
Chapter 3
A Short Introduction to Compilers

This chapter summarizes briefly some basic terms and definitions of compiler con-
struction as well as the underlying concepts. It focuses mainly on the terminology
but not on detailed algorithms. More comprehensive surveys can be found, e.g., in
[3, 229, 244].

3.1 General Overview

A compiler is a program that translates a program written in one language (the
source language) into a semantically equivalent representation in another language
(the target language). Over the years, new programming languages have emerged,
the target architectures continue to change, and the input programs become ever
more ambitious in their scale and complexity. Thus, despite the long history of
compiler design, and its standing as a relatively mature computing technology, it
is still an active research field. However, the basic tasks that any compiler must
perform remain essentially the same.

Conceptually, the translation process can be subdivided into several phases as
shown in Fig. 3.1. The first is the analysis phase, often called the frontend, which
creates an intermediate representation (IR) of the source program. On this specifica-
tion, many compilers apply a sequence of high-level, typically machine-independent
optimizations to transform the IR into a form that is better suitable for code gen-
eration. This includes tasks such as common subexpression elimination, constant
folding, and constant propagation. A very common set of high-level optimizations
is described in [1]. This phase is also referred to as the midend of the compiler.
Finally, the synthesis phase, or the backend, constructs the desired target program
from the IR. The concrete organization within each phase, however, may strongly
vary between different compilers, especially that of the optimizations in the midend
and backend.

Frontend and backend are presented in more detail in the following sections.

3.2 Compiler Frontend

The first phase in the frontend is the lexical analysis. A scanner breaks up the pro-
gram into constituent pieces, called tokens. Each token denotes a primitive element
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of the source language, e.g., a keyword, an identifier, a character, etc. Generally,
most of these elements can be represented by regular expressions, which can be
parsed by finite state machines (FSMs). An FSM consists of a finite number of states
and a function that determines transitions from one state to another as symbols are
read from an input stream (i.e., the source program). The machine transitions from
state to state as it reads the source code. A language element (e.g., a keyword or an
integer number) is accepted if the machine reaches one of a designated set of final
states. In this case, a corresponding token is emitted and the machine returns to the
initial state to proceed with the next character in the stream. Given a list of regular
expressions, scanner generators such as GNU’s FLEX [106] can produce C code for
the corresponding FSM that can recognize these expressions.

Definition 3.1 (Context-free grammar) A context-free grammar G is a tuple G =
(T, N , R, S), where T denotes a finite set of terminals (i.e., the set of possible
tokens), N a finite set of nonterminals, and S ∈ N the start symbol. R is a relation
from X to (T ∪ N )∗, where X must be a member set of N .

The tokens are then further processed by the parser to perform a syntax anal-
ysis. Based upon a context-free grammar, it identifies the language constructs and
maintains a symbol table that records the identifiers used in the program and their
properties. The result is a parse tree that represents a derivation of the input pro-
gram from the start symbol S. If the token string contains syntactical errors, the
parser may produce the corresponding error messages. Again, parser generators are
available (e.g., GNU’s BISON [105]), which can generate a C implementation from
a context-free grammar specification.

Finally, a semantic analysis is performed that checks if the input program sat-
isfies the semantic requirements as defined by the source language; for instance,
whether all used identifiers are consistently declared and used. For practical rea-
sons, semantic analysis can be partially integrated into the syntax analysis using an
attribute grammar [67], an “extended” context-free grammar. Such grammars allow
the annotation of a symbol s ∈ (T ∪ N ) with an attribute set A(s). An attribute
a ∈ A(s) stores semantical information about a symbol’s type or scope. Each
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grammar rule r , with r ∈ R, using a can be assigned an attribute definition D(a).
The attributes are divided into two groups: synthesized attributes and inherited
attributes. The former are used to pass semantic information up the parse tree,
while inherited attributes passing them down. Both kinds are needed to implement a
reasonable semantic analysis. Such attribute grammar specifications can be further
processed by tools such as OX [143] (an extension of FLEX and BISON) to finally
create a parser with integrated semantic analysis.

The output IR format of the frontend is typically a list of expression trees or three-
address code. Generally, the frontend is not dependent on the target processor. Thus,
an existing language frontend can be combined with any target-specific backend,
provided that all of them use the same IR format (Fig. 3.2).
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C code Three address code Expression tree

Fig. 3.2 IR format examples

3.3 Compiler Backend

The task of the backend is the code generation that consists of several subtasks.
Since many of them are known to be NP-complete [163] problems, i.e., solving such
problems most likely requires algorithms with exponential runtime, code generation
typically relies on heuristics. Therefore and due to software engineering reasons, all
code generation tasks are implemented by separate algorithms. However, these tasks
are usually interdependent, i.e., decisions made in one phase impose constraints
in subsequent phases. While this works well for regular architectures, it typically
results in poor code quality for irregular architectures [270]. This is also known as
the phase coupling problem.

Before the different subtasks are presented in the following sections, several
program representations essential for most code generation subtasks (and for most
compiler optimizations) are introduced first.

3.3.1 Data- and Control-Flow Graphs

The data- and control-flow graphs provide more detailed information about the pro-
gram semantics than the plain IR representation. First, the control flow needs to be
computed. Each function is split into its basic blocks.
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Definition 3.2 (Basic block) A basic block B = (s1, ..., sn) is a sequence of IR
statements of maximum length, for which the following conditions are true: B can
only be entered at statement s1 and left at sn. Statement s1 is called the leader of
the basic block. It can either be a function entry point, a jump destination, or a
statement that follows immediately after a jump or a return.

Consequently, if the first statement of a basic block is executed, then all other
statements are executed as well. This allows certain assumptions about the state-
ments in the basic block, which enable the rearrangement of computations during
scheduling for instance. Basic blocks can be easily computed by searching for IR
nodes that modify the control flow of the program (e.g., goto and return statements).
Once the basic blocks have been identified, the control-flow graph can be con-
structed. An example is given in Fig. 3.3.

BB1:

else goto BB3;

BB2:

else goto BB4;

BB3:

BB4:

Fig. 3.3 Control-flow graph example

Definition 3.3 (Control-flow graph) A control-flow graph (CFG) of a function F is
a directed graph G F = (VF , EF ). Each node v ∈ VF represents a basic block, and
EF contains an edge (v, v′) ∈ VF × VF if v′ might be directly executed after v. The
set of successors succ of a basic block B is given by succB = {v ∈ VF | (b, v) ∈ EF }
and the set of predecessors pred of a basic block B is given by predB = {v ∈ VF |
(v, b) ∈ EF }.

The obvious edges are those resulting from jumps to explicit labels as the last
statement sn of a basic block. Furthermore, if sn is a conditional jump or a condi-
tional return, then a fallthrough edge to the successor basic block is additionally
created. In certain cases, sn is not a jump nor a return. Thus, in case a successor
block exists and its first statement follows immediately after sn in the IR represen-
tation, an edge to the successor block is created. Blocks without any outgoing edges
have a return statement at the end. In case the resulting CFG contains unconnected
basic blocks, there is an unreachable code that can be eliminated by a dead code
elimination optimization without changing the program semantics.

While the CFG stores the control flow on a basic block level, another important
data structure deals with the data dependencies between statements.
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Definition 3.4 (Data dependency) A statement s j of a basic block B = (s1, ..., sn)
is data dependent on statement si , with i < j , if si defines a value that is used by s j

(i.e., si needs to be executed before s j ).

A data-flow analysis (DFA) in its simplest form computes the data dependen-
cies just for single basic blocks, and thus is referred to as local DFA. Basically,
for each statement S, a data-flow equation is created, which requires the following
information:

• in[S], the directly available information before S
• out[S] the information available after S
• gen[S] new information generated within S
• kill[S] the information killed by S

The equations depend on the kind of data-flow information that has to be computed.
For the computation of reaching definitions, the equations have the following form:

in[S] =
⋃

p∈pred(S)

out[p] (3.1)

out[S] = gen[S] ∪ (in[S] − kill[S]) (3.2)

In order to obtain the information about available expressions, the equations change
to

in[S] =
⋂

p∈pred(S)

out[p] (3.3)

out[S] = gen[S] ∪ (in[S] − kill[S]) (3.4)

Similar data-flow equations exists to compute the variables that are active at a certain
program point. This information is required, e.g., for the register allocation. Solving
the resulting system of equations gives the concrete data-flow information for the
basic block. The result is stored in a Data Flow Graph (DFG).

Definition 3.5 (Data-flow graph) A data-flow graph (DFG) for a basic block B is a
directed acyclic graph G B = (VB, EB), where each node v ∈ VB represents an input
operand (constant, variable), an output (variable) operand, or an IR operation.
An edge e = (vi , v j ) ∈ EB ⊂ VB × VB indicates that the value defined by vi is
used by v j .

A DFG is called data-flow tree (DFT) if no node has more than one outgoing
edge, i.e., there are no common subexpressions. Typically, DFTs build the input data
for many popular code-selection techniques.

In practice, compilers perform a DFA for an entire function, called global DFA,
since local DFA hinders many optimization opportunities. Suppose, a basic block
has several outgoing control-flow edges, i.e., a definition of a variable (e.g., initial-
ized with a constant) may reach multiple uses, possibly in different basic blocks.
Thus, in order to exploit the full potential of, e.g., constant propagation, all uses
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reached by that definitions are required, which can only be provided by a global
DFA. Typically, local DFA is embedded as a sub routine in the global DFA that
iteratively solves the data-flow equations for an entire procedure.

The analysis can be extended even beyond function boundaries. The general idea
behind a so-called interprocedural analysis is to collect the information flowing into
a function and then use it, to update the local information. This requires information
about

• which functions ft any particular function f calls,
• f ’s return values,
• which functions fc call any particular function g, and
• which arguments fc passes to g.

The information about the calling behavior is usually captured in the concept of
a call graph. Figure 3.4 depicts an example call graph.

…
f(x);

}

i(x)

main() f(x) g(x)

h(x)

Fig. 3.4 Call graph example

Definition 3.6 (Call graph) If a program P is composed of functions f1, . . . , fn,
then the call graph for P is a directed, edge-annotated graph G P = (V, E, s) with
V = { f1, . . . , fn}, E ⊂ V × V , and s : E �→ S, where S is the set of call sites. If
e = ( fi , f j ) ∈ E and s(e) = k, then the function fi calls the function f j from the
label k inside fi .

The interprocedural analysis therefore starts with the creation of a call graph
to capture the dependencies. If the whole program is visible to the compiler, the
direct and correct creation of a call graph is straightforward. Regardless of that,
most modern software consists of separate compilation units, which are linked after
their separate compilation to form the final program. The compiler is therefore not
able to analyze the whole program at once. This also prohibits the creation of a
complete call graph, since several uncertainties arise:

• Library functions may be called by the code known to the compiler. In that case,
the name and type of the callee are usually known, but the code is not analyzable.

• A function might be called by a code outside the compilation unit. This is usually
the case if the compiled module is part of a library. Many languages allow to
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specify storage-class attributes such as the static keyword in C. Using those
effectively rules out this possibility for specific functions.

• Functions may not be called directly by name but via function pointers. In that
case, an explicit data flow analysis is necessary to determine the set of actual
callees of a function call in a program.

3.3.2 Code Selection

Code selection is typically the first phase in the backend. Its task is to map the IR to
a semantically equivalent sequence of machine instructions. A common technique
for code selection uses DFTs as input and is based on tree parsing. This can be
efficiently implemented by tree pattern matching combined with dynamic program-
ming [2]. The basic idea is to describe the instruction-set of the target processor by
a context-free tree grammar specification.

Definition 3.7 (Context-free tree grammar) A context-free tree grammar G is a
tuple G = (T, N , P, S, w), where T denotes a finite set of terminals, N a finite set
of nonterminals, and P ⊆ N × (N ∪ T )∗ a set of production rules. S ∈ N is the
start symbol and w is a cost metric P → R for the production rules.

In the context of tree pattern matching, T can be seen as the set of all IR nodes
and N as some sort of temporaries or storage location (e.g., registers or memory) to
transfer intermediate results either between or inside instructions. The cost metric
describes the costs caused by executing the corresponding instruction, e.g., with
regard to performance, code size, or power consumption. The target code is gen-
erated by reducing the DFT to a single node (or covering the DFT) by repeatedly
applying one of the production rules P , i.e., a subtree T can be replaced by a non-
terminal n ∈ N if the rule n → T is in P .

As a typical example for a tree grammar rule, consider the rule for a register to
register ADD instruction:

reg → PLUS(reg, reg){costs} = {actions} (3.5)

with reg ∈ N and PLUS ∈ T . If the DFT contains a subtree that matches a subtree
whose root is labeled by the operator “PLUS” and its left and right sons are labeled
with “reg,” it can be replaced by reg. It should be noted here that both sons might
also be the result of further tree grammar rules that have been applied before. Each
rule is associated with a cost and an action section. The latter typically contains the
code to emit the corresponding assembly instruction.

It might happen that more than one rule covers a subtree. A cover is optimal if
the sum over all costs of involved rules is minimal. This can be implemented by a
dynamic programming approach, i.e., the optimum solution is based on the optimum
solution of (typically smaller) subproblems. More specifically, a tree pattern matcher
traverses the DFT twice:
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In the first bottom-up traversal, each node i of a DFT T is labeled with the set
of nonterminals it can be reduced to, the cheapest rule r ∈ P producing n and the
total cost (i.e., the costs covering the subtree rooted at i). This includes also those
nonterminals that might be produced by a sequence of rules. When the root node of
T has been reached, the rule that produces the start nonterminal S with minimum
cost is known.

In a second top-down traversal, the pattern matcher exploits the fact that a rule
for a node i also implicitly determines the nonterminals the subtrees of i must be
reduced to (otherwise the rule could not have been applied to i). Thus, starting at
the root node, it can now be determined which nonterminals must be at the next
lower level in T . Therewith for each nonterminal, the corresponding rule r can be
obtained whose action section emits finally the instructions. This traversal is recur-
sively repeated until the leaves of T have been reached. Figure 3.5 illustrates this
process using the tree grammar specification in Table 3.1.

ASSIGN

PLUS

MULT

CONST5LOAD

MULT

LOAD LOAD

reg1:2:c = 1
reg2:9:c = 1+1

reg1:2:c = 1
reg2:9:c = 1+1

imm:6:c=0
reg1:8:c = 0+1+1
reg2:7:c = 0+1

reg1:4:c = 1+2+1

reg2:9:c =1+2+1+1

reg1:5:c = 1+0+1
reg2:9:c = 1+0+1+1

reg1:3:c = 3+2+1
reg2:9:c = 3+2+1+1

stmt:1:c = 6+1

reg1:2:c=1
reg2:9:c = 1+1

Nonterminal:RuleNr:Cost

Selected rule

Fig. 3.5 Tree-pattern-matching example for the statement x = a ∗ b + c ∗ 5

Table 3.1 Tree grammar specification

Rule No. Nonterminal Tree pattern Instruction Costs

1 stmt → ASSIGN(ADDR,reg1) STORE dst = src 1
2 reg1 → LOAD(ADDR) LOAD dst = src 1
3 reg1 → PLUS(reg1,reg2) ADD dest = src1, src2 1
4 reg1 → MULT(reg1,reg2) MUL dest = src1, src2 1
5 reg1 → MULT(reg1,imm) MULI dest = src1, src2 1
6 imm → CONST 0
7 reg2 → imm LOADI dst = src 1
8 reg1 → reg2 MOVE21 dst = src 1
9 reg2 → reg1 MOVE12 dst = src 1
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Tree pattern matching finds an optimal set of instructions for a single DFT at
linear time in the number of DFT nodes. Furthermore, a number of tools are avail-
able that can generate tree pattern matchers from a target-specific tree grammar
specification. Examples of such so-called code generator generators are BEG [108],
burg [52], iburg [51], lburg (code selector of the lcc compiler [50]), OLIVE
(code selector of the SPAM compiler [247]), and twig [2].

In case the IR takes the form of a direct acyclic graph (DAG) (due to common
subexpressions), it is usually split into a forest of DFTs based on heuristics. While
this works well for regular architectures, for irregular architectures or architectures
with special custom instructions this may result in suboptimal code quality. Typi-
cally, such architectures comprise instructions that exceed the scope of a single DFT.
Therefore, different approaches to DAG-based code selection have been developed
such as in [159, 234]. Unfortunately, optimal code selection on DAGs is known to
be NP-complete. Thus, many approaches employ heuristics, impose several restric-
tions, or are mostly limited to small problem sizes in order to cope with the excessive
runtime requirements. The work in [111] presents a code generator generator, called
cburg, for a DAG-based code selector.

3.3.3 Register Allocation

The task of the register allocator is to assign variables and temporary values to a
limited set of physical machine registers. Registers are very expensive with regard
to area and power consumption. Therefore, many processor architectures implement
only a small register file. Due to the increasing gap between the processor’s speed
and the memory access time, the register allocation must keep the largest possible
number of variables and temporaries in registers to achieve good code quality. In
the following, the most important definitions and concepts of register allocation are
summarized.

Definition 3.8 (Life range) A virtual register r is live at a program point p, if there
exist a path in the control flow graph starting from p to an use of r on which r is not
defined. Otherwise r is dead at p.

Definition 3.9 (Interference graph) Let V denote a set of virtual registers. An
undirected graph G = (V, E) is called interference graph if for all v,w ∈ V ,
the following condition holds: v and w have intersecting life ranges.

State-of-the-art techniques for register allocation are based on a graph-coloring
paradigm. The notion of abstracting storage allocation problems to graph coloring
dates from the early 1960s [242]. More specifically, the problem of register alloca-
tion is translated into the problem of coloring the interference graph by K colors,
where K denotes the number of available physical registers. The basic idea of the
graph-coloring method is based on the following observation: If G contains a node n
with degree d (i.e., the number of edges connected to n) with d < K , a color k from
the set of K colors can be assigned to n that is different from the colors of all its
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neighbors. The node n is removed from G and a new graph G ′ = G − n is obtained
that, consequently, contains one node and several edges fewer and the algorithm
proceeds with the next node. This approach leads to a step-by-step reduction of the
interference graph. Since graph coloring is NP-complete, heuristics are employed to
search for a K -coloring. If such a coloring cannot be found for the graph, some val-
ues are spilled, i.e., values are kept in memory rather than in registers, which results
in a new interference graph. This step is repeated until a K -colorable interference
graph is found. An example is given in Fig. 3.6.
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Fig. 3.6 Code example, life ranges, interference graph, and its coloring (K = 3)

The first implementation of a graph-coloring register allocator was performed
by Chaitin et al. [93, 94]. Later, a priority-based scheme for allocation using graph
coloring has been described in [80, 81]. Almost all subsequent work is based on
these approaches.

The register allocation algorithms can be further subdivided according to their
scope. Local register allocation, such as in [80, 94], works only on a single basic
block at a time. In contrast, global register allocation algorithms exceed the basic
block boundaries and take the control-flow structure of the program into account,
e.g., an entire procedure or even a collection of procedures. Since the latter is able to
take execution frequencies of loop bodies, life ranges over basic block boundaries,
and calling conventions into account, a better cost analysis can be performed to
improve the spill heuristics. Therefore, many register allocators today are global
register allocators. Examples for graph-coloring-based global allocators are in [81,
199].

Of course, not all global allocation methods are based on graph coloring. Exam-
ples for different approaches include the bin-packing algorithm [198] and the prob-
ablistic register allocation given in [255]. Although graph-coloring allocators can be
implemented efficiently, they have a quadratic runtime complexity. This makes them
impractical whenever the compile time is a major concern like in dynamic compila-
tion environments or just-in-time (JIT) compilers. For this domain, an allocator with
linear runtime and acceptable code quality, called linear scan allocator, has been
proposed [174]. The linear scan algorithm consists of the following four steps:

1. Order all instructions linearly.
2. Calculate the set of live intervals.
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3. Allocate a register to each interval (or spill the corresponding temporary).
4. Rewrite the code with the calculated allocation.

The linear scan algorithm relies on a linear approximation of the instructions in
order to determine simultaneously alive intervals. This order influences the extent
and accuracy of live intervals, and hence the quality of the register allocation. As
investigated in [151], a depth-first ordering is the optimal one.

After instruction ordering is performed, the live intervals are computed. For tem-
poraries outside of a loop, the interval starts at the first definition of the register and
ends at its last use. For temporaries alive inside a loop, the interval must be extended
to the end of the loop. Given live variable information (e.g., via data-flow analysis
[1]), live intervals can be computed easily with one pass through the ordered instruc-
tion list. Intervals interfere if they overlap. The number of overlapping intervals
changes only at the start and end points of an interval. The computed live intervals
are stored in a list that is ordered in increasing start points to make the allocation
more efficient.

As defined in [174], given R available registers and a list of live intervals, the
linear scan algorithm must allocate registers to as many intervals as possible, but
such that no two overlapping live intervals are allocated to the same register. If
n > R live intervals overlap at any point, then at least n − R of them must be
spilled. For allocation, the linear scan algorithm maintains a number of sets:

1. The set of already allocated intervals called Allocated.
2. The mapping of active intervals to registers stored in the set named Active.

The algorithm starts with an empty Active set. For each newly processed live
interval, the algorithm scans Active from the beginning to the end and moves those
intervals to Allocated whose end points precede the processed interval’s start point.
Removing an interval from Active makes the corresponding register again available
for allocation. The processed interval’s start point becomes the new start position for
the algorithm and gets a physical register assigned that is not used by any interval
in Active. If all registers are already in use, one interval must be spilled. The spill
heuristics selects the interval with the highest end position.

Figure 3.7 depicts an example. The live intervals shown in the middle correspond
to the instruction ordering on the left. Suppose the set of allocatable physical reg-
isters is R1, R2, and R3. In the first step, the interval V1 is processed and, since
the Active list is empty, gets the physical register R1 assigned. Consequently, V1
is added to the Active list. When V2 is visited in the next step, V1 is still live and
another register R2 is assigned to V2 and added to Active. Afterward, interval V3
is processed and gets the last free physical register R3 assigned. Since no physical
register is available for V4, one interval must be spilled. The algorithm selects V1
for spilling because it has the highest end position and removes it from the Active
list. The example shows the corresponding state of the intervals and the active list.
The final allocation after processing all intervals is depicted on the right.

A retargetable linear scan allocator for the CoSy environment [38] was imple-
mented in [11] and compared to the regular graph-based register allocator. The
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Fig. 3.7 Linear scan allocation example

results show an average speedup of 1.6–7.1 for the register allocation while attaining
good code quality (average overhead in cycle count/code size is within 1–3%).

3.3.4 Instruction Scheduling

Most contemporary processors use pipelining to partially overlap the execution of
instructions or even Instruction-Level Parallelism (ILP) to execute several instruc-
tions in parallel such as Very Long Instruction Word (VLIW) machines for instance.
Generally, scheduling is the process of reordering instructions in such a way that the
maximum amount of parallelism among instructions is exploited. Similar to register
allocation, local schedulers work at the basic block level whereas global scheduler
deal with complete functions.

The scheduling process is limited by two major constraints [214]: first, data
hazards or control hazards causing dependencies between instructions that force
a sequential ordering and second resource limitations, i.e., structural hazards, that
force serialization of instructions requiring the same resource. A dependency graph
that captures these constraints constitutes the input for most scheduling techniques.

Definition 3.10 (Dependency graph) A dependency graph (DG) is an edge-weighted
directed acyclic graph G = (V, E, t ype, delay), where each node v in V represents
a schedulable instruction. The resource allocation of each instruction is given by its
reservation table r (v). An edge e = (vi , v j ) ∈ E ⊆ V × V indicates a depen-
dency between vi and v j and it is weighted with the minimum delay cycles given by
delay(e) the instruction v j can be started after vi .

The dependencies between instruction vi and v j , i < j , can be further catego-
rized into the following kinds [135]:

Data dependence: vi writes to a resource read by v j . Consequently, vi must be
scheduled before v j . This dependency is also referred to as read after write
(RAW) dependency and is also the most common type.
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Anti-dependence: v j reads a storage location written by vk with k �= i that is
overwritten by vi . Thus, in a correct schedule, v j reads the value defined by vk

before vi overwrites it. This is also known as write after read (WAR) depen-
dence. Since this is often the result of instructions that write results late in the
pipeline while others read the result early in the pipeline, the associated delay
is usually negative.

Output dependence: vi and v j write to the same storage location. A valid sched-
ule must perform the writes in their original order, i.e., the storage location
contains the result of v j after executing both instructions. This dependency is
also denoted as write after write (WAW) dependency.

Control dependence: Determines the ordering of v j with respect to a branch
instruction vi so that vi is executed in correct program order and only if it
should be. Thus v j is not executed until the branch destination is known. Gen-
erally, this kind of dependency can also be seen as a data dependency on the
program counter (PC) resource.

Note that the read after read (RAR) dependency is not considered a data hazard.
Since an instruction vi may take several cycles until its result becomes available

to v j , it is the scheduler’s task to fill these so-called delay slots with useful instruc-
tions instead of no-operations (NOPs). Given a dependency graph, a valid schedule
is obtained with a mapping function S that assigns each node v ∈ V a start cycle
number c, c ∈ N, such that

1. S(vi ) + delay(vi ) < S(v j ) to guarantee that no dependencies are violated.
2. r (vi ) ∩ r (v j ) �= ∅ to avoid structural hazards.

The goal is now to find a schedule Sopt that needs the fewest number of cycles to
execute. Let I denote the set of available machine instructions, then the length L(S)
of a schedule S can be described as follows:

L(S) = max(S(v) + max(delay(v,w))), ∀v ∈ V, w ∈ I (3.6)

The worst-case delay makes sure that the results are definitely available before
instructions of potential successor basic blocks are executed. Unfortunately, com-
puting the optimal schedule Sopt is an NP-complete problem. Several heuristics are
in use for scheduling whereas list scheduling [68] is the most common approach.
This algorithm for local scheduling keeps a ready set that contains all instructions v

which predecessors in the dependency graph have already been scheduled. The list
scheduler selects an instruction from the ready set and inserts it into the schedule S.
Afterward, the ready set is updated accordingly and the scheduler proceeds with the
next instruction from the ready set. Different heuristics have been proposed to pick a
node from the ready set since this strongly influences the length of the schedule. For
instance, one heuristic picks the instruction on the current critical path. This path
represents the theoretical optimal schedule length. Figure 3.8 shows an example
using this heuristic.
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Fig. 3.8 List-scheduling example; note that two instructions are scheduled in each step

List scheduling has a worst-case complexity that is quadratic in the number of
instructions to schedule. However, list scheduling is conceptually not effective in
handling negative latencies (in case of anti-dependencies) and filling delay slots.
A solution to this problem are backtracking schedulers [232]. Such schedulers can
revert previous scheduling decisions to schedule the current instruction earlier if this
is likely to be more advantageous.

The amount of parallelism that can be exploited within a single basic block is
quite limited since it contains only a few instructions on average. This is especially
a problem for loop bodies that constitute typically the hot-spots of a program. One
way to increase the number of instructions in loop bodies is loop unrolling, i.e.,
duplicating the loop body while reducing the number of required iterations. Another
possibility is a scheduling technique especially for loops, called modulo scheduling
[47]. It is an algorithm for software pipelining loops [173], i.e., the overlapping
execution of several iterations.

An algorithm for global scheduling is trace scheduling [130]. The basic idea is
to jointly schedule instructions of frequently executed and consecutive basic blocks.
The execution frequency of basic blocks has to be obtained by profiling. Such a
sequence of basic blocks is called a trace and is considered as a single, large basic
block. In this way, the opportunities for ILP exploitation are increased. However,
since the basic block boundaries are neglected, undesired side effects may arise. In
order to fix this, compensation code has to be inserted. Of course, this results in a
significant code-size increase that constitutes the major drawback of this approach.

3.3.5 Code Emitter

The code emitter is the final phase of the compiler backend. It is responsible to
write the result of the previous phases into a syntactically correct assembly pro-
gram, typically in an output file. The data structure of the emitter is an emission
table. Each row, sorted in increasing order, represents a clock cycle and each column
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an instruction. The code emitter first fills the emission table using the clock cycle
information determined by the scheduler. Thus, each row represents the instructions
that are executed together. Afterward, the table is dumped row by row, where empty
cells are replaced by NOP instructions. While this is straightforward for single issue
architectures, i.e., the table has only one column, constructing instructions for ILP
architectures is sometimes more difficult. Such architectures typically impose con-
straints on how the instructions can be combined to build a valid instruction word.
Therefore, a packer is incorporated in the emitter that composes syntactically correct
assembly instructions for a given row. The final executable is then build from the
assembly file using an assembler and linker. Both are usually separate tools that run
after the compiler.

3.4 Retargetable Compilers

The embedded domain is characterized by a large variety of processor designs.
Obviously, designing a new compiler for every single one of them is too costly.
Additionally, developing a compiler is a time-consuming task, and hence, it may
become available too late to be really useful for the architecture exploration phase.
In many cases, this results in a compiler architecture mismatch that makes it quite
difficult for Compiler Designers to ensure good code quality. This has led to the
development of retargetable compilers. Such compilers are capable of generating
code for different hardware architectures with few modifications of its source code.
Such compilers take a formal description, e.g., specified in an ADL, of the target
architecture as input and adapt themselves to generate code for the given target. The
retargetability support mostly needs to be provided for code selector, scheduler, and
register allocator, i.e., the compiler backend (Fig. 3.9).
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Fig. 3.9 Non-retargetable vs. retargetable compiler flow
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Different degrees of retargetability exists to achieve this goal. According to the
classification in [219], compilers can be assigned to one of the following classes:

Parameterizable: Such compilers can only be retargeted to a specific class of pro-
cessors sharing the same basic structure. The compiler source code is largely
fixed. The machine description only consists of numerical parameters such as
register file sizes, word lengths, the number of functional units, or different
instruction latencies.

User retargetable: An external machine description given in a dedicated lan-
guage contains the retargeting information. All information required for code
generation is automatically derived from this description. The specification
does not require in-depth compiler knowledge, and hence can be performed
by an experienced user.

Developer retargetable: Retargeting is also based on an external target descrip-
tion. However, the specification requires extensive compiler expertise usually
possessed only by very experienced users or Compiler Designers.

A retargetable compiler has to be as target-independent as possible in order to
be applicable for a wide variety of processor types. As a result, such compilers can
only make few assumptions about the target machine, i.e., less target-specific hard-
ware features can be exploited to produce efficient code. Hence, one of the major
challenges in the design of retargetable compiler is to provide good optimizations
for a wide variety of target architectures. Therefore, many retargetable compilers
are limited to a certain processor class in order to ensure good code quality. New
retargetable optimization techniques offer a solution to extend the range of target
processor. This is further discussed in Chapters 8 and 9. Typically, retargetable
compilers are limited to one of the following processor classes:

General purpose processors (GPPs): GPPs are characterized by an universal
instruction-set architecture that provides a high degree of flexibility. As a
result, they achieve good performance for a wide variety of applications.
Unfortunately, this comes usually at the expense of a higher power consump-
tion that makes them pretty much unusable for the embedded domain. Instead,
such processors are widespread in desktop or portable PCs. Prominent exam-
ples for this class are MIPS [179], ARM [41], and the well-known Intel x86
architectures [122].

Very long instruction word processors (VLIW): This architecture is designed to
exploit ILP that comes along with very high performance. Several functional
units can be executed in parallel, whereas each unit is related to a specific
field in the instruction word. Since such processors do not feature dedicated
scheduling hardware such as superscalar architectures, the compiler is respon-
sible for exploiting the ILP that might be present in the given applications.
Representative examples of this processor class include the TriMedia and
Nexperia architectures [190], the Embedded Vector Processor [152], and the
ST200 [84].
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Digital signal processors (DSPs): DSPs have been specifically designed for
signal-processing applications. Consequently, their instruction-set supports
dedicated instructions for the efficient execution of common signal-processing
computations, such as fast Fourier transformation (FFT) or digital filtering.
Additionally, such processors usually feature hardware multipliers, address
generation units (AGUs), and zero overhead loops. Typical DSP examples are
the TI C5x and C6x [259], the ADSP 2101 [42], and the MagicDSP [70].

Micro-controllers: Micro-controllers operate at clock speeds of as low as a few
MHz and are very area efficient. The processor core implements a complex
instruction-set computer (CISC) architecture. The chip typically integrates
additional elements such as read-only memory (ROM) and random access
memory (RAM), erasable programmable ROM (EPROM) for permanent data
storage, peripheral devices, and input/output (I/O) interfaces. They are fre-
quently used in automatically controlled products and devices, such as engine
control systems, remote controls, office machines, and appliances. Examples
for this kind of architecture are the Motorola 6502 [181] and the Intel 8052
[122].

Application specific instruction-set processors (ASIPs): ASIPs show highly opti-
mized instruction-sets and architectures, tailored for dedicated application
domains such as image processing or network traffic management. In this way,
they achieve a good compromise between flexibility and efficiency. Examples
of this kind are ICORE [251], SODA [281], a channel decoder architecture
for third-generation mobile wireless terminals [78], and an ASIP for Internet
Protocol Security (IPSec) encryption [109].

Some prominent retargetable compilers primarily for GPPs are gcc [87] and lcc
[50]. Trimaran [263] and IMPACT [57] are examples for retargetable compilers
for VLIW architectures. Other examples include CoSy [38], LANCE [222], SPAM
[247], and SUIF [249]. Some of them constitute a key component of the ASIP design
environments discussed in Chapter 4. A comprehensive survey of retargetable com-
pilers can be found in [224].

3.5 Synopsis

• Compilers can be coarsely separated into a frontend and a target-specific backend
(code selector, scheduler, register allocator).

• Retargetable compilers can be quickly adapted to varying processor configura-
tions.

• Such compilers are capable of generating the backend components from a for-
malized processor description (e.g., an ADL model).
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