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Chapter 1
Introduction

1.1 Motivation

Digital information technology has revolutionized the world during the last few
decades. Today about 98% of programmable digital devices are actually embedded
[132]. These embedded systems have become the main application area of informa-
tion technology hardware and are the basis to deliver the sophisticated functionality
of today’s technical devices. As shown in Fig. 1.1(a), current forecasts predict a
worldwide embedded system market of $88 billion in 2009.
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Over the past few years, the ever-increasing complexity and performance require-
ments of new wireless communications, automotive and consumer electronics appli-
cations are changing the way embedded systems are designed and implemented
today. In conformity with Moore’s law [99], one driving force is the rapid progress
in deep-submicron process technologies. Chip designers and manufacturers have
constantly pushed the envelope of technological and physical constraints. In fact,
designers have more gates at their disposal than ever before. However, current
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2 1 Introduction

mainstream-embedded system designs are not using at least 50% of the silicon area
available to them (Fig. 1.1(b)). The growth in design complexity threatens to outpace
the designer’s productivity, on account of unmanageable design sizes and the need
for more design iterations due to deep-submicron effects. This phenomenon is also
referred to as crisis of complexity [103] and comes along with exponentially grow-
ing non-recurring engineering (NRE) costs (Fig. 1.2) to design and manufacture
chips. Understandably, these costs only amortize for very large volumes or high-end
products.
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Fig. 1.2 Projected embedded system design cost model [123]

Consequently, more and more application-specific integrated circuits (ASICs)
are replaced by programmable processors. Such processor platforms extend the
product life cycle and achieve greater design reuse via software, thereby reducing
development times and NRE costs. Moreover, the flexibility of software can be used
to create design derivates, to make functional corrections due to process defects, and
to provide performance improvements via updates.

Meanwhile, the high degree of integration offered by today’s semiconductor tech-
nology permits increasingly complex systems to be realized in a single programm-
able system-on-chip (SoC). Current SoC designs employ several programmable
processor cores, memories, ASICs, and other peripherals as building blocks. It is
conjectured that by the end of the decade, SoCs feature hundreds of heterogeneous
processor cores connected by a network-on-chip (NoC).

In order to efficiently explore the huge design space, tools and methodologies that
offer the next level of productivity required for successful SoC design are needed.
This has led to significant research activities in the field of electronic system level
(ESL) design. ESL design automation tools provide the ability to quickly assem-
ble, simulate, and analyze alternative architectures. The ultimate goal is to find the
optimal combination of components for the given application domain within a short
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time-to-market window. One piece in this puzzle is to rightly balance flexibility vs.
performance for each system component.

On one side of the flexibility vs. performance spectrum are general purpose pro-
cessors (GPPs). They offer high programmability and low design time, but may
not satisfy area and performance challenges. On the other side of the spectrum are
ASICs. They can be easily optimized for the given application, but, naturally, pro-
vide almost no flexibility and suffer from a lengthy and costly design process. There-
fore, an increasing number of embedded SoC designs employ application-specific
instruction-set processors (ASIPs) [29, 131, 164] as efficient implementation vehi-
cles. They provide the best of both worlds, i.e., high flexibility through software
programmability and high performance through specialization. However, finding
the optimal balance between flexibility, performance, and energy efficiency con-
straints requires a thorough architecture exploration. This process demands software
development tools in order to efficiently map application programs to varying ASIP
configurations. In particular, the availability of a compiler translating high-level pro-
gramming languages to assembly code became inevitable. Embedded processors
have been traditionally programmed in assembly languages due to efficiency rea-
sons. Considering the increasingly growing software content of SoCs (Fig. 1.3(b)),
this is a time-consuming and error-prone process that is no longer feasible given
today’s tight time-to-market constraints. Furthermore, compiler-in-the-loop design
space exploration helps to understand the mutual dependencies between processor
architectures, the respective instruction-set, compilers, and the resulting code [194].
Otherwise the result might be a strong compiler-unfriendly architecture leading to
an inefficient application design in the end.
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Nowadays retargetable compilers are widely used for architecture exploration
since they can be quickly adopted to varying processor configurations. Unfortu-
nately, such compilers are often hampered by their limited code quality as compared
to handwritten compilers or assembly code due to the lack of dedicated optimization
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techniques. In order to narrow the code quality gap, this needs generalized opti-
mization techniques for those architectural features that are often recurring in ASIP
design. This achieves retargetability and high code quality for a whole target pro-
cessor class.

A complete compiler-in-the-loop architecture exploration as shown in Fig. 1.3(a)
also demands assembler, linker, simulator, and profiler, which, naturally, have to
be retargetable as well. This led to the development of architecture description lan-
guages (ADLs) that enable the automatic generation of the complete software toolkit
(or at least components thereof) from a single-processor model. The high degree of
automation reduces the design effort significantly and hence allows the designer
to explore a larger number of architectural alternatives. The most challenging task
designing an ADL, though, is to capture the architectural information needed for
the tool generation in an unambiguous and consistent way. This is particularly diffi-
cult for compiler and simulator as they essentially need both the information about
the instruction’s semantics but from different points of view. The compiler, more
specifically the compiler’s code selector, needs to know what an instruction does
in order to select appropriate instructions for a given piece of source code, while
the simulator needs to know how the instruction is executed. In practice it is quite
difficult, if not impossible, to derive one information from the other. None of the
existing ADLs – if compiler generation is supported at all – solves this problem
in a sophisticated manner. Either redundancies are introduced or the language’s
flexibility is sacrificed. Moreover, the specification of compiler-relevant information
mostly requires in-depth compiler knowledge. This particularly applies for the code
selector specification, the largest part of the compiler description. So far, there is
almost no support to generate code selector descriptions automatically.

This book presents a solution to the aforementioned retargetable compilation
problems. A novel technique is developed for extracting the code selector descrip-
tion fully automatically from an ADL processor model. The approach is based on the
LISA ADL [15] using a language extension for instruction semantics description.
This enables the automatic generation of both C compilers and simulator from a
single-processor description without losing flexibility or introducing inconsisten-
cies. In this way, a high speedup in compiler generation is achieved, which con-
tributes to a more efficient ASIP design flow. The feasibility of the approach is
demonstrated for several contemporary embedded processors.

In order to improve the code quality of the generated compilers, retargetable
optimizations for two common ASIP features, namely single instruction multiple
data (SIMD) support and predicated execution, are presented. Several representative
RISC cores and VLIW architectures are used as driver architectures to obtain code
quality results. In this way, the code quality of the generated compilers for archi-
tectures equipped with at least one of these features can be significantly improved.
Furthermore, a new retargetable assembler is implemented supporting an interface
for the implementation of code optimizations. This allows the user to quickly create
custom low-level optimizations. An instruction scheduler and peephole optimizer
are built as demonstrators.
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As a result, this book presents an integrated solution to enable a complete and
retargetable path from a single LISA processor model to a highly optimizing C com-
piler and assembler. This completes LISA’s already established capabilities such that
efficient compiler-in-the-loop architecture exploration becomes broadly feasible.

1.2 Outline of the Book

This book is organized as follows. Chapter 2, provides a background covering the
necessity of architecture description formalisms and compiler-in-the-loop architec-
ture exploration. Afterward, Chapter 3 gives a short introduction to compiler con-
struction where the most important concepts required for the scope of this book are
summarized. Chapter 4 describes the related work in the field of compiler-aided
processor design. The advantages and drawbacks of various approaches are also
clearly mentioned. Surveys of relevant publications specifically related to individ-
ual chapters of this book are given at the beginning of the corresponding chapters.
The work presented in this book is integrated into the industry-proven Processor
Designer ASIP design platform. The related Language for Instruction-Set Archi-
tectures (LISA) ADL and the current C compiler generation flow are elaborated in
Chapter 5, whereas Chapter 6 presents a novel technique to generate the code selec-
tor description fully automatically from a LISA processor description. Chapter 7
provides an analysis of the code quality produced by the generated compilers.
Afterward, Chapter 8 and 9 present two high-level retargetable code optimizations,
more specifically, an optimization for the class of processors with SIMD support
and predicated execution, respectively. Chapter 10 concentrates on a retargetable
assembler for the quick implementation of user-defined assembly-level optimiza-
tions. Chapter 11 finally summarizes the major results of this work and gives an
outlook to future research. Appendix A contains an overview of the developed LISA
language extensions and Appendix B provides the formal description of the database
as used for code selector generation.



Chapter 2
ASIP Design Methodology

The design of an ASIP is a challenging task due to the large number of design
options. The competing design decisions such as flexibility, performance, and
energy consumption need to be weighted against each other to reach the optimal
point in the entire design space. Moreover, the increasing software complexity of
today’s SoCs requires a shift from traditional assembly programming to high-level
languages to boost the designer’s productivity. As a result, processor designers
demand an increasing support from the design automation tools to explore the
design space and rightly balance the flexibility vs. performance trade-off.

Section 2.1 first presents the four major phases in an ASIP design. Afterward,
Section 2.2 elaborates on the benefits and issues of compiler-in-the-loop architecture
exploration. Finally, Section 2.3 presents prominent ASIP design methodologies. A
survey of different ASIP design environments is given in [171].

2.1 ASIP Design Phases

The design of an ASIP is a highly complex task requiring diverse skills in different
areas. The design process can be separated into four interrelated phases (Fig. 2.1):

System
Integration

Architecture
Implementation

Software
Application

Design

Architecture
Exploration

Fig. 2.1 ASIP design phases

Architecture exploration: The target application is mapped onto a processor
architecture in an iterative process that is repeated until a best fit between
architecture and application is obtained. According to Amdahl’s law [88],
the application’s hot spots need to be optimized to achieve high performance
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improvements, and hence constitute promising candidates for dedicated hard-
ware support and custom instructions. In order to identify those hot spots,
profiling tools such as in [148, 203] are employed. Based on this hardware/
software partitioning the instruction-set architecture (ISA) is defined in a sec-
ond step. Afterward, the micro-architecture needs to be designed that imple-
ments the ISA. The whole process requires an architecture-specific set of
software development tools (compiler, assembler, linker, simulator, and pro-
filer). Unfortunately, every change to the architecture specification requires a
complete new set of software development tools.

Architecture implementation: The specified processor is converted into a syn-
thesizable hardware description language (HDL) model. For this purpose,
languages such as VHDL [121] or Verilog [120] are employed. This model
can then be further used for a standard synthesis flow (e.g., design compiler
[250]). With this additional transformation, quite naturally, considerable con-
sistency problems can arise between the architecture specification, the soft-
ware development tools, and the hardware implementation.

Software application design: Software designers need a set of production-
quality software development tools for efficient application design. However,
the demands of the software application designer and the hardware proces-
sor designer place different requirements on software development tools. For
example, the processor designer needs a cycle/phase-accurate simulator for
hardware–software partitioning and profiling, which is very accurate, but
inevitably slow. The application designer in contrast demands more simu-
lation speed than accuracy. At this point, the complete set of software devel-
opment tools is usually re-implemented by hand, which leads to consistency
problems.

System integration and verification: The designed ASIP must be integrated into
a system simulation environment of the entire SoC for verification. Since
the interaction of all SoC components may have an impact on the pro-
cessor performance, this provides more accurate results as compared to an
instruction-set simulator. However, in order to integrate the software simu-
lator, co-simulation interfaces must be developed. Again, manual modifica-
tions of the interfaces are required with each change of the architecture.

In traditional ASIP design, these phases are processed sequentially and are assigned
to different design groups each with expert knowledge in the respective field. Design
automation – if available at all – is mostly limited to the individual phases. More-
over, results in one phase may impose modifications in other phases. As a result, the
complexity of design team interactions and communications necessary to success-
fully undertake a SoC-based design is a significant time-consuming factor. What
makes this even more challenging is the large number of design alternatives that
need to be weighted against each other. Consequently, the designer’s productivity
becomes the vital factor for successful products due to the complexity and tight
time-to-market constraints. As a result, there is a strong interest in comprehensive
design methodologies for efficient embedded processor optimization and
exploration.



2.2 Compiler-in-the-Loop Architecture Exploration 9

2.2 Compiler-in-the-Loop Architecture Exploration

Much of the functionality in a SoC is implemented in software due to a number
of reasons: the flexibility of software offers wide design reuse (to reduce NRE
costs) and compatibility across applications. It is conjectured that the amount of
software in embedded systems roughly doubles every 2 years [85]. As a result, a
rapidly increasing amount of software has to be validated and/or developed. This
involves not only essential hardware drivers but also complete operating systems.
Furthermore, new applications, exploiting the new hardware capabilities, need to be
developed before the end products based on the SoC can be sold.

Compilers are among the most widespread software tools, used for decades on
desktop computer. For embedded processors, however, the use of compilers is tra-
ditionally less common. Many designers still prefer assembly languages due to effi-
ciency reasons. Considering the increasing complexity of applications and today’s
short time-to-market windows, assembly programming is no longer feasible due
to the huge programming effort, portability, and maintainability. Obviously, such
requirements can be much better met by using high-level language (HLL) com-
pilers. In the context of embedded systems, the C programming language [45] is
widely used. It is a well-tried programming language that allows a very low-level
programming style at a stretch. Additionally, this enables a broad design reuse since
there already exists a large amount of industry standards and legacy code in C.
Unfortunately, designing a compiler is a complex task that demands expert knowl-
edge and a large amount of human resources. As a result, compilers are often not
available for newly designed processors. Clearly, this increases the probability of
designing a strong compiler-unfriendly architecture, which leads to an inefficient
application implementation in the end. In fact, many in-house ASIP design projects
suffer from the late development of the compiler. Compiler Designers often have
severe difficulties ensuring good code quality due to instruction-sets that have pri-
marily been designed from a hardware designer’s perspective. On the other hand, a
compiler-friendly instruction-set and architecture might not be entirely suitable to
support the hardware designer’s effort meeting constraints such as area and power
consumption. Therefore, compiler-in-the-loop architecture exploration is crucial to
avoid a compiler and architecture mismatch right from the beginning and to ensure
an efficient application design for successful products.

The inherently application-specific nature of embedded processors leads to a
wide variety of embedded processor architectures. Understandably, developing the
software tools, in particular the compiler, for each processor is costly and extremely
time-consuming. Therefore, retargetable C compilers have found significant use in
ASIP design in the past years since they can be quickly adapted to varying processor
configurations. This is also a result of the increasing tool support for automatically
retargeting a C compiler based on formalized processor descriptions [224].

In compiler-in-the-loop architecture exploration the compiler plays a key role to
obtain exploration results. Due to the ambiguity of the transformation of C applica-
tions to assembly code, it is possible to quickly evaluate fundamental architectural
changes with minimal modifications of the compiler [194]. In this way, designers
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can meaningfully and rapidly explore the design space by accurately tracking the
impact of changes to the instruction-set, instruction latencies, register file size, etc.
This is an important piece in the puzzle to better understand the mutual depen-
dencies between micro-architecture design, the respective instruction-set, compil-
ers, and the achieved code quality. What is most important in this context is the
specification of the compiler’s code selector. It basically describes the mapping of
the source code to an equivalent sequence of assembly instruction and hence sig-
nificantly affects the final ISA definition (i.e., the software/hardware partitioning).
However, the success of compiler-aided architecture exploration strongly depends
on a flexible C compiler backend that is generated from the processor description.

Even though retargetable compilers have found significant use in ASIP design in
the past years, they are still hampered by their limited code quality as compared to
handwritten compilers or assembly code. This is actually no surprise, since higher
compiler flexibility comes at the expense of a lower amount of target-specific code
optimizations. Since such compilers can only make few assumptions about the target
machine, it is, understandably, much easier to support machine-independent opti-
mizations rather than techniques exploiting novel architectural features of emerging
embedded processors. However, the lower code quality of the compilers is usu-
ally acceptable considering that the C compiler is available early in the processor
architecture exploration loop. Thus, once the ASIP architecture exploration phase
has converged and an initial working compiler is available, it must be manually
refined to a highly optimizing compiler or the application’s hot spots must be man-
ually replaced by assembly programs – both are time-consuming tasks. One way to
reduce the design effort is to provide retargetable optimizations for those architec-
tural features that characterize a processor class, e.g., hardware multi-threading for
network processors (NPU) [110]. In this way, retargetability and high code qual-
ity for this particular class of processors is achieved. For instance, retargetable
software pipelining support is less useful for scalar architectures; however, it is a
necessity for the class of VLIW processors, and for this class it can be designed in
a retargetable fashion. This book contributes retargetable optimization techniques
for two common ASIP features to further improve the code quality of retargetable
compilers.

A retargetable assembler, linker, simulator, and profiler complete the required
software development infrastructure. Needless to say that keeping all tools manually
consistent during architecture exploration is a tedious and error-prone task. Addi-
tionally, they must also be adapted to modifications performed in the other design
phases. As a result, different automated design methodologies for efficient embed-
ded processor design have evolved. Two contemporary approaches are presented in
the next section.

2.3 Design Methodologies

One solution to increase the design efficiency is to significantly restrict the design
space of the processor. More specifically, such design environments are limited to a
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predefined processor template whose software tools and architecture can be config-
ured to a certain extent (Fig. 2.2).

Prominent examples for this approach are the Xtensa [215] and the ARCtangent
[43] processor families. Considering that all configuration options are preverified
and the number of possible processor configurations is limited, the final processor
can be completely verified. However, this comes at the expense of a significantly
reduced design space, which imposes certain limitations. The coarse partitioning
of the design space makes it inherently difficult to conceive irregular architectures
suited for several application domains. Furthermore, certain settings of the template
may also turn out to be redundant or suboptimal, like memory interface or the reg-
ister file architecture for instance. Another limitation is imposed by the support for
custom instructions. Such instructions must be typically given in an HDL descrip-
tion, and hence cannot be directly utilized by the compiler.

Another, more flexible concept for ASIP design is based on architecture descrip-
tion languages (ADLs). Such languages have been established recently as a viable
solution for an efficient ASIP design (Fig. 2.3). ADLs describe the processor on a
higher abstraction level, e.g., instruction accurate or cycle accurate, to hide imple-
mentation details. One of the main contribution of such languages is the auto-
matic generation of the software toolkit from a single ADL model of the processor.
Advanced ADLs are even capable of generating the system interfaces and a syn-
thesizable HDL model from the same specification. This eliminates the consistency
problem of the traditional ASIP design flow since changes to the processor model
directly lead to a new and consistent set of software tools and hardware implemen-
tation. In this way, they provide a systematic mechanism for a top-down design and
validation of complex systems. The high degree of automation reduces the design
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effort significantly and thus allows the designer to explore a larger number of archi-
tectural alternatives.

Early ADLs, such as ISPS [157], were used for the simulation, evaluation, and
synthesis of computers and other digital systems. Contemporary ADLs can be clas-
sified into three categories [112] based on the kind of information an ADL can
capture:

Instruction-set centric: Instruction-set-centric languages have been designed
with the generation of an HLL compiler in mind. Consequently, such lan-
guages must capture the instruction-set behavior (i.e., syntax, coding, seman-
tic) of the processor architecture, whereas the information about the detailed
micro-architecture (i.e., pipeline stages, memories, buses, etc.) does not need
to be included. However, it is hardly possible to generate HDL models from
such specifications. Typical representatives for this kind of ADLs are nML
[10, 141], ISDL [97], and CSDL [186].

Architecture centric: These kinds of ADLs capture the structure in terms of
architectural components. Therefore, they are well-suited for processor syn-
thesis. But on the other hand, these languages typically have a low abstraction
level leading to a quite detailed architecture specification. Unfortunately, it
is quite difficult, if not impossible, to extract compiler-relevant information
(e.g., instruction’s semantic) from such informal models. Prominent exam-
ples for this category of ADLs are MIMOLA [235], UDL/I [264], and AIDL
[254].

Combination of both: These so-called mixed-level description languages [13]
describe both, the instruction-set behavior and the structure of the design.
This enables the generation of software tools as well as a synthesizable hard-
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ware model. However, capturing both information can lead to a huge descrip-
tion, which is difficult to maintain. Additionally, such languages can suffer
from inconsistencies due to duplicated informations. Certain architectural
aspects need to be described twice, e.g., once for compiler generation and
once for processor synthesis. ADLs belonging to this group are MDes [134],
RADL [155], FlexWare [207], MADL/OSM [275], EXPRESSION [201],
and LISA [15].

Obviously, designing an ADL that captures all aspects of ASIP design in an
unambiguous and consistent way is a challenging task. This is further aggravated by
the fact that most ADLs have originally been designed to automate the generation
of a particular component and have then been extended to address the other aspects.
As a result, ADLs are often well-suited for the purpose they have been designed for,
but impose major restrictions on, or are even incapable of the generation of the other
components. This is true in particular for the generation of compiler and simulator.
Therefore, a further focus of this book are methodologies to generate compiler and
simulator from a single ADL specification without limiting its flexibility or archi-
tectural scope. A detailed discussion of different ADLs is given in Chapter 4.

2.4 Synopsis

• Finding the optimal balance between flexibility and performance requires the
evaluation of different architectural alternatives.

• HLL compilers are needed in the exploration loop to cope with the growing
amount of software and to avoid hardware/software mismatches.

• The widely employed retargetable compilers suffer from their lower code quality
as compared to handwritten compilers or assembly code.

• For quick design space exploration methodologies using predefined processor
templates or ADL descriptions are proposed.

• ADL support for the automatic generation of the complete software tool chain
(in particular, compiler and simulator) is currently not satisfactory.

• The primary focus of this book is the generation of C compilers from ADL
processor models and retargetable optimization techniques to narrow the code
quality gap.



Chapter 3
A Short Introduction to Compilers

This chapter summarizes briefly some basic terms and definitions of compiler con-
struction as well as the underlying concepts. It focuses mainly on the terminology
but not on detailed algorithms. More comprehensive surveys can be found, e.g., in
[3, 229, 244].

3.1 General Overview

A compiler is a program that translates a program written in one language (the
source language) into a semantically equivalent representation in another language
(the target language). Over the years, new programming languages have emerged,
the target architectures continue to change, and the input programs become ever
more ambitious in their scale and complexity. Thus, despite the long history of
compiler design, and its standing as a relatively mature computing technology, it
is still an active research field. However, the basic tasks that any compiler must
perform remain essentially the same.

Conceptually, the translation process can be subdivided into several phases as
shown in Fig. 3.1. The first is the analysis phase, often called the frontend, which
creates an intermediate representation (IR) of the source program. On this specifica-
tion, many compilers apply a sequence of high-level, typically machine-independent
optimizations to transform the IR into a form that is better suitable for code gen-
eration. This includes tasks such as common subexpression elimination, constant
folding, and constant propagation. A very common set of high-level optimizations
is described in [1]. This phase is also referred to as the midend of the compiler.
Finally, the synthesis phase, or the backend, constructs the desired target program
from the IR. The concrete organization within each phase, however, may strongly
vary between different compilers, especially that of the optimizations in the midend
and backend.

Frontend and backend are presented in more detail in the following sections.

3.2 Compiler Frontend

The first phase in the frontend is the lexical analysis. A scanner breaks up the pro-
gram into constituent pieces, called tokens. Each token denotes a primitive element
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of the source language, e.g., a keyword, an identifier, a character, etc. Generally,
most of these elements can be represented by regular expressions, which can be
parsed by finite state machines (FSMs). An FSM consists of a finite number of states
and a function that determines transitions from one state to another as symbols are
read from an input stream (i.e., the source program). The machine transitions from
state to state as it reads the source code. A language element (e.g., a keyword or an
integer number) is accepted if the machine reaches one of a designated set of final
states. In this case, a corresponding token is emitted and the machine returns to the
initial state to proceed with the next character in the stream. Given a list of regular
expressions, scanner generators such as GNU’s FLEX [106] can produce C code for
the corresponding FSM that can recognize these expressions.

Definition 3.1 (Context-free grammar) A context-free grammar G is a tuple G =
(T, N , R, S), where T denotes a finite set of terminals (i.e., the set of possible
tokens), N a finite set of nonterminals, and S ∈ N the start symbol. R is a relation
from X to (T ∪ N )∗, where X must be a member set of N .

The tokens are then further processed by the parser to perform a syntax anal-
ysis. Based upon a context-free grammar, it identifies the language constructs and
maintains a symbol table that records the identifiers used in the program and their
properties. The result is a parse tree that represents a derivation of the input pro-
gram from the start symbol S. If the token string contains syntactical errors, the
parser may produce the corresponding error messages. Again, parser generators are
available (e.g., GNU’s BISON [105]), which can generate a C implementation from
a context-free grammar specification.

Finally, a semantic analysis is performed that checks if the input program sat-
isfies the semantic requirements as defined by the source language; for instance,
whether all used identifiers are consistently declared and used. For practical rea-
sons, semantic analysis can be partially integrated into the syntax analysis using an
attribute grammar [67], an “extended” context-free grammar. Such grammars allow
the annotation of a symbol s ∈ (T ∪ N ) with an attribute set A(s). An attribute
a ∈ A(s) stores semantical information about a symbol’s type or scope. Each
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grammar rule r , with r ∈ R, using a can be assigned an attribute definition D(a).
The attributes are divided into two groups: synthesized attributes and inherited
attributes. The former are used to pass semantic information up the parse tree,
while inherited attributes passing them down. Both kinds are needed to implement a
reasonable semantic analysis. Such attribute grammar specifications can be further
processed by tools such as OX [143] (an extension of FLEX and BISON) to finally
create a parser with integrated semantic analysis.

The output IR format of the frontend is typically a list of expression trees or three-
address code. Generally, the frontend is not dependent on the target processor. Thus,
an existing language frontend can be combined with any target-specific backend,
provided that all of them use the same IR format (Fig. 3.2).

=

x +

* *

a b c 5

C code Three address code Expression tree

Fig. 3.2 IR format examples

3.3 Compiler Backend

The task of the backend is the code generation that consists of several subtasks.
Since many of them are known to be NP-complete [163] problems, i.e., solving such
problems most likely requires algorithms with exponential runtime, code generation
typically relies on heuristics. Therefore and due to software engineering reasons, all
code generation tasks are implemented by separate algorithms. However, these tasks
are usually interdependent, i.e., decisions made in one phase impose constraints
in subsequent phases. While this works well for regular architectures, it typically
results in poor code quality for irregular architectures [270]. This is also known as
the phase coupling problem.

Before the different subtasks are presented in the following sections, several
program representations essential for most code generation subtasks (and for most
compiler optimizations) are introduced first.

3.3.1 Data- and Control-Flow Graphs

The data- and control-flow graphs provide more detailed information about the pro-
gram semantics than the plain IR representation. First, the control flow needs to be
computed. Each function is split into its basic blocks.
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Definition 3.2 (Basic block) A basic block B = (s1, ..., sn) is a sequence of IR
statements of maximum length, for which the following conditions are true: B can
only be entered at statement s1 and left at sn. Statement s1 is called the leader of
the basic block. It can either be a function entry point, a jump destination, or a
statement that follows immediately after a jump or a return.

Consequently, if the first statement of a basic block is executed, then all other
statements are executed as well. This allows certain assumptions about the state-
ments in the basic block, which enable the rearrangement of computations during
scheduling for instance. Basic blocks can be easily computed by searching for IR
nodes that modify the control flow of the program (e.g., goto and return statements).
Once the basic blocks have been identified, the control-flow graph can be con-
structed. An example is given in Fig. 3.3.

BB1:

else goto BB3;

BB2:

else goto BB4;

BB3:

BB4:

Fig. 3.3 Control-flow graph example

Definition 3.3 (Control-flow graph) A control-flow graph (CFG) of a function F is
a directed graph G F = (VF , EF ). Each node v ∈ VF represents a basic block, and
EF contains an edge (v, v′) ∈ VF × VF if v′ might be directly executed after v. The
set of successors succ of a basic block B is given by succB = {v ∈ VF | (b, v) ∈ EF }
and the set of predecessors pred of a basic block B is given by predB = {v ∈ VF |
(v, b) ∈ EF }.

The obvious edges are those resulting from jumps to explicit labels as the last
statement sn of a basic block. Furthermore, if sn is a conditional jump or a condi-
tional return, then a fallthrough edge to the successor basic block is additionally
created. In certain cases, sn is not a jump nor a return. Thus, in case a successor
block exists and its first statement follows immediately after sn in the IR represen-
tation, an edge to the successor block is created. Blocks without any outgoing edges
have a return statement at the end. In case the resulting CFG contains unconnected
basic blocks, there is an unreachable code that can be eliminated by a dead code
elimination optimization without changing the program semantics.

While the CFG stores the control flow on a basic block level, another important
data structure deals with the data dependencies between statements.
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Definition 3.4 (Data dependency) A statement s j of a basic block B = (s1, ..., sn)
is data dependent on statement si , with i < j , if si defines a value that is used by s j

(i.e., si needs to be executed before s j ).

A data-flow analysis (DFA) in its simplest form computes the data dependen-
cies just for single basic blocks, and thus is referred to as local DFA. Basically,
for each statement S, a data-flow equation is created, which requires the following
information:

• in[S], the directly available information before S
• out[S] the information available after S
• gen[S] new information generated within S
• kill[S] the information killed by S

The equations depend on the kind of data-flow information that has to be computed.
For the computation of reaching definitions, the equations have the following form:

in[S] =
⋃

p∈pred(S)

out[p] (3.1)

out[S] = gen[S] ∪ (in[S] − kill[S]) (3.2)

In order to obtain the information about available expressions, the equations change
to

in[S] =
⋂

p∈pred(S)

out[p] (3.3)

out[S] = gen[S] ∪ (in[S] − kill[S]) (3.4)

Similar data-flow equations exists to compute the variables that are active at a certain
program point. This information is required, e.g., for the register allocation. Solving
the resulting system of equations gives the concrete data-flow information for the
basic block. The result is stored in a Data Flow Graph (DFG).

Definition 3.5 (Data-flow graph) A data-flow graph (DFG) for a basic block B is a
directed acyclic graph G B = (VB, EB), where each node v ∈ VB represents an input
operand (constant, variable), an output (variable) operand, or an IR operation.
An edge e = (vi , v j ) ∈ EB ⊂ VB × VB indicates that the value defined by vi is
used by v j .

A DFG is called data-flow tree (DFT) if no node has more than one outgoing
edge, i.e., there are no common subexpressions. Typically, DFTs build the input data
for many popular code-selection techniques.

In practice, compilers perform a DFA for an entire function, called global DFA,
since local DFA hinders many optimization opportunities. Suppose, a basic block
has several outgoing control-flow edges, i.e., a definition of a variable (e.g., initial-
ized with a constant) may reach multiple uses, possibly in different basic blocks.
Thus, in order to exploit the full potential of, e.g., constant propagation, all uses
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reached by that definitions are required, which can only be provided by a global
DFA. Typically, local DFA is embedded as a sub routine in the global DFA that
iteratively solves the data-flow equations for an entire procedure.

The analysis can be extended even beyond function boundaries. The general idea
behind a so-called interprocedural analysis is to collect the information flowing into
a function and then use it, to update the local information. This requires information
about

• which functions ft any particular function f calls,
• f ’s return values,
• which functions fc call any particular function g, and
• which arguments fc passes to g.

The information about the calling behavior is usually captured in the concept of
a call graph. Figure 3.4 depicts an example call graph.

…
f(x);

}

i(x)

main() f(x) g(x)

h(x)

Fig. 3.4 Call graph example

Definition 3.6 (Call graph) If a program P is composed of functions f1, . . . , fn,
then the call graph for P is a directed, edge-annotated graph G P = (V, E, s) with
V = { f1, . . . , fn}, E ⊂ V × V , and s : E �→ S, where S is the set of call sites. If
e = ( fi , f j ) ∈ E and s(e) = k, then the function fi calls the function f j from the
label k inside fi .

The interprocedural analysis therefore starts with the creation of a call graph
to capture the dependencies. If the whole program is visible to the compiler, the
direct and correct creation of a call graph is straightforward. Regardless of that,
most modern software consists of separate compilation units, which are linked after
their separate compilation to form the final program. The compiler is therefore not
able to analyze the whole program at once. This also prohibits the creation of a
complete call graph, since several uncertainties arise:

• Library functions may be called by the code known to the compiler. In that case,
the name and type of the callee are usually known, but the code is not analyzable.

• A function might be called by a code outside the compilation unit. This is usually
the case if the compiled module is part of a library. Many languages allow to
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specify storage-class attributes such as the static keyword in C. Using those
effectively rules out this possibility for specific functions.

• Functions may not be called directly by name but via function pointers. In that
case, an explicit data flow analysis is necessary to determine the set of actual
callees of a function call in a program.

3.3.2 Code Selection

Code selection is typically the first phase in the backend. Its task is to map the IR to
a semantically equivalent sequence of machine instructions. A common technique
for code selection uses DFTs as input and is based on tree parsing. This can be
efficiently implemented by tree pattern matching combined with dynamic program-
ming [2]. The basic idea is to describe the instruction-set of the target processor by
a context-free tree grammar specification.

Definition 3.7 (Context-free tree grammar) A context-free tree grammar G is a
tuple G = (T, N , P, S, w), where T denotes a finite set of terminals, N a finite set
of nonterminals, and P ⊆ N × (N ∪ T )∗ a set of production rules. S ∈ N is the
start symbol and w is a cost metric P → R for the production rules.

In the context of tree pattern matching, T can be seen as the set of all IR nodes
and N as some sort of temporaries or storage location (e.g., registers or memory) to
transfer intermediate results either between or inside instructions. The cost metric
describes the costs caused by executing the corresponding instruction, e.g., with
regard to performance, code size, or power consumption. The target code is gen-
erated by reducing the DFT to a single node (or covering the DFT) by repeatedly
applying one of the production rules P , i.e., a subtree T can be replaced by a non-
terminal n ∈ N if the rule n → T is in P .

As a typical example for a tree grammar rule, consider the rule for a register to
register ADD instruction:

reg → PLUS(reg, reg){costs} = {actions} (3.5)

with reg ∈ N and PLUS ∈ T . If the DFT contains a subtree that matches a subtree
whose root is labeled by the operator “PLUS” and its left and right sons are labeled
with “reg,” it can be replaced by reg. It should be noted here that both sons might
also be the result of further tree grammar rules that have been applied before. Each
rule is associated with a cost and an action section. The latter typically contains the
code to emit the corresponding assembly instruction.

It might happen that more than one rule covers a subtree. A cover is optimal if
the sum over all costs of involved rules is minimal. This can be implemented by a
dynamic programming approach, i.e., the optimum solution is based on the optimum
solution of (typically smaller) subproblems. More specifically, a tree pattern matcher
traverses the DFT twice:
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In the first bottom-up traversal, each node i of a DFT T is labeled with the set
of nonterminals it can be reduced to, the cheapest rule r ∈ P producing n and the
total cost (i.e., the costs covering the subtree rooted at i). This includes also those
nonterminals that might be produced by a sequence of rules. When the root node of
T has been reached, the rule that produces the start nonterminal S with minimum
cost is known.

In a second top-down traversal, the pattern matcher exploits the fact that a rule
for a node i also implicitly determines the nonterminals the subtrees of i must be
reduced to (otherwise the rule could not have been applied to i). Thus, starting at
the root node, it can now be determined which nonterminals must be at the next
lower level in T . Therewith for each nonterminal, the corresponding rule r can be
obtained whose action section emits finally the instructions. This traversal is recur-
sively repeated until the leaves of T have been reached. Figure 3.5 illustrates this
process using the tree grammar specification in Table 3.1.

ASSIGN

PLUS

MULT

CONST5LOAD

MULT

LOAD LOAD

reg1:2:c = 1
reg2:9:c = 1+1

reg1:2:c = 1
reg2:9:c = 1+1

imm:6:c=0
reg1:8:c = 0+1+1
reg2:7:c = 0+1

reg1:4:c = 1+2+1

reg2:9:c =1+2+1+1

reg1:5:c = 1+0+1
reg2:9:c = 1+0+1+1

reg1:3:c = 3+2+1
reg2:9:c = 3+2+1+1

stmt:1:c = 6+1

reg1:2:c=1
reg2:9:c = 1+1

Nonterminal:RuleNr:Cost

Selected rule

Fig. 3.5 Tree-pattern-matching example for the statement x = a ∗ b + c ∗ 5

Table 3.1 Tree grammar specification

Rule No. Nonterminal Tree pattern Instruction Costs

1 stmt → ASSIGN(ADDR,reg1) STORE dst = src 1
2 reg1 → LOAD(ADDR) LOAD dst = src 1
3 reg1 → PLUS(reg1,reg2) ADD dest = src1, src2 1
4 reg1 → MULT(reg1,reg2) MUL dest = src1, src2 1
5 reg1 → MULT(reg1,imm) MULI dest = src1, src2 1
6 imm → CONST 0
7 reg2 → imm LOADI dst = src 1
8 reg1 → reg2 MOVE21 dst = src 1
9 reg2 → reg1 MOVE12 dst = src 1
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Tree pattern matching finds an optimal set of instructions for a single DFT at
linear time in the number of DFT nodes. Furthermore, a number of tools are avail-
able that can generate tree pattern matchers from a target-specific tree grammar
specification. Examples of such so-called code generator generators are BEG [108],
burg [52], iburg [51], lburg (code selector of the lcc compiler [50]), OLIVE
(code selector of the SPAM compiler [247]), and twig [2].

In case the IR takes the form of a direct acyclic graph (DAG) (due to common
subexpressions), it is usually split into a forest of DFTs based on heuristics. While
this works well for regular architectures, for irregular architectures or architectures
with special custom instructions this may result in suboptimal code quality. Typi-
cally, such architectures comprise instructions that exceed the scope of a single DFT.
Therefore, different approaches to DAG-based code selection have been developed
such as in [159, 234]. Unfortunately, optimal code selection on DAGs is known to
be NP-complete. Thus, many approaches employ heuristics, impose several restric-
tions, or are mostly limited to small problem sizes in order to cope with the excessive
runtime requirements. The work in [111] presents a code generator generator, called
cburg, for a DAG-based code selector.

3.3.3 Register Allocation

The task of the register allocator is to assign variables and temporary values to a
limited set of physical machine registers. Registers are very expensive with regard
to area and power consumption. Therefore, many processor architectures implement
only a small register file. Due to the increasing gap between the processor’s speed
and the memory access time, the register allocation must keep the largest possible
number of variables and temporaries in registers to achieve good code quality. In
the following, the most important definitions and concepts of register allocation are
summarized.

Definition 3.8 (Life range) A virtual register r is live at a program point p, if there
exist a path in the control flow graph starting from p to an use of r on which r is not
defined. Otherwise r is dead at p.

Definition 3.9 (Interference graph) Let V denote a set of virtual registers. An
undirected graph G = (V, E) is called interference graph if for all v,w ∈ V ,
the following condition holds: v and w have intersecting life ranges.

State-of-the-art techniques for register allocation are based on a graph-coloring
paradigm. The notion of abstracting storage allocation problems to graph coloring
dates from the early 1960s [242]. More specifically, the problem of register alloca-
tion is translated into the problem of coloring the interference graph by K colors,
where K denotes the number of available physical registers. The basic idea of the
graph-coloring method is based on the following observation: If G contains a node n
with degree d (i.e., the number of edges connected to n) with d < K , a color k from
the set of K colors can be assigned to n that is different from the colors of all its
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neighbors. The node n is removed from G and a new graph G ′ = G − n is obtained
that, consequently, contains one node and several edges fewer and the algorithm
proceeds with the next node. This approach leads to a step-by-step reduction of the
interference graph. Since graph coloring is NP-complete, heuristics are employed to
search for a K -coloring. If such a coloring cannot be found for the graph, some val-
ues are spilled, i.e., values are kept in memory rather than in registers, which results
in a new interference graph. This step is repeated until a K -colorable interference
graph is found. An example is given in Fig. 3.6.
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Fig. 3.6 Code example, life ranges, interference graph, and its coloring (K = 3)

The first implementation of a graph-coloring register allocator was performed
by Chaitin et al. [93, 94]. Later, a priority-based scheme for allocation using graph
coloring has been described in [80, 81]. Almost all subsequent work is based on
these approaches.

The register allocation algorithms can be further subdivided according to their
scope. Local register allocation, such as in [80, 94], works only on a single basic
block at a time. In contrast, global register allocation algorithms exceed the basic
block boundaries and take the control-flow structure of the program into account,
e.g., an entire procedure or even a collection of procedures. Since the latter is able to
take execution frequencies of loop bodies, life ranges over basic block boundaries,
and calling conventions into account, a better cost analysis can be performed to
improve the spill heuristics. Therefore, many register allocators today are global
register allocators. Examples for graph-coloring-based global allocators are in [81,
199].

Of course, not all global allocation methods are based on graph coloring. Exam-
ples for different approaches include the bin-packing algorithm [198] and the prob-
ablistic register allocation given in [255]. Although graph-coloring allocators can be
implemented efficiently, they have a quadratic runtime complexity. This makes them
impractical whenever the compile time is a major concern like in dynamic compila-
tion environments or just-in-time (JIT) compilers. For this domain, an allocator with
linear runtime and acceptable code quality, called linear scan allocator, has been
proposed [174]. The linear scan algorithm consists of the following four steps:

1. Order all instructions linearly.
2. Calculate the set of live intervals.
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3. Allocate a register to each interval (or spill the corresponding temporary).
4. Rewrite the code with the calculated allocation.

The linear scan algorithm relies on a linear approximation of the instructions in
order to determine simultaneously alive intervals. This order influences the extent
and accuracy of live intervals, and hence the quality of the register allocation. As
investigated in [151], a depth-first ordering is the optimal one.

After instruction ordering is performed, the live intervals are computed. For tem-
poraries outside of a loop, the interval starts at the first definition of the register and
ends at its last use. For temporaries alive inside a loop, the interval must be extended
to the end of the loop. Given live variable information (e.g., via data-flow analysis
[1]), live intervals can be computed easily with one pass through the ordered instruc-
tion list. Intervals interfere if they overlap. The number of overlapping intervals
changes only at the start and end points of an interval. The computed live intervals
are stored in a list that is ordered in increasing start points to make the allocation
more efficient.

As defined in [174], given R available registers and a list of live intervals, the
linear scan algorithm must allocate registers to as many intervals as possible, but
such that no two overlapping live intervals are allocated to the same register. If
n > R live intervals overlap at any point, then at least n − R of them must be
spilled. For allocation, the linear scan algorithm maintains a number of sets:

1. The set of already allocated intervals called Allocated.
2. The mapping of active intervals to registers stored in the set named Active.

The algorithm starts with an empty Active set. For each newly processed live
interval, the algorithm scans Active from the beginning to the end and moves those
intervals to Allocated whose end points precede the processed interval’s start point.
Removing an interval from Active makes the corresponding register again available
for allocation. The processed interval’s start point becomes the new start position for
the algorithm and gets a physical register assigned that is not used by any interval
in Active. If all registers are already in use, one interval must be spilled. The spill
heuristics selects the interval with the highest end position.

Figure 3.7 depicts an example. The live intervals shown in the middle correspond
to the instruction ordering on the left. Suppose the set of allocatable physical reg-
isters is R1, R2, and R3. In the first step, the interval V1 is processed and, since
the Active list is empty, gets the physical register R1 assigned. Consequently, V1
is added to the Active list. When V2 is visited in the next step, V1 is still live and
another register R2 is assigned to V2 and added to Active. Afterward, interval V3
is processed and gets the last free physical register R3 assigned. Since no physical
register is available for V4, one interval must be spilled. The algorithm selects V1
for spilling because it has the highest end position and removes it from the Active
list. The example shows the corresponding state of the intervals and the active list.
The final allocation after processing all intervals is depicted on the right.

A retargetable linear scan allocator for the CoSy environment [38] was imple-
mented in [11] and compared to the regular graph-based register allocator. The
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Fig. 3.7 Linear scan allocation example

results show an average speedup of 1.6–7.1 for the register allocation while attaining
good code quality (average overhead in cycle count/code size is within 1–3%).

3.3.4 Instruction Scheduling

Most contemporary processors use pipelining to partially overlap the execution of
instructions or even Instruction-Level Parallelism (ILP) to execute several instruc-
tions in parallel such as Very Long Instruction Word (VLIW) machines for instance.
Generally, scheduling is the process of reordering instructions in such a way that the
maximum amount of parallelism among instructions is exploited. Similar to register
allocation, local schedulers work at the basic block level whereas global scheduler
deal with complete functions.

The scheduling process is limited by two major constraints [214]: first, data
hazards or control hazards causing dependencies between instructions that force
a sequential ordering and second resource limitations, i.e., structural hazards, that
force serialization of instructions requiring the same resource. A dependency graph
that captures these constraints constitutes the input for most scheduling techniques.

Definition 3.10 (Dependency graph) A dependency graph (DG) is an edge-weighted
directed acyclic graph G = (V, E, t ype, delay), where each node v in V represents
a schedulable instruction. The resource allocation of each instruction is given by its
reservation table r (v). An edge e = (vi , v j ) ∈ E ⊆ V × V indicates a depen-
dency between vi and v j and it is weighted with the minimum delay cycles given by
delay(e) the instruction v j can be started after vi .

The dependencies between instruction vi and v j , i < j , can be further catego-
rized into the following kinds [135]:

Data dependence: vi writes to a resource read by v j . Consequently, vi must be
scheduled before v j . This dependency is also referred to as read after write
(RAW) dependency and is also the most common type.
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Anti-dependence: v j reads a storage location written by vk with k �= i that is
overwritten by vi . Thus, in a correct schedule, v j reads the value defined by vk

before vi overwrites it. This is also known as write after read (WAR) depen-
dence. Since this is often the result of instructions that write results late in the
pipeline while others read the result early in the pipeline, the associated delay
is usually negative.

Output dependence: vi and v j write to the same storage location. A valid sched-
ule must perform the writes in their original order, i.e., the storage location
contains the result of v j after executing both instructions. This dependency is
also denoted as write after write (WAW) dependency.

Control dependence: Determines the ordering of v j with respect to a branch
instruction vi so that vi is executed in correct program order and only if it
should be. Thus v j is not executed until the branch destination is known. Gen-
erally, this kind of dependency can also be seen as a data dependency on the
program counter (PC) resource.

Note that the read after read (RAR) dependency is not considered a data hazard.
Since an instruction vi may take several cycles until its result becomes available

to v j , it is the scheduler’s task to fill these so-called delay slots with useful instruc-
tions instead of no-operations (NOPs). Given a dependency graph, a valid schedule
is obtained with a mapping function S that assigns each node v ∈ V a start cycle
number c, c ∈ N, such that

1. S(vi ) + delay(vi ) < S(v j ) to guarantee that no dependencies are violated.
2. r (vi ) ∩ r (v j ) �= ∅ to avoid structural hazards.

The goal is now to find a schedule Sopt that needs the fewest number of cycles to
execute. Let I denote the set of available machine instructions, then the length L(S)
of a schedule S can be described as follows:

L(S) = max(S(v) + max(delay(v,w))), ∀v ∈ V, w ∈ I (3.6)

The worst-case delay makes sure that the results are definitely available before
instructions of potential successor basic blocks are executed. Unfortunately, com-
puting the optimal schedule Sopt is an NP-complete problem. Several heuristics are
in use for scheduling whereas list scheduling [68] is the most common approach.
This algorithm for local scheduling keeps a ready set that contains all instructions v

which predecessors in the dependency graph have already been scheduled. The list
scheduler selects an instruction from the ready set and inserts it into the schedule S.
Afterward, the ready set is updated accordingly and the scheduler proceeds with the
next instruction from the ready set. Different heuristics have been proposed to pick a
node from the ready set since this strongly influences the length of the schedule. For
instance, one heuristic picks the instruction on the current critical path. This path
represents the theoretical optimal schedule length. Figure 3.8 shows an example
using this heuristic.
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Fig. 3.8 List-scheduling example; note that two instructions are scheduled in each step

List scheduling has a worst-case complexity that is quadratic in the number of
instructions to schedule. However, list scheduling is conceptually not effective in
handling negative latencies (in case of anti-dependencies) and filling delay slots.
A solution to this problem are backtracking schedulers [232]. Such schedulers can
revert previous scheduling decisions to schedule the current instruction earlier if this
is likely to be more advantageous.

The amount of parallelism that can be exploited within a single basic block is
quite limited since it contains only a few instructions on average. This is especially
a problem for loop bodies that constitute typically the hot-spots of a program. One
way to increase the number of instructions in loop bodies is loop unrolling, i.e.,
duplicating the loop body while reducing the number of required iterations. Another
possibility is a scheduling technique especially for loops, called modulo scheduling
[47]. It is an algorithm for software pipelining loops [173], i.e., the overlapping
execution of several iterations.

An algorithm for global scheduling is trace scheduling [130]. The basic idea is
to jointly schedule instructions of frequently executed and consecutive basic blocks.
The execution frequency of basic blocks has to be obtained by profiling. Such a
sequence of basic blocks is called a trace and is considered as a single, large basic
block. In this way, the opportunities for ILP exploitation are increased. However,
since the basic block boundaries are neglected, undesired side effects may arise. In
order to fix this, compensation code has to be inserted. Of course, this results in a
significant code-size increase that constitutes the major drawback of this approach.

3.3.5 Code Emitter

The code emitter is the final phase of the compiler backend. It is responsible to
write the result of the previous phases into a syntactically correct assembly pro-
gram, typically in an output file. The data structure of the emitter is an emission
table. Each row, sorted in increasing order, represents a clock cycle and each column
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an instruction. The code emitter first fills the emission table using the clock cycle
information determined by the scheduler. Thus, each row represents the instructions
that are executed together. Afterward, the table is dumped row by row, where empty
cells are replaced by NOP instructions. While this is straightforward for single issue
architectures, i.e., the table has only one column, constructing instructions for ILP
architectures is sometimes more difficult. Such architectures typically impose con-
straints on how the instructions can be combined to build a valid instruction word.
Therefore, a packer is incorporated in the emitter that composes syntactically correct
assembly instructions for a given row. The final executable is then build from the
assembly file using an assembler and linker. Both are usually separate tools that run
after the compiler.

3.4 Retargetable Compilers

The embedded domain is characterized by a large variety of processor designs.
Obviously, designing a new compiler for every single one of them is too costly.
Additionally, developing a compiler is a time-consuming task, and hence, it may
become available too late to be really useful for the architecture exploration phase.
In many cases, this results in a compiler architecture mismatch that makes it quite
difficult for Compiler Designers to ensure good code quality. This has led to the
development of retargetable compilers. Such compilers are capable of generating
code for different hardware architectures with few modifications of its source code.
Such compilers take a formal description, e.g., specified in an ADL, of the target
architecture as input and adapt themselves to generate code for the given target. The
retargetability support mostly needs to be provided for code selector, scheduler, and
register allocator, i.e., the compiler backend (Fig. 3.9).
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Fig. 3.9 Non-retargetable vs. retargetable compiler flow
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Different degrees of retargetability exists to achieve this goal. According to the
classification in [219], compilers can be assigned to one of the following classes:

Parameterizable: Such compilers can only be retargeted to a specific class of pro-
cessors sharing the same basic structure. The compiler source code is largely
fixed. The machine description only consists of numerical parameters such as
register file sizes, word lengths, the number of functional units, or different
instruction latencies.

User retargetable: An external machine description given in a dedicated lan-
guage contains the retargeting information. All information required for code
generation is automatically derived from this description. The specification
does not require in-depth compiler knowledge, and hence can be performed
by an experienced user.

Developer retargetable: Retargeting is also based on an external target descrip-
tion. However, the specification requires extensive compiler expertise usually
possessed only by very experienced users or Compiler Designers.

A retargetable compiler has to be as target-independent as possible in order to
be applicable for a wide variety of processor types. As a result, such compilers can
only make few assumptions about the target machine, i.e., less target-specific hard-
ware features can be exploited to produce efficient code. Hence, one of the major
challenges in the design of retargetable compiler is to provide good optimizations
for a wide variety of target architectures. Therefore, many retargetable compilers
are limited to a certain processor class in order to ensure good code quality. New
retargetable optimization techniques offer a solution to extend the range of target
processor. This is further discussed in Chapters 8 and 9. Typically, retargetable
compilers are limited to one of the following processor classes:

General purpose processors (GPPs): GPPs are characterized by an universal
instruction-set architecture that provides a high degree of flexibility. As a
result, they achieve good performance for a wide variety of applications.
Unfortunately, this comes usually at the expense of a higher power consump-
tion that makes them pretty much unusable for the embedded domain. Instead,
such processors are widespread in desktop or portable PCs. Prominent exam-
ples for this class are MIPS [179], ARM [41], and the well-known Intel x86
architectures [122].

Very long instruction word processors (VLIW): This architecture is designed to
exploit ILP that comes along with very high performance. Several functional
units can be executed in parallel, whereas each unit is related to a specific
field in the instruction word. Since such processors do not feature dedicated
scheduling hardware such as superscalar architectures, the compiler is respon-
sible for exploiting the ILP that might be present in the given applications.
Representative examples of this processor class include the TriMedia and
Nexperia architectures [190], the Embedded Vector Processor [152], and the
ST200 [84].
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Digital signal processors (DSPs): DSPs have been specifically designed for
signal-processing applications. Consequently, their instruction-set supports
dedicated instructions for the efficient execution of common signal-processing
computations, such as fast Fourier transformation (FFT) or digital filtering.
Additionally, such processors usually feature hardware multipliers, address
generation units (AGUs), and zero overhead loops. Typical DSP examples are
the TI C5x and C6x [259], the ADSP 2101 [42], and the MagicDSP [70].

Micro-controllers: Micro-controllers operate at clock speeds of as low as a few
MHz and are very area efficient. The processor core implements a complex
instruction-set computer (CISC) architecture. The chip typically integrates
additional elements such as read-only memory (ROM) and random access
memory (RAM), erasable programmable ROM (EPROM) for permanent data
storage, peripheral devices, and input/output (I/O) interfaces. They are fre-
quently used in automatically controlled products and devices, such as engine
control systems, remote controls, office machines, and appliances. Examples
for this kind of architecture are the Motorola 6502 [181] and the Intel 8052
[122].

Application specific instruction-set processors (ASIPs): ASIPs show highly opti-
mized instruction-sets and architectures, tailored for dedicated application
domains such as image processing or network traffic management. In this way,
they achieve a good compromise between flexibility and efficiency. Examples
of this kind are ICORE [251], SODA [281], a channel decoder architecture
for third-generation mobile wireless terminals [78], and an ASIP for Internet
Protocol Security (IPSec) encryption [109].

Some prominent retargetable compilers primarily for GPPs are gcc [87] and lcc
[50]. Trimaran [263] and IMPACT [57] are examples for retargetable compilers
for VLIW architectures. Other examples include CoSy [38], LANCE [222], SPAM
[247], and SUIF [249]. Some of them constitute a key component of the ASIP design
environments discussed in Chapter 4. A comprehensive survey of retargetable com-
pilers can be found in [224].

3.5 Synopsis

• Compilers can be coarsely separated into a frontend and a target-specific backend
(code selector, scheduler, register allocator).

• Retargetable compilers can be quickly adapted to varying processor configura-
tions.

• Such compilers are capable of generating the backend components from a for-
malized processor description (e.g., an ADL model).



Chapter 4
Related Work

In general, ADL design must trade-off the level of abstraction vs. generality. ADLs
must capture a wide variety of embedded processors with ever-changing irregu-
larities. On the one hand, a lower-level description captures structural information
in more detail, but on the other hand the detailed description makes it difficult to
extract certain information such as instruction semantics for instance. Obviously,
this is easier using higher-level descriptions; however, they make the generation
of, e.g., cycle-accurate simulators inherently difficult. Over the past decade, several
ADLs have emerged, each with their own strengths and weaknesses.

In this chapter, the related work in the field of ADL-based ASIP design is
discussed.

4.1 Instruction-Set-Centric ADLs

nML: The nML language [161] was originally proposed by the Technical
University of Berlin. It is one of the first ADLs to introduce a hierarchical
scheme to describe instruction-sets. The topmost elements of the hierar-
chy represent instructions, and elements lower in the hierarchy are partial
instructions (PIs). Two composition rules can be used to group the PIs in
their parents: the AND-rule groups several PIs into a larger PI and the
OR-rule enumerates alternative PIs corresponding to an instruction. For
this purpose, the description utilizes an attribute grammar [136].

Though classified as instruction-set-centric language, nML is not com-
pletely free of structural information. For instance, storage units such as
registers or memory must be explicitly declared. Furthermore, it is assumed
that each instruction is executed in one machine cycle; there is no pipeline
modeling. The language is used by the instruction-set simulator called
SIGH/SIM [8] and the retargetable code generator CBC [9, 162]. It is also
used by the instruction-set simulator CHECKERS [273] and the code gen-
erator CHESS [69] developed at the IMEC institute [118]. These tools have
later been commercialized and are now available from Target Compiler

M. Hohenauer, R. Leupers, C Compilers for ASIPs,
DOI 10.1007/978-1-4419-1176-6 4, C© Springer Science+Business Media, LLC 2010

33



34 4 Related Work

Technologies [256]. Their tools include support for pipeline modeling and
feature an HDL generator. They have successfully been employed for sev-
eral DSPs and ASIPs. Recently, enhanced support for instruction pred-
ication has been added to the optimizing C compiler component of the
Chess/Checkers tool-suite.

Another development branch, called Sim-nML [227, 268], has been
started by the Indian Institute of Technology and Cadence Inc. The enhance-
ments include support for pipeline modeling, branch prediction, and hier-
archical memories. The generated software tools include an instruction-set
simulator supporting interpretative and compiled simulation, assembler,
and a code generator [165]. Additionally, a tool called Sim-HS is available
that implements high-level behavioral and structural synthesis of proces-
sors from their Sim-nML specifications [236].

The nML-based simulators are known to be rather slow. Target, how-
ever, claims to have faster instruction-accurate simulation techniques which
achieve a simulation speed that is over 100 times faster than conventional
cycle-accurate simulators. However, no results have been published yet.
Since nML models constraints between operation by enumerating all valid
combinations, the resulting description can be quite lengthy. Furthermore,
VLIW processors or DSPs with irregular ILP constraints are – if at all –
hard to model with nML.

ISDL: The acronym stands for Instruction Set Description Language [98].
It was developed at the Massachusetts Institute of Technology (MIT)
to assist hardware–software co-design of VLIW architectures. Similar to
nML, ISDL uses an attribute grammar for the instruction-set description
and storage elements such as registers are the only structural information
defined for each architecture. However, in contrast to nML, which captures
all valid instruction compositions, ISDL employs boolean expressions to
define invalid combinations. This often results in a simpler constraint spec-
ification and allows to model much more irregular ILP constraints.

ISDL is used by the Aviv compiler [238] as well as the related assembler
and linker [97]. The Aviv compiler, which is based on the SUIF [249] and
SPAM [247] compiler infrastructure, supports phase-coupled code gener-
ation that offers certain advantages over strictly separated code-generation
phases. However, since a large number of heuristics need to be employed
to cope with the overall complexity, the optimality is at least question-
able. So far, only results for artificial VLIW processors have been reported.
Hence, it is not entirely clear how Aviv performs for more irregular real-life
embedded processors.

Moreover, ISDL is used by the retargetable simulator generation system
GENSIM and a synthesizable HDL code generator [96].

CSDL: The Computer System Description Language (CSDL) is actually a
family of machine description languages for the Zephyr compiler environ-
ment [4]. It has mainly been developed at the University of Virginia and
consists of the following languages:
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• The Specification Language for Encoding and Decoding (SLED) [187]
describes instruction syntax and binary encoding and is used to retar-
get an assembler, disassembler, and linker. SLED is flexible enough to
describe RISC and CISC computers. However, there is no notation of
hardware resources nor explicit constraints for instruction compositions.
As a result, SLED is not suitable for VLIW description.

• For the description of instruction semantics, the register transfer list
(RT-list) language λ-RTL [186] is used. It is based on Standard-ML
[226] and was mainly developed to reduce the description effort for
Zephyr’s very portable optimizer (VPO) [158]. VPO provides instruc-
tion selection, instruction scheduling, and classical global optimization.
Unfortunately, VPO needs quite verbose RT-lists for the instruction-set
description as input. Therefore, λ-RTL is translated in RT-lists instead
of retargeting VPO. However, irregular architecture features such as
special-purpose registers, complex custom instructions, and ILP con-
straints are hard to model.

• The Calling Convention Specification Language (CCL) [156] is used to
define procedure-calling convention for uniform procedure call inter-
faces, i.e., how parameters and return values are passed between func-
tion calls. This information is required by the compiler as well as the
debugger.

A drawback, though, is that all these descriptions must be kept consistent
to ensure correctness. Furthermore, due to the limitation mentioned above,
CSDL is more suited for conventional general-purpose or regular RISC/-
CISC processors. Embedded processors with architectural irregularities or
VLIW architectures usually cannot be modeled at all. So far, results for
HDL generation have not been reported yet.

Valen-C: Valen-C [19, 20] is a C language extension to support explicit and
exact bit-width specification for integer data types. The retargetable com-
piler Valen-CC takes an application written in Valen-C and a description
of the instruction-set as input. It produces code only for RISC architec-
tures. The instruction-set description represents only the instruction-set,
i.e., pipelines or resource conflicts are not modeled. A separate description
is used for simulator retargeting.

One commonality of all these languages is the hierarchical instruction-set spec-
ification using attribute grammars. In this way, common properties of instructions
can be easily factored out which simplifies the instruction-set description to a large
extent. Instruction semantics for compiler generation can be easily extracted due to
the explicit specification in the form of RT-lists. On the other hand, such languages
do not contain detailed pipeline and timing information. This makes it inherently
difficult to generate cycle-accurate simulators and, to a certain extent, instruction
schedulers. This can only be circumvented by limiting the architectural scope of
the language so that certain assumptions about the target architecture can be made.
Moreover, since this kind of ADL does not contain any or only limited structural
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information, either the generation of synthesizable HDL code is not supported or
the quality of the generated HDL code is not satisfactory.

4.2 Architecture-Centric ADLs

MIMOLA: The Machine-Independent Microprogramming Language
(MIMOLA) [235] is an example for a register transfer level (RT-level)-
based ADL, developed at the University of Dortmund. It was originally
intended for micro-architecture design. A MIMOLA description mainly
consists of two parts: the hardware part with a netlist of component mod-
ules and the software part describing the applications in a PASCAL-like
syntax.

Several tools based on the MIMOLA language have been developed
[204], including the MSST self-test program compiler, the MSSH hardware
synthesizer, the MSSB functional simulator, the MSSU RT-level simulator,
and the MSSQ code generator. A single MIMOLA model serves as input
for all these tools.

Since pipelined targets cannot be modeled with MIMOLA, the architec-
tural scope is mostly limited to architectures with single-cycle instructions.
Furthermore, the MSSQ compiler produces sometimes poor code quality
and suffers from high compilation times. The RECORD compiler [223]
constitutes the successor of MSSQ and eliminates some of these limita-
tions. It generates better code quality; however, it is restricted to the class
of DSP architectures. Another limitation is the missing C frontend, only
the data-flow language SILAGE [65] is supported.

AIDL: The AIDL language [254] introduces several levels of abstraction to
model a processor. It has been designed to describe time relations such as
concurrency and cause/effect relations between pipeline stages in a sim-
ple and accurate way. The concept of timing relations is based on interval
temporal logic [46]. Each behavior is described using a so-called stage that
corresponds usually to a pipeline stage. Sequentiality and concurrency is
specified within or between stages. So far, AIDL was only employed to
model three processors, which are all based on the PA-RISC instruction-set
architecture [114].

As described in [253], it is possible to generate a synthesizable HDL
code and a simulator from an AIDL specification. So far, support for com-
piler, assembler, and linker generation is not available.

UDL/I: The UDL/I language [264] is also an RT-level hardware description
language, but in contrast to MIMOLA mainly intended for compiler gener-
ation. It is used as an input for the COACH ASIP design environment [107],
which extracts the instruction-set from the UDL/I description. However,
this process imposes some restrictions on the class of supported architec-
tures. In particular VLIW architectures are not supported. The generated
software tools include an instruction-set and cycle-accurate simulator.
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In general, RT-level ADLs are more intended for hardware designers. They pro-
vide concepts for a detailed specification of the micro-architectures in a flexible
manner. Several approaches have proven that based on a single ADL model, design
automation tools for logic synthesis, test generation as well as retargetable compilers
and simulators can be generated. However, from a Compiler Designer’s perspective,
all information regarding the instruction-set is buried under an enormous amount of
micro-architectural details. Thus, extracting the semantics of instructions automat-
ically is quite hard, if not impossible, without restrictions on description style and
supported target architectures. Furthermore, considering that merely describing a
processor at the RT-level alone is a tedious task, quick modifications as required
for efficient architecture exploration are self-prohibitive. Moreover, the simulators
generated from such ADLs are known to be rather slow [150].

4.3 Mixed-Level ADLs

Maril: The Maril language is the description format for the retargetable
compiler Marion [61]. A Maril description contains both instruction-set
description as well as coarse-grained structural information. However, it
does not employ a hierarchical scheme for instruction-set-specification
such as instruction-set-centric languages. On the other hand, it contains
more structural information than those languages. This enables the gener-
ation of resource-based schedulers that can yield significant performance
improvements for deeply pipelined processors. Unfortunately, the instruc-
tion behavior must be described with a single expression that can only con-
tain a single assignment. While this is sufficient for compiler generation,
it generally provides not enough information for accurate simulation. For
instance, additional side effects of instructions (e.g., affecting condition
code registers or flags) cannot be described.

Maril is mainly intended for RISC processors, describing VLIW proces-
sors is not possible. Moreover, it does not contain any information about the
instruction encoding. Thus, retargeting an assembler or disassembler is not
possible.

MESCAL/MADL: The Mescal Architecture Description Language (MADL)
employs an Operation State Machine (OSM) [275] computational model
to describe the operations. As the name implies, it was developed within
the Mescal [149] group of the Gigascale Silicon Research Center (GSRC)
[104]. An OSM specification basically separates the processor into two
interacting layers. The operation layer models operation semantics and
timing, whereas the hardware layer describes the micro-architecture. The
target scope includes scalar, superscalar, VLIW, and multi-threaded archi-
tectures. The approach emphasizes on simulator generation, other software
development tools are not generated. Successful case studies are reported
for the StrongARM [73] and the PowerPC-750 [184].
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The study claims that instruction schedulers can be retargeted as well
but no results in this regard have been published yet. Meanwhile, OSM
has been successfully employed to model on-chip communication archi-
tectures, which allows to generate cycle-accurate simulators for multi-
processor SoCs [277].

HMDES/MDES: The HMDES language [133] constitutes the input for the
IMPACT research compiler [57, 200] developed at the University of Illi-
nois. IMPACT has been designed to efficiently explore wide-issue archi-
tectures that offer lots of scheduling alternatives for instructions. Conse-
quently, the definition of instruction’s reservation tables is a central notion
in HMDES. However, information about instruction semantics, assembly
syntax, or encoding information are missing in HMDES. This is a result
of IMPACT being not designed as a fully retargetable software develop-
ment tool chain. Basically, IMPACT is an EDG [76] based optimizing C
frontend. Apart from standard optimizations [1], IMPACT supports some
new concepts for ILP exploitation based on extended basic blocks notations
[59, 216] and predicated execution [243].

The MDES machine description format of the Trimaran compiler infras-
tructure [263] also uses an HMDES description as input. Trimaran incor-
porates IMPACT as well as the Elcor research compiler [233] from HP
Labs. Initially, the compiler could only be retargeted to a single class of
processors, called HPL-PD [267]. Architectural parameters include mainly
ILP-related options such as the number of registers, instruction latencies,
instruction word length, and the number of available functional units and
their scheduling constraints. Meanwhile, it has also successfully been retar-
geted to the ARM [40] and the WIMS processor [225].

Trimaran is also employed in the Program in Chip Out (PICO) [266]
system for the automatic design of custom processors. Such processors
consists of a configurable VLIW template (i.e., HPL-PD based) [48] and
a nonprogrammable processor (a one- or two-dimensional array of pro-
cessing elements) [228].

EXPRESSION: The EXPRESSION language [14, 201, 205] was developed at
University of California at Irvine. An EXPRESSION description consists
of a distinct behavioral and structural section. The behavioral section is
similar to ISDL, but it is missing the assembly syntax and binary encoding.
The specified operations can be bundled to instructions in order to model
VLIW architectures. Additionally, all operations must be manually mapped
to generic compiler operations in order to enable compiler generation. The
structural section directly describes a netlist of pipeline stages and storage
units to automatically generate reservation tables required by the scheduler
based on the netlist [202]. However, HDL models cannot be generated yet.

An EXPRESSION specification is used by the simulator SIMPRESS
[22] and the retargetable compiler EXPRESS [12]. All tools are integrated
into a visual environment called V-SAT. So far, the modeled architectures
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include: ARM7 [40], SPARC [248], TI C6x [259], DLX [135], Renesas
SuperH SH3 [231], and Motorola 56k DSP [182].

IDL: The instruction description language (IDL) [211] is used by the Flex-
Ware2 system [207–209]. The environment is the successor of FlexWare
[210] developed at STMicroelectronics. IDL is used in conjunction with
the ISA database called Flair which drives the entire Flexware system. It
consists of the CoSy [38] based FlexCC compiler, assembler, linker, the
simulator FlexSim, the debugger FlexGdb, and the FlexPerf profiler.

The generated code quality is reported to be close to hand-crafted assem-
bly code. However, the target description contains a large amount of redun-
dancies, and hence requires a significant verification effort to be kept con-
sistent. Furthermore, FlexWare is intended for in-house use only.

RADL: The Rockwell architecture description language (RADL) [56] is a
follow-up of the first version of the Language for Instruction-Set Architec-
ture (LISA) [15]. It focuses on explicit support of detailed pipeline behav-
ior to enable the generation of cycle- and phase-accurate simulators [155],
other software tools are not generated. However, so far nothing has been
published about the simulators using RADL.

Mixed-level ADLs basically extend instruction-set-centric languages by including
structural information. So far, this is mainly used to enable the generation of fast
cycle-accurate simulators and instruction schedulers. The retargeting of the com-
piler’s code selector has mostly either to be performed manually or is more or
less fixed due to a predefined processor template. Furthermore, support for HDL
generation is usually not implemented.

4.4 Other Related Approaches

ASIP Meister: The ASIP Meister environment, formerly known as PEAS-
III [23, 169], was jointly developed by the Semiconductor Technology
Academic Research Center and the Osaka University. It is an enhanced
version of the PEAS system [137, 138], capable of generating a synthe-
sizable hardware description and the complete software development tool
chain, i.e., a CoSy-based C compiler [239], assembler, linker, and simula-
tor. Additionally, it provides estimates for power consumption, maximum
clock frequency, and silicon area.

ASIP Meister has no uniform ADL. It is basically a graphical user inter-
face (GUI) used to model the architectures using functional blocks defined
in a so-called flexible hardware model (FHM) library [170]. Each block
is associated with behavior, RT-level, and gate-level information. Unfor-
tunately, the library is not user-extensible, which limits the architectural
scope. Furthermore, for compiler generation, the semantic for each block
must be manually specified. So far, successful designs have been reported
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for the DLX [135] and the MIPS-R3000 [179], even though the complete
instruction-set architecture could not be implemented in both cases.
Based on the ASIP Meister environment, a platform for synthesizable HDL
generation of configurable VLIW processor was developed [280]. How-
ever, no information is available regarding the software tool generation for
this architecture class.

UPFAST/ADL: The UPFAST [245] system automatically generates a cycle-
accurate simulator, an assembler, and a disassembler from a micro-
architecture specification written in the Architecture Description Language
(ADL). So far, it has only been successfully deployed for several artificial
targets based on the MIPS ISA. The speed of the generated simulator is
reported to be two times slower than a hand-crafted version.

PROPAN/TDL: The Target Description Language (TDL) is used in the retar-
getable postpass assembly optimization system PROPAN [66], developed
at Saarland University. Basically, an assembler parser as well as a set of C
files are generated from a TDL description. The C files can be included in
applications to provide a generic access to architectural information. How-
ever, the architectural scope is mostly limited to VLIW DSPs.

BUILDABONG: The BUILDABONG [139, 140] is intended to aid the design
of special computer architectures based on architecture and compiler co-
generation. The input of this tool is an abstract state machine (ASM) model
of the target architecture. It is either derived from an XASM description
or given by a schematic tool entry. BUILDABONG supports the genera-
tion of HDL models, simulator, and compiler. The user must specify the
instruction-set and the code generator generator’s grammar in a GUI called
Compiler Composer, which finally generates the compiler executable [63].
The machine model is automatically extracted from the graphical architec-
ture description and converted to an extensible markup language (XML)-
based description, called machine markup language (MAML) [64]. This
description is used by the MAML compiler and constitutes the input for the
Compiler Composer. So far, only artificial architectures have been used as
case studies. Future developments will focus on complex architectures such
as the TI C6x family and reconfigurable ASIPs. However, results regarding
the simulation speed, code quality, and the exact architectural scope have
not been reported yet.

Liberty: The Liberty Simulation Environment (LSE) [177] models processors
by connecting hardware modules through their interfaces. These modules
are either predefined or parameterizable. From this specification, given in
the liberty structural specification (LSS) language [176], a cycle-accurate
simulator is generated. Since Liberty does not provide the facility for cap-
turing the instruction behavior and binary encoding, it is not suited to create
software development tools.

Babel: The Babel [274] language was originally intended for the specifica-
tion of nonfunctional IP blocks. However, the corresponding integration
framework retargets a set of GNU tools [87] (more specifically, the binary
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utilities) to integrate different IP cores. Obviously, this is limited to the
architectures supported by the GNU tool chain. The employed architectures
include SPARC [248], SimpleScalar [246], and Alpha [218]. Babel is also
utilized to retarget the SimpleScalar simulator [62].

MADE: The modular VLIW processor architecture and assembler description
environment (MADE) [206] generates a library of behavioral functions and
the instruction-set of the machine from the related architecture descrip-
tion. The library is then linked to a reconfigurable scheduling engine which
results in a configured optimizer–scheduler. The automatic configuration of
a cycle-accurate simulator is under development. So far, this environment
is only used for the MagicDSP [70].

ARC: The ARCtangent processor family [43] from ARC Inc. is a RISC/DSP
architecture with a 32-bit four-stage pipeline. Each core can be extended
by predefined modules such as floating-point support, advanced memory
subsystem with address generation, and special instruction extensions for
common DSP algorithms. The basic ISA implements 86 mixed 16/32-
bit instructions, which can be extended to a certain extent by custom
instructions. A graphical user interface (GUI), called ARChitect, allows the
designer to select between the given configuration options and to specify
the custom instructions. Additionally, the environment provides a simula-
tor, a real-time operating system (RTOS), and a C/C++ compiler. However,
the instruction-set extensions cannot be directly exploited by the compiler.
Instead, the programmer is forced to use assembly-like function calls (com-
piler intrinsics) or inline assembly that reduces the reusability to a great
extent.

Tensilica: The Xtensa architecture [215] from Tensilica Inc. [257] offers a
large number of configurable or user-defined extensions that can be plugged
in to the processor core. The base architecture has 80 RISC instructions
and includes a 32-bit ALU and 32 or 64 general-purpose 32-bit registers.
Among the configurable options are DSP engines, floating-point support,
the memory interface, and caches. Custom instructions for application-
specific performance improvements can be specified using the Tensilica
Instruction Extension (TIE) language. The software tools consist of a
(GNU-based) C-compiler, assembler, linker, simulator, and a synthesiz-
able HDL model. Tensilica reports a 20% performance improvement of
the Xtensa C/C++ Compiler (XCC) as compared to a regular gcc com-
piler. The compiler also supports custom instructions and vectorization to
a certain extent.

Others: A quite recent ADL mainly designed for compiler generation is pre-
sented in [79, 237]. The syntax is based on XML. On the compiler side, an
earlier version relies on the Open Compiler Environment (OCE) from Atair.
The current version uses an extended gcc-frontened (for Embedded-C [77])
and a custom backend. Up to now, the language has been used to model the
VLIW DSPs xDSPcore [25] and CHILI [197] as well as the MIPS-R2000
[179] processor. The description contains enough information to enable the
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generation of other tools such as simulator, assembler, and linker. However,
nothing in this regard has been published yet.

Other existing ADLs include ISPS [157], ASIA/ASIA-II [115, 116],
ASPD [278], EPICS [230], READ [279], and PRDML [31].

Further approaches employing parameterizable generic processor cores
include JazzDSP [54] and DSP-core [172].

Several tools choose a different route for implementation. They directly
generate a synthesizable HDL model or hardware implementations from
the given application. Examples for this approach are ARTBuilder [39]
or the PACT HDL compiler [21]. The major drawback, of course, is the
limited flexibility of the generated hardware.

Quite a large amount of ADLs are already available, and it is reasonable
to expect more new ADLs or at least ADL extensions. The effort to develop
a new ADL from scratch or to undertake the tedious task of modifying an
existing language has led to a new kind of ADL. Such ADLs are based
on XML. In this way, a standard to encode the elements of an architecture
is provided. This saves development time and makes the model reusable
and interchangeable between tools. Examples for this kind are ADML
[260] and xADL [74]. However, ASIP design environments using these
languages are not yet known.

Configurable processor cores, ADLs with a limited architectural scope (such as
DSP or VLIW), or ADLs designed for a specific purpose (e.g., simulator or compiler
generation) are mostly capable of generating an efficient set of tools and hardware.
The advantage of a limited architectural scope, in particular in case of configurable
cores, is the reduced verification effort, though, at the expense of a limited design
space. In contrast, a broader architectural scope results in increased verification
effort but allows a larger design space. Corresponding ADLs must be suitable for
a wide variety of architectures while at the same time providing design automation
for all ASIP design phases. Such ADLs usually require sophisticated algorithms to
generate high-quality software tools and hardware as compared to domain-specific
or tool-specific ADLs.

All recent ADLs belong to the mixed-level class. They are well suited to meet
these demands and they have been successfully employed in academic research as
well as in industry. Unfortunately, these ADLs are either bound to a predefined
processor template and hence suffer from limited flexibility, or do not support the
generation of all software development tools and corresponding HDL model. While
the generation of simulators is mostly supported, compilers, in particular the code
selector description, must still be retargeted manually. This process requires sig-
nificant compiler knowledge and delays the availability of a C compiler for early
architecture exploration. Thus, to further lower the entry barrier to compiler gener-
ation and to reduce the time-consuming and tedious manual effort, the automatic
generation of code selector descriptions is of strong interest. This has been the
main motivation to implement a methodology for code selector generation from
ADL processor models without sacrificing their flexibility. This book presents an
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approach that is based on the LISA ADL. The next chapter briefly introduces the
corresponding design environment.

4.5 Synopsis

• Abstract processor modeling is established as an efficient solution for an ASIP
design.

• Regardless of ADL implementations, a significant gain for an ASIP design in
terms of development time over the classical ASIP design approach is achieved.

• Due to the difficulty designing an ADL that in particular supports the generation
of the complete software tool chain (in particular compiler and simulator) current
ADLs sacrifice flexibility, introduce redundancies, or support only the generation
of particular software tools.

• Certain compiler-relevant information (e.g., scheduler tables) can already be
extracted from ADL descriptions, while others (code selector description) must
still be provided manually.

• An ADL-based design environment that supports the automatic generation of all
software development tools while keeping its flexibility is proposed in this book.



Chapter 5
Processor Designer

In this book, the Language for Instruction-Set Architectures (LISA) ADL is used
and extended for automatic generation of C compilers. LISA is the key component
of the Processor Designer ASIP design environment, formerly known as the LISA
processor design platform (LPDP) [15, 16]. It was initially developed at the Institute
for Integrated Signal-processing Systems at the RWTH Aachen University [119] and
is now commercialized by CoWare Inc. [58]. The LISA design methodology can
be considered as one of the most powerful and comprehensive ADL-based design
platform available today and is also well recognized by academia and industry.
It enables an efficient design space exploration to tailor a processor architecture
to the intended range of applications. During the process, the micro-architecture,
instruction-set, register, and memory configuration are investigated and optimized.

The LISA-based design space exploration and the related tools are briefly intro-
duced in the following sections. Afterward, the LISA language as far as relevant to
understand the compiler generation techniques presented in this book is introduced
in the next section. A detailed overview about LISA and the generated software
development tools is given in [15]. Finally, Section 5.3 describes the current tool
flow for C compiler generation.

5.1 Design Space Exploration

As illustrated in Fig. 5.1, a single LISA processor description drives all ASIP design
phases: architecture exploration, architecture implementation, software tools gener-
ation, and system integration (see Section 2.1). Using the LISA language, changes
to the processor architecture can be quickly modeled. In this way, an efficient explo-
ration of the architectural design space is ensured.

5.1.1 Software Tool Generation

The Processor Designer provides an integrated design environment (IDE) to sup-
port the manual creation and configuration of the LISA model. From the IDE the
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so-called LISA processor compiler is invoked. It parses the description and builds
the software development tools based on a set of retargetable software development
tools.

The assembler is retargeted to the specialized instruction-set. It processes assem-
bly files and produces the object code for the target architecture. Additionally, a
macro assembler is provided for user convenience. The automatically generated
linker then combines several object files to a single executable in the ELF format
[262]. The linker has to be adapted to the target-specific memory organization. More
detailed information about the assembler, macro assembler, and linker can be found
in [18].

The generated simulator basically can be split into frontend and backend. The
former supports the typical functionality such as disassembly, loop and execution
profiling, and pipeline utilization. It provides all profiling information as required
for design space exploration. The backend supports various kinds of simulation tech-
niques, such as interpretative simulation, compiled simulation [90], and just-in-time
(JIT) [27, 28] simulation. As shown in [92], the performance of the generated simu-
lators strongly depends on the abstraction level of the LISA model and the accuracy
of the memory model.

A CoSy-based C compiler is manually retargeted via a graphical user interface
(GUI) [168], called Compiler Designer (see Section 5.3). Instruction schedulers,
though, can already be automatically generated [195].
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5.1.2 Architecture Implementation

LISA also supports an automatic path to generate the hardware description on RTL.
For this purpose, synthesizable HDL code, such as VHDL or Verilog, can be gener-
ated fully automatically [192]. In this way, the impact of high-level design decision
on the physical characteristics of the architecture can be investigated. For instance,
the information about clock speed influences the number of pipeline stages or the
pipeline structure in general. Ignoring this feedback leads to suboptimal design deci-
sions and long redesign cycles in the worst case.

The RTL hardware model synthesis is based on the so-called unified description
layer (UDL) [191]. This enables the integration of optimizations to ensure a suffi-
cient architectural efficiency and transformation to integrate processor features such
as JTAG interface and debug mechanism. Several case studies demonstrated that the
physical characteristics of the generated processors are comparable to handwritten
implementations [193].

5.1.3 System Integration

Current SoC designs are characterized by a mixture of different programmable pro-
cessors, ASICs, memories, etc. combined with a complex communication architec-
ture. This requires system simulation for verification and performance evaluation
in the system context. The LISA simulators can be easily integrated into a co-
simulation environments, such as CoWare ConvergenSC [58] or Synopsys’s System
Studio [250], using a set of well-defined interfaces.

Different levels of abstraction are supported to model the communication between
an ASIP and its system environment. A generic interface allows to model arbitrary
interfaces while the LISA bus interface allows to model the communication on a
higher level of abstraction, e.g., TLM [32, 34], using standard SoC communication
primitives. Special LISA pin resources can be used, which are directly connected to
the SoC environment for pin-accurate co-simulation.

The system simulation debugger offers a software-centric view to a multiproces-
sor SoC while providing the system context as well [33]. In [17], the integration
of several LISA models into the SystemC [252, 261] environment is described.
SystemC was used to model the processor’s interconnection, external peripherals,
memories, and buses on a cycle-accurate level.

Recently, LISA has been extended to support the emerging class of re-configurable
ASIPs (rASIPs). Such architectures contain a fixed processor combined with a
re-configurable block which can either be statically or dynamically re-configured.
While the soft flexibility is already available in the form of the ISA, it can be further
extended by additional instructions that are put in the re-configurable block. In this
way, rASIP architectures can be easily extended to cover new application domains.
The required tools for an efficient rASIP design space exploration can also be auto-
matically generated from the extended LISA description [5, 6, 147].
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5.2 The LISA Language

LISA belongs to the group of mixed-level ADLs. Hence, a LISA model captures
the behavior, the structure, and the I/O interfaces of the processor architecture. All
architectural information are captured in a single model. LISA has been successfully
used to describe a broad range of architectures, including ARM9 [41], TriMedia
[190], C54x [258], MIPS32 4K [180], and to develop ASIPs for different application
domains [109, 251].

A LISA model basically consists of two parts: one part describes the avail-
able resources of the target architecture and the other contains the description of
instruction-set, behavior, and timing.

Resource declarations specify a subset of the processor resources, namely reg-
isters, buses, memories, external pins, and internal signals. The resources can be
parameterized w.r.t. signedness, bit-width, and dimension.

RESOURCE {
MEMORY_MAP {

RANGE(0x00100000, 0x002fffff) -> example_mem[(31..0)];
}

RAM unsigned char example_mem {
SIZE(0x00250000);
BLOCKSIZE(8,8);
FLAGS(R|W|X);

};
REGISTER unsigned int GPR[0..127];
PIPELINE pipe={FE ; DE ; EX ; WB };
PIPELINE_REGISTER IN pipe {

unsigned int src1,src2,dst;
}

} ...

Listing 5.1 Resource declaration

Configuration items for the memories include size, accessible block size, endianess,
etc. All resources are global to the LISA model, i.e., they can be accessed within
any LISA operation.

Listing 5.1 shows a typical LISA resource declaration. In the example, a 2-MB
memory area named example_mem is specified, which is mapped into address
space starting at 0x100000. Furthermore, the general-purpose register file named
GPR with one hundred and twenty-eight 32-bit wide registers and a pipeline named
pipe are declared. The pipeline stages are defined from left to right corresponding
to the actual execution order. PIPELINE_REGISTERS define the storage elements
between pipeline stages, here src1, src2, and dst.

The major part of a model consists of operations. An OPERATION is the basic
element of the ISA description. Each instruction is usually distributed over several
operations whereas each operation in turn consists of several so-called sections.
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The CODING section describes the binary coding, the SYNTAX section the assembly
syntax, and the BEHAVIOR section the operation’s behavior.

Operations are organized hierarchically in order to factor out commonalities of
instructions that reduce the description effort to a large extent. A modeled pipeline
implies a cycle-accurate LISA model and hence each operation has to be assigned
to one of the defined pipeline stages. Moreover, operations can trigger the execution
of one or more child operations in the same or any later pipeline stage by so-called
activations (via a dedicated ACTIVATION section) or behavioral calls. Again, oper-
ations can be activated or called from several different operations.

The resulting structure is a so-called LISA operation DAG D = (V, E), where
V denotes the set of all LISA operations and E the edges due to activations or
behavioral calls. The root operation is the special main operation that is executed
if the simulator advances one control step. Among others, this operation activates
the operation fetching the next instruction from memory and advances the pipeline.
Hence, a complete branch of the LISA DAG, also referred to as activation chain,
and the related operations represent an instruction in the modeled target machine.
Figure 5.2 gives an example.

The delay (in cycles) between two connected operations depends on the abstrac-
tion level. In the case of instruction-accurate models, operations are simply activated
along the increasing depth of the LISA operation DAG, whereas in the case of cycle-
accurate models, it is delayed until the activation advances to the stage related to the
activated operation. Operations in the same pipeline stage are executed concurrently.

Listing 5.2 provides the specification for three of the operations in the example
LISA operation DAG. More specifically, arithmetic, ADD, SUB, and
writeback. They are assigned to the pipeline stages DE, EX, and WB, respectively.
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Because ADD and SUB use the same type of operands (i.e., reg), the initializa-
tion of the operands can be factored out, and thus is modeled in the operation
arithmetic. This relationship is given through the definition of GROUPs, whose
members correspond to a list of alternative, mutual exclusive operations. The group
name can then be referenced within the LISA sections, e.g., in the ACTIVATION

section as depicted in the example. Here, all operations potentially referenced by
opcode are located in pipeline stage EX, i.e., the execution is delayed until the
subsequent cycle. The writeback operation is located in stage WB and, conse-
quently, is two cycles delayed.

OPERATION arithmetic IN pipe.DE{
DECLARE{

GROUP opcode = { ADD || SUB || ... };
INSTANCE rs1, rs2, rd = { reg };
INSTANCE writeback;

}
CODING { opcode rd rs1 rs2 0b00}
SYNTAX { opcode " " rd " " rs1 " " rs2 }
BEHAVIOR{

PIPELINE_REGISTER(pipe, DE/EX).src1 = GPR[rs1];
PIPELINE_REGISTER(pipe, DE/EX).src2 = GPR[rs2];

}
ACTIVATION { opcode, writeback;}

}
OPERATION ADD IN pipe.EX{

CODING { 0b00 }
SYNTAX { "ADD"}
BEHAVIOR{

int op1 = PIPELINE_REGISTER(pipe, DE/EX).src1;
int op2 = PIPELINE_REGISTER(pipe, DE/EX).src2;
PIPELINE_REGISTER(pipe, EX/WB).dst = op1+op2;

} ...
}
OPERATION SUB IN pipe.EX{

CODING { 0b01 }
SYNTAX { "SUB" }
BEHAVIOR{

int op1 = PIPELINE_REGISTER(pipe, DE/EX).src1;
int op2 = PIPELINE_REGISTER(pipe, DE/EX).src2;
PIPELINE_REGISTER(pipe, EX/WB).dst = op1-op2;

} ...
}
OPERATION writeback IN pipe.WB{

DECLARE{ REFERENCE dst; }
BEHAVIOR{

GPR[dst] = PIPELINE_REGISTER(pipe, EX/WB).dst;
}

}

Listing 5.2 LISA operation hierarchy example
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The SYNTAX describes the assembly syntax of the instruction. The syntax ele-
ments can be either terminal character sequences like “ADD” or a nonterminal. The
later can correspond to a single INSTANCE of a LISA operation or a GROUP. The
CODING section specifies the binary coding in a similar way using “0” and “1” as
terminal elements. The behavior of a LISA operation is executed only if all terminal
sequences and nonterminals (more specifically, single instances and at least one
group member) match the actual decoded instruction.

The BEHAVIOR section implements the combinatorial logic of the processor. The
LISA language allows arbitrary C/C++ descriptions of instruction behaviors, which
achieves highest modeling flexibility. As mentioned above, if a pipeline is modeled,
the C/C++ instruction behavior description is typically distributed over different
pipeline stages. In the example, arithmetic reads the operands from the register
file, stores them in the corresponding pipeline registers, and activates the opera-
tion currently referenced by opcode, so either ADD or SUB. These operations are
executed in the following cycle. Accordingly, they combine the operand pipeline
registers and store the result back into a pipeline register. Another cycle later the
operation writeback writes the result back to the register file. For that purpose,
the dst instance declared in arithmetic has to be referenced.

Apart from operation names, local variables can be declared and used in the
BEHAVIOR section. Global processor resources and pipeline registers can be accessed
as well. It is even possible to call external C/C++ functions or an internal LISA
operation within the BEHAVIOR section (behavioral call).

5.3 Compiler Designer

The Processor Designer employs the CoSy system from ACE [38] for compiler
generation. CoSy is a modular compiler generation system that offers numerous
configuration possibilities both at the level of the intermediate representation (IR)
and the backend for machine code generation. As illustrated in Fig. 5.3, CoSy is
built around the CoSy Common Medium Intermediate representation (CCMIR) of
the source program.

In general, a compiler is built by specifying a set of analyses and transformations,
called engines, that annotate and modify the CCMIR. CoSy not only comes with
a broad range of standard optimizations [1], but can also be easily extended with
user-defined engines due to its modular concept. Each engine must exactly specify
which elements of the IR it accesses using the full-Structured Definition Language
(fSDL) [113]. The engine’s execution order is provided in a dedicated specification
using the engine description language (EDL). From these pieces of information, a
so-called supervisor is generated which schedules the engines and grants access to
the CCMIR.

The Backend Generator (BEG) is the most important component of the CoSy
system. It takes so-called code generator description (CGD) files as input and
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generates most of the backend source code automatically. A CGD model consists
mainly of three components:

• A specification of available target processor resources such as registers or func-
tional units.

• A description of mapping rules (cf. Section 3.3.2), specifying how C/C++ lan-
guage constructs map to (potentially blocks of) assembly instructions.

• A scheduler table that captures instruction latencies as well as instruction resource
occupation on a cycle-by-cycle basis.

Apart from that, CoSy requires some more information such as function calling con-
ventions or the C data type sizes and memory alignment. A more detailed descrip-
tion of CoSy can be found in [36].

As depicted in Fig. 5.4, the Compiler Designer [168] basically extracts compiler-
relevant information from a given LISA processor model and translates it to a cor-
responding CGD description. Afterward, CoSy can be invoked as a “backend” to
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generate the compiler executable. However, this translation is quite challenging due
to a number of reasons: while some information is explicit in the LISA model (e.g.,
via resource declarations), other relevant information (e.g., concerning instruction
scheduling) is only implicit and needs to be extracted by dedicated algorithms.
Some further, heavily compiler-specific information is not at all present in the LISA
model, e.g., C-type bit-widths. Additionally, compiler retargeting is further compli-
cated by the semantic gap (cf. Section 6.1) between the compiler’s high-level model
of the target machine and the detailed ADL model that in particular must capture
cycle and bit-true behavior of machine operations. This is discussed in Chapter 6 in
more detail.

The Compiler Designer employs a semi-automatic approach for compiler gener-
ation. Compiler information is automatically extracted from LISA whenever pos-
sible, while GUI-based user interaction is employed for other compiler compo-
nents. The Compiler Designer is organized in different configuration dialogs and
the user is guided step by step through the specification of the missing items that
could not be configured automatically or for further refinement of the generated
items.

Data layout, register allocator, and calling conventions: Purely numerical parame-
ters not present in the LISA model can be directly entered via GUI tables. This
concerns mainly compiler-dependent data such as C-type bit-widths, type align-
ments, and minimum addressable memory unit size.
Configuration options for the register allocator include the selection of allocat-
able registers out of the set of all available registers in the LISA model. For
instance, registers selected as frame or stack pointer need to be excluded from
allocation. Another option regards those registers that cannot be temporarily
saved in memory. Finally, some processor architectures allow the combination
of several regular data registers to “long” registers of larger bit-width. The com-
position of long registers is also performed via the GUI.
The calling conventions basically describe the preferred passing of function
parameters and return values. The GUI provides a convenient dialog to specify
for each C data type the preferred passing method which can be either registers
or stack.

Instruction scheduler: Instruction schedulers determine the sequence in which
instructions are issued on the target processor. Besides structural hazards, data
dependencies between instructions need to be taken into account (cf. Section
3.3.4). These constraints are captured by scheduler tables containing latency
information for the different kinds of dependencies and the resource usage of
instructions. These tables are generated fully automatically from the given LISA
model [195]. Since the generator guarantees a correct (yet sometimes too conser-
vative) scheduler, it is possible to manually override the extracted scheduler char-
acteristics in the GUI. From this information, an improved backtracking scheduler
is finally generated.

Code selector: In order to get an operational compiler, a minimum set of code selec-
tor rules or mapping rules is needed. These mapping rules are the basis for the tree
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pattern matching based code selector (cf. Section 3.3.2) in CoSy. The Compiler
Designer comprises a so-called mapping dialog (Fig. 5.5). This dialog provides
the set of available IR operations (top left in Fig. 5.5), defined nonterminals (bot-
tom left), as well as the hierarchically organized set of machine operations in the
given LISA model (right). By means of a convenient drag-and-drop mechanism,
the user can manually compose mapping rules (top center) from the given IR
operations (1) and nonterminals (2). Likewise, the link between mapping rules
and their arguments on the one hand and machine operations and their operands
on the other hand is made via drag-and-drop in the mapping dialog (3). In this
way, multi-instruction rules which can even contain control flow as well as com-
plex instructions like MAC can be composed. The example from Fig. 5.5 shows
the mapping defined for a 32-bit multiply operation, which is implemented by
a sequence of two 16-bit multiply instructions and an add instruction. Based on
this manually established mapping, the Compiler Designer looks up the required
assembly syntax of involved instructions (4) in the LISA model and can there-
fore automatically generate the code emitter for the respective mapping rule.
The output of the code emitter is symbolic assembly code, which will be fur-
ther processed by the register allocator and the instruction scheduler during code
generation.
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The mapping dialog also provides additional capabilities, e.g., for capturing rule
attributes like type-dependent conditions for rule matching or for reserving scratch
registers for use in complex multi-instruction rules, such as the above 32-bit mul-
tiply example.

The Compiler Designer supports a generic stack organization, which assumes that
the architecture provides stack and frame pointer registers as well as register-
offset addressing. Corresponding to this generic stack model, the user has to
assign instructions to some predefined mapping rules needed for function prolog
and epilog code generation.

Providing the minimum set of mapping rules enables the generation of a working
compiler suitable for early architecture exploration. Naturally, at any time, the
user may refine the code selector by adding more dedicated mapping rules that
efficiently cover special cases leading to higher code quality.

The final output of the Compiler Designer is a compiler specification file in
CoSy’s CGD format, from which in turn a C/C++ compiler is generated fully auto-
matically. During compiler retargeting, the session status of the Compiler Designer
can be saved in XML format and can be resumed at any time.

5.4 Synopsis

• The Processor Designer environment supports all ASIP design phases.
• All software development tools, except the compiler, can be generated fully auto-

matically.
• Some C compiler components are extracted automatically from the LISA model

(e.g., scheduler tables) while the largest part (code selector description) still needs
to be retargeted manually.



Chapter 6
Code Selector Description Generation

In Section 3.3.2, it was mentioned that the code selector’s task is to map the IR to
a semantically equivalent sequence of machine instructions. A common technique
for code selection is the tree-pattern-matching technique, which is also employed
in the CoSy platform. Like in many other ADLs, the required tree grammar must
be manually specified in the Compiler Designer. Practical experience showed that
this is a time-consuming, tedious, and error-prone task. Additionally, two major
drawbacks have been identified: first of all, the designer actually starts with an
empty code selector specification, i.e., he must have the knowledge about which
code selector rules are necessary to build a working compiler that is able to trans-
late arbitrary input programs. Second the code selector description from a previous
architecture exploration phase may be inconsistent after a change in the underlying
ADL model (e.g., a rearrangement of the instruction-set hierarchy). In this case, the
code selector specification must be entirely revised. Unfortunately, major changes
to the ADL model are quite common in the early exploration phase when different
architectural alternatives are evaluated. This is further aggravated by the fact that
the user is responsible for maintaining the correctness of the mapping rules, since
pure changes in the instruction behavior description, without changing the hierarchy
or the assembly coding, are not detected automatically. Hence, this chapter presents
a novel methodology to generate the code selector description automatically from
LISA processor models (Fig. 6.1), which completely eliminates these problems.
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The rest of this chapter is organized as follows: Section 6.1 elaborates the diffi-
culties extracting code selector relevant information from a given LISA model. The
extension to the LISA model required to circumvent them are presented in Section
6.2. Afterward, Section 6.3 describes how this information is used to enable the
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automatic generation of the code selector rules. Finally, Section 6.4 describes the
integration into the Compiler Designer.

6.1 The Semantic Gap

When the LISA language was initially developed, the primary goal was to generate
fast processor simulators [271]. In the following, the language was further refined
and extended to be able to describe a broader range of architectures as well as to
enable the generation of the remaining software development tools. Consequently,
a LISA description has a rather simulator-centric view, i.e., the main focus in its
design was to capture cycle and bit-true behavior of machine operations. As a result,
the LISA language allows arbitrary C/C++ descriptions of instruction semantics.
This feature ensures highest flexibility to describe how an instruction performs, but
results in a quite detailed ADL model. However, compiler generation requires rather
the information what an instruction does – which is quite difficult to extract from
such “informal” models of instructions. This semantic gap in particular complicates
the code selector rule generation.

Consider the LISA operation example shown in Listing 6.1. It describes an addi-
tion instruction that sets the carry flag according to the result. Note that this oper-
ation (like all remaining operations in this chapter) has no pipeline stage assigned,
and hence belongs to an instruction-accurate LISA model.

OPERATION ADD {
DECLARE {

GROUP src1, dst = { reg };
GROUP src2 = { reg || imm};

SYNTAX { "ADD" dst "=" src1 "," src2 }
CODING { 0b0000 src1 src2 dst }
BEHAVIOR {
dst = src1 + src2;
if ( ((src1 < 0) && (src2 < 0))

|| ((src1 > 0) && (src2 > 0) && (dst < 0))
|| ((src1 > 0) && (src2 < 0) && (src1 > -src2))
|| ((src1 < 0) && (src2 > 0) && (-src1 < src2)))

{ carry = 1; }
}

}

Listing 6.1 LISA operation for an ADD instruction

Even for this relatively simple operation, it is quite impossible to accurately
extract the high-level semantic meaning of the instruction automatically from the
BEHAVIOR section. First of all, the presented code is, due to numerous syntactic
variances in C/C++, only one way to describe the carry flag computation. This
is further aggravated by the fact that once a pipeline is modeled, this C/C++
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instruction behavior description will be distributed over different pipeline stages
(cf. Section 5.2). Besides, the example does not model any architectural feature such
as register bypassing and side effects, which would lead to a much more complex
description than what is shown in the example.

Thus, in order to close the semantic gap, a new SEMANTICS section is introduced
to LISA [126]. It captures the instruction behavior at a higher abstraction level while
ignoring all structural details like pipelining for instance. This enables a clean and
unambiguous way of describing instruction semantics, which in particular are suit-
able for the generation of code selector rules.

6.2 SEMANTICS Section

The requirements for description of instruction semantics are as follows:

• Uniqueness, simplicity, and flexibility.
• A single, concise formalism to define the semantics, though still flexible enough

to describe even complex operations. Considering that the SEMANTICS sections
and BEHAVIOR sections describe both the behavior of instructions, a concise
description reduces redundancy to a minimum.

• Legacy LISA models should be easily extendable to aid the compiler generation
with only minor additional design effort.

• For the purpose of compiler generation, ambiguity has to be strictly avoided.
• The designer shall not need compiler and/or simulator knowledge to create a

model with semantic sections.

The MIMOLA ADL [235] employs a set of the so-called micro-operations to
describe a processor’s instruction-set. Each micro-operation can be seen as a prim-
itive operation similar to the instructions of an RISC instruction-set architecture.
Complex instructions can be typically modeled by a combination of such. This
approach has been proven feasible and complete for the specification of instruction
semantics, but it is unsuitable for the description of complex micro-architectural
behavior as required for cycle-accurate simulators or HDL generation. Fortunately,
this is already covered by the BEHAVIOR section. Thus, the micro-operation idea is
adapted for the definition of the SEMANTICS section since it meets the requirements
for the description of instruction’s semantics very well.

6.2.1 Semantics Statements

A SEMANTICS section basically consists of one or more semantics statements,
which are composed of micro-operations. In total, four different kinds of semantics
statements are available:

• A statement of the form <source> − > <destination>; is called an assignment
statement. It performs either some computations defined by a micro-operation
and stores the result in the destination or just moves the data from the source to
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the destination. The source expression of the assignment statement must produce
a result. For instance, a _NOP (no operation) micro-operation at the left-hand
side is not allowed since it does not produce any result. Likewise, the destination
of an assignment statement cannot be an arbitrary micro-operation expression.
Only reasonable data sinks in an architecture can be used as destination (e.g.,
status flags, registers).

• Although not all LISA resources make sense in semantics sections, there is still
a reasonable number of processor resources that can be used as operands for
micro-operations. Such resources must be wrapped into LISA operations, which
then defines the semantical type of the respective resource. The semantical types
are called modes. Such modes do not perform any computations or data assign-
ments. Currently, two kinds of modes can be defined, register mode and imme-
diate mode. Thus, the mode statement encapsulates the register and immediate
operands of the micro-operations.

• Control flow within the SEMANTICS section is modeled with the if–else statement
(Section 6.2.7).

• Literally speaking, the non-assignment statement should include all the state-
ments that are not assignment statements including if–else statements and modes
statements, e.g., the statement _NOP;. A more often usage of such statement is
in the operation hierarchy (see Section 6.2.8).

6.2.2 Semantics Resources

The RESOURCE section of a LISA model specifies all architecture-relevant resources
such as register files, internal status register, pipeline, memory bus, and so on.
They must be declared in this section before being used. All declared architec-
ture resources are visible and accessible in the BEHAVIOR sections. However,
in the SEMANTICS sections not all resources are allowed. Naturally, only those
having clear meanings to the compiler can be accessed. The usable resources in
the SEMANTICS sections are memories, registers, program counter, stack pointer,
carry flag, overflow flag, negative flag, and zero flag. In LISA models, register
resources are usually accessed via wrapper operations, whose semantics are defined
by the mode statement. For memory accesses a special micro-operation exists (Sec-
tion A.2.6). Furthermore, dedicated identifiers exist for other common resources.
They can be accessed via the shortcuts described in Table 6.1.

Table 6.1 Shortcuts for special resources

Shortcut Resource specifier

PC PROGRAM COUNTER
SP STACK POINTER
CF CARRY FLAG
ZF ZERO FLAG
OF OVERFLOW FLAG
NF NEGATIVE FLAG



6.2 SEMANTICS Section 61

6.2.3 Micro-Operations

Usually, the semantic meaning of an instruction is tightly coupled to the syntax of
an instruction. In most cases, the semantic of an instruction can be described by
taking one or more of the instruction’s parameters, performing a computation on
those operands, and finally modifying one or more of the instruction’s operands
(and/or processor resources). The examination of the instruction-set architectures of
several contemporary embedded processors revealed that the high-level behavior of
most instructions are typically either arithmetic calculations using several operands
or control-flow operations. The calculations carried out by the instructions can be
further decomposed into one or several primitive operations, whereas the set of
primitive operations is quite limited. However, to meet the aforementioned require-
ments of a semantic description, the operations that should be included in the set of
micro-operators must be carefully selected. For instance, only those operators are of
importance that are relevant for code selector generation. It does not make sense to
consider dedicated micro-operations for, e.g., saturated arithmetic as supported by
many DSP architectures since the C language does not consider saturated arithmetic
at all. Though at the same time, it should be possible to describe those operations
with existing micro-operators.

OPERATION ADD {
DECLARE{
GROUP src1, dst = { reg };
GROUP src2 = { reg || imm};

}
...
SEMANTICS{
_ADD|_C|(src1, src2)<0,32> -> dst;
}

}

Listing 6.2 Operation with semantics

The example in Listing 6.2 shows the ADD operation from the previous example
using the SEMANTICS section instead of the BEHAVIOR section.

A micro-operation is a tuple (o, S, U, v, w), consisting of the micro-operator o,
the set of side effects S ⊂ {C, V, N , Z}, the set of operands U , and a bit-field
specification represented by bit offset v and bit-width w. In the given example, the
micro-operator _ADD defines the integer addition, while the following _C specifies
that the carry flag is affected by the operation. Other supported flags are zero (_Z),
negative (_N), and overflow (_V). A comma-separated list of operands, i.e., src1
and src2, follows in parentheses. The <0,32> after the _ADD’s brackets explicitly
specifies that the result of the addition is 32-bit wide (see Section 6.2.4). Hence,
the corresponding tuple for _ADD is ({C}, {src1, src2}, 0, 32). If the bit-width is
omitted, it will be deduced from the operand(s) of the micro-operation. Finally, the
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pointer -> specifies the location for the result. Compared with the BEHAVIOR sec-
tions shown in Listing 6.1, the description in the SEMANTICS section is obviously
much simpler.

OPERATION reg {
DECLARE{

LABEL index;
}
SEMANTICS{
_REGI(R[index])<0..31>;
}

}

Listing 6.3 Operand’s semantics

The operands of the micro-operator can be either terminal elements, such as
integer constants, or other LISA operations like in the example. In the latter case,
the respective operations must have a SEMANTICS section on their own. In Listing
6.3, the SEMANTICS section of the reg operation defines the semantic type of the
operand using a mode statement. In this case, it refers to a 32-bit integer register file
specified as an array R in the global RESOURCE section (Listing 6.4).

RESOURCE {
MEMORY_MAP { ... }
...
REGISTER unsigned int R[0..15];

}

Listing 6.4 Resource section

The label index is used to index the registers. The number of available registers
is derived from this label, e.g., assuming label is a 4-bit binary number, it can
index up to 16 registers. According to the SYNTAX section of operation reg, these
registers are named R0–R15. These kinds of micro-operators define the semantical
type of the respective processor resource and are called modes. Apart from this
register mode an additional immediate mode exists. This mode defines an immediate
value that is part of the instruction coding. In this case, the bit-width can be directly
derived from the CODING section. Listing 6.5 provides an example for an 8-bit
immediate operand value.
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OPERATION imm{
DECLARE{

LABEL value;
}
CODING{ value = 0bx[8] }
SEMANTICS{

_IMMI(value);
} ...

}

Listing 6.5 Immedidate mode example

Similar to the micro-operators, each operand of a micro-operation can be rep-
resented as a 3-tuple (u, v, w) consisting of the value/resource u and a bit-field
specification represented by bit offset v and bit-width w. Thus, the corresponding
tuple for operation reg is (u, v, w) = (R[index], 0, 32).

6.2.4 Bit-Width Specification

Except for the _NOP micro-operation, all micro-operation are able to produce some
result in one way or another. However, not all instructions need the complete
result of the micro-operation. For instance, an architecture supports a multiplication
instruction that multiplies two 32-bit registers and puts the result also in a 32-bit
register. Hence, the instruction needs only 32-bit of the default 64-bit result. In such
cases, a bit-width specification such as _MULII(src1,src2)<0..31>->dst;
can be used. The bit-width is given by the starting offset and the ending offset.
Another possibility is to specify the starting offset and the width. In this case, the
bit-width specification would change to <0, 32>. Both forms are equivalent and
are provided just for convenience. Most of the time, the offsets and widths are
specified using integer values. However, LISA operation names can also be used.
This enables the modeling of dynamic bit-width extractions, i.e., to extract the bits
according to a register value or immediate coding.

If no explicit bit-field specification is provided for the micro-operator, it will
deduce the specification from the input operands or, in case of resources, are
extracted from the RESOURCE section. Considering the bit-widths of both sides
of an assignment statement, they must be the same. An error will be issued if a
mismatch exists. For instance, the addition of two operands (a, 0, 32) and (b, 0, 32)
results in the 3-tuple (c, 0, 32), where c is the result of the 32-bit addition of a and b.
Thus, the explicit bit-field specification <0,32> for ADD in Listing 6.2 is actually
superfluous.

Note that the bit-width specification is compulsory for those micro-operations
whose output bit-width cannot be deduced from their operands, such as sign/zero
extension for instance. Furthermore, certain micro-operators have some implicit
restrictions for the input operands regarding the bit-width. An implicit constraint
for the _ADD micro-operator is that both operands share the same bit-width. If that
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constraint is not met, the respective operand has to be extended to match the width of
the other operand by means of an explicit sign/zero extension. Two separate micro-
operations _SXT and _ZXT serve that purpose.

The generic micro-operation and operand representation allows for a very
compact instruction-set description while keeping the number of required micro-
operations small. A comprehensive list of all available micro-operators can be found
in Appendix A.

6.2.5 Micro-Operator Chaining

Obviously, not all instructions can be expressed by a single micro-operation. For
instance, many DSP processor architectures have instructions for combined com-
putations such as Multiply and Accumulate (MAC) for instance. Such behavior
is captured in SEMANTICS sections by using a micro-operation as the operand of
another micro-operation, henceforth referred to as chaining.

OPERATION MAC{
DECLARE{
GROUP src1, src2, dst = { reg };
}
...
SEMANTICS{
_ADD(_MULUU(src1, src2)<0,32>, dst) -> dst;

}
}

Listing 6.6 Micro-operation chaining

A simple example of a MAC operation is shown in Listing 6.6. _MULUU is the
micro-operator that denotes the unsigned multiplication. Its result is used as one
of the operands of the _ADD, thus building a micro-operation chain. The bit-field
specification in angle brackets is required to ensure that both operands of _ADD
have matching bit-widths.

The chaining mechanism helps to describe complex operations without intro-
ducing temporary variables. This guarantees a tree-like structure for each semantic
statement. Such trees are well suited for mapping rule generation since most code-
selection algorithms are based on the tree-pattern-matching technique.

6.2.6 Execution Timing

In general, most of the RISC instructions can be modeled with one statement
(including chaining), but obviously this is not sufficient for those instructions
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transferring data to multiple destinations. However, this can be modeled with mul-
tiple statements in the SEMANTICS sections. Thus, the timing of the execution of
those statements needs to be defined: all the statements in one semantics section
will be executed concurrently (rather than sequentially). Consequently, a preceding
statement’s result cannot be used as the input of the following statement. Listing 6.7
illustrates this. The SWAP operation swaps the content of a register by exchanging
the upper and lower 16 bits. Because the execution is in parallel, the data in the
register are exchanged safely without considering sequential overriding.

OPERATION SWAP{
DECLARE{
GROUP src = { reg };

}
...
SEMANTICS{
src<0,16> -> src<16,16>;
src<16,16> -> src<0,16>;
}

}

Listing 6.7 Multiple statements

6.2.7 IF–ELSE Statements

Another kind of important behaviors used in modern processors is predicated execu-
tion, i.e., an instruction is executed depending on certain conditions, similar to the C
language’s if–else statement. In order to model such instructions, IF-ELSE state-
ments and comparison operators can be used in the SEMANTICS sections to model
all kinds of conditions. Ten predefined micro-operators are available (Appendix A)
to specify comparisons. Each of these comparison operators returns either true or
false, depending on the result. So far, such operators can only be employed within
IF–ELSE conditions.

To form a more complex condition, conditions can be concatenated by “||” or
“&&”. Like in the C language, the former means logical or of the conditions on
its both sides, and the other represents a logical and. The condition expression is
evaluated from left to right and the two symbols have the same priority, which means
that the expressions besides the leftmost symbol are evaluated first, yet brackets can
be used to override this relation. Of course, comparisons can be chained, too.

Listing 6.8 gives an example for an addition with carry bit. The _EQ opera-
tor checks whether the two input operands, an integer constant and the carry flag,
are equal or not. Depending on the result, the IF statement will execute the code
specified in the braces. Nested IF–ELSE statements, are however, currently not
supported.
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OPERATION CADD{
DECLARE{
GROUP src1, src2, dst = { reg };

}
...
SEMANTICS{
IF(_EQ(_CF,1)){
_ADD(src1, src2) -> dst; }

}
}

Listing 6.8 IF–ELSE statement

Naturally, it is not possible to describe every instruction with the formalism
presented above. For instance, ASIPs often feature application-specific instructions
whose behavioral description can vary from only a few code lines to several hun-
dreds. Obviously, such complex behavior can hardly or not at all be expressed with
micro-operations. But this is actually no drawback since such instruction cannot be
directly exploited by today’s code-selection techniques anyway. For such instruc-
tions, a special intrinsic micro-operation can be used as some sort of a wildcard. No
semantic meaning is associated with its description, just an user-defined name. List-
ing 6.9 illustrates this. With the capability of defining intrinsics, every instruction
can be described in the SEMANTICS sections. Intrinsic micro-operators are treated
separately during mapping rule generation.

OPERATION DCT2d{
DECLARE{
GROUP src,dst = { reg };

}
...
SEMANTICS{

"_DCT2d"(src) -> dst;
}

}

Listing 6.9 Intrinsic micro-operation

6.2.8 Semantics Hierarchy

Section 5.2 illustrated already the LISA operation hierarchy. This achieves model-
ing flexibility and simplicity. Consequently, it has to be supported by the semantic
description as well. The execution of an instruction equals in principle the execution
of operations along the activation chain. Likewise, the semantic of an instruction is
given by the SEMANTICS sections of the operations in the activation chain. Listing
6.10 provides an example.
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OPERATION arithm {
DECLARE{
GROUP src1, src2, dst = { reg };
GROUP opcode = { ADD || SUB ...};

}
...
SEMANTICS{ opcode|_C|(src1, src2) -> dst; }

}

OPERATION ADD {
...
SEMANTICS{ _ADD; }

}

OPERATION SUB {
...
SEMANTICS{ _SUB; }

}

Listing 6.10 Hierarchical operators

In the arithm operation, the GROUP opcode is used as a micro-operator. Con-
sequently, the concrete micro-operators is obtained from the SEMANTICS sections
of the respective GROUP members. In this case, the SEMANTICS sections of the
ADD and SUB operation provide the corresponding micro-operator. The similarity
of the ADD and SUB operation’s semantics is well exploited here to simplify the
description.

OPERATION ADD {
DECLARE{
GROUP src1, dst = { reg };
GROUP opd = { SHL || SHR };

}
...
SEMANTICS{ _ADD(src1, opd)-> dst; }

}
OPERATION SHL {
DECLARE{
GROUP src2 = { reg };
GROUP imme = { imm };

}
...
SEMANTICS{ _LSL(src2, imme); }

}
OPERATION SHR {
...
SEMANTICS{ _LSR(src2, imme); }

}

Listing 6.11 Hierarchical operands
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A SEMANTICS section can return not only a micro-operator but also a com-
plete micro-operation expression. In Listing 6.11, the SEMANTICS sections of the
_SHL and _SHR operations do not contain a complete assignment statement but
micro-operators with operands (_LSL and _LSR are logical left and right shift
micro-operators). Such statements are called nonassignment statements. They refer
to all statements that do not carry out data assignments, predicated execution, or
resource encapsulation. As a result, the semantics of these two operations is not
self-contained, because the data sink is missing. The use of these two operations is
actually doing operand pre-processing for the ADD operation, which can be seen in
its SEMANTICS section. The opd GROUP, which contains the previous two opera-
tions, is used as one of the operands of the _ADD micro-operation. Thereby, depend-
ing on the binary encoding of the actual instruction, one of the operand registers will
be left or right shifted before the addition is actually performed.

The presented formalism that defines the SEMANTICS sections is very flexi-
ble and well integrated into LISA. If the commonalities of instructions are fully
exploited, their instruction semantics can mostly be described with a single or a few
semantic statements.

6.3 Code Selector Description Generation

The code selector generator in CoSy uses the dynamic programming tree-matching
algorithm as presented in Section 3.3.2. The tree grammar G = (T, N , P, S, w)
consists of finite sets N and T of nonterminal and terminal symbols, respectively, as
well as a set P of mapping rules, the corresponding cost metric w, and a start symbol
S ∈ N . The terminals T essentially describe the available IR operations of the given
source language and thus are target machine independent. Likewise, the start symbol
S requires no special retargeting effort. Only the nonterminals N , and the rules P ,
need to be adapted to the target machine. N basically reflects available instruction
operand kinds, e.g., registers, memories, and addressing modes like register offset
addressing for instance, while P defines how source language operations are imple-
mented by the target instructions. Each mapping rule in P has the form of a tree
pattern that may serve to cover a data-flow graph fragment during code selection.
Figure 6.2 shows a typical CoSy mapping rule specification. Each rule starts with the
keyword RULE followed by the tree pattern specification. In CoSy, IR operators are
named mirPlus, mirMult, etc. Each IR operator and each operand can be asso-
ciated with a name for further reference. Additionally, each rule has an (optional)
CONDITION assigned that must be met before the rule can be applied. Here in the
example, the rule only matches for integer additions (i.e., floating-point additions
are not matched by the rule). Additionally, each rule has a fixed cost assigned that is
used by the tree-pattern-matching algorithm. Finally, the EMIT part contains a print
function that is executed by the code emitter, the final compiler phase, if the rule has
been selected. Here, it prints the add syntax including the physical register names
that have been assigned to the nonterminals during register allocation.
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RULE o:mirPlus (a:reg_nt, b:reg_nt) -> c:reg_nt;
o

REGNAME(a),
REGNAME(b));

}

Result
nonterminal

Input
operands

mirPlus

Reg
nt

Reg
nt

Reg
nt

Cost
metric

Print function for
code emission

apply rule

Integer addition?

Assembly syntax
format string

Operand register‘s
syntax name

name
Tree Pattern

Fig. 6.2 CoSy mapping rule syntax

The following sections describe how the nonterminals N and the mapping rules
P and the associated conditions are automatically generated from the instruction
semantics information given in the SEMANTICS sections (Fig. 6.3).
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Fig. 6.3 Nonterminal and mapping rule generation

6.3.1 Nonterminal Generation

In tree grammar descriptions, nonterminals can be seen as temporary variables con-
necting different grammar rules. In this way, they determine the expressive power
of a tree grammar specification to a large degree. Usually, each nonterminal cor-
responds to some feature of the target architecture that is common to a number of
instructions such as registers and memory accesses for instance. Thus, depending
on the type of the temporary, nonterminals can be divided into the following four
categories:

Register nonterminals represent the registers that can be used by the compiler.
Immediate nonterminals carry the constant values that can be used as immediate

operands in instructions.
Condition nonterminals are typically condition flag registers that are affected

by different instructions, e.g., carry or zero flag.
Addressing mode nonterminals encapsulate the addressing modes supported by

the target, e.g., register offset addressing.
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If an architecture does not support any conditions flags, then the condition nonter-
minal is not needed. However, all other nonterminal types are usually supported by
any programmable architecture.

6.3.1.1 Register Nonterminals

In LISA processor models, accesses to these storage location or processor resources
are usually described by a wrapper operation, like the operation reg in Listing 6.3.
A set of micro-operators is available that captures the semantics of these wrappers.
As mentioned above, the _REGI operator in the example stands for a register access.
Its operand R is the name of the corresponding LISA resource that is used to model
the register file. The index of the accessed register is given by index, a LISA label
whose value is determined by the instruction encoding of the operation. Another
important information, the bit-width of the registers, is specified with the notation
<0,32>, which means the register is 32-bit wide and the least significant bit is bit
0. From this specification, a register nonterminal with the given properties can be
generated.

6.3.1.2 Immediate Nonterminals

Likewise, the generation of the immediate nonterminals is based on the _IMMI
operator. The corresponding mode statement in the immediate wrapper operations
does not contain the signed/unsigned information of the immediate coding (List-
ing 6.5). Actually, this information comes from the micro-operation that uses the
semantics of the immediate wrapper. The operation ADDI shown in Listing 6.12
references the operation imm. More specifically, it is used as the operand of the
_SXT micro-operator. That means, the immediate is used as a signed value and,
hence, a signed immediate nonterminal is generated. Correspondingly, if the imme-
diate is used by _ZXT micro-operations, the generated immediate nonterminal is an
unsigned immediate nonterminal. Using the immediate in one of the other micro-
operations does not have any effect on the immediate nonterminal generation. In
this case both, sign and unsigned, immediate nonterminals are generated from the
immediate wrapper operation.

OPERATION ADDI {
DECLARE{
GROUP src, dst = { reg };
GROUP imm8 = { imm };

}
...
SEMANTICS {
_ADD(src, _SXT(imm8)<0..31>)) -> dst;

}
}

Listing 6.12 Add immediate operation
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6.3.1.3 Condition Nonterminals

In general, condition nonterminals represent the flag registers; their existence
depends on the use of the four predefined flags, namely carry (_C), zero (_Z),
overflow (_O), and negative (_N) flag. The nonterminal generator checks whether
there is any assignment to a flag register or any micro-operation having an affected
flag declared. For example, the semantics statement in Listing 6.2 writes to the carry
flag. Regardless of the flag type, a condition nonterminal is generated. Additionally,
the nonterminal has an attribute that can store the type of the compare instruction.
This field corresponds to the 10 compare conditions provided by the SEMANTICS

section. This is later used for the mapping of compare instructions.

6.3.1.4 Addressing Mode Nonterminals

The generation of addressing mode nonterminals is based on the _INDIR micro-
operation used for memory references. However, it requires some more analy-
sis since it is typically used in a micro-operator chain to describe more com-
plex addressing modes. First of all, all assignment statements using the _INDIR
micro-operations are collected. If an _INDIR expressions is used to read from
memory as well as to write to memory, then it is further analyzed to generate the
addressing mode nonterminal. The operand of the _INDIR expression provides the
information how the address is calculated. An example is given in Listing 6.13.
The LOAD and STORE operations have the common address calculation expression
_ADD(addr,_SXT(imm8)<0..31>). Obviously, the address is the result of the
addition of the semantic elements from addr and imm, i.e., an addition of a register
nonterminal and an immediate nonterminal also known as a register-offset address-
ing mode. This information enables the generator to create a proper addressing mode
nonterminal for this mode.

OPERATION LOAD {
DECLARE{
GROUP addr, dst = { reg };
GROUP imm8 = { imm };

}
...
SEMANTICS {
_INDIR(_ADD(addr, _SXT(imm8)<0..31>))<0..31> -> dst;

}
}

OPERATION STORE {
...
SEMANTICS {
src ->_INDIR(_ADD(addr, _SXT(imm8)<0..31>))<0..31>;

}
}

Listing 6.13 Load and store operation
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These four kinds of nonterminals are processor-specific elements in the mapping
rules. The nonterminal generator checks all available LISA operations for those
micro-operators and creates the corresponding nonterminals. Afterward, the algo-
rithm proceeds with the generation of the mapping rules.

6.3.2 Mapping Rule Generation

In general a mapping rule consists of three parts: a tree pattern, the result nontermi-
nal produced by the rule, and one or more associated machine instructions. The tree
pattern represents a C-level computation that can be performed by the processor.
Likewise, the input operands of the computations are usually also nonterminals.
Thus, to generate mapping rules for a working code selector description, mainly
two questions need to be answered. The first one is

• which tree patterns are needed to cover the complete set of possible IR operations
and the second is,

• how the tree patterns are mapped to the target machine instruction-set.

6.3.2.1 Basic Rules

A complete code selector description must cover all IR tree patterns that the com-
piler frontend may produce. Since the source language does not change, the IR tree
patterns needed to be covered by a code selector are actually fixed. Consequently, a
set of mapping rule templates can be prepared without knowing the target processor.
The set of such templates is called basic rules further on. Listing 6.14 shows a basic
rule along with a CoSy mapping rule in Listing 6.15 for an addition of two registers,
which stores the result again in a register.

COSYIR mirPlus(a,b) -> c;
PATTERN {
_ADD(a,b) -> c;

}

Listing 6.14 Basic rule example

RULE o:mirPlus(a:reg_nt,b:reg_nt) -> c:reg_nt;
EMIT {
print("add %s = %s, %s",

REGNAME(c), REGNAME(a), REGNAME(b));
}

Listing 6.15 CoSy mapping rule
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The mirPlus operator in both rules is an addition operation on the C level as
defined in the CoSy IR. Obviously, there are two major differences between basic
rules and CoSy mapping rules. First, the operands in the tree patterns of the basic
rules (a, b, and c) are placeholders instead of the nonterminal reg_nt used in the
CoSy rules. The code selector generator keeps a so-called basic library containing
the basic rules needed for a complete coverage of C operations. The second obvious
difference between basic rules and CoSy rules is that the latter is associated with
an assembly instructions, i.e., the print function emits the corresponding assem-
bly instruction, while a basic rule has one or more semantic statements assigned,
referred to as compiler semantics in the following. The next sections briefly intro-
duce the library syntax. A comprehensive description of the complete library speci-
fication is provided in Appendix B.

6.3.2.2 Nonterminal Enumeration

For each basic rule in the library, a list of target-specific tree patterns is generated
by replacing the placeholders with the generated nonterminals in all possible com-
binations. Figure 6.4 illustrates this.

Basic Rule Library
Generated

Nonterminals

reg_nt, imm_ntreg_nt, imm_nt

mirPlus(a:reg_nt , b:reg_nt) -> c:reg_nt; _ADD(reg_nt, reg_nt) -> reg_nt;

mirPlus(a:reg_nt , b:imm_nt) -> c:reg_nt; _ADD(reg_nt, imm_nt) -> reg_nt;

… …

mirPlus(a:reg_nt , b:reg_nt) -> c:imm_nt ; _ADD(reg_nt, reg_nt) -> imm_nt;

mirPlus(a:reg_nt, b:imm_nt) -> c:imm_nt ; _ADD(reg_nt, imm_nt) -> imm_nt;

Fig. 6.4 Tree pattern generation

Unfortunately, this can result in a large amount of mapping rules, which must
be processed. Even for this simple example with two generated nonterminals, this
already results in eight possible combinations for each basic rule. However, some of
them may never be generated by the frontend or just do not make sense. For exam-
ple, the rule whose destination is an immediate nonterminal will never be mapped
since an immediate coding cannot be assigned a value. Therefore, a type declaration
is introduced to restrict the placeholder to certain nonterminal types.

For instance, in Fig. 6.5, the placeholder a and c are declared as REGISTER,
that means they can only be substituted by register nonterminals. Likewise, b is
annotated with REGISTER and IMMEDIATE so that it can be replaced by reg-
ister and immediate nonterminals. In this way, the number of generated rules is
reduced to two. The IMMEDIATE keyword can also be combined with SIGNED and
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mirPlus(REGISTER a,

reg_nt, imm_nt

mirPlus(a:reg_nt , b:reg_nt) -> c:reg_nt; _ADD(reg_nt, reg_nt) -> reg_nt;

mirPlus(a:reg_nt , b:imm_nt) -> c:reg_nt; _ADD(reg_nt, imm_nt) -> reg_nt;

Fig. 6.5 Restricting nonterminal types

UNSIGNED. Additionally, ADDRESS can also be used to restrict the enumeration to
addressing mode nonterminals.

6.3.2.3 Basic Rule Conditions

As mentioned above, a code selector rule can be annotated with a condition that
must be met before the code selector can apply the rule. Listing 6.16 shows a basic
rule for a pointer to integer conversion. The convert node o implicitly refers to the
convert node that defines the source and the destination type. In the usual case, the
condition is directly copied to the target-specific rule. However, it may also contain
some dynamic expressions such as SIZEOF(INT), which is replaced by the size
of the C data types as defined in the Compiler Designer.

COSYIR mirConvert(REGISTER a) -> REGISTER c;
CONDITION {
IS_POINTER(o) && IS_INT(o.Value)

}
NONTERMINAL_CONSTRAINT a==b;

Listing 6.16 Basic rule example

6.3.2.4 Nonterminal Constraints

In case the architecture features several register files, restricting the type of the
placeholder might not be sufficient. The basic rule in Listing 6.16 has no compiler
semantics assigned because no instruction needs to be issued in this case (according
to the C standard [45]). However, if the architecture has two register files, and hence,
two register nonterminals, a target-specific rule is generated whose destination non-
terminal is different from the source nonterminal. Unfortunately, this case requires
an instruction to move the value from one register file to the other. Since the rule
does not issue an instruction the result would be erroneous. This case can be cir-
cumvented by using the NONTERMINAL_CONSTRAINT keyword. It can be used
to provide a condition for the nonterminal type. Here in the example, it is specified
that both source and destination must share the same nonterminal type.
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Once all target-specific rules have been generated, the next task is to find suitable
instructions in the LISA model that match the semantic statements of the gener-
ated tree patterns. The available instructions are collected by traversing the LISA
operation DAG in a preorder traversal to find all possible activation chains. These
corresponding instructions are then stored in a dedicated list, which is used during
the mapping procedure. In most cases, the generated tree patterns have only a single
semantic statement that can be directly covered by a single instructions in this list.
This is denoted as one-to-one mapping. However, since ASIP designs should always
be as efficient as possible, rarely used instructions might have been removed from
the design. Unfortunately, some of them might be needed for a complete code selec-
tor description. In this case, one-to-many mapping is employed, which implements
a semantic statement with a sequence of instructions. Moreover, ASIP designers not
only simplify the instruction-set architecture but also add dedicated custom instruc-
tions for program hot spots. These instructions accelerate the program execution by
performing many C-level operations at once, like a MAC instruction for instance.
To utilize them in a compiler, the so-called many-to-one mapping rules can be spec-
ified. For those instructions containing an intrinsic micro-operator, a corresponding
compiler-known function is generated. Finally, a few rules cannot be described by
basic rules. These rules are directly generated by separate algorithms and therefore
are called internal rules. The following sections describe how the instructions are
selected for these five kinds of mapping rules using the instruction semantics infor-
mation in the LISA model.

6.3.2.5 One-to-One Mapping

This mapping method is the first one applied by the code selector generator. The
semantics statements of the basic rules are compared with the available instruction
semantics in the LISA model. Both semantics match if the micro-operators, the
operands, and the bit-width specification are the same. Figure 6.6 exemplifies this.

_ADD(reg_nt, reg_nt) -> reg_nt;

Syntax

Syntax

Generated Tree Pattern Semantics

REGNAME(c), REGNAME(a), REGNAME(b))
mirPlus(a:reg_nt, b:reg_nt) -> c:reg_nt;

Syntax

Generated Tree Pattern Assigned Instruction

Fig. 6.6 Matching rule semantics and instruction semantics

Since some side effects in a real instruction might not be important for code
selection, a successful one-to-one mapping does not require two identical semantics
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patterns. For example, assume that the selected instruction semantics in Fig. 6.6
would change the carry flag (i.e., _ADD|_C|). Since the writing to the carry flag does
not influence the result of an arithmetic addition, the side effects in the instruction
semantics can be ignored by the generator. Thus, the instruction can still be selected
for the generated tree pattern. Of course, such adaptation in the one-to-one mapping
can only compromise those effects not affecting the results of the calculation. The
micro-operators, operands, and bit-widths still must be exactly the same for both
compared semantic statements.

In certain cases, the compiler semantics are quite different from the seman-
tics of an equivalent instruction. A typical example are branch instructions. The
description of some micro-architectural details in the SEMANTICS section cannot
be completely avoided. Suppose an architecture supports a branch instruction that
branches to the relative address given by a signed immediate value. The corre-
sponding semantic description can typically be given by the following statement:
_ADD{_PC,_SXT(imm)<0..31>)->_PC;. It contains the information how
the architecture computes the branch destination. The basic rules must capture this
in a more abstract way in order to be as target independent as possible. As a result,
the basic rule can only assume that there at least exist an address. Thus, the seman-
tics of a basic rule for, e.g., a goto basic rule is given by ADDRESS -> _PC;.
Obviously, it is very unlikely that such a semantic statement directly matches with
the given instruction semantic. Therefore, the mapping algorithm deals with certain
compiler semantics in a special way.

Although processor architectures may calculate the target address of the branch
in different ways, the operand(s) of the calculation remain similar. The only pro-
grammable operand in the semantic statement of the branch instruction given before
is imm. The _PC represents the program counter that usually does not appear in the
instruction coding and, hence, it is not programmable. Thus, the matching algo-
rithm can deduce that imm must represent the branch target of the instruction. The
mapping procedure of the program counter assignment is illustrated in Fig. 6.7.

Mapping
failed

No No

Variable operand = imm Variable operand = imm

Mapping
succeeded

Mapping
failed

Yes Yes

Yes

No

scitnamesrelipmoCscitnamesnoitcurtsnI

Fig. 6.7 Mapping of branch instructions
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This process is only applied when the one-to-one mapping fails. First of all, it
is checked whether the program counter is the target expression of both semantics
statements. In this case, all programmable operands are retrieved, which can either
be immediates or registers. If both statements return a single programmable operand
that can be matched, then a proper mapping is created. In this way, the target-specific
micro-operations are actually filtered out and the mapping can focus on the operands
representing the address in the expression.

}

Mapping
failed

No

Assignments
of constants?

Mapping
succeeded

Mapping
failed

CONSTANT_ASSIGNMENT;

Yes

No

Yes

Assignments =

scitnamesrelipmoCscitnamesnoitcurtsnI

Fig. 6.8 Mapping of compare instructions

The mapping of compare instructions also needs special treatment. Figure 6.8
depicts the semantics description of a compare instruction. It performs a signed
greater than comparison of two registers and stores the result in the carry flag.
The corresponding basic rule only needs to know the exact type of the compar-
ison. It does not have to care about how the result is used and stored. This is
required by those basic rules (e.g., for if–else statements) that actually consume
the result. Thus, the mapping of compare instruction cares more about matching the
condition rather than the executed code (i.e., the then and else block). As shown
in Fig. 6.8, the semantic description of the basic rule consists of the IF–ELSE
statement and the keyword CONSTANT_ASSIGNMENT. The IF–ELSE statement
itself is matched while the CONSTANT_ASSIGNMENT basically matches any then
and else block, which assigns a constant value to the same processor resource,
e.g., the carry flag. Later, the mapped then and else block are analyzed again
to generate the condition for the if–else basic rules. This is further discussed in
Section 6.3.2.9.
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6.3.2.6 One-to-Many Mapping

As mentioned above, not all semantic statements of the generated tree patterns can
be covered by a single instruction. However, for many semantic statements, alter-
native implementation using a sequence of semantic statements exists. In order to
implement such an one-to-many mapping, the code selector generator needs to know
the alternatives for a given semantic statement. This is specified by the so-called
semantics transformations. An example is given in Fig. 6.9.

ORIGINAL _NEG(a) ->b;

_NOT(a)->b;
_ADD(b,1)-b;

}

Transformation

mirNeg(a:reg_nt, b:reg_nt) -> c:reg_nt; _NEG(reg_nt, reg_nt) -> reg_nt;

mirNeg(a:reg_nt, b:reg_nt) -> c:reg_nt;

_NOT(reg_nt, reg_nt) -> reg_nt;

_ADD(reg_nt reg_nt;

Fig. 6.9 Example for a semantic transformation

The _NEG micro-operator represents a two’s complement negation. The spec-
ified transformation provides a mathematically equivalent solution to perform the
negation. _NOT is the one’s complement micro-operator. A two’s complement can
also be calculated with an one’s complement and adding one afterward. Thus, if the
generator fails to find an instruction for a tree pattern covering a negation, it will
then try to find a suitable instruction for each semantic statement in the alternative
implementation using the one-to-one mapping described above.

In principle, this approach can be used to provide alternatives for nearly all
semantic statements, presuming that an equivalent transformation exists that can be
expressed in the form of semantics statements. However, because of the variance of
different instructions implemented in various architectures, it is not possible to spec-
ify transformations that fit every possible ISA. Nevertheless, the basic library comes
by default with a set of commonly used transformations, like, e.g., shift and/or mask
operations as alternative to implement sign or zero extension. As will be explained
later, the basic library can also be extended with user-defined transformation tailored
to the current ASIP design.
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6.3.2.7 Many-to-One Mapping

Many-to-one mapping is especially important for application-specific instructions
that perform composite operations to accelerate the program execution. However,
since the designers can implement arbitrary combinations of operations in one
instruction, it is obviously difficult to provide basic rules without knowing what
the instructions actually do. Therefore, the code selector generation is inverted, i.e.,
instruction semantics in the LISA model that remain unused after the previous steps
create a tree pattern on their own. For example, consider the MAC instruction in
Listing 6.6, which is a commonly used composite operation. Two micro-operators
are used, _ADD and _MULUU, an unsigned integer multiplication. The generator
knows the mapping between the semantics micro-operators and the CoSy tree pat-
tern nodes. Using this knowledge, it can create a corresponding tree pattern from
the instruction semantics without user interaction. In the example, mirPlus is the
CoSy tree-pattern node corresponding to the micro-operator _ADD, and mirMult
maps to the _MULUU operator. If the source code contains a concatenated multiply
and addition operation, this many-to-one mapping rule can then be employed by the
code selector to use the MAC instruction instead of separate multiply and addition
instructions (Fig. 6.10).

_ADD(_REGI(R[dst]), _MULUU
Syntax

REGNAME(a), REGNAME(b))
mirPlus(c:reg_nt, mirMult(a:reg_nt, b:reg_nt))
-> c:reg_nt;

Generated Tree Pattern

Fig. 6.10 Many-to-one mapping for a MAC instruction

6.3.2.8 Intrinsics

Generally, the many-to-one mapping works fine for arithmetic instructions whose
semantics can be described with a chain of micro-operations. As mentioned in Sec-
tion 3.3.2, tree pattern matching fails in case instructions exceed the scope of a sin-
gle DFT, such as SIMD (single-instruction multiple data) instructions for instance.
Other instructions are just too complex and can only be described using the intrinsic
micro-operator as introduced in Section 6.2.5. Many compilers, though, provide
support for these kinds of instructions via compiler-known-functions (CKFs) or
intrinsics. Basically, CKFs make assembly instructions accessible within the high-
level source code, where the compiler expands a CKF call like a macro. In order to
integrate support for those instructions as well, the code selector generator creates
for each instruction with an intrinsic micro-operator a CKF function definition for
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the compiler’s internal function prototype list and a mapping rule matching this
particular CKF. As depicted in Fig. 6.11, this is basically an one-to-one translation.

int DCT2d(int);

mirFuncCall (a:reg_nt) -> b:reg_nt
CONDITION { FuncCallType == „DCT2d“ }

Intrinsic micro-operator

CoSy mapping rule matching this CKF

Compiler‘s internal CKF prototype definition

Fig. 6.11 CKF generation

6.3.2.9 Internal Rules

As mentioned before, internal rules refer to those rules whose semantics cannot be
specified in a static form like the basic rules have. More specifically, conditional
branch rules as required for if-then statements and the generic stack rules. The gen-
eration of both is explained in the following.

The compiler semantics of conditional branch rules is a semantic IF-ELSE state-
ment. The statement to be executed conditionally is basically a semantic statement
that describes a branch operation. However, the condition of the IF-ELSE statement
can hardly be described when no architecture information shall be used. This is due
to the fact that different architectures usually have different methods to implement
compare instructions. Their results then build the condition of the branches.

Table 6.2 Implementation examples of compare and conditional branch instructions

Architecture A B C

IF( GTI(src1,src2)) IF( GTI(src1,src2)) IF( GTI(src1,src2))
Compare { 1 -> CF; } { 1 -> cond reg; } { 1 -> CF; 0 -> NF; }
semantics ELSE ELSE ELSE

{ 0 -> CF; } { 0 -> cond reg; } { 0 -> CF; 1 -> NF; }
IF( EQ( CF,1)) IF( EQ(cond reg,1)) IF( EQ( CF,1)

Conditional branch { imm -> PC; } { imm -> PC; } && EQ( NF,0))
semantics { imm -> PC; }

Table 6.2 exemplifies this. It shows compare and conditional branches for three
architecture types. All architectures perform the same comparison, a signed greater
than (_GTI), while the result of the comparison is stored in different ways. Architec-
ture A only sets the carry flag (_CF) to one if the result is true. Architecture B on the
other hand stores the result in a dedicated register file referenced by the cond_reg
nonterminal. Finally, architecture C sets two flags, _CF and _NF. Consequently,
the respective conditional branch instructions need the appropriate checks before
the branch is issued. While architecture A’s conditional branch takes the jump only
when _CF is equal to one, architecture B takes it when the cond_reg contains
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one. Architecture C ensures that _CF equals one and _NF equals zero before the
branch is issued. As can be seen, all these implementations of comparison make
the condition of the branch so heterogeneous that a static, generalized description
is hardly possible. Therefore, the conditional branch rules are generated separately
after the compare instructions are mapped.

Comparison result:

Branch semantic:

Mapped compare
instruction

_EQ(_NF,0)

Target branch semantic:

Fig. 6.12 Conditional branch generation

Figure 6.12 outlines the generation procedure of the conditional branch rules.
First, an already mapped compare instructions is selected. Afterward, the seman-
tic statements of the compare instruction are extracted, which are executed when
the condition evaluates to true. These statements contain the information how the
condition is stored. From this information, a corresponding condition expression is
constructed. This can then be combined with the semantic of the branch instruction
to finally create the semantic statement for the target-specific conditional branch
rule. For this semantic, it is then searched for an equivalent semantic description in
the instruction list. Regardless of whether a proper instruction is found, the corre-
sponding rule is created in any case.

Another group of rules that are internally generated are the generic rules to map
function prolog and epilog. For instance, assuming a stack organization with frame
and stack pointer, the epilog and prolog can be decomposed into the following
generic rules:

• Store/reload the stack pointer on/from the stack.
• Load/store registers that are overwritten by the function on the stack.
• Increase/decrease stack pointer by an immediate value.
• Indirect jump (return).

For each of these rule, a corresponding semantic description can be specified that is
mapped to the available instructions.
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6.4 Compiler Designer Integration

The mapping rule generator seamlessly complements the Compiler Designer
(Fig. 6.13). Basically, the nonterminals are already generated when the tool starts
up. Afterward, the mapping rule generation can be started with a push button and
the generated rules are displayed. However, as mentioned above, certain mapping
rules may still remain unmapped after the rule generation since the ASIP design
probably does not feature all required instructions. Mapped rules are marked with
a green tick while unmapped rules are marked with a red cross (see Fig. 6.14).
It might also happen that the designer wants to create additional mapping rules
in order to improve the code selector description. In either case, the designer can
use the mechanism described in Section 5.3 to assign an instruction manually, to
improve a mapping, or to create new mapping rules.
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Fig. 6.13 Design flow with automatic code selector generation

In the early architecture exploration phase, when the design changes quite often
and consequently, many compiler configurations are generated; this manual step
must be done over and over again. In order to avoid this repetition, the user can
specify a so-called target-specific library, basically an extension of the basic library,
which contains additional mapping rules or target-specific semantic transformations
to automate this process.
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Fig. 6.14 Mapping result generation

6.5 Synopsis

• Due to the semantic gap, it is not possible to extract instruction semantics as
required for code selector generation from detailed instruction behavior descrip-
tions.

• The instruction semantics are captured by extending the ADL. A formalism for
the description of instruction semantics is presented.

• The code selector generation consists of two phases, namely, nonterminal gen-
eration and mapping rule generation. The latter utilizes five different methods to
generate the code selector description fully automatically.

• The presented approach is integrated into the Compiler Designer. This comple-
ments the Processor Designer framework such that the automatic generation of
all software development tools from an abstract processor model is achieved.



Chapter 7
Results for SEMANTICS-Based Compiler
Generation

This chapter gives a detailed account of the feasibility of the semantics-based
approach for C compiler generation and the quality of the generated compilers.

7.1 Case Studies

In order to investigate the feasibility of modeling instruction’s semantic with the
methodology described in the previous chapter, several existing LISA models have
been enhanced with SEMANTICS sections for compiler generation. This includes
both instruction-accurate (IA) and cycle-accurate (CA) LISA models. More specifi-
cally, the following cores have been used: the ARM7, the CoWare LTRISC processor,
the STMicroelectronics ST220 VLIW (four-issue slots) multimedia processor [84],
the Infineon PP32 network processing unit, the Texas Instruments C54x digital sig-
nal processor [258], the MIPS4K [180], and the NXP Semiconductors TriMedia
VLIW (five-issue slots) multimedia processor [190]. The LTRISC processor is a
fully functional RISC template included in CoWare’s Processor Designer. The
PP32 is an evolution of [276] and comprises bit-field instructions. Although the
SEMANTICS section is not intended for the extension of already existing models,
this approach proved that the new section does not impose any particular modeling
style – which is crucial w.r.t. LISA’s flexibility paradigm. All models have been
enhanced without any changes to the already existing specification.

Table 7.1 summarizes the results. Note that the design effort for adding seman-
tics to the existing models is given in man-days. Obviously, the work for adding
SEMANTICS sections scales with the number of operations in the architecture. In
case of the TriMedia, this is not entirely true since many instructions are actually

Table 7.1 SEMANTICS section statistics
ARM7 LTRISC ST220 PP32 C54x MIPS TriMedia

Abstraction level IA IA CA CA CA IA CA
ISA RISC RISC RISC RISC CISC RISC RISC
No. operations 108 39 121 151 408 153 265
Design effort Δ 4d 2d 10d 8d 15d 5d 12d

M. Hohenauer, R. Leupers, C Compilers for ASIPs,
DOI 10.1007/978-1-4419-1176-6 7, C© Springer Science+Business Media, LLC 2010
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duplicated with marginal changes. This is due to TriMedia’s capability of execut-
ing certain instructions conditionally, i.e., each case (conditionally/not conditionally
executed) is modeled with its own operation. The complexity of the instruction-
set (RISC vs. CISC) influences the effort, too. Generally, the effort for describ-
ing instruction semantics is much less than for a behavioral description in C. For
instance, a 19 × 19 multiplication can be easily described with a single micro-
operation and corresponding bit-field specifications whereas a behavioral descrip-
tion usually requires a significant amount of C code, which additionally has to
be validated. In particular for the PP32, the explicit bit-field specification for the
semantics (compared to a typical description in C using and/or/shift operations)
reduces the design time significantly.

7.2 Mapping Rule Generation

Among the LISA models with SEMANTICS sections, the ST220, the PP32, and the
MIPS have been selected to evaluate the mapping rule generator. The resulting code
quality is compared to a CoSy compiler with hand-crafted mapping rules as well as
a non-CoSy-based compiler. Both CoSy compilers are generated using the Compiler
Designer tool. The ISA characteristics relevant for mapping rule generation are as
follows:

ST220: The ST220 VLIW core is part of STMicroelectronics ST200 scal-
able and customizable core family, designed to be embedded into multime-
dia SoC devices. It can execute up to four instructions per clock cycle and
features a multiplication unit. The load/store architecture incorporates two
register files, one consists of 64 registers that are 32-bit wide and the other
contains eight 1-bit-wide branch registers. Each branch register can be used
for condition testing and conditional branches. Register–offset addressing is
the only supported addressing mode.
PP32: The protocol processor (PP) has an RISC-based ISA with a single-
issue slot, implemented in a four-stage pipeline. It is a typical Harvard
architecture with separate program memory access. Among others, register–
offset addressing is supported for load/store operations. The PP features
extensions for bit-field operations that are optimized for single cycle pro-
cessing of arbitrary bit patterns without additional shift/mask operations.
The global register file consists of 16 elements, each having a data-word
width of 32 bits. Conditional branches are executed depending on the status
of the carry/zero flag while comparisons are mostly performed by separate
instructions.
MIPS: The MIPS is a 32-bit RISC core implementing the well-known
MIPS32 ISA [180]. It features 32 general-purpose registers that are 32-bit
wide and two special-purpose register for the multiply–divide unit. Again,
the register-offset addressing mode is the only supported one. Conditional
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branches can perform the comparison themselves or just depend on the
zero-flag status. However, single instructions for (some) comparison
operations are supported as well.

For all architectures, the typical set of nonterminals (i.e., register, immediate,
addressing mode) is automatically generated. During the initial run most of the
resulting mapping rules for all processors get a suitable instruction automatically
assigned. To handle the unassigned rules as well, all processors required a few
custom transformations and/or mapping rules in the target library. The CPU time
used by the generator is negligible. Table 7.2 provides the statistics of the generated
nonterminals (NT) and rules for all processors as well as the number of required
custom transformations.

Table 7.2 Rule statistics for ST220, PP32, and MIPS

NT One-to-one One-to-many Many-to-one Custom rules Custom trans

ST220 9 176 13 5 4 4
PP32 9 71 19 0 5 6
MIPS 5 49 61 0 4 5

The custom rules and transformations are mainly used for those rules that cannot
be executed with a single machine instruction such as the signed/unsigned division,
modulo operation (PP32, ST220), and multiplication (PP32). The custom entries
in the target library map those to function calls to the runtime library which pro-
vides a software implementation to accomplish such operations. For the ST220, an
additional transformation is used to perform the one’s complement operation with
an instruction performing a bitwise not and or at once. The PP32 also needs some
very specific transformations. For example, the load of a 32-bit immediate value
has to be performed with two instructions. The first one loads the higher half of
the value into the destination register and left shifts the result by 16 bits at the
same time. The second one adds the remaining lower 16 bits to the target register.
A similar transformation is required for the MIPS. Additionally, the latter needs
custom transformations for some compare conditions since they are not available in
the MIPS ISA and must be performed in a different way. However, the specification
of custom transformation in the target library is an one time effort. Afterward, the
complete code selector specification can be generated fully automatically.

7.3 Compiler Evaluation

The following sections evaluate the code quality for the different target architec-
tures. The CoSy compiler with hand-crafted code selector specification is used as
baseline for evaluation. The CoSy compiler with generated code selector specifica-
tion and a non-CoSy-based compiler is compared to it. In case of the ST220, this
is the highly optimizing vendor compiler named ST multiflow and for the MIPS
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the gcc [87] based compiler. However, for the PP32, there is no vendor compiler
available. Instead, the lcc compiler [50] has been manually retargeted to the PP32 as
additional reference point. All CoSy-based compilers have been verified using the
SuperTest compiler validation test suite from ACE [37]. It took several man-weeks
to validate the compilers with hand-crafted code selector specification in contrast to
the compilers with generated code selector specification which passed the test out
of the box.

It can be expected that the compilers with generated code selector specification
show a certain overhead in code quality. This is mainly due to the fact that the basic
rules are designed to fit for many different architectures and, consequently, might not
be optimal for certain target processors. Additionally, the hand-crafted code selector
can exploit certain architecture properties, e.g., the integral promotion for some of
the C arithmetic operators can be omitted under the assumption that the values in
the registers are always correctly sign or zero extended. The generated rules instead
must always guarantee the correct behavior and might be too conservative in such
cases. Of course, the user can always enrich the target-specific library to improve
the generated code selector description. However, except for the custom transfor-
mation required to enable the generation of the complete code selector description,
optimized target rules are not specified for this evaluation. The concrete overhead
for each architecture will be quantified in the following.

7.3.1 PP32

Figures 7.1 and 7.2 show the relative cycle count and code size for seven bench-
marks extracted from NPU applications, with the CoSy compiler using the hand-
crafted code selector set to 100%. For most benchmarks, the code quality of the
compiler generated from the semantic description is close to the hand-crafted
version. However, in some cases, a large code quality overhead can be observed.
This is mainly caused by the multiplication rules. As mentioned above, some custom
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transformations map the multiplication to a software implementation in the runtime
library. This generic approach makes the transformation feasible for many target
architectures. The hand-crafted compiler in contrast employs an optimized assem-
bly program for this purpose, which is significantly faster. However, the user could
also create custom transformation that yields exactly the same assembly routine for
the multiplication (Listing 7.1). But this optimization is usually performed when
the architecture exploration phase converges and an initial working compiler is
available.

ORIGINAL _MULII(REGISTER a, REGISTER b) -> REGISTER c;
SCRATCH t1,t2;
TRANSFORM{

0 -> t1;
0 -> t2;
b -> c;

LLabel_0:
IF (_EQ(b<0,1>,0)) {
_ADD(_PC,LLabel_1<0,13>) -> _PC;

}
_ADD(t1,a) - > t1;

LLabel_1:
_LSR(b, 1) -> b;
t1<0,1> -> b<31,1>;
_LSR(t1, 1) -> t1;
t1<30,1> -> t1<31,1>;
IF (_EQ(_SUB(t2, 1),0)) {
_ADD(_PC,LLabel_0<0,13>) -> _PC;

}
_SUB(t2,1) -> t2;

}

Listing 7.1 PP32-specific transformation for multiplication
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Thanks to a richer set of built-in code-optimization techniques, the CoSy-based
compilers always outperform the lcc w.r.t. the cycle count. Since the lcc’s code
selector basically corresponds to the hand-crafted CoSy compiler, the code size of
both compilers is almost the same.

7.3.2 ST220

The picture is different for the ST220. Figures 7.3 and 7.4 illustrate the results for
several kernels taken from the DSPstone benchmark suite [124] and a prime number
computation based on the sieve of Eratosthenes. The code quality of the compiler
generated from the semantic description shows on average an overhead of 5% in
cycle count and 18% in code size as compared to the hand-crafted version. The
overhead is less than for the PP32 first because there is no issue with the multi-
plication implementation (the ST220 supports multiplication). Second, only few of
the one-to-many mapping rules (cf. Table 7.2) have an one-to-one mapping in the
hand-crafted version.

Compared to the ST multiflow compiler, the CoSy-based compilers show an aver-
age overhead of 75% in cycle count and 99% in code size, partially due to extensive
function inlining. These are acceptable values, taking into account that the develop-
ment time for the ST multiflow compiler probably was orders of magnitude higher
and the CoSy-based compilers are essentially “out-of-the-box” generated compilers
without machine-specific optimizations. Analysis of the generated code showed that
by adding custom optimization engines, e.g., for exploiting predicated execution, a
significantly higher code quality could be easily achieved.
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7.3.3 MIPS

The results for the MIPS, depicted in Figs. 7.5 and 7.6, show a similar picture as
for the PP32. Apart from the benchmarks as used for the ST220, larger kernels from
different benchmark suites [53, 154] or applications [196, 265] have been chosen.
The compiler generated from the semantic descriptions shows an average overhead
of 88% in cycle count and 45% in code size. In contrast to the previous hand-crafted
CoSy compilers, a considerable amount of work has been spent in the code selector
specification for the MIPS. In another context, it was evaluated how close a CoSy
compiler generated by the Compiler Designer can come to a production quality
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compiler. Consequently, a larger overhead for the semantic-based compiler can be
observed. The hand-crafted compiler shows only an overhead of 5% in cycle count
as compared to the gcc. Code-size numbers for the gcc are omitted since it uses a
different runtime setup (i.e. functionality that is linked to the executable to setup the
runtime environment) which leads to a significantly different code size.

7.4 Conclusions

Designing an ADL that in particular serves the purpose of C compiler and simula-
tor generation from a single model is quite challenging (cf. Chapter 4). Typically,
this leads either to a loss in modeling flexibility or introduces a huge potential for
inconsistencies. This book presents an approach for the LISA ADL that avoids both.
It incorporates a new SEMANTICS section into the LISA language definition which
achieves a concise formalism for the description of instruction semantics without
influencing the existing flexibility. This information is used by four different map-
ping rule generation methods which create the code selector description for a C
compiler fully automatically. In this way, even noncompiler experts are capable of
generating C compilers for early architecture exploration. Manually created code
selector descriptions are a typical source of errors, but the generated code selector
rules are correct by construction. Hence, a significant verification and debug effort
is saved.

Although using a semantics description introduces certain redundancies, they
are kept minimal in the model. Note that apart from code selector generation, it
is also possible to generate an instruction-set simulator and documentation with the
information provided by the SEMANTICS sections [91]. Since the semantics descrip-
tion is much simpler than the C/C++ description, this helps accelerating the model-
ing process in early architecture exploration when the concrete micro-architecture
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is not fully determined. However, a detailed discussion of the simulator generation
is beyond the scope of this thesis.

From the above case studies, it should be obvious that the flexibility of the new
SEMANTICS section w.r.t. feasible target architecture classes is not a major concern
in this approach. Furthermore, C compilers can now be generated fully automati-
cally from LISA models with SEMANTICS sections. Such an integrated approach,
based on only a single “golden” target processor model, is key for an effective ASIP
design environment. The resulting lower code quality of the generated compilers is
acceptable considering that the C compiler is available right from the beginning.

Compared to compiler generation with a pure stand-alone system such as CoSy
or with the Compiler Designer without code selector generation, the compiler
description effort is reduced to a minimum. Moreover, the presented approach hides
even more compiler technology internals from the ASIP design engineer, who thus
can better concentrate on architecture optimization. Another advantage is that the
code selector rules are correct by construction. This eliminates a prominent source
of errors in compiler descriptions.

The code quality of the generated compilers can only be considered as a result
from “out-of-the-box” compilers. Analysis of the generated code showed that by
adding custom optimization engines, e.g., for exploiting predicated execution, sig-
nificantly higher code quality could be easily achieved, though, at the expense of
higher manual effort. Furthermore, while the integration of high-level optimizations
into retargetable compilers is mostly supported, this is not the case for low-level
or assembly-level optimizations. Most generated assemblers do not offer the oppor-
tunity to plug-in user-defined optimizations. Therefore, the remainder of this book
focuses on two topics:

• Retargetable optimization techniques for common ASIP extensions to further
narrow the code quality gap while reducing compiler design effort.

• A new retargetable assembler provides an implementation interface to quickly
develop user-defined optimization techniques.



Chapter 8
SIMD Optimization

As concluded in the previous chapter, retargetable compilers, as used in ASIP
design environments, are still hampered by their limited code quality as compared to
hand-written compilers or assembly code. Consequently, generated compilers must
be manually refined to a highly optimizing compiler after successful architec-
ture exploration. One way of overcoming this dilemma is to design retargetable
optimizations for those architectural features that characterize a class of target
processors.

This chapter focuses on target processors equipped with SIMD instructions. The
term SIMD dates back to the year 1972 when Flynn [160] classified computers
according to the number of data streams they operate on, and the number of instruc-
tions they execute (Table 8.1). The acronym SIMD stands for single-instruction mul-
tiple data and the class of computers referred to in the 1970s were vector computers
that were able to execute the same operation on multiple vector elements at the same
time.

Table 8.1 Flynn’s classification

Single instruction Multiple instructions

Single data SISD MISD
Multiple data SIMD MIMD

Today the meaning of the term has slightly changed. It usually denotes a spe-
cial class of instructions found in many workstation and embedded processors that
operate on short vectors of small data. As illustrated in Fig. 8.1, an SIMD instruc-
tion performs several primitive operations in parallel, using operands from several
subregisters of the processor’s data registers at a time. The operands are typically

8-, 16-, or even 32-bit wide. In future, the SIMD data paths might even grow larger
with the advances in semiconductor technology. Other typical SIMD instructions
perform more complex operations (e.g., partial dot products) or serve for subregis-
ter packing and permutation. From a hardware perspective, SIMD instructions are
easy to control and have a simple structure (the existing data path is basically just
split) without extra register file ports. This makes them inherently simple and thus
keeps the hardware cost low. Meanwhile, they can provide significant performance

M. Hohenauer, R. Leupers, C Compilers for ASIPs,
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improvements for computation-intensive multimedia workloads [145]. Therefore,
many embedded processors for the next generation of high-end video and multime-
dia devices today feature SIMD instructions.

The SIMD concept is commonly found in general-purpose architectures such as
Intel MMX/SSE1–5 [30], IBM/Motorola VMX/AltiVec [183], and AMD 3DNow.
Later on, it was introduced in domain-specific processors (e.g., TI C6x, NXP Tri-
Media) and in recent custom ASIP designs (e.g., Tensilica Xtensa). Even some
versions of the popular ARM- and MIPS-based architectures feature SIMD instruc-
tions. While several target-specific C compilers already exploit SIMD instructions,
there is almost no support in ASIP compilers. Consequently, there is an increasing
interest in retargetable compilers with SIMD support. For use in this domain, retar-
getable SIMD optimizations are required. This chapter presents a novel concept for
retargetable code optimization for ASIPs with SIMD instructions, and this concept
is proven by an implementation within the CoSy compiler that can be retargeted
via the Compiler Designer GUI and an experimental evaluation for two real-life
embedded processors.

The rest of this chapter is organized as follows. In Section 8.1 related work is
discussed. The core of the SIMD framework is presented in Section 8.2 before the
retargeting procedure is described in Section 8.3. Afterward, Section 8.4 provides
the experiments for different embedded processors with SIMD support. Finally,
Section 8.5 summarizes the contribution of this approach and points to some future
avenues of work.
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8.1 Related Work

Traditional code selection typically relies on tree parsing. As mentioned in Section
3.3.2, tree parsing is not suited to exploit SIMD instructions because they exceed
the scope of a single DFT. Consequently, compilers require advanced techniques to
exploit SIMD instructions.

Most of the current SIMD optimization techniques are based on the traditional
loop-based vectorization [24, 95, 212, 213]. Others make use of instruction-packing
techniques in conjunction with loop-unrolling to exploit data parallelism within a
basic block [240] or a combination of traditional code selection [51] and integer
linear programming [26, 221]. As investigated in [101], it is often difficult to apply
SIMD optimization techniques since these architectures are largely nonuniform,
featuring specialized functionalities, constrained memory accesses, and a limited
set of data types. Moreover, complicated loop transformation techniques are needed
[213] to exhibit the necessary, architecture-dependent amount of parallelism in the
code. Another hurdle to applying SIMD techniques is packing of data elements into
registers and the limitations of the SIMD memory unit: typically, SIMD memory
units provide access only to contiguous memory elements, often with additional
alignment constraints. Computations, however, may access the memory in an order
that is neither adequately aligned nor contiguous. Besides, operations on disjoint
vector elements are usually not supported. The detection of misaligned pointer ref-
erences is presented in [117]. Certain misalignments can be solved either by loop
transformations [95, 241] or by data permutation instructions. The efficient rep-
resentation and generation of such instructions is investigated in [7, 72, 212] and
the optimization thereof in [26, 102]. Consequently, only a successful interaction
of several optimization modules will be able to leverage SIMD optimization for
retargetable compilers.

So far, only advanced compilers (e.g., the Intel compiler [122], IBM XL com-
piler [7]) are capable of automatically utilizing SIMD instructions. Apart from
being inherently nonretargetable, these compilers are mostly restricted to certain C
language constructs. Other compilers use dedicated input languages for source-to-
source transformations that are restricted to a certain application domain [83, 188].
The vast majority of the compilers, though, still provide only semi-automatic SIMD
support via compiler-known functions (CKFs). Understandably, this assembly-like
programming style is tedious and error prone. Moreover, this comes along with poor
maintainability and portability of the code.

Among the ASIP design platforms mentioned in Chapter 4, so far only Ten-
silica’s compiler includes SIMD support. However, its architectural scope is lim-
ited to the configurable Xtensa processor [215]. Considering retargetable compilers,
recent versions of the gcc support SIMD for certain loop constructs [86]. The sup-
ported vectorization [71] features alignment and reduction; however, information
regarding the concrete retargeting effort and the interaction of loop transforma-
tions are not available yet. Furthermore, gcc is mainly designed for general purpose
processors. As a result, it does not adapt efficiently to specialized, irregular hardware
architectures that are quite common in the embedded domain.
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A retargetable preprocessor for multimedia instructions is presented in [100]. The
approach mixes loop distribution, unrolling, and pattern matching to exploit SIMD
instructions. Contrary to other approaches, it can be extended at user level. The
matching is based on a set of target-specific code-rewrite rules that are described
using C-code patterns. However, the efficiency of this approach strongly depends
on the coding style of the input program. Furthermore, no information is available
how the loop transformations are adapted to a given SIMD architecture.

Summarized, several SIMD utilization concepts with different levels of complex-
ity are available. However, they are mostly implemented in target-specific compil-
ers. Consequently, adapting a SIMD optimization concept to a new target processor
becomes a time-consuming and error-prone manual process. Therefore, this book
presents an approach for the efficient utilization of SIMD instructions while achiev-
ing compiler retargetability at the same time. The presented SIMD optimization
comprises a loop-vectorizer and an unroll-and-pack-based technique [166], which
are both driven by the same SIMD specification. The retargeting formalism is fully
integrated into the compiler backend specification. The advantage is that many gen-
erators for the standard backend components (e.g., the code selector) can be reused
for the SIMD optimization to a great extent. This reduces the retargeting effort and
enables greater flexibility to specify the SIMD architecture. The amount of required
target-specific information is limited, so that most of it can be extracted automati-
cally from ADL descriptions such as LISA. Moreover, the retargeting information
is also used to steer the loop transformations, such as unrolling and strip mining,
required to exhibit the necessary (i.e., SIMD architecture dependent) amount of
parallelism and to deal with memory alignment issues. In sum, this provides a
flexible and efficient SIMD optimization framework for a wide variety of SIMD
architectures.

8.2 SIMD Framework

As mentioned above, a successful SIMD optimization is tightly coupled with several
loop transformations in order to exhibit the necessary amount of parallelism and to
convert loops into a proper form. Hence, the presented approach consists of several
steps as depicted in Fig. 8.2.

First of all, a loop-carried dependency [178] and alignment analysis (Sec-
tion 8.2.3) are performed. They provide the necessary annotation needed by the
SIMD optimization framework. Afterward, a SIMD analysis (Section 8.2.4) searches
for loops where SIMD optimization could be applied. For these loops, it deter-
mines the parameters for the different loop transformations (Sections 8.2.5, 8.2.6,
8.2.7, and 8.2.8). Finally, the SIMD optimization is performed, comprising a loop
vectorizer (Section 8.2.7) or an unroll-and-pack-based SIMDfyer (Section 8.2.9) if
vectorization fails. All modules are driven by the same, retargetable SIMD
specification described in Section 8.3.
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Fig. 8.2 SIMD code generation flow

8.2.1 Basic Design Decisions

A basic design decision concerns the representation of generated SIMD instructions
in the compiler’s IR. All IR formats comprise elements for representing primi-
tive operations such as addition, subtraction, multiplication, and so on. However,
there are usually no dedicated IR elements for SIMD operations such as “two
parallel additions.” Extending the underlying IR format is not a practicable solu-
tion. All already existing compiler engines would have to be manually adapted
in order to handle the new IR elements. Otherwise compiler engines might not
exploit the full optimization potential or may even fail in the worst case. In either
case, poor code quality would be the result. Therefore, generated SIMD instruc-
tions are internally represented in the form of CKFs. CKFs are transparent for
other compiler modules and are later automatically replaced with assembly instruc-
tions in the backend. They are not visible to the compiler user at all. Furthermore,
CKFs simplifies code generation to a certain extent, since it abstracts from low-
level problems such as register allocation for SIMD subregisters in the backend.
Moreover, all existing code generation and optimization engines of the underly-
ing compiler framework can simply be reused. This includes the existing debug
facilities of the compiler platform. In this way, the current IR state can be dumped
into a human-readable, valid C-code file at any time during the SIMD generation
process.
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8.2.2 Terminology

Here, the terminology that facilitates the description of the optimization modules in
the next sections is briefly introduced. As exemplified in Fig. 8.1, an SIMD instruc-
tion performs independent, usually identical operations on a certain bit range within
the input register and also writing the results to a corresponding range in the output
register. In other words, an SIMD instruction splits a full register into k subregisters
(frequently k = 2 or k = 4). In the given example, the lower and upper parts of
the arguments are added and written to the lower and upper part of the destination
register, respectively. Thus, this SIMD instruction operates on two subregisters. A
single, primitive operation within the SIMD instruction (e.g., the 16-bit addition) is
denoted as an SIMD candidate. It is basically a mapping rule covering this primitive
operation. From these mapping rules, an SIMD-candidate matcher (Section 8.3.1)
is generated (i.e., a regular tree pattern matcher) that is used for the identification of
such SIMD candidates.

A set of SIMD candidates that can be combined into a SIMD instruction is
denoted as an SIMD-set. For this purpose, a generated SIMD-set constructor is
employed (Section 8.3.2). This is basically a combination function that tries to col-
lect suitable SIMD candidates under given constraints such that a valid SIMD-set
can be built. The algorithm for SIMD-set constructions assumes that the results from
the data-flow analysis are already available. Next, it checks a number of constraints
for tuples N = (n1, . . . , nk) of SIMD candidates, where k denotes the number of
subregisters, and nodes ni of a potential SIMD-set must

1. Represent isomorphic operations that can be combined to a SIMD instruction
according to the target machine description;

2. Show no direct or indirect dependencies that would prevent parallelism. While
this can be analyzed relatively simple for scalar variables, it becomes quite diffi-
cult in the case of array and pointer accesses.

3. Fulfill alignment constraints of the given target architecture. The data elements
in memory must be packed in a single register in advance before the SIMD
instruction can be executed. This involves wide load instructions, and hence pos-
sibly memory alignment constraints as well as reordering of subregister within a
register using special pack and permute instructions. The same holds for storing
the SIMD result again in memory.

A constructed SIMD-set (i.e., the related IR nodes) can then be replaced by a CKF
call. The regular code selector description is enriched with CKF mapping rules so
that later during the code-emission phase the proper assembly code for the SIMD
instruction can be emitted.

8.2.3 Alignment Analysis

One of the constraints when using SIMD instructions is the correct alignment of
data in memory. In opposition to the original vector machines, which usually were
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equipped with superscalar memory units, the SIMD enabled general-purpose and
embedded processors usually have a scalar memory unit. Parallel data loading is
nevertheless possible as long as the data stream is stored contiguously in memory.
For example, a twofold SIMD instruction operating on 16-bit data types typically
uses a 32-bit wide, word-aligned load operation to pack them at once in a 32-bit
register (Fig. 8.3).

Sub-register 1 Sub-register 2

32-bit load

Sub-register 1 Sub-register 2

32-bit load

8-bit
SIMD memory boundary

Register

Fig. 8.3 SIMD alignment constraint

This is the optimal case, since the data is already available in the desired for-
mat. If however the data is locally disjoint, the required values have to be explicitly
packed to the register before they are susceptible to SIMD optimizations. The two
half-words would have to be loaded into two distinct registers, by doing two separate
word-wide loads. In a second step, they can then be combined into a third register.
Instead of doing a single load using a single register, at least two registers are used,
and two separate loads, as well as an operation to merge the two half-words back into
one register, have to be carried out. Even though many architectures offer support
instructions such as permutations, multi-register shift operations, subword selection
and general pack and unpack operations, the necessity of using them usually incurs
a performance hit.

If the word alignment cannot be assured at compile-time, additional code (i.e., a
dynamic-alignment check) is required to ensure correct alignment during run-time
[35, 117]. This procedure, also known as loop versioning, creates an optimized
version of the code along with the original version. At runtime, a check as seen
in Listing 8.1 is executed that selects the right version depending on the initial
alignment.
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if( (a is aligned) && (b is aligned) && (c is aligned) )
{
for(i=0;i<N;i+=4) /* SIMD version */
{
c[i:i+4] = a[i:i+4] * b[i:i+4];

}
} else {
for(i=0;i<N;i++) /* Standard version */
{
c[i] = a[i] * b[i];

}
}

Listing 8.1 Dynamic alignment check = 0

This version generates code that is always correct but obviously has the following
two major drawbacks:

1. It increases the code size by more than a factor 2 for the loop.
2. It incurs the runtime overhead of the alignment check, which noticeably hurts

performance for small iteration counts.

The strip-mining transformation (Section 8.2.5) needs to take the alignment into
account, too. Therefore, an interprocedural pointer-alignment analysis [82] has
been implemented for precise alignment information. It analyzes every memory
access performed through pointers with respect to the capabilities of the SIMD
memory unit. The offset from the supported SIMD memory boundary, that is, the
alignment, is calculated using the modulo operator. If p is a pointer and N the SIMD
memory address size, then the alignment of the memory access is given by

alignment = p mod N (8.1)

In order to account for the possibility that a pointer might have, during program
execution, values with different alignments, the information is stored as a set E of
possible values modulo N. If M = {0, . . . , N − 1} is the set of all possible values of
modulo N and P = P(M) its power set, then E ∈ P .

In order to correctly annotate pointers in the whole program, it is necessary to
track the value of pointer variables during their whole lifetime. A pointer generally
is:

1. First initialized, usually by means of a memory management function such as
malloc or by taking the address of an variable object.

2. Used, either directly or in address calculations such as *(p+i), to access values
in memory.

3. Manipulated or used in address calculations that are then stored to another
pointer variable, which leads to a new initialization (e.g., p = p + i).
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The analysis therefore needs the ability to determine the initial alignment of
pointers. To do so, it needs specific knowledge about the possible initial sources
of addresses. In the case of direct initialization by taking a memory address, this
is possible using information about the variable object. In case of functions that
take pointers as arguments, the initial values of the pointer parameters are not avail-
able inside the function. It is therefore sensible to use an interprocedural algorithm,
which propagates the information across function boundaries. Next, this value must
be tracked from its first definition to all its uses. This is a classic data-flow problem
that can be solved using standard techniques as described in Chapter 3.

The third prerequisite to successfully uncover the alignment information in point-
ers is the ability to determine the offset for accesses that involve address calcula-
tions. In order to evaluate pointer arithmetic such as *(p+i), a transfer function

fg : Pn �−→ P (8.2)

is used to compute the impact on E . The transfer function, naturally, depends on the
operator of the arithmetic expression. For example, the most common operations in
address calculation, the addition and multiplication, are binary operators, and thus
the corresponding transfer functions have the form fbinary : M × M �→ M . This
leads to the following equations:

fAdd(a, b) = (a + b) mod N = [(a mod N ) + (b mod N )] mod N
fMul(a, b) = (a · b) mod N = [(a mod N ) · (b mod N )] mod N

(8.3)

They are valid regardless of the value of N . If, however, N = 2m is a power of two,
further functions can be deduced. This is due to the fact that a division by 2m can be
implemented by right shifting the binary representation of an integer value m times.
The remainder of the division is then exactly formed by the m bits shifted out of the
word. Therefore, it is in the last m bits of the original value. Using this knowledge,
the operations AND, OR, XOR, and NOT can be handled without knowledge about
the actual value as well.

8.2.4 SIMD Analysis

The preparative loop transformations consist of strip mining, scalar expansion, and
loop unrolling. They must be parameterized according to the underlying SIMD
architecture. Incorrect parameters might prevent SIMD optimization or lead to
nonoptimal results. The transformations often only pays off, if the SIMD optimiza-
tion is later on enabled. Therefore, it is important to apply them only to the most
promising loops for SIMD optimization. Hence, an SIMD analysis engine is imple-
mented that runs in advance to identify those loops that contain SIMD candidates.
For this purpose, the SIMD-candidate matcher is employed. Consequently, if the
loop body does not contain any SIMD candidate, then it does not make sense to
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consider it further. Otherwise it determines for each SIMD candidate how many of
them would be needed to build a SIMD-set that matches one of the available SIMD
instructions using the SIMD-set constructor. From this information, it derives the
parameters for the different loop transformations.

8.2.5 Strip Mining and Loop Peeling

Many vectorizable loops cannot be directly optimized in case the iteration count
is larger than the number of SIMD candidates ks that fit into an SIMD-set s for
the vector operation. Strip mining is a loop transformation that divides the loop
into strips, where each strip is no longer than the SIMD data path width [178].
Essentially, the loop is decomposed into two nested loops (Listing 8.2):

1. An outer loop (the strip loop) that steps between strips.
2. An inner loop (the element loop) that steps between single iterations within a

loop.

// original loop
for (i = 0; i < 100; i++)
{
A[i] = B[i] * C[i];

}
//outer strip loop
//strip_size = max. #sub-registers
for (is = 0; is<100; is += strip_size)
{ //inner element loop
for (i=is; i<is+strip_size; i++)
{
A[i] = B[i] * C[i];

}
}

Listing 8.2 Strip mining example

The SIMD analysis calculates the iteration count of the element loop, called the
strip size, based upon all SIMD-sets S that can be built with the identified SIMD
candidates in the loop. Since it might happen that each SIMD-set has a different
number of subregisters k, the maximum strip size for the transformation is selected:

strip size = max

(
⋃

s∈S

ks

)
(8.4)

However, due to possible alignment constrains of the SIMD architecture, strip min-
ing must ensure that each strip starts at an alignment boundary. Assuming that arrays



8.2 SIMD Framework 105

are word aligned in memory, then the alignment boundaries are given by

alignment boundaries = {i | i mod strip size = 0} (8.5)

where i is the loop counter. However, strip mining is performed in the iteration
space. Thus, for array references like [i +c] with c being a constant and c �= 0 (List-
ing 8.3), the alignment boundary for each strip can differ from the real alignment in
memory.

for (i = 0;i < 100;i++)
{
A[i+1] = B[i+1] * C[i+1];

}

Listing 8.3 Offset = 1

Therefore, an offset can be set, if it remains constant within the loop, to readjust
the alignment boundaries defined in the iteration space so that they correspond with
the real alignment in memory. Consequently, the offset is always within the range
(−strip size, strip size). The alignment boundary is then given by

alignment boundaries = {i | i + offset mod strip size = 0} (8.6)

The boundary information can be easily computed using the information from the
alignment analysis. In case the loop does not directly start at an alignment boundary,
loop peeling is applied to ensure the correct alignment of the data accesses. That
means, those iterations causing the misalignment are “peeled off” the original loop
and build a separate prolog loop. If the remaining iterations are not divisible by the
strip size without remainder, then an extra epilog loop is created as well. Assuming
an up-counting loop using a less-than condition, the loop boundaries for the prolog,
strip loop, and epilog are defined as follows:

bFrom = iFrom + (−(iFrom + offset) mod strip size) (8.7)

bTo = iTo − ((iTo + offset) mod strip size) (8.8)

Listing 8.4 shows a generalized example. The initial and final value of the loop
counter are given by iFrom and iTo, respectively, where bFrom defines the initial
value of the strip loop and the upper bound of the prolog, and bTo the upper bound
of the strip loop and the initial value of the epilog. Note that the modulo operation
must produce a value in the range [0, strip size). Furthermore, it must take care of
overflows that might occur during the computation of the loop boundaries. Similar
equations exist for different conditions and down-counting loops.
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// peeled iterations (prologue)
for (i = iFrom; i < bFrom; i++)
{
A[i+c] = B[i+c] * C[i+c];

}
//strip mined loop
for (is = bFrom

is < bTo;
is += strip_size)

{
for (i = is; i < is+strip_size; i+=1)
{
A[i+c] = B[i+c] * C[i+c];

}
}
//epilogue loop
for (i = bTo; i < iTo; i++)
{
A[i+c] = B[i+c] * C[i+c];

}

Listing 8.4 Strip mining with offset != 0

8.2.6 Scalar Expansion

When scalars are assigned and later used in the loop, the dependency graph will
include flow-dependence relations from the assignment to each use-and-loop-carried
anti-dependencies from each use back to the assignment. These anti-dependence
relations often cause problems in other transformations and could prevent paral-
lelization of the loop (Listing 8.5). However, the anti-dependence relation can be
broken by scalar expansion [178]. The basic idea is to allocate an array with one
element for each iteration and replace each scalar reference in the loop with a ref-
erence to the array. This eliminates the anti-dependence relations. The computed
value should be assigned to the original scalar after the loop (Listing 8.6). Scalars
that are assigned conditionally can also be expanded given that

1. the scalar is assigned on every path through the loop body and
2. the scalar is not used before any assignment to the same scalar.

If a scalar is found that satisfies these constraints, it is replaced by an array access.
One obvious drawback of scalar expansion, though, is the increased memory

consumption of the program. If not carefully managed, this penalty can overcome
the benefits gained by SIMD. For instance, the memory usage can be reduced by
strip mining the loop and only expanding the inner element loop.
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for (i=0; i < N; i++)
{
s = B[i] * C[i];
A[i] = s+1/s;

}

Listing 8.5 Scalar causes anti-dependence

for (i=0; i<= N; i++)
{
S[i] = B[i] * C[i];
A[i] = S[i]+1/S[i];

}
s = S[N];

Listing 8.6 Replaced scalar with array
access

8.2.7 The Vectorizer

A classical vectorizer parallelizes the whole loop at once provided that suitable
SIMD instructions are available for all statements in the loop body and no data
dependencies limit parallelization. Another prerequisite is that the iteration count
must match the number of SIMD candidates needed to build the SIMD-set for the
vector operation. Obviously, this is a perfect match for strip-mined loops. The vec-
torization algorithm is exemplified in Fig. 8.4. In the first step (1), it checks all
inner loops whether each statement consists only of SIMD candidates using the
SIMD-candidate matcher. In step (2), it virtually duplicates the SIMD candidates
according to the iteration count of the current loop. For these virtual SIMD can-
didates, it tries then to construct an SIMD-set that matches an available SIMD
instruction with the SIMD-set constructor (3). Finally, if valid SIMD-sets can be
constructed for each statement, then the whole loop will be replaced by the corre-
sponding SIMD instructions (4).

}

=

*A[i]

B[i] C[i]

SIMD candidates

=

*A[i]

B[i] C[i]

=

*A[i]

B[i] C[i]

…

SIMD_mul_2x16(x,y)

SIMD_store_2x16(x,y)

…

Available vector instructions

(2) Virtually duplicate

(3) Construct

(4) Replace

After vectorization

(1) Check loop
statements

Fig. 8.4 Vectorization example
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Of course, it might happen that not all loop statements can be directly paral-
lelized, e.g., due to data dependencies. But still they may contain a certain degree of
parallelism. Therefore, loops that could not be vectorized are further processed by
the more powerful unroll-and-pack-based SIMDfyer.

8.2.8 Loop Unrolling

The SIMDfyer implements a technique similar to [240]. This requires loops to be
unrolled properly to ensure full utilization of the SIMD data path. The SIMD anal-
ysis customizes the unroll factor to the number of SIMD candidates ks that fit into
a SIMD-set s that can be constructed for the given loop body. This is basically
the same as for the strip-size calculation. Consequently, strip-mined loops will be
unrolled completely if they are not vectorized. It may happen that the loop contains
several SIMD candidates, which can be combined in different ways to an SIMD-set.
Thus, since it is desired to fill all possible SIMD-sets S, the best unroll factor can be
calculated as

unroll factor = max

(
⋃

s∈S

ks

)
(8.9)

The SIMD analysis annotates the unroll factor to each loop that contains SIMD
candidates. The value of all loops left after vectorization will be read by the loop
unroller to prepare them for the SIMDfyer.

8.2.9 The Unroll-and-Pack-Based SIMDfyer

For a given IR of an input C program, an iterative algorithm is used that combines
SIMD candidates into SIMD-sets and replaces such sets by CKFs in the IR [55].
Even though the algorithm could in principle process all basic blocks inside a pro-
cedure, it focuses only on the loops, typically the hot spots of the input program;
more specifically, only those where the SIMD analysis identified SIMD candidates
before. Certain multiple basic block constructs, though, may have been merged into
a single basic block by an if-conversion [125] pass prior to the SIMD optimization.
The algorithm forms SIMD instructions step by step. If a complete SIMD-set could
be built, it will be replaced by the corresponding CKF. Since each iteration may
generate new SIMD candidates, the list of SIMD candidates is updated after each
step. The identification of SIMD candidates is performed by the SIMD-candidate
matcher. The basic idea of the iteration is illustrated in Fig. 8.5.

State (1) shows the initial IR structure for a sample loop body (unrolled twice)
that performs a multiplication of two vectors B and C and stores the result in vector
A. The left and right elements of the computations are isomorphic and are assumed
to meet the memory alignment constraints. First, the algorithm combines the left
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Fig. 8.5 IR states in different iterations

and the right operands (16-bit load operations) of the two “*” to 32-bit SIMD load
operations. Afterward, the “*” operations themselves are combined to an SIMD
instruction. The corresponding IR has the intermediate state (2). In order to preserve
the semantic correctness, explicit “extract” operations are inserted that select 16-bit
subwords out of the 32-bit result of the SIMD dual multiplication operation. These
extracts are also considered as SIMD candidates, and hence can also be used to build
an SIMD-set. Note, all superfluous extracts are removed by dead code elimination
in a later compilation phase. In the following iteration, the two 16-bit “=” operations
form an SIMD-set on their own. Finally, the IR state (3) is reached and the algorithm
terminates.

The presented approach employs an iterative, step-by-step approach in order
to compose an SIMD instruction from a set of SIMD candidates. In this way, an
exhaustive search within the given loop body is avoided. Therefore, it requires only
low-degree polynomial complexity (O(n3)), a worst case for n variable accesses
in the IR. Practical experience shows that this relatively simple heuristic consumes
only a few CPU seconds of compilation time while utilizing SIMD instructions very
well for speeding up common DSP code benchmarks. Due to the possible neces-
sity of inserting extra code for dynamic pointer-alignment checks before loop entry
points and the corresponding code duplication, insertion of SIMD instructions may
lead to an increase in code size.

8.2.10 Code Example

This section provides a more detailed example to illustrate the representation of
SIMD instructions in the IR. Listing 8.7 shows the initial C source code after
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preprocessing (strip mining, scalar expansion, and loop unrolling). Assuming the
availability of SIMD instructions for addition and multiplication operating on two
16-bit values, the SIMD analysis determines a strip size and an unroll factor of 2 for
the loop transformations. Here, scalar expansion is performed on the element loop,
which is then fully unrolled afterwards. It is further assumed that the target machine
requires SIMD load operations to be word aligned.

void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
sum = S[0] = S[1] = 0;
for(int is = 0; is < 64; is += 2)
{
S[0] = S[0] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (*pa * *pb) * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.7 Initial code

In the first iteration, the two multiplications are detected as SIMD candidates and
are replaced by a CKF (SIMD mul 2x16). The SIMD multiplication implies cer-
tain conditions in which subregisters the input operands must be located in. Since the
input operands are given by the extract operations from the previous iteration, these
conditions can be easily met by directly using the temporaries the input operands
are extracted from. Obviously, this makes the extract operations from the previous
iteration superfluous. The resulting code is depicted in Listing 8.9 while Listing 8.10
shows the final code after several further steps. The SIMD-set computation has been
finalized by detecting that the multiply results can be processed further by SIMD
additions. No extract operations are required since the results can be directly writ-
ten by a wide store to the array created by scalar expansion. Here, it is assumed
that the alignment analysis cannot resolve the alignment of the pointers, thus a
dynamic alignment check has been inserted (if(((pa|pb|pc) & 3) == 0))
to rule out misaligned pointers. If the check fails, a non-SIMD version of the loop
is executed in the else-branch. Finally, standard optimizations, such as dead code
elimination, have been invoked to remove superfluous operations (e.g., extracts)
from previous phases. The resulting code is passed to the compiler backend for
assembly code generation.
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void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
int tmp1, tmp2;
short res0, res1, res2, res3;
sum = S[0] = S[1] = 0;

for (int is = 0; is < 64; is += 2)
{
tmp1 = (int*)pa; //SIMD load
tmp2 = (int*)pb; //SIMD load
res0 = EXTRACT_short_1_of_2(tmp1);
res1 = EXTRACT_short_2_of_2(tmp1);
res2 = EXTRACT_short_1_of_2(tmp2);
res3 = EXTRACT_short_2_of_2(tmp2);

S[0] = S[0] + (res0 * res2) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (res1 * res3) * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.8 First iteration

void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
int tmp1,tmp2,tmp3;
short res0,res1,res2,res3,res4,res5;
sum = S[0] = S[1] = 0;

for(int is=0; is<64; is+=2)
{
tmp1 = (int*)pa; //SIMD load
tmp2 = (int*)pb; //SIMD load
res0 = EXTRACT_short_1_of_2(tmp1);
res1 = EXTRACT_short_2_of_2(tmp1);
res2 = EXTRACT_short_1_of_2(tmp2);
res3 = EXTRACT_short_2_of_2(tmp2);
tmp3 = SIMD_mul_2x16(tmp1, tmp2);
res4 = EXTRACT_short_1_of_2(tmp3);
res5 = EXTRACT_short_2_of_2(tmp3);

S[0] = S[0] + res4 * *pc;
pa++; pb++; pc++;
S[1] = S[1] + res5 * *pc;
pa++; pb++; pc++;

}
sum = sum + S[0] + S[1];

}

Listing 8.9 Second iteration



112 8 SIMD Optimization

void dotproduct(short *pa, short *pb, short *pc)
{
short sum;
short S[2];
sum = S[0] = S[1] = 0;

if( ((pa|pb|pc) & 3) == 0 )
{
for (int is = 0; is < 64; is += 2)
{
(int) S[0] = SIMD_add_2x16((int)S[0], SIMD_mul_2x16(

SIMD_mul_2x16((int*)pa,(int*)pb),(int*)pc));
pa+=2; pb+=2; pc+=2;

}
} else {
for(int is=0; is < 64; is += 2)
{
S[0] = S[0] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
S[1] = S[1] + (*pa * *pb) * *pc;
pa++; pb++; pc++;
}

}
sum = sum + S[0] + S[1];

}

Listing 8.10 Final code

8.3 Retargeting the SIMD Framework

To retarget the SIMD framework, basically two pieces of information are required:
first, a description of IR tree patterns that represent a SIMD candidate. This is used
to generate the SIMD-candidate matcher. Second, the SIMD-set construction, the
specification of how SIMD candidates can be composed to a valid SIMD-set.

8.3.1 SIMD-Candidate Matcher

The identification of SIMD candidates can be implemented using the tree-covering-
based code selection [244]. SIMD candidates can be easily described by regular
mapping rules. Normally, such a rule describes how a certain IR operation is mapped
to target assembly code. Nonterminals, typically the rule operands, are used as “tem-
poraries” to transfer values from one rule to another. From this specification, a tree
pattern matcher for code selection can be generated with tools such as Burg [52]. In
this approach, the regular CoSy tree-pattern-matcher generator is utilized to create
a dedicated SIMD-candidate matcher from SIMD-candidate rules, which are part
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of the regular code selector description.1 Such rules use special SIMD nonterminals
containing two specific attributes: a pos field for the subregister number within a
full register and an id to identify a memory area, for example, allocated by a scalar
variable or an array (Fig. 8.6).

short a[4]; short b;

Fig. 8.6 Pos/id for array/scalar variable

As will be explained later in more detail, the former is needed to check subreg-
ister or alignment constraints and the latter becomes important when the packed
result of an SIMD operation is directly consumed by another one. The initial values
for these fields are already determined by the prior data-flow/alignment analysis
and are initialized when a load operation is matched. Furthermore, each rule can
be referenced using its unique rule name. Examples for two SIMD-candidate rules
named load and add are shown in Listings 8.11 and 8.12.

\\Syntax is name:type
RULE [load] o:mirContent(src:reg_nt)

-> dst:simd_nt;
CONDITION {

IS_INT16(o)
}
EMIT {

dst.pos = get_pos(o);
dst.id = get_id(o);

}

Listing 8.11 SIMD-candidate rule load

The 16-bit load rule initializes the SIMD nonterminal’s pos and id fields with
the values determined by data-flow/alignment analysis. The produced SIMD non-
terminal may then be consumed by the add rule. Additional conditions can be used
to select only those IR operators for a certain data type or to specify constraints on
the subregister of the operands. In this example, the 16-bit add rule matches only if
both input operands are located in the same subregister.

1 This is not a contradiction to the limitations of tree pattern matching mentioned in Section 8.1.
The matcher is only employed to identify those IR operations that might be composed to a full
SIMD operation, the complete SIMD match cannot be found directly.
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RULE [add] o:mirPlus(src1:simd_nt,
src2_simd_nt)

-> dst:simd_nt;
CONDITION {

IS_INT16(o) && src1.pos == src2.pos
}
EMIT {

dst.pos = src1.pos;
dst.id = newid(src1.id,src2.id);

}

Listing 8.12 SIMD-candidate rule add

Additionally, rules to extract a subregister from a full register must be created as
well. Those are used to match the extract operations (see Section 8.2.10) inserted in
previous iterations of the algorithm. In this way, they become SIMD candidates in
the current iteration. All extract rules produce an SIMD nonterminal that sets id to
the id of the temporary the result is extracted from and the pos field to the position
of the extracted subregister, respectively (Fig. 8.7).

=

A[i]

=

tmp = SIMD_mul

A[i+1]

Fig. 8.7 Pos/id for extract operation

The SIMD-candidate matcher’s flexibility is only limited by the capabilities of
the underlying tree-pattern-matcher generator. Since the concepts are already sup-
ported by the existing code selector description, only minimum changes to the retar-
getable compiler platform are required. Since tree-covering-based code selection is
the state of the art in compiler design, this part can also be easily ported to other
platforms.
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8.3.2 SIMD-Set Constructor

Special SIMD rules describe valid tuples N = (n1, . . . , nk) of SIMD candidates,
where k denotes the number of subregisters. In contrast to regular mapping rules,
they take the names of SIMD-candidate rules instead of nonterminals as input
operands, i.e., a node ni corresponds to an SIMD-candidate rule name. The exam-
ples in Listings 8.13 and 8.14 specify a twofold 16-bit load and add SIMD instruc-
tion, using the SIMD-candidate rules from Listings 8.11 and 8.12.

SIMD RULE simd_load(a:load, b:load);
COMPOSITION

CKF#1 (src:a.src) -> dst:reg_nt(a.dst, b.dst);
EMIT {

printf("LOAD32 [%s] -> %s", REGNAME(src),REGNAME(dst));
}

Listing 8.13 SIMD rule twofold 16-bit load

SIMD RULE simd_add_2x16 (a:add, b:add);
COMPOSITION
CKF#2 (arg1:reg_nt(a.src1, b.src1),

arg2:reg_nt(a.src2, b.src2)
) -> dst:reg_nt (a.dst, b.dst);

EMIT {
printf ("\tDUALADD16\t%s,%s -> %s",

REGNAME(arg1), REGNAME(arg2), REGNAME(dst));
}

Listing 8.14 SIMD rule dual 16-bit add

Given the set of all identified SIMD candidates C = {c1, c2, . . . }, the set of all
possible SIMD-sets S is given by S ⊆ P(C) whereas each tuple in S must be in
the set of all SIMD rules R as defined in the compiler configuration. Furthermore,
it must match certain implicit conditions. Let Pos(c) denote the pos value of the
result SIMD nonterminal produced by SIMD-candidate rule c and Id(c) the id,
respectively. Then the set of valid SIMD-sets S is given by:

S = {(c1, . . . , ck) | (c1, . . . , ck) ∈ R ∧ Id(ci ) = Id(c j ) ∧ Pos(cl+1) = Pos(cl) + 1,

∀i, j ∈ (1, . . . , k), l ∈ (1, . . . , k − 1)}
(8.10)

In other words, the SIMD candidates of a valid SIMD-set must have the same id as
well as an increasing pos value assigned.
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Consider the example shown in Listing 8.15. In the first iteration, the load rule
covers the array accesses, initializes the idwith an unique number and the pos field
with the position relative to SIMD load memory boundary. Note that accesses to the
same array get always the same id assigned. Only the pos field varies. It is assumed
that the arrays are aligned to a word boundary. Now, due to the implicit condition
of the SIMD load, the only way to create a complete SIMD-set is to combine
two adjacent loads (i.e., increasing pos) from the same id. All other combinations
would violate at least one constraint. Both SIMD loads create a temporary with a
new id. Afterward, the operations to extract the subregisters have been inserted as
well. As mentioned above, the extracts also create new temporaries which get the
same id as the temporary the sub-register is extracted from assigned and the pos
field is set to the extracted subregister number, respectively.

for(i=0; is < 64; i += 2)
{
// <pos=0,id=1> <pos=0,id=2>
a[i] = b[i] + c[i];
// <pos=1,id=1> <pos=1,id=2>
a[i+1] = b[i+1] + c[i+1];
// <pos=0,id=3> <pos=0,id=4>
x[i] = y[i] + z[i];
// <pos=1,id=3> <pos=1,id=4>
x[i+1] = y[i+1] + z[i+1];

}
// In the 1st iteration:
// load -> <pos=0,id=1>, ...
// SIMD_load(<pos=0,id=1>,<pos=1,id=1>)
// -> <pos=0,id=5>
// SIMD_load(<pos=0,id=2>,<pos=1,id=2>)
// -> <pos=0,id=6>
// EXTRACT_short_1_of_2(<pos=0,id=5>)
// -> <pos=0,id=5>
// EXTRACT_short_2_of_2(<pos=1,id=5>)
// -> <pos=1,id=5>
// EXTRACT_short_1_of_2(<pos=0,id=6>)
// -> <pos=0,id=6>
// EXTRACT_short_2_of_2(<pos=1,id=6>)
// -> <pos=1,id=6>
// ...

Listing 8.15 pos/id in the first iteration

Thus, in the next iteration (Listing 8.16), the first and second operands of the
first two additions share the same ids. Consequently, the same id is generated
for both results of the additions. Now they can be combined to an SIMD add.
The implicit id condition actually enforces that the packed operands of the pre-
vious SIMD load are directly reused, otherwise this might result in an expensive
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repacking of the operands if, for instance, the first addition is combined with the
fourth addition. Note that it is also possible to specify an explicit condition for the
SIMD rules to overwrite the defaults for pos and id. As an example, the conditions
on the pos fields can be used to model unaligned SIMD memory operations.

for(i=0; is < 64; i += 2)
{
//<pos=0,id=5>
tmp1 = (int*)(b+i);
//<pos=0,id=5>
res0 = EXTRACT_short_1_of_2(tmp1);
//<pos=1,id=5>
res1 = EXTRACT_short_2_of_2(tmp1);
//<pos=0,id=6>
tmp2 = (int*)(c+i);
//<pos=0,id=6>
res2 = EXTRACT_short_1_of_2(tmp2);
//<pos=1,id=6>
res3 = EXTRACT_short_2_of_2(tmp2);
...
// <pos=0,id=5> <pos=0,id=6>
a[i] = res0 + res2;
// <pos=1,id=5> <pos=1,id=6>
a[i+1] = res1 + res3;
...

}
// In the 2nd iteration:
// add(<pos=0,id=5>,<pos=0,id=6>)
// -> <pos=0,id=56>
// add(<pos=1,id=5>,<pos=1,id=6>)
// -> <pos=1,id=56>
// SIMD_add(<pos=0,id=56>,<pos=1,id=56>)
// ...

Listing 8.16 pos/id in the second iteration

In order to complete the retargetable compilation flow, the CKF calls in the result-
ing intermediate code must be replaced by valid assembly instructions for the target
processor. In this framework, the COMPOSITION for an SIMD rule specifies the
CKF call that is internally generated for an identified SIMD-set. It consists of an
unique CKF number, the argument(s) to be passed to the CKF call, and the assembly
code that is finally emitted. For example, the COMPOSITION for SIMD add 2x16
describes that the arguments for the CKF call are register nonterminals that contain
the first and second operands of the combined add rules. From this specification, a
regular code selector rule matching the CKF with the given number and assembly
syntax is automatically generated (Listing 8.17) and becomes part of the regular
backend code selector.
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RULE [CKF#2] o:IR_FuncCall( arg1:reg_nt,arg2:reg_nt)
-> dst:reg_nt;

CONDITION {
CKF_Number(o) == CKF#2

}
EMIT {

printf ("\tDUALADD16\t%s,%s -> %s",
REGNAME(arg1),REGNAME(arg2),REGNAME(dst));

}

Listing 8.17 Internally generated CKF rule for SIMD add 2x16

Like for the SIMD-candidate matcher, many concepts are already supported by
the existing tree-pattern-matcher generator. Thus, only a few changes are required
to the existing generator to support this approach.

As mentioned in Chapter 6, the Compiler Designer tool comprises techniques to
generate mapping rules automatically from the LISA model. Since the SIMD config-
uration is quite similar to a regular code selector description, the Compiler Designer
has been extended in order to specify and generate rules for SIMD instructions, too.
More specifically, the user creates the SIMD candidate rules using the mapping
dialog. In the next step, the user can select those SIMD candidates which build
an SIMD-set and assign a proper assembly instruction. From this specification, an
SIMD-enabled code selector description for the CoSy compiler platform is finally
generated.

8.4 Experimental Results

For the evaluation, two different aspects have to be taken into account. First of
all, a precise alignment analysis is a prerequisite for the SIMD optimizations to
achieve good results. Therefore, this chapter first evaluates the efficiency of the
alignment analysis before the benchmark results for the SIMD optimization itself
are presented.

8.4.1 Alignment Analysis

The alignment is classified in one of the three classes:

Unknown: The annotation is Ei = ∅, the empty set. No information about the
alignment could be gathered during the analysis.

Known: The set contains a single value. Thus, the alignment is exactly known.
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Ambiguous: The set contains several values. With regard to the annotation pre-
cision, this is equivalent to a known value. It means that the alignment will
actually change during the runtime of the program.

The metrics used to measure the accuracy is the ratio of annotated to total nodes:

r = number of known nodes + number of ambiguous nodes

number of total nodes
(8.11)

The nominator expression is the sum of both, the exactly known pointers and the
ambiguous pointers. This is reasonable since an expression that contains several
entries in its set can definitely take on several modulo values, depending on the
program’s input data. The applications chosen to benchmark the results are taken
from the domain of typical DSP and embedded algorithms. They present different
degrees of complexity to the compiler, which are as follows.

ADPCM: This is a floating-point implementation of an adaptive differential
pulse-code modulation encoder. It is a self-contained program with a main()
procedure calling a few worker procedures. Data accesses are performed
through pointers that are initialized to the addresses of global objects and
then manipulated by address arithmetics throughout the program. All the
functions were contained in a single compilation unit.

FFT: The FFT works on a 16-bit fixed-point representation but is otherwise
similar to the ADPCM described above. Several functions are combined in
a single compilation unit. In contrast to the ADPCM, however, the data are
passed by means of pointer arguments to function calls.

libmad: This is an open source 32-bit fixed-point implementation [265] of the
MPEG-1 audio Layer 1–3 standards [185]. The primary goal of the project
is to provide a high-performance mp3 library written in a portable C style. It
consists of several modules that are compiled separately and exchange data
by means of pointer arguments.

gsm: The implementation used is freely available on the Internet [129]. It is
a floating-point implementation of the standard and similar in structure to
libmad.

AAC: This is the AAC audio codec’s reference implementation of the 3GPP
consortium. It is written in ANSI-C, spread across a large number of mod-
ules, and makes heavy use of complex language elements such as arrays of
pointers or nested structs.

H.264: This is another complex library in the same style as the AAC decoder.

The benchmarks above have been chosen to measure the annotation rate. As shown
in the next section, typical SIMD benchmarks for embedded processors supports
only a very basic set of SIMD operations, which must
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• be completely regular;
• work on short data types of 8- or 16-bit size;
• work on fixed-point data types.

The test cases here do not comply with these requirements. They operate on
floating-point or 32-bit fixed-point representations. Creating fixed-point versions of
complex algorithms, however, requires a high engineering effort. For that reason,
such versions are usually not publicly available. Nevertheless, the set of test cases
chosen does contain a typical set of pointer accesses to floating-point data types and
can therefore be used to evaluate how efficiently the analysis can propagate values
around the program. The detailed results are given in Table 8.2. In addition to the
name and the rate, the number of compilation units (CUs) the program consists of,

Table 8.2 Annotation rate
Name CUs Lines Rate% Total Known Ambiguous Unknown

adpcm 1 493 100 39 39 0 0
FFT 1 457 93 31 27 2 2
libmad 12 11791 58 3362 1738 211 1413
GSM 14 4014 55 1620 869 28 723
AAC 38 6767 20 5100 811 236 4053
H.264 30 31099 19 13188 2428 90 10670

the total number of lines in the source code, the total number of pointers in the
program, and the numbers for known, ambiguous, and unknown annotations are
given. It is obvious that the programs tested can be divided into three classes with
respect to their predisposition for alignment analysis. The straightforward imple-
mentations of the FFT and the ADPCM coder give very good results. These are
complete programs, which are available in a single compilation unit, with a single
entry point, the main() function. The code is written using direct pointers to the
data involved. Those pointers are then modified by address arithmetics during the
program’s execution.

The GSM implementation and libmad are similar in coding style to the previous
class. They make moderate use of structs and usually pass pointers to the memory
operated upon. The main difference to the first class is that they are formed by
several compilation units. For modules that are largely self-contained and that have
a well-defined interface to the outside world, the annotation rate is usually better
than for the modules that handle file access. The core-encoder routine for the GSM
codec achieved an annotation rate of 70 and 82% of the pointers in the Layer III
decoding module of libmad could successfully be annotated. This is due to the fact
that the developers of these libraries made liberal use of the static storage classifier
for functions that enabled the creation of a call graph with less edges. However,
a noticeable uncertainty with regards to the interprocedural flow remains, which
clearly shows in the average annotation rate of about 55% in these cases.

The programs in the third class, which is hardly analyzable, are reference imple-
mentations of recent audio and video codecs. They have been written for readability
by humans and correct, yet not necessarily fast execution. This leads to skimpy use
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of the static classifier, nested structures to emulate class hierarchies, and multi-
dimensional arrays of structures. An excerpt from the core-decoding module of the
aac decoder is shown in Listing 8.18. This coding style makes it very

AACDECODER CAacDecOpen(...)
{
struct AAC_DECODER_INSTANCE *self;
...
AacDecInstance.pAacDecStaticChannelInfo[ch]->pLongWindow[0] =
OnlyLongWindowSine;
self->pAacDecChannelInfo[ch]->pCodeBook =
pAacDecDynamicDataInit[ch]->aCodeBook;

...
}

Listing 8.18 Source excerpt from the core aac-decoding module

difficult to do the data-flow analysis, upon which the alignment analysis is built. In
order to successfully annotate programs like these, not only the values assigned to
objects, but also values in memory have to be tracked.

8.4.2 SIMD Optimizations

For experimental evaluation, SIMD-enabled C compilers have been created for the
NXP TriMedia processor [190] and the ARM11 [41]. The TriMedia compiler has
been designed using the Compiler Designer tool whereas the ARM11 compiler is a
hand-crafted CoSy compiler. In contrast to, e.g., the AltiVec or SSE extension, both
architectures support SIMD only for short (i.e., 8-bit and 16-bit) integer data types –
which is quite common for embedded processors. Hence, benchmarks employing
floating-point computations cannot be used. Therefore, mostly benchmarks from
the DSPStone benchmark suite [269] have been selected and several additional ker-
nels have been implemented, similar to those used in [72, 86, 117]. Furthermore,
additional results for the following more complex DSP algorithms are provided:

quantize matrix quantization with rounding
compress discrete cosine transformation to compress a 128 × 128 pixel image

by a factor of 4:1, block size of 8 × 8
idct 8 × 8 IEEE-1180 compliant inverse discrete cosine transformation
viterbi GSM full-rate convolutional decoder
emboss Converts an image using an emboss filter
sobel Applies a sobel filter to an image
corr gen Generalized correlation with a one-by-M tap filter
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For the given TriMedia and ARM LISA ADL models, the required retargeting
effort for SIMD support is quite limited. The corresponding CGD descriptions for
SIMD consist of 393 (TriMedia) and 698 (ARM) lines of code, which accounts
for roughly 7% (TriMedia) and 14% (ARM) of the complete CGD description. A
similar workload can be expected for other processors, depending on architecture
features.

Regarding the SIMD architecture, the TriMedia is a five-slot VLIW DSP with
128 general-purpose registers and a number of SIMD instructions. Due to its VLIW
architecture, using SIMD instructions does not lead to a speedup in all cases. For
instance, one can issue five parallel ADD instructions simultaneously, while only
two dual-ADD SIMD instructions can be issued at a time. Furthermore, SIMD
instructions may have a higher latency than regular instructions (e.g., one cycle
for an ADD vs. two cycles for a dual-ADD). So, unless the instruction scheduler
is not able to find suitable instructions for filling the VLIW slots saved by SIMD,
no speedup can be expected. However, if the memory is the bottleneck (at most two
parallel LOADs/STOREs), SIMD instructions still help to reduce the memory pres-
sure. There are also further effects, due to the C-coding style or register allocation
effects in the compiler backend, that leads to deviations from the theoretical speedup
factor k in case of k subregisters. The memory is organized in 32-bit words, hence
word alignment is required for SIMD memory accesses.

In contrast, the ARM architecture is built around a central, scalar RISC core.
It has a register file that consists of 31 general-purpose registers (at any one time
only 16 register are visible) and six status registers. The memory is also organized
in 32 bits words. It requires the same word alignment for all memory accesses as
the TriMedia. The ARM11’s instruction-set supports only a limited set of SIMD
instructions, which consists of additions and subtractions of byte or half-word data
values in 32-bit registers. Furthermore, the ARM features a complex dot-product
support operation, which multiplies two pairs of half-words in parallel, and adds the
two resulting word-wide values to an accumulator. Since there is no direct SIMD
multiplication operation available, kernels that do not match this dot-product sup-
port operation cannot be optimized.
Loop unrolling alone already has a large impact on the overall performance. Hence,
the speedup is measured by using the following equation:

Speedup = cyclesUnroll

cyclesV ector+SI M D f yer
(8.12)

CyclesUnroll denotes the number of cycles the test kernel needed when com-
piled with unrolling turned on, but the SIMD engines (i.e., Vectorizer and SIMD-
fyer) turned off. CyclesV ectori zer+SI M D f yer denotes the number of cycles the kernel
needed when compiled with the same unrolling factor and the SIMD engines acti-
vated. Hence, the speedup is only due to the SIMD instructions. All other compiler
parameters have always been identical.
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The results are quantified first for one simple, particular benchmark, that is, a dot
product, where vector elements are accessed by means of array accesses in the C
code:

for(i = 0; i < N; i++)
sum += a[i] * b[i];

Listing 8.19 Dot product

Due to the dependency on sum, a scalar expansion has to be applied to the loop
before SIMD instructions can be inserted. First of all, the impact of the alignment
analysis and the overhead introduced by scalar expansion is investigated. Figure 8.8
shows the speedup over the number of loop iterations I with and without alignment
analysis using a fixed unroll factor of 4. It can be clearly seen that a certain iteration
count is required to compensate the overhead by scalar expansion until SIMD pays
offs. Beyond that, the speedup is largely independent of I . For high iteration counts,
the speedup is asymptotically 2, which corresponds to the theoretical speedup in
this case. Obviously, the version without the dynamic alignment check reaches the
break-even point considerably faster than the one with the checks. The reason for
the extremely high speedup obtained on the ARM processor is due to type conver-
sions. Since the multiplications in the non-SIMD version produce results of 32 bits
size, these have to be converted to 16-bit precision afterward. The ARM compiler,
however, generates a sequence of a logical left shift by 16 bits, followed by an
arithmetic right shift back to achieve this. In the SIMD version, though, these steps
are not necessary since the results of the operations are already 16-bit values.
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Fig. 8.8 Speedup factor over loop iterations for dot product
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The former two cases have demonstrated the dependence of the speedup on the
iteration count. Another interesting figure is the development with dependence on
rising unroll factors (after SIMD optimization). The example given in Fig. 8.9 shows
the progression for the dot product. The number of iterations for this graph has been
chosen to N = 128. As apparent from Fig. 8.8, this is a number where the speedup
is already very close to its peak value.
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Fig. 8.9 Speedup factor over unroll factor for dot product

In the values for the TriMedia, little difference is seen between the versions with
or without dynamic checks. The strong rise in speedup for the high unroll factors
is due to the additional resource pressure created by the large loop body. Since
the VLIW architecture is inherently parallel, this pressure is needed to completely
saturate the CPU. The ARM’s progression, however, shows an unexpected decline
in performance for higher unroll factors. After close examination, the cause has
been determined to be register shortage resulting in a considerable amount of spill
code. Obviously, the ARM greatly benefits from the removal of the dynamic check,
since registers are freed and thereby more degrees of freedom are left to the register
allocator. The TriMedia processor with its 128 available registers is not affected by
this problem.

Loop unrolling is known to have a large impact on the code size. Hence, larger
speedups come at the expense of an increased code size. Figure 8.10 illustrates the
code-size increase for the dot-product kernel (I = 128) due to unrolling for both
the SIMD and non-SIMD version. The not unrolled, non-SIMD version is used as
baseline. Due to the RISC architecture of the ARM, the code-size increase caused
by unrolling alone is more significant than for the TriMedia. However, the SIMD
version for the ARM can compensate the code-size effect of unrolling to a great
extent. First, SIMD directly reduces the number of instructions inside the loop.
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Second, the special dot-product-style SIMD instruction almost eliminates the
overhead by scalar expansion. This kind of instruction is not available in the TriMe-
dia. Additionally, SIMD reduces the number of instructions for the TriMedia as well
but not necessarily the number of VLIW words. Hence, the SIMD version shows a
larger code-size factor than the non-SIMD version. For high unroll factor, the paral-
lel functional units of the TriMedia become saturated, which leads to a stronger rise
of the code size. However, for modest unroll factors (2 or 4), the increase in code
size is acceptable for both architectures.

Finally, Fig. 8.11 summarizes the speedup results for all benchmarks. The num-
ber of loop iterations I for the DSPStone kernels is fixed (I = 128) and for the
more complex DSP routines as specified. For each benchmark, the unroll factor is 4.
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In the presence of dynamic-alignment checks, the SIMD loop version including the
alignment check overhead has been measured. A significant speedup was obtained
in most cases. The speedup for the complex DSP routines is generally lower, since a
smaller fraction of the benchmark code can be mapped to SIMD instructions than in
the case of the DSPStone kernels. Still, a speedup of 7% up to 66% was observed.
In certain cases, a super-linear speedup for the ARM can be achieved (e.g., 2.2 for
fir). This is related to the special multiply instructions of the ARM that helps to
reduce the overhead introduced by scalar expansion. On the other hand, for three
benchmarks, no speedup could be obtained for the ARM due to the lack of a multi-
plication without accumulation.

Regarding the code size, for the DSPStone kernels, an average code-size factor
of 0.9 for the ARM and 1.1 for the TriMedia can be observed, as compared to
benchmarks with unrolling enabled but without use of the SIMD optimizations. The
code size of the complex kernels essentially remains the same for both architectures
since only a small portion of the code is replaced by SIMD instructions.

8.5 Conclusions

Almost all previous approaches to SIMD optimization are tailored to a specific
target architecture. This book presents a retargetable optimization framework for
the class of processors with SIMD support. The underlying concepts are proven by
integrating the SIMD framework into the CoSy platform that can be retargeted via
the Compiler Designer GUI. In this way, SIMD-enabled compiler for two realistic
embedded processors were generated. The required retargeting effort is quite limited
for both compilers.

This results in a seamless and retargetable path from a single LISA model to a
SIMD-enabled C compiler. While previous backend-oriented SIMD optimization
techniques potentially led to higher code quality, significant speedup results for
standard benchmarks were generally obtained with this framework. Hence, the pre-
sented approach provides a good and practical compromise between code efficiency
and compiler flexibility.

The current implementation shows several limitations, whose elimination would
probably lead to higher code quality and would allow to handle a wider range of loop
constructs. As pointed out in [7, 72, 212], SIMD optimization is often hindered by
limitations of the SIMD memory unit in combination with the memory access pat-
terns in current applications. It is often necessary to reorder the subregisters, using
special permute instructions before SIMD instructions can be applied at all. So far,
these instructions are rarely supported by embedded processors. However, with the
advances in semiconductor technology, the SIMD data path width will increase in
the future, and thus it becomes more likely that next generation embedded proces-
sors will support those. Therefore support for permutation seems to be a promising
extension for the future.



Chapter 9
Predicated Execution

This chapter focuses on another class of target processors, namely, those equipped
with deep pipelines and parallel functional units such as VLIW architectures for
instance. Such architectures are quite popular in embedded system design since they
do not require designs to sacrifice software development productivity for the very
high-performance processing needed for today’s applications. Naturally, to achieve
their peak performance, all parallel functional units must be kept busy during pro-
gram execution. Thus, a common hardware features to increase the amount of avail-
able instruction-level parallelism (ILP) is predicated execution (PE). Basically, this
allows to implement if-then-else (ITE) statements without jump instructions that
offers a number of optimization opportunities. Furthermore, PE can enable more
aggressive compiler optimizations that are often limited by control dependencies.
For example, software pipelining, which is crucial to achieve high performance for
ILP processors, can be substantially improved by PE [189]. However, this feature is
by far not limited to highly parallel and deeply pipelined processors. Even though
less beneficial, single-issue embedded processors such as the ARM9 [41] or con-
figurable cores [44] are equipped with this feature, too. Clearly, support for PE in
retargetable compilers is of strong interest.

This chapter starts with looking at the issue for exploiting PE in ITE statements,
before related work is discussed in Section 9.2. Section 9.3 presents the optimization
concepts. Afterward, Section 9.4 introduces the retargeting formalism and the code
generation flow. Section 9.6 provides experimental results for several embedded
processors. Finally, this chapter is summarized and some future work is discussed
in Section 9.7.

9.1 Code Example

Predicated execution refers to the conditional execution of instructions based on the
value of a boolean source operand p. Irrespective of p’s value, the instruction allo-
cates the same processor resources. In case p is false, the computed result is ignored,
i.e., it effectively behaves like a no-operation (NOP) instruction. Compilers utilize
this to implement ITE statements without jump instructions. As pointed out in [125],
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this can also be seen as converting control dependencies into data dependencies, also
referred to as if-conversion.

}
Then:

End:

[!p]
[!p]

[p]
[p]

[!p]
[!p]

[p]
[p]

goto

[p] goto

goto

[p] goto

goto

[p] goto

goto

[p] goto

[p]
[p]

[p]
[p]
[p]

[p]
[p]

[p]
[p]
[p]

Then Block

Then Block

[p] Then BlockPE

Jump

Jump delay slot

Empty slot

Fig. 9.1 Implementation of an if-then-else statement with jump and conditional instructions

Consider the example in Fig. 9.1. The implementation on the right shows the
common implementation of an ITE statement. It uses conditional jumps to model
the control flow resulting from the C-code example on the left. The implementa-
tion with conditional instructions predicates the then block with the result of the
if-statement’s condition p and the else block with the negation thereof.

Since jump instructions typically cause control hazards (cf. Section 3.3.4), the
delay slots of the jump instructions have to be filled with NOPs or with other use-
ful instructions (in case there are any). PE in contrast eliminates the control-flow
instructions, which results in a single, but larger basic block containing the still
mutually exclusive then and else blocks. Larger basic blocks result in more
opportunities to exploit ILP. In the ideal case, both blocks can be completely paral-
lelized on an ILP processor. Case (1) exemplifies this for a two-issue slot processor.
There are not enough instructions to fill the delay slots in the jump implementa-
tion whereas the PE implementation not only eliminates the delay slots, but also
completely parallelizes the then and else blocks.

Unfortunately, if-conversion does not always pay off. It may also happen that,
due to resource conflicts during scheduling, the final schedule for the PE implemen-
tation has a larger length than the implementation with jump instructions. Case (2)
illustrates the following. Here, there are few free slots left in the then and else
block, and hence there is almost no chance to parallelize them. Consequently, the
actual performance of both implementations always depends on the concrete input
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program. Therefore, a precise cost computation is crucial to avoid a performance
loss with PE.

9.2 Related Work

Many compilation techniques for PE are based on the work by Mahlke et al. [243].
It describes the formation of so-called hyperblocks, an extended basic block con-
currently executing multiple threads of conditional code. The decision whether to
include a basic block in a hyperblock is based on the criteria of execution fre-
quency, block size, and instruction characteristics. Since it does neither take the
degree of ILP into account nor the dependencies between different blocks, schedul-
ing for machines with a few issue slots increased the resource interference, and
thus resulted in performance degradation. August et al. [60] improved this work by
allowing the scheduler to revise decisions on hyperblock formation. But this leads
to a complicated scheduler implementation. Additionally, it extends the previous
work by partial if-conversion: in many cases, including only a part of a path may be
more beneficial than including or excluding the entire path. Smelyanskiy et al. [175]
tried to solve the resource interference of Mahlke’s approach by a technique called
predicate-aware scheduling. However, they state that an architecture that supports
their optimization proposal does not exist yet. All hyperblock-based approaches
optimize the average execution time.

The approach by Leupers [220] focuses especially on embedded processors and
optimizes the worst-case execution time. In contrast to the previous work, it is
capable of handling complete (possibly nested) ITE statements with multiple basic
blocks at a time. It has been selected as a starting point to develop a retargetable PE
optimization.

Hazelwood et al. [146] incorporated a lightweight if-conversion into a dynamic
optimization system. However, the overhead of such systems makes Hazelwood’s
work less suitable for embedded processors. Chuang et al. [272] target primarily
out-of-order architectures, which are rarely used in the embedded domain. By com-
bining control-flow paths, PE introduces false dependencies between instructions
of disjoint paths. In [153], these dependencies are resolved by means of predicated
static single assignment (SSA). The downside is a significantly increased code size
and the high amount of required predicate registers – both are severe issues in the
embedded domain.

From the ASIP design platforms mentioned in Chapter 4 only Trimaran supports
PE, but this platform is limited to a narrow range of architectures. Quite recently
Target Compiler Technologies announced support for PE, but nothing in this regard
has been published yet. In the domain of “general-purpose” retargetable compilers,
the gcc [87] supports if-conversion, but gcc is generally known as being difficult to
adapt efficiently to embedded processor designs.

The aforementioned PE optimization techniques are mostly adapted for a cer-
tain target machine. Hence, porting one of them to a new processor architecture is
a tedious manual process. Therefore, the implementation in this book focuses on
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an effective deployment of PE while achieving retargetability for a wide variety of
processors with PE support [167].

9.3 Optimization Algorithm

As already mentioned above, ITE statements can be implemented using conditional
jumps or conditional instructions. Another possibility is to implement only either the
then or else block with conditional instructions, which is referred to as partial
if-conversion. Furthermore, the concrete implementation depends also on the nest-
ing level of the ITE statement. The following section introduces all possible ITE
implementations, henceforth referred to as schemes. Section 9.3.3 concentrates on
the cost computation of each scheme. Finally, Section 9.3.4 describes how the best
implementation is selected.

9.3.1 Implementation Schemes

In the following, the infix INS denotes the implementation with conditional instruc-
tions and JMP the implementation with conditional jumps. Furthermore, the pre-
fix ITE stands for if-then-else statements and IT for if-then statements. A suffix P
indicates a scheme with precondition. The notation [p] means that the following
instruction or even a complete basic block is executed under the condition stored
in p. The schemes used in the example in Fig. 9.1 are depicted in Listings 9.1
and 9.2.

p = R //store if-condition R
[p] goto L1 //cond. jump to Then

B_E //else block
goto L2 //jump to end

L1: B_T //then block
L2:

Listing 9.1 Scheme 1: ITEJMP

p = R //store if-condition R
q = !p //negate condition

[p] B_T //cond. execute Then
[q] B_E //cond. execute Else

Listing 9.2 Scheme 2: ITEINS

In case of a nested ITE statement, the execution of the then or else block of
the nested statement depends on p (the condition of the outer ITE statement ) and
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on R’, which is the condition of the nested statement itself. Hence, p constitutes the
precondition for the nested ITE statement. The corresponding schemes are shown
in Listings 9.3 and 9.4. Note that it is usually not possible to attach multiple condi-
tions to a single instruction. It is important that the precondition survives the nested
schemes, because subsequent instructions may also depend on it. Similar schemes
are obtained for IT statements (Listings 9.5, 9.6, and 9.7).

[p] c = R’//cond. store nested if-cond
q = !p //negate precondition

[q] c = 0
[c] goto L1 //cond. jump to Then
[p] X_E //cond. exec. nested Else

goto L2 //jump to end
L1: X_T //execute nested Then
L2:

Listing 9.3 Scheme 3: ITEJMPP

[p] c = R’//cond. store nested if-cond
d = !c //negate nested if-cond.
q = !p //negate precondition

[q] c = 0
[q] d = 0
[c] X_T //cond. exec. nested Then
[d] X_E //cond. exec. nested Else

Listing 9.4 Scheme 4: ITEINSP

p = !R
[p] goto L1

B_T
L1:

Listing 9.5 Scheme 5: ITJMP

p = R
[p] B_T

Listing 9.6 Scheme 6: ITINS

[p] c = !R’
q = !p

[q] c = 1
[c] goto L1

X_T
L1:

Listing 9.7 Scheme 7: ITEJMPP

[p] c = R’
q = !p

[q] c = 0
[c] X_T

Listing 9.8 Scheme 8: ITEINSP
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p = R
[p] B_T
[p] goto L1

B_E
L1:

Listing 9.9 Scheme 9: ITETHEN

p = R
q = !p

[q] B_E
[q] goto L1

B_T
L1:

Listing 9.10 Scheme 10: ITEELSE

[p] c = R’
q = !p

[q] c = 0
[c] X_T
[c] q = 1
[q] goto L1

X_E
L1:

Listing 9.11 Scheme 11: ITETHENP

[p] c = R’
d = !c
q = !p

[q] d = 0
[c] X_E
[d] q = 1
[q] goto L1

X_T
L1:

Listing 9.12 Scheme 12: ITEELSEP

Of course, the presented schemes with the prefix INS can only handle ITE
statements whose then and else blocks can be conditionally executed at all.
Hampering elements might be instructions that are not conditionally executable or
the then and else blocks may have more than one incoming control-flow edge.
By introducing new implementation schemes such ITE statements can be handled
as well. The idea is to convert ITE statements partially by executing only one block
conditionally. This leads to the implementation schemes shown in Listings 9.9, 9.10,
9.11, and 9.12.

For instance, if the else block prevents if-conversion due to any of the above
mentioned reasons, then scheme ITETHEN can be applied. According to this
scheme, the condition is computed in p. Therewith the execution of the then block
is predicated. If p is true the else block must not be executed, and consequently
the conditional jump to the end block is taken. Considering nested IT statements,
additional code is needed to set the condition of the ITE statement at hand to false
in case the precondition is not fulfilled.

Note that for any of the above described schemes, it is assumed that the control
flow from the if block either falls through to the else block or conditionally
jumps to the then block. Though this usually depends on the concrete application
and the involved compiler optimizations. The block order might also be the other
way round or sometimes the then and else blocks do not even follow the if
block directly, i.e., there is an explicit branch instruction to each block. Some of
these cases require slightly different schemes but they have been omitted here for
the sake of brevity. Furthermore, the implementation depends also on the support
for negated conditions. Some processors directly support negated predicates, others
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need to compute them explicitly. In the schemes shown here, it is assumed that
negated predicates are not supported.

For each of these schemes, the costs C , measured in instruction cycles, is com-
puted. In the default case, this time is calculated as C = max(CT, CE), where CT and
CE denote the execution time of the ITE statement in case the then or else block
gets executed, respectively. This corresponds to the worst-case execution time of an
ITE statement, which is a typical measure in the context of embedded systems due
to the real-time constraints. However, in certain cases, it makes sense to consider the
average execution time of an ITE statement. As will be explained in the following,
they can be incorporated by using transition probabilities.

9.3.2 Probability Information

The examination of several control-intensive programs revealed that many ITE
statements handle errors in internal data structures or to cope with wrong program
inputs. Generally, during normal program execution, these cases are unlikely to hap-
pen. However, at the same time, such cases often prevented if-conversion since the
corresponding blocks dominated the worst-case execution time.

Another problem has been observed in the case of uneven long ITE blocks. As
exemplified in Fig. 9.2, suppose the else block is much shorter than the then
block. Most likely, the instructions of the else block will fit into free instructions
slots of the then block that consequently improves the worst-case execution time.
But if the execution frequency of the else block is higher than that of the then
block, then applying if-conversion (ITEINS) results in a performance degradation in
more than 50% of all cases. Thus, converting the if-statement partially by executing
only the else block conditionally (ITEELSE) might be the better choice.

goto

[!p]...
[p]...

[p]...

[p]...

[p]...
[p]...

[p]...

goto

then
else unused

jumpjump

ITEJMP ITEELSE

ITEINS

Fig. 9.2 Uneven long then and else blocks

Therefore, it seems reasonable to provide the programmer an opportunity to
influence the cost computation for each ITE statement. A solution to this problem is
to provide information for the execution probability of the then and else blocks.
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This can be utilized in the cost computation later on. The value P(Bx ) denotes the
probability for the transition from the if block (the block containing the condition)
to the then block BT or else block BE respectively. Moreover, the sum of the
probabilities gives one per definition: P(BT) + P(BE) = 1.

CoSy annotates each basic block with a so-called use estimate, the estimated
execution frequency. These values are computed by a separate engine. Their main
purpose is to improve the spill heuristic of the register allocator, but it is evaluated in
other optimizations as well. Here, in this context, these values can be used to derive
the transition probabilities.

IF

ElseThen

End

(a) ITE statement

IF

Then

Else,
End

P(BT) P(BE)P(BE)

P(BE)

P(BT)P(BT)

(b) IT statement

IF

ElseThen

End

…

(c)  ITE  statement with addi-
tional  incoming  control  flow
edges

Fig. 9.3 Different constellations of if-statements

Three constellations of if-statements as shown in Fig. 9.3 must be considered.
The graphs on the left and middle are well structured, but the right one is not due
to the additional control-flow edge. In the following, Ex denotes the use estimate
of either the if, the then, or the else block. For the case in Fig. 9.3(a) when
the if block is executed, the control flow reaches either the then or else block.
Moreover, the if block dominates these blocks immediately, there exists no other
path that can be taken to reach one of these blocks (i.e., the if block is always
executed immediately before). Thus, the use estimates can be calculated as

Eif = Ethen + Eelse (9.1)

and the transition probabilities as

P(BT) = Ethen

Eif
and P(BE) = Eelse

Eif
(9.2)

The cases in Fig. 9.3(b, c) are a little bit different. Unfortunately, there is no imme-
diate dominance relation like in the previous case. Considering Fig. 9.3(b), the if
block only dominates the then block immediately. However, the else block is
identical to the end block, which obviously is not immediately dominated by the
if block. Thus, the use estimates are given by

Eif �= Ethen + Eelse = Ethen + Eend (9.3)
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The formula to calculate P(BT ) still holds and since the sum of the transition prob-
abilities must be 1, this results in

P(BT) = Ethen

Eif
and P(BE) = 1 − P(BT) (9.4)

The last case is similarly. Since the then block is not dominated by the if block,
the equation

Eif �= Ethen + Eelse (9.5)

still holds, and consequently

P(BE) = Eelse

Eif
and P(BT) = 1 − P(BE) (9.6)

Of course, this is a simple but not very precise way to determine probability infor-
mation. More accuracy can be obtained by using profiling information. Obviously,
this can yield very accurate values, but on the other hand this method may increase
the compile time significantly.

CoSy ships with a path-profiling engine called pprofile. This engine is
inserted in the compiler before the cost computation, since the results shall be
used there. This engine operates in several modes. At first it simply instruments
the program. Thereafter the compiled program must be executed in a simulator. To
obtain an accurate profile, the simulation should be repeated with different input
data. During the simulation, the instrumentation results are written to a file. When
recompiling the program, pprofile reads the file and stores the results in the use
estimate field of the basic blocks. The subsequent cost computation automatically
uses these values to compute the transition probabilities.

Another option is to directly annotate the probabilities or a relative quantifier to
the ITE statements itself using pragmas. In the latter case, the programmer can
annotate each branch of a particular if-statement that is more likely to be taken.
For this purpose, the pragmas ceLikely and ceUnlikely were introduced.
They can be inserted at the beginning of the then or else block of an if-statement
as shown in Listing 9.13.

if (value > 255) {
#pragma __ceUnlikely
value = 255;

}

Listing 9.13 Relative quantifier

if (overflow) {
#pragma __ceProb(0.2)
value = 255;

} else {
value++;

}

Listing 9.14 Transition probabilities
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Internally the cost computation weighs the use estimate of the then block with
the factor 0.5 ( ceUnlikely) and in case of ceLikely with the factor 2.

A precise specification of the transition probability is possible with the pragma
ceProb(val). In this way, the transition probability can be directly passed to the

cost computation. Listing 9.14 gives an example. As can be seen, the probability
to transition to the else block is omitted here. It is sufficient to specify only one
probability value, the other is computed using the equation P(BT) + P(BE) = 1.
If both values are specified for an if-then-else statement and their sum is unequal,
each value will be divided by the sum, so that the equation P(BT) + P(BE) = 1 still
holds.

9.3.3 Cost Computation

The implementation schemes, naturally, implicate different execution times. The
cost computation annotates to each ITE or IT statement a cost table. It stores for all
schemes the corresponding execution times. The computation assumes that a con-
ditional instruction consumes the same resources regardless whether its condition is
true or false and that both cases have the same execution times. In the following, the
superscript P denotes the presence of a precondition. The branch instructions and
the corresponding delay slots are distinguished as Jtaken, a conditional branch that is
taken; Jnottaken, a conditional branch that is not taken; and Jalways an unconditional
branch. Considering nested ITE statements, the calculation starts with the innermost
and continues with the surrounding ITE statement.

The costs can be separated into two components: setup costs and cost values for
the then and else blocks. The former emerge from extra instructions required for
negating if-conditions or to compute possible preconditions. Obviously, the setup
cost depend on the given target architecture. For example, some architectures sup-
port negated predicates, others need an extra instruction.

The costs for computing the ITE condition itself are not taken into account since
they incur for all schemes. Table 9.1 summarizes the setup cost for each scheme,
assuming that the architecture does not support negated conditions. For example,
ITEJMP has no setup costs whereas ITEINS has a cost of one due to the additional
instruction needed to negate the if-condition (see Listing 9.2).

The second component of the cost computation consists of the cost values for
the then and else blocks. A block is a sequence of statements (s1, . . . , sn). The
costs of a statement si are denoted as C(si ) or C P (si ), depending on whether si is
executed under a precondition or not.

If si is a simple statement, the costs are C(si ) = C P (si ) = 1, but if si is an ITE
statement, the costs depend on the concrete implementation scheme. C(BT), C(BE),
and C P (BT), C P (BE) denote the execution times of the then and else blocks
without and with precondition, respectively. In case a scheme merges both blocks,
the execution time for the joint execution is denoted as C(BT◦BE). In prior work, this
value is modeled by a static formula that takes the execution times of the individual
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Table 9.1 Setup costs according to the different implementation schemes

Scheme Setup costs

ITEJMP S1 = 0
ITEINS S2 = 1
ITEJMPP S3 = 2
ITEINSP S4 = 4
ITJMP S5 = 0
ITINS S6 = 0
ITJMPP S7 = 2
ITINSP S8 = 2
ITETHEN S9 = 0
ITEELSE S10 = 1
ITETHENP S11 = 3
ITEELSEP S12 = 4

blocks, the ILP degree, and possible resource conflicts into account. In some cases
performance degrades due to inaccurate estimation. In order to obtain more precise
values, the cost computation is coupled to the scheduler. This process is split into
two phases. In the first phase, the scheduler for the schemes with jump instructions
are obtained. In the second, those for the schemes using conditional instructions are
obtained. However, it should be noted that neither registers are allocated nor setup
code is generated in this phase of the compiler. Hence, the cost values are still esti-
mates. See Section 9.5 for the detailed code generation flow. The scheduler works
only on the basic block level. Hence, the statements (s1, . . . sn) in the then and
else blocks (or the merger of both) are grouped to the corresponding basic blocks
(G1, . . . , Gm). The scheduler provides for each block Gi the number of cycles it
needs to execute, henceforth referred to as fillcycles F(Gi ). Now, the cost for the
blocks (i.e., BT, BE, BT ◦ BE) are obtained as follows:

C(B) =
m∑

i=1

⎛

⎜⎜⎝ F(Gi )

+

⎧
⎪⎨

⎪⎩

min{C1(si−), C2(si−), C9(si−), C11(si−)} − F(Gi ) si− is ITE stmt,

min{C5(si−), C6(si−)} − F(Gi ) si− is IT stmt,

0 else.

⎞

⎟⎟⎠

(9.7)

C P (B) =
m∑

i=1

⎛

⎜⎜⎝ F(Gi )
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+

⎧
⎪⎨

⎪⎩

min{C3(si−), C4(si−), C10(si−), C12(si−)} − F(Gi ) si− is ITE stmt,

min{C7(si−), C8(si−)} − F(Gi ) si− is IT stmt,

0 else.

⎞

⎟⎟⎠

(9.8)

In case the last statement in a block si− is an IT or ITE statement,1 its costs have
to be taken into account as well. As can be seen later, these costs already contain
the fillcycles of the hosting basic block, thus they are subtracted again. In the first
phase of the cost computation, only the cost values of the implementation schemes
ITEJMP and ITJMP are available, hence the terms

min{C1(si−), C2(si−)} and min{C5(si−), C6(si−)} (9.9)

reduce to

C1(si−) and C5(si−) (9.10)

The cost for these two schemes can be calculated as follows:

C1(si−) = S1 + F(Gi )

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(BT) + Jtaken P(BT) > p ∧ P(BT) > P(BE),

C(BE) + Jnottaken + Jalways P(BE) > p ∧ P(BE) > P(BT),

max

{
C(BT) + Jtaken,

C(BE) + Jnottaken + Jalways

}
else.

(9.11)

C5(si−) = S5 + F(Gi )

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Jtaken P(BE) > p ∧ P(BE) > P(BT),

C(BT) + Jnottaken P(BT) > p ∧ P(BT) > P(BT),

max

{
Jtaken,

C(BT) + Jnottaken

}
else.

(9.12)

For example, the costs for the scheme ITEJMP is composed of the setup cost
S1, the fillcycles of the block containing the condition evaluation, and an additional
summand that depends on the given transition probabilities. Either the time for exe-
cution of the then block plus the jump delay of the conditional jump to reach it,
or for the else plus a not taken jump plus an unconditional jump or the maximum

1 Only the last statement in a basic block can be a control-flow statement, cf. Section 3.3.1.
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(i.e., the worst case) of both is added. In order to provide the possibility to switch
off transition probabilities, an user-defined threshold p can be passed to the cost
computation, which is set to 1 by default.

In the second phase, the conditional schemes are computed as follows:

C2(si−) = S2 + F(Gi ) +
{

0 D = 1,

C P (BT) + C P (BE) else.
(9.13)

C3(si−) = S3 + F(Gi )

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(BT) + Jtaken P(BT) > p ∧ P(BT) > P(BE),

C P (BE) + Jnottaken + Jalways P(BE) > p ∧ P(BE) > P(BT),

max

{
C(BT) + Jtaken,

C P (BE) + Jnottaken + Jalways

}
else.

(9.14)

C4(si−) = S4 + F(Gi ) + C P (BT) + C P (BE) (9.15)

C6(si−) = S6 + F(Gi ) +
{

0 D = 1,

C P (BT) else.
(9.16)

C7(si−) = S7 + F(Gi )

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Jtaken P(BE) > p ∧ P(BE) > P(BT),

C(BT) + Jnottaken P(BT) > p ∧ P(BT) > P(BE),

max

{
Jtaken,

C(BT) + Jnottaken

}
else.

(9.17)

C8(si−) = S8 + F(Gi ) + C P (BT ) (9.18)

C9(si−) = S9 + F(Gi ) + C P (BT)

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ(Jtaken, BT) P(BT) > p ∧ P(BT) > P(BE),

C(BE) + Δ(Jnottaken, BT) P(BE) > p ∧ P(BE) > P(BT),

max

{
Δ(Jtaken, BT),

C(BE) + Δ(Jnottaken, BT)

}
else.

(9.19)

C10(si−) = S10 + F(Gi ) + C P (BE)
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+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ(Jtaken, BE) P(BE) > p ∧ P(BE) > P(BT),

C(BT) + Δ(Jnottaken, BE) P(BT) > p ∧ P(BT) > P(BE),

max

{
Δ(Jtaken, BE),

C(BT) + Δ(Jnottaken, BE)

}
else.

(9.20)

C11(si−) = S11 + F(Gi ) + C P (BT)

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ(Jtaken, BT) P(BT) > p ∧ P(BT) > P(BE),

C(BE) + Δ(Jnottaken, BT) P(BE) > p ∧ P(BE) > P(BT),

max

{
Δ(Jtaken, BT),

C(BE) + Δ(Jnottaken, BT)

}
else.

(9.21)

C12(si−) = S12 + F(Gi ) + C P (BE)

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ(Jtaken, BE) P(BE) > p ∧ P(BE) > P(BT),

C(BT) + Δ(Jnottaken, BE) P(BT) > p ∧ P(BT) > P(BE),

max

{
Δ(Jtaken, BE),

C(BT) + Δ(Jnottaken, BE)

}
else.

(9.22)

The case differentiation in the formulas C2(si−) and C6(si−) is actually not nec-
essary, because C P (BT) as well as C P (BE) are zero. The blocks were appended to
the if block, and thus the costs are already contained in F(Gi ). However, writing
it this way makes explicit that this is only the case if the depth D of the if-statement
equals one, i.e., it is the innermost ITE statement. This is mainly due to a restriction
of the underlying CoSy framework. The ITE blocks cannot be merged if D > 1, so
their costs must be added explicitly.

Finally, all cost values are available and the best implementation schemes can be
selected.

9.3.4 Selecting the Best Scheme

Obviously, the decision of applying if-conversion depends on the correspond-
ing costs, which again depends on the execution times of nested ITE statements
(bottom-up dependency). On the other hand, the costs of a nested ITE statement
depend on the presence or absence of a precondition, which is determined by the
implementation scheme of the surrounding ITE statement (top-down dependency).
Therefore, the best scheme cannot be determined in a single bottom-up or top-
down pass.
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The search space is specified by an ITE tree T = (R, BT, BE). The root R is a
boolean expression, which is the condition of the ITE statement. The ITE blocks
BT and BE correspond to the then and else blocks, respectively. The scheme
selection is based on a dynamic programming algorithm as presented in [220]. This
method is similar to the well-known tree-pattern-matching algorithm. It performs
two steps to select the right implementation scheme. In the first phase, all ITE trees
are traversed bottom-up filling the cost tables for each node. The second pass is
top-down. When the root node is reached, the scheme corresponding to the cheapest
entry in the root’s cost table is selected. Based on this selection, it is known whether
a precondition for the son is present or not. This determines the set of schemes (i.e.,
those with or without precondition) among which the cheapest scheme is selected
and so forth. This is illustrated in Fig. 9.4.

- ...7-11Cost

ITEINSP ...ITEINSITEJMPPITEJMPScheme

- ...7-11Cost

ITEINSP ...ITEINSITEJMPPITEJMPScheme

513Cost

ITEINSP ...ITEINSITEJMPPITEJMPScheme

513Cost

ITEINSP ...ITEINSITEJMPPITEJMPScheme

{

}
else
{

{

}
}

1. Cost computation
2. Schemeselection1. 2.

Fig. 9.4 ITE tree, annotated cost tables, and scheme selection

9.3.5 Splitting Mechanism

During benchmarking, it turned out that for more complex programs, only a small
percentage of the existing if-statements have been processed at all for various rea-
sons: the cost computation might decide against if-conversion, one ITE block might
have multiple incoming control-flow edges, or one or both ITE blocks might contain
hampering elements, e.g., nonpredicable statements. This is exemplified in Fig. 9.5.
The red lines indicate nonconditionally executable statements.

Obviously, if-conversion cannot be applied to the ITE statement on the left. How-
ever, assuming that the statements B and C are independent from each other, the
code depicted on the right can be obtained. So far, only the statement level has been
considered. Looking at the pseudocode level (basically the assembly-level repre-
sentation of the source code), it can be observed that not all instructions selected for
the statement are necessarily not conditionally executable. Consequently, working
on the pseudocode level allows a more fine-grained operation by moving single
pseudocode nodes. The basic idea is to move these nodes to the block containing
the condition evaluation of the remaining (nonpredicated) ITE statement. Since
it typically contains only few instructions, most likely not all delay slots of the
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Fig. 9.5 Splitting example for a processor with two-issue slots

conditional jump can be filled. Of course this procedure has its limits. Only as many
nodes as empty delay slots should be moved to avoid a performance degradation.

This idea is implemented with the splitting mechanism. The algorithm processes
only nonpredicated ITE statements in which then and else blocks have a sin-
gle incoming control-flow edge. This restriction avoids a complicated performance
analysis because otherwise compensation code has to be taken into account as well.
Afterward, assembly instructions are moved from the ITE blocks as illustrated in
Figure 9.5. It alternately selects instructions from the then and else blocks (i.e.,
A, D, and E in the example) and moves them into the delay slots of the conditional
jump where they are predicated. An instruction is considered movable, if it can be
predicated and does not change the control flow. Furthermore, it must not write a
predicate that is used as a condition of the jump or as guard of an ITE block (in
case of partial if-conversion). Moreover, it must not depend on an instruction which
is nonmovable to simplify the dependency analysis. If a nonmovable instruction is
found in one block, it proceeds with instructions from the other block. The algo-
rithm stops either if no more movable instructions are found or if a configurable
threshold (3 in the example) is reached. Note that the pseudocode list is reordered
in advance: after a nonmovable node, there could be other movable nodes in the
pseudocode list that have no dependencies to the nonmovable node. Thus, for each
node that comes after a nonmovable node, it is checked whether it depends on the
nonmovable node. In that case, it is marked as nonmovable. Otherwise it is moved
before the nonmovable node.

9.4 Retargeting Formalism

An evaluation [89] of several processors for different application domains showed
that processors featuring PE can be grouped according to the location, the guard is
stored in. Chiefly, the following three categories can be obtained:
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1. Processors using general-purpose registers.
2. Architectures using dedicated registers.
3. Architectures that use condition flags stored in a status register.

The first retargeting step is to configure the cost computation. Three boolean
parameters for the PE engine specify to which of the above classes the target
architecture belongs. Another boolean parameter indicates whether the architecture
directly supports negated conditions or not. Furthermore, the jump penalty J for a
conditional jump taken, a conditional jump not taken, and an unconditional jump
needs to be provided.

Moreover, some of the architectures can execute a wide subset of their instruction-
set conditionally, others offer only for a few instructions of a predicated version.
In order to determine whether an instruction or a basic block can be conditionally
executed by the target processor, the generated tree-covering-based code selector
is employed. As mentioned in Section 3.3.2, each rule describes how a certain IR
operation is mapped to the target assembly code. For retargeting the PE optimiza-
tion, each rule of the code selector that can emit a code that is conditionally exe-
cutable has to be annotated. Listing 9.15 shows two examples for the TriMedia [190]
processor. The rule, covering a plus node can be conditionally executed (denoted
by peinclude). The other rule, which loads an immediate value to a register,
is missing that annotation, and thus is assumed to be not conditionally executable
by default. Consequently, if one of the rules covering the then or else block
is missing that annotation, if-conversion cannot be applied to the corresponding
if-statement. Furthermore, the instructions of such a rule cannot be moved by the
splitting mechanism.

RULE o:mirPlus(s1:reg_nt,s2:reg_nt) -> d:reg_nt;
CLASS peinclude;
EMIT {
print_with_condition("\tiadd %s %s -> %s",

REGNAME(s1),REGNAME(s2),REGNAME(d));
}

RULE o:mirIntConst -> d:reg_nt;
EMIT {
print("\tuimm( %s ) -> %s ",o.Value,REGNAME(d));
}

Listing 9.15 Annotated TriMedia code selector rules

For the code generation, the code emitter must take care to print the correct
assembly syntax (see Listing 9.15) in case the rule is used in a predicated block.
For instance in the case of the TriMedia, the print function must prepend an IF
<condition register> to the given instruction in case the instruction is exe-
cuted conditionally.
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// Register r0 is always zero and r1 always one
INSTRUCTION peSetCondition (cond:reg_nt) -> d:reg_nt;
EMIT {
print("IF %s iadd r1 r0 -> %s",

REGNAME(cond),REGNAME(d));
}
INSTRUCTION peResetCondition (cond:reg_nt) -> d:reg_nt;
EMIT {
print("IF %s iadd r0 r0 -> %s ",

REGNAME(cond),REGNAME(d));
}
INSTRUCTION peNegateCondition (s:reg_nt) -> d:reg_nt;
EMIT {
print("IF r1 bitinv %s -> %s",

REGNAME(s),REGNAME(d));
}
INSTRUCTION peBranchAlways (label:BasicBlock);
EMIT {
print("IF r1 ijmpi ( %s )",label);
}
INSTRUCTION peBranchCond (cond:reg_nt,label:BasicBlock);
EMIT {
print("IF %s ijmpi ( %s )",REGNAME(cond),label);
}

Listing 9.16 PE instruction rules for the TriMedia

The rules covering an if-statement are responsible to generate the code for the
selected ITE scheme. Note that the generated code depends not only on the scheme
but also on the order of the then and else blocks in memory. So either the then
block directly follows the if-statement (fallthrough) or the else block. In certain
cases, neither of them follows the if-stament directly. As mentioned above, some
cases can only be handled with dedicated implementation schemes, whereas for
others it is sufficient to adapt the code generation. Nevertheless, all implementation
schemes can be generated with the following few instructions:

peSetCondition conditionally sets a predicate to true
peResetCondition conditionally sets a predicate to false
peNegateCondition conditionally inverts a condition
peBranchAlways unconditional jump instruction
peBranchCond conditional jump instruction

Retargeting the code generation is limited to fill in rule templates for these
instructions with the assembly code that has to be emitted. Listing 9.16 shows
the filled templates for the TriMedia processor. Additionally, each if-statement rule
must call a generic function instead of printing anything. No other information, apart
from the already described, needs to be provided to retarget the extension. This can
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also be performed via the Compiler Designer GUI. In this way, the PE optimization
can be quickly retargeted to varying processor configurations during architecture
exploration.

9.5 Code Generation Flow

Due to the modular concept of CoSy, it is straightforward to intertwine the standard
backend components (tree pattern matcher, scheduler, and register allocator) with
the PE modules. Figure 9.6 depicts the backend of a CoSy compiler with PE support.

Code
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PEpreproc scheduler PEcosts Code
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pre-
scheduler

PEcode scheduler
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regalloc emit
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T(BT),T(BE)
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ITE implementation

Split non
predicable ITE

Predicable

Not predicable

Fig. 9.6 CoSy compiler backend with PE support

After an initial code selection with the standard tree pattern matcher, the engine
PEpreproc builds ITE trees and determines those if-statements to which if-
conversion can be applied. Reasons for an exclusion can be multiple incoming
control-flow edges of the then or the else block as well as a nonpredicable code
in an ITE block. The latter is detected utilizing the already described rule anno-
tations. If a basic block is covered by a rule-emitting nonconditionally executable
code, an infinite cost value is assigned to the PE schemes of the corresponding
if-statement. Then the costs of the different schemes are calculated and the scheme
selection is performed by the engine PEcosts (Section 9.3.3). This engine is cou-
pled to the normal scheduler of CoSy. In the first iteration, the scheduler calcu-
lates the execution times of each basic block. These are used to compute the costs
for the implementation with jump instructions. Afterward, PEcosts instructs the
scheduler to merge the then and else blocks of the innermost statements. The
scheduler parallelizes them and provides cost estimates of the block merger. There-
after, PEcosts selects the schemes according to the calculated costs. After the final
code selection and register allocation, the engine PEcode generates the code for the
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chosen schemes using the above-mentioned instructions. The splitting mechanism
operates within the scheduler and targets all if-statements to which if-conversion
could not be applied. Apart from the compiler’s data-flow information, it uses the
annotations by the tree pattern matcher whether an instruction is predicable or not.
Finally, the code is emitted.

This approach requires limited retargeting information, also due to the coupling
to existing compiler backend modules. These are typically part of any retargetable
compiler. Thus, this approach is not limited to the CoSy platform, and consequently
it can be easily incorporated into other compiler platforms as well.

9.6 Experimental Results

The presented technique was successfully integrated into CoSy compilers for the
AdelanteTM VD32040 embedded vector processor (EVP) [152] and the TriMedia
multimedia processor, both from NXP semiconductors [190], as well as the ARM9
[41]. The required retargeting effort for PE support was 1 day for each compiler.
All three architectures can execute almost all their instructions conditionally. The
TriMedia can use any of its 128 general-purpose registers to store the predicate,
whereas the EVP features eight dedicated predicate registers. The negated predicate
has to be computed explicitly for both processors. The ARM uses condition code
flags for predication. It can store one condition at a time in the status register and
supports negation. Thus, each processors belongs to one of the groups mentioned
in Section 9.4. The maximum VLIW parallelism available in the EVP equals five
vector operations, four scalar operations, three address operations, and loop-control.
The TriMedia can process up to five operations in parallel. The EVP jumps have
five to seven delay slots while the TriMedia jumps have two. In contrast, the ARM
is a RISC-like core. Since the ARM has no delay slots, the splitting mechanism
was disabled. The only benefit by PE for the ARM lies in the elimination of jump
instructions.

The benchmarks consists of some smaller, typical signal-processing kernels (up
to 70 ITE statements) as well as some larger and more complex applications (up to
2000 ITE statements). The total number of if-statements vary between the compilers
due to their different design and integrated optimizations. Tables 9.2 and 9.3 show
detailed statistics for the total number of ITE statements, those that are recognized
by PEpreproc and how many have been finally converted and split, respectively. If
not stated otherwise, the test data that comes with these benchmarks is used for the
measurements and it is optimized for the worst-case execution time.

For the small benchmarks, PEpreproc determines that on average 80% of all
if-statements can be considered for PE, the only exception being the viterbi
[124] for the EVP with no predicable if-statements. Almost all these if-statements
could finally be converted for the EVP, whereas the TriMedia could not convert all of
them. This is mainly due to the higher degree of parallelism the EVP offers over the
TriMedia. Thus, the chance is higher in TriMedia for resource conflicts resulting in
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Table 9.2 If-statement statistics for ARM and EVP
ARM EVP

if-stmts recognized converted split if-stmts recognized converted split

adpcm 24 16 16 – 18 16 16 0
viterbi 43 40 38 – 2 0 0 0
median 53 51 51 – 13 13 13 0
wave 62 59 58 – 3 3 3 0
idct 65 64 63 – 16 16 15 1
cjpeg 1360 143 88 – 1994 307 202 1555
djpeg 1118 118 89 – 1934 306 206 1554
printf 198 33 22 – 97 30 16 66
miniLzo 63 2 1 – 54 3 2 42

Table 9.3 If-statement statistics for TriMedia
TriMedia

if-stmts recognized converted split

adpcm 26 22 12 16
viterbi 6 2 2 3
median 14 13 13 0
wave 7 3 3 3
idct 20 16 8 11
cjpeg 2870 442 142 1636
djpeg 2894 441 143 1662
printf 118 47 43 67
miniLzo 142 9 3 88

longer schedules, and hence higher costs for predicated if-statements. Consequently,
more if-statements are split for the TriMedia than for the EVP. Figure 9.7 shows high
speedups for the VLIW processors, whereas the ARM shows smaller speedups.
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Fig. 9.7 Speedup for small benchmarks
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The programs cjpeg and djpeg [53, 154] feature a large amount of if-
statements (around 2000); however, only approximately 15% of them were recog-
nized by PEpreproc for if-conversion. Finally, only 6–10% of all if-statements could
be converted by the compilers. Here, the splitting mechanism proves advantageous
and handles nearly 80% (EVP) and 60% (TriMedia) of all if-statements. The ARM
shows only marginal speedups due to the disabled splitting mechanism, but EVP and
TriMedia show good speedups for both cjpeg and djpeg (Fig. 9.8). The obtained
speedups are less significant than for the small kernels. This is understandable con-
sidering that the cycles spent in the runtime library for file operations dominate the
execution time.
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Fig. 9.8 Speedup for large benchmarks

Considering the printf (implementation is shipped with CoSy) application, it
contains many if-statements (around 100), approximately 17% are converted and
around 60% are split by the EVP and TriMedia compilers. No results are reported
for the ARM, since it could not be compiled due to a different runtime library
setup.

For miniLzo [196], although it features many if-statements (around 80), only a
few could be converted. A look into the source code revealed that the if-statements
either contain function calls or goto statements. These kind of if-statements are not
allowed by PEpreproc, and thus no performance improvement can be obtained.
However, except for the ARM, the splitting mechanism can be applied again and
optimizes almost all if-statements.

On average, speedups of 1.2 for the ARM9, 1.5 for the EVP, and 1.47 for the
TriMedia can be obtained.

For the code size, PE typically saves some instructions (jumps and nops), but
may also generate new ones (e.g., negated conditions). In general, the code size is
slightly reduced (see Fig. 9.9).

The optimization algorithm itself has linear complexity (O(n) worst-case com-
plexity for n ITE statements). Furthermore, it requires one additional tree-pattern-
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Fig. 9.9 Code-size results for all benchmarks

matcher pass and two additional scheduler passes. For n IR nodes in the ITE
statements, the worst-case complexity of tree pattern matching is O(n) whereas for
scheduling it is O(n2). Thus, the total worst-case complexity is quadratic.

9.7 Conclusions

In contrast to previous, largely target-specific, code optimizations for predicated
execution, this book provides a retargetable approach in order to enable PE for
a wide range of processor architectures at limited manual effort. This is achieved
by a retargetable predicated execution extension for the CoSy compiler develop-
ment system. This concept has been proven by generating PE-enabled compilers for
embedded processors with different PE configurations. Generally, for all processors
good speedups and a slight code-size reductions are achieved. The required retarget-
ing information are quite limited and its specification fits nicely into the Compiler
Designer concept (cf. Section 5.3). Thus, the integration enables a complete and
retargetable path from a single-processor model, written in the LISA ADL, to a C
compiler with PE optimization.

Further improvements in code quality seem possible. For instance, conditions of
if-statements are often composed of expressions combined with boolean operations.
In order to satisfy the short-circuit evaluation, this is mapped onto several nested
ITE statements. If the evaluation of the individual expressions is free of side effects,
they can be evaluated in parallel. This idea could be implemented by a new scheme
for the PE engines (see Fig. 9.10).

Furthermore, a mechanism to enforce PE for certain ITE statements might be
useful even if this would result in a performance degradation. Control flow caused
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…

{

}

{

}

Fig. 9.10 Short-circuit evaluation

by if-then-else statements can block other optimizations, e.g., software pipelining.
Thus, removing the control flow by predicated execution may enable other opti-
mization. In the end this might result in faster code.



Chapter 10
Assembler Optimizer

Some optimization can only be performed on the assembly level of the application.
This chapter presents a retargetable low-level, assembly code-optimization interface
that is generated from a LISA description. Figure 10.1 illustrates the corresponding
code generation flow.
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Fig. 10.1 Assembler optimizer code generation flow

Using the LISA ADL, a stand-alone assembler is automatically generated that
is able to perform user-defined transformations or optimizations on assembly level.
In this way, standard assembly-level optimizations only need to be implemented
once and are automatically retargeted to a given LISA model. The assembler opti-
mizer provides an user-accessible, convenient application programmer interface
(API) for accessing the assembler’s internal data structures. An internal IR data
structure is created based on the input assembly code. The IR contains the related
architectural information required by control- and data-flow analysis, a prerequisite
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for most optimization techniques. This enables the ASIP designer to implement
optimizations addressing special ISA features such as

• Peephole optimization
• Address code optimization
• Register (re-)allocation
• Coupling of register allocation and scheduling
• Bit-level manipulation instructions
• . . .

The remainder of this chapter is arranged as follows. After the discussion of
related work in Section 10.1, Section 10.2 briefly describes the functions provided
by the API. Sections 10.3 and 10.4 present a scheduler and peephole optimizer that
have been build as demonstrators. Finally, Section 10.5 provides some results.

10.1 Related Work

The PROPAN system [66] is a retargetable framework for code optimizations
and machine-dependent program analyses at the assembly level. Its main focus is
postpass optimization in order to reuse existing software tool chains. It needs a
separate target specification called TDL to retarget the optimization modules. Sev-
eral optimization modules based on integer linear programming have been imple-
mented and retargeted to different real-world DSPs. It can also be used as a plat-
form for generic program analysis, e.g., to calculate worst-case execution times.

A similar approach is the SALTO system [75]. Based on an ADL description
of the target machine, it generates the functionality to build profiling, tracing, or
optimization tools. It is intended to be part of a global solution for manipulating
assembly code, i.e., to implement low-level code modifications as well as to pro-
vide a high-level code re-structurer with useful information collected from assembly
code and instruction profiling. However, it is more oriented towards general purpose
processors and many architectural-specific properties of ASIPs cannot be modeled
at all.

The LANCE compiler platform [222] supports the generation of a low-level,
assembly-like representation called LLIR. Standard assembly-level optimizations
only need to be implemented once and are automatically available when LANCE
has been retargeted to a new target architecture. For instance, in [142], a bit-true
data-flow analysis is performed on the LLIR which has been successfully used to
implement dedicated optimization for network processors supporting bit-packing
instructions.

10.2 Application Programmer Interface

Nearly all optimization modules that can be built on top of the API require access to
architectural information. For instance, it might be necessary to recover the seman-
tic of the instruction currently parsed by the assembler. As an example, the API
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supports an easy way to extract which registers are used as destination and source
operands or if the instruction is a control-flow instruction. Basically, this informa-
tion is either directly extracted from the BEHAVIOR section or from the SEMANTICS

section, if available. Though only the latter gives precise information due to the
semantic gap mentioned in Section 6.1. Furthermore, this information is used to per-
form a control- and data-flow analysis (cf. Section 3.3.1). However, reconstructing
the CFG from compiled and probably scheduled code is not an easy task. In par-
ticular, two features can complicate CFG construction. First, a destination address
stored in a register (instead of a label or immediate constant) introduce a level of
uncertainty, which may lead to spurious edges in the graph. Second, in case of
scheduled code, jump-delay slots complicate the process of finding the first and last
instruction of a basic block. These is even more difficult once the delay slots con-
tain further branches. The implemented algorithm, described in [144], can handle
such problems. Nevertheless, the information whether the input code is scheduled
or not must be passed as an option to the API before the analysis can be started.
Afterward, the functions to access and iterate control- and data-flow graphs can
be used.

Furthermore, it is possible to modify the instruction and sequences thereof. Nat-
urally, inserting an instruction invalidates the control- and data-flow graph. Conse-
quently, it has to be repaired afterward. However, an automatic repair function is
currently not supported.

Since all architectural information are available, each instruction element (reg-
ister operand, VLIW slot, etc.) that corresponds to a LISA operation can be mod-
ified, e.g., a LISA label. Moreover, the information from the generated schedul-
ing tables, such as RAW, WAW, and WAR latency, are also available. Hence,
the kind of dependency and its latency between two instruction can be easily
determined.

Finally, the API constitutes basic assembler-related functions such as file I/O
functions to read and write assembly or object files. Using the API, the implemen-
tation of an assembler (without any optimizations) is straightforward, basically just
a main function containing a few function calls.

10.3 Scheduler

The current scheduler generated by the Compiler Designer tool [195] has
several limitations. All architectural information (instruction properties such as
latencies and resource usage) is transferred to the scheduler via annotations in the
compiler-generated assembly code. Listing 10.1 illustrates this. Each instruction is
encoded in three so-called packs assembler directives. That means, the scheduler
cannot schedule handwritten assembly code that comes without these annotations.

Of course, the user could add them manually, but since the syntax is quite compli-
cated this is time-consuming and error-prone. Now this information is also available
through the API. Hence, a new scheduler, based on the existing implementation,



154 10 Assembler Optimizer

has been created that does not need these annotations anymore (Listing 10.2). This
allows a stand-alone, user-friendly assembly-level scheduling that is independent
from a compiler on top of the flow.

.packs "alu_rrr;P1;C1;T2;",1

.packs "PC:(r,0);prog:(r,0);R15:(r,0);R6:(r,0);R1:(w,0);",2

.packs "add R1 , R15 , R6 ;; Add two register ",3

.packs "ld_rr;P3;C3;T10;",1

.packs "PC:(r,0);data:(r,0);prg:(r,0);R1:(r,0);R2:(w,0);",2

.packs "lb R2 , R1 , 0 ;; Load signed byte",3

Listing 10.1 Annotated assembly code

add R1, R15, R6
lb R2, R1, 0

Listing 10.2 Normal assembly code

10.4 Peephole Optimizer

As the second demonstrator, an architecture-independent peephole optimizer [49,
127] has been implemented, called lpeep. It is a classical optimization that runs
after the compiler. Basically, it tries to improve the performance of the target pro-
gram by searching for a short sequence of target instructions and replacing it with
a better sequence. It can be easily implemented using the API functions to read
and write assembly files as well as those to remove, insert, or delete assembly
lines or single instructions in VLIW slots. No scheduler or data- and control-
flow functions are needed. The peephole optimizer is driven by an user-defined
replacement library. However, the peephole optimizations, i.e., the replacement
patterns, are not automatically generated as described, e.g., in [128]. Implemen-
tation wise, the library puts an abstraction layer on top of the API in order to
reuse large parts of the optimizer for different target architectures. Thus, a peep-
hole optimizer can actually be generated for any LISA model. The library is
then used to retarget the optimizer to the given target. The input of lpeep is
either the assembly code produced by a compiler or a hand-crafted assembly
program.

10.4.1 Replacement Library

The replacement library describes the assembly patterns and their related replace-
ment. Each entry, called replacement rule, consists of three parts: the variable
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definitions, the original section, and the replacement section. Figure 10.2 gives an
example. Generally, variables are registers or immediate values that can be used
in assembly instructions. The original section is used to find matching lines in the
source file, which are then replaced by the pattern defined in the replacement sec-
tion. Inside the patterns, the assembly syntax of the target architecture is used. Since
the API provides all architectural information, quite detailed assembly patterns can
be specified. This is described in the following sections.

TRANSFORM ( < variable list> ) {
< original section>

} TO {
< replacement section>

}

Fig. 10.2 Replacement rule

10.4.1.1 Variable Definitions

The different types that can constitute a variable are described in the following.

REGISTER: A register variable can either match all registers of the target archi-
tecture or only an user-defined subset:

REGISTER <variable name> [ = (<reg1>, <reg2>, ...) ]
A simple example is given in Listing 10.3 in which variable a can
only match the registers in the given set (as defined in the LISA
model). Internally, lpeep make the assumption that each register vari-
able relates to a different register, i.e., a, b, and c must match differ-
ent registers.

TRANSFORM (REGISTER a=(R1,R2,R3,R4),REGISTER b, REGISTER c) {
a = b;
a = c;

} TO {
a = c;

}

Listing 10.3 Register variable example

IMMEDIATE: A variable of this type will match immediate values occurring
in the source file. This can be simple numerical values, symbolic
labels, or arithmetic expressions. Furthermore, the user can specify
conditions for the value.

IMMEDIATE <variable name> [ [==, !=, <, >] <value> ]
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OPERAND: These variables will match both registers and immediates. It is intro-
duced for convenience for matching those instructions with similar
assembly syntax for immediates and registers. However, conditions
are not available in the definition of the operand variables.

The variables discussed so far can be used to replace single lines or fixed-length
sequences of lines. lpeep also offers features to define rules that can also change
the control flow of the assembly code. This includes variables to match labels or
variable-length sequences of lines. Since the detailed behavior described in LISA are
also available through the API, it is possible to specify conditions for the resource
usage of the instructions matched by the wildcard. Such a feature is not available in
traditional peephole optimizers.

BLOCK: The block variable is the most complex variable type provided by lpeep.
It is used as a wildcard in the original section to match one or more
assembly instructions. The user can control the block match criteria by
adding a list of constraints to the block variable (Listing 10.4). Valid
constraints are:

TRANSFORM (REGISTER a, OPERAND b, OPERAND c, BLOCK d) {
a = b;
BLOCK d (DONT_READ a);
a = c;

} TO {
BLOCK d;
a = c;

}

Listing 10.4 Block variable example

1. DONT READ <register variable> || (<reg1>, <reg2>, ...)
This constraint will exclude instructions containing read accesses
of the specified register variable or physical registers from the
match.

2. DONT WRITE <register variable> || (<reg1>, <reg2>, ...)
Same as previous except for write access.

3. DONT ACCESS <register variable> || (<reg1>, <reg2>, ...)
The combination of the DONT READ and DONT WRITE con-
straints.

4. DONT MATCH ( <assembly statement> )
This constraint will exclude any lines that match the given pat-
tern from the block match.

5. MAX LINES <number of lines>
This constraint will limit the number of matched instructions.

LABEL and NEWLABEL: This variable type matches labels. The NEWLABEL
variables can only be used in the replacement section
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of a rule to create a new label with an unique name. An
example is provided in Listing 10.5.

TRANSFORM (LABEL l1, LABEL l2,
BLOCK b1, BLOCK b2) {

jmp l1;
BLOCK b1;
LABEL l1;
jmp l2;
BLOCK b2;
LABEL l2;

} TO {
jmp l2;
BLOCK b1;
LABEL l1;
BLOCK b2;
LABEL l2;

}

Listing 10.5 Label variable example

10.4.1.2 Matching VLIW Instructions

To define replacement patterns for the optimization of VLIW assembly code, lpeep
provides the || operator to separate the different slots of a VLIW instruction. List-
ing 10.6 illustrates the use of the || operator. The EXTRA SLOTS keyword is sup-
ported by lpeep to be used as wildcards in a VLIW instruction word. Similar to the
BLOCK variables, EXTRA SLOTS can also take constraints to restrict the matched
instructions. All the constraints’ definitions available for the BLOCK variables are
supported in the definition of the EXTRA SLOTS as well.

TRANSFORM (REGISTER a,
REGISTER b,
REGISTER e)

{
a = b;||EXTRA_SLOTS c (DONT_ACCESS a);
a = e;||EXTRA_SLOTS d (DONT_ACCESS a);

} TO {
a = e;||EXTRA_SLOTS c|| EXTRA_SLOTS d;

}

Listing 10.6 VLIW pattern example

10.5 Experimental Results

The API and the presented modules are fully integrated into CoWare’s Proces-
sor Designer environment, and thus can be generated for any LISA model. For
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evaluation, the compiler with generated code selector description for the ST220 as
presented in Chapter 6 has been used. Naturally, as this configuration contains only
automatically generated rules, there is obviously some room for improvements that
can be exploited by the peephole optimizer. Additionally, it is a good candidate to
show the applicability of the peephole optimizer as it features VLIW slots and dif-
ferent constraints on registers (one general-purpose and one special-purpose register
files) as well as LISA resources.

The replacement library for the ST220 contains 26 patterns in total. Note, its
main purpose was to cover all features of the peephole optimizer, and thus it cannot
be considered an optimal replacement library. The API-based scheduler contains
some minor improvements as compared to the existing scheduler. Basically, implicit
register accesses can be directly detected by the dependency analysis. Such depen-
dencies must be explicitly modeled in the existing scheduler that results typically in
a conservative scheduler description.
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In case of the ST220, this limitation prevented delay-slot filling in certain cases.
This caused quite some NOP instructions at the end of a basic block. With the
improved dependency analysis, this drawback could be eliminated. The improve-
ments in cycle count (Fig. 10.3) gained by the API-based scheduler range from 0 to
7%. Consequently, as less NOPs are required, the code size is decreased up to 11%
(Fig. 10.4). The improvements in cycle count achieved by the peephole optimizer
range from 1 to 16%, and the code size can be reduced by 5–19%.

10.6 Conclusions

The integration of a retargetable assembler optimizer API into an ADL-based design
environment enables a convenient way to implement assembly-level optimizations.
Retargetable optimizations based on the API can be easily added to the environ-
ment or ASIP designers can implement their own hand-crafted optimizations. The
interface provides all information (e.g., data- and control-flow information) that are
typically required for such optimizations. Most important, all architectural infor-
mation such as processor resources and instruction semantics are still available
through the interface. In this way, optimization for irregular architecture features can
be quickly implemented. To demonstrate the applicability of the API, a scheduler
and a peephole optimizer have been implemented. Since both tools are retargetable,
they are already integrated into the software tool generation flow of the Processor
Designer, and thus can be generated for any LISA model. In future, more retar-
getable assembly-level optimization could be added to this flow.



Chapter 11
Summary

The complexity of today’s SoC designs is increasing at an exponential rate due to
the combined effects of advances in semiconductor technology as well as demands
from increasingly complex applications in embedded systems. Escalating NRE costs
have created a shift toward achieving greater design reuse with programmable SoC
platforms. The choice of programmable architectures strongly affects the success of
a SoC design due to its impact on the overall cost, power consumption, and perfor-
mance. Therefore, an increasing number of embedded SoC designs employ ASIPs
as building blocks due to their balance between flexibility and high performance
by programmability and application-specific optimizations. However, given today’s
tight time-to-market constraints, finding the optimal balance between competing
design constraints makes design automation inevitable.

Architecture description languages have been established as an efficient solution
for ASIP architecture exploration. Among the main contributions of such languages
is the automatic generation of the software toolkit from a single ADL model of the
processor. A key component of the software toolkit is the C compiler that enables
a compiler-in-the-loop design space exploration. Developing an ADL, though, is
a difficult task. Today’s ADLs must keep all architectural information as required
for the tool generation (in particular compiler and simulator) in an unambiguous
and consistent way. As a result, some ADLs are well suited for, e.g., the automatic
generation of the compiler, but impose major restrictions on or are incapable of the
generation of a simulator. Other ADLs suffer from limited architectural scope and
are not suitable for ASIP design. An overview of existing ASIP design platforms
and their capabilities is given in this book. It turned out that none of the existing
approaches solves this problem satisfactory.

The contribution of this book is a technique that enables the automatic retarget-
ing of a C compiler, more specifically the code selector description, from an ADL
processor model using CoWare’s Processor Designer and the CoSy environment.
The developed approach incorporates a new, concise formalism for the description
of instruction semantics into the LISA language definition. Several existing LISA
models for representative embedded processors have been successfully enhanced
with the new section at moderate effort. This proves that the new section does nei-
ther impose any particular modeling style nor does it limit LISA’s flexibility. The
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instruction’s semantics is used by four different mapping rule generation methods
which create the code selector description for a C compiler fully automatically. The
CoSy compilers with generated code selector description show an overhead of 14%
in cycle count and 48% in code size as compared to a compiler with (nonoptimized)
hand-crafted code selector specification. These are acceptable values considering
that a compiler is available early in the architecture exploration phase. This is cru-
cial to avoid hardware/software mismatches right from the start in order to ensure
good overall efficiency of SoC platforms. Moreover, the entry barrier to compiler
generation is further lowered. In fact, even noncompiler experts are now able to
generate compilers for architecture exploration. Additionally, the generated code
selector rules are correct by construction, which eliminates the tedious debugging
of code selector descriptions.

ASIP design platforms employ retargetable C compilers for compiler generation
since they can be quickly adopted to varying processor configurations. Unfortu-
nately, such compilers are known for their limited code quality as compared to
handwritten compilers or assembly code due to a lower amount of target-specific
optimizations. This is not surprising considering that it would be counterproductive
for the flexibility required to adapt quickly to architectural alternatives. Like it has
been observed in the code quality analysis of the ST220 compilers, the generated
compilers must be manually refined with dedicated optimizations once the ASIP
architecture exploration phase has converged and an initial working compiler is
available. Hence, the second part of this book focuses on target processor classes
which, due to their architectural features, demand for specific code optimization
techniques. Two promising architectural classes are selected, namely processors
equipped with SIMD instructions and those with predicated execution support.

This book implements these specific techniques such that retargetability within
the given processor class is achieved. The SIMD optimization was retargeted to two
embedded processor architectures with SIMD support. In general, the optimization
achieves speedups of 7–66% and code-size reductions of up to 40% in most cases.
The predicated execution optimization was retargeted to three contemporary pro-
cessors. On average, it achieves a cycle count improvement of 39% and a code-size
reduction of 3%.

In this way, a complete and retargetable path from a single LISA processor model
to an SIMD and predicated execution-enabled compiler for efficient compiler-in-
the-loop architecture exploration is achieved. Furthermore, to ease the manual cre-
ation of dedicated optimizations on the assembly level, this book implements a new
retargetable assembler which provides an interface for code optimizations. A sched-
uler and peephole optimizer are implemented as demonstrators.

Future research aims at different directions. Tomorrow’s SoC designs are head-
ing toward heterogeneous multiprocessor systems (MP-SoC). Additionally, there is
an increasing amount of embedded processor architectures which are capable of
executing multiple threads of control in parallel. Apart from the general problem of
identifying those parts of a sequential code like C which can be executed in parallel,
there is ongoing work to extend retargetable compilers in such a way that all opti-
mizations perform equally well on sequential as well as parallel code constructs in a
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multi-threaded environment. Another recent trend in embedded processor design is
a clustered VLIW organization. Compilers for such architectures must find a cluster
assignment so that a good workload balance is achieved while keeping the com-
munications costs between the clusters low. Developing retargetable techniques to
support the efficient exploration of such architectures is an interesting topic. Future
research also aims at finding new methodologies for DAG-based code selection.
This enables the direct exploitation of inherently parallel hardware instructions,
which are a very common extension of ASIP processors, by compilers. Another
topic is the identification of those data-flow trees or graphs, which actually could be
promising candidates to be implemented in hardware.



Appendix A
Semantics Section

The SEMANTICS section of the LISA language provides a simple, straightforward
syntax, which allows the direct transformation of the instruction’s purpose into an
as-short-as-possible semantical description. The complete grammar specification is
given in Section A.3.

A.1 Semantics Statements

There are four different kinds of semantics statements in SEMANTICS sections
(Fig. A.1).

semantics statement ::= assignment statement
| if else statement
| modes statement
| non assignment statement

assignment statement ::= source expression ’->’ destination expression ’;’

source expression ::= micro operation expression
| integer
| LISA declared item
| semantics related resources

destination expression ::= LISA declared item
| indir expression
| semantics related resources

semantics related resources ::= PC | SP | CF | OF | NF | ZF

The indir expression refers to a single memory unit that can be accessed by the
architecture. The LISA declared item can represent LISA GROUP, INSTANCE,
REFERENCE, or LABEL, which are declared in the DECLARE section. Although
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modes statement ::= regi mode | immi mode

regi mode ::= REGI ’(’ resource expression ’)’
’<’ reg offset0 ’..’ reg offset1 ’>’ ’;’

immi mode ::= IMMI ’(’ LISA declared item ’)’ ’;’

Fig. A.1 Semantics statement syntax

syntactically a LISA LABEL can be used as the destination, semantically this usage
is wrong. A single label does not represent any architecture resource and cannot be
assigned a value. If a LISA GROUP, INSTANCE, or REFERENCE is used as
destination, then it must refer to an operation with a SEMANTICS section that
encapsulates a legal processor resource. Considering the bit-widths of both sides in
an assignment statement, they must be the same. Otherwise an error will be issued.
Here are some more examples of assignment statements:

/* Rs1, Rs2, Dest are 32-bit registers declared in modes */
/* R16 is a 16-bit register */

_ADD(Rs1, Rs2) -> Dest;
/* Correct, _ADD returns a 32-bit result and Dest is 32-bit */

_MULUU(Rs1, R16) -> Dest;
/* Error!! since the MULUU returns a 48-bit result (32+16)

and the Dest is only 32-bit long. */

_MULUU(Rs1, R16)<0..31> -> Dest;
/* Correct, since the bit-specifications are made. */

Listing A.1 Assignment statements and bit-width restrictions

The register mode defines (allocatable) register resources, where resource must be
an item defined in the LISA resource section. The bit-width of the resource should
be specified by the general bit-width specification.

A.1.1 IF-ELSE Statements

Control flow within the SEMANTICS section is modeled with IF–ELSE statements
Ten predefined comparison micro-operators are available (Table A.1). Each of

these comparison operators returns either true or false, depending on the result. They
can only be employed within if–else conditions.
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Table A.1 Comparison keywords

Keyword Comparison

EQ Equal
NE Not Equal
GTI Signed Greater Than
GTU Unsigned Greater Than
GEI Signed Greater Equal Than
GEU Unsigned Greater Equal Than
LTI Signed Less Than
LTU Unsigned Less Than
LEI Signed Less Equal Than
LEU Unsigned Less Equal Than

Their operands are basically the same as for any other micro-operations. Gener-
ally, operands can be one of:

• (constant) immediate values, e.g., EQ(rs1,0),
• LISA declared items that reference to the semantics of other operations via

INSTANCE, GROUP, or REFERENCE (as holds true for any other section
within a LISA operation),

• micro-operations, e.g., GTI( SUB(rs1,rs2), 0),
• LISA resources, e.g., SP.

if else statement ::= IF ’(’ conditions ’)’
’{’ assignment statement+ ’}’
[ ELSE ’{’ assignment statement+ ’}’ ]

conditions ::= condition ( (’||’ | ’&&’) condition )*
| ’(’ conditions ’)’

condition ::= compare operator’(’compare operand ’,’
compare operand

’)’
| CF | OF | NF | ZF
| ’!’ CF | ’!’ OF | ’!’ NF | ’!’ ZF

compare operator ::= EQ | NE | GTI | GTU | GEI | GEU | LTI | LTU
| LEI | LEU

compare operand ::= micro operation expression
| integer
| LISA declared item
| semantics related resources

Fig. A.2 IF–ELSE statement syntax
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The SEMANTICS section also provides shortcuts for the most common use cases:

IF(_ZF) {...} <=> IF(_EQ(_ZF,1)){...}

IF(!_ZF) {...} <=> IF(_EQ(_ZF,0)){...}

Listing A.2 Shortcut examples

In the curly brackets after the condition is the statement that is executed con-
ditionally. However, only assignment statement and nonassignment statement are
allowed here. Putting an IF–ELSE statement in another IF–ELSE statement is cur-
rently not supported.

A.1.2 Nonassignment Statements

The syntax of the nonassignment statements is given in Fig. A.3.

non assignment statement ::= micro operator ’;’
| micro operation expression ’;’
| LISA declared item ’;’
| semantics related resources ’;’
| integer ’;’

Fig. A.3 Nonassignment statement syntax

There are totally five kinds of nonassignment statements, classified by the expres-
sion used as operand:

LISA declared item: The referenced operation must provide the semantics.
Micro operator: A single micro-operator with semicolon can also describe a

statement, e.g., _ADD;. While this statement itself does not do any com-
putation or data transfer, it is mainly used in operation hierarchy to indicate
what kind of micro-operation the semantics section in the upper hierarchy
has to carry out.

Micro-operation: Here the term micro-operation denotes a complete expres-
sion of micro-operations, which includes operator as well as operands, for
instance, _ADD(rs1, rs2); Although the statement performs some
computation, the destination is not defined here. This must be given some-
where in the upper hierarchy levels.

Accessible resources: Similar to the micro-operation, the accessible resources
of the architecture represent some values residing in the architecture. So



A.2 Micro-Operators 169

the nonassignment statement can contain a resource to provide the upper
hierarchy a data source, e.g., _SP;.

Constant: The nonassignment statement having a constant simply means that
the operation provides other operations in the operation hierarchy a con-
stant value as an operand.

A.1.3 Execution Timing

All the statements in one semantics section will be executed concurrently (rather
than sequentially). Thus, one statement is executed using the processor state at the
entry of this operation. All the assignments (i.e., modifying resources after compu-
tation) will be carried out at the end of this semantics section. For example:

SEMANTICS{
_SUB(_ADD[_C](Rs1, Rs2), Rs3) -> Rd;
_ADDC(Rd, Rs4) -> Mem1;

}

Listing A.3 Concurrent execution

This semantics section will carry out both lines concurrently, which means:

• SUB and ADDC micro-operations are executed in parallel. No timing infor-
mation is available for ADD (though obviously it should be scheduled before
SUB).

• ADD may influence the carry flag as side effects. However, this will not effect
ADDC ( ADDC means addition with carry). In case of the first statement, the

micro-operation ADD will affect the carry flag, and consequently SUBC will
get the updated carry flag to calculate the result.

• ADDC uses Rd as one operand. The contents of Rd will be updated after the
semantics section has been executed. Hence ADDC is expected to use the old
value of Rd to do the computation.

A.2 Micro-Operators

The micro-operations provided in the list below are a basic set of operators as
used for compiler generation. As stated in Chapter 6, the set of micro-operations
is designed to be concise and compact. However, it might be necessary to extend the
following set of micro-operations for other architectures. In particular, floating-point
support is entirely left out.

First of all, the notations that are used in the following sections are intro-
duced. Afterward, each micro-operator is described in an instruction-set manual-like
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manner. For certain cases, detailed examples are provided. The micro-operators are
grouped in terms of their functionalities. Side effects of the micro-operators are
modeled as the affected flag declarations. They are explained later in this chapter as
well as the general bit specifications.

A.2.1 Notations

Offset: Bit position indication. (The position starts from zero.)
Width: The width of the bit-extraction.
BITMASK(offset, width): Generates a bitmask where the bits starting from position
offset with the width are filled with 1, and 0 in the remaining bits. BITMASK(3,4)
= 0b01111000
BIT EXTRACTIONS(value, offset, width): (value) & BITMASK( offset,
width )
CF: Carry flag
ZF: Zero flag
OF: Overflow flag
NF: Negative flag
CF SET: Returns 1 if the carry flag is set to be affected as a side effect.
Otherwise 0.
ZF SET: Returns 1 if the zero flag is set to be affected as a side effect. Otherwise 0.
OF SET: Returns 1 if the overflow flag is set to be affected as a side effect.
Otherwise 0.
NF SET: Returns 1 if the negative flag is set to be affected as a side effect.
Otherwise 0.
operandn: Operands of the micro-operators. Each operand has three components:
value, offset, and width. Value represents the actual content of the operand. Offset
and Width indicate a bit-extraction process. The final result of the operand will be the
extracted bits from the value. In the Operation of each micro-operator’s description,
the index n is used to seperate different components, e.g., operand1 is composed of
value1, width1, and offset1.
ISSUE ERROR( MISMATCH): Mismatch error of the operands’ bit-width is thrown.
ZF SIDE EFFECT(result): If the result is zero, returns 1. Otherwise returns 0.
NF SIDE EFFECT(result, width): If bit[width −1] is 1 (negative value), returns 1.
Otherwise returns 0.
OF SIDE EFFECT ADD(op1, op2, width): Returns 1 if the addition specified as
its parameter causes a (width)-bit signed oveflow. Addition generates an overflow
if both operands have the same sign (bit[width −1]), and the sign of the result is
different from the sign of both operands.
CF SIDE EFFECT ADD(op1, op2, width): Returns 1 if the addition specified as its
parameter causes a carry (true result is bigger than 2width − 1, where the operands
are treated as unsigned integers), and returns 0 in all other cases.
OF SIDE EFFECT SUB(op1, op2, width): Returns 1 if the subtraction specified as
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its parameter causes a (width)-bit signed oveflow. Subtraction causes an overflow if
the operands have different signs, and the first operand and the result have different
signs.
CF SIDE EFFECT SUB(op1, op2, width): Returns 0 if the subtraction specified as
its parameter causes a borrow (the true result is less than 0, where the operands are
treated as unsigned integers), and returns 1 in all other cases.
OF SIDE EFFECT MULUU(op1, op2, width1, width2, width): If the multiplica-
tion result of the unsigned number op1 (width1) and the unsigned number op2
(width2) exceeds the unsigned range that width bits can take, returns 1. Otherwise
returns 0.
OF SIDE EFFECT MULIU(op1, op2, width1, width2, width): If the multiplication
result of the signed number op1 (width1) and the unsigned number op2 (width2)
exceeds the signed range that width bits can take, returns 1. Otherwise returns 0.
OF SIDE EFFECT MULII(op1, op2, width1, width2, width): If the multiplication
result of the signed number op1 (width1) and the signed number op2 (width2)
exceeds the signed range that width bits can take, returns 1. Otherwise returns 0.
OF SIDE EFFECT NEG(result, width): The only case of overflow for negative
micro-operation happens when the maximum negative value is taken as an operand.
For example, for 4-bit signed values, the max negative value is 0b1000 (−8). Taking
the negative value of this one gives 0b1000, which is incorrect because the max
positive value is +7. Returns 1 if this case happens, otherwise returns 0.

A.2.2 Group of Arithmetic Operators

This group of micro-operators deals with the arithmetic instructions that appear in
most of the processor architectures. Some of the micro-operators need to work with
flags, reading flags, and/or writing flags as side effects.

<arithmetic_uop> := _ADD | _ADDC | _SUB | _SUBC | _NEG
| _MULUU | _MULIU | _MULII

A.2.2.1 ADD
Description Adds two operands.
Syntax ADD[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags CF, ZF, NF, OF

Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1, offset1, width1) >> offset1;
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temp2 = BIT_EXTRACTIONS(value2, offset2, width2) >> offset2;
result = BIT_EXTRACTIONS((temp1+temp2),offset,width)>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result);}
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (OF_SET) { OF = OF_SIDE_EFFECT_ADD(temp1, temp2, width1);}
if (CF_SET) { CF = CF_SIDE_EFFECT_ADD(temp1, temp2, width1);}
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_ADD[_C,_Z,_N,_O](0x00100010<0..31>, 0x00010001<0..31>)<0..31>
-> 110011 (ZF:0 NF:0 OF:0 CF:0)
_ADD[_C,_Z,_N,_O](0x00100010<0..15>, 0x00010001<0..15>)<0..15>
-> 11 (ZF:0 NF:0 OF:0 CF:0)
_ADD[_C,_Z,_N,_O](0x00108010<0..15>, 0x00010001<0..15>)<0..15>
-> 8011 (ZF:0 NF:1 OF:0 CF:0)
_ADD[_C,_Z,_N,_O](0x00100001<0..15>, 0x0000ffff<0..15>)<0..15>
-> 0 (ZF:1 NF:0 OF:0 CF:1)

A.2.2.2 ADDC
Description Adds two operands with carry.
Syntax ADDC[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags CF, ZF, NF, OF

Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS((temp1+temp2+CF),

offset,width)>>offset;
if (OF_SET) { OF = OF_SIDE_EFFECT_ADD(temp1 + CF,

temp2, width1);}
if (CF_SET) { CF = CF_SIDE_EFFECT_ADD(temp1 + CF,

temp2, width1);}
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}
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Examples:
(ZF:0 NF:0 OF:0 CF:1)
_ADDC[_C,_Z,_N,_O](0x00100010<0..31>, 0x00010001<0..31>)<0..31>
-> 110012 (ZF:0 NF:0 OF:0 CF:0)
_ADDC[_C,_Z,_N,_O](0x00100010<0..15>, 0x00010001<0..15>)<0..15>
-> 11 (ZF:0 NF:0 OF:0 CF:0)
_ADDC[_C,_Z,_N,_O](0x00108010<0..15>, 0x00010001<0..15>)<0..15>
-> 8011 (ZF:0 NF:1 OF:0 CF:0)
_ADDC[_C,_Z,_N,_O](0x00100001<0..15>, 0x0000ffff<0..15>)<0..15>
-> 0 (ZF:1 NF:0 OF:0 CF:1)

A.2.2.3 SUB
Description Subtracts the operand2 from operand1.
Syntax SUB[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags CF, ZF, NF, OF

Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1) >> offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2) >> offset2;
result = BIT_EXTRACTIONS((temp1-temp2),

offset,width) >> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (OF_SET) { OF = OF_SIDE_EFFECT_SUB(temp1,temp2,width1);}
if (CF_SET) { CF = CF_SIDE_EFFECT_SUB(temp1,temp2,width1);}
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_SUB[_C,_Z,_N,_O](0x00100010<0..31>,0x00010001<0..31>)<0..31>
-> f000f (ZF:0 NF:0 OF:0 CF:1)
_SUB[_C,_Z,_N,_O](0x00100010<0..15>,0x00010001<0..15>)<0..15>
-> f (ZF:0 NF:0 OF:0 CF:1)
_SUB[_C,_Z,_N,_O](0x00108010<0..15>,0x00010001<0..15>)<0..15>
-> 800f (ZF:0 NF:1 OF:0 CF:1)
_SUB[_C,_Z,_N,_O](0x00100001<0..15>,0x0000ffff<0..15>)<0..15>
-> 2 (ZF:0 NF:0 OF:0 CF:0)
_SUB[_C,_Z,_N,_O](0x00100001<0..31>,0x0000ffff<0..31>)<0..31>
-> f0002 (ZF:0 NF:0 OF:0 CF:1)
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A.2.2.4 SUBC
Description Subtracts the operand2 from operand1 with carry.
Syntax SUBC[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags CF, ZF, NF, OF

Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
// temp1 - temp2 - NOT(CF)
result = BIT_EXTRACTIONS((temp1 - temp2 - NOT(CF) ),

offset, width) >> offset;
if (OF_SET) { OF = OF_SIDE_EFFECT_SUB(temp1 -

NOT(CF), temp2, width1); }
if (CF_SET) { CF = CF_SIDE_EFFECT_SUB(temp1 -

NOT(CF), temp2, width1); }
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_SUBC[_C,_Z,_N,_O](0x00100010<0..31>, 0x00010001<0..31>)<0..31>
-> f000e (ZF:0 NF:0 OF:0 CF:1)

A.2.2.5 MULUU
Description Multiplies the unsigned integer operand1 by the unsigned integer

operand2.
Syntax MULUU[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions No restrictions on the bit-widths of operands.
Result bit-width The addition of the bit-widths of the operands.
Affected flags ZF, OF

Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS(((unsigned)temp1*(unsigned)temp2),

offset, width) >> offset;
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if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (OF_SET) { OF = OF_SIDE_EFFECT_MULUU(temp1,temp2,width1,

width2, width);}
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_MULUU[_Z,_O](0x00100010<0..31>, 0x00010001<0..31>)<0..31>
-> 200010 (ZF:0 NF:0 OF:1 CF:0)

A.2.2.6 MULIU
Description Multiplies the signed integer operand1 by the unsigned integer operand2.
Syntax MULIU[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions No restrictions on the bit-widths of operands.
Result bit-width The addition of the bit-widths of the operands.
Affected flags ZF, NF, OF

Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
// check if op1 is negative
// if so, sign extend to 32 bit long
// if long is used, then replace 32 by 64
temp1 = SEM_SXT(temp1, 0, width1, 0, 32);
result = BIT_EXTRACTIONS(((signed)temp1*(unsigned)temp2),

offset, width) >> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (OF_SET) { OF = OF_SIDE_EFFECT_MULIU(temp1,temp2,width1,

width2, width); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_MULIU[_Z,_N,_O](0x8000<0..15>, 0x0010<0..15>)<0..31>
-> fff80000 (ZF:0 NF:1 OF:0 CF:0)

A.2.2.7 MULII
Description Multiplies the signed integer operand1 by the signed integer operand2.
Syntax MULII[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions No restrictions on the bit-widths of operands.
Result bit-width The addition of the bit-widths of the operands.
Affected flags ZF, NF, OF
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Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
// check if op1 and op2 are negative
// if so, sign extends to 32 bit long
// if long is used, then replace 32 by 64
temp1 = SEM_SXT(temp1, 0, width1, 0, 32);
temp2 = SEM_SXT(temp2, 0, width2, 0, 32);
result = BIT_EXTRACTIONS(((signed)temp1*(signed)temp2),

offset, width) >> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (OF_SET) { OF = OF_SIDE_EFFECT_MULII(temp1,temp2,width1,

width2, width); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_MULII[_Z, _N, _O](0x8000<0..15>, 0x8010<0..15>)<0..31>
-> 3ff80000 (ZF:0 NF:0 OF:0 CF:0)
_MULII[_Z, _N, _O](0x8000<0..15>, 0x8010<0..15>)<0..23>
-> f80000 (ZF:0 NF:1 OF:1 CF:0)

A.2.2.8 NEG
Description Produces the negative value of the operand (twos-complement).
Syntax NEG[affected flag declarations](operand1)

[bit extractions]
Restrictions No restrictions.
Result bit-width Same as that of the operand.
Affected flags ZF, NF, OF

Operation

temp1 = BIT_EXTRACTIONS(value1, offset1, width1) >> offset1;
result = BIT_EXTRACTIONS((-((signed)temp1)),offset,width)

>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result,width); }
if (OF_SET) { OF = OF_SIDE_EFFECT_NEG(temp1,width1); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_NEG[_Z, _N, _O](0x10<0..31>)<0..31>
-> fffffff0 (ZF:0 NF:1 OF:0 CF:0)
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A.2.3 Group of Logic Operators

This group of micro-operators deals with the bitwise logic functions. Similar to the
arithmetic group, the operators can change the flags as a side effect.

<logic_uop> := _AND | _OR | _XOR | _NOT

A.2.3.1 AND
Description Performs a bitwise AND operation on operand1 and operand2.
Syntax AND[affected flag declarations](operand1,

operand2)
[bit extractions]

Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags ZF, NF

Operation
if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS((temp1 & temp2),offset,width)

>> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_AND[_N, _Z](0x0fff0fff<0..31>, 0x000f000f<0..31> 0, 32)
-> f000f (ZF:0 NF:0 OF:0 CF:0)
_AND[_N, _Z](0x0ff00fff<0..31>, 0x000f000f<0..31> 0, 32)
-> f (ZF:0 NF:0 OF:0 CF:0)
_AND[_N, _Z](0xfff00fff<0..31>, 0x000f000f<0..31> 0, 32)
-> f (ZF:0 NF:0 OF:0 CF:0)
_AND[_N, _Z](0xfff00fff<0..31>, 0x800f000f<0..31> 0, 32)
-> 8000000f (ZF:0 NF:1 OF:0 CF:0)

A.2.3.2 OR
Description Performs a bitwise OR operation on operand1 and operand2.
Syntax OR[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags ZF, NF
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Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS((temp1 | temp2),offset,width)

>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_OR[_N,_Z](0x0fff0fff<0..31>, 0x000f000f<0..31>)<0..31>)
-> fff0fff (ZF:0 NF:0 OF:0 CF:0)
_OR[_N,_Z](0x0ff00fff<0..31>, 0x000f000f<0..31>)<0..31>)
-> fff0fff (ZF:0 NF:0 OF:0 CF:0)
_OR[_N,_Z](0xfff00fff<0..31>, 0x000f000f<0..31>)<0..31>)
-> ffff0fff (ZF:0 NF:1 OF:0 CF:0)
_OR[_N,_Z](0xfff00fff<0..31>, 0x800f000f<0..31>)<0..31>)
-> ffff0fff (ZF:0 NF:1 OF:0 CF:0)

A.2.3.3 XOR
Description Performs a bitwise XOR operation on operand1 and operand2.
Syntax XOR[affected flag declarations](operand1,

operand2)[bit extractions]
Restrictions Two operands must be of the same bit-width.
Result bit-width Same as that of operands.
Affected flags ZF, NF

Operation

if (width1 == width2) {
temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS((temp1 ˆ temp2),offset,width)

>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

}
else {
ISSUE_ERROR(_MISMATCH);

}
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Examples:
(ZF:0 NF:0 OF:0 CF:0)
_XOR[_N,_Z](0x0fff0fff<0..31>, 0x000f000f<0..31>)<0..31>
-> ff00ff0 (ZF:0 NF:0 OF:0 CF:0)
_XOR[_N,_Z](0x0ff00fff<0..31>, 0x000f000f<0..31>)<0..31>
-> fff0ff0 (ZF:0 NF:0 OF:0 CF:0)
_XOR[_N,_Z](0xfff00fff<0..31>, 0x000f000f<0..31>)<0..31>
-> ffff0ff0 (ZF:0 NF:1 OF:0 CF:0)
_XOR[_N,_Z](0xfff00fff<0..31>, 0x800f000f<0..31>)<0..31>
-> 7fff0ff0 (ZF:0 NF:0 OF:0 CF:0)

A.2.3.4 NOT
Description Performs a bitwise NOT operation on operand.
Syntax NOT[affected flag declarations](operand1)[bit extractions]
Restrictions No restrictions.
Result bit-width Same as that of the operand.
Affected flags ZF, NF

Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
result = BIT_EXTRACTIONS(˜temp1,offset,width)>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_NOT[_Z, _N](0x0fff0fff<0..31>)<0..31>
-> f000f000 (ZF:0 NF:1 OF:0 CF:0)
_NOT[_Z, _N](0x0ff00fff<0..31>)<0..31>
-> f00ff000 (ZF:0 NF:1 OF:0 CF:0)
_NOT[_Z, _N](0xfff00fff<0..31>)<0..31>
-> ff000 (ZF:0 NF:0 OF:0 CF:0)
_NOT[_Z, _N](0xfff00fff<0..31>)<0..31>
-> ff000 (ZF:0 NF:0 OF:0 CF:0)

A.2.4 Group of Shifting Operators

This group of micro-operators deals with the shifting functionality. Again, the
micro-operators may affect the flags (mainly carry flag).

<shifting_uop> := _LSL | _LSR | _ASR | _ROTL | _ROTR
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A.2.4.1 LSL
Description Performs a logical left-shift operation on operand1 by operand2 bits. The

additional bits in dst are filled with zeros. The information in the operand2
leftmost bits is discarded if the user does not specify the affected flags.
Otherwise some flags (e.g., carry flag) is changed.

Syntax LSL[affected flag declarations](operand1,
operand2)[bit extractions]

Restrictions No restrictions.
Result bit-width Same as that of operand1.
Affected flags CF, ZF, NF: if carry flag is specified in

affected flags, it is assumed that carry flag
stores the last-moved bit from the source. Zero
and negative flag apply to the whole value that is
moved into destination.

Operation

temp1 = (unsigned)value1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
if (width1 <= ((unsigned)temp2 - 1) ) {
cerr<< "Warning: left shift count >= width of type "<<endl;

}
result = BIT_EXTRACTIONS(temp1<<(unsigned(temp2)),offset,width);
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (CF_SET) {
if (temp1 & (0x1 << (width1 - ((unsigned)temp2) ) ) )
{ CF = 1; }
else { CF = 0; }

}
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_LSL[_C,_Z,_N](0x00ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00ff00 (ZF:0 NF:1 OF:0 CF:0)
_LSL[_C,_Z,_N](0x01ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00ff00 (ZF:0 NF:1 OF:0 CF:1)
_LSL[_C,_Z,_N](0x00ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00ff00 (ZF:0 NF:1 OF:0 CF:0)
_LSL[_C,_Z,_N](0x00ff00ff<0..31>, 0x10<0..31>)<0..31>
-> ff0000 (ZF:0 NF:0 OF:0 CF:1)

A.2.4.2 LSR
Description Performs a logical right shift on operand1 by operand2 bits. The new

operand2 bits to the left are filled with zeros. The information in the
operand2 rightmost bits is discarded if the user does not specify the
affected flags. Otherwise some flags (e.g., carry flag) is changed.
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Syntax LSR[affected flag declarations](operand1,
operand2)[bit extractions]

Restrictions No restrictions.
Result bit-width Same as that of operand1.

Affected flags CF, ZF, NF: if carry flag is specified in
affected flags, it is assumed that carry flag
stores the last-moved bit from the source. Zero
and negative flag apply to the whole value that is
moved into destination.

Operation

temp1 = (unsigned)value1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = BIT_EXTRACTIONS(temp1>>(unsigned(temp2)),offset,width);
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (CF_SET) {
if ((temp1 >> (unsigned(temp2) - 1)) & (0x1))
{ CF = 1; }
else { CF = 0; }

}
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_LSR[_C,_Z,_N](0x00ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00 (ZF:0 NF:0 OF:0 CF:1)
_LSR[_C,_Z,_N](0x01ff00ff<0..31>, 0x8<0..31>)<0..31>
-> 1ff00 (ZF:0 NF:0 OF:0 CF:1)
_LSR[_C,_Z,_N](0x00ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00 (ZF:0 NF:0 OF:0 CF:1)
_LSR[_C,_Z,_N](0x00ff00ff<0..31>, 0x10<0..31>)<0..31>
-> ff (ZF:0 NF:0 OF:0 CF:0)

A.2.4.3 ASR
Description Performs an arithmetic right shift on operand1 by operand2 bits. The

new operand2 bits to the left are filled with zeros or ones depending
on the leftmost bit before the shift operation. The information in the
operand2 rightmost is discarded if the user does not specify the affected
flags. Otherwise some flags (e.g., carry flag) is changed.

Syntax ASR[affected flag declarations](operand1,
operand2)[bit extractions]

Restrictions No restrictions.
Result bit-width Same as that of operand1.
Affected flags CF, ZF, NF: if carry flag is specified in

affected flags, it is assumed that carry flag
stores the last-moved bit from the source. Zero
and negative flag apply to the whole value that is
moved into destination.
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Operation

temp1 = (unsigned)value1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
if ((temp1 & (0x1 << (width1 - 1)) ) == 0 ) {
result = (temp1 >> ((unsigned)temp2) );

}
else {
result = (temp1 >> ((unsigned)temp2) ) | BITMASK(

(width1 - (unsigned)temp2), (unsigned)temp2);
}
result = BIT_EXTRACTIONS(result, offset, width) >> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
if (CF_SET) {
if ((temp1 >> (unsigned(temp2) - 1)) & (0x1)) { CF = 1; }
else { CF = 0; }

}
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_ASR[_C, _Z, _N](0x00ff00ff<0..23>, 0x8<0..31>)<0..23>
-> ffff00 (ZF:0 NF:1 OF:0 CF:1)
_ASR[_C, _Z, _N](0x01ff00ff<0..31>, 0x8<0..31>)<0..31>
-> 1ff00 (ZF:0 NF:0 OF:0 CF:1)
_ASR[_C, _Z, _N](0x80ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff80ff00 (ZF:0 NF:1 OF:0 CF:1)
_ASR[_C, _Z, _N](0x80ff00ff<0..31>, 0x10<0..31>)<0..31>
-> ffff80ff (ZF:0 NF:1 OF:0 CF:0)

A.2.4.4 ROTL
Description Rotational left shift on operand1 by operand2 bits. If the user specify

some flags as side effects (e.g., carry flag), the carry flag is used as a
buffer to do the shifting.

Syntax ROTL[affected flag declarations](operand1,
operand2)[bit extractions]

Restrictions No restrictions.
Result bit-width Same as that of operand1.
Affected flags CF, ZF, NF: if carry flag is specified in

affected flags, it is assumed that carry flag
stores the last-moved bit from the source. Zero
and negative flag apply to the whole value that is
moved into destination.

Operation

temp1 = (unsigned)value1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
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result = temp1;
if (CF_SET) {
if (temp1 & (0x1 << (width1 - ((unsigned)temp2) ) ) )
{ CF = 1; }
else { CF = 0; }

}
for (u32 i = 0; i < ((unsigned)temp2); i++) {
if (!(temp1 & (0x1 << (width1 - 1)) )) {
result = result << 1;

}
else {
result = (result << 1) | 1;

}
temp1 = temp1 << 1;

}
result = BIT_EXTRACTIONS(result, offset, width)>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_ROTL[_C,_Z,_N](0x00ff00ff<0..23>, 0x8<0..31>)<0..23>
-> ffff (ZF:0 NF:0 OF:0 CF:1)
_ROTL[_C,_Z,_N](0x01ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00ff01 (ZF:0 NF:1 OF:0 CF:1)
_ROTL[_C,_Z,_N](0x80ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff00ff80 (ZF:0 NF:1 OF:0 CF:0)
_ROTL[_C,_Z,_N](0x80ff00ff<0..31>, 0x10<0..31>)<0..31>
-> ff80ff (ZF:0 NF:0 OF:0 CF:1)

A.2.4.5 ROTR
Description Rotational right shift on operand1 by operand2 bits. If the user specify

some flags as side effects (e.g., carry flag), the carry flag is used as a
buffer to do the shifting.

Syntax ROTR[affected flag declarations](operand1,
operand2)[bit extractions]

Restrictions No restrictions.
Result bit-width Same as that of operand1.
Affected flags CF, ZF, NF: if carry flag is specified in

affected flags, it is assumed that carry flag
stores the last-moved bit from the source. Zero
and negative flag apply to the whole value that is
moved into destination.

Operation

temp1 = (unsigned)value1;
temp2 = BIT_EXTRACTIONS(value2,offset2,width2)>>offset2;
result = temp1;
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if (CF_SET) {
if ((temp1 >> (unsigned(temp2) - 1)) & (0x1))
{ CF = 1; }
else { CF = 0; }

}
for (u32 i = 0; i < ((unsigned)temp2); i++) {
if ( !(temp1 & 1) ) {
result = result >> 1;

}
else {
result = (result >> 1) | (0x1 << (width1 - 1));

}
temp1 = temp1 >> 1;

}
result = BIT_EXTRACTIONS(result, offset, width)>>offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_ROTR[_C, _Z, _N](0x00ff00ff<0..23>, 0x8<0..31>)<0..23>
-> ffff00 (ZF:0 NF:1 OF:0 CF:1)
_ROTR[_C, _Z, _N](0x01ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff01ff00 (ZF:0 NF:1 OF:0 CF:1)
_ROTR[_C, _Z, _N](0x80ff00ff<0..31>, 0x8<0..31>)<0..31>
-> ff80ff00 (ZF:0 NF:1 OF:0 CF:1)
_ROTR[_C, _Z, _N](0x80ff00ff<0..31>, 0x10<0..31>)<0..31>
-> ff80ff (ZF:0 NF:0 OF:0 CF:0)

A.2.5 Group of Zero/Sign Extension Operators

This group of operators serve the purpose of zero/sign extensions. They do not have
any effect on the flags.

<extension_uop> := _SXT | _ZXT

A.2.5.1 SXT
Description Performs a sign extension to the operand.
Syntax SXT(operand1)[bit extractions]
Restrictions No restrictions.
Result bit-width The result bitwidth is determined by the bit-specs that follows the micro-

operator.
Affected flags ZF, NF

Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
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if ( width <= width1) {
cerr<<"Wrn: You are using a sign reduction in _SXT."<<endl;
cerr<<"Better directly use the bit specs." << endl;

}
if ( !(temp1 & (0x1 << (width1 - 1))) ) {
// MSB is 0
result = BIT_EXTRACTIONS(temp1,offset,width)>>offset;

}
else {
// MSB is 1
result = temp1 | BITMASK(width1, width - width1 );
result = BIT_EXTRACTIONS(result, offset, width) >> offset;

}
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
if (NF_SET) { NF = NF_SIDE_EFFECT(result, width); }
}
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_SXT[_Z, _N](0xff00<0..15>)<0..31>:
-> ffffff00 (ZF:0 NF:1 OF:0 CF:0)
_SXT[_Z, _N](0x7f00<0..15>)<0..31>
-> 7f00 (ZF:0 NF:0 OF:0 CF:0)
_SXT[_Z, _N](0xff00<0..15>)<0..23>
-> ffff00 (ZF:0 NF:1 OF:0 CF:0)

A.2.5.2 ZXT
Description Performs a zero extension to the operand.
Syntax ZXT(operand1)[bit extractions]
Restrictions No restrictions.
Result bit-width The result bitwidth is determined by the bit-specs that follows the micro-

operator.
Affected flags ZF

Operation

temp1 = BIT_EXTRACTIONS(value1,offset1,width1)>>offset1;
if ( width <= width1) {
cerr<<"Wrn:You are using a sign reduction _ZXT."<<endl;
cerr<<"Better directly use the bit specs." << endl;

}
result = BIT_EXTRACTIONS(temp1, offset, width) >> offset;
if (ZF_SET) { ZF = ZF_SIDE_EFFECT(result); }
return result;

Examples:
(ZF:0 NF:0 OF:0 CF:0)
_ZXT[_Z](0xff00<0..15>)<0..31>
-> ff00 (ZF:0 NF:0 OF:0 CF:0)
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_ZXT[_Z](0x7f00<0..15>)<0..31>
-> 7f00 (ZF:0 NF:0 OF:0 CF:0)
_ZXT[_Z](0xff00<0..16>)<0..23>
_> ff00 (ZF:0 NF:0 OF:0 CF:0)

NOTE: There comes some suggestions about writing the sign/zero extension/re-
duction in the semantics section. If the user wants to do sign/zero extension which
means to expand the bit-width of the operand considering the sign bit, it should be
read, e.g.,

_SXT(_ADD(Rs1, Rs2)<0..7>)<0..15> -> Dest;
/* Dest is 16 bit long. */

This tells that the lower 8 bits of the addition result will be sign-extended to 16 bits
and later transferred to destination register (which must be 16 bit, otherwise errors
are issued). Or it can be transferred to the arbitrary bit locations of the destination
registers as long as it makes sense, e.g.,

SXT( ADD(Rs1, Rs2)<0..7>)<0..15> -> Dest<16..31>;
It is assumed that the micro-operators SXT and ZXT will extend the operands

to infinite long and the truncations will be carried out by bit-width specifications,
say, to 16 bits. The other case, reduction, happens in ST220 model. Sign/zero reduc-
tions simply mean to extract the lower bits down. The user may write something like

_SXT(_ADD(Rs1,Rs2)<0..15>)<0..7> -> Dest;
/* Dest is 8 bit long. */

but that is equivalent to
ADD(Rs1, Rs2)<0..7> -> Dest; /* Dest is 8 bit long. */.

It is recommended that the user follow the latter expression. Warnings may be
issued in this case.

A.2.6 Others/Intrinsic Operators

All the micro-operations that cannot be appropriately grouped in the above and the
intrinsic operations are listed here.

<other_uop> := _INDIR | _NOP | <intrinsic_uop>
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A.2.6.1 INDIR
Description References a specific memory location pointed by operand. Can be used

with operation chaining for load and store operations, or any other
instructions that can use one or more memory operands.

Syntax INDIR( OR(Rs, SP))<Offset1..Offset1+Bits>;
Restrictions None.
Result bit-width The bit-width of the result is determined by the bit-specs that follow the

micro-operator. Please refer the details below.
Affected flags None.

A.2.6.2 NOP
Description Do nothing.
Syntax NOP;
Restrictions None.
Result bit-width None.
Affected flags None.

A.2.6.3 <intrinsic op>

Description User-defined architecture-specific operations.
Syntax ‘‘FFS’’;
Restrictions User-defined.
Result bit-width User-defined.
Affected flags User-defined for compiler knowledge.

NOTE: More about the INDIR formalizations and parameters follows:

_INDIR(Addr, Endianess = _LITTLE,
char *AddressNameSpace)<x..y>;

The INDIR can take up to three parameters for accessing the memory. The Addr
is the location of the memory unit that the user wants. The Endianess indicates
which data organization/fashion this micro-operation INDIR should follow. The
address space is suitable in the case of multiple addressing spaces. The bit-
specification is used, e.g., loading a word from a byte-wise memory. Examples:

INDIR(0x0, LITTLE, ‘‘DataMem’’)<0..31> -> Dest;

This operation will fill up the 32-bit destination register with the memory con-
tents (memory address space 1) {0x3}{0x2}{0x1}{0x0} provided that the base
memory is byte-wise.

INDIR(0x0, BIG)<0..31> -> Dest;
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This operation will fill up the 32-bit destination register with the memory con-
tents (default memory) {0x0}{0x1}{0x2}{0x3} provided that the base memory is
byte-wise.

If there is only one bus in the LISA model, the AddressNameSpace can be omit-
ted. Also it is considered that the case

INDIR(0x0, LITTLE)<0..23> -> Dest;

also holds because the bits can be simply counted when filling up the destination.

A.2.7 Affected Flag Declarations

Definitions of the flags

• Carry flag: Set by a carry out/borrow in at MSB
• Zero flag: Set if entire byte, word, or long == 0
• Negative flag: Set if sign bit == 1
• Overflow flag: Set by a carry into sign bit w/o a carry out

<affected_flag_declarations>:=’[’<flag>{’,’<flag>}’]’
<flag> := _C | _Z | _N | _O

The affected flag declaration is very important to portrait the side effects of
the instructions that occur in most processors. Here side effects are defined as the
posteffects of the instructions, i.e., the flags are changed due to the result of this
instruction. (In contrast, the common addition with carry is handled by different
micro-operations.) Currently, there are four flags that are explicitly supported in this
semantical description: carry flag, zero flag, negative flag, and overflow flag. For
example:

_ADD[_C, _Z](Rs1, Rs2) -> Rd;

This is interpreted as: use the predefined micro-operation ADD to perform addi-
tion of the two operands and stores the result into Rd. Set zero flag if the result is
zero; otherwise cleared. Set carry flag if a carry is generated; otherwise cleared.

NOTE: if the user does not give the affected flag declarations, no flags will be
changed after the operation.
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A.3 SEMANTICS Section Grammar

A.3.1 Grammar Notation

The keywords are denoted by using bolded font, e.g., “KEYWORD”.

The nonterminal symbols are typeset slanted, e.g., “nonterminal”.

If the syntax definition contains special caracters, they will be quoted with single
quotes, e.g., ’}’.

Concatenation of two components is denoted by putting the components in
sequence, e.g.,
concatenation ::= element1 element2

Optional components are denoted by surrounding square brackets, e.g.,
optional ::= [ element ]

Repeating a component zero or more times is denoted with a asterisk, e.g.,
repeat ::= element*

Repeating a component one or more times is denoted with a plus, e.g.,
repeat ::= element+

Alternative components are denoted by vertical bars, e.g.,
alternative ::= option1 | option2 | option3

Brackets are used to group several elements, e.g.,
elements ::= ( element1 element2 )

Several elements separated with comma can use the same definition, e.g.,
element1, element2 ::= definition

A.3.2 SEMANTICS Grammar

A.3.2.1 Global Structure

semantics section ::= SEMANTICS ’{’ semantic statement+ ’}’

A.3.2.2 Semantic Statements

semantic statement ::= assignment statement
| if else statement
| modes statement
| non assignment statement
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assignment statement ::= source expression ’->’ destination expression ’;’

source expression ::= micro operation expression
| integer
| LISA declared item
| semantics related resources

destination expression ::= LISA declared item
| indir expression
| semantics related resources

modes statement ::= regi mode | immi mode

regi mode ::= REGI ’(’ resource expression ’)’
’<’reg offset0’..’reg offset1’>’ ’;’

resource expression ::= LISA declared item (’[’ LISA declared item ’]’)*

reg offset0, reg offset1 ::= integer

immi mode ::= IMMI ’(’ LISA declared item ’)’ ’;’

if else statement ::= IF ’(’ conditions ’)’
’{’ assignment statement+ ’}’
[ ELSE ’{’ assignment statement+ ’}’ ]

conditions ::= condition ( (’||’ | ’&&’) condition )*
| ’(’ conditions ’)’

condition ::= equal | not equal | signed greater | unsigned greater
| signed greater equal | unsigned greater equal
| signed less | unsigned less
| signed less equal | unsigned less equal
| CF | OF | NF | ZF

equal ::= EQ ’(’ compare operand ’,’ compare operand ’)’

not equal ::= NE ’(’ compare operand ’,’ compare operand ’)’

signed greater ::= GTI ’(’ compare operand ’,’ compare operand ’)’

unsigned greater ::= GTU ’(’ compare operand ’,’ compare operand ’)’

signed greater equal ::= GEI ’(’ compare operand ’,’ compare operand ’)’

unsigned greater equal ::= GEU ’(’compare operand ’,’
compare operand ’)’

signed less ::= LTI ’(’ compare operand ’,’ compare operand ’)’

unsigned less ::= LTU ’(’ compare operand ’,’ compare operand ’)’
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signed less equal ::= LEI ’(’ compare operand ’,’ compare operand ’)’

unsigned less equal ::= LEU ’(’ compare operand ’,’ compare operand ’)’

compare operand ::= micro operation expression
| integer
| LISA declared item
| semantics related resources

non assignment statement ::= micro operator ’;’
| micro operation expression ’;’
| LISA declared item ’;’
| semantics related resources ’;’
| integer ’;’

micro operator ::= ADD | ADDC | SUB | SUBC | MULII | MULIU
| MULUU | AND | OR | XOR | NOT | NEG | LSL
| LSR | ROTL | ROTR | ASR | ZXT | SXT
| ’”’intrinsic name’”’

A.3.2.3 Micro-Operation Expressions

micro operation expression ::= add expression | addc expression | sub expression
| subc expression | mulii expression
| muluu expression | and expression | or expression
| xor expression | not expression | neg expression
| lsl expression | lsr expression | rotl expression
| rotr expression | asr expression | zxt expression
| sxt expression | indir expression
| intrinsic expression | hierarchy expression
| muliu expression

add expression ::= ADD [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

addc expression ::= ADDC [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

sub expression ::= SUBC [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

mulii expression ::= MULII [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

muliu expression ::= MULIU [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

muluu expression ::= MULUU [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]
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and expression ::= AND [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

or expression ::= OR [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

lsl expression ::= LSL [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

lsr expression ::= LSR [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

rotl expression ::= ROTL [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

rotr expression ::= ROTR [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

asr expression ::= ASR [ affected flags ] ’(’ operand ’,’ operand ’)’
[ bit specification ]

not expression ::= NOT [ affected flags ] ’(’ operand ’)’ [ bit specification ]

neg expression ::= NEG [ affected flags ] ’(’ operand ’)’ [ bit specification ]

zxt expression ::= ZXT [ affected flags ] ’(’ operand ’)’ bit specification

sxt expression ::= SXT [ affected flags ] ’(’ operand ’)’ bit specification

indir expression ::= INDIR [ affected flags ] ’(’ operand [’,’ endianess]
[’,’ bus name] ’)’
bit specification

endianess ::= LITTLE | BIG

bus name ::= identifier

intrinsic expression ::= ’ ” ’intrinsic name’ ” ’ [ affected flags ] ’(’ [operand
(’,’ operand)*] ’)’ [ bit specification ]

intrinsic name ::= ’ ’ identifier

hierarchy expression ::= LISA declared item [ affected flags ] ’(’ [operand
(’,’ operand)*] ’)’ [ bit specification ]

operand ::= micro operation expression
| semantics related resources
| LISA declared item
| integer

affected flags ::= ’—’ flag ( ’,’ flag )* ’—’

flag ::= C | O | N | F
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bit specification ::= ’<’ offset0 ’..’ offset1 ’>’
’<’ offset0 ’,’ width ’>’

offset0, offset1, width ::= integer | LISA declared item

A.3.2.4 Miscellaneous

semantics related resources ::= PC | SP | CF | OF | NF | ZF

LISA declared item ::= identifier [ bit specification ]

identifier ::= character ( character | figure | ’ ’ )+

integer ::= figure+

figure ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

character ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’
| ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
| ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’
| ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ |

|’Z’



Appendix B
CoSy Compiler Library Grammar

This appendix contains the formal decription of the LISA CoSy compiler library
grammar.

B.1 Grammar Notation

The keywords are denoted by using bolded font,
e.g., “KEYWORD”.

The nonterminal symbols are typeset slanted,
e.g., “nonterminal”.

If the syntax definition contains special characters, they will be quoted with single
quotes,
e.g., ’}’.

Concatenation of two components is denoted by putting the components in sequence,
e.g., concatenation ::= element1 element2

Optional components are denoted by surrounding square brackets,
e.g., optional ::= [ element ]

Repeating a component zero or more times is denoted with an asterisk,
e.g., repeat ::= element*

Repeating a component one or more times is denoted with a plus,
e.g., repeat ::= element+

Alternative components are denoted by vertical bars,
e.g., alternative ::= option1 | option2 | option3

Brackets are used to group several elements,
e.g., elements ::= ( element1 element2 )

195
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Several elements separated with comma can use the same definition,
e.g., element1, element2 ::= definition

B.2 Global Structure

compiler library ::= basic rules [semantics transformations]
| [basic rules] semantics transformations

basic rules ::= rule category basic rule*

rule category ::= CATEGORY category

category ::= ARITHMETIC | CONVERT | LOADSTORE
| MOVE | CONTROL | SPILL | CALLING

B.3 Basic Rules

basic rule ::= cosy ir [basic rule condition ] [ cosy condition ]
[ nonterminal constraint ] [control clause ] [readwrite clause ]
[ scratch registers ] [semantics pattern ] [result clause ]
[ node assignment ]

B.3.1 CoSy IR

cosy ir ::= COSYIR mir source expression [ ’->’ mir destination expression ]

mir source expression, mir destination expression ::= ccmir expression
| nonterminal expression

nonterminal expression ::= nonterminal placeholder
| spill nonterminal

nonterminal placeholder ::= [ SIGNED ] [ UNSIGNED ] [ IMMEDIATE ]
[ REGISTER ] [ ADDRESS ] [ CONDITION ]
[MEMORY] placeholder name

placeholder name ::= identifier

spill nonterminal ::= Spill

ccmir expression ::= ccmir binary expression | ccmir unary expression
| ccmir primary expression

ccmir binary expression ::= node name ’:’ binary node ’(’ mir operand ’,’
mir operand ’)’
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binary node ::= mirPlus | mirMult | mirAnd | mirOr | mirXor | mirAddrPlus
| mirDiv | mirAddrDiff | mirDiff | mirShiftLeft | mirShiftRight
| mirShiftRightSign | mirAssign | mirCompare | mirReturn
| mirMod | mirBitInsert | mirBitExtract

ccmir unary expression ::= node name ’:’ unary node ’(’ mir operand ’)’

unary node ::= mirNot | mirNeg | mirConvert | mirContent | mirGoto
| xirFuncCall | mirCall | mirActual

ccmir primary expression ::= node name ’:’ primary node

primary node ::= mirObjectAddr | mirIntConst | mirNoExpr | mirAddrConst
| mirBoolConst | mirRealConst | mirNil

mir operand ::= ccmir expression
| nonterminal placeholder

node name ::= identifier

B.3.2 Rule Condition

basic rule condition ::= RULE COND rule conditions

rule conditions ::= type size compare((’||’ | ’&&’) type size compare )*

type size compare ::= type size ’==’ type size
| type size ’!=’ type size
| type size ’>’ type size
| type size ’>=’ type size
| type size ’<’ type size
| type size ’<=’ type size

type size ::= ’SIZEOF’ ’(’ target C data type ’)’
| ’SIZEOF’ ’(’ LARGEST IMM NT ’)’

target C data type ::= CHAR | SHORT | INT | LONG | POINTER

B.3.3 CoSy Condition

cosy condition ::= CONDITION ’{’ condition elements ’}’

condition elements ::= condition element ( ( ’||’ | ’&&’) condition element )*
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condition element ::= [’!’] condition name ’(’ condition operands ’)’
[’!’] condition operand
[’!’] ’(’ condition elements ’)’

condition name ::= identifier

condition operands ::= condition operand ( ’,’ condition operand )*

condition operand ::= node name
| node name ’.’ node attribute name
| nonterminal size
| type size
| integer

nonterminal size ::= ’SIZEOF’ ’(’ placeholder name ’)’

node attribute name ::= identifier

B.3.4 Nonterminal Constraint

nonterminal constraint ::= NONTERMINAL CONSTRAINT
constraint ( ( ’||’ | ’&&’) constraint )*

constraint ::= nonterminal name ’==’ nonterminal name
| nonterminal name ’!=’ nonterminal name
| nonterminal size ’>=’ type size
| nonterminal size ’>’ type size
| nonterminal size ’==’ type size

nonterminal name ::= placeholder name

B.3.5 Control Clause

control clause ::= CONTROL control type

control type ::= call | branch | fallthrough

B.3.6 Read/Write Clause

readwrite clause ::= read clause [ write clause ] | [ read clause ] write clause

read clause ::= READ MEMORY ’;’

write clause ::= WRITE MEMORY ’;’



B.4 Semantics Transformations 199

B.3.7 Scratch Registers

scratch registers ::= SCRATCH scratch name ( ’,’ scratch name )* ’;’

scratch name ::= identifier

B.3.8 Semantics Pattern

semantics pattern ::= PATTERN’{’ compiler semantics ’}’

B.3.9 Node Assignment

node assignment ::= ASSIGNMENT ’{’ assignment+ ’}’

assignment ::= destination node expression ’=’ source node expression ’;’

destination node expression ::= node name ’.’ node attribute name

node attribute name ::= identifier

source node expression ::= node name [ ’.’ node attribute name ]
| integer

B.3.10 Result Clause

result clause ::= RESULT nonterminal name

B.4 Semantics Transformations

semantics transformations ::= Transformations transformation+

transformation ::= semantics transform
| transformation function

semantics transform ::= ORIGINAL assignment statement
[scratch clause]
TRANSFORM ’{’ semantics statement+ ’}’

transformation function ::= TRANSFORATION ’(’ integer ( ’,’
nonterminal placeholder )* ’)’ [scratch clause]
’{’ semantics statement+ ’}’
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B.5 Compiler Semantics

compiler semantics ::= semantic statement+

semantic statement ::= assignment statement
| if else statement
| non assignment statement
| label statement

B.5.1 Assignment Statement

assignment statement ::= source expression ’->’ destination expression ’;’

source expression ::= micro operation expression [ ’<’ offset ’,’ width ’>’]
| uop operands [ ’<’ offset ’,’ width ’>’]
| constant expression

destination expression ::= uop operands [ ’<’ offset ’,’ width ’>’]
| indir expression [ ’<’ offset ’,’ width ’>’]

B.5.2 Label Statement

label statement ::= label name ’:’ [’<’ label width ’>’]

label name ::= ”LLabel ” integer

label width ::= integer

B.5.3 IF-ELSE Statement

if else statement ::= IF ’(’ conditions ’)’ ’{’ assignment statement+ ’}’
[ ELSE ’{’ assignment statement+ ’}’ ]

| IF ’(’ conditions ’)’
CONSTANT ASSIGNMENT ’(’ nonterminal name ’)”;’

conditions ::= condition ( (’||’ | ’&&’) condition )*
| ’(’ conditions ’)’

condition ::= equal | not equal | signed greater | unsigned greater
| signed greater equal | unsigned greater equal
| signed less | unsigned less
| signed less equal | unsigned less equal
| CF | OF | NF | ZF
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equal ::= EQ ’(’ compare operand ’,’ compare operand ’)’

not equal ::= NE ’(’ compare operand ’,’ compare operand ’)’

signed greater ::= GTI ’(’ compare operand ’,’ compare operand ’)’

unsigned greater ::= GTU ’(’ compare operand ’,’ compare operand ’)’

signed greater equal ::= GEI ’(’ compare operand ’,’ compare operand ’)’

unsigned greater equal ::= GEU ’(’ compare operand ’,’ compare operand ’)’

signed less ::= LTI ’(’ compare operand ’,’ compare operand ’)’

unsigned less ::= LTU ’(’ compare operand ’,’ compare operand ’)’

signed less equal ::= LEI ’(’ compare operand ’,’ compare operand ’)’

unsigned less equal ::= LEU ’(’ compare operand ’,’ compare operand ’)’

compare operand ::= micro operation expression [ ’<’ offset ’,’ width ’>’]
| uop operands [ ’<’ offset ’,’ width ’>’]
| constant expression

B.5.4 Non-assignment Statement

non assignment statement ::= NOP ’;’
| TRANSFORMATION ’(’ integer ( ’,’

transform operand )* ’)’
transform operand ::= micro operation expression [ ’<’ offset ’,’ width ’>’]

| uop operands [ ’<’ offset ’,’ width ’>’]
| constant expression

B.5.5 Micro-operation

micro operation expression ::= micro binary expressions
| micro unary expressions
| intrinsic expressions

micro binary expressions ::= binary operators [ affected flags ] ’(’ operand ’,’
operand ’)’
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binary operators ::= ADD | ADDC | ASR | SUB | SUBC | MULII
| MULIU | MULUU | AND | OR | XOR
| LSL | LSR | ROTL | ROTR

micro unary expressions ::= unary operators [ affected flags ] ’(’ operand ’)’

unary operators ::= NOT | NEG | SXT | ZXT | INDIR

intrinsic expression ::= ’ ” ’intrinsic name’ ” ’ [ affected flags ] ’(’ [operand (’,’
operand)*] ’)’

intrinsic name ::= ’ ’ identifier

operand ::= micro operation expression [ ’<’ offset ’,’ width ’>’]
| uop operands [ ’<’ offset ’,’ width ’>’]
| constant expression

B.5.6 Operands

uop operands ::= REGISTER PC | FP | SP | CF | OF | NF | ZF
| nonterminal name ’.’ nonterminal attribute name
| nonterminal name
| nonterminal placeholder
| SYMBOL ’(’ symbol name ’)’
| label name

symbol name ::= ’ ’ identifier

constant expression ::= nonterminal size
| calculation

calculation ::= calculation operand ( ( ’+’ | ’-’ | ’*’ | ’ˆ ’ ) calculation operand )*

calculation operand ::= integer
| type size
| ’(’ calculation ’)’

offset , width ::= constant expression

affected flags ::= ’|’ flag ( ’,’ flag )* ’|’

flag ::= C | O | N | F

B.6 Miscellaneous

identifier ::= character ( character | figure | ’ ’ )+



B.6 Miscellaneous 203

integer ::= figure+

figure ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

character ::= ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’ | ’m’
| ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
| ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’
| ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’

| ’Z’
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