
Chapter 8
SIMD Optimization

As concluded in the previous chapter, retargetable compilers, as used in ASIP
design environments, are still hampered by their limited code quality as compared to
hand-written compilers or assembly code. Consequently, generated compilers must
be manually refined to a highly optimizing compiler after successful architec-
ture exploration. One way of overcoming this dilemma is to design retargetable
optimizations for those architectural features that characterize a class of target
processors.

This chapter focuses on target processors equipped with SIMD instructions. The
term SIMD dates back to the year 1972 when Flynn [160] classified computers
according to the number of data streams they operate on, and the number of instruc-
tions they execute (Table 8.1). The acronym SIMD stands for single-instruction mul-
tiple data and the class of computers referred to in the 1970s were vector computers
that were able to execute the same operation on multiple vector elements at the same
time.

Table 8.1 Flynn’s classification

Single instruction Multiple instructions

Single data SISD MISD
Multiple data SIMD MIMD

Today the meaning of the term has slightly changed. It usually denotes a spe-
cial class of instructions found in many workstation and embedded processors that
operate on short vectors of small data. As illustrated in Fig. 8.1, an SIMD instruc-
tion performs several primitive operations in parallel, using operands from several
subregisters of the processor’s data registers at a time. The operands are typically

8-, 16-, or even 32-bit wide. In future, the SIMD data paths might even grow larger
with the advances in semiconductor technology. Other typical SIMD instructions
perform more complex operations (e.g., partial dot products) or serve for subregis-
ter packing and permutation. From a hardware perspective, SIMD instructions are
easy to control and have a simple structure (the existing data path is basically just
split) without extra register file ports. This makes them inherently simple and thus
keeps the hardware cost low. Meanwhile, they can provide significant performance
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Fig. 8.1 Sample arithmetic SIMD instruction: two parallel ADDs on 16-bit subregisters of 32-bit
data registers A, B, and C; the data is loaded/stored at once from/to an alignment boundary

improvements for computation-intensive multimedia workloads [145]. Therefore,
many embedded processors for the next generation of high-end video and multime-
dia devices today feature SIMD instructions.

The SIMD concept is commonly found in general-purpose architectures such as
Intel MMX/SSE1–5 [30], IBM/Motorola VMX/AltiVec [183], and AMD 3DNow.
Later on, it was introduced in domain-specific processors (e.g., TI C6x, NXP Tri-
Media) and in recent custom ASIP designs (e.g., Tensilica Xtensa). Even some
versions of the popular ARM- and MIPS-based architectures feature SIMD instruc-
tions. While several target-specific C compilers already exploit SIMD instructions,
there is almost no support in ASIP compilers. Consequently, there is an increasing
interest in retargetable compilers with SIMD support. For use in this domain, retar-
getable SIMD optimizations are required. This chapter presents a novel concept for
retargetable code optimization for ASIPs with SIMD instructions, and this concept
is proven by an implementation within the CoSy compiler that can be retargeted
via the Compiler Designer GUI and an experimental evaluation for two real-life
embedded processors.

The rest of this chapter is organized as follows. In Section 8.1 related work is
discussed. The core of the SIMD framework is presented in Section 8.2 before the
retargeting procedure is described in Section 8.3. Afterward, Section 8.4 provides
the experiments for different embedded processors with SIMD support. Finally,
Section 8.5 summarizes the contribution of this approach and points to some future
avenues of work.
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8.1 Related Work

Traditional code selection typically relies on tree parsing. As mentioned in Section
3.3.2, tree parsing is not suited to exploit SIMD instructions because they exceed
the scope of a single DFT. Consequently, compilers require advanced techniques to
exploit SIMD instructions.

Most of the current SIMD optimization techniques are based on the traditional
loop-based vectorization [24, 95, 212, 213]. Others make use of instruction-packing
techniques in conjunction with loop-unrolling to exploit data parallelism within a
basic block [240] or a combination of traditional code selection [51] and integer
linear programming [26, 221]. As investigated in [101], it is often difficult to apply
SIMD optimization techniques since these architectures are largely nonuniform,
featuring specialized functionalities, constrained memory accesses, and a limited
set of data types. Moreover, complicated loop transformation techniques are needed
[213] to exhibit the necessary, architecture-dependent amount of parallelism in the
code. Another hurdle to applying SIMD techniques is packing of data elements into
registers and the limitations of the SIMD memory unit: typically, SIMD memory
units provide access only to contiguous memory elements, often with additional
alignment constraints. Computations, however, may access the memory in an order
that is neither adequately aligned nor contiguous. Besides, operations on disjoint
vector elements are usually not supported. The detection of misaligned pointer ref-
erences is presented in [117]. Certain misalignments can be solved either by loop
transformations [95, 241] or by data permutation instructions. The efficient rep-
resentation and generation of such instructions is investigated in [7, 72, 212] and
the optimization thereof in [26, 102]. Consequently, only a successful interaction
of several optimization modules will be able to leverage SIMD optimization for
retargetable compilers.

So far, only advanced compilers (e.g., the Intel compiler [122], IBM XL com-
piler [7]) are capable of automatically utilizing SIMD instructions. Apart from
being inherently nonretargetable, these compilers are mostly restricted to certain C
language constructs. Other compilers use dedicated input languages for source-to-
source transformations that are restricted to a certain application domain [83, 188].
The vast majority of the compilers, though, still provide only semi-automatic SIMD
support via compiler-known functions (CKFs). Understandably, this assembly-like
programming style is tedious and error prone. Moreover, this comes along with poor
maintainability and portability of the code.

Among the ASIP design platforms mentioned in Chapter 4, so far only Ten-
silica’s compiler includes SIMD support. However, its architectural scope is lim-
ited to the configurable Xtensa processor [215]. Considering retargetable compilers,
recent versions of the gcc support SIMD for certain loop constructs [86]. The sup-
ported vectorization [71] features alignment and reduction; however, information
regarding the concrete retargeting effort and the interaction of loop transforma-
tions are not available yet. Furthermore, gcc is mainly designed for general purpose
processors. As a result, it does not adapt efficiently to specialized, irregular hardware
architectures that are quite common in the embedded domain.
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A retargetable preprocessor for multimedia instructions is presented in [100]. The
approach mixes loop distribution, unrolling, and pattern matching to exploit SIMD
instructions. Contrary to other approaches, it can be extended at user level. The
matching is based on a set of target-specific code-rewrite rules that are described
using C-code patterns. However, the efficiency of this approach strongly depends
on the coding style of the input program. Furthermore, no information is available
how the loop transformations are adapted to a given SIMD architecture.

Summarized, several SIMD utilization concepts with different levels of complex-
ity are available. However, they are mostly implemented in target-specific compil-
ers. Consequently, adapting a SIMD optimization concept to a new target processor
becomes a time-consuming and error-prone manual process. Therefore, this book
presents an approach for the efficient utilization of SIMD instructions while achiev-
ing compiler retargetability at the same time. The presented SIMD optimization
comprises a loop-vectorizer and an unroll-and-pack-based technique [166], which
are both driven by the same SIMD specification. The retargeting formalism is fully
integrated into the compiler backend specification. The advantage is that many gen-
erators for the standard backend components (e.g., the code selector) can be reused
for the SIMD optimization to a great extent. This reduces the retargeting effort and
enables greater flexibility to specify the SIMD architecture. The amount of required
target-specific information is limited, so that most of it can be extracted automati-
cally from ADL descriptions such as LISA. Moreover, the retargeting information
is also used to steer the loop transformations, such as unrolling and strip mining,
required to exhibit the necessary (i.e., SIMD architecture dependent) amount of
parallelism and to deal with memory alignment issues. In sum, this provides a
flexible and efficient SIMD optimization framework for a wide variety of SIMD
architectures.

8.2 SIMD Framework

As mentioned above, a successful SIMD optimization is tightly coupled with several
loop transformations in order to exhibit the necessary amount of parallelism and to
convert loops into a proper form. Hence, the presented approach consists of several
steps as depicted in Fig. 8.2.

First of all, a loop-carried dependency [178] and alignment analysis (Sec-
tion 8.2.3) are performed. They provide the necessary annotation needed by the
SIMD optimization framework. Afterward, a SIMD analysis (Section 8.2.4) searches
for loops where SIMD optimization could be applied. For these loops, it deter-
mines the parameters for the different loop transformations (Sections 8.2.5, 8.2.6,
8.2.7, and 8.2.8). Finally, the SIMD optimization is performed, comprising a loop
vectorizer (Section 8.2.7) or an unroll-and-pack-based SIMDfyer (Section 8.2.9) if
vectorization fails. All modules are driven by the same, retargetable SIMD
specification described in Section 8.3.
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Fig. 8.2 SIMD code generation flow

8.2.1 Basic Design Decisions

A basic design decision concerns the representation of generated SIMD instructions
in the compiler’s IR. All IR formats comprise elements for representing primi-
tive operations such as addition, subtraction, multiplication, and so on. However,
there are usually no dedicated IR elements for SIMD operations such as “two
parallel additions.” Extending the underlying IR format is not a practicable solu-
tion. All already existing compiler engines would have to be manually adapted
in order to handle the new IR elements. Otherwise compiler engines might not
exploit the full optimization potential or may even fail in the worst case. In either
case, poor code quality would be the result. Therefore, generated SIMD instruc-
tions are internally represented in the form of CKFs. CKFs are transparent for
other compiler modules and are later automatically replaced with assembly instruc-
tions in the backend. They are not visible to the compiler user at all. Furthermore,
CKFs simplifies code generation to a certain extent, since it abstracts from low-
level problems such as register allocation for SIMD subregisters in the backend.
Moreover, all existing code generation and optimization engines of the underly-
ing compiler framework can simply be reused. This includes the existing debug
facilities of the compiler platform. In this way, the current IR state can be dumped
into a human-readable, valid C-code file at any time during the SIMD generation
process.
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8.2.2 Terminology

Here, the terminology that facilitates the description of the optimization modules in
the next sections is briefly introduced. As exemplified in Fig. 8.1, an SIMD instruc-
tion performs independent, usually identical operations on a certain bit range within
the input register and also writing the results to a corresponding range in the output
register. In other words, an SIMD instruction splits a full register into k subregisters
(frequently k = 2 or k = 4). In the given example, the lower and upper parts of
the arguments are added and written to the lower and upper part of the destination
register, respectively. Thus, this SIMD instruction operates on two subregisters. A
single, primitive operation within the SIMD instruction (e.g., the 16-bit addition) is
denoted as an SIMD candidate. It is basically a mapping rule covering this primitive
operation. From these mapping rules, an SIMD-candidate matcher (Section 8.3.1)
is generated (i.e., a regular tree pattern matcher) that is used for the identification of
such SIMD candidates.

A set of SIMD candidates that can be combined into a SIMD instruction is
denoted as an SIMD-set. For this purpose, a generated SIMD-set constructor is
employed (Section 8.3.2). This is basically a combination function that tries to col-
lect suitable SIMD candidates under given constraints such that a valid SIMD-set
can be built. The algorithm for SIMD-set constructions assumes that the results from
the data-flow analysis are already available. Next, it checks a number of constraints
for tuples N = (n1, . . . , nk) of SIMD candidates, where k denotes the number of
subregisters, and nodes ni of a potential SIMD-set must

1. Represent isomorphic operations that can be combined to a SIMD instruction
according to the target machine description;

2. Show no direct or indirect dependencies that would prevent parallelism. While
this can be analyzed relatively simple for scalar variables, it becomes quite diffi-
cult in the case of array and pointer accesses.

3. Fulfill alignment constraints of the given target architecture. The data elements
in memory must be packed in a single register in advance before the SIMD
instruction can be executed. This involves wide load instructions, and hence pos-
sibly memory alignment constraints as well as reordering of subregister within a
register using special pack and permute instructions. The same holds for storing
the SIMD result again in memory.

A constructed SIMD-set (i.e., the related IR nodes) can then be replaced by a CKF
call. The regular code selector description is enriched with CKF mapping rules so
that later during the code-emission phase the proper assembly code for the SIMD
instruction can be emitted.

8.2.3 Alignment Analysis

One of the constraints when using SIMD instructions is the correct alignment of
data in memory. In opposition to the original vector machines, which usually were
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equipped with superscalar memory units, the SIMD enabled general-purpose and
embedded processors usually have a scalar memory unit. Parallel data loading is
nevertheless possible as long as the data stream is stored contiguously in memory.
For example, a twofold SIMD instruction operating on 16-bit data types typically
uses a 32-bit wide, word-aligned load operation to pack them at once in a 32-bit
register (Fig. 8.3).

Sub-register 1 Sub-register 2

32-bit load

Sub-register 1 Sub-register 2

32-bit load

8-bit
SIMD memory boundary

Register

Fig. 8.3 SIMD alignment constraint

This is the optimal case, since the data is already available in the desired for-
mat. If however the data is locally disjoint, the required values have to be explicitly
packed to the register before they are susceptible to SIMD optimizations. The two
half-words would have to be loaded into two distinct registers, by doing two separate
word-wide loads. In a second step, they can then be combined into a third register.
Instead of doing a single load using a single register, at least two registers are used,
and two separate loads, as well as an operation to merge the two half-words back into
one register, have to be carried out. Even though many architectures offer support
instructions such as permutations, multi-register shift operations, subword selection
and general pack and unpack operations, the necessity of using them usually incurs
a performance hit.

If the word alignment cannot be assured at compile-time, additional code (i.e., a
dynamic-alignment check) is required to ensure correct alignment during run-time
[35, 117]. This procedure, also known as loop versioning, creates an optimized
version of the code along with the original version. At runtime, a check as seen
in Listing 8.1 is executed that selects the right version depending on the initial
alignment.
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if( (a is aligned) && (b is aligned) && (c is aligned) )
{
for(i=0;i<N;i+=4) /* SIMD version */
{
c[i:i+4] = a[i:i+4] * b[i:i+4];

}
} else {
for(i=0;i<N;i++) /* Standard version */
{
c[i] = a[i] * b[i];

}
}

Listing 8.1 Dynamic alignment check = 0

This version generates code that is always correct but obviously has the following
two major drawbacks:

1. It increases the code size by more than a factor 2 for the loop.
2. It incurs the runtime overhead of the alignment check, which noticeably hurts

performance for small iteration counts.

The strip-mining transformation (Section 8.2.5) needs to take the alignment into
account, too. Therefore, an interprocedural pointer-alignment analysis [82] has
been implemented for precise alignment information. It analyzes every memory
access performed through pointers with respect to the capabilities of the SIMD
memory unit. The offset from the supported SIMD memory boundary, that is, the
alignment, is calculated using the modulo operator. If p is a pointer and N the SIMD
memory address size, then the alignment of the memory access is given by

alignment = p mod N (8.1)

In order to account for the possibility that a pointer might have, during program
execution, values with different alignments, the information is stored as a set E of
possible values modulo N. If M = {0, . . . , N − 1} is the set of all possible values of
modulo N and P = P(M) its power set, then E ∈ P .

In order to correctly annotate pointers in the whole program, it is necessary to
track the value of pointer variables during their whole lifetime. A pointer generally
is:

1. First initialized, usually by means of a memory management function such as
malloc or by taking the address of an variable object.

2. Used, either directly or in address calculations such as *(p+i), to access values
in memory.

3. Manipulated or used in address calculations that are then stored to another
pointer variable, which leads to a new initialization (e.g., p = p + i).
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The analysis therefore needs the ability to determine the initial alignment of
pointers. To do so, it needs specific knowledge about the possible initial sources
of addresses. In the case of direct initialization by taking a memory address, this
is possible using information about the variable object. In case of functions that
take pointers as arguments, the initial values of the pointer parameters are not avail-
able inside the function. It is therefore sensible to use an interprocedural algorithm,
which propagates the information across function boundaries. Next, this value must
be tracked from its first definition to all its uses. This is a classic data-flow problem
that can be solved using standard techniques as described in Chapter 3.

The third prerequisite to successfully uncover the alignment information in point-
ers is the ability to determine the offset for accesses that involve address calcula-
tions. In order to evaluate pointer arithmetic such as *(p+i), a transfer function

fg : Pn �−→ P (8.2)

is used to compute the impact on E . The transfer function, naturally, depends on the
operator of the arithmetic expression. For example, the most common operations in
address calculation, the addition and multiplication, are binary operators, and thus
the corresponding transfer functions have the form fbinary : M × M �→ M . This
leads to the following equations:

fAdd(a, b) = (a + b) mod N = [(a mod N ) + (b mod N )] mod N
fMul(a, b) = (a · b) mod N = [(a mod N ) · (b mod N )] mod N

(8.3)

They are valid regardless of the value of N . If, however, N = 2m is a power of two,
further functions can be deduced. This is due to the fact that a division by 2m can be
implemented by right shifting the binary representation of an integer value m times.
The remainder of the division is then exactly formed by the m bits shifted out of the
word. Therefore, it is in the last m bits of the original value. Using this knowledge,
the operations AND, OR, XOR, and NOT can be handled without knowledge about
the actual value as well.

8.2.4 SIMD Analysis

The preparative loop transformations consist of strip mining, scalar expansion, and
loop unrolling. They must be parameterized according to the underlying SIMD
architecture. Incorrect parameters might prevent SIMD optimization or lead to
nonoptimal results. The transformations often only pays off, if the SIMD optimiza-
tion is later on enabled. Therefore, it is important to apply them only to the most
promising loops for SIMD optimization. Hence, an SIMD analysis engine is imple-
mented that runs in advance to identify those loops that contain SIMD candidates.
For this purpose, the SIMD-candidate matcher is employed. Consequently, if the
loop body does not contain any SIMD candidate, then it does not make sense to



104 8 SIMD Optimization

consider it further. Otherwise it determines for each SIMD candidate how many of
them would be needed to build a SIMD-set that matches one of the available SIMD
instructions using the SIMD-set constructor. From this information, it derives the
parameters for the different loop transformations.

8.2.5 Strip Mining and Loop Peeling

Many vectorizable loops cannot be directly optimized in case the iteration count
is larger than the number of SIMD candidates ks that fit into an SIMD-set s for
the vector operation. Strip mining is a loop transformation that divides the loop
into strips, where each strip is no longer than the SIMD data path width [178].
Essentially, the loop is decomposed into two nested loops (Listing 8.2):

1. An outer loop (the strip loop) that steps between strips.
2. An inner loop (the element loop) that steps between single iterations within a

loop.

// original loop
for (i = 0; i < 100; i++)
{
A[i] = B[i] * C[i];

}
//outer strip loop
//strip_size = max. #sub-registers
for (is = 0; is<100; is += strip_size)
{ //inner element loop
for (i=is; i<is+strip_size; i++)
{
A[i] = B[i] * C[i];

}
}

Listing 8.2 Strip mining example

The SIMD analysis calculates the iteration count of the element loop, called the
strip size, based upon all SIMD-sets S that can be built with the identified SIMD
candidates in the loop. Since it might happen that each SIMD-set has a different
number of subregisters k, the maximum strip size for the transformation is selected:

strip size = max

(
⋃

s∈S

ks

)
(8.4)

However, due to possible alignment constrains of the SIMD architecture, strip min-
ing must ensure that each strip starts at an alignment boundary. Assuming that arrays
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are word aligned in memory, then the alignment boundaries are given by

alignment boundaries = {i | i mod strip size = 0} (8.5)

where i is the loop counter. However, strip mining is performed in the iteration
space. Thus, for array references like [i +c] with c being a constant and c �= 0 (List-
ing 8.3), the alignment boundary for each strip can differ from the real alignment in
memory.

for (i = 0;i < 100;i++)
{
A[i+1] = B[i+1] * C[i+1];

}

Listing 8.3 Offset = 1

Therefore, an offset can be set, if it remains constant within the loop, to readjust
the alignment boundaries defined in the iteration space so that they correspond with
the real alignment in memory. Consequently, the offset is always within the range
(−strip size, strip size). The alignment boundary is then given by

alignment boundaries = {i | i + offset mod strip size = 0} (8.6)

The boundary information can be easily computed using the information from the
alignment analysis. In case the loop does not directly start at an alignment boundary,
loop peeling is applied to ensure the correct alignment of the data accesses. That
means, those iterations causing the misalignment are “peeled off” the original loop
and build a separate prolog loop. If the remaining iterations are not divisible by the
strip size without remainder, then an extra epilog loop is created as well. Assuming
an up-counting loop using a less-than condition, the loop boundaries for the prolog,
strip loop, and epilog are defined as follows:

bFrom = iFrom + (−(iFrom + offset) mod strip size) (8.7)

bTo = iTo − ((iTo + offset) mod strip size) (8.8)

Listing 8.4 shows a generalized example. The initial and final value of the loop
counter are given by iFrom and iTo, respectively, where bFrom defines the initial
value of the strip loop and the upper bound of the prolog, and bTo the upper bound
of the strip loop and the initial value of the epilog. Note that the modulo operation
must produce a value in the range [0, strip size). Furthermore, it must take care of
overflows that might occur during the computation of the loop boundaries. Similar
equations exist for different conditions and down-counting loops.
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// peeled iterations (prologue)
for (i = iFrom; i < bFrom; i++)
{
A[i+c] = B[i+c] * C[i+c];

}
//strip mined loop
for (is = bFrom

is < bTo;
is += strip_size)

{
for (i = is; i < is+strip_size; i+=1)
{
A[i+c] = B[i+c] * C[i+c];

}
}
//epilogue loop
for (i = bTo; i < iTo; i++)
{
A[i+c] = B[i+c] * C[i+c];

}

Listing 8.4 Strip mining with offset != 0

8.2.6 Scalar Expansion

When scalars are assigned and later used in the loop, the dependency graph will
include flow-dependence relations from the assignment to each use-and-loop-carried
anti-dependencies from each use back to the assignment. These anti-dependence
relations often cause problems in other transformations and could prevent paral-
lelization of the loop (Listing 8.5). However, the anti-dependence relation can be
broken by scalar expansion [178]. The basic idea is to allocate an array with one
element for each iteration and replace each scalar reference in the loop with a ref-
erence to the array. This eliminates the anti-dependence relations. The computed
value should be assigned to the original scalar after the loop (Listing 8.6). Scalars
that are assigned conditionally can also be expanded given that

1. the scalar is assigned on every path through the loop body and
2. the scalar is not used before any assignment to the same scalar.

If a scalar is found that satisfies these constraints, it is replaced by an array access.
One obvious drawback of scalar expansion, though, is the increased memory

consumption of the program. If not carefully managed, this penalty can overcome
the benefits gained by SIMD. For instance, the memory usage can be reduced by
strip mining the loop and only expanding the inner element loop.
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for (i=0; i < N; i++)
{
s = B[i] * C[i];
A[i] = s+1/s;

}

Listing 8.5 Scalar causes anti-dependence

for (i=0; i<= N; i++)
{
S[i] = B[i] * C[i];
A[i] = S[i]+1/S[i];

}
s = S[N];

Listing 8.6 Replaced scalar with array
access

8.2.7 The Vectorizer

A classical vectorizer parallelizes the whole loop at once provided that suitable
SIMD instructions are available for all statements in the loop body and no data
dependencies limit parallelization. Another prerequisite is that the iteration count
must match the number of SIMD candidates needed to build the SIMD-set for the
vector operation. Obviously, this is a perfect match for strip-mined loops. The vec-
torization algorithm is exemplified in Fig. 8.4. In the first step (1), it checks all
inner loops whether each statement consists only of SIMD candidates using the
SIMD-candidate matcher. In step (2), it virtually duplicates the SIMD candidates
according to the iteration count of the current loop. For these virtual SIMD can-
didates, it tries then to construct an SIMD-set that matches an available SIMD
instruction with the SIMD-set constructor (3). Finally, if valid SIMD-sets can be
constructed for each statement, then the whole loop will be replaced by the corre-
sponding SIMD instructions (4).

}

=

*A[i]

B[i] C[i]

SIMD candidates

=

*A[i]

B[i] C[i]

=

*A[i]

B[i] C[i]

…

SIMD_mul_2x16(x,y)

SIMD_store_2x16(x,y)

…

Available vector instructions

(2) Virtually duplicate

(3) Construct

(4) Replace

After vectorization

(1) Check loop
statements

Fig. 8.4 Vectorization example
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Of course, it might happen that not all loop statements can be directly paral-
lelized, e.g., due to data dependencies. But still they may contain a certain degree of
parallelism. Therefore, loops that could not be vectorized are further processed by
the more powerful unroll-and-pack-based SIMDfyer.

8.2.8 Loop Unrolling

The SIMDfyer implements a technique similar to [240]. This requires loops to be
unrolled properly to ensure full utilization of the SIMD data path. The SIMD anal-
ysis customizes the unroll factor to the number of SIMD candidates ks that fit into
a SIMD-set s that can be constructed for the given loop body. This is basically
the same as for the strip-size calculation. Consequently, strip-mined loops will be
unrolled completely if they are not vectorized. It may happen that the loop contains
several SIMD candidates, which can be combined in different ways to an SIMD-set.
Thus, since it is desired to fill all possible SIMD-sets S, the best unroll factor can be
calculated as

unroll factor = max

(
⋃

s∈S

ks

)
(8.9)

The SIMD analysis annotates the unroll factor to each loop that contains SIMD
candidates. The value of all loops left after vectorization will be read by the loop
unroller to prepare them for the SIMDfyer.

8.2.9 The Unroll-and-Pack-Based SIMDfyer

For a given IR of an input C program, an iterative algorithm is used that combines
SIMD candidates into SIMD-sets and replaces such sets by CKFs in the IR [55].
Even though the algorithm could in principle process all basic blocks inside a pro-
cedure, it focuses only on the loops, typically the hot spots of the input program;
more specifically, only those where the SIMD analysis identified SIMD candidates
before. Certain multiple basic block constructs, though, may have been merged into
a single basic block by an if-conversion [125] pass prior to the SIMD optimization.
The algorithm forms SIMD instructions step by step. If a complete SIMD-set could
be built, it will be replaced by the corresponding CKF. Since each iteration may
generate new SIMD candidates, the list of SIMD candidates is updated after each
step. The identification of SIMD candidates is performed by the SIMD-candidate
matcher. The basic idea of the iteration is illustrated in Fig. 8.5.

State (1) shows the initial IR structure for a sample loop body (unrolled twice)
that performs a multiplication of two vectors B and C and stores the result in vector
A. The left and right elements of the computations are isomorphic and are assumed
to meet the memory alignment constraints. First, the algorithm combines the left
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Fig. 8.5 IR states in different iterations

and the right operands (16-bit load operations) of the two “*” to 32-bit SIMD load
operations. Afterward, the “*” operations themselves are combined to an SIMD
instruction. The corresponding IR has the intermediate state (2). In order to preserve
the semantic correctness, explicit “extract” operations are inserted that select 16-bit
subwords out of the 32-bit result of the SIMD dual multiplication operation. These
extracts are also considered as SIMD candidates, and hence can also be used to build
an SIMD-set. Note, all superfluous extracts are removed by dead code elimination
in a later compilation phase. In the following iteration, the two 16-bit “=” operations
form an SIMD-set on their own. Finally, the IR state (3) is reached and the algorithm
terminates.

The presented approach employs an iterative, step-by-step approach in order
to compose an SIMD instruction from a set of SIMD candidates. In this way, an
exhaustive search within the given loop body is avoided. Therefore, it requires only
low-degree polynomial complexity (O(n3)), a worst case for n variable accesses
in the IR. Practical experience shows that this relatively simple heuristic consumes
only a few CPU seconds of compilation time while utilizing SIMD instructions very
well for speeding up common DSP code benchmarks. Due to the possible neces-
sity of inserting extra code for dynamic pointer-alignment checks before loop entry
points and the corresponding code duplication, insertion of SIMD instructions may
lead to an increase in code size.

8.2.10 Code Example

This section provides a more detailed example to illustrate the representation of
SIMD instructions in the IR. Listing 8.7 shows the initial C source code after
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preprocessing (strip mining, scalar expansion, and loop unrolling). Assuming the
availability of SIMD instructions for addition and multiplication operating on two
16-bit values, the SIMD analysis determines a strip size and an unroll factor of 2 for
the loop transformations. Here, scalar expansion is performed on the element loop,
which is then fully unrolled afterwards. It is further assumed that the target machine
requires SIMD load operations to be word aligned.

void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
sum = S[0] = S[1] = 0;
for(int is = 0; is < 64; is += 2)
{
S[0] = S[0] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (*pa * *pb) * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.7 Initial code

In the first iteration, the two multiplications are detected as SIMD candidates and
are replaced by a CKF (SIMD mul 2x16). The SIMD multiplication implies cer-
tain conditions in which subregisters the input operands must be located in. Since the
input operands are given by the extract operations from the previous iteration, these
conditions can be easily met by directly using the temporaries the input operands
are extracted from. Obviously, this makes the extract operations from the previous
iteration superfluous. The resulting code is depicted in Listing 8.9 while Listing 8.10
shows the final code after several further steps. The SIMD-set computation has been
finalized by detecting that the multiply results can be processed further by SIMD
additions. No extract operations are required since the results can be directly writ-
ten by a wide store to the array created by scalar expansion. Here, it is assumed
that the alignment analysis cannot resolve the alignment of the pointers, thus a
dynamic alignment check has been inserted (if(((pa|pb|pc) & 3) == 0))
to rule out misaligned pointers. If the check fails, a non-SIMD version of the loop
is executed in the else-branch. Finally, standard optimizations, such as dead code
elimination, have been invoked to remove superfluous operations (e.g., extracts)
from previous phases. The resulting code is passed to the compiler backend for
assembly code generation.
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void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
int tmp1, tmp2;
short res0, res1, res2, res3;
sum = S[0] = S[1] = 0;

for (int is = 0; is < 64; is += 2)
{
tmp1 = (int*)pa; //SIMD load
tmp2 = (int*)pb; //SIMD load
res0 = EXTRACT_short_1_of_2(tmp1);
res1 = EXTRACT_short_2_of_2(tmp1);
res2 = EXTRACT_short_1_of_2(tmp2);
res3 = EXTRACT_short_2_of_2(tmp2);

S[0] = S[0] + (res0 * res2) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (res1 * res3) * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.8 First iteration

void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
int tmp1,tmp2,tmp3;
short res0,res1,res2,res3,res4,res5;
sum = S[0] = S[1] = 0;

for(int is=0; is<64; is+=2)
{
tmp1 = (int*)pa; //SIMD load
tmp2 = (int*)pb; //SIMD load
res0 = EXTRACT_short_1_of_2(tmp1);
res1 = EXTRACT_short_2_of_2(tmp1);
res2 = EXTRACT_short_1_of_2(tmp2);
res3 = EXTRACT_short_2_of_2(tmp2);
tmp3 = SIMD_mul_2x16(tmp1, tmp2);
res4 = EXTRACT_short_1_of_2(tmp3);
res5 = EXTRACT_short_2_of_2(tmp3);

S[0] = S[0] + res4 * *pc;
pa++; pb++; pc++;
S[1] = S[1] + res5 * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.9 Second iteration
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void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
sum = S[0] = S[1] = 0;

if( ((pa|pb|pc) & 3) == 0 )
{
for (int is = 0; is < 64; is += 2)
{
(int) S[0] = SIMD_add_2x16((int)S[0], SIMD_mul_2x16(

SIMD_mul_2x16((int*)pa,(int*)pb),(int*)pc));
pa+=2; pb+=2; pc+=2;

}
} else {
for(int is=0; is < 64; is += 2)
{
S[0] = S[0] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
}

}
sum = sum + S[0] + S[1];

}

Listing 8.10 Final code

8.3 Retargeting the SIMD Framework

To retarget the SIMD framework, basically two pieces of information are required:
first, a description of IR tree patterns that represent a SIMD candidate. This is used
to generate the SIMD-candidate matcher. Second, the SIMD-set construction, the
specification of how SIMD candidates can be composed to a valid SIMD-set.

8.3.1 SIMD-Candidate Matcher

The identification of SIMD candidates can be implemented using the tree-covering-
based code selection [244]. SIMD candidates can be easily described by regular
mapping rules. Normally, such a rule describes how a certain IR operation is mapped
to target assembly code. Nonterminals, typically the rule operands, are used as “tem-
poraries” to transfer values from one rule to another. From this specification, a tree
pattern matcher for code selection can be generated with tools such as Burg [52]. In
this approach, the regular CoSy tree-pattern-matcher generator is utilized to create
a dedicated SIMD-candidate matcher from SIMD-candidate rules, which are part



8.3 Retargeting the SIMD Framework 113

of the regular code selector description.1 Such rules use special SIMD nonterminals
containing two specific attributes: a pos field for the subregister number within a
full register and an id to identify a memory area, for example, allocated by a scalar
variable or an array (Fig. 8.6).

short a[4]; short b;

Fig. 8.6 Pos/id for array/scalar variable

As will be explained later in more detail, the former is needed to check subreg-
ister or alignment constraints and the latter becomes important when the packed
result of an SIMD operation is directly consumed by another one. The initial values
for these fields are already determined by the prior data-flow/alignment analysis
and are initialized when a load operation is matched. Furthermore, each rule can
be referenced using its unique rule name. Examples for two SIMD-candidate rules
named load and add are shown in Listings 8.11 and 8.12.

\\Syntax is name:type
RULE [load] o:mirContent(src:reg_nt)

-> dst:simd_nt;
CONDITION {

IS_INT16(o)
}
EMIT {

dst.pos = get_pos(o);
dst.id = get_id(o);

}

Listing 8.11 SIMD-candidate rule load

The 16-bit load rule initializes the SIMD nonterminal’s pos and id fields with
the values determined by data-flow/alignment analysis. The produced SIMD non-
terminal may then be consumed by the add rule. Additional conditions can be used
to select only those IR operators for a certain data type or to specify constraints on
the subregister of the operands. In this example, the 16-bit add rule matches only if
both input operands are located in the same subregister.

1 This is not a contradiction to the limitations of tree pattern matching mentioned in Section 8.1.
The matcher is only employed to identify those IR operations that might be composed to a full
SIMD operation, the complete SIMD match cannot be found directly.
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RULE [add] o:mirPlus(src1:simd_nt,
src2_simd_nt)

-> dst:simd_nt;
CONDITION {

IS_INT16(o) && src1.pos == src2.pos
}
EMIT {

dst.pos = src1.pos;
dst.id = newid(src1.id,src2.id);

}

Listing 8.12 SIMD-candidate rule add

Additionally, rules to extract a subregister from a full register must be created as
well. Those are used to match the extract operations (see Section 8.2.10) inserted in
previous iterations of the algorithm. In this way, they become SIMD candidates in
the current iteration. All extract rules produce an SIMD nonterminal that sets id to
the id of the temporary the result is extracted from and the pos field to the position
of the extracted subregister, respectively (Fig. 8.7).

=

A[i]

=

tmp = SIMD_mul

A[i+1]

Fig. 8.7 Pos/id for extract operation

The SIMD-candidate matcher’s flexibility is only limited by the capabilities of
the underlying tree-pattern-matcher generator. Since the concepts are already sup-
ported by the existing code selector description, only minimum changes to the retar-
getable compiler platform are required. Since tree-covering-based code selection is
the state of the art in compiler design, this part can also be easily ported to other
platforms.
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8.3.2 SIMD-Set Constructor

Special SIMD rules describe valid tuples N = (n1, . . . , nk) of SIMD candidates,
where k denotes the number of subregisters. In contrast to regular mapping rules,
they take the names of SIMD-candidate rules instead of nonterminals as input
operands, i.e., a node ni corresponds to an SIMD-candidate rule name. The exam-
ples in Listings 8.13 and 8.14 specify a twofold 16-bit load and add SIMD instruc-
tion, using the SIMD-candidate rules from Listings 8.11 and 8.12.

SIMD RULE simd_load(a:load, b:load);
COMPOSITION

CKF#1 (src:a.src) -> dst:reg_nt(a.dst, b.dst);
EMIT {

printf("LOAD32 [%s] -> %s", REGNAME(src),REGNAME(dst));
}

Listing 8.13 SIMD rule twofold 16-bit load

SIMD RULE simd_add_2x16 (a:add, b:add);
COMPOSITION
CKF#2 (arg1:reg_nt(a.src1, b.src1),

arg2:reg_nt(a.src2, b.src2)
) -> dst:reg_nt (a.dst, b.dst);

EMIT {
printf ("\tDUALADD16\t%s,%s -> %s",

REGNAME(arg1), REGNAME(arg2), REGNAME(dst));
}

Listing 8.14 SIMD rule dual 16-bit add

Given the set of all identified SIMD candidates C = {c1, c2, . . . }, the set of all
possible SIMD-sets S is given by S ⊆ P(C) whereas each tuple in S must be in
the set of all SIMD rules R as defined in the compiler configuration. Furthermore,
it must match certain implicit conditions. Let Pos(c) denote the pos value of the
result SIMD nonterminal produced by SIMD-candidate rule c and Id(c) the id,
respectively. Then the set of valid SIMD-sets S is given by:

S = {(c1, . . . , ck) | (c1, . . . , ck) ∈ R ∧ Id(ci ) = Id(c j ) ∧ Pos(cl+1) = Pos(cl) + 1,

∀i, j ∈ (1, . . . , k), l ∈ (1, . . . , k − 1)}
(8.10)

In other words, the SIMD candidates of a valid SIMD-set must have the same id as
well as an increasing pos value assigned.
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Consider the example shown in Listing 8.15. In the first iteration, the load rule
covers the array accesses, initializes the idwith an unique number and the pos field
with the position relative to SIMD load memory boundary. Note that accesses to the
same array get always the same id assigned. Only the pos field varies. It is assumed
that the arrays are aligned to a word boundary. Now, due to the implicit condition
of the SIMD load, the only way to create a complete SIMD-set is to combine
two adjacent loads (i.e., increasing pos) from the same id. All other combinations
would violate at least one constraint. Both SIMD loads create a temporary with a
new id. Afterward, the operations to extract the subregisters have been inserted as
well. As mentioned above, the extracts also create new temporaries which get the
same id as the temporary the sub-register is extracted from assigned and the pos
field is set to the extracted subregister number, respectively.

for(i=0; is < 64; i += 2)
{
// <pos=0,id=1> <pos=0,id=2>
a[i] = b[i] + c[i];
// <pos=1,id=1> <pos=1,id=2>
a[i+1] = b[i+1] + c[i+1];
// <pos=0,id=3> <pos=0,id=4>
x[i] = y[i] + z[i];
// <pos=1,id=3> <pos=1,id=4>
x[i+1] = y[i+1] + z[i+1];

}
// In the 1st iteration:
// load -> <pos=0,id=1>, ...
// SIMD_load(<pos=0,id=1>,<pos=1,id=1>)
// -> <pos=0,id=5>
// SIMD_load(<pos=0,id=2>,<pos=1,id=2>)
// -> <pos=0,id=6>
// EXTRACT_short_1_of_2(<pos=0,id=5>)
// -> <pos=0,id=5>
// EXTRACT_short_2_of_2(<pos=1,id=5>)
// -> <pos=1,id=5>
// EXTRACT_short_1_of_2(<pos=0,id=6>)
// -> <pos=0,id=6>
// EXTRACT_short_2_of_2(<pos=1,id=6>)
// -> <pos=1,id=6>
// ...

Listing 8.15 pos/id in the first iteration

Thus, in the next iteration (Listing 8.16), the first and second operands of the
first two additions share the same ids. Consequently, the same id is generated
for both results of the additions. Now they can be combined to an SIMD add.
The implicit id condition actually enforces that the packed operands of the pre-
vious SIMD load are directly reused, otherwise this might result in an expensive
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repacking of the operands if, for instance, the first addition is combined with the
fourth addition. Note that it is also possible to specify an explicit condition for the
SIMD rules to overwrite the defaults for pos and id. As an example, the conditions
on the pos fields can be used to model unaligned SIMD memory operations.

for(i=0; is < 64; i += 2)
{
//<pos=0,id=5>
tmp1 = (int*)(b+i);
//<pos=0,id=5>
res0 = EXTRACT_short_1_of_2(tmp1);
//<pos=1,id=5>
res1 = EXTRACT_short_2_of_2(tmp1);
//<pos=0,id=6>
tmp2 = (int*)(c+i);
//<pos=0,id=6>
res2 = EXTRACT_short_1_of_2(tmp2);
//<pos=1,id=6>
res3 = EXTRACT_short_2_of_2(tmp2);
...
// <pos=0,id=5> <pos=0,id=6>
a[i] = res0 + res2;
// <pos=1,id=5> <pos=1,id=6>
a[i+1] = res1 + res3;
...

}
// In the 2nd iteration:
// add(<pos=0,id=5>,<pos=0,id=6>)
// -> <pos=0,id=56>
// add(<pos=1,id=5>,<pos=1,id=6>)
// -> <pos=1,id=56>
// SIMD_add(<pos=0,id=56>,<pos=1,id=56>)
// ...

Listing 8.16 pos/id in the second iteration

In order to complete the retargetable compilation flow, the CKF calls in the result-
ing intermediate code must be replaced by valid assembly instructions for the target
processor. In this framework, the COMPOSITION for an SIMD rule specifies the
CKF call that is internally generated for an identified SIMD-set. It consists of an
unique CKF number, the argument(s) to be passed to the CKF call, and the assembly
code that is finally emitted. For example, the COMPOSITION for SIMD add 2x16
describes that the arguments for the CKF call are register nonterminals that contain
the first and second operands of the combined add rules. From this specification, a
regular code selector rule matching the CKF with the given number and assembly
syntax is automatically generated (Listing 8.17) and becomes part of the regular
backend code selector.
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RULE [CKF#2] o:IR_FuncCall( arg1:reg_nt,arg2:reg_nt)
-> dst:reg_nt;

CONDITION {
CKF_Number(o) == CKF#2

}
EMIT {

printf ("\tDUALADD16\t%s,%s -> %s",
REGNAME(arg1),REGNAME(arg2),REGNAME(dst));

}

Listing 8.17 Internally generated CKF rule for SIMD add 2x16

Like for the SIMD-candidate matcher, many concepts are already supported by
the existing tree-pattern-matcher generator. Thus, only a few changes are required
to the existing generator to support this approach.

As mentioned in Chapter 6, the Compiler Designer tool comprises techniques to
generate mapping rules automatically from the LISA model. Since the SIMD config-
uration is quite similar to a regular code selector description, the Compiler Designer
has been extended in order to specify and generate rules for SIMD instructions, too.
More specifically, the user creates the SIMD candidate rules using the mapping
dialog. In the next step, the user can select those SIMD candidates which build
an SIMD-set and assign a proper assembly instruction. From this specification, an
SIMD-enabled code selector description for the CoSy compiler platform is finally
generated.

8.4 Experimental Results

For the evaluation, two different aspects have to be taken into account. First of
all, a precise alignment analysis is a prerequisite for the SIMD optimizations to
achieve good results. Therefore, this chapter first evaluates the efficiency of the
alignment analysis before the benchmark results for the SIMD optimization itself
are presented.

8.4.1 Alignment Analysis

The alignment is classified in one of the three classes:

Unknown: The annotation is Ei = ∅, the empty set. No information about the
alignment could be gathered during the analysis.

Known: The set contains a single value. Thus, the alignment is exactly known.
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Ambiguous: The set contains several values. With regard to the annotation pre-
cision, this is equivalent to a known value. It means that the alignment will
actually change during the runtime of the program.

The metrics used to measure the accuracy is the ratio of annotated to total nodes:

r = number of known nodes + number of ambiguous nodes

number of total nodes
(8.11)

The nominator expression is the sum of both, the exactly known pointers and the
ambiguous pointers. This is reasonable since an expression that contains several
entries in its set can definitely take on several modulo values, depending on the
program’s input data. The applications chosen to benchmark the results are taken
from the domain of typical DSP and embedded algorithms. They present different
degrees of complexity to the compiler, which are as follows.

ADPCM: This is a floating-point implementation of an adaptive differential
pulse-code modulation encoder. It is a self-contained program with a main()
procedure calling a few worker procedures. Data accesses are performed
through pointers that are initialized to the addresses of global objects and
then manipulated by address arithmetics throughout the program. All the
functions were contained in a single compilation unit.

FFT: The FFT works on a 16-bit fixed-point representation but is otherwise
similar to the ADPCM described above. Several functions are combined in
a single compilation unit. In contrast to the ADPCM, however, the data are
passed by means of pointer arguments to function calls.

libmad: This is an open source 32-bit fixed-point implementation [265] of the
MPEG-1 audio Layer 1–3 standards [185]. The primary goal of the project
is to provide a high-performance mp3 library written in a portable C style. It
consists of several modules that are compiled separately and exchange data
by means of pointer arguments.

gsm: The implementation used is freely available on the Internet [129]. It is
a floating-point implementation of the standard and similar in structure to
libmad.

AAC: This is the AAC audio codec’s reference implementation of the 3GPP
consortium. It is written in ANSI-C, spread across a large number of mod-
ules, and makes heavy use of complex language elements such as arrays of
pointers or nested structs.

H.264: This is another complex library in the same style as the AAC decoder.

The benchmarks above have been chosen to measure the annotation rate. As shown
in the next section, typical SIMD benchmarks for embedded processors supports
only a very basic set of SIMD operations, which must
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• be completely regular;
• work on short data types of 8- or 16-bit size;
• work on fixed-point data types.

The test cases here do not comply with these requirements. They operate on
floating-point or 32-bit fixed-point representations. Creating fixed-point versions of
complex algorithms, however, requires a high engineering effort. For that reason,
such versions are usually not publicly available. Nevertheless, the set of test cases
chosen does contain a typical set of pointer accesses to floating-point data types and
can therefore be used to evaluate how efficiently the analysis can propagate values
around the program. The detailed results are given in Table 8.2. In addition to the
name and the rate, the number of compilation units (CUs) the program consists of,

Table 8.2 Annotation rate
Name CUs Lines Rate% Total Known Ambiguous Unknown

adpcm 1 493 100 39 39 0 0
FFT 1 457 93 31 27 2 2
libmad 12 11791 58 3362 1738 211 1413
GSM 14 4014 55 1620 869 28 723
AAC 38 6767 20 5100 811 236 4053
H.264 30 31099 19 13188 2428 90 10670

the total number of lines in the source code, the total number of pointers in the
program, and the numbers for known, ambiguous, and unknown annotations are
given. It is obvious that the programs tested can be divided into three classes with
respect to their predisposition for alignment analysis. The straightforward imple-
mentations of the FFT and the ADPCM coder give very good results. These are
complete programs, which are available in a single compilation unit, with a single
entry point, the main() function. The code is written using direct pointers to the
data involved. Those pointers are then modified by address arithmetics during the
program’s execution.

The GSM implementation and libmad are similar in coding style to the previous
class. They make moderate use of structs and usually pass pointers to the memory
operated upon. The main difference to the first class is that they are formed by
several compilation units. For modules that are largely self-contained and that have
a well-defined interface to the outside world, the annotation rate is usually better
than for the modules that handle file access. The core-encoder routine for the GSM
codec achieved an annotation rate of 70 and 82% of the pointers in the Layer III
decoding module of libmad could successfully be annotated. This is due to the fact
that the developers of these libraries made liberal use of the static storage classifier
for functions that enabled the creation of a call graph with less edges. However,
a noticeable uncertainty with regards to the interprocedural flow remains, which
clearly shows in the average annotation rate of about 55% in these cases.

The programs in the third class, which is hardly analyzable, are reference imple-
mentations of recent audio and video codecs. They have been written for readability
by humans and correct, yet not necessarily fast execution. This leads to skimpy use
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of the static classifier, nested structures to emulate class hierarchies, and multi-
dimensional arrays of structures. An excerpt from the core-decoding module of the
aac decoder is shown in Listing 8.18. This coding style makes it very

AACDECODER CAacDecOpen(...)
{
struct AAC_DECODER_INSTANCE *self;
...
AacDecInstance.pAacDecStaticChannelInfo[ch]->pLongWindow[0] =
OnlyLongWindowSine;
self->pAacDecChannelInfo[ch]->pCodeBook =
pAacDecDynamicDataInit[ch]->aCodeBook;

...
}

Listing 8.18 Source excerpt from the core aac-decoding module

difficult to do the data-flow analysis, upon which the alignment analysis is built. In
order to successfully annotate programs like these, not only the values assigned to
objects, but also values in memory have to be tracked.

8.4.2 SIMD Optimizations

For experimental evaluation, SIMD-enabled C compilers have been created for the
NXP TriMedia processor [190] and the ARM11 [41]. The TriMedia compiler has
been designed using the Compiler Designer tool whereas the ARM11 compiler is a
hand-crafted CoSy compiler. In contrast to, e.g., the AltiVec or SSE extension, both
architectures support SIMD only for short (i.e., 8-bit and 16-bit) integer data types –
which is quite common for embedded processors. Hence, benchmarks employing
floating-point computations cannot be used. Therefore, mostly benchmarks from
the DSPStone benchmark suite [269] have been selected and several additional ker-
nels have been implemented, similar to those used in [72, 86, 117]. Furthermore,
additional results for the following more complex DSP algorithms are provided:

quantize matrix quantization with rounding
compress discrete cosine transformation to compress a 128 × 128 pixel image

by a factor of 4:1, block size of 8 × 8
idct 8 × 8 IEEE-1180 compliant inverse discrete cosine transformation
viterbi GSM full-rate convolutional decoder
emboss Converts an image using an emboss filter
sobel Applies a sobel filter to an image
corr gen Generalized correlation with a one-by-M tap filter
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For the given TriMedia and ARM LISA ADL models, the required retargeting
effort for SIMD support is quite limited. The corresponding CGD descriptions for
SIMD consist of 393 (TriMedia) and 698 (ARM) lines of code, which accounts
for roughly 7% (TriMedia) and 14% (ARM) of the complete CGD description. A
similar workload can be expected for other processors, depending on architecture
features.

Regarding the SIMD architecture, the TriMedia is a five-slot VLIW DSP with
128 general-purpose registers and a number of SIMD instructions. Due to its VLIW
architecture, using SIMD instructions does not lead to a speedup in all cases. For
instance, one can issue five parallel ADD instructions simultaneously, while only
two dual-ADD SIMD instructions can be issued at a time. Furthermore, SIMD
instructions may have a higher latency than regular instructions (e.g., one cycle
for an ADD vs. two cycles for a dual-ADD). So, unless the instruction scheduler
is not able to find suitable instructions for filling the VLIW slots saved by SIMD,
no speedup can be expected. However, if the memory is the bottleneck (at most two
parallel LOADs/STOREs), SIMD instructions still help to reduce the memory pres-
sure. There are also further effects, due to the C-coding style or register allocation
effects in the compiler backend, that leads to deviations from the theoretical speedup
factor k in case of k subregisters. The memory is organized in 32-bit words, hence
word alignment is required for SIMD memory accesses.

In contrast, the ARM architecture is built around a central, scalar RISC core.
It has a register file that consists of 31 general-purpose registers (at any one time
only 16 register are visible) and six status registers. The memory is also organized
in 32 bits words. It requires the same word alignment for all memory accesses as
the TriMedia. The ARM11’s instruction-set supports only a limited set of SIMD
instructions, which consists of additions and subtractions of byte or half-word data
values in 32-bit registers. Furthermore, the ARM features a complex dot-product
support operation, which multiplies two pairs of half-words in parallel, and adds the
two resulting word-wide values to an accumulator. Since there is no direct SIMD
multiplication operation available, kernels that do not match this dot-product sup-
port operation cannot be optimized.
Loop unrolling alone already has a large impact on the overall performance. Hence,
the speedup is measured by using the following equation:

Speedup = cyclesUnroll

cyclesV ector+SI M D f yer
(8.12)

CyclesUnroll denotes the number of cycles the test kernel needed when com-
piled with unrolling turned on, but the SIMD engines (i.e., Vectorizer and SIMD-
fyer) turned off. CyclesV ectori zer+SI M D f yer denotes the number of cycles the kernel
needed when compiled with the same unrolling factor and the SIMD engines acti-
vated. Hence, the speedup is only due to the SIMD instructions. All other compiler
parameters have always been identical.
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The results are quantified first for one simple, particular benchmark, that is, a dot
product, where vector elements are accessed by means of array accesses in the C
code:

for(i = 0; i < N; i++)
sum += a[i] * b[i];

Listing 8.19 Dot product

Due to the dependency on sum, a scalar expansion has to be applied to the loop
before SIMD instructions can be inserted. First of all, the impact of the alignment
analysis and the overhead introduced by scalar expansion is investigated. Figure 8.8
shows the speedup over the number of loop iterations I with and without alignment
analysis using a fixed unroll factor of 4. It can be clearly seen that a certain iteration
count is required to compensate the overhead by scalar expansion until SIMD pays
offs. Beyond that, the speedup is largely independent of I . For high iteration counts,
the speedup is asymptotically 2, which corresponds to the theoretical speedup in
this case. Obviously, the version without the dynamic alignment check reaches the
break-even point considerably faster than the one with the checks. The reason for
the extremely high speedup obtained on the ARM processor is due to type conver-
sions. Since the multiplications in the non-SIMD version produce results of 32 bits
size, these have to be converted to 16-bit precision afterward. The ARM compiler,
however, generates a sequence of a logical left shift by 16 bits, followed by an
arithmetic right shift back to achieve this. In the SIMD version, though, these steps
are not necessary since the results of the operations are already 16-bit values.
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Fig. 8.8 Speedup factor over loop iterations for dot product
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The former two cases have demonstrated the dependence of the speedup on the
iteration count. Another interesting figure is the development with dependence on
rising unroll factors (after SIMD optimization). The example given in Fig. 8.9 shows
the progression for the dot product. The number of iterations for this graph has been
chosen to N = 128. As apparent from Fig. 8.8, this is a number where the speedup
is already very close to its peak value.
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Fig. 8.9 Speedup factor over unroll factor for dot product

In the values for the TriMedia, little difference is seen between the versions with
or without dynamic checks. The strong rise in speedup for the high unroll factors
is due to the additional resource pressure created by the large loop body. Since
the VLIW architecture is inherently parallel, this pressure is needed to completely
saturate the CPU. The ARM’s progression, however, shows an unexpected decline
in performance for higher unroll factors. After close examination, the cause has
been determined to be register shortage resulting in a considerable amount of spill
code. Obviously, the ARM greatly benefits from the removal of the dynamic check,
since registers are freed and thereby more degrees of freedom are left to the register
allocator. The TriMedia processor with its 128 available registers is not affected by
this problem.

Loop unrolling is known to have a large impact on the code size. Hence, larger
speedups come at the expense of an increased code size. Figure 8.10 illustrates the
code-size increase for the dot-product kernel (I = 128) due to unrolling for both
the SIMD and non-SIMD version. The not unrolled, non-SIMD version is used as
baseline. Due to the RISC architecture of the ARM, the code-size increase caused
by unrolling alone is more significant than for the TriMedia. However, the SIMD
version for the ARM can compensate the code-size effect of unrolling to a great
extent. First, SIMD directly reduces the number of instructions inside the loop.
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Second, the special dot-product-style SIMD instruction almost eliminates the
overhead by scalar expansion. This kind of instruction is not available in the TriMe-
dia. Additionally, SIMD reduces the number of instructions for the TriMedia as well
but not necessarily the number of VLIW words. Hence, the SIMD version shows a
larger code-size factor than the non-SIMD version. For high unroll factor, the paral-
lel functional units of the TriMedia become saturated, which leads to a stronger rise
of the code size. However, for modest unroll factors (2 or 4), the increase in code
size is acceptable for both architectures.

Finally, Fig. 8.11 summarizes the speedup results for all benchmarks. The num-
ber of loop iterations I for the DSPStone kernels is fixed (I = 128) and for the
more complex DSP routines as specified. For each benchmark, the unroll factor is 4.
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In the presence of dynamic-alignment checks, the SIMD loop version including the
alignment check overhead has been measured. A significant speedup was obtained
in most cases. The speedup for the complex DSP routines is generally lower, since a
smaller fraction of the benchmark code can be mapped to SIMD instructions than in
the case of the DSPStone kernels. Still, a speedup of 7% up to 66% was observed.
In certain cases, a super-linear speedup for the ARM can be achieved (e.g., 2.2 for
fir). This is related to the special multiply instructions of the ARM that helps to
reduce the overhead introduced by scalar expansion. On the other hand, for three
benchmarks, no speedup could be obtained for the ARM due to the lack of a multi-
plication without accumulation.

Regarding the code size, for the DSPStone kernels, an average code-size factor
of 0.9 for the ARM and 1.1 for the TriMedia can be observed, as compared to
benchmarks with unrolling enabled but without use of the SIMD optimizations. The
code size of the complex kernels essentially remains the same for both architectures
since only a small portion of the code is replaced by SIMD instructions.

8.5 Conclusions

Almost all previous approaches to SIMD optimization are tailored to a specific
target architecture. This book presents a retargetable optimization framework for
the class of processors with SIMD support. The underlying concepts are proven by
integrating the SIMD framework into the CoSy platform that can be retargeted via
the Compiler Designer GUI. In this way, SIMD-enabled compiler for two realistic
embedded processors were generated. The required retargeting effort is quite limited
for both compilers.

This results in a seamless and retargetable path from a single LISA model to a
SIMD-enabled C compiler. While previous backend-oriented SIMD optimization
techniques potentially led to higher code quality, significant speedup results for
standard benchmarks were generally obtained with this framework. Hence, the pre-
sented approach provides a good and practical compromise between code efficiency
and compiler flexibility.

The current implementation shows several limitations, whose elimination would
probably lead to higher code quality and would allow to handle a wider range of loop
constructs. As pointed out in [7, 72, 212], SIMD optimization is often hindered by
limitations of the SIMD memory unit in combination with the memory access pat-
terns in current applications. It is often necessary to reorder the subregisters, using
special permute instructions before SIMD instructions can be applied at all. So far,
these instructions are rarely supported by embedded processors. However, with the
advances in semiconductor technology, the SIMD data path width will increase in
the future, and thus it becomes more likely that next generation embedded proces-
sors will support those. Therefore support for permutation seems to be a promising
extension for the future.
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