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Introduction

The precise orchestration of cell adhesion and cell communication is indispensable 
for development, and particularly important for nervous system wiring and plasticity. 
Among the numerous cell adhesion molecules of the immunoglobulin superfamily 
dedicated to this task, the neural cell adhesion molecule NCAM stands out as a 
developmentally regulated switch in its pattern of glycosylation, which fundamen-
tally alters its biophysical properties and, as a consequence, its binding abilities. 
The glycan responsible for the conversion of different NCAM isoforms from an 
interactive to an anti-adhesive state is a linear hompolymer of a2,8-linked 
N-acetylneuraminic acids called polysialic acid (polySia,1 Fig. 1). The large nega-
tively charged and highly hydrated structure can extend beyond the protein core and 
double the hydrodynamic radius of the extracellular part of NCAM, thereby 
increasing the intermembrane space and disrupting the adhesive properties of 
NCAM and other cell adhesion molecules [1–3]. As highlighted by several recent 
reviews, polySia is a prominent regulator of neural cell migration and differentia-
tion during nervous system development, and tightly associated with neurogenesis 
and synaptic plasticity in the adult brain [4–8]. Here, we briefly review the patterns 
of polySia expression during ontogenesis and its potential role in tumor progression 
before discussing its regulation by the two polysialyltransferases ST8SiaII and 
ST8SiaIV, as well as the latter’s the individual and combined impact of these 
enzymes on NCAM polysialylation during brain development.
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Developmental Regulation of NCAM Polysialylation

As first described 25 years ago, the hallmark of NCAM polysialylation is its regulation 
during development [9, 10]. Although essentially confined to the nervous system 
development and plasticity, polySia is transiently expressed in mesodermal and 
endodermal derivatives during organogenesis [11, 12]. NCAM does not carry 
polySia during the time of its first appearance on embryonic day 8–8.5 in the 
mouse, but shortly thereafter, polysialyated NCAM becomes predominant, reach-
ing its maximum in the perinatal phase [13–15]. As shown by Western blot analyses 
of whole brain lysates, polySia expression keeps pace with the rapid increase in 
brain weight until day 9 of postnatal development, and almost all of the NCAM is 
polysialylated [16]. Subsequently, polySia drops rapidly, by approximately 70% 
within 1 week, accompanied by the first occurrence of polySia-free NCAM-140 
and NCAM-180, the two transmembrane isoforms (see Fig. 1) that are the major 

Fig. 1  Scheme of the three major NCAM isoforms (left) and the polysialylated form of NCAM 
(right). The extracellular part of NCAM is composed of five immunoglobulin(Ig)-like domains 
and two fibronectin type III (FnIII) repeats. NCAM-180 and NCAM-140 are transmembrane 
proteins which differ in the length of their intracellular part, whereas NCAM-120 is attached to 
the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. NCAM is a glycoprotein 
containing 6 N-glycosylation sites. In the polysialylated form of NCAM (polySia-NCAM), the 
N-glycans located at the 5th and 6th N-glycosylation site are modified by one or more polySia 
chains. The hydrodynamic radius of polySia is depicted as a shaded sphere
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polySia carriers in mouse brain. By contrast, glycosylphosphatidylinisotol-anchored 
NCAM-120, the characteristic isoform of mature oligodendrocytes, is devoid of 
polySia during its massive upregulation in the early postnatal brain, which is asso-
ciated with the onset of myelination [16]. Thus, the time-course of polySia down-
regulation and the dramatic increase of polySia-free NCAM coincide with the 
completion of major morphogenetic events within the first 3  weeks of postnatal 
brain development. However, as reviewed in great detail elsewhere, the expression 
of polysialylated NCAM persists into adulthood and is maintained at sites of ongo-
ing neurogenesis or plasticity [5, 17]. In the absence of any known polySia-specific 
degrading enzyme to modulate polySia on the surface of vertebrate cells, the state 
of NCAM polysialylation depends predominantly on the biosynthetic pathway. 
This is underscored by the observation that the largely overlapping expression pat-
terns of the polysialyltransferases ST8SiaII and ST8SiaIV are closely correlated 
with polySia immunoreactivity (see [18] for review). In addition to transcriptional 
control, polysialylation of NCAM is likely to be regulated by nontranscriptional 
mechanisms. As shown in the developing chick, polySia synthesis depends on cal-
cium from intracellular compartments [19] and based on pharmacological and 
correlative studies, a protein kinase C-dependent regulation of polysialyltransferase 
activity has been suggested [20, 21]. Moreover, experiments with cultured neurons 
and insulin secreting b-cells indicate the possibility of a rapid mobilization of poly-
sialylated NCAM to the cell surface by an activity- and calcium-dependent mecha-
nism suggesting regulation of an exocytotic pathway [22]. Similarly, regulated 
exocytosis may contribute to the activity-dependent modulation of polySia required 
for hippocampal synaptic plasticity [23].

Re-expression of Polysia in Tumors

Although polySia is diminished in the majority of tissues during development, vari-
ous tumors are known to re-express polySia [24–26]. Among the polySia-positive 
tumors are small cell and non-small cell lung carcinomas, multiple myeloma, 
Schwann cell tumors, pituitary tumors, Wilms’ tumor, rhabdomyosarcoma and 
neuroblastoma [27–36]. A comparative study carried out with isogenic cell lines 
expressing NCAM with or without polySia identified polySia as a modulator of the 
malignant potential of small cell lung carcinoma [37]. The occurrence of polySia 
seems to facilitate the detachment of tumor cells from the primary tumor and pre-
sumably promotes the invasion and metastatic potential of these tumors [36–40]. 
As indicated by results obtained in vitro, polySia supports the undifferentiated state 
of tumor cells [41, 42]. In patients with neuroblastoma or rhabdomyosarcoma, high 
polySia serum levels have been correlated with poor prognosis and polySia itself as 
well as the transcript level of the polysialyltransferase ST8SiaII were suggested as 
molecular markers to monitor metastatic neuroblastoma [31, 32, 43, 44]. On the 
other hand, nonpolysialylated NCAM suppresses tumor progression in xenografted 
tumor cells and correlates inversely with malignancy [45–47]. Thus, polySia 
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represents an oncodevelopmental antigen, which significantly contributes to tumor 
growth and metastasis.

PolySia Biosynthesis

Biosynthesis of polySia is catalyzed by two Golgi resident enzymes, the polysialyl-
transferases ST8SiaII and ST8SiaIV (formerly named STX and PST, respectively, 
Fig. 2) [48–51]. Both enzymes show 59% identity on the amino acid sequence level 
and share the typical features of eukaryotic sialyltransferases. They are type II 
transmembrane glycoproteins with a short N-terminal cytoplasmic tail, a transmem-
brane domain, a stem region, and a large C-terminal catalytic domain that resides 
in the lumen of the Golgi apparatus. The catalytic domain includes three consensus 
sequences called sialylmotifs L, S, and VS that are found in all mammalian sialyl-
transferases and are involved in substrate binding [52, 53]. Although ST8SiaII and 
ST8SiaIV are typical members of the sialyltransferase family, they are unique with 
respect to their catalytic ability to synthesize polySia, i.e. a2,8-linked sialic acid 

Fig.  2  (a) Schematic representation of the polysialyltransferases ST8SiaII and ST8SiaIV 
showing the transmembrane domain (TMD) and the sialylmotifs large (L), small (S), and very 
small (VS) of the catalytic domain. The relative positions of the N-glycans are indicated by 
Y-shaped symbols. (b) Type II transmembrane topology of polysialyltransferases
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polymers which can exceed 50 residues [15, 54–56]. In accordance with this, only 
sialic acid oligomers with £7 residues were observed in ST8SiaII/ST8SiaIV double 
deficient mice [15]. Since no mammalian sialyltransferase has been crystallized so 
far, insight in the structural and/or mechanistic differences between mono-, oligo-, 
and polysialyltransferases is missing.

In contrast to most glycosyltransferases, which modify glycan structures irre-
spective of the carrier protein, the polysialyltransferases ST8SiaII and ST8SiaIV 
are highly selective for NCAM, which is by far the predominant polySia acceptor. 
Besides NCAM, a limited number of other polysialylated proteins have been 
described including the a-subunit of the voltage-gated sodium channel in rat 
brain [57], the scavenger receptor CD36 in human milk [58], neuropilin-2 on 
human dendritic cells [59], and the polysialyltransferases themselves, which can 
polysialylate their own N-glycans in a process termed autopolysialylation [60–
62]. However, the complete loss of polySia in the brain of ST8SiaII/ST8SiaIV 
double deficient mice indicates that in the central nervous system polysialylation 
of potential alternative acceptor molecules also depends on ST8SiaII and 
ST8SiaIV activity [63]. Future studies are required to elucidate the enzyme 
responsible for polysialylation of these molecules. With regard to NCAM, both 
enzymes ST8SiaII and ST8SiaIV have been shown to catalyze the transfer of 
multiple a2,8-linked sialic acid residues to terminally a2,3- or a2,6-sialylated 
galactose residues that are bound in a1,4-linkage to N-acetyl glucosamine [64, 
65]. Although NCAM carries six N-glycosylation sites, the addition of polySia is 
restricted to N-glycans at the 5th and 6th site which are located in the 5th Ig-like 
domain (Fig.  1) [66–68]. Structural analysis of polysialylated N-glycans of 
NCAM revealed complex structures with a high degree of heterogeneity. PolySia 
was found on di-, tri-, and tetraantennary glycans that were, in part, additionally 
modified by fucose, sulfate and uronic acid residues [67–71]. These findings 
indicate that the pronounced acceptor specificity of polysialyltransferases is not 
mediated by the recognition of a particular glycan structure, but by the specific 
interaction with the NCAM protein core. Crystallization of the first FNIII domain 
of NCAM revealed a unique acidic surface patch and a novel a-helix between 
b-strand 4 and 5, two structural motifs essential to allow polysialylation of the 
N-glycans in the adjacent 5th Ig-like domain [72]. In accordance with a specific 
enzyme-acceptor protein interaction, in  vitro studies demonstrated that both 
ST8SiaII and ST8SiaIV polysialylate N-glycans attached to NCAM with a much 
higher efficiency than isolated N-glycans released from NCAM [73, 74]. The 
majority of polysialylated NCAM glycans in perinatal mouse brain was found to 
carry two polySia chains [56]. However, incomplete diantennary N-glycans with 
only one polySia polymer as well as a small proportion of glycans that appeared 
to carry three or even four chains were also observed [56]. This highlights that 
the number of polySia chains per NCAM molecule can vary. At this level, hetero-
geneity depends not only on the polysialyltransferases but also on the glycosyla-
tion machinery, which determines the number of polySia acceptor sites on 
NCAM, i.e. the number of terminally sialylated antennae provided by the 
N-glycans at site five and six (Fig. 3).
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Transfection and in vitro experiments unequivocally demonstrated that ST8SiaII 
and ST8SiaIV are individually able to synthesize polySia on NCAM [48–51, 64, 
73], provoking the question why NCAM polysialylation is mediated by two 
enzymes. In vitro analyzes using soluble polysialyltransferases lacking their trans-
membrane domain revealed distinct differences between ST8SiaII and ST8SiaIV. 
Under the in vitro conditions used, ST8SiaII produced shorter polySia chains than 
ST8SiaIV and appeared to be less efficient in NCAM polysialylation [75, 76]. If 
both enzymes worked together, a synergistic effect was observed, yielding higher 
numbers of polySia chains and a higher degree of polymerization [65, 75]. Using 
N-glycosylation site mutants of NCAM, Angata et  al. observed that ST8SiaIV 
strongly preferred the sixth over the fifth N-glycosylation site, whereas this prefer-
ence was only moderate for ST8SiaII [65].

To understand the impact of ST8SiaII and ST8SiaIV in  vivo, genetic mouse 
models lacking either ST8SiaII or ST8SiaIV were generated, which show only 
partial loss of polySia [77, 78]. The biochemical analysis of the polySia pattern in 
perinatal brain of polysialyltransferase-deficient mice revealed striking differences 
in the ability of the two enzymes to polysialyate the complete NCAM pool and 
highlighted that, in contrast to the in vitro findings, ST8SiaII but not ST8SiaIV is 

Fig. 3  Potential for variability in NCAM polysialylation. The polysialylation pattern of NCAM 
is defined by the interplay of ST8SiaII and ST8SiaIV and can vary with respect to the number of 
polySia chains per NCAM, the length of each individual polySia chain, and the ratio of polysia-
lylated to polySia-free NCAM
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much more efficient in NCAM polysialylation. Whereas in wild-type and 
ST8SiaIV-null mice almost all NCAM is kept in the polysialylated state at postnatal 
day one, 45% of the brain NCAM was found polySia-free in ST8SiaII-deficient 
mice [15]. The quality of the polysialylated NCAM, however, was remarkably 
similar in all three genotypes [56]. Independent of the enzyme setting, N-glycosyation 
sites 5 and 6 were almost completely polysialylated and the same set of heteroge-
neous N-glycans served as polySia acceptors, excluding differential glycan accep-
tor specificities for ST8SiaII and ST8SiaIV. In vivo, ST8SiaII and ST8SiaIV are 
both able to synthesize polySia chains with up to 90 sialic acid residues [56]. 
However, at the fifth N-glycosylation site, loss of either enzyme resulted in slight 
alterations of the chain length pattern and the highest amount of long polySia 
chains was found in the presence of both enzymes. Thus, in line with the in vitro 
findings a synergistic action in the synthesis of polySia with a high degree of 
polymerization was observed, although in vivo, this effect is restricted to the fifth 
N-glycosylation site [56]. A comprehensive study of the NCAM polysialylation 
pattern in perinatal brain of mice with variant allelic combinations of ST8SiaII and 
ST8SiaIV demonstrated that alterations in the expression of the two polysialyl-
transferases affect the total amount of polySia, the chain length distribution, the 
ratio of polysialylated to polySia-free NCAM, and the amount of polySia per 
NCAM molecule [15]. Thus, the degree of NCAM polysialylation can be precisely 
adjusted by alterations in the ST8SiaII and ST8SiaIV level (Fig. 3).

Although the data are not consistent in all details, there is a close correlation 
between polySia immunoreactivity and the combined mRNA expression of poly-
sialyltransferases [14, 33, 79–82]. Despite considerable overlap, there are marked 
differences in tissue- and time-specific mRNA expression patterns suggesting an 
independent regulation of ST8SiaII and ST8SiaIV at the transcriptional level. Most 
notably, ST8SiaII is predominant during embryonic development, while ST8SiaIV 
is the major polysialyltransferase of the adult brain [16, 79, 81, 82]. In contrast to 
earlier Northern blot analyzes indicating manifold higher ST8SiaII levels in the 
embryonic and perinatal phase [14, 81, 82], recent studies using real-time quantita-
tive RT-PCR determined that the ST8SiaII transcript level in perinatal mouse brain 
is less than twofold higher than the level of ST8SiaIV [15, 16]. The factors respon-
sible for the joint but sometimes distinct regulation of the two polysialyltranserases 
are largely unknown. Initial investigations of the proximal promoter regions of the 
polysialyltransferases provided first evidence for specific regulatory elements 
[83–85]. As shown in human tumor cells two drugs, retinoic acid and valproic acid, 
are able to differentially affect polysialyltransferase mRNA levels [86, 87] and 
elevated polySia levels due to overexpression of the developmentally regulated 
transcription factor Pax3 could be assigned to a specific increase of ST8SiaII 
mRNA [88]. However, the data available so far are not sufficient to explain how the 
spatial and temporal expression patterns of ST8SiaII and ST8SiaIV are regulated.

In contrast to the mouse system, expression analysis, gene-targeted knockdown 
experiments, and in vitro catalytic assays indicate that in the developing and adult 
zebrafish ST8SiaII is the major, if not the only enzyme capable of performing 
NCAM polysialylation [89]. The evolutionary divergence of ST8SiaIV in bony-fish 
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supports the assumed functional loss of ST8SiaIV [89]. Despite the very low 
expression levels of ST8SiaIV reported by Marx et al. [89], a recent study describes 
partially overlapping expression domains of ST8SiaII and ST8SiaIV throughout the 
mature zebrafish brain [90]. Evidently, the function of ST8SiaIV in zebrafish 
remains to be elucidated.

Phenotype of Polysia-deficient Mice

The finding that, at least in mammals, both polysialyltransferases can partially 
compensate for each other is reflected by the mild but distinct phenotypes of mice 
lacking only one polysialyltransferase [77, 78]. In perfect agreement with the pre-
dominance of ST8SiaII during embryonic and early postnatal development, 
ST8SiaII-deficient mice display neurodevelopmental defects manifesting in the 
aberrant topology of hippocampal mossy fiber projections [78]. In contrast, and 
consistent with the prevalent expression of ST8SiaIV in the adult, the lack of 
ST8SiaIV gives rise to markedly impaired synaptic plasticity in the CA1 subregion 
of the hippocampus without detectable morphological defects [77]. In extension of 
this finding, a prominent role of polySia in regulating ionotropic receptor functions 
involved in long-term potentiation and memory formation was unraveled [91–94].

Since NCAM is the major carrier of polySia in mammalian brain development, 
mice with genetic ablation of NCAM are almost completely devoid of polySia [95]. 
While the overall brain architecture of these mice is surprisingly normal, two major 
morphological aberrations have been described and extensively studied. One is a 
dramatic reduction in the size of the olfactory bulbs caused by a migration deficit 
of newly born olfactory bulb interneurons derived from the subventricular zone 
[96–99]. The other is a defective lamination of mossy fibers projecting from the 
dentate gyrus to the CA3 subfield of Ammon’s horn [96, 100, 101]. Both pheno-
typic traits must be explained by the loss of polySia and not NCAM because they 
could be copied by enzymatic removal of the sugar polymer leaving the NCAM 
protein backbone unaltered [97, 101]. It was therefore not surprising that the mal-
formations found in NCAM-/- animals also develop in the polySia-deficient 
ST8SiaII-/- ST8SiaIV-/- double knockout mice [63]. Since polySia impairs not only 
NCAM but also other cell surface interactions [1–3], the prevailing view is that the 
structural deficits shared by polysialyltransferase-deficient and NCAM-knockout 
mice are due to aberrant, NCAM-independent cell surface interactions induced by 
the absence of polySia [8]. In the particularly well-studied case of precursor migra-
tion toward the olfactory bulb, the lack of polySia in NCAM-/- mice disturbs not 
only contacts within the chains of migrating cells but also the interactions with their 
stationary environment, which is dramatically altered due to a massive astrogliosis 
[99]. A recent report on polysialyltransferase double-knockout mice confirmed that 
defective chain migration in the absence of polySia is associated with altered mor-
phology of astroglia [102]. Interestingly, this study describes more widespread defi-
cits of precursor cell migration during cerebral cortex development together with a 
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general up-regulation of the astrocytic marker GFAP in the forebrain of ST8SiaII−/− 
ST8SiaIV−/− mice and reveals that the absence of polySia promotes PDGF-induced 
differentiation of astroglia in vitro.

Considering the prominent role assigned to polysialylation of NCAM during 
developmental plasticity (see [8] for a recent review), the overall mild phenotype 
of mice lacking polySia due to NCAM deficiency was puzzling. Only after poly-
Sia could be ablated independent from NCAM the vital role of polysialylation 
became apparent. Beyond the recapitulation of major defects in brain morphol-
ogy as described for NCAM deficient mice, the block of polysialic acid biosyn-
thesis in ST8SiaII−/− ST8SiaIV−/− double knockout animals leads to additional, far 
more severe defects [63]. Although born overtly normal and at the expected 
Mendelian ratio, the polysialyltransferase-deficient mice suffer from drastic 
growth retardation in the early postnatal phase and more than 80% of these mice 
die during the first 4  weeks. With regard to brain development ST8SiaII−/− 
ST8SiaIV−/− animals are characterized by a high incidence of hydrocephalus and 
severe malformations of a specific set of brain fiber tracts. Remarkably, all of 
these defects found in the ST8SiaII−/− ST8SiaIV−/− but not in the NCAM−/− mice 
are rescued by the additional ablation of NCAM demonstrating that the untimely 
appearance of “naked,” i.e. polySia-free NCAM causes the fatal developmental 
phenotype [7, 63]. These findings prove that the abundant expression of polySia 
during development is an essential control mechanism to specifically regulate 
NCAM interactions.

Future Directions

Future work will aim at dissecting the different molecular and cellular mechanisms 
underlying the changes induced by regulating polysialylation of NCAM in vivo and 
at making use of this knowledge in novel experimental and therapeutic approaches. 
Particularly interesting is the recent progress made in animal models of peripheral 
and central nervous system repair by applying polySia via engineered overexpres-
sion of polysialyltransferases as well as in steering the migratory capacity of 
Schwann cells and embryonic stem cell-derived glial precursors [103–110]. 
Complementary, first studies indicate that purified or synthetic polySia may prove 
useful as a biocompatible, and bioresorbable material for nerve tissue engineering 
[111–114]. Further challenges involve testing if enzymatic degradation of polySia 
by target-oriented application of phage-derived endosialidases [115–117], manipu-
lation of endogenous polysialyltransferase activity and/or the use of NCAM or 
polySia peptide mimetics [118–120] have the potential to affect tumor development 
or to trigger endogenous brain repair processes.
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