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5.1 Introduction

One of the most prominent benefits gained from the emergence of Semantic Web
technology is the possibility to access data more efficiently, through the use of on-
tologies [18]. Querying such data requires using formal languages such as SeRQL
[7] or SPARQL [39]. However, the syntax of these formal languages tends to be
too “artificial” and complex, especially for domain experts who are unfamiliar with
such machine-like languages.

To minimise the learning curve mandatory for the access of such data, many user-
friendly interfaces have been developed. Some of them provide a graphical interface
where users can browse the data (e.g., Protégé [36]), others offer a form-based
interface for performing search whilst hiding the complexity of formal languages,
e.g., KIM Platform [31]. The most sophisticated ones provide a simple text box for a
query, which takes full-blown questions or a set of keywords as an input, and return
answers in a user-understandable form.

According to the interface evaluation conducted in [28], systems developed to
support Natural Language (NL) interfaces are perceived as the most acceptable by
end-users. This conclusion is drawn from a usability study, which compared four
types of query language interfaces to knowledge bases and involved 48 users of
general background [28]. The full-sentence query option was significantly preferred
to keywords. However, using keywords for querying was preferred to menu-guided,
or graphical query language interfaces.

On the other hand, evaluation of CHESt [40] – a system about computer history
that accepts both keywords and NL queries as input – revealed user’s preference
for keywords unless the full-blown questions yielded better results. Namely, when
asked if they would accept typing full blown questions instead of keyword-based
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queries, 22% of users answered positive, 69% said they would accept only if this
yielded better results, and 8% of users disliked this option.

The development of accurate Natural Language Interface (NLI) systems is “very
complex and time-consuming task that requires extraordinary design and implemen-
tation efforts” [28, p.281]. According to [22], a major challenge in building NLIs is
to provide the information the system needs to bridge the gap between the way the
user thinks about the domain of discourse and the way information about the domain
is structured for computer processing. In the case of Natural Language Interfaces to
Knowledge Bases (NLIs to KBs), the domain knowledge is in the knowledge base.
The knowledge base is typically created by instantiating classes defined in the do-
main ontology and relating them as per ontology definitions. Therefore, it is very im-
portant to consider the ontology structure and content when building NLIs to KBs.

Another big challenge is building a robust NLI due to the very difficult task of
automatically interpreting natural language [11]. NLIs are also typically difficult
to port to other domains [11]. Portable or transportable NLIs are those that can
be adapted easily to new domains (e.g., from software engineering to cultural her-
itage). Although they are considered as potentially much more useful than domain-
specific systems, constructing transportable systems poses a number of technical
and theoretical problems as many of the techniques developed for specialised sys-
tems preclude automatic adaptation of the systems to new domains [22]. Moreover,
portability affects retrieval performance: “the more a system is tailored to a domain,
the better its retrieval performance is” [28, p.281].

This paper explores how these challenges are addressed by different existing
NLIs to KBs, with emphasis on their usability and the overall retrieval performance.
The usability of NLIs to KBs is observed from the two aspects: that of the developer
who is customising the system for a new domain and that of the user who is using it
for querying. More specifically, we are presenting the survey of the state of the art,
in order to:

• Compare usability of existing customisation methods used to port NLIs to KBs
to new domains

• Compare usability of methods for assisting the user in getting the right answers
(e.g., assistance while formulating the query)

By conducting this survey we are expecting to answer the question of how ex-
isting NLIs to KBs can increase the performance without a significant additional
cost for customisation and further, which methods are efficiently used to assist the
user, in order to reach better user–system interaction and consequently better per-
formance.

The paper is organised as follows. In Sect. 5.2 challenges for NLI development
are discussed, followed by usability measures used for evaluation of such systems,
and the aim of the survey is presented in this paper. Section 5.3 discusses the us-
ability of NLIs from the perspective of application developers in charge of system
customisation. We review different NLIs to KBs and present their evaluation results,
concluding with a discussion on how the performance of the reviewed systems can
be improved (see Subsect. 5.3.9). Next, Sect. 5.4 covers usability from an end-user
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point of view – specifically methods for assisting end-users when formulating the
query and the impact of such methods on performance. Based on this, we draw
recommendations for NLI system design in Subsect. 5.4.6. Overall conclusions are
discussed in Sect. 5.5.

5.2 Natural Language Interfaces to Knowledge Bases

Natural Language Interfaces to structured data allow users to interact with a system
using written or spoken language (e.g., English) to perform tasks that usually require
knowledge of a formal query language. The intention behind building NLIs to struc-
tured data is enabling users with no knowledge of formal languages to use them with
minimal, ideally, no training. From end-users’ point of view, natural language is easy
to use, considering that it is used everyday in human to human communication [37].

Research in the area of NLIs has been around for more than three decades.
Most of the developed NLI systems are created to serve as an interface to relational
databases (e.g., [23, 38, 47] and many others). Recently, these evolved towards in-
terfaces to semantically richer data in the form of ontologies/knowledge bases. The
third popular group of NLI systems are concerned with accessing semi-structured
data from documents. NLIs are also used for dialogue and tutoring systems [11],
e.g., a chat bot called Asimov, which answers simple questions in English (asimov-
software.com). Lastly, a few NLI systems are developed for purposes other than
knowledge access, such as a replacement for a programming language, e.g., see the
NLC system [6].

In this paper we focus on NLIs to ontologies/knowledge bases and their usability.
If an ontology consists of a finite list of terms and the relationships between them
(TBox) [1], a knowledge base is a set of interconnected instances, which are created
based on defined concepts and relations from the ontology (ABox). As a knowledge
base in this case always relies on an ontology (contains references to the ontology),
we will use the term knowledge base to refer to the instantiated ontology and ontol-
ogy at the same time. Therefore, we say that the focus in this paper is on NLIs to
KBs. Such NLIs accept natural language queries as input, generate formal queries
behind the scene, execute them against an ontology/knowledge base, and present the
results to the user.

5.2.1 Habitability

NLIs were invented to assist the communication between users and computers.
However, some studies ([10,32]) show that users behave differently when communi-
cating with computers than with humans. In the latter case, their conversation relies
heavily on context, whereas with a computer the language they use is restricted as
they are making assumptions about what computers can and cannot understand [37].
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One particular approach to the human–computer communication problem is to
keep it brief and use restricted natural language syntax [34]. However, a big chal-
lenge when restricting the vocabulary of an NLI system is to consider habitability.

Habitability indicates how easily, naturally, and effectively users can use lan-
guage to express themselves within the constraints imposed by the system. If users
can express everything they need for their tasks, using the constrained system lan-
guage, then such NLIs are considered habitable [37]. In other words, habitable
languages are languages that people can use fluently [19]. According to [19], a lan-
guage is habitable if (1) users are able to construct expressions of the language that
they have not previously encountered, without significant conscious effort; and (2)
users are able to avoid easily constructing expressions that fall outside the bounds
of the language. Another way of viewing habitability is the mismatch between the
users expectations and the capabilities of an NLI system [5].

5.2.2 Usability

The habitability of an NLI system correlates directly to its usability. According to
Brooke [8], usability can be defined as “being a general quality of the appropriate-
ness to a purpose of any particular artefact.” In other words, usability is evaluated
in the context in which an NLI system is used, by measuring its appropriateness for
that context. First, it is important to identify the system’s target users, and second –
the tasks that these users will have to perform [8].

NLIs to KBs are used by:

• Application developers who are responsible for porting the systems to a specific
domain and whose task is to customise the system to work with that domain (if
the system requires customisation)

• End-users who are querying the customised system in order to retrieve domain
knowledge (e.g., domain experts).

Therefore, the usability of NLI systems to knowledge bases should be evaluated
from two different aspects: (1) that of the user who is customising the system, and
(2) that of the user who is querying the system. According to ISO 9241-11, measures
of usability should cover [8]:

1. Effectiveness – the ability of users to complete tasks using the system and the
quality of output of these tasks

2. Efficiency – the level of resource consumed in performing tasks
3. Satisfaction – the user’s subjective reaction to using the system

Effectiveness: customisation issues. As discussed in Sect. 5.3 next, the task of the
user who is customising the system is usually to create a domain-specific lexicon.
The quality of the output of this task can be evaluated by measuring the performance
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of the system when it is ported from one domain to another. As this task does not
involve actual end-users, performance can be measured in the abstract through the
coverage of the system. Given a set of questions collected from a real-world appli-
cation, the percentage of those that are answerable (e.g., covered by the domain lex-
icon or/and by the knowledge base) can be summarised as coverage. In other words,
coverage here refers to the number of questions that would be successfully answered
by the system, assuming that the questions are successfully parsed. The richer the
lexicon is, the higher value for the coverage. This term should not be mixed with the
language coverage, which usually refers to the complexity of questions covered by
an NLI system.

Effectiveness: end-user’s point of view. As we are mainly interested in effective-
ness in terms of quality of the retrieved answers; typically NLI systems are evaluated
in terms of precision and recall, which are measured adapted from information re-
trieval (see [35,38]). Recall is defined as the number of questions correctly answered
by an NLI system, divided by the total number of questions.1 Excluded from these
are often questions with errors or which are ungrammatical or clearly out of the
scope of the queried knowledge base [11]. Precision measures the number of ques-
tions correctly answered divided by the number of questions for which the answer
is returned at all [11].

Efficiency. Efficiency refers to the level of resource consumed in order to perform
the specific task. In other words, efficiency reflects how fast a user can accomplish
a task. In case of NLI users, this is usually reported by the time needed to customise
the system for a specific domain (the developer’s point of view), or by the time
needed to successfully find the particular information (the end-user’s point of view).
In the latter case, the efficiency is usually expressed by the execution time for the
queries of various complexity.

User satisfaction. There is no unique way of measuring user satisfaction. The
most common methodology is to engage users into a session with the system and
ask them to fill a questionnaire where they can express their views on the different
features of the system. One of the most popular questionnaires used for evaluating
different interfaces is SUS – System Usability Scale – a simple ten-item scale giving
a global view of subjective assessments of usability [8].

5.2.3 The Aim and the Scope of the Survey

The goal of the survey presented in this paper is to explore methods for building hab-
itable and usable NLIs to KBs. We review usability, based on evaluation measures
discussed above, from the two aspects: that of the users in charge of customising
the system and that of the users who are querying the system. These two aspects are
independently discussed in Sect. 5.3 and 5.4.

1 Sometimes, recall is interpreted as the number of questions answered by an NLI system, divided
by the total number of questions.
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Section 5.3 reviews existing NLIs to KBs, with regards to the performance and
customisation issues. We must emphasise that comparing the performance of the dif-
ferent NLIs to KBs is not a trivial task, due to the variation in evaluation conditions
(e.g., ontologies used) and measures used. To begin with, the datasets used to evalu-
ate the different systems are not the same and their size, coverage, and quality varies.
In addition, the benchmark queries are of different complexity [37]. Overall, these
differences make comparative system evaluation somewhat unreliable, because the
evaluation metrics and, consequently, the reported system results are heavily depen-
dent on which datasets are used and how difficult the queries are. Nevertheless, in
our view, these results still provide enough evidence of where the major problems
lie and where additional improvements can be made, in order to achieve usable and
easily portable NLIs to knowledge bases.

Section 5.4 reviews methods for assisting the end-users when formulating the
queries and therefore is mainly concerned with the ways to address habitability. We
clearly stated methods used for achieving habitable systems from the end-users’
point of view, and based on the evaluation results of various systems we have re-
ported how the application of such methods can affect the retrieval performance.

By conducting this survey we expect to answer several questions, such as: which
methods can affect the retrieval performance of NLIs to KBs; if existing methods
can be combined; and which method is suitable for which situation/domain; which
new methods need to be researched and applied.

5.3 Customisation and Retrieval Performance

In this section, we review several NLIs to KBs and report on their performance
and customisation issues. To give as objective comparison as possible, we show
on which dataset was the system evaluated, how the process of customisation is
performed, and the recall and precision values. This section only covers a sub-set of
NLIs to KBs, i.e., those that reported evaluation results.

A brief overall summary is shown in Table 5.1, subdivided by dataset, as no
reliable comparison of precision and recall can be made across different datasets.
The main conclusion to be drawn from this table is that although systems with zero
customisation tend to have reasonable performance, it varies significantly across
systems – in general, the more complex the supported queries are, the lower the
performance is.

5.3.1 ORAKEL

ORAKEL is an NLI to knowledge bases [11], which supports factual questions,
starting with wh-pronouns such as who, what, where, etc. Factual here means that
answers are ground facts as found in the knowledge base, but not complex answers
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Table 5.1 Natural language interfaces to knowledge bases

Dataset System Precision (%) Recall (%) Portability

Mooney: geography
PANTO 88.05 85.86 0 customisation
Querix 86.08 87.11 0 customisation
NLP-Reduce 70.7 76.4 0 customisation

Mooney: restaurants
PANTO 90.87 96.64 0 customisation
NLP-Reduce 67.7 69.6 0 customisation

Mooney: jobs PANTO 86.12 89.17 0 customisation
Software engineering QuestIO 82.14 71.87 0 customisation
ontology AquaLog 86.36 59.37 0 customisation
Geographical facts ORAKEL 80.60–84.23 45.15–53.7 Customised
about Germany
Library data E-librarian 97% – –
Biology CPL 38% – –
Chemistry CPL 37.5% – –
Physics CPL 19% – –

to why or how questions that require explanation. The most important advantage
of ORAKEL in comparison to other such systems is its support for compositional
semantic construction, i.e., the ability to handle questions involving quantification,
conjunction and negation.

ORAKEL has a domain-independent component with a shared general lexicon,
where for example words such as what, which, etc. are stored. A part of the domain-
specific lexicon is created automatically from the domain ontology and is called
ontological lexicon. Another part of the domain-specific lexicon is created manu-
ally and contains mappings of subcategorisation frames to relations, as specified in
the domain ontology. Subcategorisation frames are essentially linguistic argument
structures, e.g., verbs with their arguments, nouns with their arguments, etc. For ex-
ample, a verb write requires a subject and an object, as it is a transitive verb. This
“triple” of subject–verb–object in this case could be considered a subcategorisa-
tion frame, and could be mapped to an ontology relation writes. Subcategorisation
frames are created by the person in charge of customising the system, who is usually
the domain expert. He does not have to be familiar with computational linguistics,
although he is expected to have a very basic knowledge of subcategorisation frames.
The adaptation of the NLI is performed in several iterative cycles in the user inter-
action sessions, based on the questions that the system fails to answer. In this way,
the coverage of the lexicon is being increased each time. The evaluation reported
in [11] indicates that users preferred creating the lexicon during these interaction
sessions, rather than from scratch.

In the user study carried out in [11] the question was if it is feasible for users
without expertise in NLP to customise the system without significant problems. The
evaluation knowledge base contained geographical facts about Germany, covering
260 entities in total. The experiment was conducted with 27 users. Three persons
had to customise the lexicon, while the remaining 24 users who did not have any
background knowledge in computational linguistics received brief instructions for



112 Danica Damljanović and Kalina Bontcheva

the experiment: the scope of the KB was explained to them and they were asked to
explicitly say if the received answer was correct or not; each user had to ask at least
ten questions.

Only one of the three people in charge of creating the domain lexicon was very
familiar with the lexicon acquisition tool (user A), while the other two users (user B
and user C) were not and received 10 min of training on the software (FrameMapper
tool [11]) and 10 min of explanation about the different subcategorisation types,
illustrated with examples. User A constructed the lexicon in one iteration, whereas
users B and C constructed it in two rounds, each lasting 30 min. In the first round
they created the model from scratch, while in the second round they were presented
with those questions that the system had failed to answer after the first round of four
sessions with different users. Overall, users B and C had 1 h each to construct the
lexicon.

The results showed that querying system that used lexicons created by users B
and C gives comparable precision and recall to that of using the lexicon created by
the user A. Namely, after the second iteration, recall for users B and C was 45.15%
and 47.66%, respectively, in contrast to the recall when user A created the lexicon
(53.67%). Precision was in the range from 80.95% (user B) to 84.23% (user A). The
customisation system of ORAKEL is designed so that in each iteration, the created
lexicon is more accurate and thus gives better performance. Consequently, the more
time users spend customising the system, the better the performance of the system is.

5.3.2 AquaLog

AquaLog [33] is a portable question-answering system, which takes queries ex-
pressed in natural language and an ontology as input and returns answers drawn
from one or more knowledge bases, which instantiate the input ontology with
domain-specific information. With a controlled language, such as that used by Aqua-
Log, users can create factual queries beginning with what, which, who, and the like.
The types of supported queries are classified into 23 groups. Questions not belong-
ing to one of these 23 types will not be answered as this system heavily relies on its
controlled language.

Although the customisation of AquaLog is not mandatory (except providing the
URL of the different ontology), it can increase the performance of the system [33].
The role of a person who customises the system is to associate certain words with
relevant concepts from the ontology. For example, where needs to be associated with
ontology classes that represent a location such as City and Country; similarly, who
needs to be associated with, e.g., classes Person and Organisation. Additionally, it
is possible to add the so-called pretty names to the concepts or relations in case that
the term that is used when referring to a concept is not in the knowledge base. For
example, if the property locatedIn is usually lexicalised as in, this will be added as
a pretty name for that property. AquaLog also uses WordNet [20] for extending the
system vocabulary.
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During evaluation reported in [33], ten users who are not familiar with the KMi
knowledge base2 or AquaLog generated questions for the system. They were given
an introduction about conceptual coverage of the ontology pointing out that its aim
is to model the key elements of a research lab such as people, publications, projects,
research areas, etc. They were also told that temporal information is not handled
by AquaLog and that the system is not a conversational system, as each question is
resolved on its own without references to the previous questions.

From the 69 collected questions, 40 of them were handled correctly [33]. How-
ever, this includes seven queries with conceptual failures that happen when the on-
tology does not cover the query (e.g., the ontology is not designed properly, lack of
appropriate relation or term to map with, or having instances instead of classes) and
10 questions for which the answer was not in the knowledge base.

To evaluate portability, AquaLog was also trialed with the wine ontology.3 To
customise the system to work with the new domain, first words like where, when,
and who were associated with relevant ontology resources, and then synonyms for
several ontology resources were manually added. As the authors point out in [33],
this step was not mandatory, but due to the limitations of WordNet coverage, it
increases the recall. Overall, the system was able to handle 17.64% of questions
correctly. The system failed to answer 51.47% of questions due to the lack of knowl-
edge inside the ontology.4 However, the lack of knowledge was not the only cause
of low performance, as many problems arose due to the problematic ontology struc-
ture, which is designed so that it contains a lot of restrictions over properties. To
be handled properly by AquaLog, the ontology should have simpler hierarchy struc-
ture; also, the terms in a query should be related by no more than two direct relations.
For example, if the query would be which cities are located in Europe, cities might
refer to the ontology class City, whereas Europe might refer to an instance of the
class Continent. If these concepts are related so that a City is located in a County
and a County is located in a Country, where Country is located in a Continent, this
query would not be handled by AquaLog. However, if in this chain County would
not exist, and there would be direct relation between City and Country (located in),
the query would be processed and answered as the number of relations between
the terms City and Europe (as a continent) is 2. In addition, all resources should be
accompanied by labels inside the ontology [33].

5.3.3 E-Librarian

E-librarian [40] system accepts a complete question in natural language and returns
a set of documents in which a user can find the answer. A dictionary with only
domain-specific words is designed and used instead of external sources such as

2 KMi knowledge base is populated based on AKT ontology http://kmi.open.ac.uk/projects/akt/
ref-onto/ and they are both a part of KMi semantic portal: http://semanticweb.kmi.open.ac.uk
3 http://www.w3.org/TR/2003/CR-owl-guide-20030818/
4 Note that these numbers do not refer to the precision or recall as defined in this paper.

http://kmi.open.ac.uk/projects/akt/ref-onto/
http://kmi.open.ac.uk/projects/akt/ref-onto/
http://semanticweb.kmi.open.ac.uk
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WordNet. There is no evaluation on how expensive it is to build this dictionary;
however, it needs to be built manually [40].

The E-librarian service was applied in two applications: one is CHESt – about
computer history, and the other is about fraction in mathematics – MatES. The
performance of MatES is evaluated with 229 questions created by a mathematics
teacher who was not involved in the implementation of the prototype. The system
returned the right answer for 97% of the questions; however, the paper does not
present sufficient information on the complexity of those questions.

5.3.4 CPL

Computer Processable Language (CPL) [14] is capable of translating English sen-
tences to formal Knowledge Representation (KR). KR is Knowledge Machine (KM)
language – a mature, advanced, frame-based language with well-defined semantics.

CPL was evaluated by two users in three domains: biology, physics, and chem-
istry. They all received 6 h of training individually, followed by 1 week using the
question-answering system. Our understanding is that the domain knowledge was
created using the CPL language; however, in [13], there is no information about how
much time was needed to create the domain knowledge used in the evaluation. In
Physics 131 questions were asked, and the correctness of answers was 19.%5 This
low figure is due to the fact that some questions were very complex, comprising
several sentences. The total number of questions in biology was 146, and the av-
erage correctness was 38%. In chemistry, 86 questions were answered with 37.5%
correctness.

Examination of the system failures revealed that one-third was caused by the
fact that the user did not create the query that was understandable for the system
(some common sense facts were not expressed explicitly enough), so the question
was unanswerable. Another third was because the knowledge base did not have
an answer and the last third was caused by mistakes of the CPL interpreter that
misinterpreted CPL English, so the system failed to find the solution.

5.3.5 PANTO

PANTO [49] is a portable NLI to Ontologies. From [49] there is no evidence of
what types of questions are supported, but as they claim that the system correctly
parsed 170 questions taken from AquaLog’s Web site we can assume that PANTO
supports a set of questions that is similar to that supported by AquaLog. Similar
to AquaLog, WordNet is used for the vocabulary extension, and the user lexicon is

5 It is important to point out that although Table 5.1 shows these measures as precision, this result
is calculated on the overall set of questions, whereas most other systems removed the questions for
which the answer was not in the KB before calculating precision.
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configurable – there is no need to manually customise the system unless the user
is interested in adding associations to the ontology resources in order to improve
system performance.

PANTO was evaluated with test data provided by Mooney,6 which have been
used widely to evaluate NLIs to databases. This dataset covers three domains: ge-
ography, restaurants, and jobs. As shown in Table 5.1 precision and recall for this
dataset is quite high, although it contains relatively simple queries.7 In addition, the
range of supported NL queries is limited to those handled by SPARQL, e.g., ques-
tions starting with how many are not supported. Additionally, they do not report if
the answer of the question was found in the knowledge base, as is the case with most
other systems, but rather if the generated SPARQL query was correct. They also do
not comment on customisation issues and if the system was customised prior exper-
imenting with three different domains.

5.3.6 Querix

Querix [30] is another ontology-based question answering system that translates
generic natural language queries into SPARQL. However, [30] does not make it
clear what types of questions are supported by the system. When Querix was eval-
uated on Mooney geography domain (215 questions) the precision was 86.08% and
recall 87.11%. Similar to the performance of PANTO, if the answer was returned
by the system, it was almost always correct. The majority of unanswered queries
required handling of negation, which is not supported by Querix. As the system vo-
cabulary is derived from the ontology vocabulary, there is no need for customisation.
The downside of this approach is that the quality of the ontology strongly affects the
system’s performance.

5.3.7 NLP-Reduce

NLP-Reduce is a naive domain-independent natural language interface for the
Semantic Web [29]. It accepts full sentence queries, sentence fragments, or
keywords in a text field. However, the performance of the system differs when
used with different knowledge bases. This indicates that the quality of data and the
complexity of the queries on these knowledge bases is not always the same and that
the performance of the system relies on it.

6 http://www.cs.utexas.edu/users/ml/nldata.html
7 Note that the recall here is calculated with number of answered questions, even if they are not all
correct.



116 Danica Damljanović and Kalina Bontcheva

5.3.8 QuestIO

Similar to NLP-Reduce, QuestIO (Question-based Interface to Ontologies) [17] is
quite flexible in terms of complexity and syntax of the supported queries. Both
keyword-based searches and full-blown questions are translated to SeRQL (or
SPARQL) queries and executed against the ontology in order to return answers to
the user. Customisation of this system is performed automatically from the ontol-
ogy vocabulary. In evaluation reported in [17], QuestIO and AquaLog systems were
trialed with the GATE knowledge base,8 which contains data about GATE source
code, documentation, manuals, and the like. A set of questions was extracted from
the GATE mailing list where users are enquiring about different GATE components.
None of the two systems were customised for this experiment [17]. Reported results
are used to calculate precision and recall shown in Table 5.1.

5.3.9 Summary and Discussion

Most of the mentioned systems rely on lexical matching from the ontology. Few of
them use external sources to extend the vocabulary such as WordNet. However, the
more technical the domain gets, the less is the chance that one can rely on lexical
matching alone. In fact, it is not expected that the complete lexical knowledge nec-
essary for very technical domains is present in general resources such as WordNet
[12]. That is why domain lexicons, which contain only domain-specific vocabulary,
tend to be also used by systems such as E-Librarian or ORAKEL (see Figure 5.1).
Manually engineering a lexicon as in the ORAKEL system certainly represents an
effort, but it allows to control directly the quality and coverage of the lexicon for the
specific domain [12]. Moreover, it has been shown that the more time users spend
customising the system, the better performance.

If we accept the fact that “there is no free lunch” [12], we then have to accept that,
in order to build a NLI to KB with a reasonable performance, while not affecting
portability, the system needs to be customisable easily by their users.

However, as we saw that the performance of the systems can be degraded by the
problematic ontology structure (see Subsect. 5.3.2), there is potential in avoiding
system failures caused by the ontology design. Moreover, scope of the knowledge
base (e.g., the number of ontology resources defined) can affect the overall coverage
of the system. Experts for customising NLI systems usually have to manually add
descriptions or labels to the relevant terms (e.g., ontology resources). If an ontology
would be created so that each concept and relation is accompanied by a human
understandable label or description, the automation of domain-specific knowledge
creation would be feasible, as during the automatic processing of the knowledge
base, all human understandable text attached to the ontology resources would be
processed and added to the lexicon.

8 http://gate.ac.uk/ns/gate-kb



5 Towards Enhanced Usability of Natural Language Interfaces to Knowledge Bases 117

Fig. 5.1 Process of creating a domain lexicon manually, using an ontology

On the other hand, creating formal data is a high initial barrier for individuals
wishing to create ontologies with existing ontology authoring tools such as Pro-
tégé as these often require specialist skills in ontology engineering. Therefore, using
Natural Language for ontology authoring might be a solution. CLOnE – Controlled
Language for Ontology Editing ([21, 45]) allows users to design, create, and man-
age information spaces without knowledge of complicated standards (e.g. OWL)
or ontology engineering tools. CLOnE is implemented as a simplified natural lan-
guage processor that allows the specification of logical data for semantic knowledge
technology purposes in normal language, but with high accuracy and reliability. The
components are based on GATE’s existing tools for Information Extraction and Nat-
ural Language Processing [15]. CLOnE is designed either to accept input as valid
(in which case accuracy is generally 100%) or to reject it and warn the user of their
errors [21]. Many systems similar to CLOnE have been developed with the idea to
enable ontology authoring using natural language (e.g., ACE [26], Rabbit [24]).

If the domain expert who is in charge of customising the system uses NLIs for
ontology authoring instead of using the tools for customisation (see Figure 5.2), the
time for training and learning language-specific terminology can be reduced. For
example, if an NLI for ontology authoring allows construction like Who is usually
referring to a person that will add an additional label to the class Person, and in
this way, the approach used by some of the presented systems (AquaLog, PANTO)
for manually customising the lexicalisations of ontology terms would be eliminated.
Consequently, the system will “know” that when the user starts a question with who,
it needs to be associated with a person.

However, in order to create NLIs to KBs with reasonable performance, not only
quality customisation is essential, but there is a need to assist end users in the process
of query construction. The next section discusses existing methods and how they can
affect the overall performance of the system.
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Fig. 5.2 Automated process of creating a domain lexicon from an ontology

5.4 Enhanced usability of Natural Language Interfaces:
end-users’ point of view

This section reviews methods for assisting the end-users during the search process
with NLIs to KBs.

According to the traditional information retrieval, during the search process, the
user poses a query based on an existing information need, and after retrieved results
are shown, decides to stop or to reformulate the query in a way that promises to
improve the result [44]. This is repeated until the “perfect” answer is found. As
this traditional model is adequate only for simple cases, a so-called berry-picking
model [2] has been proposed where users take some of the results and move on
to a different topic area. This model assumes that the user starts off with a query
on a particular topic and based on the results, he can either explore the result set
or re-scope the search by re-defining the information need and posing a new query
[44]. Although different users behave differently during the search process, it has
been shown that majority prefer interactive methods, where the system performs the
search, gives the feedback to the user, and lets him decide about the next steps [44].

In the context of NLIs to KBs, from the point of view of end-users, the search
process is very similar. The main difference is related to the system design as a big
challenge is to address habitability problem. One of the ways to address this problem
is to support simple and explicit semantic limitations [19]. One way to achieve this
is by restricting the supported vocabulary and grammar.

5.4.1 Vocabulary Restriction

A Controlled Language (CL) is a subset of a natural language that includes certain
vocabulary and grammar rules that have to be followed. On one hand, a CL provides
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a simple way to retrieve data without extensive training for the end-user, whilst
on the other has less expressiveness than the formal languages typically used for
accessing structured data [17].

The biggest challenge when designing a controlled language is restricting the
natural language so that it still remains intuitive and does not require much training
for the end-user. However, applications in industry prove that, actually, CLs can be
learnt and used in practise. For example, AECMA Simplified English [48] has been
used by the aviation industry since 1986.

Another example is from CPL’s evaluation [13], which found that, although users
have to be very familiar with CPL in order to use it correctly, they do not have much
trouble working with its grammar restrictions, as only a small number of the failures
were due to violation of the CPL grammar. Some of the failures were due to the user
language: the expressions were not explicit enough for the system (i.e., common-
sense facts were not made explicit). The conclusion is that the system would benefit
from showing the user the derived query interpretation and any mistakes made. As
it is pointed out “a challenge for languages like CPL is to devise methods so that
these corrective strategies are taught to the user at just the right time e.g., through
the use of good system feedback and problem-specific on-line help” [14, p.510].

According to [37], constraining a user to a limited vocabulary and syntax is
inappropriate, as users should be free, but the constraints should come from the task
and the domain instead. However, allowing the task and the domain to constrain the
language still does not prevent the user from creating ambiguous queries. As natural
language itself is ambiguous even in human to human communication, controlled
languages have a role to play in reducing the ambiguity and allowing a smooth
exchange of information between humans and computers. This exchange can be
improved by moving NLI systems towards conversational systems, which means
that the system should provide the means of giving feedback to the user, by showing
its interpretation of the user’s query, so that the user can validate or reject it. Having
a limited vocabulary, coupled with a feedback mechanism, means easy training from
the end user’s point of view [50].

As shown in Figure 5.3, to design habitable NLI system, the system’s vocabu-
lary has to be aligned to that of the user. In this paper we will discuss the effect of
feedback (Sect. 5.4.2) and guiding the user (Sect. 5.4.3) through the available ques-
tions in order to assist this adaptation (red circle). In addition, as was discussed in
Sect. 5.3, system vocabulary is often extended from external sources (e.g., Word-
Net). For more personalised systems, this extension can be user-centric, as the user
vocabulary can be used for extending the system vocabulary (Sect. 5.4.4). Once the
user is familiarised with the system vocabulary, the opposite adaptation needs to
take place, as the user vocabulary needs to be in line with that of the system (yellow
circle). Methods for assisting the user in that adaptation are those that are used to
solve ambiguity problem and are discussed in Sect. 5.4.5.

An alternative approach to restricting the vocabulary is to support both keyword-
based and question-based queries. This allows some flexibility in a way that if the
user is not familiarised with the full expressiveness of the controlled language, he
can try with keywords, while for more advanced users there is option of using
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Fig. 5.3 Synchronizing the vocabulary of the user and the system

full-blown questions. Examples of such systems are QuestIO [17] or NLP-Reduce
[29], which would give the same result for both “capital France” and “what is the
capital of France?” queries.

5.4.2 Feedback

Showing the user the system’s interpretation of the query in a suitably understand-
able format is called feedback. Several early studies ([41,50]) show that after getting
a feedback, users are becoming more familiar with the system interpretations and
the next step is usually that they are trying to imitate the system’s feedback lan-
guage. In other words, returning feedback to the user helps them understand how
the system is transforming the queries, therefore motivating them to use the similar
formulations and create queries that are understandable to the system.

In the evaluation of Querix and three other interfaces for semantic Web [30],
this system was preferred to all others because it returned the answer in a form of a
sentence, in contrast to the list of answers returned by the other three systems. For
example, the question How many rivers run through Colorado? was answered by
Querix as: There are 10 [30], while the other three systems returned a list of rivers
and the number of results found. Because of the way Querix replied to the questions,
users had the impression that the system really understood them and trusted the
system more [30].

The main drawback of controlled languages is their rather steep learning curve.
For example, in order to formulate correctly questions using CPL, users need to
know “a bag of tricks” [13]. That is one of the reasons why in CPL an interactive
process of question-asking was introduced. After the user poses the question, their
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Advice System detects CPL errors and returns reformulation advice. There are 106
different advice messages triggered when, for example, the user’s question contains
grammar rules that are outside the scope of CPL, although correctly interpreted in
English; or when the user omits words, such as a unit of measure after the number
[13]. The feedback is not using the input text from the user, but rather detecting
the error and giving an advice from a static list of feedback sentences. As the au-
thors point out in [13], automatic rewording would be very challenging, especially
with longer, complex sentences. In addition to the Advice System, an Interpretation
Display System is applied, which shows the user how the question is interpreted by
the system. It works so that after posing the question, the system generates a set of
English paraphrases and shows them to the user. In addition, it generates a graph
where nodes are objects or events from the question, and arcs are relationships be-
tween them. If the user detects an error in the graph or English paraphrases, it is
possible to rename nodes and arcs, or to reformulate the whole question and inspect
the interpretation by the system again. In their evaluation with users in [13], this
graphical representation was chosen as the most useful.

Although it might be annoying for users, it is not unusual that systems fail to
answer the question, due to an unsupported query syntax, even though that same
query could be answered if re-formulated. Adding support for extra linguistic cov-
erage is not always easy due to the need to balance expressivity with ambiguity
[33]. For instance, the evaluation of AquaLog on the KMI ontology [33] shows
that 27.53% (19 of 69) of the questions could be handled correctly by AquaLog
if re-formulated, which means that 65.51% of failures could be avoided. Reformu-
lating in this case entails stating the queries in Aqualog’s controlled language so
that unsupported linguistic failures are avoided, as well as nominal compounds, or
unnecessary functional words like different, main, most of.

Closer look at user’s queries and behaviour during evaluation of CPL from [13]
revealed that users rarely “got it right” the first time. The number of attempts of
reformulating the query by the user, before either getting a satisfactory answer from
the computer, or giving up, was counted. In physics and chemistry, this number was
6.3 and 6.6, respectively, as the questions were usually very complicated, while for
biology the number of reformulated queries was 1.5, as the most common questions
where very simple, such as “what is an X?,” in contrast to the “story” questions as
they call them posted in physics, and the algebraic questions posed in chemistry.
Further analysis of the frequency of actions taken for reformulating the query, and
the types of these actions, showed that the biggest problem for users was to find
the right wording that enabled the system to answer the question. For example, in
chemistry one of the question was whether a compound is insoluble. Users tried sev-
eral words to express solubility: soluble, dissolve, solution, insoluble, until finally
hitting on solubility, for which the system was able to give the answer.

Summary. By providing the user with the feedback in the form of system’s in-
terpretation of the query, users can learn how to generate queries more efficiently.
For example, showing the user which words were understandable and which were
not helps users to familiarise themselves with the system’s vocabulary more quickly
and avoid repeating mistakes.
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In cases when the system is not able to interpret the query, the system could
provide the user with a suggestion of how this query could be reformulated in order
to be answered (e.g., by showing examples of supported types of queries adapted
for the particular domain).

5.4.3 Guided Interfaces

According to [3], a major problem with query interfaces is how to guide the user
in what queries are supported by the system. Users need knowledge about what it is
possible to ask in a particular domain. In [3], relations between concepts are used to
assist users by expressing what is possible to ask about the concept which is typed
in – this way only meaningful questions can be posted.

According to Bullock [9] there is a need for lucidity in information systems – a
system should supply the user with an idea as to what is available and which next
steps can be taken. In [3], Description Logic (DL) is used to help supporting flex-
ible querying and navigation through the information space, by using the tools for
manipulation and construction of DL expressions or queries. These tools are driven
by constraints known as sanctions, which are added to the DL model and which
describe the meaningful compositions that can be built. Sanctions are used for lu-
cidity or guidance for creating suggestions. Suggested manipulations are restriction
– specialising the query by adding more criteria, widening – removing criteria from
a composite query, replacement – replacing the topic by a more specific query, and
sibling replacement – replacing subqueries with sibling concepts. All these manipu-
lations are controlled by sanctioning, ensuring that only reasonable queries are built.

Ginseng [4] is a guided input natural language search engine for the semantic
Web. This system allows access to knowledge bases in OWL through NL. The eval-
uation of Gingseng [4] reported 92.8% precision and 98.4% recall, which indicates
that, although the user is limited in the way questions can be asked, this is counter-
balanced by high performance–thanks to the offered support. The evaluation of its
descendant GINO [5] with six users proves that the use of guided entry overcomes
the habitability problem that hampers users’ ability to use most full NLIs. The GINO
system offers guidance to the user as they formulate a quasi-English query step by
step, ensuring that only valid queries are posed.

Another option for guiding the user through the domain and available concepts
is by using autocompletion. Traditional autocompletion is based on matching input
strings with a list of the words in a vocabulary, sorted by different criteria, e.g.,
popularity, user preferences, etc. For ontology-based systems, this concept can be
extended to the semantic level so that in addition to traditional string similarities,
relations between ontology resources are used in order to predict the next valid
entry [25]. The proposed semantic autocompletion is described in [25] and ap-
plied in information retrieval, specifically for multi-faceted search. For example,
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the semantic portal MuseumFinland9 uses semantic autocompletion on request. The
search keywords are matched not only against the actual textual item descriptions,
but also the labels and descriptions of the ontological categories by which they are
annotated and organised into view facets. As a result, a new dynamically created
facet is shown on the user request and it contains all categories whose name or
other configurable property value, such as alternative labels, matches the keyword.
These categories describe the different interpretations of the keywords and the roles
with respect to the search items. For example, if the user types in EU countries, the
system would show list of countries from which the user can choose.

Summary To familiarise the user with the system’s vocabulary and capabilities,
methods for guiding the user through the space of allowed questions could be used.
On one hand, the user is limited as the number of questions is limited, but on the
other, the performance of such a system is rather high. This means that once the user
formulated the query, it is very likely that he will get the answer. A more flexible
option is the use of semantic autocompletion, so that users can choose, rather than
know the names and type them in. This approach, contrary to fully guided interfaces,
leaves the freedom to the user. On the other hand, if the user’s input is not fully
controlled, the habitability problem could arise nevertheless.

5.4.4 Personalised Vocabulary

As it has been discussed in Sect. 5.3, many NLIs to KBs use external vocabularies
such as WordNet in addition to the domain lexicon. However, the vocabulary of the
user could be a good source for extending the system vocabulary, as non-known
words could be learned by the time, and used to enrich the lexicon and vocabulary
used by the system.

The AquaLog [33] is backed by a learning mechanism, so that its performance
improves over time, in response to the vocabulary used by the end-users. As al-
ready discussed in Sect. 5.3, when porting AquaLog to work with another domain,
it is possible to configure its lexicon by defining “pretty names.” During runtime,
when the system is interpreting user’s input ambiguously, it asks the user to help
by choosing from several possible interpretations. The user’s selection is then saved
as a “pretty name” for future disambiguation of the same type. For example, in the
evaluation they noticed that when referring to the relation works-for users use words
like: is working, collaborates, is involved in [33]. When the system does not know
that collaborates can be interpreted as referring to the property works-for, it will
prompt the user with the available options and “learn” the user’s choice. In addition
to learning a new term, AquaLog records the context in which the term appeared.
The context is defined by the name of the ontology, the user information, and the ar-
guments of the question. Arguments of the question are usually the two arguments

9 http://www.museeosuomi.fi
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of the triple, namely two classes or two instances in the ontology connected by a
relation.

To evaluate how the Learning Mechanism (LM) affects the overall system per-
formance and the number of user interactions, two experiments are conducted and
results are reported in [33]. First, AquaLog is trialed with LM deactivated. In the
second experiment two iterations are performed. First, the LM is activated at the
beginning of the experiment in which the database containing learned concepts is
empty. The second iteration is performed over the results obtained from the first
iteration.

The results show that using LM improves performance from 37.77% of answered
queries to 64.44%. Queries that could not be answered automatically (i.e., required
at least one iteration with the user) are quite frequent (35.55%) even if the LM is
used. This is because the LM is applied only to relations, not to terms. For example,
if the term in the query is a name Peter, the user would have to choose in the first
iteration from the list of people with names Peter Scott, Peter Whalley, etc. Finally,
the number of queries that require two or three iterations are dramatically reduced
with the use of the LM system.

In conclusion, AquaLog LM can improve the performance even for the first it-
eration from 37.77% to 40% as it uses the notion of context to find similar but not
identically learned queries. This means that LM can help to disambiguate the query
even if it is the first time this query is presented to the system.

Summary: Although external sources such as WordNet can enrich the system vo-
cabulary, as well as the domain lexicon that is created individually for each domain,
the user-centric vocabulary can play a significant role in increasing the performance
of the system over time.

In addition to maintaining the user vocabulary, the AquaLog’s approach can be
extended to allow users to see and modify the created lexicon at any time. Moreover,
in cases when the system cannot offer any options based on the existing user-centric
vocabulary, the vocabularies of other users could be used. For example, if the user
A asks “Who works for the University of Sheffield?,” the system can recognise The
University of Sheffield as an Organisation, and Who as a Person, but the construc-
tion works for could be unknown and not similar to any of the existing ontology
relations between classes Person and Organisation. If there are several relations be-
tween these concepts, the system can prompt the user (as would be the case with
AquaLog) to choose from the list of available options. If the user chooses relation
employedIn, the system will remember that works for can be related with the rela-
tion employedIn and would add this to the user-centric vocabulary. If now the user
B asks the same question, and there is no data about works for construction in his
user-centric vocabulary, the vocabulary of the user A could be used to automatically
give the answer to the user B, or to rank the employedIn relation on the top of all
others suggested by the system. In an ideal case, the users A and B should be recog-
nised as similar. For determining similar users, user profiles need to be modeled.
However, modeling user profiles requires a good understanding of the user interests,
needs and behaviour as well as understanding the domain knowledge. According to
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the number of systems that use ontologies to model user profiles (e.g., [16]), it is
likely that their nature has a great potential in creating quality user profiles.

Another direction of improving the personalised feature is related to the presenta-
tion of options: recommendations offered to users are usually the names of potential
ontology resources, e.g., names of properties, and these sometimes do not sound
natural. For example, properties usually consist of at least two words, such as has-
Brother or has-brother. Simple processing of such names can help deriving more
natural words such as has brother. However, the way ontology resources are named
is definitely not standardised, and this feature would have to be customised for each
system dependently on the domain.

5.4.5 How to Deal with Ambiguities?

Although controlled languages reduce natural language ambiguities to some extent,
some issues, specific to domain knowledge, still remain. For example, if the knowl-
edge base contains two instances of a class Person with the same name, e.g., Mary,
the system is not able to predict in which one the user is interested in. The way this
problem is usually solved is (1) using heuristics and ontology reasoning to imple-
ment ranking algorithms to solve ambiguities automatically or/and (2) by asking the
user for clarification (clarification dialogues). In cases when the cause of ambiguity
is a vague expression of the user information need, query refinement can be used to
improve the system performance.

Automatically solving ambiguities. E-librarian [40] system uses focus function
algorithm in case of ambiguities. A focus is a function that returns the best inter-
pretation for a given word in the context of the complete user question. If there is
more than one best interpretation, they are all shown, although the experience with
the system revealed that the users generally enter simple questions where the dis-
ambiguation is normally successful [40].

OntoNL is an ontology-based natural language interaction generator for multi-
media repositories [27]. This system combines domain knowledge with user pro-
files, both represented in standards such as MPEG-7 and TV-Anytime to resolve
ambiguities and rank results, thus avoiding clarification dialogues. Their system is
domain-specific and oriented towards digital libraries.

In QuestIO [46], relation ambiguities are resolved automatically, based on string
similarity metrics (comparison of the user input and the name of the ontology rela-
tion) in addition to the position of the relation, its domain and range classes inside
ontology hierarchy. The more specific the relation, its domain and range classes are,
the better chance that it will be ranked high.

Clarification dialogues. In case of ambiguities Querix [30] send them to the
user for clarification. In this process users need to disambiguate the sense from the
menu with system-provided suggestions, in order to get better retrieval results. For
example, if the user enters population size and the system cannot decide if the user
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is interested in the property with name population density or population, it will ask
the user to choose from the two.

Similar to Querix, the AquaLog system [33] relies on clarification dialogues
when ambiguity arises. In comparison to Querix, AquaLog is backed by the learn-
ing mechanism discussed above (see Sect. 5.4.4), so it saves the results for future
sessions.

In general, clarification dialogues can help users resolve ambiguities caused by
the content inside the repository. However, if the suggestions provided by the sys-
tem are not satisfactory, it is likely that the user’s need was not expressed precisely,
which is the main pre-requisite for retrieving relevant information from the knowl-
edge base (see Figure 5.4).

Fig. 5.4 Retrieving relevant result with NLI systems

According to [42], there is usually a gap between the information need and the
query which is expressing that need, which is caused by “the usage of short queries,
whose meaning can be easily misinterpreted”. The indicator of this gap, which is
called query ambiguity [43], can be reduced by the process of query refinement.

Query refinement. Changing or refining the query in order to obtain results that
are more relevant is called query refinement. When refining the query it is impor-
tant to know the precise information need as well as which part of the query to
change/refine [42]. Refining usually means adding more constraints to the query,
until the quality of the results corresponds to the user expectation.

Librarian Agent [42] – a system created to replace the human librarian when
helping users to find the appropriate books in the library – uses the query refinement
technique proposed by Stojanovic [43]. The agent measures query ambiguities re-
garding the ontology structure (structure-related ambiguity) and the content of the
knowledge base (content-related ambiguity). Ambiguities are interpreted from the
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point of view of the user’s need, which are implicitly induced by analysing the user’s
behaviour. Modeling user’s need is not trivial especially when users are anonymous
as the model of the user behaviour has to be developed implicitly, i.e., by analysing
implicit relevance feedback whose main idea is to infer the information need by
analysing the user interaction with the portal [42].

The agent further defines the neighbourhood of the user’s query, which is identi-
fied by the query constraints and the ambiguity of each word. Query neighbourhood
includes determining:

1. A more specific query. The query is refined so that the set of answers is more
specific.

2. A more generic query. The query is refined so that the set of answers is bigger.
3. Equivalent query. When the query is rewritten so that the returned results are the

same, but this is initiated for other reasons, e.g., optimising the execution time.
4. Similar queries. The query is refined so that its results are partially overlapped

with the initial query.

The query refinement process is treated as the process of moving through the query
neighbourhood in order to decrease its ambiguity regarding user’s need [42].

In Librarian Agent, the ontology lexical layer contains about 1,000 terms, and the
information repository (KB) contains about 500 information resources (Web pages
about persons, projects, etc.). Each information resource is related to an instance in
the ontology. The query refinement system is implemented as an additional support
in the searching process so that it can also be switched off. When it is switched on,
the user gets the query neighbourhood after posting the query.

For evaluation the authors selected 20 questions. They cannot be expressed pre-
cisely using the defined ontology vocabulary, but the answers are contained in the
information repository, e.g., “find researchers with diverse experiences about the
semantic web.” Six computer science students with little or almost no knowledge
about ontologies or the domain, and with no knowledge of the system, were asked
to retrieve resources for 10 questions in one session, using the two retrieval methods.
Users were asked to explicitly confirm when they get relevant result.

For each search they considered four measures: success, quality, number of
queries, and search time. Results revealed that success and the quality of the ses-
sion were significantly higher (57/85.7%; 0.6/0.9), while the number of queries and
the search time per session was significantly lower for the system with query refine-
ment switched on (10.3/5.2; 2023/1203s). Stojanovic concludes that if the system
can discover and measure ambiguities in a query and support the user in resolving
these ambiguities efficiently, the precision and recall of the retrieval process will
increase.

Summary. In some cases it is not convenient for users to control the output either
because they are not interested to do so, or the system might have enough data to
efficiently solve ambiguities automatically. However, this is strongly related to the
domain and the system functionality. The more specific the domain and the simpler
the system, the more feasible automatic ambiguity resolution is.
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Deriving all possible calculations from available sources could assist in solving
the ambiguity problem without user’s help. However, it is important to show these
decisions to the user in an understandable way as they might not be satisfied with the
system’s decision and wish to change it. Letting the user choose and express weights
of relevant topics/items is a good idea, as this gives users the power of controlling
the system’s output.

Clarification dialogues are good solutions if they can help system understand
what the user is aiming at, whereas in cases of imprecise information needs, query
refinement is likely to be a good solution. However, it is important to observe the
user, their actions and behaviour during the process of refinement.

5.4.6 Summary and Discussion

Design of habitable NLI systems includes adapting the system vocabulary to that
of the user. This adaptation minimises required users’ training, which in ideal cases
can be eliminated. Methods to achieve this are as follows:

Feedback. Providing the feedback to the user by showing the system’s interpreta-
tion of a query, the user can learn how to generate queries efficiently. Moreover, if
the user uses words that are “unknown” to the system, feedback can be combined
with clarification dialogues where the user is prompted by the system provided
suggestions. The user’s selected option can be further used to build a person-
alised vocabulary of the user. In cases when the system is not able to interpret
the type of a question, the user could be prompt by the suggestion, e.g., the list
of the supported questions for specific domain. However, the inspection of the
queries posted by the user for the specific domain might be useful when defining
a way of giving the feedback.

Guided interfaces. For small domains, it is possible to provide guided interfaces
to the user, which are fully controlled by the system. This means that the user
does not have the freedom to enter a query of any length and form. However, as
the performance of such systems can be high, and the habitability problem can
be eliminated, this might be a preferred solution for domains for which the set of
questions that could be asked is limited. A more flexible way of guiding the user
is by showing autocomplete options.

Personalised vocabulary. NLI systems can benefit from designing a user vocabu-
lary, so that if the term used in a query is unknown to the system, that term can
be “learnt” i.e, saved into a user-centric vocabulary that will be used in future.
This vocabulary should be controllable by the user, so that advanced users can
enrich the system vocabulary easily.

After the user is familiar with the system capabilities and the domain, adapting
user’s vocabulary to that of the system is necessary. However, ambiguity can arise
either because of undefined information need, or due to the structure of the knowl-
edge base. Methods for assisting the user include the following:
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Clarification dialogues. Ontology reasoning as well as heuristics should be used
in order to calculate ambiguities. In cases when the calculations are not leading
to the one unambiguous solution, the user should be prompt by the clarification
dialogues to choose from the system provided options.

Query refinement. Deriving similar queries, more specific and more generic
queries can help users understand the scope of the system and might help in
expressing the need more precisely. Ontologies play a significant role in predict-
ing the query refinement process, e.g., defining a set of similar queries, as they
contain semantics of the concepts and relations between them.

Controlling the relevance. Allowing users to define what does it mean relevant
and also allowing them to assign relevance of retrieved results.

Ranking suggestions. Ranking popular and relevant queries and suggesting them
before any other queries. By relevant queries we assume those that users specified
to have satisfying results. Consequently, this means that the users have to be able
to define what does it mean to be relevant.

Defining similarity. Although NLI systems should have the default measures to
express similarity between concepts, it would be great to allow users to define
what is similar in cases they want to dig deeper into the power of expressiveness,
or in cases they want to have more control over the system output.

All of these five methods can be employed (and potentially improved) in combina-
tion with quality user profiles. However, creating and maintaining quality user pro-
files requires analysing the domain space (e.g., available domain knowledge) and
user space (e.g., user interests and preferences) and making the connection between
the two. The nature of ontologies is convenient for designing and intersecting these
two spaces. Using “semantic web” language for creating user profiles would require
the following:

1. Creating domain space. creating domain ontology with defined concepts and re-
lations between them so that they explain the domain precisely. Instantiating the
concepts and creating relations between the instances.

2. Creating user space. creating user ontology with defined concepts and relations
between them so that they explain user interests, preferences and activities pre-
cisely. Instantiating the concepts and creating relations between the instances.

3. Intersection of two spaces. connecting the two spaces would result in defining
user profiles. In practise, this would mean defining relations between concepts
from the domain and user space, i.e., domain and user ontologies.

5.5 Conclusion

We have reviewed different NLIs to Knowledge Bases and their usability from the
point of view of (1) users (developers) who are customising the system, and (2) end-
users who are querying the system. Although systems that require zero customisa-
tion have reported high performance, the main concern is the strong dependence of
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performance on the quality of the ontology. Additionally, several other systems give
better performance when manual customisation is enabled, in order to create asso-
ciations between the user and the system vocabularies. To address this problem we
have proposed using natural language interfaces for ontology authoring, in addition
to querying, in order to enhance the quality of the data in the ontology and also to
eliminate the process of manual customisation.

Based on the classification of methods used for assisting the users when formu-
lating the queries, we have drawn the recommendations for building habitable and
usable NLIs to KBs, from the end user’s point of view. These recommendations
contain the answer on questions such as when the certain method should be used,
which methods could be combined with others and for which domain which method
is suitable.

Comparison of NLIs to KBs in this paper reveals that there is the need to stan-
dardise the evaluation methods of such systems. Different systems use different
datasets (e.g., ontology size), questions of various complexity, and even different
evaluation measures. For example, in one case measuring recall might consider only
correct queries (e.g., ORAKEL), while in the other case it might be the number of
queries for which the system generated an output (e.g., PANTO). The third group
often refers to the number of answered queries as performance (e.g., AquaLog), al-
though it is not clear if the answers are correct. Moreover, in some cases, queries that
return no results due to the knowledge base not containing the answer are counted
as correctly handled and as such contribute to the overall performance of the sys-
tem (e.g., AquaLog). From the evaluation results reported in such way no reliable
conclusions can be made with regard to comparison of such systems.

To obtain a progress in the field of NLIs to KBs there is an emergent need to
obtain the clear methodology of how these systems need to be evaluated, so that
it would be feasible to compare how a method used in one system can affect the
performance in another. Only then, when these systems follow the same rules and
report on the same measure (evaluated with the same set of queries, the same knowl-
edge base, and under the same conditions) the clear and precise conclusions of how
to work on improvement of such systems can be reliable.
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17. Danica Damljanović, Valentin Tablan, and Kalina Bontcheva. A text-based query interface to
owl ontologies. In 6th Language Resources and Evaluation Conference (LREC), Marrakech,
Morocco, May 2008. ELRA.

18. J. Davies, D. Fensel, and F. van Harmelen, editors. Towards the Semantic Web: ontology-
driven knowledge management. Wiley, 2002.

19. Samuel S. Epstein. Transportable natural language processing through simplicity—the PRE
system. ACM Trans. Inf. Syst., 3(2):107–120, 1985.

20. Christiane Fellbaum, editor. WordNet – An electronic lexical database. MIT Press, 1998.
21. A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, and S. Handschuh. Clone:

controlled language for ontology editing. In Proceedings of the 6th International Semantic
Web Conference (ISWC 2007), Busan, Korea, November 2007.

22. Barbara J. Grosz, Douglas E. Appelt, Paul A. Martin, and Fernando C. N. Pereira. TEAM: An
experiment in the design of transportable natural-language interfaces. Artificial Intelligence,
32(2):173 – 243, 1987.

23. Catalina Hallett, Donia Scott, and Richard Power. Composing questions through conceptual
authoring. Computational Linguistics, 33(1):105–133, 2007.



132 Danica Damljanović and Kalina Bontcheva
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naÂĺÄśveâĂİ but domain-independent natural language interface for querying ontologies.
In Proceedings of the European Semantic Web Conference ESWC 2007, Innsbruck, Austria.
Springer, June 4-5 2007.

30. Esther Kaufmann, Abraham Bernstein, and Renato Zumstein. Querix: A natural language
interface to query ontologies based on clarification dialogs. In 5th International Semantic
Web Conference (ISWC 2006), pages 980–981. Springer, November 2006.

31. A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Goranov. Semantic anno-
tation, indexing and retrieval. Journal of Web Semantics, ISWC 2003 Special Issue, 1(2):671–
680, 2004.

32. J. Krause. Natural language access to information systems. An evaluation study of its accep-
tance by end users. Information Systems, 5:297–319, 1980.

33. Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele Pasin. Aqualog: An ontology-
driven question answering system for organizational semantic intranets. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2):72–105, June 2007.

34. A. Malhotra. Design criteria for a knowledge based english language system for manage-
ment: An experimental analysis. Technical report, Massachusetts Institute of Technology,
Cambridge, MA (1975).

35. Raymond J. Mooney. Using multiple clause constructors in inductive logic programming for
semantic parsing. In In Proceedings of the 12th European Conference on Machine Learning,
pages 466–477, 2001.

36. N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, and M.A. Musen. Creating
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

37. William Ogden and Philip Bernick. Using natural language interfaces. In M. Helander, editor,
Handbook of Human–Computer Interaction. Elsevier Science, North-Holland, 1996.

38. Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural language
interfaces to databases. In IUI ’03: Proceedings of the 8th international conference on Intel-
ligent user interfaces, pages 149—157, New York, NY, USA, 2003. ACM.

39. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. W3C recommendation –
15 january 2008, W3C, 2008. URL http://www.w3.org/TR/rdf-sparql-query/.

40. Christoph Meinel Serge Linckels. Semantic interpretation of natural language user input to
improve search in multimedia knowledge base. it – Information Technologies, 49(1):40–48,
2007.

41. B.M. Slator, M.P. Anderson, and W. Conley. Pygmalion at the interface. Communications of
the ACM, 29:599–604, 1986.

42. Nenad Stojanovic. On the query refinement in the ontology-based searching for information.
Information Systems, 30(7):543–563, 2005.

43. Nenad Stojanovic. On the role of a users knowledge gap in an information retrieval process.
In Proceedings of the Third International Conference on Knowledge Capture, October 2005.

44. Heiner Stuckenschmidt, Anita de Waard, Ravinder Bhogal, Christiaan Fluit, Arjohn
Kampman, Jan van Buel, Erik M. van Mulligen, Jeen Broekstra, Ian Crowlesmith, Frank van



5 Towards Enhanced Usability of Natural Language Interfaces to Knowledge Bases 133

Harmelen, and Tony Scerri. A topic-based browser for large online resources. In Enrico Motta,
Nigel Shadbolt, Arthur Stutt, and Nicholas Gibbins, editors, EKAW, volume 3257 of Lecture
Notes in Computer Science, pages 433–448. Springer, 2004.

45. V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User-friendly ontology authoring
using a controlled language. In 5th Language Resources and Evaluation Conference (LREC),
Genoa, Italy, May 2006. ELRA.
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