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Introduction

During development, the neural cell adhesion molecule (NCAM) and growth-associated 
protein-43 (GAP-43) play key roles in neurite outgrowth and growth cone navigation 
[1–3]. These processes are vital for axonal growth and formation of highly 
organized neuronal nets in the brain. In adult organisms, NCAM and GAP-43 
participate in the reorganization of synaptic contacts and learning and memory 
formation [4–6]. Enhanced synthesis of these proteins occurs during development 
and axonal regeneration. They are localized in detergent-resistant plasma mem-
brane domains (rafts) [7–11]. NCAM was shown to deliver external signals to 
GAP-43 in growth cones, stimulating both GAP-43 phosphorylation on S41 and 
neurite outgrowth [1]. Therefore, numerous data suggest functional interdepen-
dence between NCAM and GAP-43. In this chapter, we discuss the interactions 
between GAP-43 and NCAM isoforms in the process of neurite outgrowth.

Role of NCAM in the Nervous System

NCAM appears early in embryonic development during the blastoderm stage [12]. 
During development, NCAM levels peak at the late embryonic/early postnatal stage 
and then rapidly decrease [13–16]. Several reports suggest an involvement of NCAM 
in regenerative processes (for review see [17]). NCAM is expressed in three major 
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isoforms (120 kDa, 140 kDa, and 180 kDa) generated by alternative splicing of mRNA 
transcribed from a single gene. NCAM-180 and NCAM-140 are transmembrane 
proteins, whereas NCAM-120 is linked to the plasma membrane via a lipid anchor. 
The formation of different NCAM isoforms is temporally and cell-specifically regu-
lated. NCAM-120 is expressed mainly in glial cells of adult animals [18–20]. NCAM-
140 is expressed in neurons, glia [19, 21], and tissues of non-neural origin, such as 
skeletal muscle [22], cardiac muscle [23, 24], smooth muscle [25], and kidneys [26]. 
NCAM-180 is present mainly in neurons. Expression of NCAM-180 also has been 
detected in astrocytes [19, 21, 27], adult epididymis [28], heart [23], pancreatic islets 
[29], and embryonic muscle [30]. Mice lacking NCAM-180 have been shown to have 
defects in the development of the olfactory bulb [31] and in circadian rhythms [32].

In contrast to the other two NCAM isoforms, NCAM-180 is not synthesized in 
the proliferating neuronal precursors and becomes detectable only at later stages of 
development [33]. These in situ observations are supported by in vitro experiments, 
in which neuroblastoma cells induced to differentiate with dimethyl sulfoxide or 
laminine shifted NCAM synthesis toward predominately NCAM-180 [34, 35]. 
Importantly, neuroblastoma growth cones that establish contacts with target cells 
contain mainly NCAM-180, whereas NCAM-140 has been found mainly in growth 
cones at the time they were still in the process of the target search [35, 36]. Moreover, 
Sytnyk et al. [37] reported that NCAM-180 plays a role in synapse stabilization and 
rapidly accumulates at sites of contact between axonal growth cones and postsynap-
tic cells in hippocampal cultures. During aging, a significant selective downregula-
tion of NCAM-180 was observed [38]. However, NCAM-180 synthesis remained 
significant in some brain regions, such as the hippocampus [39] and olfactory bulb 
[40], where neuritogenesis, sprouting and synaptic remodeling occur continually.

NCAM mediates neurite outgrowth through several signaling pathways. One pathway 
depends on the nonreceptor protein-tyrosine kinase Fyn and the focal adhesion kinase 
(FAK). Another pathway involves signaling mediated by the fibroblast growth factor 
receptor (FGFR). A third pathway involves signaling through pertussis toxin-sensitive 
heterotrimeric G-proteins (for review, see [41]). Signaling through the Fyn–FAK path-
way is known to be mediated by the NCAM-140 isoform, whereas signaling through 
FGFR can be mediated by both NCAM-140 and NCAM-180 [42, 43]. Additionally, 
NCAM has been demonstrated to interact with the main cytoskeleton elements. Both 
NCAM-140 and NCAM-180 have been shown to associate with a- and b-tubulin [44], 
and NCAM-180 binds brain spectrin [36], which in turn interacts with multiple targets, 
including filamentous actin, Na+, K+-ATPase, the voltage-gated Na+ channel, and acidic 
phospholipids [4, 45]. Therefore, NCAM can directly affect the assembly, disassembly, 
and stabilization of cytoskeletal elements and neurite outgrowth [46].

Role of GAP-43 in Remodeling of the Actin Cytoskeleton  
and Neurite Outgrowth

GAP-43 is abundant in growth cones during development. In adulthood, GAP-43 
expression is relatively low, with the exception of neurons that are hypothesized to 
be involved in synaptic remodeling, such as in the associative (cerebral) cortex, 
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hippocampus, and olfactory bulb [47]. GAP-43 is reexpressed in neurons that have 
damaged axons [48]. When nervous system tissue architecture is disrupted, GAP-
43 expression is increased, not only in neurons, but also in glial cells in situ [47]. 
In mature neurons, GAP-43 is a presynaptic protein that is localized only in axons, 
whereas dendrites have no GAP-43 [49–51]. However, at the initial stage of neurite 
growth, GAP-43 was found in all neurites [47]. GAP-43 knockout mice show dis-
rupted cortical maps, possibly attributable to defective axonal guidance [52, 53]. 
Conversely, transgenic mice overexpressing GAP-43 show enhanced neurite 
sprouting in the adult nervous system [54, 55] and improved learning ability [6]. 
The high correlation between extension of neurite processes and increased GAP-43 
synthesis has made GAP-43 a tool often used to mark neurite outgrowth.

The neuritogenic function of GAP-43 depends on its ability to bind to the 
plasma membrane [56, 57] (for discussion, see [10, 58]). This ability is provided by 
the presence of cysteines C3 and C4 that are dynamically palmitoylated [59–63]. 
Rat-1 and 3T3 fibroblasts and PC12E2 cells transfected with plasmids encoding 
GAP-43 mutated at the C3C4 site display cytosolic localization of this protein and 
are morphologically indistinguishable from untransfected controls, while expres-
sion of a plasmid construct encoding wild-type GAP-43 induces formation of 
filopodial extensions during spreading [10, 64, 65].

Another important post-translational modification of GAP-43 – phosphorylation 
by protein kinase C (PKC) on S41 [47, 66–68] – is considered to be very important 
for neuronal signal transduction. In particular, phosphorylation-dephosphorylation 
on S41 regulates the interaction of GAP-43 with the actin cytoskeleton. S41-
phosphorylated GAP-43 stabilizes actin filaments and promotes neurite outgrowth. 
In contrast, unphosphorylated GAP-43 may reduce actin filament length [3, 69]. At 
the same time, phosphorylation on S41 prevents GAP-43 from binding to the lipid 
membrane [70, 71] and interacting with calmodulin [72]. This modification also 
prevents GAP-43 from site-specific proteolysis by m-calpain [73]. Dephosphorylation 
of S41 restores the susceptibility of the GAP-43 molecule to these interactions. One 
of the after-effects may be colocalization of dephosphorylated GAP-43 with a disor-
ganized cytoskeleton in the collapsed area of axonal endings [3, 69]. Additionally, 
the interaction of dephosphorylated GAP-43 (or its N-terminal fragment formed by 
m-calpain) with heterotrimeric GTPase G

0
 (G

0
 protein) may result in activation of 

signal pathways leading to cytoskeleton destruction and growth cone collapse 
[56, 74, 75].

Involvement of GAP-43 in Neuronal Adhesion  
and NCAM-Mediated Neurite Outgrowth

Evidence suggests an involvement of GAP-43 in neuronal adhesion. When dorsal 
root ganglia (DRG) neurons are depleted of GAP-43 by antisense oligonucleotide 
treatment, they lose the ability to extend neurites on poly-L-ornithine-coated sur-
faces and fail to accomplish NGF-induced spreading [76]. However, when 
GAP-43-depleted DRG neurons are grown on laminin-coated substrates, they 



172 I. Korshunova and M. Mosevitsky

extend long and thin neurites bearing growth cones that adhere poorly to the 
substrate [77]. In contrast, PC12 cells, which do not express GAP-43 (PC12-B subclone), 
exhibit reduced adhesion to uncoated plastic culture surfaces and are easily dis-
lodged from culture plates [78]. When these cells are transfected with GAP-43 
cDNA, their attachment to untreated substrates increases substantially [79].

A role for GAP-43 in neuronal adhesion and neurite outgrowth was suggested 
in a model of GAP-43 functionality in NCAM-induced neurite outgrowth [1]. 
NCAM was unable to stimulate neurite outgrowth in mouse cerebellar granule 
cells depleted of the GAP-43 gene by homologous recombination, while integrin-
mediated neurite outgrowth was unaffected by GAP-43 gene deletion. Similarly, 
primary hippocampal neurons expressing GAP-43 mutated at C3C4 do not 
respond to NCAM stimulation [10]. GAP-43 mutated at C3C4, in contrast to 
wild-type GAP-43, is suggested to be unable to attach to the cytoplasmic mem-
brane. Thus, GAP-43 association with the membrane may be important for 
NCAM-induced neuritogenesis.

Role of GAP-43 Phosphorylation in NCAM-Mediated  
Neurite Outgrowth

The role of GAP-43 phosphorylation in the regulation of the cytoskeleton is 
described above (for details, see “Role of GAP-43 in Remodeling of the Actin 
Cytoskeleton and Neurite Outgrowth” in this chapter). NCAM-stimulated neu-
rite outgrowth has been shown to be associated with increased GAP-43 phospho-
rylation on S41 in cerebellar granule cells and hippocampal primary neurons [1, 
10]. Meiri et al. [1] demonstrated that both neurite outgrowth and GAP-43 phos-
phorylation in isolated growth cones are stimulated by the first three immuno-
globulin (Ig) modules of NCAM-soluble chimera as efficiently as by the whole 
molecule. Similarly, peptide P2 (GRILARGEINFK) corresponding to the 
12-amino acid sequence localized in the F and G b-strands and interconnecting 
loop of the second NCAM Ig module [80] also is capable of inducing both GAP-
43 phosphorylation on S41 and neurite outgrowth in primary hippocampal neu-
rons [10]. In contrast, mutations on S41 in GAP-43 led to abrogation of 
NCAM-stimulated neurite outgrowth in hippocampal neurons [10]. Thus, GAP-
43 phosphorylation on S41 is required for NCAM-stimulated, GAP-43-mediated 
neurite outgrowth.

Other sites in GAP-43 (S191 and S192) have been shown to be phosphorylated 
by casein kinase II (CKII) in vitro [81, 82] and in isolated growth cones [83]. 
However, this effect has not yet been shown in vivo [68, 84]. Korshunova et al. [10] 
found that expression of GAP-43 mutated at S191 and S192 in primary hippocam-
pal neurons downregulates both NCAM-mediated and GAP-43-dependent neurite 
outgrowth. These results suggest that phosphorylation of GAP-43 on S191 and 
S192 may be important for NCAM-induced neuritogenesis.
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FGFR Function Is Required for NCAM-Stimulated  
GAP-43 Phosphorylation

FGFR activation is involved in the signaling pathway underlying neurite outgrowth 
stimulated by NCAM [1] (for review, see [41]). Neurite outgrowth stimulated by 
NCAM-mediated activation of FGFR was shown to be associated with increased 
GAP-43 phosphorylation on S41 [1]. FGFR activation by NCAM initiates the 
sequential activation of phospholipase Cg (PLCg) and diacylglycerol lipase (DAG 
lipase) that results in the release of arachidonic acid (AA) that, in turn, activates 
voltage-gated calcium channels (VGCC). Local increase in submembrane calcium 
contributes to activation of PKC, which phosphorylates membrane-associated 
GAP-43 on S41 [1, 71].

GAP-43 and PKC were found to be within the same lipid raft platform of the 
plasma membrane [7, 85]. The integrity of lipid rafts was shown to be mandatory 
for GAP-43 phosphorylation by PKC [85]. Moreover, after phosphorylation by 
PKC, GAP-43 was suggested to shift from raft to nonraft membranes [85]. 
However, according to Tejero-Diez et al. [71], S41 phosphorylation is highest in 
cytoskeleton-associated GAP-43 and lowest in membrane-associated GAP-43. The 
authors assume a continuous cycling of GAP-43 between intracellular compart-
ments depending on its phosphorylation. S41-phosphorylated GAP-43 molecules 
were proposed to translocate to the actin cytoskeleton and stabilize newly formed 
adhesive complexes that are essential for neurite outgrowth [71]. Because the data 
are controversial, determining where GAP-43 phosphorylation occurs and where 
phosphorylated GAP-43 is localized needs to be clarified.

PSA-NCAM and GAP-43 Are Coexpressed as Plasticity-
Promoting Molecules: Possible Signaling Mechanisms Linking 
PSA-NCAM to GAP-43 Phosphorylation

NCAM can be glycosylated with polysialic acid (PSA; large homopolymers of the 
negatively charged molecule a-2,8-sialic acid) on its extracellular domain [86]. The 
length of the PSA chain (i.e., the number of sialic acid residues) is developmentally 
regulated. During the late embryonic and early postnatal periods, highly polysialy-
lated NCAM, so-called embryonic NCAM (PSA-NCAM), is abundant throughout 
the nervous system and associated with morphogenetic changes, such as cell migra-
tion, synaptogenesis, and axonal growth. With the establishment of neuronal con-
nections, PSA-NCAM, similar to GAP-43 (for details, see “Role of GAP-43 in 
Remodeling of the Actin Cytoskeleton and Neurite Outgrowth” in this chapter), 
rapidly decreases [87]. Importantly, coexpression of PSA-NCAM and GAP-43 
have been reported in regions of adult brain structures that display a high degree of 
structural plasticity [88–90]. Thus, both PSA-NCAM and GAP-43 emerge as 
plasticity-promoting molecules in the adult nervous system.
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NCAM/PSA-NCAM most likely activates tyrosine kinase receptors, such as 
FGFR, through the induction of dimerization and clustering of receptor mole-
cules [90, 91]. Strong adhesion mediated by nonpolysialylated NCAM through 
the formation of tight two-dimensional zipper-like adhesion clusters may ham-
per interactions between NCAM and FGFR [91]. In contrast, the formation of 
loose clusters of one-dimensional zippers in the presence of PSA favors the 
association between NCAM and FGFR [91]. Thus, the expression of PSA on 
NCAM may switch NCAM functions from adhesion to signaling. Consistent 
with this hypothesis, PSA expression appears to be required for NCAM-induced 
FGFR signaling [92]. Consequently, FGFR activation was shown to be associ-
ated with increased GAP-43 phosphorylation on S41 [1] (for details, see “FGFR 
Function Is Required for NCAM-Stimulated GAP-43 Phosphorylation” in this 
chapter). This hypothesis, however, has not been substantiated experimentally, 
and further studies are needed to elucidate the signaling mechanisms linking 
PSA-NCAM with GAP-43-phosphorylation.

Differential Role of NCAM Isoforms in GAP-43-Mediated 
Neurite Outgrowth

By comparing manifestations of GAP-43 and different NCAM isoforms in the 
organism during development, one might suggest that NCAM-180 is the most 
likely candidate for interactions with GAP-43. The earliest expression of GAP-43 
and NCAM-180 is detected in postmitotic neurons. Both proteins are actively syn-
thesized during development and significantly downregulated in adulthood. Both 
GAP-43 and NCAM-180 regulate specific mechanisms that control the growth of 
axons and dendrites, and the establishment of synaptic contacts plays a role in sta-
bilizing newly established synapses. In mature neurons, synthesis of GAP-43 and 
NCAM-180 is relatively low, with the exception of neurons of associative brain 
areas (e.g., hippocampus and olfactory bulb) that are involved in synaptic remodel-
ing [39, 40, 47]. NCAM-120 and NCAM-140 synthesis correlates with GAP-43 
synthesis to a much lesser degree (for details, see “Role of NCAM in the Nervous 
System” and “Role of GAP-43 in Remodeling of the Actin Cytoskeleton and 
Neurite Outgrowth” in this chapter).

NCAM has been shown to be enriched in special microdomains of the plasma 
membrane, termed lipid rafts, some of which containing GAP-43 [9]. Numerous 
data suggest that rafts are heterogeneous with regard to lipid and protein composi-
tion [9, 58]. Analysis of rafts isolated by immunoprecipitation and containing 
GAP-43 has revealed that these rafts also are enriched in the NCAM-180 isoform, 
whereas NCAM-140 predominated in rafts not containing GAP-43 [10]. Thus, 
GAP-43 was suggested to be involved in NCAM-180-, rather than NCAM-140-
mediated neurite outgrowth. This suggestion was confirmed by the observation that 
in GAP-43-negative PC12E2 cells, NCAM-induced neurite outgrowth depended 
solely on the function of NCAM-140 [93], whereas in PC12E2 cells transfected 
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with plasmids carrying the GAP-43 gene, NCAM-induced neurite extension 
depended on NCAM-180 [10]. This result was reproduced in hippocampal neurons 
possessing the endogenous GAP-43 gene. In this system, expression of dominant 
negative NCAM-180, but not dominant negative NCAM-140, abrogated NCAM-
stimulated neuritogenesis [10]. These findings appear to contradict the results 
obtained by Niethammer et al. [11], in which cultured hippocampal neurons of 
NCAM-deficient mice were transfected with one of the NCAM isoforms and 
stimulated with the extracellular part of NCAM. Only NCAM-140-expressing neu-
rons exhibited increased neurite outgrowth. The authors concluded that NCAM-
140, but not NCAM-180, could serve as a homophylic receptor that induces 
neuritogenesis. However, only one NCAM isoform at a time was transfected into 
NCAM-negative neurons, leaving unanswered the question whether the presence 
of NCAM-140 might be important for NCAM-180 function. Importantly, the level of 
NCAM-140 expression in cultured hippocampal neurons is significantly higher 
than that of NCAM-180 [94]. In an experimental system employed by Korshunova 
et al. [10], transfection of hippocampal neurons with dominant negative NCAM-
140 was insufficient for completely “switching off” NCAM-140-mediated signal-
ing. Therefore, although the results obtained by Korshunova et al. [10] strongly 
suggest the importance of NCAM-180 for NCAM-induced neurite outgrowth in the 
presence of GAP-43, they do not exclude a neuritogenic role for NCAM-140.

Functional Complex of NCAM-180 with GAP-43 and Spectrin

Spectrin is an actin-binding protein that links membrane domains to the actin 
cytoskeleton. Pollerberg et al. [35, 36] reported that NCAM-180, but not NCAM-
140 or NCAM-120, is bound specifically to brain spectrin. Leshchyns’ka et al. [95] 
found that all three NCAM isoforms coprecipitated with spectrin, but of the three, 
NCAM-180 was much more potent in precipitating spectrin. GAP-43 was sug-
gested to interact also with brain spectrin [96]. Additionally, GAP-43 controls the 
dynamics of the actin cytoskeleton and neurite outgrowth [56, 97]. Korshunova 
et al. [10] subsequently demonstrated that spectrin may be involved in NCAM-
mediated neurite outgrowth in the presence, but not absence, of GAP-43. Thus, 
NCAM-180 was proposed to be linked to the spectrin-actin network, and GAP-43 
appears to regulate this connection. These data together suggest the existence of a 
functional NCAM-180/spectrin/GAP-43 complex that can transmit NCAM-
initiated signals. Korshunova et al. [10] proposed a model in which GAP-43 acts as 
a “switch” between NCAM-140- and NCAM-180-induced signaling (Fig. 1). 
According to this model, both NCAM isoforms employ FGFR. In the presence of 
GAP-43, NCAM-induced neurite outgrowth is crucially dependent on the NCAM-
180/spectrin/GAP-43 complex (Fig. 1a). This complex induces an FGFR-dependent 
signal cascade that leads to PKC activation as a consequence of the successive 
activities of PLCg and DAG lipase. One of the prominent outputs of this cascade is 
GAP-43 phosphorylation by PKC, leading to stabilization of the actin cytoskeleton 
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and neurite outgrowth. In the absence of GAP-43, the NCAM-140/Fyn/FAK signaling 
pathway is involved in neurite outgrowth (Fig. 1b).

Open Question: Fyn/RPTPa Association with NCAM-180/
Spectrin/GAP-43 Complex

NCAM-induced morphogenic effects depend on activation of Src family tyrosine 
kinases, particularly activation of Fyn [98]. NCAM-dependent neurite outgrowth is 
impaired in neurons from Fyn-deficient mice [99] and is abolished by inhibitors of 
Src kinase family members [43, 100, 101]. Fyn is constitutively associated with 
NCAM-140, but does not associate significantly with NCAM-180 [42]. He and 
Meiri [9] reported that GAP-43 and Fyn were found in different membrane raft 
fractions. Similar results were obtained by Botto et al. [7]. The authors isolated 
subsets of rafts from cerebellar granule cells and found that one of the subsets con-
tained GAP-43 and PKC, but not Fyn. Thus, one could conclude that Fyn is not 
involved in NCAM-180/GAP-43-mediated neurite outgrowth. However, Bodrikov 
et al. [102] demonstrated that the cytoplasmic part of both NCAM-140 and NCAM-
180 can be bound to Fyn through receptor protein-tyrosine phosphatase a (RPTPa), 
a known activator of Fyn. Indeed, Kolkova et al. [43] found that Fyn participates in 
NCAM-140-dependent neurite outgrowth (Fig. 1b). With regard to the possible 
interplay between NCAM-180 and RPTPa, the affinity of the NCAM-180–RPTPa 
interaction was reported to be significantly lower than that of the NCAM-140–
RPTPa interaction [102]. This fact may explain the faint co-precipitation of NCAM-180 
with Fyn that was demonstrated in earlier studies [42]. Thus, the NCAM-180–Fyn 
interaction, though not strong, may play a role in NCAM-180-mediated neurite 
outgrowth. The issue of whether phosphorylated Fyn and phosphorylated 
GAP-43 and/or NCAM-180 are localized in different raft fractions will need to be 
clarified further.

NCAM and Growth-Associated Proteins BASP1 and MARCKS

GAP-43 is a member of the family of neuronal growth-associated proteins that also 
includes brain acid soluble protein-1 (BASP1; also known as CAP-23 and NAP-22) 
and myristoylated alanine-rich C-kinase substrate (MARCKS). Although these 
proteins do not share noticeable sequence homologies, they have a number of prop-
erties in common [47, 65, 103–105]. All three proteins are characterized by high 
hydrophilicity, and all are subjected to N-terminal fatty acylation resulting in link-
age to the plasma membrane preferentially in lipid rafts [8, 97, 106, 107]. All three 
proteins also contain a basic domain (termed an effector domain) that binds acidic 
phospholipids, calmodulin, and actin filaments. These interactions can be modulated 
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by PKC-mediated phosphorylation within the effector domain [2, 47, 70, 108]. 
Numerous data implicate a role for BASP1 and MARCKS in regulating actin 
cytoskeleton dynamics and neurite outgrowth. However, no information has been 
provided regarding their participation in NCAM-triggered pathways. Recently, 
Korshunova et al. [109] found that BASP1 is not involved in NCAM-induced 
signaling.

Further investigation of NCAM, in particular NCAM-180, interactions with 
growth-associated proteins in axon endings will be useful for elucidating the par-
ticipation of NCAM in the processes of neuronal net formation and learning and 
memory.
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Fig. 1 Schematic representation of the functional relationship between GAP-43 and the two 
NCAM isoforms, NCAM-180 and NCAM-140. (a) In the presence of GAP-43, neurite outgrowth 
is mediated through the NCAM-180/spectrin/GAP-43 complex (modified from [10]). (b) In the 
absence of GAP-43, neurite outgrowth is mediated through the NCAM-140/Fyn/FAK complex 
(modified from [43]). FAK, focal adhesion kinase; Fyn, p59 fyn kinase; FGFR, fibroblast growth 
factor receptor; DAG, diacylglycerol; PKC, protein kinase C; CKII, casein kinase II; Mek, mito-
gen-activated protein kinase
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