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Introduction

In this review, we will discuss the role of the neural cell adhesion molecule [1] in
emotion and learning. Classically, the behavioral role attributed to NCAM has been
in learning, memory, and neural plasticity [2, 3]. However, increasing evidence
presented over the past few years is also unraveling a role of NCAM on emotional
behavior. After a brief introduction about the NCAM molecule, we will start
reviewing its role in emotion, particularly in unlearned emotional responses, such
as anxiety and aggression. In the second part of this review, we will address the role
of NCAM in learning and memory processes to finally propose a role for this
molecule at the interface between emotion and learning.

General Features of NCAM in the Central Nervous System:
Molecular Structure and Function

NCAM is a member of the immunoglobulin superfamily of cell adhesion molecules.
It is characterized by the presence of immunoglobulin homology domains
(Ig-domains) in its extracellular part. NCAM is encoded by a single gene on chro-
mosome 9 in mice [4] and 11 in humans [5] and undergoes differential splicing of
the messenger RNA [6, 7]. The three main splice variants of NCAM are named
according to their approximate molecular weights: NCAM180, NCAM140, and
NCAM120. Within the central nervous system, NCAM180 appears to be the iso-
form enriched at postsynaptic sites, while NCAM140 is expressed both in neurons
(pre and postsynaptically) and glia, and NCAM120 predominantly in glia [8, 9].
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Post-translational attachment of long chains of the polysaccharide polysialic
acid (PSA) to NCAM (PSA-NCAM) allows NCAM an additional mechanism to
control synaptic functioning. In the adult brain, PSA-NCAM is mainly present in
regions capable of undergoing some kind of structural plasticity [10], such as the
hypothalamo-neurohypophyseal system [11], the olfactory bulb [12], the piriform
and entorhinal cortices [13], the amygdala [14] hippocampus [13], and prefrontal
cortex [14]. PSA is proposed to decrease NCAM-mediated membrane—membrane
adhesion in vitro [15, 16], presumably due to its very large hydrated volume or
negative charge or both [9, 17, 18].

NCAM is highly expressed at synaptic junctions. Neuronal activity regulates the
functioning of synapses with a potential to either enhance or depress synaptic
strength. During development, selective expression of cell adhesion molecules is
proposed to regulate embryogenesis by dictating patterns of cell differentiation
followed either by stabilization or selective elimination of synapses, as a mechanism
of finetuning cellular connections [19]. Moreover, during development, neurite
outgrowth is associated with the cell being in a de-adhesive state. When the neurite
reaches and innervates the correct area, adhesiveness is increased so that the cell
becomes locked in position. This modification in adhesion is controlled by
homophilic cell-cell binding via cell adhesion molecules such as NCAM [20].
In addition to development, learning, and memory, LTP, aging, stress, and
neuro-regeneration are all events that can also stimulate synaptic reorganization.
Cumulative evidence indicates a key role for NCAM in the neural remodeling
accompanying all these events.

NCAM and Emotion

Altered emotional behaviors have mainly been studied in adult male mice expressing
a null mutation in the NCAM gene. Initial work demonstrated that NCAM-KO
mice show enhanced anxiety in an emergence test, as indicated by their increased
latencies to leave from a small box and explore an open environment [21]. An
increased anxiety-like behavior of NCAM-deficient mice was also found in the
light/dark avoidance test [22]. This effect was then shown to be gender and genetic
background-independent and could be influenced by application of a low dose of
the 5-HT |, serotonin receptor agonists, either buspirone or 8-hydroxy-2-(di-n-
propylamino)-tertraline (8-OH-DPAT), which at the same dose showed no anxi-
olytic effect in wild-type controls [22]. This suggested a functional alteration of the
serotonergic system in these mice likely to be involved in their altered anxiety-like
responses. Although the authors found little evidence for the existence of regional
differences in serotonin receptor expression, they did find a slight reduction in the
level of the 5-HT,, receptor expression in the hippocampus and the amygdala of
NCAM-KO mice.

In support of an altered serotonergic system is also the finding that NCAM-KO
mice show enhanced aggression toward an unfamiliar intruder male, which was
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accompanied by a greater post-intruder hormonal stress response [23]. Analysis of
c-fos mRNA levels to monitor neuronal activation after the intruder stress revealed
greater neuronal activity when compared with wild type controls in limbic areas,
including the amygdala, a brain region known to be involved in modulating
emotional responses.

Exploratory behavior is a basic adaptive behavioral response in rodents. When
an animal is presented with a new environment, it is normally motivated to explore.
Perturbations in this response are indicative of alterations in emotionality.
NCAM-KO mice were found to show enhanced exploratory activity in response to
challenging and novel environments, such as the light/dark avoidance test [22]
and the elevated plus maze [24], which has been proposed to be related to their
enhanced amygdala activation and/or the greater stress response (see above). On its
turn, this enhanced exploratory behavior of NCAM-deficient mice could also
explain the contradictory anxiolytic behavior, which was reported in the elevated
plus maze [24].

In order to further investigate the role of specific NCAM isoforms in emotional
behaviors, the effect of manipulating the levels of the NCAM180 isoform was
analyzed in the presence or absence of endogenous NCAM in mice. While transgenic
overexpression of NCAM180 was without apparent behavioral and morpho-
logical effects, its expression in NCAM-deficient mice rescued many of the effects
induced by NCAM ablation; i.e., it counteracted the following effects observed in
NCAM-KO: (1) the enhanced intermale aggression displayed in the intruder test
[25]; (2) the increased anxiety-like behavior in the light/dark avoidance test; and (3)
partially, the hyperactivity displayed in the elevated plus maze [24]. Transgenic
induction of NCAM180 in NCAM-KO mice also prevented the hypersensitivity
of NCAM-KO mice to the anxiolytic effects of buspirone, which suggests the involve-
ment of NCAM180 on the development and/or maintenance of the functionality of
the serotonergic system, which might represent an important link between NCAM
and the regulation of emotional behaviors. Together, these studies indicate that
deletion of the NCAM gene is associated with abnormal emotional responding and
that the NCAM180 isoform plays a pivotal role in emotional behavior.

Research to elucidate the role of NCAM in learning and memory has been
greatly aided by the development of mimetic peptides with the ability to bind and
modulate the activity of NCAM. In addition to the above described findings in
genetically mutant mice, there is upcoming evidence from pharmacological studies
that further supports a role for NCAM in emotional behaviors. Peptides which
interact either with NCAM homophilic binding (P2 peptide; a 12-amino-acid peptide
derived from the second immunoglobulin-like (Ig) module of NCAM and able to
interact with cis-homophilic) have been shown to alter emotional behaviors. For
example, administration of the P2 peptide intracerebroventricularly was shown to
reduce anxiety, associated with performance in a learning task (i.e. the T-maze), and
exploratory activity in an open field test [26]. Another peptide, C3d, binds to the
NCAM IgI module and is able to trigger intracellular signaling cascades in vitro,
which are similar to those activated by homophilic NCAM binding [27].
Intracerebroventricular injection of this peptide had no acute effect on exploratory



274 L. Conboy et al.

behavior in an open field test, but dramatically reduced exploratory activity when
C3d injected rats were re-exposed to the same arena 3-h and 24-h post-injection.
This effect was not a consequence of sensorimotor impairments as peptide-treated rats
performed without any significant differences on a rotarod and when explorative
motility was accessed in an activity cage [28].

Emotional behavior is to a large extent associated with the development of
psychiatric disorders. A few recent studies have shown some evidence to implicate
NCAM in mood disorders. Thus, an increase in the CSF levels of the soluble
100-120kDa NCAM fragments has been found in patients with bipolar mood
disorder type I and recurrent unipolar major depression [29, 30]. This increased
presence of 120-kDa NCAM fragment in the CSF was postulated to derive form
enhanced proteolytic cleavage of most of the extracellular region of transmembrane
NCAM isoforms [31]. The complex nature of the extracellular region of the NCAM
molecule has been also analyzed by creating transgenic mice that overexpress a
soluble extracellular fragment of NCAM from the neuron-specific enolase promoter
which leads to expression of this transgene in late neuronal differentiation (maximally
in the neocortex and hippocampus) in adult mice [32]. Although these mice have
normal sensory and motor functions, as compared to wild-type controls they display
enhanced basal activity in the open field and in response to amphetamine and
MK-801. However, and despite presenting a decreased number of synaptic terminals
of subpopulations of GABAergic interneurons in the amygdala, these mice showed
no alterations in anxiety-levels when tested in the zero maze [32].

Further evidence for the importance of NCAM and its polysialylated form PSA-
NCAM in depression comes also from animal studies, which show that prolonged
exposure of rodents to aversive stimuli (i.e. chronic stress protocols are widely used
to model depression-like symptoms in rodents) lead to a reduction of NCAM
mRNA and protein levels mainly in the hippocampus and the prefrontal cortex
[33-43]. In contrast, PSA-NCAM expression was upregulated in the hippocampus,
but downregulated in the amygdala of rats, exposed to 3 weeks of chronic stress
[44]. Interestingly, recent studies in NCAM-KO (either constitutive or conditional,
in which the cre-recombinase is regulated under the control of the aCaMKII
promoter) mice have shown that these mice show enhanced depressive-like symptoms
such as higher immobility time in the tail suspension test (Bisaz et al. unpublished
observations) and a lower preference for sucrose solution [45]. In addition, chronic
antidepressant treatments of rats and mice, with either the selective serotonin
reuptake inhibitor fluoxetine or the tricyclic antidepressant imipramine, have
shown to increase PSA-NCAM expression in the hippocampus and the prefrontal
cortex [14, 46, 47]. These findings strongly support the hypothesis of a critical
link between stress-related mood disorders and altered NCAM and PSA-NCAM
expression [45].

In conclusion, the revised work indicates an important association between
NCAM and emotion, particularly in domains such as anxiety, intermale aggression
and depression. (See Table 1 for a comprehensive summary.) We will now review
the literature that indicates a link between NCAM and learning and memory
processes.
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NCAM in Learning: Functional Studies

Learning can be defined as a process by which new information is acquired,
whereas memory is the process by which this information is retained. The process
of transferring learned information into memory is known as consolidation and is
intimately linked to the functioning of the hippocampus [48, 49]. Cognitive tests for
rodents have been developed to capitalize on normal behavioral responses often
using fear, hunger or innate curiosity to motivate and strengthen learning. For
example, in the watermaze, animals are forced to learn a novel spatial map in order
to escape from water, whereas in avoidance and fear conditioning paradigms
electrical shocks are used to initiate associative memory formation. In particular, a
key role and requirement of NCAM function during learning has been particularly
demonstrated using hippocampus-dependent tasks, including avoidance conditioning
[50] and spatial learning [51]. In addition, the role of NCAM in “emotional learning”
is more typically studied with fear conditioning paradigms. Classical contextual
and auditory fear conditioning are often utilized to this end. These tasks involve the
induction of learned fear (generally manifested as a freezing response) to an initially
neutral stimulus (respective, either a new context or a tone) that is associated with
a naturally aversive stimulus (normally a footshock). Recall of the fear response can
be tested by re-exposing the animal to either the context or tone and evaluating its
conditioned fear (freezing) responses. Acquisition and consolidation of either fear
conditioning modality relies on the basolateral complex of the amygdala [52—-58], while
the hippocampus is also required in the case of contextual fear conditioning [59].
The role of NCAM in learning has been investigated by a variety of approaches,
including the examination of particular behaviors in genetically mutant (transgenic
or knockout) mice, after application of “blocking” NCAM-related antibodies or
peptides that affect (either mimicking or impairing) NCAM functioning. Constitutive
NCAM-KO are perturbed in the Morris water maze when compared to wild-type
controls [21]. As mentioned in the introduction, NCAM expression is critical during
post-natal development and, therefore, one of the problems with the constitutive
NCAM-KO mice is that their altered learning and memory might be related to
the elimination of NCAM during such period (and its consequent developmental
effects), but unrelated to the absence of NCAM in the adult brain. To overcome
this problem, a conditional knockout mouse was generated where expression of
NCAM was controlled by a Cre-recombinase system using a forebrain specific
promoter. In this conditional knockout mouse, NCAM expression is reduced
starting at around P22 onwards and, therefore, its deficit occurs after the major
neurodevelopmental events have already taken place [60]. This conditional KO of
NCAM also leads to a spatial memory deficit in adulthood, demonstrating that
post-natal NCAM expression is required for learning and memory. Evidence that
NCAM mediated processes contribute to fear memories also stem from work
performed in constitutive NCAM-KO mice. In these mice, both auditory and
contextual fear memories are impaired [24], suggesting that NCAM-mediated
consolidation processes might also be implicated in brain regions other than the
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hippocampus, because auditory fear conditioning relies on the amygdala, but does
not implicate the hippocampus.

The role of NCAM in non-associative learning was also tested by examining
habituation (a decrease in behavioral responding to a stimulus) and sensitization
(increased responding to an aversive stimulus) processes in NCAM-KO mice.
While acoustic and tactile responses were altered in NCAM-KO mice (as evaluated
by their startle responses), their ability to habituate to these stimuli was the same as
wild type mice, demonstrating habituation learning is intact. In contrast, NCAM-KO
mice exhibited impaired footshock sensitisation learning when compared with the
wild type controls [61]. Footshock sensitization is a form of contextual conditioning,
during which the context becomes a fear inducing stimulus leading to an increase
in startle response to a tone [62].

In addition to the work reviewed above in genetically mutant mice, the critical
role played by cell adhesion molecules in learning-related synaptic plasticity has been
further demonstrated using blocking antibodies and peptides that bind to NCAM.
Through these pharmacological approaches, the temporal implication of NCAM
molecules during memory consolidation could also be explored. For example, studies
where antibodies against NCAM were infused by intracerebroventricular injection
in rats trained in the passive avoidance task found NCAM antibodies to induce
memory impairment only when they where administered between 6 and 8 h
post-training, but they were ineffective if given at the time of training or at any
other time point up to 10 h following training [63]. In agreement with these obser-
vations, NCAM-specific antibodies were also found to impair passive avoidance
learning in chicks when administered to a brain region critical for that learning (the
intermediate medial hyperstriatum ventrale) at around 6—8 h post-training time
[1, 64, 65]. The requirement of NCAM in long-term memory formation was similarly
demonstrated through the use of oligonucleotides directed to NCAM [66].

In vitro evidence demonstrated that the C3d peptide could disrupt NCAM mediated
cell adhesion and modulate neuritogenesis and synaptogenesis. When given to rats
following training in the passive avoidance task, C3d prevented memory consolidation
but only when the peptide was administered within a restricted time window either
20 min before training or at 6-8 h post-training [67]. Moreover, the C3d peptide
also impaired both acquisition and recall of the Morris water maze [68] and the
consolidation of contextual fear memories when administered 5.5 post-training [69].

After homophilic binding, NCAM promotes neurite outgrowth through mecha-
nisms involving its interaction with the fibroblast growth factor receptor (FGFR1)
[25, 70, 71]. The region of NCAM that binds FGFRI1 is found in the second FnlIl
module of NCAM. A 15-aa peptide mimicking this region, termed the FGL peptide,
has been shown to bind to and activate FGFR1 and to stimulate neurite outgrowth
[25]. In vitro, the FGL peptide promotes synaptogenesis, synaptic outgrowth and
pre-synaptic functioning [25, 72], as opposed to the C3d peptide that it similarly
induces synaptogenesis and synaptic outgrowth, but impairs presynaptic functioning
[27]. In vivo, FGL effects also contrast to those induced by C3d peptide (for details,
see above). FGL strongly enhances spatial memory as shown in experiments, in
which it was administered in rats immediately after the first and second day of
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spatial training in the water maze [72]. This peptide was ineffective if given 2 days
prior to training indicating that it does not perturb learning of new information.
Moreover, post-training FGL treatment also improved performance in a subsequently
given reversal learning challenge, suggesting that FGL is beneficial in promoting
behavioral flexibility [72].

The FGL peptide has also significantly enhanced our understanding of the
role of NCAM in the prototypic emotional learning task, fear conditioning.
Intracereboventricular infusion of FGL just after fear conditioning improved
contextual memory performance when tested 24 h, and 7 and 28 days later. However,
auditory fear memories were only enhanced when tested 28 days later, but not earlier,
suggesting different consolidation mechanisms for conditioned fear to tones, which
might become apparent only after longer time periods. FGL did not affect emotional
responses per se, having no affect on open field behavior when administered for
2 days prior to testing. Therefore, similarly to its effect in spatial learning, FGL was
shown to also enhance emotional learning.

NCAM in Learning: Correlative Studies

Functional studies reviewed above suggest a role for NCAM in memory formation.
However, they do not allow one to address whether the functional consequences
derived from interference with NCAM (expression or function) are due to a primary
effect on already existing molecules or, instead, on learning-induced NCAM
regulation. This is a critical issue as the former possibility might imply a non-specific
effect of treatments on normal circuit functioning, whereas the latter would
highlight NCAM as a key player in memory-associated circuit remodeling [68].
We will review here those studies that have addressed a potential regulation of
NCAM expression by learning experiences.

The 6-8 h post-training period was highlighted by interventive (antibody injection)
studies as critical for the involvement of NCAM in memory consolidation,
Interestingly, in chicks, NCAM was found to be enriched in synaptic active zones
in a memory-relevant region (the lobus parolfactorius) 5-6 h after a one-trial passive
avoidance learning experience [73]. In rats, spatial training in the water maze was
found to induce an increase in synaptosomal, but not total, expression level of
hippocampal NCAM140 24 h post-training [68]. In the zebrafish, using an active
avoidance paradigm (fish learn to cross a hurdle to avoid mild electric shocks
when presented with a conditioned light signal) NCAM mRNA levels were
increased in the optic tectum (a region important for avoidance learning) 3 h
following avoidance conditioning, indicating that some learning-dependent changes
in NCAM expression are transcriptionally mediated [74].

In addition to this temporal increase in NCAM expression observed several
hours after training, there is also evidence that NCAM expression is decreased
for a restricted period on the first phases of memory consolidation. Work in
simple invertebrate organisms such as the sea snail Aplysia has allowed the study
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of neurobiological mechanisms linked to different types of learning, notably habitu-
ation and sensitisation [75]. Sensitisation in Aplysia is induced by presenting a
noxious stimulus to the tail of the snail whereupon it withdraws its siphon and gill.
If this is followed by stimulation of the siphon, it will withdraw both the siphon and
gill in a more sensitized manner [76]. The neuronal circuit involved in long-term
sensitisation has been identified [77]. Elements of this circuit (a siphon sensory
neuron synapsing onto a gill motor neuron) can be isolated and cultured in vitro
and synaptic facilitation can be induced artificially by presenting a puff of 5-TH
directly to the cultured sensory neuron [78]. Interestingly, Aplysia expresses a
homologue of mammalian NCAM known as apCAM. Induction of long-term sen-
sitisation in cultured sensory neurons of Aplysia is accompanied by the growth of
new synaptic connections and requires downregulation of apCAM [79].

Remarkably, in rodents NCAM is also selectively degraded 2—6 h post-training
and this is necessary for passive avoidance memory consolidation [67]. Moreover,
in this study the authors demonstrated that the C3d peptide, which impairs memory
formation, seemed to prevent the temporal reduction in NCAM that occurs 2-6 h
following learning in the passive avoidance paradigm indicating, as had been
demonstrated in Aplysia, that a temporal reduction in NCAM expression is required
for effective learning and memory.

PSA-NCAM in Learning

Polysialylation of NCAM is a potent modulator of NCAM functioning that
significantly impacts on the role of NCAM in learning. Substantial evidence
indicates that this posttranslational modification mechanism plays a key role in
activity-dependent synaptic plasticity [2, 80] and memory formation. Most of the
original work on this topic focused in the hippocampus. The requirement of
PSA-NCAM for spatial learning has been indicated by different approaches. Removal
of PSA from NCAM by endo-neuraminidase NE (endo-N), an enzyme which specifi-
cally cleaves a-2, 8-linked PSA, impedes the acquisition and retention of spatial
memory [81, 82]. Mice expressing a null mutation in the polysialyltransferase (PST)
gene, an enzyme critical for the postnatal polysialylation of NCAM, are impaired
in spatial learning [83]. Conversely, a synthetic PSA-mimetic peptide administered
in the mouse hippocampal CA3 region 5 h after massed training in the water maze
was shown to significantly improve recall up to 4 weeks after training [84].

The role of PSA-NCAM in fear conditioning has received much attention in the
past few years. Mice deficient in the PST gene were shown to display a very mild
deficit in contextual fear conditioning. By contrast, auditory fear conditioning was
normal in these PST-KO mice [83]. Strikingly, contextual fear conditioning was
also impaired by application of PSA or PSA-NCAM 6 h, but not 2 h, following
training [85]. Adult mice lacking the prenatally important St8Siall/STX polysialyl-
transferase exhibit impaired memories (but not acquisition) in fear learning-related
paradigms, auditory and contextual fear conditioning [86], suggesting an involvement
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of PSA-NCAM in memory processes related to fear conditioning. However, since
PSA-NCAM expression levels in the amygdala of adult St8Siall/STX knockout
mice are normal, the possibility exist that their alterations in emotional learning are
due to developmentally caused alterations in amygdala function.

Given the differential disruption of auditory fear conditioning in PST as
compared to SXT-KO mice it initially seemed, at least in adulthood, PSA-NCAM
may be more important in regulating hippocampal learning when compared with
amygdala-dependent learning. To resolve this issue, our group examined the role of
PSA-NCAM in the amygdala during fear learning and found that auditory fear
conditioning under conditions that employed a high intensity shock (1 mA) enhances
the amygdaloid expression of PSA-NCAM 12 h post-training [87]. However, fear
learning appeared not to require the induction of PSA-NCAM since endo-N cleavage
failed to prevent either fear learning or its consolidation. However, removal of
PSA-NCAM in the amygdala enhanced memory extinction, suggesting that PSA-
NCAM modulations during emotional learning may be important in determining
the intensity of the memory trace.

On the other hand, there is extensive evidence showing that PSA-NCAM levels
in the hippocampus are modified by learning experiences. Notably, selective
enhancement of PSA-NCAM-positive cells in the rat hippocampal dentate gyrus (in
particular in a population of cells located at the dentate infragranular zone) has been
found following initiation of learning in numerous behavioral tasks. For example,
a temporal modification of PSA-NCAM levels is known to occur 10-12 h after
passive avoidance [88-92], water maze [93, 94], olfactory learning [95, 96] and
contextual fear conditioning [97, 98]. This up-regulation in PSA-NCAM can be
sustained, being in some cases also evident at 24 h post-training [68, 94]. Moreover,
repetitive training in the water maze induces PSA-NCAM upregulation following
each training session while animals are still improving their performance levels
[93] suggesting that enhanced expression of PSA-NCAM in the hippocampus is a
molecular signature of plasticity-related to hippocampal learning. Despite PSA-
NCAM being a marker for immature neurons, the spatial learning-dependent
increase in PSA-NCAM does not result from increased neurogenesis or progenitor
cells survival [95], indicating some other function for this selective modification
in PSA-NCAM. Together, these studies suggest that selected enhancement of
hippocampal PSA-NCAM can facilitate memory formation, whereas the role of
amygdaloid PSA-NCAM in memory function deserves further studies.

NCAM and PSA-NCAM: Sensitive Indices
of “Emotional Learning”

In this review about the role of NCAM and PSA-NCAM in learning, we
have detailed many instances were both NCAM and PSA-NCAM are important
for “emotional learning” particularly in the context of auditory and contextual
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fear conditioning. We should also note that in our view the concept of “emotional”
learning goes beyond fear learning tasks, since in our view virtually all animal learning
models involve an emotional motivation too (for example, escaping from water
stress in the water maze task). Work from our lab has found that NCAM [99] and
PSA-NCAM [98] expression in the hippocampus are regulated by emotional learn-
ing depending on the intensity of the emotional experience. Contextual fear condi-
tioning was found to induce time- and shock-intensity dependent alterations in the
expression of hippocampal NCAM and PSA-NCAM. The intensity of the training
experience can be modulated by altering the shock received by the animal, applying
0.2, 0.4 or 1 mA, which corresponds to low, medium and high intensity shocks,
respectively. Previously, we showed that the intensity of the shock has a positive
correlation with both the extent and duration of conditioned fear and post-training
corticosterone levels [100]. Training rats at a moderate intensity (0.4 mA) led to a
significant enhancement of hippocampal PSA-NCAM 12 h post-training [98], simi-
larly to changes found after passive avoidance conditioning and spatial learning
[68, 88]. By contrast, 24 h hours post-training only animals trained at 1 mA showed
a significant enhancement of NCAM expression and, interestingly, this group also
exhibited the greatest retention of the task and highest post-training corticosterone
induction.

We have recently examined the regional specificity of contextual fear condi-
tioning on hippocampal PSA-NCAM expression. We found [97] differential
expression of hippocampal PSA-NCAM in the ventral and dorsal hippocampus
that corresponds to a different functional involvement of these discrete regions
in learning tasks [51]. Context exposure alone led to a significant increase in
PSA-NCAM in the ventral and dorsal hippocampal dentate gyrus 24 h post-training
[97]. However, following training in the contextual fear conditioning task (i.e.,
when context was paired with a shock), PSA-NCAM expression was only enhanced
in the dorsal hippocampus. Moreover, infusion on Endo-N to the dorsal, but not
the ventral, hippocampus impaired retention of the contextual memory [97].
More recently, we have demonstrated that prevention of a very rapid reduction in
PSA-NCAM in the ventral hippocampus of rats exposed to the radial arm water
maze is linked to a facilitation of memory retrieval (Conboy et al. unpublished
observations).

Exposing rats during 30 min to a traumatic experience (i.e., predator stress,
more specifically cat exposure) immediately following massed training in the
radial arm water maze can impair recall of the platform location and induce a
correlative reduction in hippocampal NCAM180 expression [101]. In contrast,
the novel anti-depressant treatment agomelatine can prevent this stress-induced
deficit in memory retrieval. Our recent findings show that in parallel to this
behavioral effects, agomelatine facilitates the synaptic insertion of NCAM
within 30 min of cessation of the learning task (Conboy et al. unpublished
observations).

For a more comprehensive list of the role of NCAM and PSA-NCAM in learning
and memory see Table 2.
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Mechanisms Related to NCAM Actions on Learning

Humans retain the ability to form new memories, in the absence of dementia,
throughout their whole life, which indicates that the implicated brain structures must
retain the potential to continuously restructure their synapses. Adult learning and
memory has been proposed to imply, to a certain extent, a replay of neurodevelop-
mental events and as such utilize the same plasticity-related molecules, including
NCAM [102, 103]. Numerous studies have shown modifications of hippocampal
synaptic morphology as a result of learning and memory [104—107]. As the selective
expression of cell adhesion molecules during neurodevelopment is important in
determining synaptic structuring [19], analogous cell adhesion molecule modulations
presumably regulate synaptic restructuring during memory formation.

At the conceptual level, the reviewed evidence led us to propose the following
role for NCAM during memory consolidation. During the early consolidation
period, 2-6 h following training NCAM expression seems to be downregulated
[67]. A transient increase in spine number has been found in the hippocampus in the
early hours after a training experience [104—106]. In Aplysia, it has been shown that
the growth of new synaptic connections requires endocytosis and degradation of the
NCAM homologue apCAM [79]. It is therefore conceivable that the temporal
reduction in NCAM found in rodents may similarly enable synaptic loosening to
facilitate synaptic growth. During the later periods of consolidation, robust learning
and memory has been associated with an enhancement of synaptosomal NCAM
expression [68, 98]. In chicks, avoidance training induces the localisation of NCAM in
the synaptic active zone of the lobus parolfactorius 5—6 h after a one-trial passive
avoidance learning experience [73], indicating that NCAM may localize to newly
formed synapses. Moreover, contextual fear conditioning leading to a strong memory
[100] correlates with an enhancement of synaptically localized NCAM [98].
Correlative work in vitro has suggested that increased concentrations of NCAM can
selectively increase synapse formation. For example, transfection of NCAM deficient
neurons with any of the three NCAM molecules leads to the formation of synapses
preferentially between NCAM-NCAM containing neurons [108].

Learning and memory also require temporal modulations in PSA-NCAM.
Learning induced synaptic modifications occurring in the hippocampus are transient
[106] indicating that a period of synaptic pruning or selection also contributes to
memory consolidation. As PSA attachment to NCAM reduces NCAM mediated
cell adhesion, activity dependent upregulation in PSA-NCAM during the later
memory consolidation period (12-24 h) [68, 88] may enable synaptic loosening
which facilitates selection and pruning of hippocampal connections.

In conclusion, we have presented evidence that NCAM and PSA-NCAM regulate
both emotion and learning and memory processes, and we have presented a
model suggesting that the functioning of these molecules might be related to the
modulation of learning induced by emotional aspects. This evidence supports
the use of recently developed NCAM-related compounds, such as the FGL
peptide, for the treatment of devastating neurological disorders of cognitive
dysfunction like Alzheimer’s disease.
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