
15. T.L. Magnanti and L.A. Wolsey. Handbooks in Operations Research and Management

Science: Network Models, chapter 9. North-Holland, 1995.
16. T.F. Noronha, A.C. Santos, and C.C. Ribeiro. Constraint programming for the di-

ameter constrained minimum spanning tree problem. Electronic Notes in Discrete

Mathematics, 30:93–98, 2008.
17. R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389–1401, 1957.

18. G.R. Raidl and B.A. Julstrom. Greedy heuristics and an evolutionary algorithm for
the bounded-diameter minimum spanning tree problem. In G. Lamont, H. Haddad,
G.A. Papadopoulos, and B. Panda, editors, Proceedings of the ACM Symposium on
Applied Computing, pages 747–752. ACM Press, 2003.

19. K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans-
actions on Computer Systems, 7(1):61–77, 1989.

20. A. Singh and A.K. Gupta. Improved heuristics for the bounded-diameter minimum
spanning tree problem. Soft Computing, 11(10):911–921, 2007.

Chapter 9

A Good Recipe for Solving MINLPs

Leo Liberti, Giacomo Nannicini, and Nenad Mladenović

Abstract Finding good (or even just feasible) solutions for Mixed-Integer
Nonlinear Programming problems independently of the specific problem
structure is a very hard but practically useful task, especially when the ob-
jective and/or the constraints are nonconvex. We present a general-purpose
heuristic based on Variable Neighbourhood Search, Local Branching, Sequen-
tial Quadratic Programming and Branch-and-Bound. We test the proposed
approach on the MINLPLib, discussing optimality, reliability and speed.

9.1 Introduction

The mathematical programming formulation min{f(x) | g(x) ≤ 0} can be as-
cribed to four different categories: Linear Programming (LP) if f, g are linear
forms and x ∈ Rn are continuous variables, Mixed-Integer Linear Program-
ming (MILP) if some of the variables are integer, Nonlinear Programming
(NLP) if there are some nonlinear functions in f, g and the variables are
continuous, Mixed-Integer Nonlinear Programming (MINLP) if f, g involve
nonlinear functions and the vector x includes some integer variables; prob-
lems are also categorized according to the convexity of objective function and
constraints. In general, solving LPs and convex NLPs is considered easy, and
solving MILPs, nonconvex NLPs and convex MINLPs (cMINLPs) is consid-
ered difficult. Solving nonconvex MINLPs involves difficulties arising from

Leo Liberti · Giacomo Nannicini

LIX, École Polytechnique, Palaiseau, France
e-mail: {liberti,giacomon}@lix.polytechnique.fr

Nenad Mladenović

Brunel University, London, UK and Institute of Mathematics, Academy of Sciences,
Belgrade, Serbia

e-mail: nenad.mladenovic@brunel.ac.uk,nenad@turing.mi.sanu.ac.yu

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 231

DOI 10.1007/978-1-4419-1306-7 9, c© Springer Science+Business Media, LLC 2009

{liberti,giacomon}@lix.polytechnique.fr
nenad.mladenovic@brunel.ac.uk,nenad@turing.mi.sanu.ac.yu

232 L. Liberti, G. Nannicini, and N. Mladenović

both nonconvexity and integrality, and it is considered the hardest problem
of all. From the modelling point of view, however, nonconvex MINLPs are
the most expressive mathematical programs — it stands to reason, then,
that general-purpose MINLP solvers should be very useful. Currently, opti-
mal solutions of MINLPs in general form are obtained by using the spatial
Branch-and-Bound (sBB) algorithm [2, 29, 38, 39]; but guaranteed optima
can only be obtained for relatively small-sized MINLPs. Realistically-sized
MINLPs can often have thousands (or tens of thousands) of variables (con-
tinuous and integer) and nonconvex constraints. With such sizes, it becomes
a great challenge to even find a feasible solution, and sBB algorithms become
almost useless. Some good solvers targeting cMINLPs exist in the literature
[1, 4, 6, 16, 17, 27]; although they can all be used on nonconvex MINLPs
as well (forsaking the optimality guarantee), in practice their mileage varies
wildly with the instance of the problem being solved, resulting in a high
fraction of “false negatives” (i.e. feasible problems for which no feasible so-
lution was found). The Feasibility Pump (FP) idea was recently extended to
cMINLPs [5], but again this does not work so well when applied to nonconvex
MINLPs unmodified [35].

In this chapter, we propose an effective and reliable MINLP heuristic,
called the Relaxed-Exact Continuous-Integer Problem Exploration (RECIPE)
algorithm. The MINLPs we address are cast in the following general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
xL ≤ x ≤ xU

xi ∈ Z ∀ i ∈ Z

 (9.1)

In the above formulation, x are the decision variables (xi is integer for each
i ∈ Z and continuous for each i 6∈ Z, where Z ⊆ {1, . . . , n}). f : Rn → R is a
possibly nonlinear function, g : Rn → Rm is a vector of m possibly nonlinear
functions (assumed to be differentiable), l, u ∈ Rm are the constraint bounds
(which may be set to ±∞), and xL, xU ∈ Rn are the variable bounds.

RECIPE puts together a global search phase based on Variable Neigh-
bourhood Search (VNS) [22] and a local search phase based on a Branch-and-
Bound (BB) type heuristic. The VNS global phase rests on neighbourhoods
defined as hyperrectangles for the continuous and general integer variables
[30] and by Local Branching (LB) for the binary variables [15]. The local
phase employs a BB solver for convex MINLPs [17], and applies it to (pos-
sibly nonconvex) MINLPs, making therefore effectively a heuristic. A local
NLP solver, which implements a Sequential Quadratic Programming (SQP)
algorithm [20], supplies an initial constraint-feasible solution to be employed
by the BB as starting point. RECIPE is an efficient, effective and reliable
general-purpose algorithm for solving complex MINLPs of small and medium
scale.

9 A Good Recipe for Solving MINLPs 233

The original contribution of this chapter is the way a set of well-known
and well-tested tools are combined into making a very powerful global op-
timization method. This chapter does not contribute theoretical knowledge
but rather the description of a practically useful algorithm whose easy im-
plementation rests on existing off-the-shelf software tools complemented by
relatively few lines of code. It turns out that RECIPE, when acting on the
whole MINLPLib library [9], is able to find optima equal to or better than the
best solutions reported in the literature for 55% of the instances. The closest
competitor is SBB+CONOPT [10, 13], which matches or surpasses the best
solutions listed in MINLPLib on only 37% of the instances. We improve the
best known solutions in 7% of the cases.

The rest of this chapter is organized as follows. In Section 9.2 we describe
the basic component algorithms on which RECIPE is based. Section 9.3
presents the overall approach. In Section 9.4 we discuss computational re-
sults obtained over MINLPLib, focusing on optimality, reliability and speed.
Section 9.5 concludes the chapter.

9.2 The Basic Ingredients

This section describes the four main components used in RECIPE, which are:

• the global search phase: Variable Neighbourhood Search;
• the binary variable neighbourhood definition technique: Local Branching;
• the constraint and integral feasibility enforcing local solution algorithm:

Branch-and-Bound for cMINLPs;
• the constraint feasibility enforcing local solution algorithm: Sequential

Quadratic Programming.

9.2.1 Variable Neighbourhood Search

VNS relies on iteratively exploring neighbourhoods of growing size to identify
better local optima [22, 23, 24]. More precisely, VNS escapes from the current
local minimum x∗ by initiating other local searches from starting points sam-
pled from a neighbourhood of x∗ which increases its size iteratively until a
local minimum better than the current one is found. These steps are repeated
until a given termination condition is met. This can be based on CPU time,
number of non-improving steps and other configurable parameters.

VNS has been applied to a wide variety of problems both from combina-
torial and continuous optimization [3, 7, 12, 26, 31, 32, 37]. Its early applica-
tions to continuous problems were based on a particular problem structure.
In the continuous location-allocation problem, the neighbourhoods are de-
fined according to the meaning of problem variables (assignments of facilities

234 L. Liberti, G. Nannicini, and N. Mladenović

to customers, positioning of yet unassigned facilities and so on) [7]. In bilin-
early constrained bilinear problems the neighbourhoods are defined in terms
of the applicability of the successive linear programming approach, where
the problem variables can be partitioned so that fixing the variables in either
set yields a linear problem; more precisely, the neighbourhoods of size k are
defined as the vertices of the LP polyhedra that are k pivots away from the
current vertex [22]. The first VNS algorithm targeted at problems with fewer
structural requirements, namely, box-constrained nonconvex NLPs, was given
in [36] (the paper focuses on a particular class of box-constrained NLPs, but
the proposed approach is general). Its implementation is described in [11].
Since the problem is assumed to be box-constrained, the neighbourhoods
arise naturally as hyperrectangles of growing size centered at the current lo-
cal minimum x∗. The same neighbourhoods were used in [30], an extension
of VNS to constrained NLPs.

9.2.2 Local Branching

LB is an efficient heuristic for solving difficult MILP problems [15]. Given
an integer k > 0, the LB search explores k-neighbourhoods of the incumbent
x∗ by allowing at most k of the integer variables to change their value; this
condition is enforced by means of the local branching constraint:∑

i∈S̄

(1− xi) +
∑
i 6∈S̄

xi ≤ k, (9.2)

where S̄ = {i ≤ n | i ∈ Z ∧ x∗i = 1}, which defines a neighbourhood of radius
k with respect to the binary variables of (9.1), centered at a binary solution
with support S̄. LB updates the incumbent as it finds better solutions. When
this happens, the LB procedure is called iteratively with S̄ relative to the new
incumbent. We remark that LB was successfully used in conjunction with
VNS in [25].

9.2.3 Branch-and-Bound for cMINLPs

Solving cMINLPs (i.e. MINLPs where the objective function and constraints
are convex — the terminology is confusing as all MINLPs are actually non-
convex problems because of the integrality constraints) is conceptually not
much more difficult than solving MILPs: as the relaxed problem is convex,
obtaining lower bounds is easy. The existing tools, however, are still far from
the quality attained by modern MILP solvers. The problem is usually solved
by BB, where only the integer variables are selected for branching. A re-

9 A Good Recipe for Solving MINLPs 235

stricted (continuous) convex NLP is formed and solved at each node, where
the variable ranges have been restricted according to the node’s definition.
Depending on the algorithm, the lower bounding problem at each node may
either be the original problem with relaxed integrality constraints [10, 17]
(in which case the BB becomes a recursive search for a solution that is both
integer feasible and a local optimum in continuous space), or its linear relax-
ation by outer approximation [1, 4, 14, 16]. In the former case, the restricted
NLP is solved to optimality at each node by using local NLP methods (which
converge to the node’s global optimum when the problem is convex) such as
SQP (see Section 9.2.4), in the latter it is solved once in a while to get good
incumbent candidates.

Another approach to solving MINLPs, which can be applied to convex and
pseudoconvex objective and constraints alike, is taken in [40, 41, 42], where a
cutting planes approach is blended in with a sequence of MILP subproblems
(which only need to be solved to feasibility).

These approaches guarantee an optimal solution if the objective and con-
straints are convex, but may be used as a heuristic even in presence of non-
convexity. Within this chapter, we employ these methods in order to find
local optima of general (nonconvex) MINLPs. The problem of finding an ini-
tial feasible starting point (used by the BB local NLP subsolver) is addressed
by supplying the method with a constraint feasible (although not integer
feasible) starting point found by an SQP algorithm (see Section 9.2.4).

9.2.4 Sequential Quadratic Programming

SQP methods find local solutions to nonconvex NLPs. They solve a sequence
of quadratic approximations of the original problem subject to a lineariza-
tion of its constraints. The quadratic approximation is obtained by a convex
model of the objective function Hessian at a current solution point, subject to
a linearization of the (nonlinear) constraints around the current point. SQP
methods are now at a very advanced stage [20], with corresponding imple-
mentations being able to warm- or cold-start. In particular, they deal with
the problem of infeasible linear constraints (this may happen as the lineariza-
tion around a point of a set of feasible nonlinear constraints is not always
feasible), as well as the feasibility of the starting point with respect to the
nonlinear constraints. This case is dealt with by elastic programming [21]. In
particular, snopt does a good job of finding a constraint feasible point out of
any given initial point, even for reasonably large-scale NLPs. By starting a
local MINLP solver from a constraint feasible starting point, there are better
chances that an integer feasible solution may be found.

236 L. Liberti, G. Nannicini, and N. Mladenović

9.3 The RECIPE Algorithm

Our main algorithm is a heuristic exploration of the problem solution space
by means of an alternating search between the relaxed NLP and the exact
MINLP. This is a two-phase global optimization method. Its local phase
consists in using the SQP algorithm for solving relaxed (nonconvex) NLPs
locally; next, the BB algorithm is used for solving exact (nonconvex) MINLPs
to feasibility. The global phase of the algorithm is given by a VNS using two
separate neighbourhoods for continuous and general integer variables and for
binary variables. The former neighbourhoods have hyper-rectangular shape;
the latter are based on a LB constraint involving all binary variables.

We consider a (nonconvex) MINLP P given by formulation (9.1), with its
continuous relaxation P̄ . Let B = {i ∈ Z | xL

i = 0 ∧ xU
i = 1} be the set of

indices of the binary variables, and B̄ = {1, . . . , n} \ B the set of indices of
others, including general integer and continuous variables. Let Q(x̄, k, kmax)
be its reformulation obtained by adding a local branching constraint∑

i∈B

(x̄i(1− xi) + (1− x̄i)xi) ≤
⌈
k
|B|
kmax

⌉
, (9.3)

where x̄ is a (binary) feasible solution (e.g. obtained at a previous iteration),
kmax ∈ N and k ∈ {1, . . . , kmax}. At each VNS iteration (with a certain
associated parameter k), we obtain an initial point x̃, where x̃i is sampled
in a hyperrectangular neighbourhood of radius k for i ∈ B̄ (rounding where
necessary for i ∈ Z \B) and x̃i is chosen randomly for i ∈ B. We then solve
the continuous relaxation P̄ locally by means of an SQP method using x̃ as a
starting point, and obtain x̄ (if x̄ is not feasible with respect to the constraints
of P , then x̄ is re-set to x̃ for possibly having a better choice). We then use a
BB method for cMINLPs in order to solve Q(x̄, k, kmax), obtaining a solution
x′. If x′ improves on the incumbent x∗, then x∗ is replaced by x′ and k is
reset to 1. Otherwise (i.e. if x′ is worse than x∗ or if Q(x̄, k, kmax) could not
be solved), k is increased in a VNS-like fashion. The algorithm is described
formally in Algorithm 1.

9.3.1 Hyperrectangular Neighbourhood Structure

We discuss here the neighbourhood structure for Nk(x) for the RECIPE
algorithm.

Consider hyperrectangles Hk(x), centered at x ∈ Rn and proportional to
the hyperrectangle xL ≤ x ≤ xU given by the original variable bounds, such
that Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. More formally, let Hk(x∗) be the
hyperrectangle yL ≤ x ≤ yU where, for all i 6∈ Z,

9 A Good Recipe for Solving MINLPs 237

Algorithm 1: The RECIPE algorithm.
Input: Neighbourhoods Nk(x) for x ∈ Rn;

maximum neighbourhood radius kmax;
number L of local searches in each neighbourhood.

Output: Best solution found x∗.
Set x∗ = xL/2 + xU/2
while (!time-based termination condition) do

Set k ← 1

while (k ≤ kmax) do
for (i = 1 to L) do

Sample a random point x̃ from Nk(x∗).
Solve P̄ using an SQP algorithm from initial point x̃ obtaining x̄
if (x̄ is not feasible w.r.t. the constraints of P) then

x̄ = x̃
end if
Solve Q(x̄, k, kmax) using a BB algorithm from initial point x̄ obtaining x′

if (x′ is better than x∗) then
Set x∗ ← x′

Set k ← 0

Exit the FOR loop
end if

end for

Set k ← k + 1.
end while

end while

yL
i = x∗i −

k

kmax
(x∗i − xL

i)

yU
i = x∗i +

k

kmax
(xU

i − x∗i),

for all i ∈ Z \B,

yL
i = bx∗i −

k

kmax
(x∗i − xL

i) + 0.5c

yU
i = bx∗i +

k

kmax
(xU

i − x∗i) + 0.5c,

and for all i ∈ B, yL = 0 and yU = 1.
We let Nk(x) = Hk(x)\Hk−1(x). This neighbourhood structure defines a

set of hyperrectangular nested shells with respect to continuous and general
integer variables. Let τ be the affine map sending the hyperrectangle xL ≤
x ≤ xU into the unit L∞ ball (i.e., hypercube) B centered at 0, i.e., B = {x :
|xi| ≤ 1∀i}. Let rk = k

kmax
be the radii of the balls Bk (centered at 0) such

that τ(Hk(x)) = Bk for each k ≤ kmax. In order to sample a random vector
x̃ in Bk\Bk−1 we proceed as in Algorithm 2.

The sampled point x̃ will naturally not be feasible in the constraints of
(9.1), but we can enforce integral feasibility by rounding x̃j to the nearest

238 L. Liberti, G. Nannicini, and N. Mladenović

integer for j ∈ Z, i.e. by setting x̃j ← bx̃j+0.5c. This will be rather ineffective
with the binary variables xj , which would keep the same value x̃j = x∗j
for each k ≤ kmax

2 . Binary variables are best dealt with by solving the LB
reformulation Q in Algorithm 1.

9.4 Computational Results

Algorithm 1 presents many implementation difficulties: the problem must
be reformulated iteratively with the addition of a different LB constraint at
each iteration; different solvers acting on different problem formulations must
be used. All this must be coordinated by the outermost VNS at the global
level. We chose AMPL [19] as a scripting language because it makes it very
easy to interface to many external solvers. Since AMPL cannot generate the
reformulation Q of P iteratively independently of the problem structure, we
employed a C++ program that reads an AMPL output .nl file in flat form
[29] and outputs the required reformulation as an AMPL-readable .mod file.

The minlp bb solver [27] was found to be the MINLP solver that performs
best when finding feasible points in nonconvex MINLPs (the comparison was
carried out with the default-configured versions of filMINT [1] and BonMin
[6]). The SQP solver of choice was snopt [21], found to be somewhat more
reliable than filtersqp [18]: on the analysed test set, snopt achieves, on
average, better results at finding feasible solution in a short CPU time. All
computational results have been obtained on an Intel Xeon 2.4 GHz with 8
GB RAM running Linux.

RECIPE rests on three configurable parameters: kmax (the maximum
neighbourhood radius), L (the number of local searches starting in each
neighbourhood) and the maximum allowed user CPU time (not including
the time taken to complete the last local search). After some practical exper-
imentation on a reduced subset of instances, we set kmax = 50, L = 15 and
the maximum CPU time to 10h. These parameters were left unchanged over
the whole test set, yielding good results without the need for fine-tuning.

Algorithm 2: Sampling in the shell neighbourhoods.
Input: k, kmax.

Output: A point x̃ sampled in Hk(x)\Hk−1(x).
Sample a random direction vector d ∈ Rn

Normalize d (i.e., set d← d
||d||∞

)

Let rk−1 = k−1
kmax

, rk = k
kmax

Sample a random radius r ∈ [rk−1, rk] yielding a uniformly distributed point in the

shell
Let x̃ = τ−1(rd)

9 A Good Recipe for Solving MINLPs 239

9.4.1 MINLPLib

The MINLPLib [9] is a collection of Mixed Integer Nonlinear Programming
models which can be searched and downloaded for free. Statistics for the
instances in the MINLPLib are available at http://www.gamsworld.org/
minlp/minlplib/minlpstat.htm. The instance library is available at http:
//www.gamsworld.org/minlp/minlplib.htm. The MINLPLib is distributed
in GAMS [8] format, so we employed an automatic translator to cast the files
in AMPL format.

At the time of downloading (Feb. 2008), the MINLPLib consisted of 265
MINLP instances contributed by the scientific and industrial OR community.
These were all tested with the RECIPE algorithm implementation described
above. We had 20 unsuccessful runs due to some AMPL-related errors (the
model contained some unusual AMPL operator not implemented by some of
the solvers/reformulators employed in RECIPE). The instances leading to
AMPL-related failure were:

blendgap, dosemin2d, dosemin3d, fuzzy, hda, meanvarxsc, pb302035, pb302055,

pb302075, pb302095, pb351535, pb351555, pb351575, pb351595, water3, waterful2,
watersbp, waters, watersym1, watersym2.

The performance of RECIPE was evaluated on the 245 runs that came to
completion. The results are given in Tables 9.1, 9.2 (solved instances) and 9.3
(unsolved instances). Table 9.1 lists results where the best solution found by
RECIPE was different by at least 0.1% from that listed in MINLPLib. The
first column contains the instance name, the second contains the value f∗

of the objective function found by the RECIPE algorithm and the third the
corresponding CPU usage measured in seconds of user time; the fourth con-
tains the value f̄ of the objective function reported in the official MINLPLib
table and the fifth contains the name of the corresponding GAMS solver that
found the solution. Table 9.2 lists instance names where the best values found
by RECIPE and listed in MINLPLib are identical.

9.4.1.1 Optimality

RECIPE found feasible solutions for 163 instances out of 245 (66%). Relative
to this reduced instance set, it found the best known solution for 121 instances
(74%), gave evidence of the unboundedness of three instances (1%), and
improved the best known objective value for 12 instances (7%). In the other
cases it found a local optimum that was worse than the best known solution.

Improved solutions were found for the following instances:

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://www.gamsworld.org/minlp/minlplib.htm

240 L. Liberti, G. Nannicini, and N. Mladenović

Table 9.1 Computational results on MINLPLib. Values denoted by ∗ mark instances with

unbounded values in the optimal solution.

instance RECIPE known solution
f∗ CPU f̄ Solver

csched2a -165398.701331 75.957500 -160037.701300 BonMin
eniplac -131926.917119 113.761000 -132117.083000 SBB+CONOPT
ex1233 160448.638212 3.426480 155010.671300 SBB+CONOPT
ex1243 118489.866394 5.329190 83402.506400 BARON
ex1244 211313.560000 7.548850 82042.905200 SBB+CONOPT
ex1265a 15.100000 9.644530 10.300000 BARON
ex3 -53.990210 1.813720 68.009700 SBB+CONOPT
ex3pb -53.990210 1.790730 68.009700 SBB+CONOPT
fo7 2 22.833307 23.710400 17.748900 AlphaECP
fo7 24.311289 25.423100 20.729700 AlphaECP
fo9 38.500000 46.296000 23.426300 AlphaECP
fuel 17175.000000 1.161820 8566.119000 SBB+CONOPT
gear4 1.968201 9.524550 1.643400 SBB+CONOPT2
lop97ic 4814.451760 3047.110000 4284.590500 -
lop97icx 4222.273030 1291.510000 4326.147700 SBB+CONOPT
m7 220.530055 17.275400 106.756900 AlphaECP
minlphix 209.149396∗ 4.849260 316.692700 SBB+snopt
nuclear14b -1.119531 7479.710000 -1.113500 SBB+CONOPT
nuclear24b -1.119531 7483.530000 -1.113500 SBB+CONOPT
nuclear25 -1.120175 1329.530000 -1.118600 SBB+CONOPT
nuclearva -1.008822 167.102000 -1.012500 SBB+CONOPT2+snopt
nuclearvb -1.028122 155.513000 -1.030400 SBB+CONOPT2+snopt
nuclearvc -1.000754 176.075000 -0.998300 SBB+CONOPT2+snopt
nuclearvd -1.033279 202.416000 -1.028500 SBB+CONOPT2+snopt
nuclearve -1.031364 193.764000 -1.035100 SBB+CONOPT2+snopt
nuclearvf -1.020808 200.154000 -1.017700 SBB+CONOPT2+snopt
nvs02 5.964189 1.925710 5.984600 SBB+CONOPT3
nvs05 28.433982 4.215360 5.470900 SBB+CONOPT3
nvs14 -40358.114150 2.070690 -40153.723700 SBB+CONOPT3
nvs22 28.947660 4.849260 6.058200 SBB+CONOPT3
o7 2 125.907318 23.262500 116.945900 AlphaECP
o7 160.218617 24.267300 131.649300 AlphaECP
oil -0.006926 389.266000 -0.932500 SBB+CONOPT(fail)
product -1971.757941 2952.160000 -2142.948100 DICOPT+CONOPT3/CPLEX

st e13 2.236072 0.548916 2.000000 BARON
st e40 52.970520 0.930858 30.414200 BARON
stockcycle 120637.913333 17403.200000 119948.688300 SBB+CONOPT
super3t -0.674621 38185.500000 -0.685965 SBB+CONOPT
synheat 186347.748738 3.534460 154997.334900 SBB+CONOPT
tln7 19.300000 1000.640000 15.000000 BARON
risk2b −∞∗ 45.559100 -55.876100 SBB+CONOPT3
risk2bpb −∞∗ 48.057700 -55.876100 SBB+CONOPT3

csched2a: f∗ = −165398.701331 (best known solution: −160037.701300)
ex3: f∗ = −53.990210 (best known solution: 68.009700)

ex3pb: f∗ = −53.990210 (best known solution: 68.009700)

lop97icx: f∗ = 4222.273030 (best known solution: 4326.147700)
minlphix: f∗ = 209.149396 (best known solution: 316.692700)

nuclear14b: f∗ = −1.119531 (best known solution: −1.113500)

nuclear24b: f∗ = −1.119531 (best known solution: −1.113500)
nuclear25: f∗ = −1.120175 (best known solution: −1.118600)

nuclearvc: f∗ = −1.000754 (best known solution: −0.998300)
nuclearvd: f∗ = −1.033279 (best known solution: −1.028500)

nuclearvf: f∗ = −1.020808 (best known solution: −1.017700)

nvs02: f∗ = 5.964189 (best known solution: 5.984600)
nvs14: f∗ = −40358.114150 (best known solution: −40153.723700)

risk2b: f∗ = −∞ (best known solution: −55.876100)

risk2bpb: f∗ = −∞ (best known solution: −55.876100).

9 A Good Recipe for Solving MINLPs 241

Table 9.2 Instances for which RECIPE’s optima are the same as those reported in

MINLPLib.

alan ex1224 gbd nvs06 parallel st e32 tln2
batchdes ex1225 gear2 nvs07 prob02 st e36 tln4
batch ex1226 gear3 nvs08 prob03 st e38 tln5
cecil 13 ex1252a gear nvs09 prob10 st miqp1 tln6
contvar ex1252 gkocis nvs10 procsel st miqp2 tloss
csched1a ex1263a hmittelman nvs11 pump st miqp3 tls2
csched1 ex1263 johnall nvs12 qap st miqp4 util
csched2 ex1264a m3 nvs13 ravem st miqp5
du-opt5 ex1264 m6 nvs15 ravempb st test1
du-opt ex1265 meanvarx nvs16 sep1 st test2
enpro48 ex1266a nuclear14a nvs17 space25a st test3
enpro48pb ex1266 nuclear14 nvs18 space25 st test4
enpro56 ex4 nuclear24a nvs19 spectra2 st test6
enpro56pb fac1 nuclear24 nvs20 spring st test8
ex1221 fac2 nuclear25a nvs21 st e14 st testgr1
ex1222 fac3 nuclear25b nvs23 st e15 st testph4
ex1223a feedtray2 nvs01 nvs24 st e27 synthes1
ex1223b feedtray nvs04 oaer st e29 synthes2
ex1223 gastrans nvs03 oil2 st e31 synthes3

All new best solutions were double-checked for constraint, bounds and
integrality feasibility besides the verifications provided by the local solvers,
and were all found to be integral feasible; 11 out of 12 were constraint/bound
feasible to within a 10−5 absolute tolerance, and 1 (csched2a) to within 10−2.
The 3 instances marked by ∗ in Table 9.1 (minlphix, risk2b, risk2bpb) gave
solutions x∗ with some of the components at values in excess of 1018. Since
minlphix minimizes a fractional objective function and there are no upper
bounds on several of the problem variables, the optimum is attained when
the variables appearing in the denominators tend towards +∞. We solved
risk2b and risk2bpb several times, setting increasing upper bounds to the
unbounded variables: this yielded decreasing values of the objective function,
suggesting that these instances are really unbounded (hence the −∞ in Table
9.1).

On 82 instances out of 245 listed in Table 9.3, RECIPE failed to find any
local optimum within the allotted time limit. Most of these failures are due
to the difficulty of the continuous relaxation of the MINLPs: there are several
instances where the SQP method (snopt) does not manage to find a feasible
starting point, and in these cases the convex MINLP solver (minlp bb) also
fails. On a smaller number of instances, minlp bb is not able to find integral
feasible solutions even though constraint feasible solutions are provided by
snopt.

9.4.1.2 Reliability

One interesting feature of RECIPE is its reliability: in its default configu-
ration it managed to find solutions with better or equal quality than those

242 L. Liberti, G. Nannicini, and N. Mladenović

Table 9.3 Instances unsolved by RECIPE.

4stufen elf fo9 ar2 1 no7 ar2 1 nuclear49 st e35 tltr
beuster fo7 ar2 1 fo9 ar25 1 no7 ar25 1 o7 ar2 1 st test5 uselinear
deb10 fo7 ar25 1 fo9 ar3 1 no7 ar3 1 o7 ar25 1 st testgr3 var con10
deb6 fo7 ar3 1 fo9 ar4 1 no7 ar4 1 o7 ar3 1 super1 var con5
deb7 fo7 ar4 1 fo9 ar5 1 no7 ar5 1 o7 ar4 1 super2 waste
deb8 fo7 ar5 1 gasnet nous1 o7 ar5 1 super3 water4
deb9 fo8 ar2 1 m7 ar2 1 nous2 o8 ar4 1 tln12 waterx
detf1 fo8 ar25 1 m7 ar25 1 nuclear104 o9 ar4 1 tls12 waterz
eg all s fo8 ar3 1 m7 ar3 1 nuclear10a ortez tls4 windfac
eg disc2 s fo8 ar4 1 m7 ar4 1 nuclear10b qapw tls5 waterx
eg disc s fo8 ar5 1 m7 ar5 1 nuclear49a saa 2 tls6
eg int s fo8 mbtd nuclear49b space960 tls7

reported in the MINLPLib on 136 instances over 245 (55%) and at least a fea-
sible point in a further 11% of the cases. On the same set of test instances, the
closest competitor is SBB+CONOPT, which matches or surpasses the best
solutions in MINLPLib in 37% of the cases, followed by BARON with 15%
and by AlphaECP with 14% (these percentages were compiled by looking at
http://www.gamsworld.org/minlp/minlplib/points.htm in June 2008).

9.4.1.3 Speed

The total time taken for solving the whole MINLPLib (including the unsolved
instances, where the VNS algorithm terminates after exploring the neighbour-
hoods up to kmax or when reaching the 10 hours time limit, whichever comes
first) is roughly 4 days and 19 hours of user CPU time. RECIPE’s speed
is very competitive with that of sBB approaches: tests conducted using the
ooOPS solver [28, 29, 34] as well as BARON on some complex MINLPs
showed that sBB methods may take a long time to converge. Naturally, the
trade-off for this speed is the lack of an optimality guarantee.

9.5 Conclusion

This chapter describes a heuristic approach to solving nonconvex MINLPs
based on the mathematical programming formulation. Our approach, called
RECIPE, combines several existing exact, approximate and heuristic tech-
niques in a smart way, resulting in a method that can successfully solve
many difficult MINLPs without hand-tuned parameter configuration. Such a
reliable solver would be particularly useful in industrial applications where
the optimum quality is of relative importance and the optimization layer is
hidden from user intervention and is therefore “just supposed to work”.

http://www.gamsworld.org/minlp/minlplib/points.htm

9 A Good Recipe for Solving MINLPs 243

Acknowledgements We are very grateful to Prof. Tapio Westerlund for carefully check-

ing all the computational results and informing us of some misprints on the MINLPLib
website.

References

1. K. Abhishek, S. Leyffer, and J. Linderoth. FilMINT: An outer-approximation based

solver for nonlinear mixed-integer programs. Technical Report ANL/MCS-P1374-0906,
Argonne National Laboratory, 2007.

2. C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization of MINLP
problems in process synthesis and design. Computers & Chemical Engineering,
21:S445–S450, 1997.

3. M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse,
J. Lacheré, and A. Monhait. VNS for extremal graphs 14: The AGX 2 system. In
Liberti and Maculan [33], pages 281–308.

4. P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex
mixed integer nonlinear programs. Technical Report RC23771, IBM Corporation, 2005.

5. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer
nonlinear programs. Technical Report RC23862 (W0602-029), IBM Corporation, 2006.

6. P. Bonami and J. Lee. BONMIN user’s manual. Technical report, IBM Corporation,

June 2007.
7. J. Brimberg and N. Mladenović. A variable neighbourhood algorithm for solving the

continuous location-allocation problem. Studies in Location Analysis, 10:1–12, 1996.
8. A. Brook, D. Kendrick, and A. Meeraus. GAMS, a user’s guide. ACM SIGNUM

Newsletter, 23(3-4):10–11, 1988.
9. M.R. Bussieck, A.S. Drud, and A. Meeraus. MINLPLib — a collection of test models

for mixed-integer nonlinear programming. INFORMS Journal on Computing, 15(1),

2003.
10. ARKI Consulting and Development. SBB Release Notes, 2002.
11. M. Dražic, V. Kovačević-Vujčić, M. Čangalović, and N. Mladenović. Glob — a new

VNS-based software for global optimization. In Liberti and Maculan [33], pages 135–
154.

12. M. Dražić, C. Lavor, N. Maculan, and N. Mladenović. A continuous variable neighbour-
hood search heuristic for finding the tridimensional structure of a molecule. European
Journal of Operational Research, 185:1265–1273, 2008.

13. A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization
problems. Mathematical Programming, 31:153–191, 1985.

14. M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

15. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–37,
2005.

16. R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approx-

imation. Mathematical Programming, 66:327–349, 1994.
17. R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch-

and-bound. SIAM Journal of Optimization, 8(2):604–616, 1998.
18. R. Fletcher and S. Leyffer. User manual for filter. Technical report, University of

Dundee, UK, March 1999.
19. R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.
20. P. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale

constrained optimization. SIAM Journal of Optimization, 12(4):979–1006, 2002.

244 L. Liberti, G. Nannicini, and N. Mladenović

21. P.E. Gill. User’s guide for SNOPT version 7. Systems Optimization Laboratory,

Stanford University, California, 2006.
22. P. Hansen and N. Mladenović. Variable neighbourhood search: Principles and appli-

cations. European Journal of Operational Research, 130:449–467, 2001.

23. P. Hansen and N. Mladenović. Variable neighbourhood search. In P. Pardalos and
M.G.C. Resende, editors, Handbook of Applied Optimization. Oxford University Press,

Oxford, 2002.

24. P. Hansen and N. Mladenović. Variable neighbourhood search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics. Kluwer, Dordrecht, 2003.

25. P. Hansen, N. Mladenović, and D. Urošević. Variable neighbourhood search and local

branching. Computers & Operations Research, 33(10):3034–3045, 2006.
26. C. Lavor, L. Liberti, and N. Maculan. Computational experience with the molecular

distance geometry problem. In J. Pintér, editor, Global Optimization: Scientific and
Engineering Case Studies, pages 213–225. Springer, Berlin, 2006.

27. S. Leyffer. User manual for minlp bb. Technical report, University of Dundee, UK,

March 1999.
28. L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization.

PhD thesis, Imperial College London, UK, March 2004.

29. L. Liberti. Writing global optimization software. In Liberti and Maculan [33], pages
211–262.

30. L. Liberti and M. Dražic. Variable neighbourhood search for the global optimization

of constrained NLPs. In Proceedings of GO Workshop, Almeria, Spain, 2005.
31. L. Liberti, C. Lavor, and N. Maculan. Double VNS for the molecular distance geometry

problem. In P. Hansen, N. Mladenović, J.A. Moreno Pérez, editors, Proceeding of the

18th Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain, 2005.
32. L. Liberti, C. Lavor, N. Maculan, and F. Marinelli. Double variable neighbourhood

search with smoothing for the molecular distance geometry problem. Journal of Global
Optimization, accepted for publication.

33. L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implemen-
tation. Springer, Berlin, 2006.

34. L. Liberti, P. Tsiakis, B. Keeping, and C.C. Pantelides. ooOPS. Centre for Process

Systems Engineering, Chemical Engineering Department, Imperial College, London,
UK, 2001.

35. A. Lodi. Personal communication, 2007.

36. N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović. Solving a spread-
spectrum radar polyphase code design problem by tabu search and variable neighbour-
hood search. European Journal of Operational Research, 151:389–399, 2003.

37. J. Puchinger and G.R. Raidl. Relaxation guided variable neighbourhood search. In
Proc. of Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain,
2005.

38. E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch-and-
bound algorithm for the global optimisation of nonconvex MINLPs. Computers &
Chemical Engineering, 23:457–478, 1999.

39. M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed integer nonlin-
ear programs: A theoretical and computational study. Mathematical Programming,
99:563–591, 2004.

40. T. Westerlund. Some transformation techniques in global optimization. In Liberti and
Maculan [33], pages 45–74.

41. T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer optimization prob-
lems by cutting plane techniques. Optimization and Engineering, 3:235–280, 2002.

42. T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cutting plane
method for a class of non-convex MINLP problems. Computers & Chemical Engineer-
ing, 22(3):357–365, 1998.

Chapter 10

Variable Intensity Local Search

Snežana Mitrović-Minić and Abraham P. Punnen

Abstract This chapter considers a local search based heuristic framework for
solving the mixed-integer programming problem (MIP) where a general pur-
pose MIP solver is employed to search the associated neighborhoods. The as-
sociated neighborhood search problems are MIPs of smaller sizes. The neigh-
borhoods are explored in varying the intensity by changing time and size
parameters. This local search can be viewed as a combination of very large
scale neighborhood (VLSN) search and variable neighborhood search (VNS).
The approach has been implemented to solve two integer programming prob-
lems: the generalized assignment problem, and the multi-resource generalized
assignment problem. Encouraging computational results have been achieved.

10.1 Introduction

In this chapter we consider a local search algorithm for the mixed-integer
programming problem (MIP) based on the well known k-exchange neighbor-
hood. Unlike traditional k-exchange based local search that considers small
values of k, we use large values k. An MIP solver is used to explore the
neighborhoods for improved solutions. The neighborhoods size and search
intensity are controlled by two search-intensity parameters. Our algorithm
in many cases does not explore the k-exchange neighborhood optimally but
performs only an approximate search. Thus, we are exploring only a partial
k-exchange neighborhood, for various values of k.

Several local search algorithms from the optimization literature that par-
tially explore k-exchange neighborhoods—and are classified as variable depth
methods—include the Lin-Kernighan algorithm for TSP [11] and ejection

Snežana Mitrović-Minić · Abraham P. Punnen
Department of Mathematics, Simon Fraser University, Surrey, Canada

e-mail: {snezanam,apunnen}@sfu.ca

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 245

DOI 10.1007/978-1-4419-1306-7 10, c© Springer Science+Business Media, LLC 2009

{snezanam,apunnen}@sfu.ca

246 S. Mitrović-Minić and A.P. Punnen

chain algorithms for various combinatorial optimization problems [10]. Al-
though our algorithm is a local search, considering its linkages with VLSN
search [1, 2] and VNS [16], we call it variable intensity local search (VILS).

Using an MIP solver within local search to explore neighborhoods re-
ceived considerable attention in the recent years: [5, 6] for the general
MIP, [3, 22, 21, 23] for variations of the vehicle routing problems, [18, 15, 14]
for the variations of the generalized assignment problem. The algorithm dis-
cussed in this chapter is a generalization of the heuristics developed for the
generalized assignment problem (GAP) [15] and the multi-resource general-
ized assignment problem (MRGAP) [14].

This chapter is organized as follows. In Section 10.2 we introduce the gen-
eral VILS framework. Section 10.3 gives brief description of our experimental
studies on GAP and MRGAP problems whose details are reported in [15, 14].
Concluding remarks are given in Section 10.4.

10.2 The General VILS Framework

The VILS algorithm is a local search algorithm for MIP using the k-exchange
neighborhood for varying values of k, adjusted systematically during the al-
gorithm. The resulting neighborhoods are searched approximately using an
MIP-solver with varying intensity level. Consider the MIP

MIP: Maximize CX
Subject to AX = b

X ≥ 0, X integer,

where XT = (x1, x2, . . . , xn) is a vector of n variables, and the problem
parameters are: A = (aij) which is an m × n matrix, bT = (b1, b2, . . . , bm)
which is an m-vector, and C = (c1, c2, . . . , cn) which is an n-vector. For
simplicity of presentation, we avoid real variables (which are never set to a
fixed value during the course of the algorithm) in the above description of an
MIP. Let X̂ be a feasible solution to the MIP. A binding set Ŝ is a subset of
variable indices {1, 2, . . . , n} which defines a k-exchange neighborhood. The
neighborhood N(X̂) consists of all solutions of the MIP whose jth variable
is equal to the value of the jth variable in X̂ for all j ∈ Ŝ, i.e.

N(X̂) = {X | xj = x̂j , ∀j ∈ Ŝ and X is a feasible solution to the MIP}

The neighborhoodN(X̂) can be searched for an improving solution by solving
the following restricted MIP

MIP(Ŝ): Maximize
∑

j∈N\Ŝ

cjxj

Subject to

10 Variable Intensity Local Search 247∑
j∈N\Ŝ

aijxij = b̂i, for i = 1, 2, . . .m

xj ≥ 0, xj integer for j ∈ N \ Ŝ

where b̂i = bi −
∑
j∈Ŝ

aij x̂ij . If X̄ = {x̄j : j ∈ N \ Ŝ} is a feasible solution to

MIP(Ŝ) then the n-vector X defined by

xj =

{
x̂j , if j ∈ Ŝ
x̄j , otherwise

is a feasible solution to MIP and X ∈ N(X̂). We call such a solution X the
solution augmented by X̄.

The complexity of MIP(Ŝ) in practice depends primarily on the size of Ŝ
although other factors are also involved. If |Ŝ| is large (and hence |N \ Ŝ| is
small) MIP(Ŝ) can normally be solved optimally in reasonable time using an
MIP solver. However, in this case, |N(X̂)| is likely to be small, limiting the
power of the local search. If |Ŝ| is small, then |N(X̂)| is likely to be large
yielding a more powerful search but the time for searching the neighborhood
using the MIP solver could be large. Thus the efficiency of the local search
using the MIP solver depends on our ability to guide the search appropriately
by controlling the size of Ŝ, the time invested in searching N(X̂), and the
choice of elements in Ŝ.

In the VILS algorithm, we keep six major parameters: p is the cardinality
of the binding set Ŝ, p0 is its initial value, ∆p is the downward step size to
decrease the value of p; t is the time limit for the MIP solver, t0 is its initial
value, and ∆t is the upward step size of t.

Initially, we set a large value of p yielding smaller neighborhoods. The
search times for these neighborhoods are set to small values and the local
search is carried out until a decision is made to intensify the search. At this
stage, the value of p is decreased (and thereby increasing the neighborhood
size) and the time limit for searching the neighborhood is increased. This
process is continued until a prescribed stopping criterion is reached.

The control mechanism using the time limits and the systematic intensifi-
cation of the search resulted in good experimental results. Different selections
of the binding sets Ŝ yield different neighborhoods, and they are normally
problem specific. Assume that L is the number of different neighborhoods.
If no improvement is obtained after employing several binding set selection
rules, the search intensity is increased by decreasing p and increasing t. A
high level description of the VILS algorithm is given in Figure 10.1.

The neighborhoods and intensity-search schemata are problem specific.
Neighborhoods may be designed using any existing or new strategy for choos-
ing a binding set. Our strategies for choosing binding sets may be summarized
as follows. A criterion for “good” variables is chosen beforehand, and vari-
ables are fixed in order of “goodness”. In the iteration where p variables

248 S. Mitrović-Minić and A.P. Punnen

The VILS Algorithm
Input: Problem instance P;

the stopping criterion and the intensity-search change criterion;
p0, ∆p; t0, ∆t

begin

generate feasible solution X̂
i⇐ 0

p⇐ p0

t⇐ t0
while (the stopping criterion is not satisfied) do

choose the binding set Si such that |Si| = p and
generate the neighborhood Ni

/* search the neighborhood */
Solve the problem MIP(Si) by running the MIP solver for time t

Let X̄ be the best solution obtained
Compute the augmented solution X′

/* update the current solutions */

if (CX′ < CX̂) then

X̂ ⇐ X′

end if
i⇐ (i + 1) mod L
if (the intensity-search change criterion is satisfied) then

p⇐ p−∆p

t⇐ t + ∆t
end if

end while

return X̂

end

Fig. 10.1 Outline of the VILS Algorithm.

have to be fixed, the following are the neighborhoods for the GAP and the
MRGAP with m machines.

1. For each machine, fix p/m “best” variables out of the value-one variables.
2. For each machine, fix p/m “worst” of the value-one variables.
3. For each machine, fix p/(m/2) ”best” and p/(m/2) “worst” of the value-

one variables.
4. For half of the machines, fix p/m “best”, and for the other half of the

machines, fix p/m ”worst” of the value-one variables.
5. Fix “best” p of the value-one variables.
6. Fix “worst” p of the value-one variables.
7. Fix p/2 “best” and p/2 “worst” of the value-one variables.
8. Controlled random fixing: fix p/10 random variables in the “best” 10% of

the value-one variables, fix p/10 random variables in the next “best” 10%
(11% to 20%) of the value-one variables, etc.

9. Meta-neighborhood: fix certain sequences of the value-one variables in the
given ”goodness” order.

10 Variable Intensity Local Search 249

The variable “goodness” criteria depends only on the initial problem pa-
rameters, and thus the variables can be ordered by their goodness in a pre-
processing step. An example of a “goodness” criterion we used for the GAP
is: A “good” variable is one with smaller ratio cost per resource needed. Fur-
ther details about the neighborhoods used in our two experimental studies
may be found in [14, 15].

Since the truncation of the current solution X̂ is a feasible solution to
MIP(Si), we supply it to the MIP solver. To test the efficiency of the algo-
rithm we considered two specific problems: the GAP which is well stud-
ied in literature [4, 12, 13, 19, 24, 25] and its generalization the MR-
GAP [7, 8, 9, 17, 20]. Our experimental studies, algorithm parameters, and
results are summarized in the next section.

10.3 Experimental Studies

We have implemented the VILS for the GAP and MRGAP in C++ and
tested on a Dell workstation with one Intel Xeon 2.0GHz processor, 512
MB memory, GNU g++ compiler version 3.2, and Linux (Mandrake 9.2)
operating system. To search the neighborhoods we have used CPLEX 9.1
with Concert Technology.

The stopping criterion has been taken according to the time limits used
in [24, 26, 25]. The intensity-search change criterion has been: “solution has
not improved in 3 iterations” although we also experimented with values 2,
4 and 5. Preliminary studies have also shown that an appropriate number of
different neighborhoods (the binding strategies) L should be between 4 and
10, when the intensity-search change criterion is 2 or 3 to assure that each
neighborhood type is searched once in every two or three intensity settings.

We have experimented with different intensity schedules with variety of
combinations of changing time limits and binding set size alternatively and
simultaneously. However, more complicated schedules, as well as more gran-
ular schemas, have not shown any additional advantages. When a number
of iterations does not generate an improving solution, the simple increase in
time limit and neighborhood size almost always produces improved solution.
Further research towards reactive VILS is in progress, where initial neighbor-
hood size and time limit as well as the steps would be chosen automatically.

For the GAP, standard benchmark large instances of types C, D, and E,
with 900 and 1600 jobs, generated by [24] were used as the test bed. Nine
out of eighteen solutions achieved by VILS were equal or better in quality
compared to the solutions when tabu search by [25] was run only once. (Six
solutions were better.) When tabu search was run five times [25], it achieved
better results for all but two instance. In other five instances the solutions
were the same.

250 S. Mitrović-Minić and A.P. Punnen

For the MRGAP, our testbed consists of MRGAP instances generated by
[26] from the standard benchmark GAP instances of types C, D and E with
100 and 200 tasks (which were generated by J.E. Beasley). We have tested
the VILS with two different intensification schemes: Sch1 and Sch2 (details
may be found in [15, 14]). The solutions achieved by VILS are better or equal
in quality compared to the solutions reported in the literature, with a few
exceptions when tabu search by [26] or CPLEX achieved better solutions.

For the D instances, the best solutions were achieved by VILS with in-
tensification schedule Sch1 in 7 cases, by VILS with intensification schedule
Sch2 in 10 cases, and by CPLEX in 10 cases. Unique best solutions were
achieved by VILS (Sch1), VILS (Sch1), and CPLEX in 6, 8, and 7 instances,
respectively. For the E instances, the best solutions were achieved by VILS
(Sch1), VILS (Sch1), tabu search [26], and CPLEX in 16, 14, 8, and 12 in-
stances, respectively. Unique best solutions were achieved by VILS (Sch1),
VILS (Sch1), tabu search [26], and CPLEX in 6, 3, 2, and 1 instances, re-
spectively.

10.4 Conclusion

In this chapter we proposed an implementation of a local search framework,
called Variable Intensity Local Search, for solving mixed-integer program-
ming problems. The neighborhoods are explored using a general purpose
MIP solver. Depending on the binding sets, the neighborhoods could be of
different structure and hence the algorithm can be viewed as a variable neigh-
borhood search. In addition, since some of the search neighborhoods could
be very large, the algorithm can be viewed as a very large scale neighbor-
hood search as well. We have done two experimental studies solving GAP
and MRGAP which showed that good quality solutions can be reached in a
reasonable time. We are in the process of conducting an experimental study
on a facility location problem and on a general 0-1 MIP.

The major advantage of the approach is its local search framework sim-
plicity, and ability to achieve satisfactory results by controlling the intensity
and depth of the neighborhood search. Furthermore, our heuristic can be
embedded in any metaheuristic.

Acknowledgements This work is partially supported by an NSERC discovery grant
awarded to Abraham P. Punnen.

10 Variable Intensity Local Search 251

References

1. R.K. Ahuja, O. Ergun, and A. Punnen. A survey of very large scale neighborhood

search techniques. Discrete Applied Mathematics, 23:75–102, 2002.
2. R.K. Ahuja, O. Ergun, and A. Punnen. Very large scale neighborhood search: Theory,

algorithms, and applications. In T. Gonzalez, editor, Handbook of Approximation Al-
gorithms and Metaheuristics, volume 10 of Computer and Information Science Series.

Chapmann and Hall, CRC Press, 2007.
3. R. Bent and P. V. Hentenryck. A two-stage hybrid algorithm for pickup and delivery

vehicle routing problems with time windows. Computers & Operations Research,

33:875–893, 2006.
4. D. Cattrysse and L.N. Van Wassenhove. A survey of algorithms for the generalized

assignment problem. European Journal of Operational Research, 60:260–272, 1992.
5. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods

to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.
6. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,

2003.
7. B. Gavish and H. Pirkul. Allocation of databases and processors in a distributed

computing system. In J. Akoka, editor, Management of Distributed Data Processing.

North-Holland Publishing Company, Amsterdam, 1982.
8. B. Gavish and H. Pirkul. Computer and database location in distributed computer

systems. IEEE Transactions in Computing, 35:583–590, 1986.
9. B. Gavish and H. Pirkul. Algorithms for the multi-resource generalized assignment

problem. Management Science, 37:695–713, 1991.
10. F. Glover. New ejection chain and alternating path methods for traveling salesman

problem. In O. Balci, R. Sharda, and S. Zenios, editors, Computer Science and Op-

erations Research: New Development in Their Interfaces, pages 491–507. Pergamon,

Oxford, 1992.
11. S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman

problem. Operations Research, 21:498–516, 1973.
12. H.R. Lourenço and D. Serra. Adaptive approach heuristic for the generalized as-

signment problem. Technical report, Department of Economics and Management,

Universitat Pompeu Fabra, R. Trias Fargas 25-27, 08005 Barcelona, Spain, 1998.
13. S. Martello and P. Toth. An algorithm for the generalized assignment problem. In

J.P. Brans, editor, Operational Research’81, pages 589–603. North-Holland, 1981.
14. S. Mitrovic-Minic and A.P. Punnen. Local search intensified: Very large-scale variable

neighborhood search for the multi-resource generalized assignment problem. Submitted

for publication.
15. S. Mitrovic-Minic and A.P. Punnen. Very large-scale variable neighborhood search

for the generalized assignment problem. Journal of Interdisciplinary Mathematics,
11(5):653–670, 2008.

16. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations

Research, 24:1097–1100, 1997.
17. R.A. Murphy. A private fleet model with multi-stop backhaul. Working paper 103,

Optimal Decision Systems, Green Bay, WI54306, 1986.
18. T. Oncan, S.N. Kabadi, K.P.N. Nair, and A.P. Punnen. VLSN search algorithms for

partitioning problems using matching neighbourhoods. The Journal of the Operational
Research Society, 59:388–398, 2008.

19. I.H. Osman. Heuristics for the generalized assignment problem: simulated annealing

and tabu search approaches. OR Spektrum, 17:211–225, 1995.
20. H. Pirkul. An integer programming model for allocation of databases in a distributed

computer system. European Journal of Operational Research, 26:401–411, 1986.
21. D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers

& Operations Research, 34:2403–2435, 2007.

252 S. Mitrović-Minić and A.P. Punnen

22. S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40(4):455–
472, 2006.

23. G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking

optimization results using the ruin and recreate principle. Journal of Computational
Physics, 159(2):139–171, 2000.

24. M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach for the generalized

assignment problem. INFORMS Journal on Computing, 16:133–151, 2004.
25. M. Yagiura, T. Ibaraki, and F. Glover. A path relinking approach with ejection chains

for the generalized assignment problem. European Journal of Operational Research,

169:548–569, 2006.
26. M. Yagiura, S. Iwasaki, T. Ibaraki, and F. Glover. A very large-scale neighborhood

search algorithm for the multi-resource generalized assignment problem. Discrete Op-
timization, 1(1):87–98, 2004.

Chapter 11

A Hybrid Tabu Search for the
m-Peripatetic Vehicle Routing
Problem

Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler Calvo

Abstract This chapter presents a hybridization of a perfect b-matching
within a tabu search framework for the m-Peripatetic Vehicle Routing Prob-
lem (m-PVRP). The m-PVRP models, for example, money transports and
cash machines supply where, for security reasons, no path can be used more
than once during m periods and the amount of money allowed per vehicle is
limited. It consists in finding a set of routes of minimum total cost over m
periods from an undirected graph such that each customer is visited exactly
once per period and each edge can be used at most once during the m pe-
riods. Each route starts and finishes at the depot with a total demand not
greater than the vehicle capacity. The aim is to minimize the total cost of the
routes. The m-PVRP can be considered as a generalization of two well-known
NP-hard problems: the vehicle routing problem (VRP or 1-PVRP) and the
m-Peripatetic Salesman Problem (m-PSP). Computational results on clas-
sical VRP instances and TSPLIP instances show that the hybrid algorithm
obtained improves the tabu search, not only on the m-PVRP in general, but
also on the VRP and the m-PSP.

11.1 Introduction

The m-Peripatetic Vehicle Routing Problem (m-PVRP), introduced for the
first time in [12], models money collection, transfer and dispatch when it is
subcontracted by banks and businesses to specialized companies. These com-
panies need optimized software or applications to organize their van or truck
routes and schedule. For security reasons, peripatetic and capacity constraints

Sandra Ulrich Ngueveu · Christian Prins · Roberto Wolfler Calvo

Institut Charles Delaunay – LOSI, Universitè de Technologie de Troyes (UTT),
Troyes, France

e-mail: {ngueveus,christian.prins,roberto.wolfler_calvo}@utt.fr

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 253

DOI 10.1007/978-1-4419-1306-7 11, c© Springer Science+Business Media, LLC 2009

{ngueveus,christian.prins,roberto.wolfler_calvo}@utt.fr

254 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

Fig. 11.1 Example of a solution for a 2-PVRP.

must be satisfied: no path can be used more than once during m periods and
the amount of money allowed per vehicle is limited. The m-PVRP is defined
on a complete graph G = (V,E) where V is the vertex set and E is the edge
set. It consists in finding a set of routes of minimum total cost over m periods
from an undirected graph such that each customer is visited exactly once per
period and each edge can be used at most once during the m periods. Fig-
ure 11.1 shows an example of a feasible solution for a 2-PVRP. Ngueveu et al.
introduced the m-PVRP before proposing two lower bounds and two upper
bounds. The two lower bounds are based upon k edge-disjoint spanning trees
and a perfect b-matching. The first upper bound results from the adaptation
of the Clarke-Wright heuristic [4] and the second from a tabu search with
diversification.

The m-PVRP can be considered as a generalization of two well-known
NP-hard problems: the vehicle routing problem (VRP) and the m-peripatetic
salesman problem (m-PSP). Indeed, the VRP is a particular case of m-PVRP
where m = 1 since it consists in finding the best routes for one single period.
Likewise, any m-PSP is in fact an m-PVRP with an infinite vehicle capacity
since the traveling salesman problem (TSP) is a particular case of the VRP
with one single vehicle. Both problems were widely studied in the literature
with heuristics, metaheuristics and exact methods. The m-PSP, e.g., was
introduced by Krarup [11] and mainly studied in [6, 8, 16]. Amongst the
numerous publications concerning the VRP, we can cite Toth and Vigo [14], a
recent survey of the most effective metaheuristics for VRPs [5], or an effective
exact algorithm based on q-route relaxation [2].

In this chapter we present an efficient algorithm resulting from the hy-
bridization of the perfect b-matching and the tabu search of Ngueveu et al.
It is designed to solve the m-PVRP. However, due to the lack of publicly
available instances for this new problem, the computational analysis was

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 255

performed using instances of the VRP and the m-PSP to compare with the
literature. The remainder of this paper is organized as follows. Section 11.2
presents the tabu components, while Section 11.3 focuses on the hybridiza-
tion with a b-matching. Finally, the computational evaluation is presented in
Section 11.4, before the conclusion.

11.2 Tabu Search

Tabu search [10] is a method that explores the solution space by moving
from a solution st identified at iteration t to the best solution st+1 in the
neighborhood N(st). Since st+1 may not improve st, a tabu mechanism is
implemented to prevent the process from cycling over a sequence of solutions.
An obvious way to prevent cycles would be to forbid the process from going
back to previously encountered solutions, but doing so would typically require
excessive bookkeeping. Instead, some attributes of past solutions are recorded
and solutions possessing these attributes are discarded for τ iterations. This
mechanism is often referred to as short-term memory. Other features like
granularity and diversification (long term memory) are often implemented to
improve speed and efficiency. The algorithm we designed is stopped after a
predefined number of iterations maxt and requires the following components,
described hereafter: the initial solution heuristic, the neighborhood structure,
the penalization component and the tabu list management.

11.2.1 Initial Solution Heuristic and Neighborhood
Structure

Inspired by the idea of Krarup for the m-PSP [11], the procedure of Clarke
and Wright [4] is applied m times to obtain at the end an initial m-PVRP
solution, and the edges already used are removed from the graph before each
iteration. In practice, a penalty is added to the cost of edges already used,
forbidding the reuse of any of them, unless there is no other alternative. This
procedure will be referred to as Heuristic.

To explore the solution space, we try to introduce into the current solution
edges that are not currently used during the m periods. Figure 11.2 illustrates
the eight different ways, derived from classical 2-opt moves, to introduce an
edge [A, B] within a period. There are consequently 8m potential insertion
moves per edge. Moves involving two routes are authorized only if the capacity
constraints are not violated: the total demand on each of the new routes
obtained must not exceed the vehicle capacity Q. In addition to the classical
2-opt neighborhood, this neighborhood authorizes moves that split a route in

256 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

two (see cases 3 and 4 on Figure 11.2) or merge two routes if an edge inserted
connects the extremities of two routes.

Fig. 11.2 Neighborhood definition: eight ways to insert edge [A,B] during a period.

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 257

11.2.2 Penalization and Tabu List Management

To allow our algorithm to start from a non-feasible solution, peripatetic con-
straints are removed and the penalty α×max(0, (

∑
k∈K xe − 1)) is added to

the objective function. Consequently, an edge may be used more than once
during two or more different periods. Within the hybrid tabu search, we set
α to 2c̄max where c̄max is the cost of the most expensive edge of the graph.

To avoid going back to already visited solutions, after each iteration t,
the edges removed from the solution are inserted in the tabu list TL and are
declared tabu until iteration t + τ , where τ is the tabu tenure. During each
iteration, an unused and non-tabu edge e has to be inserted with the best
possible move and the second entering edge e′ is free: e′ can be tabu or be
already used in a period of the solution, in which case it will be penalized
as explained above. The “partial tabu” algorithm obtained in this way is
not very sensitive to the value of τ while it avoids cycling. We also applied
an aspiration criterion, which consists in authorizing a tabu move when the
solution obtained is the best found so far.

11.3 Hybridization with b-Matching and Diversification

Hybridization can in our context consist either in using information provided
by an exact method to guide the metaheuristic, or in combining the features
of two metaheuristics to obtain a more efficient procedure. The hybridization
of b-matching with tabu search, as explained in Section 11.3.2, and the di-
versification procedure, detailed in Section 11.3.3, both improved the speed
and efficiency of the tabu search designed for the m-PVRP.

11.3.1 b-Matching

The b-matching problem, also known as the b-directed flow problem, was in-
troduced by Edmonds [9] within the class of well-solved integer linear prob-
lems. Define ce as the cost of edge e, ye as the binary variable equal to 1
only if edge e is used, and 0 otherwise. If di is the demand of node i and
Q is the vehicle capacity, then the minimal number of vehicles per period is
λ =

⌈
1
Q

∑
i∈V di

⌉
. The mathematical formulation of the b-matching obtained

after relaxing the capacity constraints of the m-PVRP is as follows:

min
∑
e∈E

ceye

s. t.

258 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo∑
e∈δ(i)

ye = bi with bi =
{

2m ∀i ∈ {1...n}
2mλ if i = 0

ye ∈ {0, 1}, ∀e ∈ E

A solution to this problem can be easily computed with a linear pro-
gramming solver. Preliminary results from [12] suggested that the value ob-
tained may be on average about 10% less than the optimal m-PVRP solution.
Therefore, repairing b-matching solutions could lead to potentially good up-
per bounds. However, extracting an m-PVRP solution from a set of edges is
not a straightforward process because it requires to partition the edges be-
tween the m periods and the routes. To overcome this difficulty, we hybridize
the b-matching with a tabu search algorithm: the result of the exact method
guides the metaheuristic in the solution space.

11.3.2 Hybridization

Granularity is a concept introduced in [15], based on the idea of using re-
stricted neighborhoods. It allows only moves that, based on some criterion,
are more likely to produce good feasible solutions. Its implementation for the
VRP consists in delaying the introduction of long edges into the solution. In
our case, the result of the b-matching is used to define the tabu granularity
and guides the metaheuristic in the solution space. The resulting algorithm
is a granular tabu search that uses as candidate list the unused edges that
are in the b-matching solution; these edges have a higher probability of being
part of an optimal solution.

Solving the b-matching produces a set of potentially good edges for the
m-PVRP: the cheapest set of edges that satisfy the aggregated degree con-
straints. However, a small number of edges tends to be selected (e.g. 10%
for instance B-n45-k7 for the 2-PVRP). This leads to a very small candidate
list, which induces a small neighborhood size, counter-effective for the meta-
heuristic efficiency. We found two ways to enlarge this neighborhood without
losing the advantage of the b-matching data:

1. Relax the integrality constraints of the b-matching: this increases the num-
bers of edges selected by edges that still have a higher probability than
others to be in an optimal solution.

2. Complete the b-matching granularity with a short-edge subset: following
Toth and Vigo’s primary idea, short edges disregarded by the b-matching
are added to the candidate list of edges to be inserted into the current
solution.

This latter subset is composed of edges that have a cost not greater than µc̄
and are currently unused; c̄ is the average cost of edges used within the initial

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 259

solution and µ is a parameter. The penalty applied to infeasible solutions (see
Section 11.2.2) has been included in the computation of c̄. The idea behind
keeping the penalty in the calculation is that if α was set to 0, the initial
infeasible solution may be cheaper than feasible solutions. Therefore, edges
included in the candidate list need to be a little more expensive to allow the
metaheuristic to find feasible solutions.

The granularity (relaxed b-matching plus short-edge subset) is applied ev-
ery time the best solution is improved, and removed after GTSmaxk iterations
without improving the best solution. During the search, the algorithm oscil-
lates between intensification phases (when granularity is activated: g = true)
and pseudo-diversification phases (when granularity is removed: g = false).

11.3.3 Diversification Procedure

Diversification ensures that the search process is not restricted to a limited
portion of the search space. An example of implementation, as explained
in [13], penalizes edge costs depending on their frequency of use during the
search. For the m-PVRP, we do not want to penalize edges used very often
because they might be required to reach an optimal solution. Instead, our
diversification procedure searches for the best way to insert into the current
solution the cheapest edge unused so far. To accommodate this component
with the b-matching granularity, the procedure is applied as soon as the
following two conditions are satisfied:

1. At least Max γ iterations have been performed without improving the best
solution since the last removal of the b-matching granularity (described in
the previous subsection).

2. The previous move applied was not an improving move.

The diversification component applied in this way does not disturb the b-
matching granularity, but gives a helpful “kick” when necessary. Let f(S) be
the total cost of solution S, algorithm 1 summarizes the hybrid tabu search
with diversification designed for the m-PVRP.

11.4 Computational Analysis

A computational evaluation was first performed on classical VRP and m-
PSP benchmark problems to compare our results with the literature; next we
applied our algorithms to the m-PVRP with m > 1. The tests were done on
four classes of VRP instances from the literature: A, B, P and vrpnc. Classes
A, B and P [1] contain 27, 23 and 23 instances, respectively, of 19 to 101 nodes.
From class vrpnc [3] we selected the seven instances with 50-199 nodes and

260 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

Algorithm 1: Hybrid Tabu Search
1: Heuristic(S)

2: S′ := S
3: TL := ∅; g := true; t := 1; k := 1; Dec := 1; Freq[e] := 0 ∀e ∈ E
4: repeat

5: FindBestNonTabuSolution(S′,TL, g, f(S),Dec)
6: if f(S′) < f(S) then
7: S := S′

8: k := 1; γ := 1
9: if g = false then

10: g := true

11: end if
12: else

13: γ := γ + 1
14: if g = true then
15: k := k + 1

16: if k > GTSmaxk then
17: g := false
18: k := 1; γ := 1

19: end if
20: end if
21: if γ > Max γ and Dec = −1 then

22: Diversify(S′, F req)
23: end if
24: end if

25: UpdateTabuList(TL, τ)
26: until t > maxt

no additional route length restriction. All VRP instances can be found on
the website http://neo.lcc.uma.es/radi-aeb/WebVRP. We also used the
five Euclidian instances from TSPLIB (http://www.iwr.uni-heidelberg.
de/groups/comopt/software/TSPLIB95/) with 17 to 29 nodes that were
already used for the m-PSP in [7].

The experiments were performed on an Intel Core 2 Duo personal com-
puter at 1.80 GHz with 2 GB of RAM running Windows Vista. Metaheuristics
were coded in C, but the linear b-matching solution required for granularity
was obtained with the open source software GLPK. The tables of this sec-
tion compare four variants of our algorithms, the basic tabu search algorithm
(TS), the tabu search algorithm with the diversification component (TS+D),
the tabu search algorithm hybridized with b-matching (HTS) and the latter
further enhanced by the diversification component (HTS+D). These algo-
rithms are tested on the VRP, the m-PSP and the m-PVRP with m > 1.

Some preliminary experiments were made to tune the parameters of the
upper bounding procedures. Preliminary results led to a different HTS setting
per problem and per class of instances. To limit the number of settings used,
we decided to apply the following HTS settings of the parameters for each
problem solved:

http://neo.lcc.uma.es/radi-aeb/WebVRP
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 261

Table 11.1 Parameter Settings

Algo Param Description Value

(H)TS(+D) α Penalization 2c̄max

(H)TS(+D) maxt Max number of iterations 10000

(H)TS(+D) τ Tabu duration n

HTS(+D) µ Proportion of average edge cost 1.30
HTS(+D) HTSmaxk1 Max it before granularity is removed (using Setting 1) 2n/3

HTS(+D) HTSmaxk2 Max it before granularity is removed (using Setting 2) 2n

(H)TS+D Max γ Max it before diversification 2n

1. VRP and m-PSP with m = 2, 3, 5, 6, 7: Setting 1 (using HTSmaxk1)
2. 4-PVRP: Setting 2 (using HTSmaxk2)

As listed in Table 11.1, Settings 1 and 2 only differ in the value of the
parameter HTSmaxk while all other parameters remain at a fixed value. Once
set up as previously explained, each algorithm is run only once per instance.
All algorithms are deterministic, but the results presented in the subsequent
sections are aggregated per instance class to avoid extensive tables of results.

11.4.1 VRP and m-PSP

Table 11.2 summarizes the results of our algorithms for the VRP, on the
four classes of instances A, B, P and vrpnc. Computational results show that
the metaheuristics designed perform well on this particular problem because
average gaps to optimality are around 0.80%. HTS (+D) performs better
than TS (+D) on three of four instance classes and the hybridization lowers
the average gap to optimality. HTS +D results on the VRP can be further
improved if the diversification procedure is activated a bit later on class A
or sooner on class B: gap for A = 0.48% if Max γ = 3n instead of 2n, and
gap for B = 0.89% if Max γ = 3n/2. As expected, the relaxed b-matching
is computed very fast (0.28s) and it produces only a small number of edges
(4%).

Table 11.3 shows the results of our algorithms for the m-PSP on Eu-
clidean TSPLIB instances already used for assessing m-PSP algorithms in
[7]. Our metaheuristics perform well on this problem because average gaps
remain lower than 0.10%. HTS is the best algorithm, better than HTS +D,
which means that our diversification procedure is used here too soon. The
b-matching selects on average 15% of the edges.

262 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

Table 11.2 Results for the VRP (1-PVRP); m is the number of periods; NbI is the number

of instances available; LB∗ is the ratio between the best known lower and upper bounds,
which is equal to 1 if both are optimal; ∆ (resp. δ) is the average percentage deviation from

the optimal solution value (resp. best known upper bound) for each instance class; σ is the

standard deviation of ∆ (resp. δ); s is the average duration in seconds to reach the best
solution found; sBM is the average computing time of the linear b-matching, in seconds,

to obtain the first set of edges for the b-matching granularity; and Bm = NBm/TNe is the

proportion of edges used by the linear b-matching solution, and used for composing the first
set of edges for the granularity (NBm = number of edges used by the linear b-matching

solution, TNe = total number of edges of the initial graph).

instance m NbI LB∗ TS TS + D HTS HTS + D
class ∆ σ s ∆ σ s ∆ σ s ∆ σ s

A 1 27 1 0.56 0.76 3.28 0.53 0.73 2.80 0.54 0.50 2.88 0.54 0.57 3.43

B 1 23 1 0.84 1.47 1.97 0.95 1.49 2.46 0.96 1.50 3.29 0.93 1.45 3.77
P 1 23 1 0.50 0.56 3.63 0.56 0.61 2.91 0.47 0.54 3.04 0.41 0.53 3.45

vrpnc 1 7 - 1.49 1.71 12.69 1.22 1.52 25.02 1.23 1.37 26.02 1.26 1.85 17.76

Average 80 1 0.85 1.12 5.39 0.81 1.10 8.30 0.80 0.98 8.81 0.78 1.10 7.10

m Bm sBm

A 1 0.05 0.07

B 1 0.05 0.08
P 1 0.06 0.09

vrpnc 1 0.02 0.88

Average 0.04 0.28

11.4.2 m-PVRP with 2 ≤ m ≤ 7

Tables 11.4 to 11.7 summarize our results for them-PVRP with 2 ≤ m ≤ 7 on
four classes of VRP instances: A, B, P and vrpnc. Two important preliminary
remarks have to be made. First, when m increases, the number of instances

Table 11.3 Results for the m-PSP; for an explanation of the table entries, we refer to the

caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D
class ∆ s ∆ s ∆ s ∆ s sBm Bm

bays29 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08
bays29 2 1 1 0.25 0.06 0.25 0.06 0.11 4.31 0.09 0.16 0.14 0.09

fri26 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.10
fri26 2 1 1 0.00 3.28 0.09 0.05 0.00 0.09 0.09 0.05 0.17 0.11
gr17 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.21

gr17 2 1 1 0.08 0.09 0.08 0.20 0.12 0.05 0.08 0.16 0.25 0.21
gr17 3 1 1 0.18 0.12 0.17 0.17 0.18 0.39 0.09 1.25 0.38 0.22
gr17 4 1 1 0.00 1.00 0.00 0.56 0.10 0.17 0.16 0.45 0.50 0.18

gr21 1 1 1 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.10 0.12

gr21 2 1 1 0.00 0.41 0.19 1.37 0.00 1.84 0.25 0.06 0.21 0.14
gr21 3 1 1 0.02 2.15 0.02 1.30 0.07 0.20 0.02 2.56 0.30 0.16

gr24 1 1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.09
gr24 2 1 1 0.00 0.86 0.00 2.93 0.00 0.62 0.00 2.11 0.17 0.13
gr24 3 1 1 0.35 0.39 0.25 0.56 0.27 0.33 0.43 1.47 0.26 0.15

gr24 4 1 1 0.22 0.00 0.22 0.02 0.11 1.53 0.14 1.72 0.35 0.20

Average 0.07 0.56 0.08 0.48 0.06 0.64 0.09 0.67 0.22 0.15
σ 0.12 0.10 0.08 0.12

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 263

Table 11.4 Results for the 2-PVRP; for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

A 2 26 0.97 1.11 0.63 9.37 0.92 0.60 9.53 0.81 0.56 8.55 1.15 0.85 7.76
B 2 23 0.98 1.10 1.14 10.27 0.71 0.56 11.39 0.68 0.73 8.53 0.72 0.66 8.86

P 2 19 0.98 1.08 0.83 10.28 1.03 0.61 7.78 1.16 0.86 8.44 1.02 0.74 10.09

vrpnc 2 7 0.95 1.48 0.67 39.87 1.28 0.64 55.50 1.25 0.76 47.23 1.03 0.78 68.44

Average 75 0.97 1.20 0.82 17.45 0.98 0.60 21.05 0.97 0.73 18.20 0.98 0.76 23.79

m Bm sBm

A 2 0.10 0.15

B 2 0.10 0.14

P 2 0.11 0.16
vrpnc 2 0.04 1.67

Average 0.09 0.53

available decreases because there are only n edges connected to the depot,
and each route uses two of them. Second, gaps are computed from the best
upper bound known. These are not proven to be optimal but LB∗ gives an
idea of their quality. LB∗=0.99% suggests that the best upper bound is very
close to the optimal value. LB∗ = 0.95% means there is a 5% gap between
the best known upper and lower bounds.

Figure 11.3 shows the evolution of the percentage deviation from the best
known solutions over time for vrpnc instances. It suggests that the dominance
of HTS +D over the three other algorithms is reinforced when m increases.
This remark is confirmed by most tables of results: HTS (+D) is the best
performing of the algorithms since it has the lowest gap from the best known
upper bounds on most instances, except for those of 4-PVRP. The relaxed
b-matching necessary is still computed very fast (four seconds for the vrpnc
if m = 5, 6, 7) and the percentage of edges used is quite low (14% overall).
HTS +D results can be significantly improved if a specific setting of Max γ is
applied: e.g., overall average gap of HTS +D on the 2-PVRP can be reduced
from 0.98% to 0.91% if the diversification threshold Max γ is slightly reduced
from 2n to 3n/2.

11.5 Conclusion

The partial tabu algorithm we designed gives good results not only on the
m-Peripatetic Vehicle Routing Problem, but also on two well-known special
cases: the VRP and the m-PSP. Its hybridization with the perfect b-matching
through granularity improves significantly the algorithm efficiency, especially
when it is adequately combined with the diversification procedure.

264 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

Table 11.5 Results for the 3-PVRP; for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D
class δ σ s δ σ s δ σ s δ σ s

A 3 25 0.98 1.28 1.20 14.14 1.05 0.79 12.97 1.07 0.88 11.30 0.84 0.85 13.77

B 3 22 0.98 1.94 1.91 15.51 1.12 0.91 17.27 1.47 1.35 14.51 1.02 0.98 14.86
P 3 14 0.99 0.97 0.45 14.23 0.75 0.33 13.13 0.88 0.49 0.17 0.76 0.36 14.08

vrpnc 3 7 0.95 1.06 0.54 69.59 0.97 0.76 85.80 1.13 0.76 67.50 0.98 0.68 47.44

Average 68 0.97 1.31 1.02 28.37 0.97 0.70 32.29 1.14 0.87 23.37 0.90 0.72 22.54

m Bm sBm

A 3 0.15 0.20

B 3 0.15 0.20
P 3 0.17 0.23

vrpnc 3 0.07 2.44

Average 0.13 0.77

Table 11.6 Results for the 4-PVRP, for an explanation of the table entries, we refer to

the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

P 4 8 0.99 0.32 0.24 19.28 0.37 0.33 11.32 0.43 0.19 12.33 0.45 0.20 4.75

vrpnc 4 6 0.96 0.69 0.31 111.30 0.56 0.30 104.92 0.51 0.34 158.50 0.53 0.29 54.92

Average 14 0.97 0.50 0.27 65.29 0.46 0.31 58.12 0.47 0.26 85.41 0.49 0.24 29.83

m Bm sBm

P 4 0.28 0.32

vrpnc 4 0.09 3.65

Average 0.18 1.98

Table 11.7 Results for the m-PVRP with m = 5, 6, 7; for an explanation of the table
entries, we refer to the caption of Table 11.2.

instance m NbI LB∗ TS TS + D HTS HTS + D

class δ σ s δ σ s δ σ s δ σ s

P 5,6,7 11 0.99 0.40 0.24 63.84 0.44 0.31 55.04 0.34 0.24 61.18 0.40 0.24 37.53

vrpnc 5,6,7 10 0.96 1.08 0.92 208.73 0.76 0.43 187.46 0.57 0.47 235.14 0.50 0.46 181.40

Average 21 0.97 0.69 0.58 168.20 0.60 0.37 121.25 0.45 0.35 148.16 0.45 0.35 109.40

m Bm sBm

P 4 0.22 0.94

vrpnc 4 0.11 4.17

Average 0.16 2.55

References

1. P. Augerat. Approche polyédrale du problème de tournées de véhicules. PhD thesis,
Institut National Polytechnique de Grenoble, France, 1995.

2. R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle

routing problem based on the set partitioning formulation with additional cuts. Math-
ematical Programming, 115(2):351–385, 2008.

3. N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and L. Sandi, editors, Combinatorial Opti-

mization, pages 315–338. Wiley, Chichester, UK, 1979.

11 A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem 265

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

2.20%

2.40%

0 s 25 s 50 s 75 s 100 s 125 s 150 s 175 s

m = 2

TS TSD HTS HTSD

0.95%

1.15%

1.35%

1.55%

1.75%

1.95%

0 s 25 s 50 s 75 s 100 s 125 s 150 s 175 s

m = 3

Fig. 11.3 Evolution of δ over time (in seconds) on the vrpnc instances.

4. G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12:568–581, 1964.

5. J.F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.S. Sormany. New heuristics

for the vehicle routing problem. In A. Langevin and D. Riopel, editors, Logistics
systems: design and optimization, pages 279–298. Wiley, 2005.

6. J.B.J.M. De Kort and A. Volgenant. On the generalized peripatetic salesman problem.
European Journal of Operational Research, 73:175–180, 1994.

7. E. Duchenne, G. Laporte, and F. Semet. Branch and cut algorithms for the undirected
m-peripatetic salesman problem. European Journal of Operational Research, 162:700–
712, 2005.

8. E. Duchenne, G. Laporte, and F. Semet. The undirected m-peripatetic salesman

problem: Polyhedral results and new algorithms. Operations Research, 55(5):949–965,

2007.
9. J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,

1965.
10. F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern heuristic

techniques for combinatorial problems, pages 70–150. Blackwell, Oxford, UK, 1993.
11. J. Krarup. The peripatetic salesman and some related unsolved problems. In B. Roy,

editor, Combinatorial Programming Methods and Applications, pages 173–178. Reidel,

Dordrecht, 1975.
12. S.U. Ngueveu, C. Prins, and R. Wolfler Calvo. Bornes supérieures et inférieures pour

le problème de tournées de véhicules m-péripatétiques. In Actes de la 7ème conférence
internationale de Modélisation et Simulation (MOSIM), volume 3, pages 1617–1625,

Paris, France, 2008.

266 S.U. Ngueveu, C. Prins, and R. Wolfler Calvo

13. E.D. Taillard. Parallel iterative search methods for vehicle routing problems. Technical

Report G-2002-15, Les Cahiers du GERAD, Canada, 2002.
14. P. Toth and D. Vigo. The vehicle routing problem. SIAM, Philadelphia, 2002.

15. P. Toth and D. Vigo. The granular tabu search and its application to the vehicle

routing problem. INFORMS Journal on Computing, 15(4):333–346, 2003.
16. R. Wolfler Calvo and R. Cordone. A heuristic approach to the overnight security

service problem. Computers & Operations Research, 30:1269–1287, 2003.

Index

adaptive memory programming, 12

ant colony optimization, 10, 119, 163, 173

ant system, 10, 13

ANTS, see approximate nondeterministic
tree search

application process, 7

approximate nondeterministic tree search,

119

arc exchange neighborhood, 221

artificial root, 211

aspiration criterion, 8

assignment interval, 217

attribute, 6

b-matching, 257

basin of attraction, 6

BDMST, see bounded diameter minimum
spanning tree

beam search, 121

beam-ACO, 121

Benders cuts, 140

Benders decomposition, 85, 139

Benders metaheuristic, 143, 149, 153

binary support, 52

binding set, 246

black box optimization, 162

bounded diameter minimum spanning tree,
209

branch and bound, 71, 118

spatial, 232

branch and cut, 76, 85, 213

branch and price, 77, 86

CALIBRA, 25

CBTC, see center based tree construction

center (node/edge), 211

center based tree construction, 220

center connection inequalities, 212

center exchange level neighborhood, 221

Chvátal closure, 41

Chvátal-Gomory cut, 41

Clarke and Wright heuristic, 255

co-operation, 9

collaborative hybrids, 84

column generation, 77, 86, 92

combinatorial optimization, 71, 209

concorde, 124

constraint graph, 216

construction heuristic, 5

convergence, 160, 164

best so far, 165

global, 160

in probability, 165

model, 167

noisy problems, 175

notions, 164

speed, 178

stochastic, 164

with probability one, 164

convergence proofs, 160

cooperative solver, 20

corridor method, 11, 18

cross entropy method, 10, 16, 24

cross entropy optimization, 164, 173

cut separation, 85

cutting plane algorithm, 76, 85

Dantzig-Wolfe decomposition, 138

Dantzig-Wolfe metaheuristic, 142, 147, 153

data perturbation, 14

decomposition technique, 13, 136, 137, 197

deterministic algorithm, 63

directed connection cuts, 211

distance induced neighborhood search, 81

V. Maniezzo et al., (eds.), Matheuristics, Annals of Information Systems 10, 267

DOI 10.1007/978-1-4419-1306-7, c© Springer Science+Business Media, LLC 2009

268 Index

diversification procedure, 259

dominance relation, 61

dominance test, 61

dual heuristic, 5

dual solution, 138, 139, 152, 156

duality, 73

dynamic programming, 113

dynasearch, 111–112

Easylocal++, 30

ejection chains, 6, 107

estimation of distribution algorithms, 163

evolutionary algorithm, 9, 88

evolutionary strategy, 9

exact methods, 71

exploitation, 167

exploration, 167

facet-defining, 214

feasibility pump, 40

feasibility pump, 20, 51, 53–54

first hitting time, 166

fitness function, 9

fitness landscape analysis, 21

generalized assignment problem, 246, 248

generalized hillclimbing, 162, 170

genetic algorithm, 9, 24, 82, 163, 190, 198

steady state, 198

GMI cuts, see Gomory mixed integer cuts

Gomory fractional cut, 41

Gomory mixed integer cuts, 41

granularity, 258

GRASP, 16, 190, 195

greedy heuristic, 5, 215

greedy randomized adaptive search
procedure, see GRASP

guiding process, 7

HCMST, see hop constrained minimum

spanning tree

heuristic, 5

heuristic measure, 9

heuristic approaches, 71

heuristic concentration, 122

heuristic cut separation, 85

heuristic measure, 5, 6

heuristic pricing, 92

heuristic search, 5

hop constrained minimum spanning tree,
210

HotFrame, 30

hybrid algorithm, 3

hybrid methods, 71

hybridization, 19

hyperedge, 112

hyperheuristic, 31

hyperopt, 112

improvement graph, 109

integer linear programming, 71, 73

integer programming, 104

intelligent search, 7

isomorphic pruning, 61

iterated local search, 6, 115, 163

perturbation, 115

job shop scheduling, 116

jump, 211

jump inequalities, 211

knapsack constrained maximum spanning
tree problem, 87

Lagrangean decomposition, 88

Lagrangean heuristic, 142

Lagrangean metaheuristic, 142, 146, 151

Lagrangean penalties, 137

Lagrangean relaxation, 73, 74, 83, 88, 137

Lagrangian, see Lagrangean

large scale neighborhood search, 6, 20

level change neighborhood, 221

linear programming, 71, 231

linear programming relaxation, 40, 73

local branching, 18, 40, 52, 80, 234

cuts, 40

infeasible reference solutions, 54

local dominance, 62

local search, 5, 23, 219

look ahead, 12

lower bounds, 137, 139, 143, 156

LP, see linear programming

LP-based branch and bound, 75

m-peripatetic salesman problem, 254

m-peripatetic vehicle routing problem, 253

Markov process, 162

matheuristics, 19

max-flow/min-cut, 213

MetaBoosting, 71

metaheuristic, 1, 7

method-based heuristic, 16

MIP recombination, 199

MIPping, 40

cut separation, 41

dominance test, 61

heuristics, 50

MIR cuts, see mixed integer rounding cuts

Index 269

mixed integer nonlinear model, 46

mixed integer linear programming, 231
mixed integer nonlinear programming, 231

convex, 231

mixed integer programming, 40, 245
mixed integer rounding cuts, 42

model-based heuristic, 15

Monte Carlo simulation, 175
move, 5, 8

multi-resource generalized assignment

problem, 246, 248
multidimensional knapsack problem, 79,

125

mutation, 9

neighbor, 8

neighborhood, 6
cyclic exchange, 109
hyperopt, 112

hyperrectangular, 236
neighborhood search problem

partial, 107

neighborhood search problem, 107
network design, 209
no-free-lunch theorems, 3, 178
node partitioning, 211

node swap neighborhood, 221
nogood, 63
noising method, 14

nonlinear programming, 231

optimization software library, 30

p-median problem, 122

parallel algorithm, 14
particle swarm optimization, 164
partitioning problems, 108
path relinking, 14, 24
periodic vehicle routing problem with time

windows, 92
perturbative local search, 106
pilot method, 12, 18
pool template, 22
POPMUSIC, 13

pricing problem, 77
primal bound, 78
primal heuristic, 220

projected Chvátal-Gomory cut, 44

quadratic assignment problem, 119
quality of service, 209

randomized tree construction, 220
reactive tabu search, 8

recency-based memory, 8

relaxation induced neighborhood search,
18, 20, 81

reverse elimination method, 8, 12

rollout method, 12
RTC, see randomized tree construction

rule of thumb, 5

sample average estimator, 175

savings algorithm, 5

scatter search, 9, 24
self-adaptation, 9

sequential quadratic programming, 235

set covering formulation, 92
simulated annealing, 7, 23, 162, 170

single source capacitated facility location
problem, 144, 150

solution

best–so–far, 161
solution merging, 81

split cut, 42

static tabu search, 8
statistical analysis, 28

steepest descent, 6
stochastic combinatorial optimization, 175
stochastic local search, 15, 104

algorithm, 104
methods, 104

strict tabu search, 8

strong dual, 74
strong duality theorem, 74
subset disjoint negative cost cycle, 110

success indicator, 166
surrogate relaxation, 75

tabu search, 8, 24, 219, 255
granular, 258

target analysis, 14
threshold accepting, 8
tour merging, 123

transfer line balancing problem, 189

tree search, 71, 118
triangle tree, 212

variable depth search, 107
variable intensity local search, 246

framework, 246

variable neighborhood descent, 221
variable neighborhood search, 13, 18, 80,

92, 163, 233
vehicle routing problem, 92, 253

very large scale neighborhood search,
108–110

VND, see variable neighborhood descent
vocabulary building, 13

weak dual, 74

weak duality theorem, 74

	Preface
	Contents
	List of Contributors
	Metaheuristics: Intelligent Problem Solving
	Marco Caserta and Stefan Voß
	Introduction
	Basic Concepts and Discussion
	Local Search
	Metaheuristics
	Miscellaneous

	A Taxonomy
	Hybrids with Exact Methods
	General Frames: A Pool-Template
	Fine Tuning and Evaluation of Algorithms
	Fine Tuning of Metaheuristics
	Empirical Evaluation of Metaheuristics

	Optimization Software Libraries
	Conclusions
	References

	Just MIP it!
	Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin
	Introduction
	MIPping Cut Separation
	Pure Integer Cuts
	Mixed Integer Cuts
	A Computational Overview

	MIPping Heuristics
	Local Branching and Feasibility Pump
	LB with Infeasible Reference Solutions
	Computational Results

	MIPping the Dominance Test
	Borrowing Nogoods from Constraint Programming
	Improving the Auxiliary Problem
	Computational Results

	References

	MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics
	Jakob Puchinger, Günther R. Raidl, and Sandro Pirkwieser
	Introduction
	Integer Programming Techniques
	Relaxations and Duality
	LP-Based Branch-and-Bound
	Cutting Plane Algorithm and Branch-and-Cut
	Column Generation and Branch-and-Price

	Metaheuristics for Finding Primal Bounds
	Initial Solutions
	B&B Acting as Local Search Based Metaheuristic
	Solution Merging
	Metaheuristics and Lagrangian Relaxation

	Collaborative Hybrids
	Metaheuristics for Cut and Column Generation
	Cut Separation
	Column Generation

	Case Study: A Lagrangian Decomposition/EA Hybrid
	The Knapsack Constrained Maximum Spanning Tree Problem
	Lagrangian Decomposition of the KCMST Problem
	Lagrangian Heuristic
	Evolutionary Algorithm for the KCMST
	LD/EA Hybrid
	Experimental Results

	Case Study: Metaheuristic Column Generation
	The Periodic Vehicle Routing Problem with Time Windows
	Set Covering Formulation for the PVRPTW
	Column Generation for Solving the LP Relaxation
	Exact and Metaheuristic Pricing Procedures
	Experimental Results

	Conclusions
	References

	Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms
	Irina Dumitrescu and Thomas Stützle
	Introduction
	Exploring large neighborhoods
	NSP Example: Cyclic and Path Exchange Neighborhoods
	NSP Example: Dynasearch
	PNSP Example: Hyperopt Neighborhoods
	Other Approaches
	Discussion

	Enhancing Metaheuristics
	Example: Perturbation in Iterated Local Search
	Other Approaches
	Discussion

	Using Branch-and-Bound Techniques in Constructive Search Heuristics
	Example: Approximate Nondeterministic Tree Search (ANTS)
	Other Approaches

	Exploiting the Structure of Good Solutions
	Example: Heuristic Concentration
	Example: Tour Merging
	Discussion

	Exploiting Information from Relaxations in Metaheuristics
	Example: Simplex and Tabu Search Hybrid
	Discussion

	Conclusions
	References

	Decomposition Techniques as Metaheuristic Frameworks
	Marco Boschetti, Vittorio Maniezzo, and Matteo Roffilli
	Introduction
	Decomposition Methods
	Lagrangean Relaxation
	Dantzig-Wolfe Decomposition
	Benders Decomposition

	Metaheuristics Derived from Decompositions
	A Lagrangean Metaheuristic
	A Dantzig-Wolfe Metaheuristic
	A Benders Metaheuristic

	Single Source Capacitated Facility Location
	Solving the SCFLP with a LagrangeanMetaheuristic
	Solving the SCFLP with a Dantzig-Wolfe Metaheuristic
	Solving the SCFLP with a Benders Metaheuristic

	Computational Results
	Lagrangean Metaheuristic
	Dantzig-Wolfe Metaheuristic
	Benders Metaheuristic

	Conclusions
	References

	Convergence Analysisof Metaheuristics
	Walter J. Gutjahr
	Introduction
	A Generic Metaheuristic Algorithm
	Convergence
	Convergence Notions
	Best-So-Far Convergence
	Model Convergence

	Proving Convergence
	Proving Best-So-Far Convergence
	Proving Model Convergence

	Convergence for Problems with Noise
	Convergence Speed
	Conclusions
	References

	MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines
	Alexandre Dolgui, Anton Eremeev, and Olga Guschinskaya
	Introduction
	Problem Statement
	Greedy Randomized Adaptive Search Procedure
	Construction Phase
	Improvement Phase

	Genetic Algorithm
	Experimental Results
	Problem Instances
	Experimental Settings
	Results

	Conclusions
	References

	(Meta-)Heuristic Separation of Jump Cuts in a Branch&Cut Approach for the Bounded Diameter Minimum Spanning Tree Problem
	Martin Gruber and Günther R. Raidl
	Introduction
	Previous Work
	The Jump Model
	Jump Cut Separation
	Exact Separation Model
	Simple Construction Heuristic CA
	Constraint Graph Based Construction Heuristic CB
	Local Search and Tabu Search

	Primal Heuristics
	Computational Results
	Conclusions and Future Work
	References

	A Good Recipe for Solving MINLPs
	Leo Liberti, Giacomo Nannicini, and Nenad Mladenovic
	Introduction
	The Basic Ingredients
	Variable Neighbourhood Search
	Local Branching
	Branch-and-Bound for cMINLPs
	Sequential Quadratic Programming

	The RECIPE Algorithm
	Hyperrectangular Neighbourhood Structure

	Computational Results
	MINLPLib

	Conclusion
	References

	Variable Intensity Local Search
	Snežana Mitrovic-Minic and Abraham P. Punnen
	Introduction
	The General VILS Framework
	Experimental Studies
	Conclusion
	References

	A Hybrid Tabu Search for the m-Peripatetic Vehicle Routing Problem
	Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler Calvo
	Introduction
	Tabu Search
	Initial Solution Heuristic and Neighborhood Structure
	Penalization and Tabu List Management

	Hybridization with b-Matching and Diversification
	b-Matching
	Hybridization
	Diversification Procedure

	Computational Analysis
	VRP and m-PSP
	m-PVRP with 2m7

	Conclusion
	References

	Index

