
Chapter 7

On the Theory of Self-Reference

By self-reference we basically mean the possibility of talking inside a
theory T about T itself or related theories. Here we can give merely
a glimpse into this recently much advanced area of research; see e.g. [Bu].
We will prove Gödel’s second incompleteness theorem, Löb’s theorem, and
many other results related to self-reference, while further results are dis-
cussed only briefly and elucidated by means of applications. All this is of
great interest both for epistemology and the foundations of mathematics.

The mountain we first have to climb is the proof of the derivability condi-
tions for PA and related theories in 7.1, and the derivable Σ1-completeness
in 7.2. But anyone contented with leafing through these sections can be-
gin straight away in 7.3; from then on we will just be reaping the fruits of
our labor. However, one would forgo a real adventure in doing so, namely
the fusion of logic and number theory in the analysis of PA. For a com-
prehensive understanding of self-reference, the material of 7.1 and 7.2
(partly prepared in Chapter 6) should be studied anyway.

Gödel himself tried to interpret the notion “provable” using a modal
operator in the framework of the modal system S4. This attempt reflects
some of his own results, though not adequately. Only after 1970, when
modal logic was sufficiently advanced, could such a program be success-
fully carried out. A suitable instrument turned out to be the modal logic
denoted by G (or GL). The Kripke semantics for G introduced in 7.4
is an excellent tool for confirming or refuting self-referential statements.
Solovay’s completeness theorem and the completeness theorem of Kripke
semantics for G in 7.5 are fortunately of the kind that allows application
without knowing the completeness proof itself, which in both cases are
not quite easy and use several technical tricks.
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270 7 On the Theory of Self-Reference

There are several extensions of G, for example, the bimodal logic GD

in 7.6. This logic is related to Hilbert’s famous ω-rule. A weakening of it
can expressed by the modal operator 
1 of GD. A comprehensive survey
can be found in [Bu, Chapter VII]; see also [Vi2]. In 7.7 we discuss some
questions regarding self-reference in axiomatic set theory.

7.1 The Derivability Conditions

Put somewhat simply, Gödel’s second incompleteness theorem states that
�T ConT cannot hold for a sufficiently strong and consistent axiomatizable
theory T . Here ConT is a sentence reflecting the metatheoretic statement
of consistency of T inside T , more precisely, inside the (first-order) lan-
guage L of T . In a popular formulation: If T is consistent, then this
consistency is unprovable in T . As was outlined by Gödel and will be
verified in this chapter, the italicized sentence is not only true but also
formalizable in L and even provable in the framework of T .

The easiest way to obtain Gödel’s theorem is first to prove the deriv-
ability conditions stated below. Their formulation supposes the arithme-
tizability of T , which includes the distinguishing of a sequence 0, 1, . . . of
ground terms; see page 250. Let bewT (y, x) be a formula that represents
the recursive predicate bewT in T as in 6.4. For bwbT (x) = ∃ybewT (y, x)
we write 
(x), and 
α is to mean bwbT

�α�
x . We may read 
α as “box α”

or more suggestively “α is provable in T ,” because 
α reflects the metathe-
oretic property �T α in T . If 
 refers to some theory T ′ �= T then 
 has
to be indexed correspondingly. For instance, 
ZFCα for α ∈ L∈ can eas-
ily expressed also in Lar . Note that 
α is always a sentence, even if α

contains free variables.
Further, set �α := ¬
¬α for α ∈ L. If α is a sentence, �α may be

read as α is compatible with T , because it formalizes ‘�T ¬α’, which is,
as we know, equivalent to the consistency of T + α. First of all, we define
ConT in a natural way by

ConT := ¬
⊥
(
= ¬ bwbT (�⊥	)

)
,

where ⊥ is a contradiction, 0 �====0, for instance. We shall see in a moment
that ConT is independent modulo T of the choice of ⊥. The mentioned
derivability conditions then read as follows:
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D1: �T α ⇒ �T 
α,
D2: 
α∧
(α →β) �T 
β,
D3: �T 
α →

α.

Here α, β run through all sentences of L. These conditions are due to Löb,
but they were considered in a slightly different setting already in [HB].
Sometimes D2 is written in the equivalent form 
(α →β) �T 
α →
β,
and D3 as 
α �T 

α.

A consequence of D1 and D2 is D0: α �T β ⇒ 
α �T 
β. This
results from the following chain of implications:

α �T β ⇒ �T α →β ⇒ �T 
(α →β) ⇒ �T 
α →
β ⇒ 
α �T 
β.

From D0 it clearly follows that α ≡T β ⇒ 
α ≡T 
β. In particular,
the choice of ⊥ in ConT is arbitrary as long as ⊥ ≡T 0 �====0.

Remark 1. Any operator ∂ :L → L satisfying the conditions d1: �T α ⇒ �T ∂α
and d2: ∂(α → β) �T ∂α → ∂β thus satisfies also d0: α �T β ⇒ ∂α �T ∂β,
and hence d00: α ≡T β ⇒ ∂α ≡T ∂β, for all α, β ∈ L. It likewise satisfies
d∧ : ∂(α∧β) ≡T ∂α∧∂β, for α∧β �T α, β, hence ∂(α∧β) �T ∂α, ∂β �T ∂α∧∂β
in view of d0. The converse direction ∂α∧∂β �T ∂(α∧β) readily follows from
α �T β → α∧β by first applying d0 and then d2.

Whereas D2 and D3 represent sentence schemata in T , condition D1
is of metatheoretic nature and follows obviously from the representability
of bewT in T . Thus, D1 holds even for weak theories such as T = Q. On
the other hand, the converse of D1,

D1∗: �T 
α ⇒ �T α, for all α ∈ L0,

may fail. Fortunately, it holds for all ω-consistent axiomatic extensions
T ⊇ Q such as T = PA. Indeed, �T α implies �T ¬ bewT (n, �α	) for all n

(Corollary 6.4.3). Hence, �T ∃y bewT (y, �α	) in view of the ω-consistency
of T , that is, �T 
α.

Unlike D1, the properties D2 and D3 are not so easily obtained. The
theory T must be able not only to speak about provability in T (perhaps
via arithmetization), but also to prove basic properties about provability.
D3 is nothing else than condition D1 formalized within T , while D2 for-
malizes (7) from page 230, the closure under MP in arithmetical terms.
Let us first realize that D2 holds, provided it has been shown that

D2∗: bewT (u, x)∧ bewT (v, x →̃y) �T bewT (u ∗ v ∗ 〈y〉, y),
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where the p.r. functions →̃ , ∗, and y 
→ 〈y〉 appearing in D2∗ must either
be present or definable in T . Generally speaking, f ∈ Fn is called definable
in an arithmetizable theory T ⊆ L (with respect to the sequence of terms
(n)n∈N in T ) if there is a formula δ(�x, y) ∈ L such that

(1) (a) �T δ(�a, f�a) for all �a, (b) �T ∀�x∃!yδ(�x, y).
Clearly, f is then also represented by δ(�x, y). For T = PA and related
theories, (1) means that f is explicitly definable in T in the sense of 2.6
and may be introduced in T (using a corresponding symbol). From now
on we will no longer distinguish between T and its definitorial extensions
and apply �T y ==== f�x ↔ δ(�x, y) without comment. This and (1) easily
imply �T f�a==== f�a, e.g. �T a →̃ b==== a →̃ b. With �α	, �β	 for x, y, we thus
obtain from D2∗ in view of �α →β	 = α̇ →̃ β̇ = α̇ →̃ β̇ = �α	 →̃�β	,

bewT (u, �α	)∧ bewT (v, �α →β	) �T bewT (u ∗ v ∗ 〈�β	〉, �β	).

Particularization yields D2. But the real work, the definability of the
functions appearing in D2∗ in theories like T = PA, still lies ahead.

In order to better keep track of things, we restrict our considerations
to the theories ZFC and PA, which are of central interest in nearly all
foundational questions. ZFC is only briefly discussed. Here the proofs of
D2 and D3 (with 
 = 
ZFC) are much easier than in PA and need only a
few lines as follows: D2∗ and hence D2 are clear, because the naive proof
of D2∗ above with bewT = bewZFC can easily be formalized inside ZFC.
This includes the definability of all functions occurring in D2∗, for we did
define them; for instance, the operation ∗ on page 224 may be defined
by setting a ∗ b = ∅ if a /∈ ω or b /∈ ω. We arithmetize L∈ according
to the pattern in 6.2, encoding formulas with Gödel numbers,1 so that
L∈-formulas are encoded within ZFC by certain ω-terms, defined in 3.4.
Formulas from Lar are identified with their ω-relativized in L∈, called the
arithmetical formulas of L∈. Moreover, the arithmetical predicate bewZFC

is certainly representable in ZFC by Theorem 6.4.2, since this theorem can
be viewed, just like every theorem in this book, as a theorem within ZFC.
Thus, the naive proof of D1 based on this theorem (up to Corollary 6.4.3)
can as a whole be carried out in ZFC, and so D3 is proved.
1 This is not actually necessary, since in ZFC one can talk directly about finite sequences
and hence about L∈-formulas (Remark 2 in 6.6), but we do so in order to maintain
coherence with the exposition in 6.2.
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Roughly speaking, D2 and D3 hold for ZFC because ordinary mathe-
matics, in particular the material in Chapter 6, is formalizable in ZFC. In
all of the above, no special set-theoretic constructions such as transfinite
recursion are needed. Only relatively simple combinatorial facts are re-
quired. Hence there is some hope that the proofs of D2 and D3 can also
be carried out in sufficiently strong arithmetical theories like PA. This
is indeed so. The proof of D3 for PA will need the most effort and will
be completed only in 7.2. Our first goal will be to show that the p.r.
functions occurring in D2∗, and in fact all p.r. functions, are explicitly
definable in PA.2 They turn out to be definable even in a sense stronger
than required by (1) from the previous page.

Definition. An n-ary recursive function f is called provably recursive or
Σ1-definable in PA if there is a Σ1-formula δf (�x, y) in Lar such that

(2) (a) �PA δf (�a, f�a) for all �a ∈ N
n; (b) �PA ∀�x∃!yδf (�x, y).

Since PA is Σ1-complete, 2(a) is equivalent to N � δf (�a, f�a) for all �a,
which is often more easily verified than 2(a) and could replace 2(a). We
will show that all p.r. functions are Σ1-definable in PA, which strengthens
their explicit definability in PA. Thereafter we may treat all occurring p.r.
functions in PA as if they had been available in the language right from the
outset. Essentially this fundamental fact allows a treatment of elementary
number theory and combinatorics within the boundaries of PA and hence
is particularly interesting for a critical foundation of mathematics.

If δf (�x, y) in (2) is Δ0 then f is called Δ0-definable. An example is
the β-function (Exercise 1), which from now on may be supposed to be
present in PA. Basic for the Σ1-definability of all p.r. functions is β’s main
property, Lemma 6.4.1, of which we need, of course, some provable version
in PA. Since Euclid’s lemma and the Chinese remainder theorem are
involved here, these should be derived first. Clearly, the basic arithmetical
laws applied in their proofs in 6.3 should be at our disposal, including
those on the order relation and on a − b for a � b, all provable in N.

The proof of Euclid’s lemma is straightforward, Exercise 2. As for
the Chinese remainder theorem, we avoid the quantification over finite
2 In [Gö2], Gödel presented a list of 45 definable p.r. functions; the last was χbew .
Following [WR], Gödel considered a higher-order arithmetical theory. That Gödel’s
theorems also hold in first-order arithmetic was probably first noticed in [HB].
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sequences for the time being, by stating the theorem as a scheme. Let c, d

denote unary provably recursive functions, which may depend on further
parameters. Each such c determines for given n the sequence c0, . . . , cn,
with cν = c(ν) for ν � n. For suggestive reasons from now on also letters
such as n, ν, . . . may denote variables in Lar . With the Δ0-definable re-
lation ⊥ of coprimeness, the Chinese remainder theorem can provisionally
be stated as follows: for arbitrary c, d as arranged above, we get

(3) �PA ∀n[(∀i, j�n)(ci<di ∧ (i �====j →di⊥dj))

→∃a(∀ν�n) rem(a, dν)==== cν ].

To convert the original proof of the remainder theorem to one for (3) we
require, for given provably recursive d, the term lcm{dν | ν�n}, the least
common multiple of d0, . . . , dn. Claim: f : n 
→ lcm{dν|ν�n} is defined
in PA by the Σ1-formula

δf (x, y) := (∀ν�x)dν y ∧ (∀z<y)(∃ν�x) dν� z.

More precisely, δf (x, y) describes a Σ1-formula in Lar that is even Δ0,
provided d is Δ0-definable. Clearly N � δ(n, lcm{dν|ν�n}) for all n.
Thus, 2(a) holds. With the minimum schema (Exercise 4 in 3.3) applied
to β(x, y) := (∀ν�x)dν y, we obtain �PA ∃!yδf (x, y), provided it has been
shown that �PA ∃yβ(x, y) (‘c0, . . . , cx have a common multiple’), which is
easily derived by induction on x; see Example 1 in 2.5. This proves the
claim. After having derived Euclid’s lemma in PA (Exercise 2) we confirm
(3) by following the proof of the remainder theorem in 6.2, and, writing
βst for β(s, t), a suitable version of Lemma 6.4.1 as follows:

(4) �PA ∀n∃u(∀ν�n) cν ==== βuν, for any given provably recursive c.

Theorem 1.1. Each p.r. function f is provably recursive. Moreover, the
recursion equations for f are provable in PA whenever f = Op(g, h).

Proof. For the initial functions and +, · the formulas v0 ==== 0, v1 ==== Sv0,
vn ==== vν along with v2 ==== v0 + v1 and v2 ==== v0 · v1 are obviously defining
Σ1-formulas. For the composition f = h[g1, . . . , gm], let δf (�x, y) be the
formula y ==== h(g1�x, . . . , gm�x). In this case (2) is clear, because we might
think of h, g1, . . . , gm as being already introduced in PA, so that δf (�x, y)
belongs to the expanded language. Only the construction of δf for the
case f = Op(g, h) requires some skill. We may assume that besides β also
g, h have already been introduced in the language. Consider
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(5) δf (�x, y, z) := ∃u[ βu0==== g�x∧ (∀v<y)βuSv ==== h(�x, v,βuv) ∧ βuy ==== z
︸ ︷︷ ︸

γ(u,�x,y,z)

].

δf is similar to δexp from Remark 1 in 6.4. It is Σ1, because β, g, h are
Σ1-definable. Lemma 6.4.1 applied with ci = f(�a, i) for i � b shows that
N � δf (�a, b, f�a), equivalently 2(a). Uniqueness in 2(b), that is,

δf (�x, y, z)∧ δf (�x, y, z′) �PA z ==== z′,

derives easily from γ(u, �x, y, z)∧γ(u′, �x, y, z′) �PA z ==== z′, which clearly
follows from γ(u, �x, y, z)∧γ(u′, �x, y, z′) �PA (∀v�y)βuv ==== βu′v. This is
easily shown by induction on y. Also, �PA ∃zδf (�x, y, z) will be shown
inductively on y. We get �PA ∃uβu0==== g�x (hence �PA ∃zδf (�x, 0, z)) from
(4), choosing c therein such that c0 = g�x and cν = 0 for ν �= 0. c is
provably recursive, for the term g�x is Σ1-definable. The inductive step
will be verified informally, that is, we shall prove

(∗) ∃zδf (�x, y, z) �PA ∃z′δf (�x, Sy, z′).
Suppose γ(u, �x, y, z). Consider the provably recursive c : ν 
→ cν defined by
cν = βuν for ν � Sy and cSy = h(�x, y,βuy). Here u, �x, y are parameters in
the defining Σ1-formula for c. So by (4) (taking Sy for n) there is some u′

with βu′ν = cν = βuν for all ν � y and βu′Sy = cSy = h(�x, y,βuy). With
this u′ and z′ = βu′Sy we obtain γ(u′, �x, Sy, z′), and so ∃z′δf (�x, Sy, z′).
This confirms (∗) and hence 2(b). Thus, f is provably recursive and
may now be introduced in PA. We finally sketch a proof of the recursion
equations for f in PA, which also in PA may be written as usual, i.e.,

(A) �PA f(�x, 0)==== g�x, (B) �PA f(�x, Sy)==== h(�x, y, f(�x, y)).
(A) holds because �PA δf (�x, 0, f(�x, 0)) ≡PA ∃u(βu0==== g�x∧βu0==== f(�x, 0))
and clearly ∃u(βu0==== g�x∧βu0==== f(�x, 0)) � f(�x, 0)==== g�x. (B) follows by
<-induction on y applied to α = α(�x, y) := f(�x, Sy)==== h(�x, y, f(�x, y)).
Assume that (∀v<y)α v

y . Choosing u in (5) such that γ(u, �x, Sy, f(�x,Sy)),
we readily obtain (∀v�y)f(�x, v)==== βuv, so that

f(�x, Sy)==== βuSy ==== h(�x, y,βuy)==== h(�x, y, f(�x, y)).

This confirms ∀y((∀v<y)α v
y →α), hence �PA ∀yα by <-induction.

We thus have achieved our first goal. Next observe that the properties
of ∗, �, . . . from the remark on page 230 along with the basic property (5)
stated there are also readily proved within PA. This is a little extra pro-
gram that includes the proof of unique prime factorization, see Exercise 4.
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Thus, D2∗ and hence D2 are indeed provable for T = PA. In particular,
the property (6) from page 230 carries over to PA, so that

(6) 
(x →̃y) �PA 
(x) →
(y).
We mention that 
 in (3) may even denote the formula bwbT for any
axiomatizable (and arithmetizable) theory T . D3 will be proved in the
next section in a somewhat broader context.

Remark 2. The formalized equations of Exercise 3 in 6.4 are now also provable
in PA. For instance, item (b) reads �PA sb�x(�ϕ	, �x)==== sb�x ′(�ϕ	, �x ′) for ϕ = ϕ(�x),
where �x ′(⊆ �x) enumerates the free variables of ϕ. As regards (c), consider first a
special case. Let ϕ be Sx==== y. Then sbxy(ϕ̇, x, Sx) = sbx((ϕ Sx

y )·, x), formalized
sbxy(�ϕ	, x, y) Sx

y ==== sbx(�ϕ Sx
y 	, x). For the proof of this equation in PA, just

�PA cf Sx==== S̃ cf x is required, which holds by Theorem 1.1. Whoever wants to
write down a detailed proof should follow the example on page 249.

Exercises

1. Prove in PA the Δ0-definability of the remainder function rem, the
pairing function, and the β-function; see 6.4. In particular, rem is
defined by δrem(a, b, r) := (∃q�a)(a==== b · q + r ∧ r < b) ∨ b==== r==== 0.
The laws of arithmetic as given by N (page 235) may be used.

2. Prove in PA (a) (∀a, b>0)∃x∃y(a⊥b →ax+1==== by), that is, Euclid’s
lemma. (b) (∀a>1)∃p(prim p∧p a) (‘each number � 2 has a prime
divisor’), (c) �PA (∀a, b>0)∀p(prim p∧p ab →p a ∨ p b).

3. Show that �PA prim p∧p lcm{dν | ν�n} → (∃i�n)p di, required for
carrying out the proof of the Chinese remainder theorem in PA.

4. One of several possibilities of formalizing the prime factorization in
PA is (∀n�2)(∃m�2)n====

∏
i��m p

(((m)))i

i , where m serves as a variable
for the sequence of prime exponents.3 Prove this in PA, as well as
its uniqueness, which is essentially based on Exercise 2.

5. Let T ′ = T + α and T satisfy D1–D3. Show that

(a) �T 
T ′ϕ ↔ 
T (α →ϕ) (the formalized deduction theorem),
(b) D1–D3 hold also for T ′.

3 An equivalent formalization of the prime factorization in PA using the β-function is
(∀k�2)∃u∃n(k ====

∏
i�n pβui

i ∧ βun �====0).
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7.2 The Provable Σ1-Completeness

D3 is a special case of the provable Σ1-completeness. This is essentially
the statement �PA α →
α for Σ1-sentences α. The proof demands still
additional preparation, and even good textbooks do not carry out all
proof steps. All steps described in this section and not handled in detail
can easily be completed in full by the sufficiently assiduous reader. Life
could be made easier through the mutual interpretability of PA and ZFCfin

mentioned in 6.6. Let 
 = 
(x) denote the formula bwbPA(x) till the end
of this section. We first introduce an additional notation. Let ϕ = ϕ(�x).

Definition. 
[ϕ] := 
(sb�x(�ϕ	, �x)) (= bwbPA
sb�x(�ϕ�,�x)

x ).

By Remark 2 in 7.1, �PA sb�x(�ϕ	, �x)==== sb�x ′(�ϕ	, �x ′), where �x ′ enu-
merates freeϕ. Hence, we may assume w.l.o.g. that free 
[ϕ] = free ϕ.
Moreover, for α ∈ L0

ar we have �PA sb�x(�α	, �x)==== sb∅(�α	)==== �α	, hence

[α] and 
α may be identified. ‘�PA ϕ(�a) for all �a ∈ N

n’ is reflected
in PA by ‘�PA ∀�x
[ϕ]’. The latter thus reflects in PA the existence of a
collection of proofs which, due to the ω-incompleteness of PA, may be less
than �PA 
∀�xϕ, or what amounts to the same, �PA 
ϕ.

Example. Let ϕ = ϕ(x, y) be Sx==== y. We prove ϕ �PA 
[ϕ], or equiva-
lently, �PA 
[ϕ] Sxy , where w.l.o.g. x, y do not occur bound in 
(x). In
order to prove �PA 
[ϕ] Sxy observe that in view of Remark 2 in 7.1,


[ϕ] Sxy = 
(sbxy(�ϕ	, x, Sy)) ≡PA 
(sbx(�ϕ Sx
y 	, x)) = 
[α(x)]

with α(x) := Sx==== Sx. Thus, it suffices to verify �PA 
[α(x)] (equivalently,
�PA ∀x
[α(x)]). This reflects in PA ‘for arbitrary n, �PA Sn==== Sn ’. We
verify �PA 
[α(x)] in detail. Consider the p.r. function α̃ : n 
→ sbx(α̇, n)
(the Gödel number of α(n)). By axiom Λ9, 〈α̃(n)〉 is for each n a trivial
arithmetized proof of length 1. Stated within PA, �PA bewPA(〈α̃(x)〉, α̃(x)).
This clearly yields �PA ∃y bewPA(y, α̃(x)) = 
(α̃(x)) = 
[α].

Next we prove some modifications D1, D2 for α = α(�x) and β = β(�x):
(1) (a) �PA α ⇒ �PA 
[α]; (b) 
[α →β] �PA 
[α] →
[β].

To see (a) let �PA α, hence also �PA ∀�xα and so �PA 
∀�xα. Just as in
the above example, a proof for ∀�xα provides one for α�x(�a) in a p.r. way,
or stated within PA: 
∀�x �PA 
(sb�x(�α	, �x)) (= 
[α]; thus, �PA 
[α]).
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(b) follows from (6) in 7.1 with sb�x(�α	, �x), sb�x(�β	, �x) for x, y, observ-
ing that �PA sb�x(�α →β	, �x)==== sb�x(�α	, �x) →̃ sb�x(�β	, �x), see Exercise 3
in 6.4. (c) of this exercise yields for all not necessarily distinct x, y

(2) 
[α] t
x ≡PA 
[α t

x ] (t ∈ {0, y, Sy} and y /∈ bnd α).
Now, D3 is only a special case of the provable Σ1-completeness of PA,
stated not only for sentences, but for arbitrary formulas as follows:

(3) ϕ �PA 
[ϕ] (equivalently, �PA ϕ →
[ϕ]), for all Σ1-formulas ϕ.
Indeed, choose in (3) for ϕ the Σ1-sentence 
α for any α ∈ L0

ar . Then

α �PA 
[
α] ≡ 

α, and D3 is proved. We obtain (3) from Theo-
rem 2.1 below, since by (1), (2), and since w.l.o.g. free α = free 
[α], the
operator ∂ :α 
→ 
[α] satisfies the conditions of the theorem.

Theorem 2.1. Let ∂ : Lar →Lar be any operator with free ∂α ⊆ free α

satisfying
d1: �PA α ⇒ �PA ∂α,
d2: ∂(α →β) �PA ∂α →∂β,
ds: ∂α t

x ≡PA ∂(α t
x ) (t ∈ {0, y, Sy}, y /∈ bnd α).

Then �PA ϕ →∂ϕ holds for all Σ1-formulas ϕ ∈ Lar .

Proof. ∂ satisfies also d0, d00, and d∧ (see Remark 1 in 7.1). Hence,
by Theorem 6.7.2 and d00 we need to carry out the proof only for special
Σ1-formulas. First let ϕ be Sx==== y. Clearly, �PA ϕ →∂ϕ is equivalent
to �PA ∂ϕ Sx

y , and this to �PA ∂ Sx==== Sx by ds, which is obvious from
d1. Now let ϕ be x + y ==== z. We shall prove �PA ∀yz(ϕ →∂ϕ) by induc-
tion on x. Observing that y ==== z �PA ∂ y ==== z (equivalently �PA ∂z ==== z),
we obtain ϕ 0

x �PA y ==== z �PA ∂ y ==== z ≡PA ∂(ϕ 0
x) ≡PA ∂ϕ 0

x . Thus,
�PA ∀yz(ϕ →∂ϕ) 0

x . Now ϕSy
y ≡PA ϕSx

x ; hence ∂ϕ Sy
y ≡PA ∂ϕ Sx

x , by d00,
ds. The induction step ∀yz(ϕ→∂ϕ) �PA ∀yz(ϕ→∂ϕ)Sxx follows then from

∀yz(ϕ →∂ϕ) � ϕ Sy
y →∂ϕ Sy

y �PA ϕ Sx
x →∂ϕ Sx

x = (ϕ →∂ϕ)Sxx .
The formula x·y ==== z is left to the reader, who should observe d∧ , d2, the
induction steps for ∧ and ∃, and Sx·y ==== z ≡PA ∃u(x·y ==== u∧u + y ==== z).

We now treat the logical connectives. The induction steps for ∧ , ∨,∃
are simple. Indeed, from d∧ we obtain

α∧β � α, β �PA ∂α∧∂β �PA ∂(α∧β).

For ∨ note that α �PA ∂α �PA ∂(α∨β), and similarly for β. Further, since
ϕ � ∃xϕ we get ϕ �PA ∂ϕ �PA ∂∃xϕ by d0, and from x /∈ free ∂∃xϕ
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follows ∃xϕ �PA ∂∃xϕ. The prime-term substitution step (t is prime in
t
x ) also runs smoothly: ϕ �PA ∂ϕ yields ϕ t

x �PA ∂ϕ t
x �PA ∂(ϕ t

x ) by ds.
It remains to verify the step for bounded quantification. Suppose that

α �PA ∂α and y /∈ varα. We prove ϕ := (∀x<y)α �PA ∂ϕ by induction
on y. The initial step is obvious: �PA ϕ 0

y , and therefore

�PA ∂(ϕ 0
y ) �PA ∂ϕ 0

y �PA ϕ 0
y →∂ϕ 0

y .

Clearly, ϕ Sy
y ≡PA ϕ∧α y

x . Hence α y
x �PA ∂α y

x �PA ∂(α y
x) because of

α �PA ∂α. That leads to
ϕ Sy

y ∧ (ϕ →∂ϕ) �PA ϕ∧α y
x ∧ (ϕ →∂ϕ) �PA ∂ϕ∧∂(α y

x)
�PA ∂(ϕ∧α y

x) �PA ∂(ϕSy
y ).

Thus, ϕ →∂ϕ �PA ϕSy
y →∂(ϕSy

y ), which is obviously equivalent to the
inductive step.

Remark 3. D1–D3 are also provable for much weaker theories than PA, e.g.,
for the so-called elementary arithmetic EA = IΔ0 +∀xy∃zδexp(x, y, z). Here IΔ0

is defined in Remark 1 in 6.3 and δexp is a defining Δ0-formula for exp, see also
[FS]. Also Theorem 1.1 can essentially be strengthened and has many variants.
For instance, the provably recursive functions of IΣ1 (like PA but IS restricted
to Σ1-formulas) are precisely the p.r. ones, [Tak]. The same provably recursive
functions has EA augmented by the Π2-induction schema without parameters,
[Be4]. It is noteworthy that the provable recursive functions of EA itself are
precisely the elementary ones, [Si]. For more material on the metatheory of PA
and related theories see [Bar, Part D], and in particular [HP].

7.3 The Theorems of Gödel and Löb

We are now in a position to harvest the yields of our efforts. As long as
not stated otherwise, let T denote any arithmetizable axiomatic theory
in L, that satisfies the derivability conditions D1–D3 of 7.1 along with
the fixed point lemma of 6.5. We direct attention straight away to the
uniqueness statement of Lemma 3.1(b) below. According to this claim,
up to equivalence in T at most 
α →α can be the fixed point of the
formula 
(x) →α. The proof of Theorem 3.2 will show that ¬
(x) too
has only one fixed point modulo T . Beneath all this lies, as we shall see
from Corollary 5.6, a completely general result.
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Lemma 3.1. Let T be as arranged above, and let α, γ ∈ L0 be such that
γ ≡T 
γ →α. Then (a) 
γ ≡T 
α and (b) γ ≡T 
α →α.

Proof. The supposition yields 
γ �T 
(
γ →α) �T 

γ →
α, by D0
and D2. Now by D3, we clearly obtain 
γ �T 

γ, hence 
γ �T 
α.
Since α �T 
γ →α ≡T γ and so α �T γ, it follows that 
α �T 
γ by
D0. Together with the already verified 
γ �T 
α we get (a). Using (a)
we may replace 
γ with 
α in γ ≡T 
γ →α, which results in (b).

Theorem 3.2 (Second incompleteness theorem). PA satisfies along-
side the fixed point lemma also D1–D3. Every theory T with these prop-
erties satisfies the conditions

(1) �T ConT provided T is consistent, (2) �T ConT →¬
 ConT .

Proof. D1–D3 were proved for PA in 7.1. (1) follows from (2). Assume
�T ConT . Then �T 
 ConT by D1, as well as �T ¬
 ConT by (2). Thus,
T is inconsistent. To verify (2), let γ be a fixed point of ¬
(x), i.e.,

(∗) γ ≡T ¬
γ (≡ 
γ →⊥).

By Lemma 3.1(b) with α = ⊥, we obtain γ ≡T 
⊥ →⊥ ≡ ¬
⊥ = ConT .
Replacing γ in (∗) with ConT gives ConT ≡T ¬
 ConT . Half of this is the
claim (2).

Thus, by (1), no sufficiently strong consistent theory can prove its own
consistency. In particular, �PA ConPA as long as PA is consistent which
is assumed throughout this book and is a minimal assumption for a far-
reaching metamathematics. The above proof shows that ConT is the only
fixed point of ¬ bwbT modulo T . Actually, it shows a bit more, namely

(3) ConT ≡T ¬
 ConT .
This strengthens (2), but only by a little: ¬
 ConT �T ConT is just a
special case of

(4) ¬
α �T ConT (equivalently, ¬ ConT �T 
α), for every α ∈ L.
This follows from ⊥ �T α, since ¬ ConT ≡ 
⊥ �T 
α by D0. (4) reflects
in T ‘If T is inconsistent then every formula is provable’. From (1) and
(3) we get in particular �PA ¬
PA ConPA, although ‘ConPA is unprovable in
PA’ is true according to (1) (again we tacitly use the consistence of PA).
¬
PA ConPA reflects ‘ConPA is unprovable in PA’; hence �PA ¬
PA ConPA

is just another formulation of the second incompleteness theorem.



7.3 The Theorems of Gödel and Löb 281

The above claims hold independently of the “truth content” of the sen-
tences provable in T . Namely, a consequence of the second incompleteness
theorem is the existence of consistent theories T ⊇ PA in which along
with claims true in N also false ones are provable, i.e., in which truth and
untruth live in peaceful coexistence with each other. Such “dream theo-
ries” are highly rich in content, for all of them include ordinary number
theory. An example is PA⊥ := PA + ¬ ConPA. This theory is consis-
tent because the consistency of PA⊥ is equivalent to the unprovability of
ConPA in PA. The italicized sentence is even provable in PA, as (5) be-
low will show. By the formalized deduction theorem (Exercise 5 in 7.1),

T+α⊥ ≡T 
(α →⊥) ≡ 
¬α; hence ¬
T+α⊥ ≡T ¬
¬α (≡ �α), and
consequently,

(5) ConT+α ≡T ¬
¬α (in particular, ConPA⊥ ≡PA ¬
PA ConPA).
The special cases under (5) and (3) for T = PA now clearly yield

(6) ConPA ≡PA ConPA⊥ (hence also ConPA ≡PA⊥ ConPA⊥).
Put together, PA⊥ contains ordinary number theory as known to us, but
also proves the indubitably false sentence bwbPA(�0 �==== 0	). Moreover,
because of �PA⊥ ¬ ConPA and hence �PA⊥ ¬ ConPA⊥ by (6), PA⊥ proves
(the reflection of) its own inconsistency, although along with PA also PA⊥

is consistent. It claims to have a mysterious proof of ⊥. Thus, consistency
of T can have a different meaning within T and seen from outside, just as
the meanings of countable diverge, depending on whether one is situated
in ZFC or is looking at it from outside. One may even say that PA⊥ is
lying to us with the claim ¬ ConPA⊥ .

We learn from the preceding that the extension T +ConT of a consistent
theory T need not be consistent. T = PA⊥ is a concrete example, and in
fact only one of arbitrarily many others. More on the meaning of ¬ ConT

will be said in Theorem 3.4.
We now discuss what is, along with (3), the most famous example of a

self-referential sentence. Clearly, a fixed point α of 
(x) claims just its
own provability, that is, α ≡T 
α. A trivial example is α = �, because
�T 
� →�, and since �T �, clearly �T 
�, so that � ≡T 
�. What
is surprising here is that � turns out to be the only fixed point of 
(x)
modulo T . By D4◦ below, �T 
α →α implies �T α and so α ≡T � (which
confirms the uniqueness), although one might perhaps expect �T 
α →α

for all α ∈ L0 because 
α →α is intuitively true.
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Theorem 3.3 (Löb’s theorem). Take T to satisfy D1–D3 and the fixed
point lemma. Then T has the properties

D4: �T 
(
α →α) →
α, D4◦ : �T 
α →α ⇒ �T α (α ∈ L0).

Proof. Let γ be a fixed point of 
(x) →α, i.e., γ ≡T 
γ →α. Then
γ ≡T 
α →α by Lemma 3.1(b). This and D0 imply 
γ ≡T 
(
α →α).
Lemma 3.1(a) states 
γ ≡T 
α, hence 
α ≡T 
(
α →α). Half of this
is D4. Now suppose �T 
α →α. Then by D1, �T 
(
α →α). Using D4
results in �T 
α, and �T 
α →α yields �T α, thus proving D4◦.

D4 reflects just D4◦ in T . One application of Löb’s theorem is an
extremely easy proof of �PA ConPA. Indeed, �PA ConPA (≡ 
⊥ →⊥) im-
plies �PA ⊥ by D4◦. That’s all. Similarly, D4 implies (2) for α = ⊥
by contraposition. Thus, Löb’s theorem is stronger than Gödel’s second
incompleteness theorem, which is not obvious at first glance.

Unlike PA⊥, PA + ConPA conforms to truth (in N ). Unfortunately it
is not quite clear what ConPA means in number-theoretic terms. This
is clear, however, for an arithmetical statement discovered by Paris and
Harrington (see [Bar]) that implies ConPA; this statement is provable in
ZFC but not in PA. Since then, many such sentences have been found,
mostly of a combinatorial nature. A popular example is

Goodstein’s theorem. Every Goodstein sequence ends in 0.

A Goodstein sequence is a number sequence (an)n∈N, with arbitrary a0

given in advance, such that an+1 is obtained from an as follows: Let
bn = n + 2, so that b0 = 2, b1 = 3, etc. Expand an in b-adic base for
b := bn, so that for suitable k,

(∗) an =
∑

i�k bk−ici, with 0 � ci < b.

Also the powers k − i are represented in b-adic form, so too the powers
of powers, and so on. Now replace b everywhere with b + 1 (= bn+1) and
subtract 1 from the output. The result is an+1. The table below gives an
example beginning with a0 = 11; already a6 has the value 134 217 727.

a0 = 11 = 22+1 + 2 + 1 2 � 3 33+1 + 3 + 1 = 85
a1 = 84 = 33+1 + 3 3 � 4 44+1 + 4 = 1028
a2 = 1027 = 44+1 + 3 4 � 5 55+1 + 3 = 15 628
a3 = 15 627 = 55+1 + 2 5 � 6 66+1 + 2 = 279 938
a4 = 279 937 = 66+1 + 1 6 � 7 77+1 + 1 = 5 764 802
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As one sees from this example, an initially increases enormously, and it
is hardly believable that the sequence ever starts to decrease and ends in
0. But the proof of the theorem is not particularly difficult; one estimates
an from above by the ordinal number λn, which, crudely put, results from
an on replacing the basis b in (∗) by ω. With some ordinal arithmetic
it can readily be shown that λn+1 < λn as long as λn �= 0. Since there
is no properly decreasing infinite sequence of ordinal numbers (these are
well-ordered), the sequence (an)n∈N must eventually end in 0. For more
detailed information see for instance [HP].

Many metatheoretic properties can be expressed using the provability
operator 
 in T , often using sentence schemata. The following ones turn
out to be equivalent and facilitate a better understanding of the meaning
of ¬ ConT within T . None of these properties hold for a consistent T from
the outside (Theorem 6.5.1′), but all of them are provable in T = PA⊥.

(i) ¬ ConT : 
⊥ (provable inconsistency),
(ii) SyComp : 
α ∨ 
¬α (syntactic completeness),
(iii) SeComp : α →
α (semantic completeness),
(iv) ω-Comp : ∀x
[ϕ(x)] →
∀xϕ(x) (ω-completeness).

Theorem 3.4. The properties (i)–(iv) are all equivalent in a theory T

satisfying the properties named at the beginning of this section.

Proof. By (4) (i)⇒(ii),(iii),(iv) are clear. (ii)⇒(i): By Rosser’s theorem
formulated in T (see 7.5), ConT �T ¬
α∧¬
¬α for some α. Thus,

α ∨ 
¬α �T ¬ ConT . (iii)⇒(i): For α := ConT , SeComp and (2)
yield α �T 
α,¬
α and so �T ¬α. (iv)⇒(i): By (3) in 7.2, we obtain
¬ bewT (x, �⊥	) �T 
[¬ bewT (x, �⊥	)], for ¬ bewT (x, �⊥	) is Σ1. Hence,

ConT = ∀x¬ bewT (x, �⊥	) �T ∀x
[¬ bewT (x, �⊥	)].

ω-Comp and (2) yield ConT �T 
∀x¬ bew(x, �⊥	) = 
 ConT �T ¬ ConT .
Therefore, �T ¬ ConT .

Remark. ConT is also equivalent in T to other properties, for example to the
schema 
α → α for Π1-formulas α (the local Π1-reflection principle) as well
as the uniform Π1-reflection principle ∀x
[α(x)] → ∀xα(x) for Π1-formulas α.
Both the theorems of Paris–Harrington and of Goodstein are equivalent in PA
to the uniform Σ1-reflection, or equivalently, to the consistency of PA plus all
true Π1-sentences; see e.g. [Bar, D8].
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Define inductively T 0 = T and Tn+1 = Tn + ConT n . This n-times-
iterated consistency extension Tn can be written as Tn = T + ¬
n⊥
with 
 = bwbT , 
0α = α and 
n+1α = 

nα (Exercise 3). Thus, the
consistency of Tn can be expressed by an iterated consistency statement
on T . Let Tω :=

⋃
n∈ω Tn. Since Tn ⊆ Tn+1 and Tn = T + ¬
n⊥ (hence

Tω = T ∪ {¬
n⊥ | n ∈ ω}), the following three items are equivalent:

(i) Tω is consistent, (ii) Tn is consistent for all n, (iii) �T 
n⊥ for all n.

Like PA1 = PA + ConPA, also PAω conforms to truth looking at PA

from outside. When considered more closely, this means only that PAω is
relatively consistent with respect to ZFC. In other terms, �ZFC ConPAω .
The argument (to be formalized in ZFC) runs as follows: �PAω ⊥ implies
�PAn ⊥ for some n, as was noticed above, hence �PA 
n⊥. But this is
impossible, as is seen by a repeated application of D1∗ (p. 271) on PA.

Exercises

1. Prove D4◦ for T by applying Theorem 3.2 to T ′ = T + ¬α.

2. Show by means of Löb’s theorem that ConPA →¬
¬ ConPA is un-
provable in PA, although this formula is true if seen from outside.

3. Let Tn recursively be defined as in the text above. Prove that
Tn = T + ¬
n⊥ and ConT n ≡T ¬
n+1⊥, where 
 is bwbT .

4. Show that �ZFC 
PAα →α for all arithmetical sentences α from L∈

(the L∈-sentences relativized to ω).

7.4 The Provability Logic G

In 7.3 first-order logic was hardly required. It comes then as no surprise
that many of the results there can be obtained propositionally, more pre-
cisely, in a certain modal propositional calculus. This calculus contains
alongside ∧ ,¬ the falsum symbol ⊥, and a further unary connective 
 to
be interpreted as the proof operator in Lar , denoted by 
 as well. First
we define a propositional language F� , whose formulas are denoted by
H, G, F : (a) the variables p1, p2, . . . from PV (page 4) and ⊥ belong to F� ;
(b) if H, G belong to F� then so too (H ∧G), ¬H, and 
H.
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No other strings belong to F� in this context. H ∨ G, H →G, and
H ↔ G are defined as in 1.4, � := ¬⊥. Further, set �H := ¬
¬H and
define recursively 
0H = H, 
n+1H = 

nH. Let G be the set of those
formulas in F� derivable using substitution in F� , modus ponens MP,
and the rule MN: H/
H from the tautologies of two-valued propositional
logic, augmented by the axioms (called also the G-axioms)


(p →q) →
p →
q, 
p →

p,4 
(
p →p) →
p.
For H ∈ G we mostly write �G H (read “H is derivable in G”). Rule MN
corresponds to D1. The first G-axiom reflects D2, the middle D3, and
the last (called Löb’s formula) D4, hence the name provability logic. The
connection between G and PA is described in 7.5. Here we are concerned
with the modal logic G and its Kripke semantics . For simplicity, we
restrict ourselves to finite Kripke frames, which are just finite directed
graphs. We can do so, since all modal logics considered here have the
finite model property. We begin without further ado with the following

Definition. A G-frame or Kripke frame for G is a finite poset (g, <). A
valuation is a mapping w that assigns to every variable p a subset wp of g.
The relation P � H, dependent on w, between points P ∈ g and formulas
H ∈ F� (read “P accepts H”) is defined inductively by

P � p iff P ∈ wp, P � ⊥, P � H ∧G iff P � H & P � G,

P � ¬H iff P � H, P � 
H iff P ′ � H for all P ′ > P.

These conditions easily imply P � �H iff P ′ � H for some P ′ > P ,
and P � H →G iff P � H ⇒ P � G. If P � H for all w and all P ∈ g,
we write g � H and say H holds in g. If g � H for all G-frames g, we write

� ��P P ′�G H and say H is G-valid. The G-frame on the right, consist-
ing of two points P, P ′ with P < P ′, shows that �G p →
p.
Indeed, let wp = {P}. Then P � p, but P � 
p because P ′

� p. Note
also �G 
p →p, for P ′

� p but P ′ � 
p because there is no P ′′ > P ′.
We may tacitly assume that G-frames are initial (have a smallest point),

for g � H is verified pointwise. We write H ≡G H ′ for �G H ↔ H ′. It is
readily seen that ≡G is a congruence in F� that extends the usual logical
equivalence conservatively. For instance, ¬
H ≡G ¬
¬¬H ≡G �¬H.
Many more equivalences are presented in the following examples. These
will later be translated into statements about self-reference.
4 This axiom is dispensable; it is provable from the remaining, see e.g. [Boo] or [Ra1].
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Examples. (a) Let g be an arbitrary G-frame. Although always P � ⊥,
we have P � 
⊥, provided P is maximal in g, that is, no Q > P exists.
Likewise, 
¬
⊥ is accepted precisely at the maximal points of g. Thus,

⊥ ≡G 
¬
⊥, or equivalently, ¬
⊥ ≡G �
⊥ (= ¬
¬
⊥). This reflects
in G the second incompleteness theorem, as will be seen in 7.5.
(b) Let {P0, . . . , Pn} be the ordered G-frame with Pn < · · · < P0. Clearly,
P0 � 
m⊥ for each m > 0. Induction on n shows that Pn � 
m⊥ for
all m > n, but Pn � 
n⊥, and therefore Pn � 
n+1⊥ →
n⊥. Hence,
�G 
n+1⊥ →
n⊥, and a fortiori �G 
n⊥ and �G ¬
n+1⊥, for all n.
(c) �G 
(
p →p) →
p. For take an arbitrary g and P ∈ g. If P � 
p

then there is, since g is finite, some Q > P with Q � ¬p and Q′ � p for
all Q′ > Q. Thus Q � 
p; hence Q � 
p →p and so P � 
(
p →p).
Consequently, P � 
(
p →p) →
p, which proves our claim. Note also
that �G 
p →

p. Only the transitivity of < is relevant for the proof.
(d) �G ¬
n+1⊥ →�Rn, where Rn :=

∧n
i=1(
pi →pi). For let P ∈ g,

P � ¬
n+1⊥. Then there must be a chain P = P0 < P1 < · · · < Pn+1

in g. Now, it is a nice separate exercise to verify that each conjunct of
Rn fails to be accepted by at most one of the n + 1 points P1, . . . , Pn+1.
Thus, at least one of these accepts all conjuncts. In other words, Pi � Rn

for some i > 0; hence P � �Rn. This nontrivial example will essentially
be employed in the proof of Theorem 7.1.

By induction on �G H one easily proves �G H ⇒ �G H (soundness of
Kripke semantics for �G). Example (c) is a part of the initial step. The
induction steps over the rules are easy. For instance, g � H clearly implies
g � 
H. The converse, �G H ⇒ �G H, holds as well. Thus, �G H can be
confirmed by proving �G H, and vice versa. This is the content of

Theorem 4.1 (Completeness of Kripke semantics for G). For each
formula H from F� it holds that �G H ⇔ �G H.
The nontrivial direction ⇐ follows directly from the finite model property
of G, i.e., each H /∈ G is falsified or refuted by some finite G-frame, proved,
for example, in [Boo], [Ra1], and [CZ]. For the relatively simple formulas
considered here, �G H is in general more easily checked than �G H.

Both the formulas provable in G and those refutable are clearly recur-
sively enumerable, thanks to the finite model property of G. Thus, in
analogy to Exercise 2 in 3.6, we obtain
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Theorem 4.2. G is decidable.

Remark. The finite model property, decidability, and some other properties
such as interpolation can all be proved in one move, see e.g. [Ra2]. An important
fragment of G is G0 := G∩F0

�, where F0
� denotes the set of variable-free formulas

of F�. The formulas ¬
n⊥ (≡G �n
) form a Boolean base in G0. One proves this
most easily by showing that G0 is complete with respect to all (totally) ordered
G-frames, including the infinite ones, and applying Theorem 5.2.3 accordingly.

Exercises

1. Let g be any finite Kripke frame (a graph) that satisfies the axioms
of G. Show that g is necessarily a poset. Only this fact justifies the
identification of G-frames with posets.

2. Prove �G 
p →
(
p →p), the inverse of Löb’s formula. (Only the
first of the three G-axioms is needed in the proof.)

7.5 The Modal Treatment of Self-Reference

Let T be a theory as in 7.3. A mapping ı from PV to L0 with p ı
i = αi

is called an insertion. ı can be extended to the whole of F� by the
clauses ⊥ı = ⊥, (¬H)ı = ¬H ı, (H ∧G)ı = H ı ∧Gı, and (
H)ı = 
H ı

(= bwbT (�H ı	)). Briefly speaking, H ı results from H(p1, . . . , pn) by re-
placing the pν by the sentences αν from L. For instance, if pı = α then
(
p∧¬
⊥)ı = 
α∧¬
⊥, and (¬
⊥)ı = ¬
⊥ = ConT . The following
lemma shows that �G is “sound” for �T . Already this simple fact consid-
erably simplifies proofs about self-referential statements.

Lemma 5.1. For each H with �G H and each insertion ı, �T H ı.

Proof by induction on �G H. If H is a propositional tautology then
H ı ∈ TautL ⊆ T . If H is one of the modal axioms of G, then �T H ı by D2,
D3, or D4. If �G H and σ : F� → F� is a substitution, then �T Hσı, since
Hσı = H ı′ with ı′ : p 
→ pσı, and �T H ı′ holds by the induction hypothesis.
As regards the induction step over MP, consider (F →G)ı = F ı →Gı.
Finally, if MN is applied, and �T H ı by the induction hypothesis, then
�T 
H ı = (
H)ı, due to D1.

Example 1. We prove (3) of Theorem 3.2 with the calculus �G. By
Lemma 5.1 and Theorem 4.1 it suffices to show that �G ¬
⊥ ↔ ¬
¬
⊥.
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This holds by Example (a) in 7.4. Next example: �G 
(p ↔ �p) →¬�p

is easily confirmed. Thus, �T 
(α ↔ �α) →¬�α. This tells us (if every-
thing is related to T = PA) that a sentence claiming its own consistency
with PA is incompatible with PA, which hardly seems plausible. Even the
converse is provable in PA since �G ¬�p →
(p ↔ �p).

We now explain certain facts that expand upon the reasoning of above.
For PA and related theories, the converse of Lemma 5.1 holds as well.
That is to say, the derivability conditions and Löb’s theorem already con-
tain everything worth knowing about self-referential formulas or schemes.
This is essentially the content of Theorem 5.2. For the subtle proofs of
Theorems 5.2, 5.4, and 5.5, the reader is referred to [Boo].

Theorem 5.2 (Solovay’s completeness theorem). For all H ∈ F� :
�G H (equivalently �G H) if and only if �PA H ı for all insertions ı.

Example 2 (applications). (a) �PA 
n+1⊥ →
n⊥ because by Exam-
ple (b) in 7.4, �G 
n+1⊥ →
n⊥. In particular, �PA ConPA (≡ 
⊥ →⊥).
(b) �PA ¬
n+1⊥, since �G ¬
n+1⊥. (c) It is easily verified with the 2-point
frame on page 285 that �G ¬
p →
¬
p, in particular �G ¬
⊥ →
¬
⊥.
Therefore, �PA ConPA →
 ConPA. (d) PAn := PA + 
n⊥ is consistent
for n > 0 by (b), but is ω-inconsistent. Otherwise, by D1∗ (page 271),
�PAn 
n⊥ ⇒ �PAn 
n−1⊥ ⇒ · · · ⇒ �PAn ⊥, contradicting �PAn ⊥. Since
�PA 
n⊥ →
n+1⊥ by D3, we get PAn ⊇ PAn+1, and since PAn �= PAn+1

by (a), we have PA0 ⊃ PA1 ⊃ · · · ⊃ PA. Observe that PA1 is just PA⊥.
Note also the following: Since �G 
p →p, there must be some α ∈ L0

ar

such that �PA 
α →α. Indeed, choose α = ⊥. The above examples point
out that Theorem 5.2 and the decidability of G are very efficient tools in
deciding the provability of self-referential statements.

Many other theories have the same provability logic as PA, where in
general a modal propositional logic H is the provability logic for T when the
analogue of Theorem 5.2 holds with respect to T and H. For some theories,
the provability logic may be a proper extension of G. For example, the
ω-inconsistent theory PAn from Example 2(d) has the provability logic
Gn := G + 
n⊥, the smallest extension of G closed under all rules of G

with the additional axiom 
n⊥ (Exercise 1; note that G0 is inconsistent).
By the following theorem, which will be proved in 7.7, other extensions
of G to be considered as provability logics are out of the question.
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Theorem 5.3 ([Vi1]). Let T be at least as strong as PA. Then

(a) If Tω (page 284) is consistent, then G is the provability logic of T ;

(b) if �T ω ⊥ and n is minimal such that �T n ⊥, then T ’s provability
logic is Gn.

The formulas H ∈ F� such that N � H ı for all insertions ı in Lar

can also be surprisingly easily characterized. All H ∈ G are obviously
included; but in addition also 
p →p belongs to this sort of formula,
because N � 
α →α for α ∈ L0

ar . Indeed, if N � 
α then there is some
n that codes a proof of α in PA, hence N � α.

Let GS (⊇ G) be the set of all formulas in F� that can be obtained
from those in G ∪ {
p →p} using substitution and modus ponens only.
Induction in GS readily yields H ∈ GS ⇒ N � H ı for all ı. Again, the
converse holds as well:

Theorem 5.4 ([So]). H ∈ GS if and only if N � H ı for all insertions ı.

GS is decidable as well, because it can be shown that H ∈ GS ⇔ H∗ ∈ G,
where H∗ := [

∧
�G∈Sf� H

(
G →G)] →H. Here Sf� H is the set of sub-
formulas of H of the form 
G. Thus, Theorem 5.4 reduces the decidability
of GS to that of G. Using this theorem, many questions concerning the
relations between provable and true are effectively decidable. For instance,

H(p) := ¬
(¬
⊥ →¬
p∧¬
¬p) �∈ GS

is readily verified. Hence N � ¬H(α) ≡ 
(¬
⊥ →¬
α∧¬
¬α) for some
α ∈ L0

ar by Theorem 5.4. Translated into English: It is provable in PA that
the consistency of PA implies the independence of α for some sentence α.
This is exactly Rosser’s theorem, which in this way turns out to be prov-
able in PA. As was shown in [Be1], the box in the formulas H ∈ GS in
Theorem 5.4 may denote bwbT for any axiomatizable T ⊇ PA, provided
T ⊆ ThN . However, if T proves false sentences (as does e.g. PA⊥) then
GS has to be redefined in a feasible manner and is always decidable.

A variable p in H is called modalized in H if every occurrence of p

is contained within the scope of a 
, as is the case in ¬
p, ¬
¬p, and

(p →q). By contrast, p is not modalized in 
p →p. Another particularly
interesting theorem is
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Theorem 5.5 (DeJongh–Sambin fixed point theorem). Let p be
modalized in H(p, q1, . . . , qn), n � 0. Then a formula F = F (�q) from F�

can effectively be constructed such that
(a) F ≡G H(F, �q),
(b) �G

∧2
i=1[(pi ↔ H(pi, �q ))∧
(pi ↔ H(pi, �q ))] → (p1 ↔ p2).

This theorem easily yields a corresponding result for theories T :

Corollary 5.6. Let p be modalized in H = H(p, �q ) and suppose T satisfies
D1–D4. Then there is an F = F (�q) ∈ F� with F (�α) ≡T H(F (�α), �α) for
all �α = (α1, . . . , αn), αi ∈ L0. For each �α there is only one β ∈ L0 modulo
T such that β ≡T H(β, �α).

Proof. Choose F as in (a) of the theorem. Then F (�α) ≡T H(F (�α), �α) by
Lemma 5.1 (�q ı = �α). To prove uniqueness let βi ≡T H(βi, �α) for i = 1, 2.
By D1, �T (βi ↔ H(βi, �α))∧
(βi ↔ H(βi, �α)). Inserting βi for pi and αi

for qi in the formula under (b) in the theorem then yields �T β1 ↔ β2 by
Lemma 5.1.

Example 3. For H = ¬
p (n = 0), F = ¬
⊥ is a “solution” of (a)
in Theorem 5.5 because ¬
⊥ ≡G ¬
(¬
⊥). According to Corollary 5.6,
ConT (= ¬
⊥) is modulo T the only fixed point of ¬ bwbT . This is just
the claim of (3) from 7.3.

Many special cases of the corollary represent older self-reference results
from Gödel, Löb, Rogers, Jeroslow, and Kreisel, which, stated in terms of
modal logic, concern fixed points of ¬
p, 
p, ¬
¬p, 
¬p, and 
(p →q)
in PA. Incidentally, one gets the fixed points of these formulas—namely
¬
⊥, �, ⊥, 
⊥, and 
q—according to a simple recipe. All first listed
formulas are of the form H = G �H′

p , where p is not modalized in G(p, �q)
and H ′(p, �q) is chosen appropriately. In this case, F = H G(�,�q )

p is the
fixed point of H, as is seen after some calculation. For H = ¬
p from
Example 3 is G = ¬p. Thus, according to the recipe the fixed point is

F = ¬
p ¬�
p = ¬
¬� ≡G ¬
⊥.

For Kreisel’s formula 
(p →q) is G = p. Hence, it has the fixed point

F = 
(p →q) �
p = 
(� →q) ≡G 
q.

The recipe also works for H = 
p →q, by choosing G = p →q. Hence
F = (
p →q)� → q

p = 
(� →q) →q ≡G 
q →q is the only fixed point of
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H modulo T . Exactly this is the claim of Lemma 3.1(b), used in Gödel’s
second incompleteness theorem.

Exercises

1. Prove that the theory PAn from Example 2(d) has the provability
logic Gn.

2. Show that PAn
⊥ := PAn + ¬ ConPAn equals PA + 
n+1⊥∧¬
n⊥ and

that it has the provability logic G1 = G + 
⊥. Here 
 means 
PA.

3. Prove that �, ⊥, and 
⊥ are the fixed points of 
p, ¬
¬p, and 
¬p.

4. (Mostowski). Let T ⊇ PA be axiomatizable and suppose N � T .
Show that there are two mutually independent Σ1-sentences α, β in
T , that is, α →β, α →¬β, β →α, β →¬α (hence also α, β, ¬α, and
¬β) are unprovable in T .

7.6 A Bimodal Provability Logic for PA

Hilbert remarked jokingly that the incompleteness phenomenon can be
forcefully removed from the world by use of the so-called ω-rule

ρω :
X � ϕ(n) for all n

X � ∀xϕ
.

ρω has infinitely many premises. It is an easy exercise to derive with the
aid of ρω every sentence α valid in N from the axioms of PA, even from
those of Q. Indeed, all sentences can (up to equivalence) be obtained from
variable-free literals with ∧ , ∨,∀,∃, bypassing formulas with free variables.
Due to the Σ1-completeness of Q, all valid variable-free literals are deriv-
able. The inductive steps for ∧ , ∨,∃ are simple, applying Σ1-completeness
in the ∃-step once again. Only in the ∀-step is ρω used.

Clearly, an unrestricted use of the infinitistic rule ρω (in spite of its rel-
evance for higher order arithmetic) contradicts Hilbert’s own intention of
giving mathematics a finitistic foundation. However, things look different
if we restrict ρω each time to a single application. In view of Remark 1
in 6.2, we no longer distinguish between ϕ and ϕ̇, so that ϕ itself is a
number and �ϕ	 = ϕ is the corresponding Gödel term. Let us define



292 7 On the Theory of Self-Reference

1bwbPA(α) := (∃ϕ∈L1
ar )[bwbPA(∀xϕ →α) & ∀n bwbPA(ϕ(n))].

1bwbPA is arithmetical, in fact it is Σ3, for bwbPA is Σ1 and ∀n bwbPA(ϕ(n))
is Π1. We read 1bwbPA(α) as “α is 1-provable.” Let 1bwb(x) be the Σ3-
formula in Lar defining 1bwbPA. Here let x be v0. Write 
1 α for 1bwb(�α	)
and �1 α for ¬
1 ¬α. Clearly, 
α for α ∈ L0

ar (
 = 
PA) can be read
‘PA + ¬α is inconsistent’, while 
1 α, by Lemma 6.1, formalizes ‘PA + ¬α

is ω-inconsistent’. Thus, �1 � (≡ ¬
1 ⊥) means ‘PA (= PA + ¬⊥) is ω-
consistent’. This explains the interest in the operator 
1 .

If bwbPA(α) then certainly 1bwbPA(α) (choose α for ϕ). The italicized
statement is reflected in PA as ‘�PA 
α → 
1 α for every α ∈ L0

ar ’. The
converse fails, since �PA ConPA, while ConPA is easily 1-provable: �PA ϕ(n)
for all n, with ϕ(x) := ¬ bewPA(x,⊥), and trivially �PA ∀xϕ(x) → ConPA.
In what follows, some claims will not be proved in detail.

Define Ω := {ϕ∈L1
ar | �PA ϕ(n) for all n}. By its definition, Ω and

hence also PAΩ := PA + Ω are formally Σ3. As Theorem 6.2 will show,
PAΩ is properly Σ3 and hence is no longer recursively axiomatizable.

Lemma 6.1. The following properties are equivalent for α ∈ L0
ar :

(i) 1bwbPA(α), (ii) �PAΩ α, (iii) PA + ¬α is ω-inconsistent.

Proof. (i)⇒(ii) follows with a glance at the definitions (read (i) naively).
(ii)⇒(iii): Let �PAΩ α. Since Ω is closed under conjunctions, there is some
∀xϕ(x) ∈ Ω with ∀xϕ �PA α, hence �PA ¬α →∃x¬ϕ and so �PA+¬α ∃x¬ϕ.
Now, ∀xϕ ∈ Ω, therefore �PA ϕ(n) and a fortiori �PA+¬α ϕ(n), for all n.
Thus, PA + ¬α is ω-inconsistent. (iii)⇒(i): Let �PA+¬α β(n) for all n,
but �PA+¬α ∃x¬β. Then �PA ∀xβ →α. With ϕ(x) := ¬α →β(x) clearly
�PA ϕ(n) for all n. Now, ∀xϕ ≡ α ∨ ∀xβ �PA α. Hence �PA ∀xϕ →α.
Thus, altogether 1bwbPA(α).

Theorem 6.2 (the 1-provable Σ3-completeness of PA). All true Σ3-
sentences are 1-provable. Moreover, for every β of this kind, �PA β → 
1 β.

Proof. Let N � β := ∃y∀xγ(y, x) where γ(y, x) is Σ1. Then there is
some m such that N � γ(m, n) for all n. Therefore, �PA γ(m, n) for all
n, because PA is Σ1-complete. Hence, ∀xγ(m, x) ∈ Ω and so �PAΩ ∃z∀xγ,
or equivalently, 1bwbPA(β) by Lemma 6.1. Because of the provable Σ1-
completeness of PA, this argumentation is comprehensible in PA, so that
also �PA β → 
1 β.
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D1–D4 are also valid for the operator 
1 :L0
ar → L0

ar . Indeed, D1 holds
because �PA α ⇒ �PA 
α ⇒ �PA 
1 α, and D2 formalizes (or reflects)
‘�PAΩ α, α →β ⇒ �PAΩ β’ in PA (observe Lemma 6.1). D3 follows from
Theorem 6.2 with β = 
1 α. The proof of D4 in 7.3 uses, along with the
fixed point lemma, only D1–D3; so D4 holds as well. Therefore, nearly
everything said in 7.3 on 
 applies also to 
1 , including Theorem 3.2,
which now reads �PA ¬
1 ⊥ (≡ �1 �). To put it more concisely, although
the consistency of PA is provable with the extended means, ω-consistency
is not. Hence, this property, which is Π3-definable according to Exercise 3
in 6.7, cannot be Σ3 by Theorem 6.2, and must therefore be properly Π3.
Equivalently, ω-inconsistency is properly Σ3.

Alongside 
α → 
1 α, there are other noteworthy interactions between

 and 
1 , in particular �PA ¬
α → 
1 ¬
α. This formalizes ‘If �PA α then
¬
α is 1-provable’. To verify the latter notice that �PA α implies �PA ϕ(n)
for all n, where ϕ(x) is ¬ bewPA(x, �α	), and since �PA ∀xϕ →¬
α, we
get �PA 
1 ¬
α. On the other hand, �PA ¬
α →
¬
α fails in general;
Example 2(c) in 7.5 yields a counterexample.

The language of the bimodal propositional logic GD now to be defined
results from F� by adding a further connective 
1 to F� , which is treated
syntactically just as 
. The axioms of GD are those of G stated both for

 and 
1 , augmented by the axioms


p → 
1 p and ¬
p → 
1 ¬
p.

The rules of GD are the same as those for G. Insertions ı to L0
ar are

defined as in 7.5, but with the additional clause (
1 H)ı = 
1 H ı, that is,
(
1 H)ı = 1bwb(�H ı	). By the reasoning above, all axioms and rules of
GD are sound. This proves (the easier) half of the following remarkable
theorem from Dzhaparidze (1985):

Theorem 6.3. �GD H ⇔ �PA H ı for all insertions ı as defined above.
Furthermore, GD is decidable.

Thus, the modal system GD completely captures the interaction be-
tween bwbPA and 1bwbPA; also Theorem 5.5 carries over. However, GD no
longer has an adequate Kripke semantics, which complicates the decision
procedure. For further references see [Boo] or [Be3] .

As an exercise, the reader should derive 
1 (
p →p) from the axioms of
GD. Thus, �PA 
1 (
α →α) for every α ∈ L0

ar , while �PA 
(
α →α) is the
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case only provided �PA α. In other words, the local reflection principle
{
α →α | α ∈ L0

ar} is 1-provable in PA. Be careful: GD expands G

conservatively, so that �GD 
p →p.

7.7 Modal Operators in ZFC

Considerations regarding self-reference in ZFC are technically sometimes
easier, but from the foundational point of view more involved because
there is no superordinate theory. If ZFC is consistent, as we assume it
is, then ConZFC is a true arithmetical statement that is unprovable in
ZFC. Thus, true arithmetical statements may even be unprovable in ZFC,
not only in PA or similarly strong arithmetical theories. It makes sense,
therefore, to consider ZFC+ := ZFC + ConZFC, because after all, we want
set theory to embrace as many facts about numbers and sets as possible
from which interesting consequences may result.

As 7.3 shows, the consistency of ZFC alone does not guarantee that
ZFC+ is consistent. The second incompleteness theorem clearly excludes
�ZFC ConZFC but does not preclude �ZFC ConZFC → ConZFC+ . In this case
�ZFC+ ConZFC+ , and so �ZFC+ ⊥ by the same theorem. On the other
hand, from certain assumptions about the existence of large cardinals, the
consistency of ZFC+ readily follows. These assumptions would have to be
jettisoned in case �ZFC+ ⊥, i.e. �ZFC ¬ ConZFC. Moreover, the consistency
of ZFC would then not correctly be reflected in ZFC, and ZFC proves along
with true arithmetical facts also false ones. This sounds strange, but there
is hardly a convincing argument that this cannot be so.

Even if ZFC+ is consistent, i.e. �ZFC ¬ ConZFC, it may still be that one of
the sentences from the sequence 
¬ ConZFC, 

¬ ConZFC, . . . is provable
in ZFC (where 
 denotes 
ZFC as long as it is not redefined). The latter
is excluded only if we assume that the ω-iterated consistency extension
ZFCω is consistent, hence �ZFC 
n⊥, for all n (see page 284), so that by
Theorem 5.3, G would be the provability logic of ZFC.

In fact, the assumption (∀n∈N) �ZFC 
n⊥ is equivalent to G’s being
the provability logic of ZFC, by the general Theorem 7.1 below. Therein
Rf T := {
α →α | α ∈ L0} denotes the already encountered reflection
principle. Also Theorem 5.3 is a corollary of the theorem, simply because
(∀n∈N) �T 
n+1⊥ is equivalent to the consistency of Tω.



7.7 Modal Operators in ZFC 295

Theorem 7.1. For a sufficiently expressive theory T 5 the following con-
ditions are equivalent:

(i) Tω is consistent,
(ii) T + Rf T is consistent,
(iii) G is the provability logic of T .

Proof. (i)⇒(ii) indirect: Suppose that T + Rf T is inconsistent. Then
there are formulas α0, . . . , αn such that �T ¬ϕ, ϕ :=

∧n
i=1(
αi →αi).

Hence �T 
¬ϕ ≡T ¬�ϕ. Now, because �T ω ¬
n+1⊥, by Example (d) in
7.4 and Lemma 5.1, we get �T ω �Rı

n (pı
i = αi). Clearly, Rı

n = ϕ and so
�T ω �ϕ. Since also �T ω ¬�ϕ, Tω is inconsistent. (ii)⇒(iii): The proof of
Theorem 5.2 for PA, as presented in [Boo], runs nearly in the same way
for T , because PA is transgressed in one place only: one uses the fact that
N � Rf PA. However, the existence of a corresponding T -model is ensured
by (ii). (iii)⇒(i): �G 
n+1⊥, hence �T 
n+1⊥ ≡T ¬ ConT n for all n, and
so Tω is consistent.

The equivalence (i)⇔(ii) is a purely proof-theoretic one. It is called
Goryachev’s theorem; see [Gor] or [Be2]. We obtained it using essentially
some elementary modal logic. For T = ZFC, perhaps a bit more interesting
than (i) or (ii) is the assumption of the ω-consistency of ZFC, that is,

(∗) �ZFC (∃x∈ω)ϕ(x) ⇒ �ZFC ¬ϕ(n) for some n (ϕ(x) ∈ L∈).
This assumption implies D1∗, which in turn ensures �ZFC 
n+1⊥ for all
n, that is, (i), and hence all other conditions in Theorem 7.1 hold for
T = ZFC. It is worthwhile to observe that the consistency of ZFC+Rf ZFC

and thereby the proof of Solovay’s completeness theorem for ZFC follow
directly from (∗), without appealing to Goryachev’s theorem. What is
needed to see that the latter is the case is the following
Lemma. Suppose that ZFC is ω-consistent. Then there exists a model
V � ZFC such that V � Rf ZFC.

Proof. Let Ω := {(∀x∈ ω)α | α=α(x) ∈ L∈, �ZFC α(n) for all n}. Then
ZFC+Ω is consistent. Indeed, otherwise �ZFC ¬(∀x∈ ω)α ≡ (∃x∈ ω)¬α for
some (∀x∈ ω)α ∈ Ω (since Ω is closed under conjunction), in contradiction
to (∗). Any V � ZFC + Ω satisfies the reflection principle Rf ZFC, for if
5 By such a T we mean that the proof steps of Solovay’s Theorem 5.2 not transgressing
PA can be carried out in T . This does not yet imply the provability of the theorem
itself. Which steps are transgressing PA is described in the following proof.
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V � α then �ZFC α and therefore �ZFC ¬ bewZFC(n, �α	) for all n. Hence
(∀y ∈ ω)¬ bewZFC(y, �α	) ∈ Ω, which clearly implies V � 
α.

Now we interpret the modal operator 
 no longer as provable in ZFC,
which is equivalent to valid in all ZFC-models, but rather as valid in
particular classes of ZFC-models. For undefined notions used in the sequel
we refer to [Ku]. A ‘model’ is to mean throughout a ZFC-model.

Particularly interesting are transitive models, i.e. models V = (V, ∈ V),
where the set V is transitive. This is to mean a ∈ b ∈ V ⇒ a ∈ V . In
these models, ∈ V coincides with the ordinary ∈-relation restricted to V (a
set in our metatheory that itself is ZFC). We write V for V. Let ρa denote
the ordinal rank of the set a, i.e., the smallest ordinal ρ with a∈ Vρ+1. To
prove the soundness half of Theorem 7.3 we will need

Lemma 7.2. ([JK]) Let V, W be transitive models such that ρV < ρW

and let V � α. Then W � ‘there is a transitive model U with U � α’.6

Let the modal logic Gi result from augmenting G by the axiom
(i) 
(
p →
q) ∨ 
(
q →p).

Gi is complete with respect to all preference orders g, i.e., g is a finite
poset together with some function π : g → n (= {0, . . . , n−1}) such that
P < Q ⇔ πP < πQ, for all P, Q ∈ g. This implies the finite model
property of Gi, which, as for G, ensures the decidability of Gi. More
suitable for our aims is the characterization of preference orders g by the
property

(p) P < P ′ implies P < Q or Q < P ′, for all P, P ′, Q ∈ g,
which at once follows from the definition: Let P < P ′, hence πP < πP ′.
If P �< Q, i.e. πP �< πQ, then πQ � πP < πP ′, so that Q < P ′. The

���
���P ′P

Q
O
  !
�

�

�

�

proof of the converse is Exercise 1. The figure shows a poset g

that is not a preference order (for neither P < Q nor Q < P ′).
Axiom (i) is easily refuted in g choosing wp = {P ′}, wq = ∅,
and verifying that O � �(
p∧¬
q) and O � �(
q ∧¬p) (for notice that
P � 
p∧¬�q and Q � 
q ∧¬p). Hence, (i) does not belong to G, so
that Gi is a proper extension of G. We mention that in [So] and in [Boo]
a somewhat more complex axiomatization of Gi has been considered.
6 In transitive models W the sentence in ‘ ’ (which with some encoding can be for-
mulated in L∈) is absolute, and therefore equivalent to the existence of a transitive
model U ∈ W with U � α.
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Remark on splittings in modal logic. The completeness of Gi with respect
to all preference orders follows also from the fact that Gi is the split logic arising
from splitting the lattice of all extensions of G (see e.g. [Kra]) by the subdirect
irreducible G-algebra belonging to the frame from the previous page.

We define insertions ı : F� → L0
∈ as in 7.5 as usual by (
H)ı = 
H ı,

where 
α for the set-theoretic sentence α = H ı ∈ L0
∈ is now to mean ‘α is

valid in all transitive models’. Accordingly, �α = ¬
¬α states ‘α holds
in at least one transitive model’.

Theorem 7.3. �Gi H iff �ZFC H ı for all insertions ı as defined above.

We prove only the direction ⇒, that is, soundness. The converse is much
more difficult, see [Boo]. As regards the axioms of Gi, since 
p →

p is
provable from the other axioms of G (see 7.4), it suffices to prove

(A) 
(α →β)∧
α �ZFC 
β, (B) 
(
α →α) �ZFC 
α,
(C) �ZFC 
(
α →
β) ∨ 
(
β →α), for all α, β ∈ L0

∈ .
(A) is trivial, because the sentences valid in any class of models are closed
under MP. (B) is equivalent to (B′): �¬α �ZFC �(
α∧¬α). Here is the
proof: Suppose �¬α, i.e. there is a transitive model in which ¬α holds.
Then there is also one with minimal rank, V say. We claim V � 
α.
Otherwise V � �¬α, and hence there would be a transitive model U ∈ V

with U � ¬α and ρU < ρV , contradicting our choice of V . Therefore,
V � 
α∧¬α. Thus, there is a transitive model in which 
α∧¬α holds,
which confirms (B′). Finally, (C) is verified by contraposition: suppose
there are transitive models V, W and sentences α, β such that

(a) V � ‘α holds in all transitive models and there is a transitive model
in which ¬β holds’,

(b) W � ‘β holds in all transitive models’, (c) W � ¬α.

From these assumptions it follows first of all that ρW < ρV . Indeed,
suppose by (a) that U ∈ V is a transitive model for ¬β. If ρV � ρW then
ρU < ρW . Hence, by Lemma 7.2, W � ‘there is a transitive model for ¬β’,
contradicting (b). Now, since W � ¬α by (c) and because of ρW < ρV ,
in V holds ‘there is some transitive model for ¬α’ by Lemma 7.2, in
contradiction to (a). This proves (C). Soundness of the substitution rule
follows as for G in 7.5. MN is trivially sound, because if α is provable
in ZFC then, of course, α is valid in all transitive models. Also MP is
obvious: If α and α →β hold in any class of models, then also β.
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Another interesting model-theoretic interpretation of 
α is ‘α is valid in
all Vκ’. Here κ runs through all inaccessible cardinal numbers. According
to [So], the adequate modal logic for this interpretation of 
 is

Gj := G + 
(
p∧p →q) ∨ 
(
q →p).
More precisely, if there are infinitely many inaccessibles then we have

Theorem 7.4. �Gj H iff �ZFC H ı for all insertions ı, where 
α is to
mean ‘α is valid in all Vκ’, κ running through all inaccessible cardinals.

Gj is also denoted by G.3. This logic is complete with respect to all
finite strict linear orders. These, of course, are also frames for Gi, so that

�
��P

O
  !
�

�

�

Gi ⊆ Gj. The figure shows a Gi-frame, also called “the fork,”
on which the additional axiom is easily refuted at its initial
point O with wp = {P} and wq = ∅. Hence the fork is not
a Gj-frame, and so Gi ⊂ Gj. The completeness of Gj with respect to finite
orders entails the finite model property of Gj and hence its decidability.

We recommend that the reader carry out the proof of the soundness part
of Theorem 7.4, without consulting the hints to the solutions (Exercise 4).
It is easier than the soundness part of Theorem 7.3 proved above. All one
needs to know besides Lemma 7.2 is that each Vκ is a transitive ZFC-
model and that Vκ ∈ Vλ or Vλ ∈ Vκ, for arbitrary inaccessible cardinals
κ �= λ. Maybe the reader can also find a new and lucid proof of the hard
direction of Theorem 7.4: If �ZFC H ı for all ı then H holds in all finite
strict linear orders, or equivalently, Gj � H.

Exercises

1. Let g be a G-frame with property (p), page 296. Show by induction
on the length of a maximal path in g that g is a preference order.

2. Show (using Exercise 1) that axiom (i) for Gi holds in a G-frame g

iff g is a preference order. This is an essential step in proving the
completeness of Gi with respect to all preference orders.

3. This exercise is a crucial step in the completeness proof of Gj. Show
that a G-frame g is a frame for Gj, i.e., 
(
p∧p →q) ∨ 
(
q →p))
holds in g if and only if g is (totally) ordered.

4. Verify the soundness part of Theorem 7.4, i.e., �Gj ⇒ �ZFC H ı for
all insertions ı.
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