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Lagrange Multipliers

The multiplicative, linear-combination constants

that appear in the Lagrangian of a mathematical

programming problem. They are generally dual

variables if the dual exists, so-called shadow prices in

linear programming, giving the rate of change of the

optimal value with constraint changes, under

appropriate conditions.
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▶Lagrangian Function

▶Nonlinear Programming
Lagrangian Decomposition

▶ Integer and Combinatorial Optimization

▶Lagrangian Relaxation
S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research an
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business M
Lagrangian Function

The general mathematical-programming problem

of minimizing f(x) subject to a set of constraints

{gi(x) � bi} has associated with it a Lagrangian

function defined as L(x, l) ¼ f(x) +
P

ili[gi(x)�bi],

where the components li of the nonnegative vector l

are called Lagrange multipliers. For a primal

linear-programming problem, the Lagrange multipliers

can be interpreted as the variables of the corresponding

dual problem.
See

▶Lagrangian Relaxation

▶Nonlinear Programming
Lagrangian Relaxation
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University of Pennsylvania, Philadelphia, PA, USA
Introduction

Many practical optimization problems include decision

variables that are integer or 0-1. These problems, called

mixed-integer programming problems or MIP for short,

are in general difficult to solve, and there have been

traditionally two classes of approaches to solve them:

branch-and-bound or enumeration, and heuristic

methods, either ad hoc or generic. Broadly speaking,

branch-and-bound methods construct a tree, usually
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binary, that allows the systematic exploration of all

integer or 0-1 combinations of the discrete variables.

Logical considerations and/or bounds on the optimal

value computed as one moves down the tree may

allow the pruning of a branch and backtracking to

its root because one discovers that it would lead

to infeasibilities or inferior solutions. Typically,

bounds are obtained by solving a simpler, relaxed,

optimization problem, most of the time the continuous

relaxation of the MIP problem in which integer or 0-1

variables are allowed to take on fractional values.

Heuristics, on the other hand, search for better and

better feasible integer solutions, and do not usually

compute bounds on the optimum, and therefore, even

though they are getting more and more sophisticated

and excel at finding optimal or near optimal solutions,

cannot guarantee the quality of the solutions found.

Lagrangian relaxation stands somehow at the

crossroads of both approaches. More powerful in

terms of bound quality than the continuous

relaxation, it also produces partially infeasible, but

integer, solutions. These can usually serve as

excellent starting points for specialized heuristics,

referred to as Lagrangian heuristics. Contrary to the

general heuristics mentioned above, given that one has

found a bound called the Lagrangian bound, one

knows whether the best solution found is good

enough, or if it requires further investigation.

There is an enormous amount of literature devoted

to the theory and applications of Lagrangian

relaxation, starting with the seminal papers of Held

and Karp (1970, 1971) and of Geoffrion (1974),

although one could trace it back to earlier sources, for

instance Everett’s multipliers work (1963). Some early

guides include (Fisher 1981, 1985).

Some of the questions to be addressed: Why use

Lagrangian relaxation for integer programming

problems? How does one construct a Lagrangian

relaxation? What tools are there to analyze the

strength of a Lagrangian relaxation? Are there more

powerful extensions than standard Lagrangian

relaxation, and when should they be used? Why is it

that one can sometimes solve a strong Lagrangian

relaxation by solving trivial subproblems? How does

one compute the Lagrangian relaxation bound? Can

one take advantage of Lagrangian problem

decomposition? Does the strength of the model used

make a difference in terms of bounds? Can one
strengthen Lagrangian relaxation bounds by cuts,

either kept or dualized? How can one design

a Lagrangian heuristic? Can one achieve better

results by remodeling the problem prior to doing

Lagrangian relaxation?

The problems considered here have some integer

variables, linear objective functions and constraints,

and everything described below applies to

maximization as well as minimization problems via

the trivial sign transformations:

Max f ðxÞ x 2 Vjf g ¼ �Min �f ðxÞ x 2 Vjf g:
Notation

If (P) is an optimization problem,
FS(P) denotes
 the set of feasible solutions of problem (P)
OS(P)
 the set of optimal solutions of problem (P)
v(P)
 the optimal value of problem (P)
uk, sk, etc.,
 the value of u, s, etc., used at iteration k
xT
 the transpose of x
xk
 the kth extreme point of some polyhedron

(see context)
x(k)
 a solution found at iteration k.
�
 denotes strict inclusion.
Co(V)
 denotes the convex hull of set V.
Relaxations of Optimization Problems

Geoffrion (1974) formally defines a relaxation of a

generic minimization problem as follows.

Definition 1. Problem (RPmin): Min gðxÞ x 2 Wjf g is

a relaxation of problem (Pmin): Min f ðxÞ x 2 Vjf g if

and only if (i) the feasible set of (RPmin) contains that
of (Pmin), and (ii) over the feasible set V of (Pmin), the

objective function of (RPmin) dominates (is better than)

that of (Pmin), i.e., 8 x ∈ V, g(x) � f(x).
It clearly follows that v(RPmin) � v(Pmin), in other

words (RPmin) is an optimistic version of (Pmin): it has

more feasible solutions than (Pmin), and for feasible

solutions of (Pmin), its own objective function is at least

as good as (smaller than or equal to) that of (Pmin), thus

it has a smaller minimum.
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Lagrangian Relaxation (LR)

In the rest of the note, (P) is assumed to be of the form

Min x ffx Axj � b,Cx� d, x∈ X}, where X contains the

integrality restrictions on x, i.e. X ¼ n�p � p, or

X ¼ n�p � f0; 1gp. Let I(X) be the set of the p
indices of x restricted to be integer (or binary). The

constraints Ax � b are assumed complicating, in the

sense that, without them, problem (P) would be much

simpler to solve. The constraints Cx � d (possibly

empty) will be kept, together with X, to form the

Lagrangian relaxation of (P) as follows. Let l be a

nonnegative vector of weights, called Lagrangian

multipliers.

Definition 2. The Lagrangian relaxation of (P)

relative to the complicating constraints Ax � b, with

nonnegative Lagrangian multipliers l, is the problem
(LRl) Minxff xþ lðAx� bÞ Cx � d; x 2 Xj g.

Notice that (LRl) is still an integer programming

problem, so its solutions, unlike those of the

continuous relaxation, are integer solutions. However

they need not be feasible solutions of (P), as they may

violate some, or all, of the complicating constraints

Ax � b, which are not enforced any more. In (LRl),

the slacks of the complicating constraints Ax � b have
been added to the objective function with weights l.
One says that the constraints Ax � b have been

dualized. (LRl) is a relaxation of (P), since (i) FS

(LRl) contains FS(P), and (ii) for any x feasible for

(P), and any l� 0, fx +l(Ax� b) is less than or equal to

fx (i.e., not worse, since it is a minimization problem).

It follows that v(LRl) � v(P), for all l � 0, i.e., the

optimal value v(LRl), which depends on l, is a lower
bound on the optimal value of (P).

Definition 3. The problem of finding the tightest

Lagrangian lower bound on v(P) , i.e., (LR) Maxl � 0

v(LRl), is called the Lagrangian dual of (P) relative
to the complicating constraints Ax � b. v(LR) is called

the Lagrangian relaxation bound, or simply the

Lagrangian bound.
Let (LP) denote the linear programming relaxation of

problem (P). By LP duality, any Lagrangian relaxation

bound is always at least as good as the LP bound, i.e., v
(P), never worse. Notice also that (LR) is a problem in

the dual space of the Lagrangian multipliers, whereas

(LRl) is a problem in x, i.e., in the primal space.
Feasible Lagrangian solution

Let x(l) denote an optimal solution of (LRl) for some

l � 0, then x(l) is called a Lagrangian solution. One

may be tempted to think that a Lagrangian solution

x(l) that is feasible for the integer problem (i.e., that

satisfies the dualized constraints) is also optimal for

that problem. In fact this is generally not the case.

What is true is that the optimal value of (P), v(P), lies

in the interval between fx(l)+l[Ax(l)�b] and fx(l),
where fx(l) is the value of a feasible solution of (P),

thus an upper bound on v(P), and fx(l)+l[Ax(l)�b] is

the optimal value of the Lagrangian problem (LRl),

thus a lower bound on v(P). If, however,

complementary slackness holds, i.e., if l[Ax(l)�b] is

0, then fx(l)+l[Ax(l)�b]¼ v(P)¼ fx(l), and x(l) is an
optimal solution for (P).

Theorem 1. (1) If x(l) is an optimal solution of (LRl)

for some l � 0, then fx(l)+l[Ax(l)�b] � v(P). If

in addition x(l) is feasible for (P), then fx(l)
+l[Ax(l)�b] � v(P) � fx(l).

(2) If in addition l[Ax(l)�b] ¼ 0, then x(l) is an
optimal solution of (P), and v(P) ¼ fx(l).

Remarks. Notice first that (2) is a sufficient condition

of optimality, but it is not necessary. I.e., it is possible

for a feasible x(l) to be optimal for (P), even though it

does not satisfy complementary slackness. If the

constraints that are dualized are equality constraints,

and if x(l) is feasible for (P), complementary slackness

holds automatically, thus x(l) is an optimal solution of

(P), with v(P) ¼ fx(l).
Geometric Interpretation

The following theorem, from (Geoffrion 1974), is

probably what sheds most light on Lagrangian

relaxation. It gives a geometric interpretation of

the Lagrangian dual problem in the x- space, i.e., in the

primal space, and this permits an in-depth study of the

strength of specific Lagrangian relaxation schemes.

Theorem 2. The Lagrangian dual (LR) is
equivalent to the primal relaxation (PR)

Minx fx Ax � bj ; x 2 Co x 2 X Cx � djf gf g, in the

sense that v(LR) ¼ v(PR) (Fig. 1).
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This result is based on LP duality and properties of

optimal solutions of linear programs. Remember

though that this result may not be true if the

constraint matrices are not rational.

The following important definition and results

follow from this geometric interpretation.

Definition 4. One says that (LR) has the Integrality
Property (IP for short) if Co x 2 X Cx � djf g ¼
x 2 n Cx � djf g.
If (LR) has the Integrality Property, then the

extreme points of x 2 
n

Cx � dj� �
are in X. The

unfortunate consequence of this property, as stated in

the following corollaries, is that such an LR scheme

cannot produce a bound stronger than the LP bound.

Sometimes, however, this is useful anyway because

the LP relaxation cannot be computed easily. This

may be the case for instance for some problems with

an exponential number of constraints that can be

relaxed anyway into easy to solve subproblems. The

traveling salesman problem is an instance of a problem

which contains an exponential number of (subtour

elimination) constraints. A judicious choice of

dualized constraints leads to Lagrangian subproblems

that are 1-tree problems, thus eliminating the need to

explicitly write all the subtour elimination constraints

(Held and Karp 1970, 1971).

Here are the two corollaries of Theorem 2 that explain

the important role played by the Integrality Property.

Corollary 1. IfCo x2X Cx� djf g¼ x2n Cx� djf g,
then v(LP) ¼ v(PR) ¼ v(LR) � v(P).

In that case, the Lagrangian relaxation bound is

equal to (cannot be better than) the LP bound.
Corollary 2. If Co x2X Cx� djf g� x2 n Cx� djf g,
then v(LP)� v(PR)¼ v(LR)� v(P), and it may happen

that the Lagrangian relaxation bound is strictly better

than the LP bound.
Unless (LR) does not have the Integrality Property,

it will not yield a stronger bound than the LP

relaxation. It is thus important to know if all

vertices of the rational polyhedron x 2 njCx � df g
are in X.
Easy-to-Solve Lagrangian Subproblems

It may happen that Lagrangian subproblems, even

though in principle hard to solve because they do not

have the Integrality Property, are in fact much easier to

solve through some partial decomposition; they can

sometimes even be solved in polynomial time, by

exploiting their special structure. It is of course

important to be able to recognize such favorable

situations, especially if one can avoid using

Branch-and-Bound to solve them. It should be noted

that these favorable cases do not in general occur

naturally, but only after some constraint(s) have been

dualized, due to a weakening of the original links

between continuous and integer variables.

One case is due to what is sometimes called the

Integer Linearization Property (or ILP for short) for

mixed 0-1 problems.

Integer Linearization Property

Geoffrion (1974) and Geoffrion and McBride (1978)

described and used this important property of some
Lagrangian subproblems. W.l.o.g., assume that all
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variables are indexed by i∈I, and maybe by some

additional indices, and that some of the 0-1 variables

are called yi. If, except for constraints containing only

these 0-1 variables yi, the Lagrangian problem, say,

(LRl), has the property that the value taken by a given

yi decides alone the fate of all other variables

containing the same value of the index i � that

usually means that if variable yi is 0, all variables in

its family are 0, and if it is 1, they are solutions of

a subproblem � one may be able to reformulate the

problem in terms of the variables yi only. Often, but not

always, when this property holds, it is because the

Lagrangian problem, after removal of all constraints

containing only the yi’s � call it (LRPl), for partial

problem – decomposes into one problem ðLRPilÞ for
each i, i.e., for each 0-1 variable yi. The use of this

property is based on the following fact. In problem

ðLRPilÞ, the integer variable yi can be viewed as

a parameter, however one does know that for the

mixed-integer problem ðLRPilÞ, the feasible values of
that parameter are only 0 and 1, and one can make use

of the fact that there are only two possible values for

v LRPil
� �

, the value computed for yi¼1, say vi (¼ vi.yi
for yi¼1), and the value for yi¼0, that is, 0 (¼ vi.yi
for yi¼0), which implies that for all possible values of

yi, v LRPil
� � ¼ vi:yi. Hence the name integer

linearization, as one replaces a piecewise linear

function corresponding to 0 � yi � 1 by a line

through the points (0, 0) and (1, vi) (Fig. 2).
One may in such cases obtain LR bounds much

tighter than the LP bounds, even though the

subproblems are trivial to solve.
Constructing a Lagrangian Relaxation

There are often many ways in which a given problem

can be relaxed in a Lagrangian fashion. A few standard

ones are listed here, mostly to point out that often

some reformulation prior to relaxation can help, and

that for many complex models, intuition and some
understanding of the constraint interactions may

suggest ingenious and efficient relaxation schemes.

(1) One can isolate an interesting subproblem and

dualize the other constraints.

This is the most commonly used approach. It has

the advantage that the Lagrangian subproblems are

interesting (in the sense usually that they have

a special structure that can be exploited) and there

may even exist specialized algorithms for solving

them efficiently.

(2) If there are two (or more) interesting

subproblems with common variables, one can

split these variables first, then dualize the copy

constraint.

This is called Lagrangian decomposition (LD)

(Soenen 1977), variable splitting (N€asberg et al.

1985), or variable layering (Glover and Klingman

1988). One must first reformulate the problem using

variable splitting, in other words, one must rename

the variables in part of the constraints as if

they were independent variables. Problem (P):

Minx f x Ax � bj ;Cx � d; x 2 Xf g is clearly equivalent

to problem (P0): Minx;y f x Ax � b; x 2 X;Cy � d;jf
y 2 X; x ¼ yg, in the sense that they have

equal optimal values (but notice that they have

different variable spaces). In addition if x* is an

optimal solution of (P), then the solution (x, y) � (x*,

x*) is optimal for (P0), and if (x*, y*) is an optimal

solution of (P0) with x*¼ y*, then x* is optimal for (P).

One dualizes the copy constraint x ¼ y in (P0)
with multipliers l, this separates the problem

into an x-problem and a y-problem: (LDl)

Minx;yffxþ lðy� xÞjAx � b; x 2 X; Cy � d; y 2 X ¼g
Minxfðf � lÞx j Ax � b; x 2 Xg þMinyfly j Cy � d;

y 2 Xg.
This process creates a staircase structure, and thus

decomposability, in the model. Notice that here l is not
required to be nonnegative.

Remember also that when one dualizes equality

constraints, a feasible Lagrangian solution is
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automatically optimal for the original integer

programming problem. The copy constraint being an

equality constraint, if both Lagrangian subproblems

have the same optimal solution, that solution is

optimal for the IP problem.

Guignard and Kim (1987) showed that the LD

bound can strictly dominate the LR bounds obtained

by dualizing either set of constraints:

Theorem 3.
If v LDð Þ ¼ Maxl½Minxfðf � lÞx Axj � b; x 2 Xg
þMinfly Cj y � d; y 2 Xg� then
v LDð Þ ¼ Min ffx j

y

x 2 Cofx 2 X Aj x � bg
\ Cofx 2 X Cj x � dg:

This new geometric interpretation is demonstrated

in Fig. 3.

Corollary 3.

• If one of the subproblems has the Integrality

Property, then v(LD) is equal to the better of the
two LR bounds corresponding to dualizing either

Ax � b or Cx � d.

• If both subproblems have the Integrality Property,
then v(LD) ¼ v(LP).

A very important application of the splitting

variable scheme can be found in stochastic

optimization, when the uncertainty is represented by

2-stage or multistage scenario trees. The non-

anticipativity constraints (or NAC) must be satisfied

by the variables attached to the scenario groups or
nodes in the tree. Splitting variables in the NAC and

dualizing the copy constraints produces a Lagrangean

decomposition of the Deterministic Equivalent Model.

See Escudero (2009) and Birge and Louveaux (2011),

among others.

Occasionally the variable splitting will correspond

to a physical split of one of the problem’s decision

variables. This is illustrated by the following example.

Example 1. Guignard and Yan (1993) described the

following problem and scheme for a hydroelectric

power management problem.

Electric utility production planning is the selection

of power generation and energy efficiency resources

to meet customer demands for electricity over a

multi-period time horizon. The project described in

the paper is a real-world hydropower plant operations

management problem of a dispatch type. The system

consists of a chain of 10 consecutive hydropower

plants separated by reservoirs and falls with

23 identical machines installed to generate electric

power. Specifically there are two machines installed

in eight power plants (plants 1, 2, 3, 4, 5, 6, 7, and 10),

three machines in one power plant (plant 8) and four

machines in the last power plant (plant 9). Each

machine has two or four work parts for producing

electric power, according to different water

throughput. Since demand for electric power varies

with different time periods, power plant managers

must make optimal decisions concerning the number

of machines that should be operated in each

power plant during each time period. Managing the

power generation requires decisions concerning water
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releases at each plant k in each time period. A period is

two hours. The model (which is confidential) was

constructed by an independent consulting firm. This

results in a large mixed-integer program. The problem

is complex, with 2,691 variables, 384 of which are

binary, and 12,073 constraints. The firm had tried to

solve the problem for the utility company with several

of the best MIP software packages available, with help

from the software companies themselves. Yet they did

not succeed. Guignard and Yan repeated the tests with

several solvers running under GAMS, on several RISC

systems, also to no avail. The best result after 5 days

and six hours on an HP workstation was a

bracket [3174.97, 3534.17], i.e., a residual gap of

more than 11%.

In order to reduce the complexity of the model, they

tried several Lagrangian relaxations and

decompositions. One of the decompositions tested

consists in “cutting” each reservoir in half (see

Fig. 4), i.e. splitting the water level variable in each

reservoir, and dualizing the following copy constraint:
high water level in k þ 1 ¼ low water level in k:

This Lagrangian decomposition produces one

power management problem per power plant k. These

subproblems do not have a special structure, but are

much simpler and smaller than the original problem,

are readily solvable by commercial software, and do

not have the Integrality Property. They were solved by

Branch-and-Bound.
This LD shrinks problem size, and yields

Lagrangian bounds much stronger than the LP

bounds. In addition the Lagrangian solutions can be

modified to provide feasible schedules.

(3) One can dualize linking constraints:

After possibly some reformulation, problems may

contain independent structures linked by some

constraints: Minx;yff xþ gy Aj x � b; x 2 X; Cy � d;

y 2 Y; Exþ Fy � hg. Dualizing the linking

constraints Ex + Fy � h splits the problem into an

x-problem and a y-problem. The original problem may

only contain x and some reformulation introduces a new

variable y, while the relationship between x and y is

captured by the new constraints Ex + Fy � h.

Example 2. A production problem over multiple

facilities contains constraints related to individual

facilities, while the demand constraints link all plant

productions. If one dualizes the demand constraints,

the Lagrangian problem decomposes into a production

problem for each facility, which is typically much

easier to solve than the overall problem. If at least

one of these subproblems does not have the

Integrality Property, this LR may yield a tighter

bound than the LP bound. In (Andalaft et al. 2003),

a forest company must harvest geographically distinct

areas, and dualizing the demand constraints splits the

problem into one subproblem per area, which is

typically much easier to solve than the overall

problem.

(4) One can sometimes dualize aggregate rather

than individual copies of variables.

Instead of creating a copy y of variable x and

introducing y into model (P) by rewriting the

constraint Cx � d as Cy � d, to yield the equivalent

model (P0): Minx;y ff x Aj x � b; x 2 X; Cy � d;

y 2 X; x ¼ yg; one can also create a problem (P00)
equivalent to problem (P) by introducing a new

variable y and forcing the constraint Dy ¼ Cx. This

constraint is in general weaker than the constraint

x ¼ y. Model (P00) is Minx;yff x Aj x � b; x 2 X;

Dy � d; y 2 X; Dx ¼ Cyg. The LR introduced here

dualizes the aggregate copy constraint Dx ¼ Cy.
Notice that the copy constraint is an equality

constraint, therefore if the Lagrangian subproblems

have optimal solutions x and y that satisfy the

aggregate copy constraint, i.e., if Dy ¼ Cx, then the

x- solution is optimal for the IP problem.
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Example 3. Consider the bi-knapsack problem

(BKP)Maxxf
P

i cixij
P

i bixi � m;
P

i dixi � n;
xi 2 f0; 1g; 8ig:

One can introduce a new variable y, and writeP
i bixi ¼

P
i biyi: The equivalent problem is

(BKP’)Maxx;yf
P

i cixij
P

i biyi � m;
P

i dixi � n;P
i bixi ¼

P
i biyi; xi; yi 2 0; 1f g; 8ig

and the LR problem is
ðLRlÞMaxx;y
X

i
cixi � l

X
i
bixi �

X
i
biyi

� �n ���:X
i
biyi � m;

X
i
dixi � n; xi; yi 2 0; 1f g; 8ig

¼ Maxx
X

i
ðci � lbiÞxi

X
i
dixi

��� � n;
n

xi 2 0; 1f g;8ig

þMaxy l
X

i
biyiÞ

n X
i
biyi

��� � m; yi 2 0; 1f g; 8ig:

Here l is a single real multiplier of arbitrary sign.

The Lagrangian bound produced by this scheme is

in between that of the LP bound and that of

the Lagrangian decomposition bound obtained by

dualizing xi ¼ yi 8i. This is similar in spirit to the copy

constraints introduced in Reinoso and Maculan (1992).

It would seem natural that a reduction in the number

of multipliers should imply a reduction in the quality of

the LR bound obtained. This is not always the case,

however, as shown in example 4.

Example 4. Chen and Guignard (1998) considered an

aggregate Lagrangian relaxation of the capacitated

facility location problem. The model uses continuous

variables xij that represent the percentage of

the demand dj of customer j supplied by facility i, and

binary variables yi, equal to 1 if facility i with capacity
ai is operational. The constraint

P
j

djxij � aiyi

imposes a conditional capacity restriction on the

total amount that can be shipped from potential

facility i.

(CPLP)

Minx,y Σi Σj cij xij + Σi fi yi

s.t. Σi xij = 1, all j (D) meet 100% of customer
   demand
ship nothing if plant is
   closed
enough plants to meet 
   total demand
ship no more than plant
   capacity

xij ≤ yi, all i, j (B)

(T)

Σj dj xij ≤ ai yi, all i

Σi ai yi ≥ Σj dj,

(C)

xij ≥ 0, yi = 0 or 1, all i, j.
Constraint (T) is redundant, but may help getting

tighter Lagrangian relaxation bounds.

The three best Lagrangian schemes are:

(LR) (Geoffrion and McBride 1978)

One dualizes (D) then uses the integer linearization

property. The subproblems to solve are one continuous

knapsack problem per plant ((C) with yi = 1) and one

0-1 knapsack problem over all plants (constraint (T)).

The Lagrangian relaxation bound is tight, and it is

obtained at a small computational cost.

(LD) (Guignard and Kim 1987).

Duplicate (T). Make copies xij ¼ x0ij and yy ¼ y0i and
use x0ij and y

0
i in (C) and in one of the (T)’s. One obtains

the split

{(D), (B), (T)} ! APLP

{(B), (T), (C)} ! this is like in (LR)

This LD bound is tighter than the (LR) bound, but

expensive to compute, in particular because of a large

number of multipliers.

(LS) (Chen and Guignard 1998).

Copy ∑j dj xij ¼ ∑j dj x
0
ij and yi ¼ y0i in (C). This

yields the same split as (LD), and the same bound. This is

very surprising, as it is less expensive to solve (LS) than

(LD), in particular because (LS) has far fewermultipliers.

In example 4, creating new copy variables x0ij and
y0i, one can create an LS by dualizing the aggregate

(linking) copy constraints
P
j

dj xij ¼
P
j

djx
0
ij and

aiyi ¼ aiy
0
i. Surprisingly, one can prove that the LS

bound for this problem is as strong as the LD bound

obtained by dualizing individual copies xij ¼ x0ij and
yi ¼ y0i. This suggests that “aggregating” variables

before copying them may be an attractive alternative

to Lagrangian decomposition, at least for some problem

structures. A more general structure than CPLP is

actually described in Chen and Guignard (1998).

Characteristics of the Lagrangian Function

The Lagrangian function z(l) ¼ v(LRl) is an implicit

function of l. Suppose that the set Co x 2 X Cj x � df g
is a polytope, i.e., a bounded polyhedron, then there

exists a finite family {x1, x2,. . ., xK} of extreme

points of Co x 2 X Cj x � df g, i.e., of points of

x 2 X Cj x � df g, such that Co x 2 X Cj x � df g
¼ Co x1; x2; . . . ; xK

� �
. It then follows that

Minx fxþ l b� Axð Þ Cj x � d; x 2 Xf g
¼ Mink¼1;...;K f xk þ l b� Axk

� �� �



z = f x 2 + λ(b −A x 2)

f x 1

f x 2

f x k

η

z(λ)

λ

z = f x 1 + λ(b −A x 1)

z = f x k + λ(b −A x k)

Lagrangian Relaxation, Fig. 5 The Lagrangean function of a

maximization problem
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and z(l) is the lower envelope of a family of linear

functions of l, f xk þ l b� Axk
� �

, k¼1,. . .,K, and thus

is a concave function of l, with breakpoints where it is
not differentiable, i.e., where the optimal solution of

(LRl) is not unique. Figure 5 shows a Lagrangian

function for the case where (P) is a maximization

problem, this (LR) is a minimization problem, and

z(l) a convex function of (l).
A concave function f(x) is continuous over the

relative interior of its domain, and it is differentiable

almost everywhere, i.e., except over a set of measure 0.

At points where it is not differentiable, the function does

not have a gradient, but is always has subgradients.

Definition 5. A vector y ∈ (Rn)* is a subgradient of

a concave function f(x) at a point x0 ∈ Rn if for all
x ∈ Rn

f ðxÞ � f x0
� � � y 	 ðx� x0Þ:
Definition 6. The set of all subgradients of a concave

function f(x) at a point x0 is called the subdifferential of

f at x0 and it is denoted ∂f(x0).

Theorem 4. The subdifferential ∂f(x0) of a concave

function f(x) at a point x0 is always nonempty, closed,
convex and bounded.

If the subdifferential of f at x0 consists of a single

element, that element is the gradient of f at x0, denoted
by Hf ðx0Þ.
The dual problem (LR) is
ðLRÞ
Maxl � 0vðLRlÞ ¼ Maxl�0zðlÞ ¼
Maxl � 0Mink¼1;...;K fxk þ l b� Axk

� �� � ¼
Maxl � 0;� � �j � fxk þ lðb� AxkÞ; k ¼ 1; . . . ;K

� �
:

Let l* be a minimizer of z(l), Z* ¼ z(l*), lk be
a current “guess” at l*, let Zk ¼ z(lk), and

Hk ¼ l fj xk þ lðb� AxkÞ ¼ �k
� �

be a level

hyperplane passing through lk.
• If z(l) is differentiable at lk, i.e., if (LRl) has

a unique optimal solution xk, it has a gradient Hz
(lk) at lk:
=TzðlkÞ ¼ ðb� AxkÞ?Hk:

• If z(l) is nondifferentiable at lk, i.e., if (LRk
l)

has multiple optimal solutions, the vector

sk ¼ ðb� AxkÞT is a subgradient of z(l) at lk. That
vector sk is orthogonal to Hk.

If one considers the contours

Cðkg ¼ l 2 m
þjzðlÞ � a

� �
, a a scalar, these

contours are convex polyhedral sets. See Fig. 6.

Note: A subgradient is not necessarily a direction of

increase for the function, even locally, as seen on

Fig. 6.

Theorem 5. The vector (b�Axk)T is a subgradient of

z(l) at lk.
Primal and Dual Methods to Solve
Relaxation Duals

A number of methods have been proposed to solve

Lagrangian duals. They are either ad-hoc, like for

instance dual ascent methods, or general purpose,

usually aiming at solving a generic nonsmooth

convex optimization problem. This section reviews

the most important approaches.

Subgradient Method

This method was proposed in (Held and Karp 1971). It

is an iterative method in which at iteration k, given the

current multiplier vector lk, a step is taken along a

subgradient of z(lk), then, if necessary, the resulting

point is projected onto the nonnegative orthant.



Contour of z(λ):
z(λ) =  ηk

Space of λ

region where xk is optimal for (LRl )

Hk = {λ⏐f x k + λ(b −Axk ) = ηk }

−sk = −(b −Axk )

H∗

λ∗

λk

λ ,k+1

Lagrangian Relaxation,
Fig. 6 Contours and

subgradient
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Let x(k) be an optimal solution of (LRk
l). Then

sk ¼ ðb� AxðkÞÞT is a subgradient of z(l) at lk. If l*

is an (unknown) optimal solution of (LR), with Z* ¼ z
(l*), let l0k+1 be the projection of lk on the hyperplane
H* parallel to Hk, defined by
H
 ¼ l fj xk þ lðb� AxðkÞÞ ¼ �

n o

:

The vector sk is perpendicular to both Hk and H*,

therefore l0k+1 � lk is a nonnegative multiple of sk:

l0k
þ1 � lk ¼ msk; m � 0:

Also, l0k+1 belongs to H*:
f xðkÞ þ l0kþ
1ðb� AxðkÞÞ ¼ �
;

therefore f xk þ mskðb� AxðkÞÞ ¼ �k þ msk:sk ¼ �


and m¼ð�
 ��kÞ=jjskjj2,
so that l0kþ1 ¼ lkþ sk: ð�
 ��kÞ =jjskjj2.
Finally define lk

þ1 ¼ ½l0kþ1�þ, i.e., define the next

iterate lk+1 as the projection of l0k+1 onto the

nonnegative orthant, as l must be nonnegative. Given

the geometric projections described above, it is clear

that lk+1 is closer to l* than lk, thus the sequence

jjlk � l
jj2 is monotone nonincreasing.

Remark. This formula unfortunately uses the

unknown optimal value Z* of (LR). One can try to
use an estimate for that value, but then one may be

using either too small or too large a multiple of sk. If

one sees that the objective function values do not

improve for too many iterations, one should suspect

that Z* has been overestimated (for a maximization

problem) and that one is overshooting, thus one should

try to reduce the difference Z*-Zk. This can be

achieved by introducing from the start a positive

factor ek ∈ (0,2), in the subgradient formula:
lk
þ1 ¼ lk þ sk: ekð�
 � �kÞ =jjskjj2;

and reducing the scalar ek when there is no

improvement for too long.

Practical convergence of the subgradient method is

unpredictable, sometimes quick and fairly reliable,

sometimes erratic. Many authors have studied this

problem and have proposed a variety of remedies.

Dual Ascent Methods

In this kind of approach, one takes advantage of the

structure of the Lagrangian dual to create a sequence of

multipliers that guarantee a monotone increase in

Lagrangian function value. This approach had been

pioneered by Bilde and Krarup (1967, 1977) for

solving approximately the LP relaxation of the

uncapacitated facility location problem (UFLP).

General principles for developing a successful

Lagrangian dual ascent method can be found in

(Guignard and Rosenwein 1989).
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Constraint Generation Method (Also Called

Cutting Plane Method, or CP)

In this method , one uses the fact that z(l) is the lower
envelope of a family of linear functions:

LRð Þ
Maxl�0vðLRlÞ¼Maxl�0zðlÞ¼
Maxl�0Mink¼1;...;K f xkþl b�Axk

� �� �¼
Maxl�0;� � �j � f xkþl b�Axk

� �
;k¼ 1; . . . ;K

� �
:

At each iteration k, one generates one or more cuts

of the form

� � fxk þ lðb� AxðkÞÞ;

by solving the Lagrangian subproblem (LRk
l) with

solution x(k). These cuts are added to those generated

in previous iterations to form the current LP master

problem:

MPk
� �

Maxl�0;� � �j � fxðhÞ þlðb�AxðhÞÞ;h¼ 1; . . . ;k
n o

;

whose solution is the next iterate lk+1. The process

terminates when v(MPk) ¼ z(lk+1). This value is the

optimal value of (LR).

Column Generation (CG)

(CG) has been used extensively, in particular for

solving very large scheduling problems (airline,

buses, etc.). It consists in reformulating a problem as

an LP (or an IP) whose activities (or columns)

correspond to feasible solutions of a subset of the

problem constraints, subject to the remaining

constraints. The variables are weights attached to

these solutions.

There are two aspects to column generation: first,

the process is dual to Lagrangian relaxation and to CP.

Secondly, it can be viewed as an application of Dantzig

and Wolfe’s decomposition algorithm (Dantzig and

Wolfe 1960, 1961).

Let the xk 2 x 2 XjCxk � d
� �

, k∈K, be chosen

such that Co xk
� � ¼ Co x 2 X Cj x � df g. A possible

choice for the xk’s is all the points of

Co x 2 X Cj x � df g but a cheaper option is all

extreme points of Co x 2 X Cj x � df g.
Problem (P): Minx fx Aj x � b;Cx � d; x 2 Xf g

yields the Lagrangian dual (i.e., in the l-space) problem

LRð Þ Maxl�0Minx fxþ lðAx� bÞ Cj x � d; x 2 Xf g
which is equivalent to the primal (i.e., in the x-space)
problem
PRð Þ Minx fx Aj x � b; x 2 Co x 2 X Cj x � df gf g;

which itself can be rewritten as (PR)

Minx f
X
k2K

mkx
k

 !
A
X
k2K

mkx
k

 !����� x � b

( )

¼ Minx
X
k2K

mk:ðfxkÞ
X
k2K

mk:ðAxkÞ � b

�����
( )

;

given

that one can write x 2 Co x 2 X Cj x � df g as

x ¼ P
k2K

mkx
k, with

P
k2K

mk ¼ 1 and mk � 0.

The separation of a problem into a master- and

a sub-problem is equivalent to the separation of the

constraints into kept and dualized constraints. The

columns generated are solutions of integer

subproblems that have the same constraints as the

Lagrangian subproblems.

The value of the LP relaxation of the master

problem is equal to the Lagrangian relaxation bound.

The strength of a CG or LR scheme would then seem to

be based on the fact that the subproblems do not have

the integrality property. It may happen however that

such a scheme can be successful at solving problems

with the integrality property because it permits the

indirect computation of v(LP) when this value could

not be computed directly, e.g., because of an

exponential number of constraints (Held and Karp

1970, 1971).

One substantial advantage of (CP) or (CG) over

subgradient algorithms is the existence of a true

termination criterion v(MPk) ¼ z(lk+1).

Bundle Methods

Lemaréchal (1974) introduced an extension of

subgradient methods, called bundle methods, in

which past information is collected to provide

a better approximation of the Lagrangian function.

The standard CP algorithm uses the bundle of the

subgradients that were already generated, and

constructs a piecewise linear approximation of the

Lagrangian function. This method is usually slow

and unstable. Three different stabilization approaches

have been proposed. At any moment, one has a model

representing the Lagrangian function, and a so-called

stability center, which should be a reasonable

approximation of the true optimal solution.
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One generates a next iterate which is a compromise

between improving the objective function and keeping

close to the stability center. The next iterate becomes the

new stability center ( a serious step) only if the objective

function improvement is “good enough”. Otherwise,

one has a null step, in which however one improves

the function approximation. In addition, this next

iterate shouldn’t be too far away from the stability

center. The three stabilization approaches propose

different ways of controlling the amount of move that

is allowed. Either the next iterate must remain within

a so-called trust region, or one adds a penalty term to the

approximation of the function that increases with the

distance from the stability center, or one remains within

a region where the approximation of the function

stays above a certain level (for a maximizaton

problem). This proximity measure is the one parameter

that may be delicate to adjust in practical

implementations. There is a trade-off between the

safety net provided by this small move concept, and

the possibly small size of the bound improvement.

The Volume Algorithm (VA)

The volume algorithm (Barahona and Anbil 2000),

an extension of the subgradient algorithm, can be

seen as a fast way to approximate Dantzig-Wolfe

decomposition, with a better stopping criterion, and

it produces primal as well as dual vectors by

estimating the volume below the faces that are

active at an optimal dual solution. It has been used

successfully to solve large-scale LP’s arising in

combinatorial optimization, such as set partitioning

or location problems.
Subproblem Decomposition

Inmany cases, the Lagrangian subproblem decomposes

into smaller problems, and this means that the feasible

region is actually the Cartesian product of several

smaller regions. One clear advantage is the reduction

in computational complexity for the Lagrangian

subproblems: indeed, it is generally much easier to

solve 50 problems with 100 binary variables each,

say, than a single problem with 5,000 (i.e., 50x100)

binary variables.

It also means that in column generation, the columns

(i.e., the vectors that are feasible solutions of the kept

constraints) decompose into smaller subcolumns, and
each subcolumn is a convex combination of extreme

points of a small region. By assigning different sets of

weights to these convex combinations, one allows mix-

and-match solutions, in other words, one may combine

a subcolumn for the first subproblem that was generated

at iteration 10, say, with a subcolumn for the second

subproblem generated at iteration 7, etc. , to form a full

size column. If one had not decomposed the problem

ahead of time, one may have had to wait a long time for

such a complete column to be generated.

By duality, this means that in a cutting plane

environment, one can also generate sub-cuts for each

subproblem, which amounts to first replacing Z by

z � lb in

MPk
� �

Maxl�0;� � �j � f xðhÞ þlðb�AxðhÞÞ;h¼ 1; . . . ;k
n o

¼Maxl�0;z z�lb zj � ðf �lAÞxðhÞ;h¼ 1; . . . ;k
n o

;

and then z by a sum of scalars zl, with zl � (f l � lAl)

x
ðhÞ
l , where l is the index of the Lagrangian subproblem,

f l, Al, and x
ðhÞ
l are the lth portions of the corresponding

submatrices and vectors, and xhl is a Lagrangian

solution of the lth subproblem found at iteration h,
yielding the disaggregated master problem

MPDk
� �

Maxl�0; zl

X
lzl�lbjzl �ðf �lAÞlxhl ;h¼ 1; . . . ;k

n o
:

Example 5. Consider the Generalized Assignment

Problem, or GAP (for the minimization case,

although it would work in exactly the same way with

maximization).

GAPð Þ Min
X

i

X
j
cijxij

s:t:
X

j
aijxij � bi; 8i 2 I KPð ÞX

i
xij ¼ 1; 8j 2 J MCð Þ

xij 2 f0; 1g; 8i 2 I; j 2 J:

Its strong Lagrangian relaxation is

ðLRlÞMin
X

i;j
cijxijþ

X
j
ljð1�

X
i
xijÞ

s:t:
X

j
aijxij � bi; 8i KPð Þ

¼
X

j
ljþ

X
i
Minf

X
j
ðcij�ljÞxij

X
j
aijxij � bi;8i

���
xij 2f0;1g; 8jg;
and (LR) is the maximum with respect to l of v(LRl).
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Let EP KPð Þ ¼ xkjk 2 K

� �
be the set of all integer

feasible solutions of the constraints (KP), and let

EP KPið Þ ¼ xki: k 2 Kij� �
be the set of all integer

feasible solution of the ith knapsack, with K ¼ Q
i

Ki.

Then a feasible solution of (LRl) can be described by

xij ¼
P
k2Ki

mi
k
xkij; 8i; j:

The Lagrangian dual is equivalent to the aggregate

master problem AMP:
L

AMPð Þ Maxl;z zjz�
X

i;j
cijx

k
ij
þ
X

j
ljð1�

X
i
xk
ij
Þ;8k2K

n o
¼Maxl;z zþ

X
j
lj zj �

X
ij
cij�lj
� �

xkij; 8k2K
n o

with the substitution z ¼ zþPj lj.
If one had first written the column generation

formulation for the Lagrangian dual, one would

naturally have de-coupled the solutions of the

independent knapsack subproblems, using the

independent sets Ki instead of K, the column

generation master problem would have been

disaggegated:
DMPð ÞMaxl;z
X

i
zi þ

X
j
lj

s:t: zi �
X

j
ðcij � ljÞxkij ; 8i; 8k 2 Ki

and its dual

Minm
X

k2Ki

X
i;j
cijx

k
ij
mðiÞ

k

X
k2Ki

X
i
xk
ij
mðiÞ

k
¼ 1;8j;

���
mik � 0;

X
k2Ki

mðiÞ
k

¼ 1; 8ig;

is clearly the Dantzig-Wolfe decomposition of the

primal equivalent
PRð Þ Minx
X

i;j
cijxij

X
i
xi;j ¼ 1; xij � 0

���n o

of (LR).
Relax-and-Cut

One question that often arises in the context of

Lagrangian relaxation is how to strengthen the

Lagrangian relaxation bound. One possible answer is

the addition of cuts that are currently violated by the
Lagrangian solution. It is clear however that adding

these to the Lagrangian problem will change its

structure and may make it much harder to solve. One

possible way out is to dualize these cuts (for a more

detailed analysis, see (Guignard 1998)). Remember

that dualizing does not mean discarding! The cuts

will be added to the set of complicating constraints,

and intuitively they will be useful only if the

intersection NI (for “new intersection”) of the new

relaxed polyhedron and of the convex hull of the

integer solutions of the kept constraints is “smaller”

than the intersection OI (for “old intersection”) of the

old relaxed polyhedron and of the convex hull of the

integer solutions of the kept constraints. This in turn is

only possible if the new relaxed polyhedron is smaller

than the old one, since the kept constraints are the same

in both cases. This has the following implications.

Consider a cut that is violated by the current

Lagrangian solution:

(1) if the cut is just a convex combination of the

current constraints, dualized and/or kept, it

cannot possibly reduce the intersection, since

every point of the “old” intersection will also

satisfy it; so in particular surrogate constraints of

the dualized constraints cannot help.

(2) if the cut is a valid inequality for the Lagrangian

problem, then every point in the convex hull of the

integer points of the kept constraints satisfies it,

because every integer feasible solution of the

Lagrangian subproblem does;

(3) it is thus necessary for the cut to use “integer”

information from both the dualized and the kept

constraints, and to remove part of the intersection.

(Remember that the Lagrangian solution is an

integer point required to satisfy only the kept

constraints).

A Relax-and-Cut scheme could proceed as follows:

1. Initialize the Lagrangian multiplier l.
2. Solve the current Lagrangian problem, let x(l) be

the Lagrangian solution. If the Lagrangian dual is

not solved yet, update l. Else end.
3. Identify a cut that is violated by x(l), and dualize it.

Go back to 2.

The term Relax-and-Cut was first used by

(Escudero et al. 1994). In that paper, a partial

description of the constraint set was used, and

violated constraints (not cuts) were identified, added

to the model and immediately dualized. The idea, if not

the name, had actually been used earlier. For instance
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in solving TSP problems, subtour elimination

constraints were generated on the fly and

immediately dualized in Balas and Christofides

(1981). The usefulness of constraints is obvious,

contrary to that of cuts. A missing constraint can

obviously change the problem solution.

Here are examples of cuts that if dualized cannot

possibly tighten Lagrangian relaxation bounds.

Non-improving Dualized Cuts: Example

for the GAP

Consider again the GAP model.

If one dualizes (MC), the Lagrangian relaxation

problem decomposes into one subproblem per j:
ðLRlÞ Min
X

i;j
cijxij þ

X
j
ljð1�

X
i
xijÞ

s:t:
X

j
aijxij � bi; 8i KPð Þ

¼ Min f
X

i;j
ðcij � ljÞxij þ

X
j
ljjX

j
aijxij � bi; 8i; xij 2 0; 1f g; 8i; jg

¼
X

j
ljþ

X
i
fMin

X
j
ðcij � ljÞ xijjX

j
aijxij � bi; 8i xij 2 f0; 1g; 8jg:

Thus the ith Lagrangian subproblem is a knapsack

problem for the ith machine. After solving all knapsack

problems, the solution x(l) may violate some multiple

choice constraint, i.e., there may exist some j for whichP
i xij 6¼ 1, and as a consequence the conditionP
i

P
j xij ¼ jJj may be violated. Adding this “cut”

(it indeed cuts out the current Lagrangian solution!),

and immediately dualizing it, does not reduce the

intersection, as every point of the old intersection OI

already satisfies all multiple choice constraints (MC),

i.e., the dualized constraints.

Can kept Cuts Strengthen the Lagrangian Bound?

What happens if one keeps the cuts instead of dualizing

them? It is clear that adding these to the Lagrangian

problem will change its structure, but it may still be

solvable rather easily. The cuts will be added to the set

of easy constraints, and intuitively they will be useful

only if the intersection NI (for “new intersection”) of

the relaxed polyhedron and of the new convex hull of

the integer solutions of the kept constraints is smaller

than the intersection OI (for “old intersection”) of the

relaxed polyhedron and of the old convex hull of the
integer solutions of the kept constraints. This in turn is

only possible if the new convex hull polyhedron is

smaller than the old one, since the dualized

constraints are the same in both cases.

Example 6. Consider again the GAP, and its weak

Lagrangian relaxation in which the knapsack constraints

(KP) are dualized. One could add to the remaining

multiple choice constraints a surrogate constraint of the

dualized constraints, for instance the sum of all knapsack

constraints, which is obviously weaker than the original

knapsack constraints. The Lagrangian problem does not

decompose anymore, but its new structure is that of

a multiple choice knapsack problem, which is usually

easy to solve with specialized software, and much easier

than the aggregate knapsack without multiple choice

constraints. The above strengthening of the Lagrangian

bound is simple, yet potentially powerful.
Lagrangian Heuristics and Branch-and-Price

Lagrangian relaxation provides bounds, but it also

generates Lagrangian solutions. If a Lagrangian

solution is feasible and satisfies complementary

slackness (CS), one knows that it is an optimal solution

of the IP problem. If it is feasible but CS does not hold, it

is at least a feasible solution of the IP problem and one

still has to determine, by BB or otherwise, whether it is

optimal. Otherwise, Lagrangian relaxation generates

infeasible integer solutions. Yet quite often these

solutions are nearly feasible, as one got penalized for

large constraints violations. There exists a very large

body of literature dealing with possible ways of

modifying existing infeasible Lagrangian solutions to

make them feasible. Lagrangian heuristics are

essentially problem dependent. Here are a few hints on

how one may want to proceed. One may for instance try

to get feasible solutions in the following way:

(1) by modifying the solution to correct its

infeasibilities while keeping the objective

function deterioration small.

Example: in production scheduling, if one relaxes

the demand constraints, one may try to change

production levels (down or up) so as to meet the

demand (de Matta and Guignard 1994).

(2) by fixing (at 1 or 0) some of the meaningful

decision variables according to their value in the

current Lagrangian solution, and solving optimally
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the remaining problem. Chajakis et al. (1996)

called this generic approach the lazy Lagrangian

heuristic. One guiding principle may be to fix

variables that satisfy relaxed constraints.

Part of the success of Lagrangian relaxation comes

from clever implementations of methods for solving the

Lagrangian dual, with powerful heuristic imbedded at

every iteration. In many cases, the remaining duality

gap, i.e., the relative percentage gap between the best

Lagrangian bound found and the best feasible solution

found by heuristics is sufficiently small to forego

enumeration. In some instances however an optimal or

almost optimal solution is desired, and a Branch-and-

Bound scheme adapted to replace LP bounds by LR

bounds can be used. If the Lagrangian dual is solved

by column generation, the scheme is called Branch-and-

Price, as new columns may need to be priced-out as one

keeps branching see Desrosiers et al. 1984), (Barnhart

et al., 1998). In that case, branching rules need to be

carefully designed. The hope is that such schemes will

converge faster than LP-based Branch-and-Bound, as

bounds will normally be tighter and nodes may be

pruned faster. The amount of work done at a node,

though, may be substantially more than solving an LP.
Concluding Remarks

• Lagrangian relaxation is a powerful family of tools

for solving approximately integer programming

problems. It provides

• stronger bounds than LP relaxation when the

problem(s) don’t have the Integrality Property.

• good starting points for heuristic search.

• The availability of powerful interfaces (GAMS,

AMPL, etc.) and of flexible IP packages makes it

possible for the user to try various schemes and to

implement and test them.

• As illustrated by the varied examples described in

this paper, Lagrangian relaxation is very flexible.

Often some reformulation is necessary for a really

good scheme to appear.

• It is not necessary to have special structures

embedded in a problem to try to use Lagrangian

schemes. If it is possible to decompose the problem

structurally into meaningful components and to

split them through constraint dualization, possibly

after having introduced new variable expressions, it

is probably worth trying.
• Finally, solutions to one or more of the Lagrangian

subproblems might lend themselves to Lagrangian

heuristics, possibly followed by interchange

heuristics, to obtain good feasible solutions.

Lagrangian relaxation bounds coupled with

Lagrangian heuristics provide the analyst with

brackets around the optimal integer value. These are

usually much tighter than the brackets coming from

LP-based bounds and heuristics
See

▶Branch and Bound

▶Convex Hull

▶Convex Optimization

▶Heuristics

▶ Integer and Combinatorial Optimization

▶Traveling Salesman Problem
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Lanchester Attrition

The concept of an explicit mathematical relationship

between opposing military forces and casualty rates.

The two classical laws are the linear law, that gives the

casualty rate (derivative of force size with respect to

time) of one side as a negative constant multiplied by

the product of the two sides’ force sizes, and the square

law, which gives the casualty rate of one side as

a negative constant multiplied by the opposing side’s

force size.
See

▶Battle Modeling

▶Homogeneous Lanchester Equations

▶Lanchester’s Equations
Lanchester’s Equations

Joseph H. Engel

Bethesda, MD, USA
Introduction

Lanchester’s equations are named for the Englishman,

F.W. Lanchester, who formulated and presented them

in 1914 in a series of articles contributed to the British

journal, Engineering, which then were printed in toto

in Lanchester (1916). More recent presentation of

these results appeared in the 1946 Operations

Evaluation Group Report No. 54, Methods of

Operations Research by Philip M. Morse and George

E. Kimball, which was published commercially by

John Wiley and Sons (Morse and Kimball 1951). In

addition, a reprint of the original 1916 Lanchester

work, “Mathematics in Warfare,” appeared in The

World of Mathematics, Vol. 4, prepared by James R.

Newman and published by Simon and Schuster in

1956.

The significance of these equations is that they

represented possibly the first mathematical analysis

of forces in combat, and served as the guiding light

(for the U.S. and its allies) behind the development,

http://dx.doi.org/10.1007/978-1-4419-1153-7_65
http://dx.doi.org/10.1007/978-1-4419-1153-7_200292
http://dx.doi.org/10.1007/978-1-4419-1153-7_515
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during and after World War II, of all two sided combat

models, simulations, and other methods of calculating

combat losses during a battle.

It appears that M. Osipov developed and published

comparable equations in a Tsarist Russian military

journal in 1915, perhaps independent of Lanchester’s

results. A translation of his work into English, prepared

by Robert L. Helmbold and Allen S. Rehm, was

printed in September 1991 by the U.S. Army

Concepts Analysis Agency.

Lanchester’s equations present a mathematical

discussion of concepts such as the relative strengths

of opposing forces in battle, the nature of the weapons,

the importance of concentration, and their effects on

casualties, and the outcome of the battle. His

arguments are paraphrased here, preserving much of

his original symbolism. The equations deal with

ancient warfare and modern warfare.
L

Ancient Warfare

Lanchester explained that, because of the limited

range of weapons in ancient warfare (like swords),

the number of troops on one side of a battle (the Blue

force) that are actively engaged in hand-to-hand

combat on the combat front at any time during the

battle must equal approximately the number of troops

responding to them on the other side (the Red force).

For this reason, one may assume that the rate at which

casualties are produced is constant, because the

number of troops actively engaged on each side is

constant (until very near the end of the battle), and

the rate c (>0), at which Blue combatants become

casualties is a product of the fixed number of Red

troops engaged and their average individual casualty

producing effectiveness (dependent on the average

strength of Red’s weapons and the effectiveness of

the Blue defenses). Similar results apply to k (>0),

the Red casualty rate. The two casualty rates need not

be the same, as the weapons and defenses of the two

sides may differ.

If b(t) is the number of effective Blue troops at time

t after the battle has started and r(t) is the number of

effective Red troops, the following equations can be

assumed to obtain:
db dt= ¼ �c; dr dt ¼ �k= : (1)
The relationship between the sizes of the two forces

may easily be ascertained by observing from (1) that
db dr= ¼ c k= ; (2)

from which it can be deduced that
k bð0Þ � bðtÞ½ � ¼ c rð0Þ � rðtÞ½ �: (3)

In the above equations, b(0) and r(0) are assumed to

be the initial (positive) sizes of the forces at time 0, the

beginning of the battle, and the equations are valid only

as long as b(t) and r(t) remain greater than zero.

Assuming the combatants battle until all the troops

on one side or the other are useless for combat,

having become casualties, the battle ends at the

earliest time when b(t) or r(t) becomes equal to zero.

Thus, solving for r in (3) when b becomes 0 (or vice

versa) yields: when
bðtÞ ¼ 0; rðtÞ ¼ c
rð0Þ � k
bð0Þ½ � c=

and when
rðtÞ ¼ 0; bðtÞ ¼ k
bð0Þ � c
rð0Þ½ � k= : (4)

Thus, if c∗r(0) > k∗b(0), the Red force wins the

battle, while if k∗ b(0) > c∗ b(0), the Blue force wins

the battle. Summarizing these observations by

designating the initial effectiveness of the Blue force

to be k∗b(0), and that of the Red force c∗r(0), shows

that the force with the larger initial effectiveness wins,

while equal initial effectiveness ensures a draw.

It is also simple to return to the original differential

equations of (1) and to solve them to determine the

number of effective troops of either force as a linear

function of time. This essentially completes

Lanchester’s modeling of ancient warfare.
Modern Warfare

Lanchester postulated that the major difference

between modern and ancient warfare is the ability of

modern weapons (such as rifles and, to a lesser degree

bows and arrows, cross bows, etc.) to produce

casualties at long range. As a result, the troops on one

side of an engagement can, in principle, be fired upon

by the entire opposing force. Consequently, assuming
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that all of each of the troops on a side have the same

(average) ability to produce casualties at a fixed rate,

the combined casualty rate against a given side is

proportional to the number of effective troops on the

other side.

This leads directly to the following differential

equations constituting Lanchester’s model of modern

warfare:
db dt= ¼ �c
r; dr dt= ¼ �k
b: (5)

As in the ancient warfare case, the individual

casualty producing rates, c and k, are assumed to be

known constants for the duration of the battle.

Now combine these two equations (as was done in

the ancient warfare case) and obtain
db dr= ¼ c
rð Þ k
b= : (6)

Equation (6) is solved to obtain the relationship

between the numbers of effective forces on the two

sides as the battle progresses. This leads to
k b2ð0Þ � b2
	 
 ¼ c r2ð0Þ � r2

	 

: (7)

Since these equations are valid only when b� 0 and

r� 0, observe, as in the ancient warfare case, that, with

the battle ending when the losing side has been reduced

through casualties to no effective troops, and the victor

has a positive number of effective troops, the force

with the larger initial effectiveness, [k∗b2(0) for Blue
and c∗r2(0) for Red], will win the battle, while equal

initial effectiveness produces a draw. Equation (7) and

this paragraph constitute Lanchester’s Square Law for

his model of modern warfare.

Again, as in the ancient warfare case, it is possible

to solve the initial differential equations in (5) to obtain

the specific functions that describe the behavior of the

side of either force as a function of time. These results

also appear in Morse and Kimball, (1951), and this

essentially completes Lanchester’s modeling of

modern warfare.
Extensions

In presenting his results, Lanchester used many

techniques that are taken for granted in contemporary
OR practice. He formulated clear assumptions about the

operation of the system he was studying, derived the

mathematical consequences of his assumptions, and

discussed how variation of assumptions affected results.

Consequently he was able to provide specific numerical

insights into characteristics of the system that could be

translated into useful ways of improving a system that

operated in accordance with the specified assumptions.

It was possible for Lanchester to accomplish his

mathematical modeling by using what is often

referred to as the First Theorem of Operations

Research:

A function of the average equals the average of the

function.

The above result applies only in very special

circumstances; nevertheless, there are many cases in

which use of this theorem allows deterministic results

to be derived easily. Such results will usually provide

a good approximation of average results occurring in

reality. It is through this technique that various

chemical formulas or formulas in the physical

sciences pertaining to concepts such as temperature,

thermodynamics, etc., were derived.

In those formulations, it is assumed that a group of

many small objects moving at various speeds with

a known average speed will function in the same

manner as if all the objects moved at the same

(average) speed. Similarly, in his warfare modeling,

Lanchester assumed that the casualty producing rate of

every one of the troops on one side of a battle was

constant and equal to the average (per troop) casualty

producing rate of the entire force, and the same is true

of the troops on the other side.

The usefulness of Lanchester’s work is primarily in

its demonstration of the fact that it is possible to draw

mathematical and numerical conclusions concerning

the occurrence of casualties in certain battles that can

be described, a priori, as conforming to certain

specified assumptions concerning how the battle is

conducted. From such an observation, it is possible to

generalize and derive other models that conform to

other sets of assumptions, so that a wider range of

combat situations can be dealt with. This has led to

all sorts of models that can be handled through

generalizations of Lanchester’s techniques.

The analyst can take into account other factors not

specifically covered by Lanchester, such as addition or
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withdrawal of troops in the course of an engagement.

Movement of forces can be considered. Different

weapons and defensive techniques can be studied.

Dispersing and hiding the troops on one side of

a battle (as in guerrilla warfare) affects the rate at

which they can be hit by the other side, which led

Lanchester to present another differential equation

for such a force. This leads to analyses in which one

or the other or both forces engage in ancient, modern,

or guerrilla warfare. There are nine kinds of battles that

an analyst can deal with just by adding the

consideration of the possibility of guerrilla warfare to

his bag of tricks (Deitchman 1962).

Clearly there is a great deal of flexibility in deriving

models involving the use of deterministic differential

equations that predict specific average results. The

probabilistic events that take place during the course

of a battle can also be dealt with in comparatively

simple cases as demonstrated by B.O. Koopman and

described in Morse and Kimball (1951). Regrettably,

the mathematics of probabilistic systems is frequently

much more difficult than that of deterministic systems,

and the need to recognize the existence of all sorts of

complications in a battle, frequently leads to rather

complicated and abstruse mathematics which can

best be handled through the use of computers for the

required numerical calculations.

The field of combat simulation is recognized as

a direct descendant of the Lanchester approach. Of

historic interest in this connection is the fact that Lt.

Fiske of the U.S. Navy presented, in 1911, a model of

warfare consisting of a salvo by salvo table that

computed casualties on two sides of a battle. This

material was brought to the attention of contemporary

analysts by H.K. Weiss (1962).

Engel (1963) showed that the equations of the Fiske

model were difference equations that became, in the

limit as the time increment between successive

salvos approached zero, identical to the Lanchester

differential equations of modern warfare. In a

sense, this validated the use of discrete time models

that approximated combat models for computer

calculations, allowing greater confidence on the part

of the analyst that no great surprises would result from

a use of such discrete time approximations of combat

models.

A cautionary note must be sounded at this point.

Before using whatever mathematical model the analyst

may have derived in discussing any past or future
battles, the analyst must be certain that the

assumptions of the model on how the battle will be

conducted and terminated pertain to the battle being

analyzed. The analyst should be able to derive the

appropriate values of any parameters (such as b(0),

r(0), c and k) to be used in the Lanchester or other

models believed to apply in the case under study.

Thought experiments do not suffice. The analyst must

examine data to determine whether the assumptions

provide a valid description of the way the battle

proceeds, and to ascertain from relevant combat and

experimental data that the model’s numerical values

for the parameters are appropriate.
Validation of Equations

Lanchester did not provide any demonstration of

the relevance of his models to any specific historic

battles, although he did discuss examples from

history in which he suggested that the results of

certain tactical actions were consistent with results

that could be derived from his models. A validation

of Lanchester’s modern warfare equations was first

given by Engel (1954), based on an analysis of the

Battle of Iwo Jima during World War II. The analysis

showed that the daily casualties inflicted on the U.S.

forces over the approximately forty days of the battle

were consistent with Lanchester’s model for modern

warfare. Since that time, additional analyses of combat

results and experiments have demonstrated that the

values of various parameters can be estimated for use

in specified combat situations, and that appropriate

combat models can be used in conjunction with those

parameter values to obtain results of interest to military

planners and decision makers.

The modeling methodology pioneered by

Lanchester in the field of combat casualty analysis

has served as a most important guide for analysts of

military problems. He showed how application of

these techniques can be used in developing

mathematical models of combat that can be applied

in forecasting the results of hypothetical battles. This

enables operations research analysts to predict

outcomes of these battles, plan tactics and strategy,

develop weapons requirements, determine force

requirements, and otherwise assist planners and

decision makers concerned with the effective use of

military forces.
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See

▶Battle Modeling

▶Military Operations Research

▶Verification, Validation, and Testing of Models
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Laplace Transform

For any function g(t) defined on t � 0 (e.g., a

probability density), its Laplace transform is defined

as
Ð1
0
e�stg(t)dt, Re(s) > 0.
Laplace-Stieltjes Transform

For any function G(t) defined on t � 0 (e.g.,

a cumulative probability distribution function),

its Laplace-Stieltjes transform (LST) is defined asR
0

1e�stdGðtÞ;ReðsÞ> 0. When the function G(t) is

differentiable, it follows that the LST is equivalent

to the regular Laplace transform of the derivative, say

g(t) ¼ dG(t)/dt.
Large Deviations

In probability theory, the study of asymptotic tail

behavior of sequences of probability distributions.

For example, the probability that a sample mean

exceeds a certain threshold decays exponentially to
zero according to some rate function. Large

deviations theory is used in stochastic simulation for

more effectively estimating rarely occurring events.
See

▶Rare Event Simulation
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Large-Scale Systems

James K. Ho

University of Illinois at Chicago, Chicago, IL, USA
Introduction

In OR/MS, large-scale systems refer to the

methodology for the modeling and optimization of

problems that, due to their size and information

content, challenge the capability of existing solution

technology (Lasdon 1970). There is no absolute

measure to classify such problems. In any given

computing environment, the cost-effectiveness of

problem solving generally depends on the dimensions

and the volume of data involved. As problems get

larger, the cost tends to go up, lowering effectiveness.

Even before the physical limits of the hardware or the

numerical resolution of the software are exceeded, the

effectiveness of the solution environment may have

become unacceptable. Efforts to improve on any of

the relative performance measures such as solution

time, numerical accuracy, memory and other resource

requirements, are subjects in the topic of large-scale

systems. Since solving larger problems more

effectively is also an obvious goal in all

specializations of operations research, there are

natural linkages and necessary overlaps with most

other areas in the field (Nemhauser 1994).

http://dx.doi.org/10.1007/978-1-4419-1153-7_65
http://dx.doi.org/10.1007/978-1-4419-1153-7_615
http://dx.doi.org/10.1007/978-1-4419-1153-7_1108
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All known methodology for large-scale systems

can be viewed as the design of computational

techniques to take advantage of various structural

properties exhibited by both the problems and

known solution algorithms (Koussoulas and

Groumpos 1999). Broadly speaking, such special

properties can be regarded as either micro-structures

or macro-structures. Micro-structures are properties

that are independent of permutations in the ordering

of the variables and constraints in the problem. An

example is sparsity in the constraint coefficients.

Macro-structures are those that depend on such

orderings. An example is the block structure of

loosely coupled or dynamic systems.
L

Using Micro-Structures of Problems

In the modeling of real systems, the larger the problem,

the less likely it is for a variable to interact with all the

others. If each variable is coupled only to a small

subset of the total, the resulting constraints will be

sparse. Techniques that eliminate the representation

of the nonexistent interactions can reduce storage

requirement significantly. For example, a linear

program with 10,000 variables and 10,000 constraints

has potentially 108 coefficients. If on the average, each

variable appears in 10 constraints, there will be only

105 nonzero coefficients, implying a density of 0.1%.

Sparse matrix methods from numerical analysis have

been used with great success here. Furthermore, the

nonzero coefficients may come from an even smaller

pool of unique values. This feature is known as

supersparsity and allows additional economy in

data storage. Large, complex models are usually

generated systematically by applying the logic of the

problem iteratively over myriad parameter sets. This

may lead to formulations with redundant variables

and constraints. Examples include flow balance

equations that produce a redundant constraint when

total input equals total output; lower and upper

bounds that are equal imply the variable can be fixed.

Methods to simplify the problem by identifying and

removing such redundancies are incorporated into the

procedure of preprocessing. It is not unusual to observe

reductions of problem dimensions by 10 to 50% with

this approach.
Using Micro-Structures of Algorithms

Algorithms may have steps that are adaptable

to advanced computing architecture at the

micro-processing level. An example is the vectorization

of inner-product calculations in the simplex method.

A completely different exploit is the relatively low

number of iterations required by interior-point

methods. As the number of iterations seems to grow

rather slowly with problem size, it is a micro-structure

of such algorithms that automatically sheds light on

the optimization of large-scale systems. Yet another

promising approach that falls under this heading is the

use of sampling techniques in stochastic optimization.
Using Macro-Structures of Problems

Most large-scale systems are comprised of interacting

subsystems. Examples are multidivisional firms

with a headquarters coordinating the activities of the

semi-autonomous divisions; time-phased models of

dynamic systems with linkages only among adjacent

time periods; capital investment or financial planning

models with each period linked to all subsequent

periods. Linear programming modeling of the

above examples gives rise to problems with

the block-angular, staircase and block-triangular

structures, respectively (Figs. 1, 2, and 3). Other

variations and combinations are also possible. Two

major approaches to take advantage of such

structures are decomposition and factorization.

Decomposition relies on algorithms that transform

the problem into a sequence of smaller subproblems

that can be solved independently. Various schemes

are devised to coordinate the subproblems and

steer them towards the overall solution. Many

algorithms are derived from the Dantzig-Wolfe

decomposition principle which provides a rigorous

framework for this approach. Factorization is the

adaptation of existing algorithms to take advantage

of the problem structure. In the case of the

simplex method, the representation of the basis

matrix required at each step can be partitioned into

blocks and updated separately. It has been shown

that all of the simplex-based techniques proposed

over the years under somewhat confusing guises
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of partitioning and decomposition are indeed

special cases of the factorization approach (Dantzig

et al. 1981).
Using Macro-Structures of Algorithms

Both decomposition and factorization algorithms are

natural candidates for parallel and distributed

computation since they involve the solution of

independent subproblems. The latter can be solved

concurrently on multiprocessor computers of various

architectures. Particularly suitable is the class of

Multiple-Instruction-Multiple-Data (MIND) machines

that are essentially networks of processors that

can execute independent instructions. They represent

a cost-effective way to harness tremendous computing

power from relatively modest and economical

components. One processor can be programmed as

the coordinator of the algorithmic procedures.

Each of the other processors can be assigned

a subproblem and programmed to communicate with

the coordinating process. As the gain in overall

efficiency is bounded by the number of processors

used, the intent of this approach is to realize the

full potential of certain algorithms rather than

fundamentally enhancing their performance. It is,

however, becoming an essential aspect of large-scale

systems, as multi-processor computers are expected to

be prevalent (Eckstein 1993). Early results have been

obtained for decomposition (Ho and Sundarraj 1997),

factorization (Ho and Sundarraj 1994), and barrier

methods (Lustig and Rothberg 1996).
Concluding Remarks

Linear and mixed integer programming remain

the primary focus in the optimization of

large-scale systems. New computer architectures with

ever-increasing processing power and memory

capacities have facilitated the empirical approach to

algorithmic development. Experimentation with

large-scale problems becomes a viable strategy to

identify, test, and fine tune ideas for improvement.

This has been especially successful in commercial

implementations of both the simplex and interior-point

methods exploiting mainly the micro-structures of

problems and algorithms. Problems with hundreds of
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thousands of constraints and millions of variables are

solvable on workstation-grade computers (Fourer

2009). Earlier experiences with macro-techniques in

decomposition and factorization did not have the

benefits of the more modern technological advances.

The results are either inconclusive or less than

promising (Ho 1987). Future work, especially in

hybrid schemes using advanced hardware, may lead to

significant contributions to large-scale non-linear,

integer and stochastic optimization.
See

▶Dantzig-Wolfe Decomposition Algorithm

▶Density

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Nonlinear Programming

▶ Parallel Computing

▶ Sparsity

▶ Super-Sparsity
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Las Vegas Algorithm

Randomized algorithm that is guaranteed to give

the correct result 100% of the time, in contrast to

Monte Carlo methods, which provide statistical

bounds.
See

▶Monte Carlo Methods

▶Randomized Algorithm
References

Hromkovic, J. (2005). Design and analysis of randomized
algorithms. New York: Springer.
Latest Finish Time

The latest time an activity must be completed without

delaying the end of a project. It is simply the sum of the

latest start time of the activity and its duration.
See

▶Network Planning
Latest Start Time

The latest time an activity can start without

delaying the end of a project. A delay of an activity

beyond the latest start time will delay the entire project

completion by a corresponding amount. These times

are calculated on the basis of a reverse pass through

the network.
See

▶Network Planning
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Latin Square

▶Combinatorics
LCFS

A queueing discipline wherein customers are selected

for service in reverse order of their order of their

arrival, i.e., on a last-come, first-served basis.
See

▶LIFO

▶Queueing Theory
LCP

Linear complementarity problem.
See

▶Complementarity Problems

▶Quadratic Programming
LDU Matrix Decomposition

For a nonsingular square matrix A, the transformation

by Gaussian elimination of A into the form LDU,

where L is a lower triangular matrix, D is a diagonal

matrix, and U is an upper triangular matrix. It can

be written so that the diagonal elements of L and

U are equal to one and D is the diagonal matrix

of pivots.
See

▶LU Matrix Decomposition

▶Matrices and Matrix Algebra
Lean Manufacturing

▶Quality Control
Lean Six Sigma

▶Quality Control
Learning

James R. Buck

The University of Iowa, Iowa City, IA, USA
Introduction

Learning is a human phenomenon where performance

improves with experience. There are a number of

reasons for task improvement. As tasks are repeated,

elements of the task are: better remembered, cues are

more clearly detected, skills are sharpened, eye-hand

coordinations are more tightly coupled, transitions

between successive tasks are smoothed, and

relationships between task elements are discovered.

Barnes and Amrine (1942), Knowles and Bell (1950),

Hancock and Foulke (1966), Snoddy (1926), and
Wickens (1992) have described these and other

sources of human performance change. All these

causes of individual person improvement manifest

themselves in faster performance times, fewer errors,

less effort, and there is often a better disposition of the

person as a result.

Learning is implied by performance changes due

primarily to experience. Changes in the methods of

performing a task, replacing human activities with

machines, imparting information about the job,

training, acquiring performance changes with

incentive systems, and many other things can cause

performance changes other than learning. Thus,

detection involves the identification of an

improvement trend as a function of more experience.

It also involves the elimination of other explanations

for this improvement. Analogous to a theory, learning

can never be proved; it can only be disproved.
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http://dx.doi.org/10.1007/978-1-4419-1153-7_840
http://dx.doi.org/10.1007/978-1-4419-1153-7_840
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After detecting learning, measurement and

prediction follows. These activities involve fitting

mathematical models, called learning curves, to

performance data. First, there is the selection of an

appropriate model. Following the selection of

a model, there is the matter of fitting the selected

model to performance data. In some cases alternative

models are fit to available data and the quality of fit is

a basis in the choice of a model.

Some of those sources which contribute to an

individual person’s improvement in performance with

experience are similar to the causes of improvement by

crews, teams, departments, companies, or even

industries with experience. As a result, similar terms

and descriptions of performance change are often fit to

organizational performance changes. However, the

term progress curves (Konz 1990) is more often

applied to cases involving: assembly lines, crews,

teams, departments, and other smaller groups of

people, whereas the term experience curves is

sometimes applied to larger organizational groups

such as companies and industries (Hax and

Majluf 1982). A principal distinction between

these different types of improvement curves is that

between-person activities (e.g., coordination) occur

as well as within-person learning. In the case of

progress curves, there are improvement effects due

to numerous engineering changes. Experience

curves also embody scientific and technological

improvements, as well progressive engineering

changes and individual-person learning. Regardless

of the person, persons, or thing which improves or

the causes of improvement, the same learning

curve models are frequently applied. Progress

and experience curves are really forms of

personification.

Learning occurs in a number of important

applications. One of these applications is the

prediction of direct labor changes in production. Not

only is this application important to cost estimation, it

is also important in production planning and manning

decisions. Another application is the selection of an

operational method. If there are alternative methods of

performing particular operations which are needed,

then one significant criterion in the selection of an

appropriate method is learning because the average

cost can favor one method over another that has

lower initial performance costs. In other cases, one

operation can cause bottlenecks in others unless the
improvements with experience are sufficient over

time. Also, production errors can be shown to

decrease with experience as another form of learning

and so learning is important in quality engineering and

control.
Performance Criteria and Experience Units

Performance time is the most common criterion used

for learning curves in industry. Production cycles are

also the most commonly used variable for denoting

experience. If ti is the performance time on the ith

cycle, then a learning curve should predict ti as

a function of n cycles. Since learning implies

improvement with experience, then one would expect

ti � ti�1 for the typical case, i ¼ 1, 2,. . ., n cycles.

An associated time criterion on the ith cycle is the

cumulative average performance time on the ith cycle

or Ai. Cumulative average times consists of the sum of

all performance times up to and including the nth cycle
divided by n. In the first cycle, A1¼ t1.With learning, ti
tends to decrease with i and so does Ai. However, Ai

decreases at a slower rate than ti. This effect can be

shown by the first-forward difference of Ai, which is
DAn ¼ Anþ1 � An ¼
Pnþ1

i¼1

ti

nþ 1
�
Pn
i¼1

ti

n
¼ tnþ1 � An

nþ 1
: (1)

So long as tn+1 is less than An, then DAn is negative

and the cumulative average time continues to decrease.

It is also noted in (1) that with sequential values of Ai

for i ¼ 1, 2,. . ., n, the values of ti can be found. On the

other hand, Ai can be predicted directly rather than ti.

Another criterion of interest is accuracy. However,

it is usually easier to measure errors in production as

the complement of accuracy. Thus, the sequence of

production errors are e1, e2,. . ., ei,. . ., en over n serial

cycles where ei is the number of errors found in

a product unit as in typing errors per page (Hutchings

and Towill 1975). If the person is doing a single

operation on a product unit, then either an error is

observed with a unit of production or it is not and

observations over a production sequence is a series of

zeros and ones. A more understandable practice is to

define ei as the fraction of the possible errors, where the
observed number of errors is divided by the m possible
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errors at an operation (Fitts 1966; Pew 1969). In this

way, ei is 0, some proper fraction, or 1. It also follows

that a learning curve could be fit to the series of ei
values over the n observations sequential units of

production or to the cumulative average errors. If

learning is present, then one would expect to see

a general decrease in ei with increases in i ¼ 1, 2,. . .,

n and also the cumulative average errors would

similarly decrease, but with a rate lag compared to

the serial errors.

Pew (1969) invented the speed-accuracy-operating-

characteristic graph which provides simultaneous

analyses of correlated criteria. This operating

characteristic consists of a bivariate graph where one

axis denotes performance time per unit (complement is

the speed) and the other axis denotes the number of

errors per unit (complement is the accuracy).

Simultaneous plots of speeds and accuracies with

experience would be expected to show increases in

both criteria with more experience. The slope of

these plots with increases of experience describes

bias between these criteria. It should be noted that

when the power-form model is used for a prediction

of learning performance, then logarithmic axes’

measurements will linearize the plots.
Other Learning Metrics

Most applications of learning description, usually

known as learning curves, use the production units as

experience units, either as single units or lots. The time

required to produce that product unit is the

corresponding performance units. An alternative

approach to predicting learning effects is to describe

cumulative time as the experience unit (i.e., hours or

days) and the number of production units produced

during that experience unit. Thus, for cumulative

production time t ¼ 1, 2, 3,. . ., k,. . ., m and

corresponding production of n1, n2, n3,. . ., nk,. . ., nm.

Most learning curve models merely relate nk to k. An

alternative model of learning, which is not often

shown, is the discrete exponential model which

relates pairs of nk values as
nk ¼ an1 þ b (2)

where a and b are parameters. This model was

originally proposed by Pegels (1969) for startup cost
prediction. Later, Buck, Tanchoco, and Sweet

(1976) showed that this model was really a first-order

for-ward-difference equation (Goldberg 1961). It

follows in this model that
nk ¼ ak½n1 � n
� þ n
 (3)

where n∗ ¼ b/(1 � a) > n1 and 0 < a <1. Since the

parameter a is a fraction, the first term of (3)

approaches zero with increasing k and so n∗ is the

asymptote. Accordingly, nk approaches n∗

exponentially with each discrete unit of time. Bevis

et al. (1970) provided a similar model as
nk ¼ n
 þ ½n1 � n
�e�ck (4)

where k is a continuous measure to time and c is

a parameter. Buck and Cheng (1993) used the

discrete form in traditional format, but they showed

that this model can be more difficult to fit to data than

the more common power-form model. It can, however,

give a more accurate description of human learning.
See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Learning Curves
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Learning Curves
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Introduction

With experience and training, individuals and

organizations learn to perform tasks more efficiently,

reducing the time required to produce a unit of output.

This simple and intuitive concept is expressed

mathematically through the use of the learning curve.

The learning curve was introduced in the literature

by Wright (1936) who observed the learning

phenomenon through his study of the construction of

aircraft prior toWorldWar II. Since then, these models

have been used in the areas of work measurement, job

design, capacity planning, and cost estimation in many

industries. Yelle (1979) summarized 90 articles

dealing with learning curves. Dutton et al. (1984)

traced the history of progress functions by examining

300 articles. They note that the terms learning curve,

progress function, and experience curve are often used

interchangeably. However, many authors differentiate

between them in the following way. Learning curves

are used to describe only direct-labor learning, while

progress functions also incorporate learning by
managerial and technical personnel, as well as

improvements due to technological change. The term

experience curve is used to describe learning or

progress at the industry level. Experience curves

often use price as a surrogate measure for progress or

learning. In the discussion below, no distinctions are

made between these terms.

Dutton et al. (1984) also noted that learning curves

are frequently confused with economies of scale.

Although they are observed together in many cases,

the two are separate effects with different causes.

Progress and learning can occur in the absence of

changes in size or scale of operations.

Basic learning-curve theory is described below,

with emphasis given to the so-called power model.

Other models are then introduced. Finally, issues

regarding the estimation of learning-curve parameters

are presented.
The Power Model

Also known as the log-linearmodel, the powermodel is

the most frequently encountered implementation of the

various learning-curvemodels.Wright observed that as

the quantity of units manufactured doubles, the number

of direct labor hours it takes to produce an individual

unit decreases at a uniform rate. So, after one doubling

of the cumulative production, direct-labor hours may

have declined to, say 80% of its previous value. After

an additional doubling there is another decline to 80%

of that value, or 64% of the original. The learning rate,

which is the actual decline per doubling, 80% in the

above example, is assumed to be a characteristic of

each particular type of manufacturing process.

In this model, learning curves have the following

mathematical form:

LðyÞ ¼ Ayb;

where L(y) ¼ the number of hours needed to produce

the yth unit,A¼ the number of hours needed to produce

the first unit, y ¼ the cumulative unit number, and

b ¼ the learning index, the learning-curve parameter,

or the learning-curve slope parameter. To account for

the effect of doubling, the learning-curve index is

computed as follows:

b ¼ log rð Þ log 2ð Þ= ;
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where r is the learning rate. Figure 1 shows graphs of

three such curves with different learning rates.

Note that this model is also applicable to cost in

addition to direct-labor hours. In a cost application,

the parameter A would represent the cost of the first

unit produced. The use of learning-curve costing is

complicated by the problem of accounting for

inflation and the change in hourly wages over time. In

any event, labor hours can be easily converted into cost.

In the above model, the number of direct-labor

hours required to produce the yth unit, or the cost of

producing the yth unit is computed. Thus, the model is

referred to as the Unit Formulation, and it is attributed

to James Crawford who introduced its use to the

Lockheed Corporation in 1944 (Smith 1989).

A related model based on the original work of Wright

is the so-called Cumulative Formulation, where, in the

above notation, L(y) would represent the average

labor hours or cost of all the units produced through

the yth unit. Note that the cumulative formulation tends

to smooth the effects of unusually high or low labor

hours or costs for individual or groups of units, and it

has been found to be more useful for application to

batch-type production processes. Although much of

the work on learning curves has been directed at

specifying the functional relation between unit

costs or direct-labor hours and cumulative output, the

range of output measures has been expanded to

include, for example, industrial accidents per unit
output, defects and complaints to quality control per

unit output, and service requirements during warranty

periods.
Variations of the Power Model

While the log-linear model has been, and is the most

widely used model, several other geometries have been

found to provide a better fits in particular sets of

circumstances. Some of the more well-known models

are:

1. Plateau model,

2. Stanford-B model, and

3. S-model.

Figure 2 depicts these models on a logarithmic

scale.

The plateau model was first described by Conway

and Schultz (1959). It is used to represent the

phenomenon that the learning phase of a process is

finite and is followed by a steady state phase. This

model is often associated with machine-intensive

manufacturing.

The Stanford-B model, expressed symbolically as

LðyÞ ¼ A Bþ yð Þb;

represents a process that experiences accelerated

learning after B units are produced (other notation as
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previously defined). This model was developed at the

Stanford Research Institute and is useful for processes

with design changes (Garg and Milliman 1961).

The S-model, described by Cochran (1960),

combines reduced learning at the outset of

production, with another slackening of learning later

in the production process. This model is usually

approximated as a three-segment straight line on

a log-log graph and is sometimes used for heavy

labor-intensive industries.

The choice of the appropriate model is usually

based on empirical studies of the process in question

and historical experience with similar processes. The

utilization of these more complex representations

involves increased difficulty in parameter estimation,

coupled with limited improvement in accuracy. As

such, the basic log-linear model continues to find

favor among practitioners.
Other Factors Affecting Learning

Frequently, other factors affect production that, if

ignored, could bias the estimation of the rate of

learning. As mentioned, the presence of economies of

scale would result in the situation where a more than

proportional increase in output would be obtained due

to an increase in inputs. If the effects of this variable

are not controlled for in the estimation of learning

rates, and the scale of the operation is gradually

increased over time, the amount of learning would be

overestimated. Other such factors that are independent

of direct labor learning include increased capital

investment, multiple shifts, time lapses between

performance of operations, and production rate.
Argote and Epple (1990) provided a review of the

literature regarding the incorporation of factors that

affect learning.
Estimation of Learning-Curve Parameters

Most estimation schemes rely on the logarithmic

representation of the learning curve, written as follows:
log L ¼ logAþ log y:

The learning-curve parameters, A and b, are

estimated either by plotting historical values on a

log-log graph and visually fitting a line, or by

computing the least squares regression line through

the log-log data. Several computer programs are

commercially available to estimate the learning-curve

parameters.

Frequently, organizations collect historical data for

batches or lots, as opposed to discrete units. To

estimate the parameters in this case, the batch’s

average labor or cost and the unit whose labor or cost

corresponds to that average, the lot midpoint, must be

known. The logarithm of this value is then used as the

independent variable in the regression with the log of

the average unit cost of the lot as the dependent

variable. Note that the unit expressed by the batch

size divided by two is not the lot midpoint since the

learning curve is nonlinear. The actual lot midpoint,Q,

is represented as the following:
Q ¼ yl � yf þ 1
� �

1þ bð Þ
yl þ :5ð Þ1þb � yf � :5

� �1þb

" #�1 b=

;
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where yf ¼ the first unit of the batch, and yl ¼ the last

unit of the batch. Observe that this value cannot be

computed without first knowing the learning-curve

index, b. As such, the approximate algebraic lot

midpoint is used. This value is computed by:
Q ¼ yf þ yl þ 2
ffiffiffiffiffiffiffiffi
yf yl

p
4

The learning-curve parameters are estimated first

using the approximate value of Q for each lot. The

value of b is then used to calculate the actual lot

midpoint, and the parameters are estimated again,

and then iterated until the desired accuracy is obtained.
Concluding Remarks

Research in the area of learning curves has been

extensive and many models have been hypothesized

to describe the learning process. Learning-curve

models have proven to be useful tools in many

business and government applications. These include

cost estimation, bid preparation and evaluation, labor

requirement estimation, establishment of work

standards, and financial planning.
See

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Learning
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Level Crossing Methods

Percy H. Brill

University of Windsor, Windsor, Ontario, Canada
Introduction

Level crossing methods for obtaining probability

distributions in stochastic models such as queues and

inventories were originated by Brill (1975, 1976,

1979) and elucidated further in Brill and Posner

(1974, 1975, 1977, 1981), and Cohen (1976, 1977).

These methods began as an essential part of system

point theory and are also known as system point

analysis, sample path analysis, or level crossing

technique, approach, theory, or analysis in the

literature (Brill 1975, 2008). Level crossing methods

are very useful rate conservation techniques for

stochastic models (Miyazawa 1994).
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Model and Stationary Distribution

Consider a stochastic process {W(t), t � 0} where both

the parameter set and state space are continuous. The

random variable W(t) at time point t may denote the

content of a dam with general efflux, the stock on

hand in an (s,S) or (r,nQ) inventory system with stock

decay, or the virtualwait orworkload in a queue.Assume

that upward jumps of {W(t)} occur at Poisson rate lu
and downward jumps at Poisson rate ld. Let upward
and downward jump magnitudes have cumulative

distribution function (CDF) Bu and Bd, respectively.

Assume that the model parameters are such that the

stationary distribution of W(t) exists as t ! 1. Let G

and g denote the stationary CDF and probability density

function (PDF), respectively. The aim here is to obtain

expressions for g andG in terms of themodel parameters

by using a level crossing approach.
L

Sample Paths

A sample path of the {W(t)} process is

a right-continuous, real-valued function on the

nonnegative reals whose value at time-point t is the

realized value of random variable W(t). Denote an

arbitrary sample path by the function X(t), t � 0. The

function X has either jump or removable

discontinuities on a sequence of strictly increasing

time points ftn; n ¼ 0; 1; . . .g, where t0 ¼ 0

without loss of generality. Typically, the time

points ftng represent input or output epochs in

dams, arrival epochs in queues, or demand or

replenishment epochs in inventories. Assume that

when a sample path is positive valued, it decreases

continuously on time segments between jump points,

described by dX(t)/dt¼�rX(t), X(t)> 0, tn � t<tnþ1;

n ¼ 0, 1, 2, . . . wherever the derivative exists, and

where r(x) > 0 for x > 0. Note that for the virtual

wait process in queues, r(x) ¼ 1(x > 0) and r(0) ¼ 0.

In an (s,S) continuous review inventory system, where

the stock on hand decays at constant rate k, then

r(x) ¼ k for all x between the reorder level s and

order-up-to-level S.

Level Crossing by Sample Paths

Let x denote a fixed state space level and t0 an arbitrary
positive time point. Let t0 be one of the jump time
points ftng, n ¼ 1, 2, . . . and let d0 and u0 denote

the corresponding downward and upward jump

magnitudes, respectively, where at least one of u0, d

0, is strictly positive. The sample path may down cross

level x at t0> 0 if t0 is any positive epoch, but it can up

cross level x at t0 only if t0 is one of the ftng.
If a sample path down crosses level x at t 0 which is

not one of the ftng, then the down crossing is

a continuous down crossing, since the sample path is

continuous at t0. If a sample path down crosses level

x at t0 which is one of the ftng, then the downward

jump of magnitude d0 brings it from above x to a level
below x. If a sample path up crosses level x at t0, then,

necessarily, t0 is one of the epochs ftng, and the

upward jump of magnitude u 0 brings it from below x
to a level above x.

If both u0 and d0 are strictly positive at t0 which is

one of the ftng, the model mechanism would

determine whether the downward or upward jump is

considered to precede the other. In inventories without

lead time, for example, stock depletions due to

demands (downward jumps) precede stock

replenishments (upward jumps). The jumps are not

part of the sample path per se, but serve only to

construct the path. One may also define level

crossings at some time point t0 by considering the net

jump which has magnitude |u0 � d0| and upward

(downward) direction if u0 > d0(u0 < d0).
Level Crossings and the Stationary
Distribution

Down crossings — Let Du
ct(x) denote the number of

continuous down crossings of level x and Dj
t(x), the

number of jump down crossings of level x during (0, t),
t> 0. Then, for r(x)¼ 1, x> 0 and r(0)¼ 0, it follows

with probability 1 that
lim
t!1

Dc
t ðxÞ
t

¼ rðxÞgðxÞ ðfor all xÞ; (1)

(Brill 1975). The following also holds with

probability 1:
lim
t!1

Dj
tðxÞ
t

¼ ld

Z 1

y¼x

�Bdðy� xÞgdðyÞdy ðfor all xÞ;

(2)
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where god is the limiting PDF at embedded downward

jump points as t ! 1 and �B � 1� B.

Both Eqs. 1 and 2 also hold upon replacing Du
ct(x)

and Du
ty(x) by their expectations, denoted by E[Dc

t (x)]

and E[Du
ty(x)], respectively, and deleting with

probability 1. For exponentially distributed

interarrivals between downward jumps (Poisson

downward jumps), then gd � g, which is the PASTA

principle.

Up crossings —Let Uj
t (x) denote the number of

jump up crossings of level x during (0, t). Then, with

probability 1,

lim
t!1

Uj
tðxÞ
t

¼ lu

Z x

�1
�Buðx� yÞguðyÞdy ðfor all xÞ;

(3)

where gu is the limiting PDF at embedded

upward-jump time points as t ! 1 (Brill 1975).

Formula (3) gives an expression for the long-run

up crossing rate of level x by any typical sample path

at upward jump points, in terms of an integral

of the density gu. For Poisson upward jumps, gu � g

by the PASTA principle.
A Conservation Law for Level Crossings

For each state space level, the following conservation

law holds:

long run total down crossing rate ¼ long run total up

crossing rate.

This conservation law, together with Eqs. 1, 2 and 3,

enables one to write an integral equation for the PDF g

in which every term has a precise interpretation as

a sample-path down or up crossing rate, namely,
rðxÞgðxÞ þ ld

Z 1

y¼x

�Bdðy� xÞgðyÞdy

¼ lu

Z x

y¼�1
�Buðx� yÞgðyÞdy ðfor all xÞ:

(4)

In (4), the left-hand side depicts the total sample

path long-run down crossing rate of level x, while the
right-hand side depicts the long-run up crossing rate of

the level x. Equation (4) is then solved for g by using

standard applied mathematics techniques.
Applicability

The level crossing technique is applicable to dams

with limited capacity, blocked-input rules,

various control level policies, etc.; to complex

variants of M/G/1, M/M/c, G/M/1 queues with

reneging, bounded virtual wait, server vacations,

various state dependencies, cyclic-service queues;

and to a wide class of inventory, production/

inventory, counter, risk reserve, and related models.

The same level crossing ideas as in Eqs. 1, 2 and 3

have been applied to cycles in regenerative processes

by Cohen (1976, 1977). Upon combining the

regenerative-processes level crossing approach

and the embedded level crossing technique of Brill

(1976, 1979) with the previously widely known

bubble diagram method (rate into a state ¼ rate out of

that state) for discrete state continuous time Markov

chains, level crossing methods can be applied to obtain

probability distributions and other characteristics in

a broad class of stochastic models.
Level Crossing Estimation

The principle established in formula (1) motivates the

idea of usingDc
t (x)/[tr(x)] as an estimate for g(x) when

t is large. Level crossing estimation (also known as

system point estimation) consists of three main steps:

(I) simulating a single sample path over a large

simulated time t; (ii) enumerating the continuous

down crossings of all state space levels over (0, t);

and (iii) computing both point and interval estimates

of g, G and the moments (Brill 1991).
See

▶ Inventory Modeling

▶Markov Processes

▶ PASTA

▶Queueing Theory
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Level Curve

Also called isovalue contour: a curve along which

the values of a given associated function remain

constant.
See

▶ Isoquant
Lexicographic Ordering

An ordering of a set of vectors based on the

lexicopositive (negative) properties of the vectors.

For example, the sequence of vectors {x1,. . ., xq}
is ordered in a lexicographic sense if xi � xj is

lexico-positive for i > j. Such orderings are similar

to dictionary ordering of words and are used to

prove finiteness of the simplex algorithm.
See

▶Cycling

▶Lexico-Positive (Negative) Vector
Lexico-Positive (Negative) Vector

A vector x ¼ (x1,. . ., xn) is called lexico-positive

(negative) if x 6¼ 0 and the first nonzero term is

positive (negative). The vector x is lexico-negative

if � x is lexico-positive. A vector x is greater than

a vector y in a lexico-positive sense if x � y is

lexico-positive.
See

▶Lexicographic Ordering
LGP

Linear goal programming.
See

▶Goal Programming
Libraries

Arnold Reisman1 and Xiaomei Xu2

1Reisman and Associates, Shaker Heights, OH, USA
2Cleveland, OH, USA
The American Heritage Dictionary of the English
Language (1976, p. 753) defines a library is
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“a repository for literary and artistic materials such as

books, periodicals, newspapers, pamphlets, and prints

kept for reading or reference.” This rather classical

notion of a library does not recognize the fact that

libraries are now a subset of the broader field known

as Information Systems (IS). Nevertheless, the scope

of this article will be delimited to institutions which

can be defined as above, albeit with some leeway.

The history of the application of operations

research/management science to libraries is not very

distinguished. Contributions in the library field were

constrained up to and through the decade of the 1970s

by the fact that few operations researchers chose

libraries as a field of interest. Moreover, librarians

have not sought out operations researchers to help in

their problem solving, nor did they offer a particularly

fertile environment for doing OR studies (Chen 1974).

On the other hand, since the 1970s, computer science

has made significant inroads into the library field by

merging with library science to create local and

extended area computer networks linking users with

comprehensive databases.

The first known application of OR to libraries in the

United States can be credited to Bacon and Machol

(1958). The 1960s recorded a more widespread

interest (Cox 1964; Morse 1968; Cook 1968).

A comprehensive review on library operations

research was done by Kantor (1979). In that review,

Kantor summarized all of the previous review articles.

Most noteworthy of these from the OR point of view

are the bibliographies by Slamecka (1972) and Kraft

andMcDonald (1977), and surveys and/or assessments

by Bommer (1975), Kraft and McDonald (1976),

Leimkuhler (1970, 1972, 1977a, 1977b), Churchman

(1972) and Morse (1972).

Literature on utilization of OR in libraries has

classified the field in several different ways. Kantor

(1979) classified papers and projects into the following

groups according to the purpose of the research:

system description; modeling the system; parameter

identification; optimization or multi-valuation; and

application. Rowley and Rowley (1981) classified the

work by the nature of the research (recurrent problems,

on/off decisions, etc.). For the purposes of this article,

a three-dimensional classification is used with one of

the dimensions adopting Rowley’s (1981)

classification, with slight modifications. Based on the

type of problems being analyzed, the application areas

are operational or recurrent problems, such as book
storage problems; strategies or on/off decisions, such

as library location problems; and control/design

problems, such as loan policy problems (Rowley and

Rowley 1981).

The second dimension on the application of OR in

libraries is a classification according to the type of OR

techniques used:

1. Queueing models – Given the average book

circulation time (1/m) and the mean number of

persons who borrow the book (l), the expected

circulation rate of that particular book is derived

using queueing theory (Morse 1968).

2. Simulation – With the number of staff, the

volumes of various jobs (users’ requests, new

issues, overdue fees, etc.) and the job processing

times specified, simulation is used to estimate the

delays, processing times and utilization of each

member of staff and the whole facility (Thomas

and Robertson 1975).

3. Facility location algorithms – The library

facilities and relocation problems are discussed

by Min (1988).

4. Mathematical programming – If there are two

types of information services, both of which

share the same set of resources (staff time in

scanning, indexing, abstracting, etc.), and each of

them has a different unit profit, a linear

programming problem is used to find out how

many services of each type to produce to

maximize the total profit (Rowley and Rowley

1981, 58–64).

5. Network flow models – Given the heights and

thicknesses of a given collection of books and the

cost of different shelf heights, a network model is

developed to determine the optimal number of

shelf heights for minimizing shelving costs

through finding the shortest path in a directed

network (Gupta and Ravindram 1974).

6. Decision theory –A decision regarding whether or

not to install a library security system is addressed

given the installation cost and the probabilities of

success and failure (Rowley and Rowley 1981,

91–92).

7. Search theory – Patterns of browsing in libraries

are addressed in Morse (1970).

8. Transportation models – A routing problem is

explored for a vehicle delivering materials to

branches (Heinritz and Hsiao 1969; McClure

1977).
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9. Inventory control theory – An EOQ model is used

to determine the optimal order quantity for the

stock of a certain library supply (Rowley and

Rowley 1981, 111–116).

10. Probability and statistics – Library book

circulation and individual book popularities are

considered as probabilistic processes by Gelman

and Sichel (1987) who demonstrated the

superiority of beta over the negative binomial

distribution.

11. Benefit cost analysis – Library planning is

addressed by Leimkuhler and Cooper (1971).

Each of these categories could be, in turn, further

characterized by whether or not the research work was

grounded, e.g., based on real world library systems

involving real data and/or bona fide librarians in the

study as opposed to models which were basically what

might be called logico/deductive. A more thorough

discussion is given in Reisman and Xu (1994), where

Table I, page 37, provides a taxonomic review of the

vast bulk of the literature in the field.

As can be seen from the above delineation and the

referenced table, the utilization of OR in libraries is far

from achieving its full potential. Except for simulation

and probability and statistics based applications, the

bulk of the literature is not well grounded in real life

settings. The literature reflects the gap between the

complex mathematical models in OR and the usually

not very quantitatively educated library workers

(Stueart and Moran 1987). To enhance the

application of OR in libraries, Bommer (1975)

suggested a closer working relationship between

operations researchers and library managers.
See

▶ Information Systems and Database Design

in OR/MS
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LIFO

The Last-In, First-Out queue discipline in which

customers are selected for service in reverse order of

their arrival (meant to be equivalent to the last-come,

first-served scheme).
See

▶LCFS

▶Queueing Theory
Light-Tailed Distribution

A probability distribution that has an exponentially

decaying complementary CDF, e.g., the normal

(Gaussian) and exponential distributions.
See

▶Heavy-Tailed Distribution
Likelihood Ratio Method

A method for gradient estimation in simulation used

for sensitivity analysis and optimization; also known

as the score function method.
See

▶ Perturbation Analysis

▶ Score Functions

▶ Simulation Optimization
Limiting Distribution

Let pij(t) be the probability that a stochastic process takes
on value j at time t (discrete or continuous), given that

it began at time 0 from state i. If for each j, pij(t)

approaches a limit pj as t ! 1 independent of i, the
set {pj} is called the limiting or steady-state distribution

of the process. For Markov chains in discrete time, the

existence of a limiting distribution implies that there is

a stationary (or invariant) distribution found from

p ¼ pP, where P is the single-step transition matrix,

such that p ¼ p. Similarly, for continuous-time chains,

the steady-state distribution is the probability vector

satisfying the global balance equations pQ ¼ 0, where

Q is the transition rate matrix.
See

▶Markov Chains

▶Markov Processes

▶ Stationary Distribution

▶ Statistical Equilibrium
Lindley’s Equation

An integral equation for the steady-state waiting-

time distribution in the first-come, first-served,

single-server G/G/1 queue. If Wq (x), x � 0, is the
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steady-state distribution function of the delay or

waiting time in the queue, then, for x � 0,
WqðxÞ ¼
Zx
�1

Wqðx� yÞdUðyÞ

with Wq (x) ¼ 0 for x < 0, where the function U(y)
is the distribution function of the random

variable defined as the service time minus the

interarrival time.

Lindley’s equation can also be used to refer to the

finite-time transient recursive equation relating delays

in the first-come, first-served, single-server G/G/1

queue as follows:
Dnþ1 ¼ max 0;Dn þ Sn � Anð Þ;

whereDn is the delay of the nth arriving customer, Sn is

the service time of the nth arriving customer, and An

is the interarrival time between the nth and (n + 1)st

arriving customer.
L

See

▶Kendall’s Notation

▶Queueing Theory
Line

A line is the set of points x xj ¼ 1� lð Þx1 þ l x2f g,
where x1 and x2 are points in n-dimensional space

and l is a real number. The line passes through the

points x1 and x2, x1 6¼ x2.
Line Segment

The straight line joining any two points in

n-dimensional real space is a line segment. More

specifically, if x1 and x2 are the two points, then the

set of points xjx ¼ 1� lð Þx1 þ lx2; 0 � l � 1f g is the
line segment joining x1 and x2.
See

▶Line
Linear Combination

For a set of vectors (x1,. . ., xn), a linear combination is

another vector y ¼Pj ajxj, where the scalar

coefficients aj can take on any values.
Linear Equation

The mathematical form a1x1 þ a2x2 þ . . .þ anxn ¼ b
is a linear equation, where the aj and b can take on any

values.
See

▶Hyperplane
Linear Functional

A linear functional f (x) is a real-valued function

defined on an n-dimensional vector space

such that, for every vector x ¼ auþ bv,
f ðxÞ ¼ f ðauþ bvÞ ¼ af ðuÞ þ bf ðvÞ for all

n-dimensional vectors u and v and all scalars a and b.
Linear Inequality

The mathematical form a1x1 þ a2x2 þ . . .þ anxn � b

or a1x1 þ a2x2 þ . . .þ anxn � b is a linear inequality,

where the numbers aj and b can take on any values.

The set of vectors x ¼ x1; . . . ; xnð Þ that satisfy

the inequality form a solution half space.
See

▶Hyperplane

http://dx.doi.org/10.1007/978-1-4419-1153-7_200360
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200399
http://dx.doi.org/10.1007/978-1-4419-1153-7_200301
http://dx.doi.org/10.1007/978-1-4419-1153-7_200301
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Introduction

Linear programming is one of the most widely used

techniques of operations research and management

science. Its name means that planning (programming)

is being done with a mathematical model (called

a linear-programming model) where all the functions

in the model are linear functions.
Linear Programming Models

Linear programming models come in a variety of

forms. To illustrate one common form, consider the

problem of determining the most profitable mix of

products for a manufacturer. Let n be the number of

possible products. For each product j (j ¼ 1, 2, . . ., n),

a decision variable xj is introduced to represent the

decision on its production rate. Let cj be the profit per

unit of product j produced, and let Z be the total rate of

profit resulting from the choice of product mix. This

choice is constrained by the limited capacities of the

production facilities available for these products. Letm
be the number of different types of facilities needed.

For each type i (i¼ 1, 2, . . .,m), let bi be the amount of

capacity available per unit time and let aij be the

amount of capacity used by each unit produced of

product j (j ¼ 1, 2, . . ., n). The resulting linear

programming model then is to choose x1, x2,. . ., xn so
as to
Maximize Z ¼ c1x1 þ c2x2 þ 	 	 	 þ cnxn

subject to : a11x1 þ a12x2 þ 	 	 	 þ a1nxn � b1

a21x1 þ a22x2 þ 	 	 	 þ a2nxn � b2

..

. ..
.

am1x1 þ am2x2 þ 	 	 	 þ amnxn � bm

and

x1 � 0; x2 � 0; . . . ; xn � 0:
The linear function being maximized in this model

is called the objective function.Them inequalities with

a linear function on the left-hand side are referred to as

functional constraints (or structural constraints), and

the inequalities in the bottom row are nonnegativity

constraints. The constants (cj, bi, and aij) are the

parameters of the model. Any choice of values of

(x1, x2,. . ., xn) is called a solution, whereas a solution

satisfying all the constraints is a feasible solution, and

a feasible solution that maximizes the objective

function is an optimal solution.

Many other applications of linear programming

having nothing to do with product mix also fit this

same form for the model. In these cases, activities of

some other kind replace the production of products,

and resources of some other kind replace production

facilities. For each activity j (j ¼ 1,2, . . ., m), the

decision variable xj represents the decision on the

level of that activity. The problem then is to allocate

these limited resources to these interrelated activities

so as to obtain the best mix of activities (i.e., an optimal

solution) according to the overall measure of

performance adopted for the objective function.

Another common form for a linear programming

model is to minimize the objective function, subject to

functional constraints with � signs and nonnegativity

constraints. A typical interpretation then is that the

objective function represents the total cost for the

chosen mix of activities and the functional constraints

involve different kinds of benefits. In particular, the

function on the left-hand side of each functional

constraint gives the level of a particular kind of benefit

that is obtained from the mix of activities, and the

constant on the right-hand represents the minimum

acceptable level for that benefit. The problem then is to

determine themix of activities that gives the best tradeoff

between cost and benefits according to the model.

Still other linear-programming models have an

equality instead of inequality sign in some or all of

the functional constraints. Such constraints represent

fixed requirements for the value of the function on the

left-hand side.

It is fairly common for large linear-programming

models to include a mixture of functional

constraints — some with � signs, some with � signs,

and some with ¼ signs. Nonnegativity constraints

always have a � sign, but it occasionally is

appropriate to delete this kind of constraint for some

or all of the decision variables.
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Successful applications of linear programming

sometimes use very large models. As described in

a later section, exceptionally efficient algorithms are

available for solving these models. When using

state-of-the-art implementations of these algorithms

and a powerful desktop computer or workstation,

a model with several thousand functional constraints

and decision variables is considered to be of moderate

size. Having a few tens of thousands of functional

constraints and even more decision variables is not

considered particularly large. Far bigger problems

with millions of functional constraints and decision

variables sometimes are solved, depending largely on

whether they have a special structure that can be

exploited.

With large models, it is inevitable that mistakes and

faulty decisions will be made initially in formulating

the model and inputting it into the computer.

Therefore, a thorough process of testing and refining

the model, i.e., model validation, is needed. The usual

end-product is not a single static model, but rather

a long series of variations on a basic model to

examine different scenarios as part of post-optimality

analysis (discussed later). A sophisticated modeling

language usually is needed to efficiently formulate

the model and then to expedite a number of model

management tasks, including accessing data,

transforming data into model parameters, modifying

the model whenever desired, and analyzing solutions

from the model.
Some Applications of Linear Programming

The applications of linear programming have been

remarkably diverse. They all involve determining the

best mix of activities, where the decision variables

represent the levels of the respective activities, but

these activities arise in a wide variety of contexts. In

the context of financial planning, the activities might

be investing in individual stocks and bonds (portfolio

selection), or undertaking capital projects (capital

budgeting), or drawing on sources for generating

working capital (financial-mix strategy). In the

context of marketing analysis, the activities might be

using individual types of advertising media, or

performing marketing research in segments of the

market. In the context of production planning,

applications range widely from the product-mix
problem (discussed earlier) to the blending problem

(determining the best mix of ingredients for various

individual final products), and from production

scheduling to personnel scheduling.

In addition to manufacturing, these kinds of

production planning applications also arise in

agricultural planning, health-care management, the

planning of military operations, policy development

for the use of natural resources, etc.

Linear programming has had a great impact on

improving the efficiency and profitability of

numerous organizations around the world.

A considerable number of these applications have

won a prestigious prize in the annual international

competition for the Franz Edelman Award for

Achievement in Operations Research and the

Management Sciences. To mention a few typical

award-winning applications: Bixby et al. (2006)

describe how Swift & Company saved $12 million in

1 year by optimizing its product mix while

dynamically scheduling its beef-fabrication

operations at five plants in real time as it receives

orders; Lee and Zaider (2008) discuss how

a breakthrough in optimizing the application of

brachytherapy to prostrate cancer is having

a profound impact on both health care costs

(potentially saving $500 million annually) and

quality of life for treated patients; Holloran and

Bryne (1986) were early pioneers in applying linear

programming at United Airlines to design the work

schedules for all the employees at the various

reservation offices and airports, thereby saving the

company more than $6 million annually; Leachman,

Kang, and Lin (2002) describe how Samsung

Electronics Corp. captured an additional $200 million

in annual sales revenue by using a linear- programming

model with tens of thousands of decision variables and

functional constraints to increase the efficiency of its

processes for manufacturing random access memory

devices. Hillier and Lieberman (2010, Chap. 3) also

reference other award-winning applications of linear

programming.

Another important kind of application of linear

programming arises from its close relationship to

several other important areas of operations research

and management science, including integer

programming, nonlinear programming, and game

theory. Linear programming often is useful to help

solve problems in these other areas as well.
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Some Special Types of Linear Programming
Models

One particularly important special type of linear

programming problem is the transportation problem.

A typical application of the transportation problem is

to determine how a corporation should distribute

a product from its various factories to various

distributors. In particular, given the amount of the

product produced at each factory and the amount

needed by each distributor, one can determine how

much to ship from each factory to each distributor in

order tominimize total shipping cost. Other applications

extend to areas such as production scheduling.

Camm et al. (1997) describe an award-winning

application of the transportation problem at Procter

& Gamble that saved over $200 million annually by

redesigning the company’s production and distribution

system for its North American operations. Amajor part

of the study revolved around formulating and solving

transportation problems for individual product

categories.

The assignment problem is a special type of

linear-programming problem where assignees are

being assigned to perform tasks. For example, the

assignees might be employees who need to be given

work assignments. Assigning people to jobs is

a common application of the assignment problem.

However, the assignees need not be people. They

also could be machines, or vehicles, or plants, or

even time slots to be assigned tasks. It can be shown

that the mathematical structure of the model for the

assignment problem is a special case of that for

the transportation problem.

Both the transportation problem and the assignment

problem are a special case of another key type

of linear-programming problem, called the

minimum-cost network-flow problem, that involves

determining how to distribute goods through

a distribution network at a minimum total cost.

In particular, the nodes of this network include at

least one supply node and at least one demand node,

and then the rest of the nodes are transshipment nodes.

Given the capacity of each arc for transmitting flow,

the objective is to minimize the total cost of sending

the supply from the supply nodes through the network

to satisfy the given demand at the demand nodes.

Klingman et al. (1987) describe a classic

award-winning application of this type at the
Citgo Petroleum Corporation. This minimum-cost

network-flow problem involved the distribution of

petroleum products through a distribution network

consisting of pipelines, tankers, barges, and hundreds

of terminals. This application is credited with saving

the company well over $15 million annually. (Another

application of linear programming involving Citgo’s

refinery operations was implemented at about the

same time and achieved additional savings of about

$50 million per year).

Another special case of the minimum-cost

network-flow problem is the maximum-flow problem.

Given a connected network with capacity constraints

on the maximum flow through each arc, the objective

now is to maximize the flow through the network from

the source node to the sink node. Some typical

applications include maximizing the flow through

a distribution network, or through a supply network,

or through a system of pipelines, or through a system of

aqueducts, or through a transportation network.

The shortest-path problem (also called the

shortest-route problem) is still another important

special type of linear-programming problem that is

also a special case of the minimum-cost network-flow

problem. The objective now is to find the path through

a network from an origin to a destination that

minimizes the total distance traveled. Arc distances

also can represent costs or times so the objective

becomes to minimize the total cost or total time of

a sequence of activities.

Ireland et al. (2004) describe how the Canadian

Pacific Railway saves roughly $100 million annually

by using network optimization techniques to route its

freight each day over a massive rail network that

encompasses much of North America. Numerous

shortest-path problems are solved each day as part of

the overall approach for this award-winning

application.

There have been many other award-winning

applications of the special types of linear-programming

problems that are described above. Hillier and

Lieberman (2010, Chap. 9) reference some of these

applications.
Solving Linear Programming Models

Two crucial events have been primarily responsible for

the great impact of linear programming since its
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emergence in the middle of the twentieth century. One

was the invention in 1947 by George Dantzig of

a remarkably efficient algorithm, called the simplex

method, for finding an optimal solution for a

linear-programming model. The second crucial event

was the computer revolution that makes it possible for

the simplex method to solve huge problems.

The simplex method exploits some basic properties

of optimal solutions for linear programming models.

Because all the functions in the model are linear

functions, the set of feasible solutions (called the

feasible region) is a convex polyhedral set. The

vertices (extreme points) of the feasible region play

a special role in finding an optimal solution. A model

will have an optimal solution if it has any feasible

solutions (all the constraints can be satisfied

simultaneously) and the constraints prevent

improving the value of the objective function

indefinitely. Any such model must have either

exactly one optimal solution or an infinite number of

them. In the former case, the one optimal solution must

be a vertex of the feasible region. In the latter case, at

least two vertices must be optimal solutions, and then

all convex-linear combinations of these vertices also

are optimal. It is sufficient, therefore, to find the

vertices with the most favorable value of the

objective function in order to identify all optimal

solutions.

Based on these facts, the simplex method is an

iterative algorithm that only examines vertices of the

feasible region. At each iteration, it uses algebraic

procedures to move along an outside edge of the

feasible region from the current vertex to an adjacent

vertex that is better. The algorithm terminates (except

perhaps for checking ties) when a vertex is reached that

has no better adjacent vertices, because the convexity

of the feasible region then implies that this vertex is

optimal.

The simplex method is an exponential-time

algorithm (in the worst case). However, it consistently

has proven to be very efficient in practice. Running time

tends to grow approximately with the cube of the

number of functional constraints, and less than linearly

with the number of variables. Problems with many

thousands of functional constraints and a larger

number of decision variables are routinely solved. One

key to its efficiency on such large problems is that the

path followed generally passes through only a tiny

fraction of all vertices before reaching an optimal
solution. The number of iterations (vertices traversed)

generally is of the same order of magnitude as the

number of functional constraints.

The running time of the simplex method also is

greatly affected by the degree of sparsity of the

matrix of constraint coefficients, where the measure

of sparsity is the proportion of the coefficients that are

not zero. Having a very sparse coefficient matrix

(say, less than 1%) can greatly accelerate the simplex

method.

There also exist useful variants of the simplex

method, including especially the dual simplex

method, that sometimes are used to solve

linear-programming problems. (Using the

terminology introduced at the beginning of the next

section, the dual simplex method operates on the

primal problem as if the simplex method is being

applied simultaneously to the dual problem).

In addition, specialized versions of the simplex

method also are available for exploiting the special

structure in some of the special types of

linear-programming problems described in the

preceding section. In particular, the network-simplex

method does this for the minimum-cost network-flow

problem and the transportation-simplex method does it

for the transportation problem. A variety of special

algorithms also are available for the assignment

problem, the maximum-flow problem, and the

shortest-path problem. Therefore, even though the

general simplex method can solve huge instances of

these problems, these special purpose algorithms can

solve even vastly larger instances.

Any of the various textbooks on linear

programming cited in the references will provide

additional details about the simplex method and these

related algorithms.

Some 37 years after the invention of the simplex

method, N. Karmarkar (1984) created great excitement

in the operations research/management science

community by announcing a new polynomial-time

algorithm for linear programming, along with claims

of being many times faster than the simplex method.

Actually, the first polynomial-time algorithm for linear

programming had been announced earlier by L. G.

Khachiyan (1979), but his ellipsoid method proved to

be not nearly competitive with the simplex method in

practice. Karmarkar’s algorithm moves through the

interior of the feasible region until it converges to an

optimal solution, and so is referred to as an
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interior-point method. The announcement did not

include details needed for computer implementation.

Following Karmarkar’s announcement, there was

a long flurry of research activity to fully develop and

refine similar interior-point methods, along with

sophisticated computer implementations. The

application of these methods to linear programming

now has reached a high level of sophistication. These

methods commonly are called barrier methods or barrier

algorithms because they are based on introducing a

logarithmic barrier function. A specific barrier

algorithm then may be given a specific name to identify

its main features. For example, the primal-dual predictor-

corrector algorithm developed by Mehrotra (1992)

established a structure that has commonly been adopted

by subsequent algorithms. Ye (1997), Vanderbei (2008),

and Luenberger and Ye (2008) provide further details

about the interior-point approach.

A key feature of the interior-point approach is that

both the number of iterations (trial solutions) and total

running time tend to grow very slowly (even more

slowly than for the simplex method) as the problem

size is increased. Therefore, the best implementations

of this approach tend to become faster than the simplex

method (or the dual simplex method) for relatively large

problems. This is not always true, because the efficiency

of each approach depends greatly in different ways on

the special structure in each individual problem. Indeed,

one of the by-products of the emergence of the interior-

point approach has been a major renewal of efforts to

improve the efficiency of computer implementations of

the simplex method and its variants. Impressive

progress has been made. Consequently, when tests

have been conducted to determine when a leading

barrier algorithm, the simplex method, or the dual

simplex method will solve various huge problems

more quickly, the dual simplex method or simplex

method occasionally wins. As time goes on, improving

computer technology (such as massive parallel

processing) will substantially increase the size of

problems that any of the algorithms can solve.

A considerable number of excellent software

packages for linear programming and its extensions

now are available to fill a variety of needs. Leading

packages include CPLEX, Express-MP, Gurobi, and

LINDO. Frontline Systems also has excellent solvers,

including its Risk Solver Platform, for use with Excel

spreadsheets.
As mentioned earlier, when dealing with large

linear-programming problems, modeling languages

also are needed to efficiently input, formulate, and

manage the model. The available modeling languages

include AMPL, MPL, OPL, GAMS, and LINGO.

These languages are designed to be integrated with

the kinds of solvers mentioned in the preceding

paragraph.
Duality Theory and Postoptimality Analysis

Associated with any linear-programming problem is

another linear-programming problem called the dual.

Furthermore, the relationship between the original

problem (called the primal) and its dual is

a symmetric one, so that the dual of the dual is the

primal. For example, consider the two related

linear-programming models shown below in matrix

notation (where A is a matrix, c and y are row

vectors, b, x, and the null vector 0 are column

vectors, all with compatible dimensions, and x and y

are the decision vectors):
Maximize cx
 Minimize yb
subject to: Ax � b
 subject to: yA � c
and x � 0.
 and y � 0.
For each of these problems, its dual is the other

problem.

There are many useful relationships between the

primal and dual problems, so the dual provides

considerable information for analyzing the primal.

This is especially helpful when conducting

postoptimality analysis, i.e., analysis done after

finding an optimal solution for the initial

validated version of the model. A key part of most

linear-programming studies, this analysis addresses

a variety of what-if questions of interest to the

decision makers. The purpose is to explore various

scenarios about future conditions that may deviate

from the initial model. The dual simplex method

frequently is helpful for quickly re-optimizing these

revised models.

Although the parameters of the given

linear-programming model are treated as constants,

they frequently represent just best estimates of

a quantity whose true value may turn out to be quite
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different. A key part of postoptimality analysis is

sensitivity analysis, an investigation of the

parameters to determine which ones are sensitive

parameters, i.e., those that change the optimal

solution if a small change is made in the given

parameter value, and exploring the implications. For

certain parameters, the decision makers may have

some control over its value (e.g., the amount of

a resource to be made available), in which case

sensitivity analysis guides the decision on which

value to choose. An extension of sensitivity analysis

called parametric programming enables systematic

investigation of simultaneous changes in various

parameters over ranges of values.

Fletcher et al. (1999) present an interesting case

study of how an OR team at the Pacific Lumber

Company made extensive use of detailed sensitivity

analysis to develop a sustained yield plan for the

company’s entire landholding. This plan is credited

with increasing the company’s present net worth by

over $398 million while also generating a better mix of

wildlife habitat acres.

Extensions of the simplex method are well

suited for performing these kinds of postoptimality

analysis. However, this is less true for interior-point

methods. Therefore, even when an interior-point

method is used to find an optimal solution, a switch

may be made to the simplex method for subsequent

analysis.

When there is substantial uncertainty about what

the true values of the parameters will turn out to be, it

may be necessary to use a different analysis approach,

called linear programming under uncertainty, in which

some or all the parameters are treated as random

variables. This is especially pertinent when planning

must be done for multiple time periods into an

uncertain future. For example, Infanger (1993)

discusses solving large-scale multi-stage stochastic

linear programs.
Further Reading

Dantzig (1982) describes some of the early history

of linear programming. Gass (1990) gives an

entertaining introduction to the field. Hillier and

Lieberman (2010) expand on all the topics mentioned

here at an elementary level, and F.S. Hillier and
M.S Hillier (2011) emphasize the application of

linear programming from a managerial viewpoint.

Dantzig (1963) provides the classic textbook on the

theory of linear programming. Other excellent

textbooks on linear programming and its extensions

include Bertsimas and Tsitsiklis (1997), Dantzig and

Thapa (1997, 2003), Vanderbei (2008), Luenberger

and Ye (2008), Murty (2010), and Bazaraa, Jarvis

and Sherali (2010), Marsten, Subramanian, Saltzman,

Lustig, and Shanno (1990) discuss the basic concepts

underlying interior-point methods.
See

▶Algebraic Modeling Languages for Optimization

▶Assignment Problem

▶Basis

▶Computational Complexity

▶Density

▶Duality Theorem

▶Game Theory

▶Hierarchical Production Planning

▶ Integer and Combinatorial Optimization

▶ Interior-Point Methods for Conic-Linear

Optimization

▶Mathematical Model

▶Model Management

▶Multiplier Vector

▶Nonlinear Programming

▶ Parametric Programming

▶ Postoptimal Analysis

▶ Primal Problem

▶ Sensitivity Analysis

▶ Simplex Method (Algorithm)

▶ Simplex Tableau

▶ Stochastic Programming

▶Transportation Problem

▶Verification, Validation, and Testing of Models
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Linear-Fractional Programming Problem

The linear-fractional programming problem is one in

which the objective to be maximized is of the form

f ðxÞ ¼ cxþ að Þ dxþ bð Þ= subject to Ax � b, x � 0,

where a and b are scalars, c and d are row vectors of

given numbers, and b is the right-hand-side vector.

The problem can be converted to an equivalent

linear programming problem by the translation

y ¼ x dxþ bð Þ= , provided that dx + b does not

change sign in the feasible region.
See

▶ Fractional Programming
Lipschitz Continuous

A function f (x) is said to be Lipschitz continuous if

there exists a real constant K > 0 (called the Lipschitz

constant) such that for every pair of points x1 and x2,

jjf x1ð Þ � f x2ð Þjj � Kjjx1 � x2jj. If K < 1, then the

function is called a contraction.
Little’s Law

Susan Albin

Rutgers, The State University of New Jersey,

Piscataway, NJ, USA
Little’s Law, among the most fundamental and useful

formulas in queueing theory, relates the number of

customers in a queueing system to the waiting time

of customers for a system in steady state as

L ¼ lW

• L¼ The average number of customers in the system

including customers in service

• l ¼ The average arrival rate of customers to the

system; and

• W ¼ The average time a customer spends in the

system including the time in service

http://dx.doi.org/10.1007/978-1-4419-1153-7_362
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An alternate form of Little’s Law addresses only the

customers in the waiting line, or queue, i.e.,

Lq ¼ lWq

• Lq ¼ The average number of customers in the

queueing (excluding customers in service);

• l ¼ The average arrival rate of customers to the

queueing system; and

• Wq ¼ The average time that a customer spends in

the queueing (excluding the time in service).

Little’s Law, formally proven in Little (1961) and

simplified in Stidham (1974), is remarkably general,

requiring only that the queueing is ergodic and that

no service needs are artificially created or destroyed

(i.e., the system is work conserving). The result holds

for any arrival process, service-time distribution, and

number of servers. It applies for all queueing

disciplines, with the customers not necessarily served

in order of arrival, and for a specific class of customers

that are distinguished from others by priority or some

other characteristic. Little’s formula holds for every

infinite sample path realization of the queueing system,

and it is approximately valid in finite intervals, with the

accuracy increasing as the interval increases.

In the study of queueing, whether by mathematical

analysis, simulation or direct data collection, it is often

simpler to find either the average number in system or

the average waiting time. Once the simpler one has

been found, Little’s Law gives the other. For example,

in an operating manufacturing system, if average time

in the system (lead time) is simpler to estimate from

data, Little’s Law can be used to estimate the average

number of parts in the system (in process inventory).

An outline of a proof of Little’s Law is based on

depicting a sample path of the number in the system

over an interval of time T for a steady-state queueing

system with arrival rate l (Fig. 1). The number of

customer-minutes spent in the system equals A, the
area under the curve. The average number of

customers that arrive in the interval is lT
(approximately); thus the average number of minutes

in the system per customer isW¼ A/(lT). The average
number of customers in the system L ¼ A/T.

Manipulating the two equations, taking limits, and

accounting for end effects yields Little’s Law.

An outline of a proof of Little’s Law is based on

depicting a sample path of the number in the system

over an interval of time T for a steady-state queueing
system with arrival rate l (see Fig. 1). The number of

customer-minutes spent in the system equals A, the

area under the curve. The average number of

customers that arrive in the interval is lT
(approximately); thus the average number of minutes

in the system per customer isW¼ A/(lT). The average
number of customers in the system L ¼ A/T.
Manipulating the two equations, taking limits, and

accounting for end effects yields Little’s Law.
See

▶Queueing Theory
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Little’s Law in Distributional Form

L. D. Servi

The MITRE Corporation, Bedford, MA, USA
Since Little’s Law first appeared in 1961, its simplicity

and importance have established it as a basic tool of

queueing theory. Little’s Law relates the average

number of customers in a system, N, with the average

http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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time in the system, T, under very broad conditions. For
example, Keilson and Servi (1988) have demonstrated

that for many systems, the relationship between the

queueing length and the time in the system can be

characterized beyond just their average value.

This is possible, however, if a class of customers

arrives according to a Poisson process, is served

first-in, first-out (FIFO) within the class, and is

processed as either

1. An ordinary single-server queueing,

2. A single-server queueing with one or more classes

of priority which processes each class according to

a preemptive-resume, preemptive-repeat, or

nonpreemptive discipline,

3. A vacation model system, where the server takes

one or more vacations when the queueing is

depleted,

4. A polling system, where a single server moves

cyclically between (real or virtual) queueing,

either serving the customers at the queueing to

exhaustion, employing a Bernoulli schedule, or

serving at most K customers at a queueing before

moving on, or

5. An M/G/G/. . .G/1 tandem queueing system, where

the output of one queueing is the input of another

and the service times at successive queueing are

i.i.d. service times for successive arrivals.

More precisely, Keilson and Servi (1988)

demonstrated that, if for a given class of customers,

(C-1) The arrival process is Poisson with rate l,
(C-2) All arriving customers enter the system and

remain in the system until served,

(C-3) The customers leave the system one at a time in

order of arrival, and

(C-4) For any time t, the arrival process after time t,

and the time in the system of any customer arriving

before time t, are statistically independent,

then the relationship between the probability

distribution of the number in the system and the time

in the system follows the simple formula
pNðuÞ ¼ aT l� luð Þ (1)

where pNðuÞ ¼ E uN½ � is the probability generating

function of N and aTðsÞ ¼ E esT½ � is the Laplace

transform of the density of T.

Since dnpNðuÞ=dun ¼ E½NðN � 1Þ . . . ðN � nþ 1Þ�
for u¼ 1 and dnaTðsÞ=dsn ¼ �1ð ÞnE Tn½ � for s¼ 0, one
can relate the moments of queueing lengths to the

moments of the time in the system by computing

successive derivatives of (1) with respect to u and

then evaluating at u ¼ 1. For example,

E N½ � ¼ E lT½ �
E N2
	 
 ¼ E lTð Þ2

h i
þ E lT½ �

E N3
	 
 ¼ E lT½ � þ 3E lTð Þ2

h i
þ E lTð Þ3

h i
E N4
	 
 ¼ E lT½ � þ 7E lTð Þ2

h i
þ 6E lTð Þ3

h i
þ E lTð Þ4

h i
E N5
	 
 ¼ E lT½ � þ 15E lTð Þ2

h i
þ 25E lTð Þ3

h i
þ 10E lTð Þ4

h i
(2)

The first of these equations is the familiar Little’s

Law. As is the case of the Pascal Triangle, there is

a simple relation between the coefficients. Specifically,

one can show that
E Nn½ � ¼
Xn
m¼1

S n;mð ÞE lT½ �m (3)

where S(u, m) is a Stirling number of the second kind

defined by the recursion S nþ 1;mð Þ ¼
mS n;mð Þ þ S n;m� 1ð Þ for nþ 1 � m � 1,

S n; 0ð Þ ¼ S n; nþ 1ð Þ ¼ 0 for n � 1 and S 1; 1ð Þ ¼ 1

(Abramowitz and Stegun 1972).

Similarly,
E lTð Þn½ � ¼
Xn
m¼1

�S n;mð ÞE Nm½ �

where �S n;mð Þ are Stirling numbers of the first kind

which satisfy �S n;m� 1ð Þ ¼ �S n;m� 1ð Þ � n�S n;mð Þ
for nþ 1 � m � 1, �S n; 0ð Þ ¼ �S n; nþ 1ð Þ ¼ 0 for

n � 1 and �S 1; 1ð Þ ¼ 1.

The first two equations of (2) imply the simple but

non-intuitive formula

Var N½ �
E N½ � ¼ Var lT½ �

E lT½ � þ 1:

The system could refer to the queueing and the pool

of customers in service or exclusively to the queueing.

In the latter case, additional systems satisfy conditions

(C-1)–(C-4). For example, for a multi-server system,
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the customers do not leave the system consisting of the

queueing and the pool of customers in service on

a first-in, first-out basis [and hence violate condition

(C-3)]. However, if the system refers exclusively to the

queueing, then condition (C-3) is satisfied.

These results have been generalized, for example,

to systems with non-Poisson arrivals (Bertsimas and

Mourtzinou 1997), to systems operating under heavy

traffic (Szczotka 1992), to systems having batch

arrivals (Takahashi and Miyazawa 1994), and has

been used as the basis to derive explicit formulae for

the distribution of the number in the system

(or queueing) as well as the time in the system

(or queueing) for a number of more classical systems

(Keilson and Servi 1990).
See

▶Little’s Law

▶Queueing Theory
L
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Local Balance Equations

▶Detailed Balance Equations

▶Queueing Theory
Local Improvement Heuristic

A heuristic rule which examines all the

solutions that are closely related to a given initial

solution and is guaranteed to reach at least a

local optimum.
See

▶Heuristic Procedure

▶Local Optimum
Local Maximum

A function f(x) defined over a set of points S is said

to have a local maximum at a point x0 in S if f (x0)� f(x)

for all x in a neighborhood of x0 in S. The point x0
is referred to as a local optimum (maximum).
See

▶Global Maximum (Minimum)

▶Nonlinear Programming

▶Quadratic Programming
Local Minimum

A function f(x) defined over a set of points S is said

to have a local minimum at a point x0 in S if

f x0ð Þ � f ðxÞ for all x in a neighborhood of x0 in S.
The point x0 is referred to as a local optimum

(minimum).
See

▶Global Maximum (Minimum)

▶Nonlinear Programming

▶Quadratic Programming
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Local Optimum

▶Local Maximum

▶Local Minimum
Local Solution

A best solution in a feasible neighborhood.
Location Analysis

Charles ReVelle1 and Vladimir Marianov2

1The Johns Hopkins University, Baltimore, MD, USA
2Pontificia Universidad Católica de Chile, Santiago,

Chile
Introduction

The term location analysis refers to the development

of formulations and algorithms/methodologies to

site facilities of diverse kinds in a spatial or

geographic environment. The facilities may be sited

with relation to demand points, supply points, or with

respect to one another. Although facility layout

falls within this definition, this topic is not generally

considered under the rubric of location analysis.

Common descriptive terms for location analysis are

deployment, positioning, and siting, although these

terms are actually the outcome that follows the

execution of a formulation or algorithm.

Location settings may be classified into two broad

categories: planar problems and network problems.

Planar problems typically assume that the distances

between facilities and demand points, supply points

or other facilities are given by a metric, a formula

that calculates distance between points based on

their coordinates in space. Network problems, in

contrast, assume that travel can only occur on an

underlying network and that distances are the lengths

(or cost) of the shortest paths between the particular

points on the network. A further distinction between
these categories is provided by the assumption in most

planar problems of an infinite solution space, that is,

that facilities can be sited anywhere on the plane,

perhaps subject to exclusion areas or regions.

These planar problems are most often non-linear

optimization problems and more abstract in their

application than network-based problems. In contrast

to the infinite solution space assumed by most

planar problems, all but a few network problems

restrict facilities to sites that have been specified in

advance as eligible to house those facilities. The

network problems tend to be linear zero-one

optimization problems and so pose challenges in their

resolution to integers. First, planar problems and

approaches to them will be discussed; followed

by a discussion about network location formulations

and their solution.
Planar Location Problems

The most famous of the planar problems and the first

location problem to be posed historically is the

minimum Euclidean single facility location problem

first stated by Fermat as a mathematical problem:

“Given three points in the plane, find a fourth such

that the sum of its distances to the three given points

is a minimum” (Kuhn 1967). It is often referred to as

the Weber problem, after the German economist who

first discussed it in economic terms (Weber 1909).

The minimum problem considers points dispersed on

the plane that send items to or receive finished

product from some central factory or facility. The

problem seeks the central point that minimizes the

sum of weights (quantities) times the distances to all

dispersed points. The problem assumes that the

Euclidean distances separate the dispersed points and

the central point, that the central point can be anywhere

on the plane, and that a weight or loading is associated

with each of the dispersed points. An iterative solution

method that can be shown to converge to an optimal

solution was offered in the 1930s, lost to view, and

rediscovered in the early 1960s by several independent

investigators. In the minisum multiple facility

problem (the multi-Weber problem), a number of

central facilities are to be sited, each one associated

with a cluster or partition of the dispersed points.

http://dx.doi.org/10.1007/978-1-4419-1153-7_200410
http://dx.doi.org/10.1007/978-1-4419-1153-7_200411
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An allocation problem arises, i.e., the problem of

deciding which facility serves each dispersed point.

The history of the minisum problem is reviewed in

Wesolowsky (1993). Only in the early 1990s has

this problem yielded to exact methods, followed by

heuristics and metaheuristics (Brimberg et al. 2008).

While the Weber problem in its single and

multi-facility forms utilizes the Euclidean metric for

distances, the minisum rectilinear problem utilizes the

Manhattan or rectilinear metric for distances and

minimizes the sum of weights times these distances to

the central point. The rectilinear distance between two

points is the sum of the horizontal and vertical

separation of the points. Because the problem

can be reduced to the choice among a set of eligible

points, the multi-facility rectilinear minisum

problem yields either to heuristics or to the linear

integer-programming formulation used for the

p-median problem, a problem that will be discussed

under network location models. When the classic

metrics are set aside, solution of the minisum problem

generally becomes more difficult, except in the case of

minimizing the weighted sum of squared distances, in

which case the single facility minisum solution is

simply the centroid.

A second important objective setting in planar

problems is the siting of a single facility under the

objective of minimizing the maximum distance that

separates any demand/supply point from the central

facility. The problem may utilize either of the

two classic metrics, Euclidean or rectilinear. No

matter the number of dispersed points, the minimax

single facility location problem with rectilinear

distances yields to either a geometric solution or to

a four-constraint linear program. The minimax single

facility location problem with Euclidean distances is

a nonlinear-programming problem, but can also be

solved by a geometric argument. Multi-facility

versions of the planar minimax location problems may

yield to heuristics resembling those applied to the

p-median problem. A good general reference dealing

in part with planar location problems is the text of Love

et al. (1988), Plastria (1995) provides a comprehensive

review for the researcher in planar location.

It is worth mentioning that researchers in

continuous location, seeking a greater realism in their

problems, have sought to project the most likely real
distances on a road network between a pair of points

given the spatial coordinates of these points. This

literature is reviewed in Brimberg and Love (1995).

Network Location Problems

In contrast to the use of formula-based metrics for the

siting of facilities on a plane, network location

problems always measure distances across the links

of the network. Interestingly, the assumption of an

infinite solution space can be made in network-based

location problems as well. That is, the infinite solution

space would consist of all the points on every arc of

the network. For some problems, including the

p-median, the solution space can be reduced without

loss of optimality from all the points on all the arcs to

a limited number of eligible points when the triangle

inequality holds throughout the network. Many

network problems simply assume a prespecified set of

eligible facility sites based on needed characteristics

of such points, such as transportation infrastructure,

availability of lots or warehouse space, etc.

Within network location research two distinct foci

are found. The first is cost minimizing/profit

maximizing siting that is goods-oriented, an activity

especially of the manufacturing and distribution

industries. The second is people or service-oriented

siting, an activity mostly of government at a number

of levels from local to national, but also of private

companies. The divisions are not perfect, as it

will be seen, but are, at the least, useful for discussion

purposes. These two settings will be taken up in

that order followed by presentations of some

variations and adaptations of these classes.
Goods-Oriented Siting

By far, the problem setting considered most

extensively in the goods oriented location category is

the simple plant location problem (SPLP). The

problem assumes that an unknown number of

plants are to be sited to manufacture product for

distribution to a number of spatially dispersed

demand points. The plants have no limit as to the

amount manufactured, and each point must be fully

supplied with its demand. The objective is the
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minimization of the total of manufacturing cost and

distribution cost. Manufacturing includes a fixed

opening cost and an expansion cost that can be

linear or nonlinear. The problem may be stated

mathematically as:

minimize z ¼
Xm
i¼1

Xn
i¼1

cijxijþ
Xm
i¼1

fiyi

subject to :Xm
i¼1

xij ¼ 1; j ¼1; . . . ; n;

yi � xij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

xij; yi 2 0; 1f g; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n:

i ¼ the index of eligible plant sites of which there

are m;

j ¼ index of demand points of which there are n;

fi ¼ opening cost for a plant at i;
cij ¼ cost to deliver j’s full demand from i, including

the production cost at i;

yi 2 {0, 1}, it is 1 if a plant opens at i and 0 otherwise;

and

xij 2 {0, 1}, it is 1 if i delivers j’s full demand and

0 otherwise.

The above problem formulation is due to Balinski

(1965), and is one of several formulations possible

for the SPLP. It is presented here because it is the

basis for a number of solution methods.

The SPLP has attracted attention since the 1950s

when heuristics were first suggested. In the

1960s, Balinski offered his formulation of the

problem but dismissed it as unreliable. In addition,

several branch and bound algorithms were created to

solve the SPLP, but these algorithms proved

impractical for large problems. In the mid-1970s,

Bilde and Krarup (1977) and Erlenkotter (1978) both

proposed dual ascent algorithms for the SPLP; the basic

algorithm proposed by these two sets of investigators

has proved to be capable of handling relatively large

problems. Morris (1978) investigated 500 randomly

generated plant location problems and found that if the

formulation above were solved as a linear program

(without integer requirements on any of the variables)

that 96% of the problems so solved presented with all

zero-one variables. Morris’ experience thus suggested

that linear programming alone was a powerful

technique for the SPLP formulation that Balinski had

abandoned. The problem has since been successfully
pursued by Lagrangian relaxation by Galvão (1989) and

Korkel (1989), who modified the dual ascent algorithm

referred to above to solve remarkably large problems.

While the SPLP has attracted considerable

attention, a related form, the capacitated plant

location problem (CPLP), languished until the late

1980s. The CPLP sets limits on the amount that could

be manufactured at any site, but in all other respects is

the same as the SPLP. First attacked by Davis and

Ray (1969), the problem later received attention from

Pirkul (1987), who provided both references to prior

work and a solution algorithm based on Lagrangian

relaxation. The CPLP also describes a problem in

solid waste management in which waste is generated

at population nodes and must be disposed of at sanitary

landfills with limited capacities. Landfills are to be

sited in this problem statement.

Many other plant location style problems can be

stated. A maximum profit version of the SPLP is one

such statement. The time dimension has been

incorporated in a number of models, Melo et al.

(2005). Multiple products can be treated as well.

Another line of research focuses on the representation

of the cost, since in many cases there are economies of

scale or costs that are piecewise linear. Inventory, aswell

as other logistics costs can be also integrated in these

models, see Snyder et al. (2007). Finally, demands,

prices, and costs can be viewed as random, leading to

stochastic versions of the plant location problem. The

SPLP has been not only used for goods-oriented siting,

but also for the design of telecommunications networks;

in particular, for solving a problem called the

Concentrator Location Problem, whose mathematical

structure is identical to that of the warehouse or plant

location problem. Shen (2007) surveys integrated supply

chain design models.

Public Service-Oriented Siting

Nearly all of the plant location problems – excluding

the concentrator location problem – emphasize the

flow/movement of goods. In contrast, service oriented

siting problems focus on the accessibility of people to

services or services to people. Flow/movement is part

of the equation in some of the models, but simple

geographic coverage can suffice in others.

The same two objectives treated under planar

problems, minisum and minimax, have also been

considered for network location problems of service
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siting. The minisum network location problem is

known as the p-median problem; the minimax

network location problem is known as the p-center
problem. Both were posed together in seminal papers

by Hakimi (1964, 1965). He also proved that there is

always an optimal solution considering location only at

nodes of the network.

The p-median problem, which seeks the minimum

cost assignment of each population node to one of

p facilities, resembles the SPLP in all but one

modeling aspect. Indeed, so strong is the resemblance

of p-median to the simple plant location model that the

same algorithms may be used for solution of both

with minor adaptation, Galvão (1989). The single

difference between the two models is easy to explain

once a mathematical-programming formulation of

the p-median is offered. The p-median problem

seeks to site p facilities in such a way that the least

total of people times distance traveled to the assigned

facility is achieved. Division of this objective by

the total of population reveals that minimization of

the total population-miles objective also minimizes

the average distance that people travel to service.

Travel/assignment is always assumed to the

closest among the p facilities.

The p-median problem may be formulated as:

minimize Z ¼
Xn
i¼1

Xn
j¼1

aidijxij

subject to :Xn
j¼Ni

xij ¼ 1; i ¼ 1; 2; . . . ; n;

xjj � xij � 0; i; j ¼ 1; 2; . . . ; n; i 6¼ j;Xn
j¼1

xjj ¼ p

xij 2 0; 1f g; i; j ¼ 1; 2; . . . ; n;

ai ¼ relevant population at demand node i;
dij ¼ shortest distance from node i to node j;

N ¼ number of nodes;

P ¼ number of facilities; and

xij2 {0, 1}; it is 1 if node i assigns to a facility at j and 0

otherwise.

It can be seen from a comparison of the p-median

formulation and that of the SPLP that the objectives

differ only in the presence or absence of fixed opening
costs and their opening variables, and that the

constraints differ only in the presence or absence of

a constraint on the number of facilities. In all other

respects, the formulations look virtually identical.

If the constraint on the number of facilities in the

p-median formulation is brought to the objective with

a multiplier l, the objective becomes

Xn
i¼1

Xn
j¼1

aidijxij þ
Xn
j¼1

lxjj:

The subscripts reflect flow between central facilities

and demand points. The p-median is now fully

equivalent to an SPLP with equal opening costs, thus

making all the techniques for solution of the SPLP

available for solution of the p-median. Ranging the

multiplier l in the p-median is equivalent to trading off

people miles against the number of facilities by use of

the weighting method of multi-objective programming.

Among the methods available for the SPLP that can be

used for the p-median are relaxed linear programming

(ReVelle and Swain 1970), the dual ascent methodology

(Bilde and Krarup 1977; Erlenkotter 1978) and

Lagrangian relaxation (Galvão 1989). A number of

other researchers have used heuristics for the p-median

problem; a listing of many of the early methods for the

p-median problem appeared in ReVelle et al. (1977).

Newer and more effective heuristic and metaheuristic

methods are reviewed in Mladenovic et al. (2007) and

Reese (2006). As the SPLP, the p-median also has

a capacitated version in which each facility can serve

up to a certain number of people.

While the p-median problem attracted considerable

attention, researchers found its focus on the

average condition of population accessibility to be

limiting. Concern for those worst off relative to their

distance to the nearest facility, that is, for the maximum

distance or time separating population centers from

service, gave rise to another concept, that of coverage.

A population node is considered to be covered, i.e.,

adequately served, if it has a facility sited within some

maximum distance or time; that is, sited within a time

standard. Coverage can either be required for all demand

points within the standard, or maximization of demand

covered can be sought, giving rise to a host of new

problems, the earliest of which is the location set

covering problem (LSCP).

The LSCP seeks to position the least number of

facilities so that every point of demand has at least
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one facility sited within the time or distance standard.

The problem can be stated as a linear zero-one

programming problem as follows:
minimize z ¼
X
j2J

xj

subject to :
X
j2Ni

xj � 1 8i 2 I;

xj 2 0; 1f g 8j;

i, I ¼ index and set of demands;

j, J ¼ index and set of eligible sites for facilities;

xj 2 {1, 0}, 1 if a facility placed at j and 0 otherwise;

dji ¼ the shortest distance (or time) from site j
to demand point i;

S ¼ the maximum distance (or time) that a demand

point can be from its nearest facility; and

Ni ¼ {j|dji �S} ¼ the set of facility sites eligible to

serve demand point i, by virtue of being within

S of i.
While general set covering problems may require

integer-programming algorithms to solve them, the

LSCP appears to possess special properties.

In particular, solution of the linear-programming

formulation on data from a geographic problem

without any zero-one requirements produces all

zero-one answers with remarkable regularity (over

95% of the time). If a set of eligible facility sites

is specified in advance, the LSCP can be used to

derive solutions to the p-center problem as well. The

p-center problem seeks to position p facilities in such

a way that the maximum distance that separates

any population node from its nearest facility is as

small as possible. Solutions to this problem can be

found by solving a sequence of LSCP problems, with

decreasing distance standards. As the distance

decreases, the number of facilities required to cover

all demands increases. The minimum distance

standard that makes total coverage feasible with

p facilities is the solution of the p-center problem

(Minieka 1970). If, however, any point on any link of

the network is eligible to house a facility (the infinite

solution space case), the solution of the p-center

problem remains open and challenging.

The LSCP, however, has several shortcomings

as a meaningful problem statement. First, population

is absent from the problem statement; proximity
and population are not linked even though they

should be. Second, all population nodes require

coverage within the standard, a requirement that

could and often proves very costly in terms of the

number of facilities/servers required.

Recognizing these shortcomings of the LSCP,

several researchers have created new models for

siting that utilized the coverage concept not as

a requirement but as a goal. The most widely

known of these models is referred to as the maximal

covering location problem (MCLP) or the partial

covering problem, depending on the specific

formulation. The MCLP seeks the positions for p

facilities among a prespecified set of eligible points

that maximize the population that has a facility sited

within a distance or time standard S, that is, that

maximizes the population covered. The MCLP can

be stated as:
maximize z ¼
X
i2I

aiyi

subject to : yi �
X
j2Ni

xj 8i 2 I;

X
j2J

xj ¼ p;

xj; yi 2 0; 1f g; 8i; j;

where additional notation is

ai ¼ the population at demand node i;
yi 2 {1, 0}, it is 1 if demand i is covered by a facility

within Ni and 0 otherwise; and

p ¼ the number of facilities that can be sited.

Basically, while the LSCP is attempting to find

the least resources to cover all demand nodes within

the distance goal, the MCLP is attempting to distribute

lesser and limited resources to achieve as

much population coverage as possible (Church and

ReVelle 1974).
Related Research and Extensions

The basic models described above have caught the

interest of a number of researchers. The literature on

the subject keeps growing.

Drezner (1987) addressed the unreliable p-median

in which facilities can become inactive. Marianov and
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Serra (1998) proposed models that include the effect of

queuing at the facilities, while Marianov (2003)

maximized the amount of people willing to get

service from a facility when there is demand

elasticity to travel distance and queueing. The user

point of view has been embedded in the p-median by

Drezner and Drezner (2007), who investigated the

effect on location of considering customers’

behavior, represented through gravity models.

Uncertainty has also been considered in covering

models. In probabilistic covering models, the presence

or availability of a vehicle or server within a time

standard is not guaranteed. The probabilistic models

suggest a chance constraint on vehicle availability,

that is, a requirement that a vehicle be available

within the time standard with a specified level of

reliability, see ReVelle and Marianov (1991). The

chance constraint may be a strict requirement or may

be treated as a goal for each population demand node.

Many of the probabilistic, as well as redundant/

backup coverage models, and multiple vehicle type

models were reviewed by Marianov and ReVelle

(1995). A review of the applications of probabilistic

coverage models to emergency systems is provided by

Goldberg (2004).

A number of other lines of research within the

network location setting have been pursued. Among

these are hierarchical location models, models in

which a hierarchy of interacting/interrelated facility

types are sited. One example is the health care

hierarchy in developing nations, that consists of

hospitals, clinics, and remote doctors. Another is

a banking system consisting of central banks,

branch banks, and teller machines. Morphological

relations in hierarchical systems is reviewed by

Narula (1986), with a brief treatment of the topic

given in Daskin (1995). Serra and ReVelle (1994)

provide algorithms for the median version of these

hierarchical problems where coherence of

assignments is enforced. Church and Eaton (1987)

present an interesting set of hierarchical models with

referral between levels.

The concept of coverage has been challenged, since

in some situations it does not seem reasonable to

consider a demand as covered if it is within, say,

500 m from a facility, but not covered if it is at

500.1 m. Models using a gradual coverage have been

reviewed by Eiselt and Marianov (2009a). In these

models, the coverage function, originally a step
function, can take different shapes, representing

quality of coverage as a function of the distance.

Another significant line of siting research is

embodied in the competitive location models in

which facilities are sited in a competitive market

environment with goals of capturing market share

from other retailers or manufacturers, or maximizing

profit in the presence of competitors. Two problems

are usually solved: the follower’s problem, which is to

locate facilities in such a way that the market

capture from existing competitors is maximized; and

the leader’s problem, which is to locate first in a virgin

market, anticipating possible followers that will try to

cannibalize the leader’s market share. A review of

competitive location models in continuous and

discrete space is provided by Dasci (2011).

Another line of location research involves the siting

of noxious facilities. Such facilities may be

undesirable in of themselves and should be distant

from population centers or may be required to be

distant from one another. However, they usually

cannot be too far, since operation costs can be

prohibitive, as in garbage processing plants or jails.

Several approaches have been proposed for these

facilities: maximizing their distance to population;

maximizing the minimum facility-population

distance; compensating the population that is

affected by such a facility; and expropriation.

A review of obnoxious facility location problems can

be found in Melanchrinoudis (2011). Another line of

research addresses both location of obnoxious

facilities and routing of hazardous waste (Nagy and

Salhi 2007).

A problem of increasing interest is the location of

hubs. As airlines and courier companies focus on

logistic improvements, the location of these traffic

concentration points becomes more relevant. This

line of research was started by (O’Kelly 1986) and

has grown towards several fronts. Hub problems can

be classified into the same categories as the original

location problems: hub-median, hub-location,

hub-covering and hub-center problems. They can be

solved on the plane (O’Kelly 1986), or on networks.

Campbell et al. (2002) provide a taxonomy of hub

problems. Competition and queuing effects have also

been considered when locating hubs (Marianov

and Serra 2003; Eiselt and Marianov 2009b).

Finally, the tools developed for location in

a geographical setting can be also used in very
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different spaces: to locate employees and tasks in

a skill space, finding the best measurement points in

the eye for glaucoma detection, and locating

candidates and voters in an issue space.
Concluding Remarks

The wide variety of important applications and

modeling challenges are reported in many OR/MS

journals, including Computers & Operations
Research (including Location Science); European

Journal of Operational Research, Journal of the

Operational Research Society; IIE Transactions and

Papers in Regional Science. In addition, the

proceedings of the triennial International Symposium

on Locational Decisions (ISOLDe) have appeared in

separate volumes of Annals of Operations Research,

beginning with 1984 Boston/Martha’s Vineyard

conference.
See

▶ Facility Location

▶ Integer and Combinatorial Optimization

▶Network

▶ Shortest-Route Problem

▶ Stochastic Programming
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Logic Programming

Logic programming deals with the use of symbolic

logic for problem representation and inferential

reasoning. A popular logic programming language is

Prolog (PROgrammation en LOGique), developed in

the early 1970s by the French computer scientists,

Alain Colmerauer and Philippe Roussel. Prolog has

been used to develop a man-machine communication

system in natural language.
See

▶Artificial Intelligence
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Logical Variables

In a linear-programming problem, the set of variables

that transform a set of inequalities to a set of equations

are called logical variables.
See
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Introduction

For quite some time, logistics has accounted for

a significant percentage of the U.S. gross domestic

product (GDP). The Council of Supply Chain

Management Professionals estimated that in 2008 the

country’s logistics costs were about $1.3 trillion, or

9.4% of the $13.8 trillion GDP. Year-to-year carrying

costs decreased by 13.2% due to smaller inventories

and lower interest rates while transportation costs rose

by 2% as a result of higher fuel prices. These figures

and a number of other key economic developments

highlight logistics and supply chains as areas where

large productivity improvements have and continue

to be attained. Given the intrinsic complexity of

logistics problems in today’s global supply chains,

such improvements could not have been achieved

without the use of analytical tools, including

operations research/management science (OR/MS)

methodologies.

The mathematical difficulty of strategic, tactical, and

operational logistics decisions and the magnitude of the

potential cost savings to be achieved by utilizing OR/

MS models and algorithms have attracted researchers

since the early days of the field. Witness to this are the

pioneering efforts of researchers in 1950s, 1960s, and

1970s. Most of the methods developed made extensive

use of network models and algorithms coupled with

different types of inventory techniques.

Over the last twenty five years, fueled by major

developments in modeling and algorithmic

methodology, constant breakthroughs in computer

technology, and web-based applications, operations

researchers have found logistics to be a very fertile

design and implementation area. They addressed an

ever increasing variety of problems with escalating

complexity and size. The body of supply chain

applications of OR/MS techniques also expanded at

a progressively swifter pace. In what follows, the focus

will be on some of the more important areas in logistics

and supply chain management and, where possible, on

OR/MS applications in large-scale logistics systems.
Networking and Routing

Network design and freight routing have been

addressed by Braklow et al. (1992) in the context of

less-than-truckload (LTL) transportation. The authors

formulate the problem as a nonlinear, multicommodity

network design problem. Its solution is based on

a hierarchical decomposition of the overall problems

into a series of optimization subproblems. The

network design problem is solved using interactive

optimization, where the user guides the search

performed by a local improvement heuristic which

adds (drops) links to (from) the load planning

network. The subproblems involve the routing of the

LTL shipments, of truckload shipments and of

empty trailers. The former two problems are solved

using shortest path algorithms, while the latter

problem involves the solution of a classical linear

transhipment problem. They must be reoptimized

every time a change is made in the load planning

network. This is performed sufficiently fast to make

interactive optimization possible. The model has been

used as a tactical decision tool for load planning by one

of the largest LTL motor carriers. It has also been used

at the strategic level to determine the location and size

of new terminals.

The research of Simão et al. (2010) is illustrative

of the evolution of the OR/MS methodology which

had to match the increasing complexity of real-world

problems due to their size and dynamism. The authors

address the problem faced by a major transportation

company that wanted the ability to significantly

improve how it managed the dynamics of its fleet of

over 6,000 long haul drivers. The issues under

consideration were how to handle hiring, changes in

work rules, and examine scenarios permitting the

drivers to spend more time at home. Simão et al. used

approximate dynamic programming (ADP) to solve

this problem. ADP is a simulation-based algorithm

that optimizes complex stochastic problems through

iterative learning. This approach was capable to deal

with both complex dynamics and multiple forms of

uncertainty regarding drivers and loads and to

anticipate the future impact of decisions. The model

allowed the company to avoid costs and achieve

savings in the millions of dollars and, at the same

time, substantially improve its customer service.

While logistics encompasses a broad set of

activities, two key elements are transportation
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and storage. Generally, very intricate trade-offs occur

between these two areas. The first focus will be on

transportation issues and then address inventory

matters. Transportation is in fact the most costly

component of many logistics systems and supply

chains. A very important segment of transportation

management is the routing and scheduling of

vehicles. This facet is of significant importance

across land, air, and water transportation. Similar

problems are also encountered in a variety of

manufacturing, warehousing and service sector

environments.

This area has been reviewed in several insightful

surveys, including that written by Laporte (2009).

The author highlights the major developments in

the OR/MS methodology for the vehicle routing

problem (VRP) over the last fifty years. He reviews

successful exact algorithms and heuristics introduced

in the literature ranging from extremely sophisticated

optimal decomposition algorithms to powerful

metaheuristics. His work is complemented by the

books edited by Toth and Vigo (2002) and Golden

et al. (2008) who put together articles spanning

a multitude of VRP variants. All these sources also

provide a wealth of references to research conducted

over the years in the ever increasing universe of VRP

problems.

While Laporte highlights the outstanding progress

made by optimal algorithms, he also notes that such

methods have their limitations with respect to

increasing larger problems. Certainly, they can be

transformed into optimization-based heuristics which

can solve larger problems. However, when it comes to

huge instances, heuristics are still the answer. Laporte

also observed that over time the research community

has designed metaheuristics that have become more

and more over-engineered at the expense of

computation time. He suggests researchers should

consider producing simpler and more flexible

algorithms capable of faster handling of a broader

variety of constraints, even if they cause a slight

decrease algorithmic effectiveness.

The application of OR/MS methods in this area has

lead to significant achievements in practice. Kant et al.

(2008) report on a very successful implementation

undertaken by Coca-Cola Enterprises (CCE), the

world’s largest bottler and distributor of Coca-Cola

products. The CCE fleet in the U.S. is only surpassed

in size by that of the U.S. Postal Service. The software
developed is very flexible and handles a variety of

practical constraints in determining the truck routes

from each distribution center to the retail outlets.

Hundreds of dispatchers use this software daily to

plan the routes for tens of thousands of trucks. The

deployment of the software has resulted in annual cost

savings of tens of millions of dollars. In addition, CCE

has experienced fewer missed deliveries and gained

the ability to deal with tighter time windows,

thereby substantially enhancing its customer service.

Given the success of the software, Coca-Cola decided

to roll it out in other parts of its business.

A variety of routing settings also involve the

temporal aspect in the form of customer imposed

time windows. A unified framework for all time

constrained vehicle routing and crew scheduling

problems was developed by Desaulniers et al. (1998).

This paper presents a more general model than

previously considered which integrates all the

different time constrained vehicle routing and crew

scheduling problem types examined up that point in

the literature. The model extends well-known generic

formulations to allow the modeling of all real-world

circumstances encountered to date in this environment.

This enables the reader to understand the common

structure of these problems. It also allows one to

perceive the relations between the various problems,

the different forms of the model used previously in the

literature, and assorted applications across a unified

formulation. This also permits the reader to note the

diversity of specialized algorithms that have been

designed to solve them, and to comprehend the

difficulties inherent in certain modeling aspects.

The common structure of these problems is a

multi-commodity network flow model with additional

resource constraints. Time is one example of

a resource. Resource variables help manage complex

nonlinear cost functions and difficult local constraints

(e.g., time windows, vehicle capacity, and union rules).

To solve the nonlinear multi-commodity problems in

this class, the paper presents a branch-and-bound

framework. It shows that a variety of strategies and

algorithms can be utilized for the computation of lower

bounds and for devising branching schemes. The lower

bounds are derived by using a decomposition

approach. In their paper, Desaulniers et al. focus on

an extension of the Dantzig-Wolfe decomposition

principle and establish that this is valid even for

nonlinear objective functions and constraints.
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They also illustrate that it embeds the column

generation-based methods using set partitioning

formulations previously suggested in the literature as

special cases. The branching module used to obtain

integer solutions compatible with column generation is

more general, but yet simpler than other prior

strategies. Branching decisions and cuts appear either

in the master problem or in the subproblem structures.

Finally, the authors examine the constrained

shortest path problems that appear at the subproblem

level of the decomposition. The paper displays the

variety of specialized dynamic programming

algorithms that have been developed to solve

these and more general single commodity problems

and the aspects which have not yet received attention.

Optimal algorithms stemming from the above

framework have emerged as the most preferred

solution methodologies. These branch, price, and cut

algorithms have been widely applied not only in

a variety of routing and scheduling transportation

contexts, but also in crew scheduling, network

design, production, and telecommunications, as well

as other areas. These algorithms have become even

more powerful due to different classes of strong

cutting planes that have been proposed to tighten the

lower bounds. Significant improvements in the quality

of the lower bounds computed in the search tree

have also resulted from utilizing the elementary

shortest path problem with resource constraints at the

subproblem level.
Crew Scheduling

Two notable application areas of the above framework

are the urban transit crew scheduling problem and the

airline crew scheduling problem. Blais et al. (1990)

describe a software package to handle the former

problem. It consists of several modules. The first

uses standard network flow methodology to solve the

bus scheduling problem. Next, crew scheduling is

handled in two steps. In the first, several

approximations are used to permit the fast derivation

of a linear- programming solution. Using this solution,

specific driver assignments are then obtained in

step two by means of solving a quadratic-integer

program heuristically and using an optimal matching

algorithm. Finally, a shortest path algorithm utilizing

the marginal costs from the matching problem is used
to improve the solution. The software has been

successfully implemented in a number of cities

worldwide.

With respect to exact algorithms, very large

multiple-depot vehicle scheduling problems can

be solved to optimality in reasonable times. The same

holds true for practical crew scheduling problems

encountered in urban mass transit and in air

transportation. However, the joint consideration of

these two problems proved to be much more

challenging. Haase et al. (2001) address this

simultaneous vehicle and crew scheduling problem in

urban mass transit systems. They propose an

optimization algorithm based on the above

Dantzig-Wolfe column-generation framework for the

problem variant involving a single depot case and a

homogeneous vehicle fleet. The authors take a

crew-first, vehicle-second approach where decision

variables are defined only for the scheduling of

drivers. The bus routes are handled within

constraints. These constraints ensure that optimal bus

itineraries can be obtained in polynomial time once the

crews have been scheduled. The authors provide

computational results that indicate that this technique

was capable to optimally solve larger problems than

previously reported in the literature. An easily

achieved optimization-based heuristic version of the

method is was able to solve even larger instances.

The evolution in airline crew scheduling from

the manual methods of the early 1970s to the

powerful OR/MS based software now in use mirrors

the developments that have occurred in many other

logistics areas. In addition, research in crew

scheduling is part of the stream of research

spearheading the development of optimization

methods capable of handling practical size problems.

This new generation of optimal algorithms discussed

above blends the effectiveness of advanced

optimization methods, designed to take advantage of

special problem structures, with the efficiency of

sophisticated computer science techniques, and the

computing power of workstations.

Air transport carriers use a five-phase tactical

planning and scheduling process. The schedule

planning phase first determines all flight segments, or

legs, to be flown during a given period, according to

the forecasted demand, the time slots that the company

owns at different airports, and the competition. The

next phase is fleeting, where each equipment type or
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fleet is assigned to individual legs. The fleeting

solution provides a decomposition for the problems

to be considered in the next three phases. For each

fleet, the flight legs with their corresponding

scheduled departure and arrival times become inputs

to the aircraft routing phase. At this stage, for each type

of aircraft, routes are build that must encompass all

legs to be flown and satisfy maintenance requirements.

The fourth phase builds valid crew pairings, also

known as crew rotations, to minimize crew cost.

A pairing is a detailed schedule of activities, such as

flight legs, deadhead legs (crew members fly as

passengers), briefings and debriefings, breaks and

nighttime rests that start and end at the same crew

base. In the fifth phase, employees are assigned to

monthly blocks where each block describes the

activities of a crew member during the month. When

this process accounts for employee preferences it is

called rostering. When blocks are built without regard

to crew members’ desires, the process is called

bidding, in which case, crew members choose blocks

according to seniority.

Butchers et al. (2001) provide a historical account

and discuss the OR/MS techniques developed for crew

scheduling and rostering at a major airline over

a fifteen year period. It highlights the fact that the use

of such methodologies created major savings for the

company, while at the same time providing rosters that

benefited the crew members. The account is also

illustrative of the advantages to be derived from close

collaborations between industry and academia.

Nevertheless, the airline planning process phases

considered had to be treated sequentially due to the

size of the problems involved. The fact that in this

planning process the output of an earlier phase

provides the input to the next later phase generally

leads to suboptimal policies.

Researchers have started to solve selected subsets

of planning problems such as fleeting and aircraft

routing and aircraft routing and crew pairing

simultaneously. Representative of this line of work is

that of Sandhu and Klabjan (2007) that addresses the

fleeting, aircraft routing, and crew pairing phases in an

integrated fashion. The maintenance requirements

that must be satisfied in the aircraft routing phase are,

however, not considered. The authors propose two

optimal algorithms, one using a Benders

decomposition approach and the other involving

a combination of Lagrangian relaxation and column
generation. Based on computational experiments

conducted using data from a major carrier, they

conclude that if improvements are sought in a short

amount of time, the former method should be used.

However, if sufficient computing time is available,

the usual case in this planning environment, then

the latter technique should be utilized. In addition,

the authors found the Lagrangian relaxation/column

generation approach more robust and practical.
Real-Time Logistics

While the size of problems solved by optimization

algorithms increases constantly, heuristics remain

a viable tool for very large-scale and/or very complex

problems. Dispatching, an intricate activity given the

need for a solution in real-time to large-scale problems,

lends itself naturally to heuristic solutions. The use of

fast route construction/route improvement heuristics

to deal with the practical complexities of the problem

typifies the kind of research conducted in the 1980s. The

highly dynamic character of dispatching is also apparent

in truckload transportation. In this environment

characterized by high demand uncertainty, a motor

carrier must continuously manage the assignment of

drivers to loads across the country. Stochastic network

optimization models exemplify the type of

methodology developed to solve this dynamic vehicle

allocation problem. Powell et al. (1995) provide an

extensive survey of this problem area.

When shipments could not be forecasted with

accuracy, Moore et al. (1991) report having built

mixed-integer programming (MIP) and simulation

models. The use of these techniques for operational

purposes has stemmed from the successful solution

of a strategic decision through similar methods. This

decision involved the significant reduction in the

number of carriers used and the creation of

partnerships with them. To solve the carrier selection

problem for a global, integrated aluminum company,

the authors developed an MIP and further analyzed

its results using simulation. This problem represented

an important part of a redesign effort aimed at

centralizing previously decentralized transportation

and purchasing decisions. In particular, by creating

a central dispatch center and supporting decisions

with OR/MS methodologies, the company improved

on time delivery and reduced annual freight costs by
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millions of dollars. Overall, this implementation was

a reflection of the lean manufacturing philosophy

extended to logistics. Furthermore, as logistics has

evolved into an information technology centric

environment, partnerships with carriers now involve

electronic data interchange and web based information

sharing.

Supply chains have become a competitive weapon

in the global economy. The remarkable advances in

telecommunications and information technology

have enabled companies to focus on velocity and

timeliness throughout the supply chain. To achieve

these competitive advantages, they must be able to

make effective use of the vast amount of real-time

information now available to them. The Dynamic

Vehicle Routing Problem (DVRP) is a prime

example of a distribution context where intelligent

use of real-time information can differentiate one

company from another by means of superior on-time

service. The DVRP is the dynamic counterpart of the

VRP. In the latter problem, the objective is generally to

minimize the travel cost for several vehicles that must

visit and service a number of customers. Constraints

specifying capacity restrictions, time windows within

which to start service at customers, and additional

requirements on the drivers and vehicles restrict

the optimization space. In the VRP all routing and

demand information is known with certainty prior to

the day of operations, so routes can be planned ahead.

In contrast, in the DVRP part or all of the necessary

information becomes available only during the day of

operation. In other words, not all information relevant

to the planning of the routes is known by the planner

when the routing process begins and information can

change after the initial routes have been constructed.

The practical significance of the DVRP is highlighted

by the variety of environments it can model. An

important application is the pickup and delivery of

overnight mail. Other scenarios include the distribution

of heating oil or liquid gas to private households,

residential utility repair services, such as cable and

telephone, and appliance repair. Additional settings are

the transportation of the elderly and physically disabled,

taxi cab services, and emergency services, such as

police, fire, and ambulance dispatching.

Gendreau and Potvin (2004) have edited a special

issue of Transportation Science dealing with many

issues in real-time fleet management. These were

created by the consideration of transportation and fleet
management activities as an integral part of the supply

chain, their coordination with other aspects of the

supply chain, and the explosive growth of web-based

logistics services. The paper by Larsen et al. (2004) is

illustrative of this type of research. The authors examine

the traveling salesman problem with time windows for

various degrees of dynamism. The objective is to

minimize lateness and examine the impact of this

criterion choice on the distance traveled. The focus on

lateness is motivated by the problem faced by overnight

mail service providers. A real-time solution method is

proposed that requires the vehicle, when idle, to wait at

the current customer location until it can service another

customer without being early. In addition, the authors

develop several enhanced versions of this method

that may reposition the vehicle at a location different

from that of the current customer based on a priori

information on future requests. The results obtained on

both randomly generated data and on a real-world case

study indicate that all policies proved capable of

significantly reducing lateness. The results also show

that this can be accomplished with only small distance

increases.

Another important setting for the application of

OR/MS methodologies to support real-time decisions

is in the airline industry. Airlines must build aircraft

routes and crew rotations to provide scheduled service

while maximizing profits. This objective must be

achieved in an environment that is difficult to predict.

Hence, planning decisions– made in advance– may

have to be altered by real-time decisions when

perturbations occur in order to minimize customer

inconvenience and costs to the airline. Changes made

on the day of operations result from bad weather

conditions, headwinds on route, technical difficulties

with aircraft, crew and passenger delays, and

peak-hour congestion at airports. This challenging

problem is very important in practice since

perturbations are costly in terms of rescheduling issues

and especially in terms of loss of traveler goodwill. This

is because they can lead to delaying or canceling flights,

swapping aircraft among flights or using spare aircraft

(if any exist), which in turn affect future deployment of

aircraft and crews. Dispatchers usually adjust the planed

schedules as soon as a perturbation occurs. They have

little time to analyze cost-effective scheduling

alternatives. Therefore, it is important to find a good

balance between the optimality of a proposed solution

and the speed with which it is obtained.
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Historically, the day of operations solutions

have relied mainly on management information

systems and graphical user interfaces, and on simple

heuristics to support the decision process. Exact

algorithms also have been deployed in practice to

provide optimal or near-optimal solutions. Yu et al.

(2003) present an optimization based decision support

system developed for a large air carrier that provides

crew-recovery solutions. The software proved capable

of handling major disruptions and in turn it allowed

the airline to recover quickly and derive benefits in

the millions of dollars.
L

Inventory in the Supply Chain

The fundamental and often complex trade-offs

between transportation and inventory costs are

a central issue in supply chain management.

Blumenfeld et al. (1987) present an ingenious

analysis of the production network of a manufacturer

of vehicle components. Their bottom-up approach

begins with the analysis of the trade-offs on a single

link. These are obtained using a standard economic

order quantity (EOQ) model. Using several realistic

approximations, the authors are then able to

extend their analysis to much more complex

networks. In particular, one approximation allows the

decomposition of a large network into a number of

small independent subnetworks, where shipment

sizes can be computed using the single link model.

This work involving simple, easy to understand

models, supplemented by insightful graphical

information, is representative of a line of research

complementary to combinatorial optimization.

In light of intense global competitive pressures,

many companies have tried to decrease their

inventory investment while maintaining or improving

customer service in their vital business processes. Yet,

the implementation of lean manufacturing has lead to

significant increases in product variety. In turn, this has

augmented the complexity of the after-sales service

logistics networks. Cohen et al. (1990) describe the

design of a spare parts inventory control system

capable of supporting multiple service levels.

The building block of their approach is a periodic

review, stochastic model for the one-part,

one-location case. This model is then extended to

a multi-product, one-location case, called the service
allocation problem. This is solved using a greedy

heuristic. A decomposition approach is utilized for

the overall multi-product, multi-echelon problem. It

involves a bottom-up procedure which begins by

solving the service allocation problems at the lowest

echelon. The solutions are then used to deal with the

next higher echelon. The algorithm proceeds in this

fashion, level-by-level up to the highest echelon.

The model has been implemented by a global

computer manufacturer. It has found applicability

both as a strategic network redesign tool and as

a weekly operational device.

Inventory investment becomes progressively more

substantive with increases in the size of companies

holding it. While enterprise resource planning

software has provided much needed inventory

visibility in the supply chain, these systems do not

optimize inventory levels. OR/MS methods do, but as

they have become increasingly sophisticated over

time, the scale and complexity of supply chains has

also augmented. The paper by Farasyn et al. (2011) is

representative of these issues. It discusses the

implementation of various inventory management

solutions at Procter and Gamble (P&G). Given the

company has 500 different supply chains, it chose

a two pronged approach to realize improvements in

inventory levels. P&G first focused on the

wide-ranging use of spreadsheet-based inventory

models throughout its supply chains. This part of the

implementation involved four methods that can locally

optimize different parts of the supply chains. The

next step dealt with the deployment of integrated

multi-echelon inventory software in the company’s

more complex supply chains. The use of OR/MS

technologies led to savings of $1.5 billion in 2009,

while service levels were maintained or increased.

The authors also highlight the fact that this

successful implementation did not rely on tools

alone. A buy-in from the various entities involved

was of equal importance and so was the fit between

the necessities of a business unit and the inventory

techniques it will use.
Supply Chain Management

Corporations have evolved from the vertical

management of separate individual functions to the

horizontal management across all functions. Many of
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the old conflicts among business units, including

transportation versus inventory have given way to the

concept of the total logistics cost. Supply chain

management is the natural progression of applying

these concepts throughout distribution channels by

means of pipeline inventory management and

information sharing by all involved parties.

The implementation of a comprehensive set of

OR/MS tools in a variety of business areas of a large

oil company is discussed in Klingman et al. (1987). It is

not surprising to see that this industry was at the leading

edge of computer integrated horizontal management

across functional areas. OR/MS techniques such as

linear programming have been utilized in the oil

industry since the 1950s. The work of the above

authors included such tools as mathematical

programming, statistics, forecasting, expert systems,

artificial intelligence, organizational theory, cognitive

psychology and information systems. A core element

was the optimization-based integrated system for

supply, distribution, and marketing. This strategic tool

is used to make a number of decisions including how

much product to buy or trade, how much to hold in

inventory, and how much to ship by each mode of

transportation. The system is based on the minimum-

cost flow network model.

Since then, supply-chain management has

become a key application area for OR/MS

methodologies, with an explosive growth in the

development of models and algorithms and their

implementation. Some researchers took an economics

perspective, including game theory and information

management approaches, while others examined

inventory models. Supply chain configuration has

also been at the forefront of research in this area.

Researchers have examined the integration and

coordination between production and distribution,

location and routing, routing and inventory, and

routing and crew scheduling. They have proposed

a vast assortment of heuristic and optimal methods

for these aspects of supply chains and a variety

of single and multi-objective decision support

systems for the overall system design, (Simchi-Levi

et al. 2004).

Sophisticated OR/MS models and algorithms are

only part of successful implementations. Ulstein et al.

(2006) drive home the idea of the collaboration between
business and academia, and business and the

community as additional necessary ingredients. Their

work was conducted for Elkem’s silicon division which

is the largest supplier of silicon metal and ferrosilicon in

the world. With the slowdown in the global economy

that started in 2000, the corporation realized the need to

improve the efficiency of its supply chain network and

evaluate its product portfolio. To help the division to

manage this process, the authors developed a strategic

planning model. This mathematical-programming

model addresses decisions pertaining to future plant

structure, including possible closures, new plant

acquisitions, and investments in production equipment.

The silicon division has used the model and its scenario

analysis capabilities extensively to obtain important

benefits. The company agreed to a restructuring

process, that included reopening a closed furnace and

investing $17million in equipment conversion. Overall,

as a result of the restructuring plan, Elkem has achieved

significant and sustained improvements in yearly

revenue for the silicon division. Many companies face

supply-chain design problems with a similar level of

complexity. They can benefit from following the close

collaborative process described in this paper and from

using optimization tools to solve their decision

problems.

Sustainability issues are becoming a requisite part of

a supply chain studies. For example, Nagurney and

Nagurney (2010) consider a company’s multicriteria

decision problem that attempts to minimize the

total costs associated with its supply chain activities,

along with the emissions generated by its

manufacturing, storage and distribution facets. The

business incurs both capital and operational costs. The

authors propose a network optimization framework

and illustrate an algorithm applied to a number of

sustainable supply chain examples. Carter and

Easton (2011) trace the evolution of the field from the

original research on social and environmental areas, to

issues of corporate social responsibility, and the

eventual realization that sustainability is part of the

bottom line. They provide a comprehensive review of

the sustainable supply-chain management literature.

One of the salient features of the paper is the

relationship between supply chain risk management

and contingency planning and sustainable supply

chains.
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Log-Linear Model

▶Learning Curves

▶Regression Analysis
Longest-Route Problem

In a directed network, the finding of the longest route

between two nodes is the longest-route problem. In an

acyclic network, one that represents the precedence
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relationships between activities in a project, the

longest route in the network represents the critical

path, with the value of the longest route equal to the

value of the earliest completion time of the project.
See

▶Critical Path Method (CPM)

▶ Program Evaluation and Review Technique (PERT)
Long-Tailed Distribution

▶Heavy-Tailed Distribution
Loss Function

▶Decision Analysis

▶Total Quality Management
Lottery

In utility theory and decision analysis, a lottery

consists of a finite number of alternatives of prizes

A1. . . An and a chance mechanism such that prize Ai

will be an outcome of the random experiment with

probability pi � 0, Si pi ¼ 1.
See

▶Decision Analysis

▶Utility Theory
Lower-Bounded Variables

The condition lj � xj, lj 6¼ 0, defines xj as

a lower-bounded variable. Such conditions are often

part of the constraint set of an optimization problem.

For linear programming, these conditions can be

removed explicitly by appropriate transformations,

given that the problem is feasible when xj ¼ lj for

each j.
Lowest Index Anticycling Rules

▶Bland’s Anticycling Rules
LP

▶Linear Programming
LU matrix decomposition

The decomposition of a matrix into the product of

a lower- and an upper-triangular matrix. This is

similar to an LDU decomposition in which the D and

U matrices have been combined.
See

▶LDU Matrix Decomposition
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