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Machine Learning

A term used in the artificial intelligence community to

indicate automated improvement based on experience

or empirical data in accomplishing a given task such as

optimizing an objective function.
See

▶Artificial Intelligence
MAD

Mean absolute deviation.
Maintenance

Maintenance is the support of successful system

operation during long periods of usage by means of:

(1) regular or sample check-ups; (2) planned or

preventive replacement of the system’s units; (3) failure

diagnosis; and/or (4) spare units supply. Operations

research models for a system maintenance analysis

are represented mainly by optimization models for the

improvement of system and equipment reliability.

For (1) and (2), one usually uses methods of

controlled stochastic processes. For (3), one uses
S.I. Gass, M.C. Fu (eds.), Encyclopedia of Operations Research an
DOI 10.1007/978-1-4419-1153-7, # Springer Science+Business M
special methods based on mathematical logic, while

(4) is considered in the scope of optimal redundancy

and inventory control.
See

▶Airline Industry Operations Research

▶ Inventory Modeling
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Introduction

Manpower (or, human resource) planning is concerned

with the quantitative aspects of the supply of and

demand for people in employment. At one extreme this

might include the whole working population of

a country, but it has been most successful when applied

to smaller, more homogeneous systems like individual

firms or professions. The term manpower planning

appears to date from the 1960s though many of the

ideas can be traced back much further. In recent years

terms such as Workforce Panning and Personnel

Planning have been used in the same sense. A history

of the subject up to the 1980s,from a U.K. perspective,

will be found in Smith and Bartholomew (1988). The

literature of the subject is very scattered reflecting the

diverse disciplinary origins of the practitioners, but most

of the technical material is to be found in the journals of

operations research, probability, and statistics. There

was an initial surge of publication in the late 1960s and

early 1970s and since then book length treatments

include Grinold and Marshall (1977), Vajda (1978),

and Bennison and Casson (1984). Bartholomew,

Forbes and McClean (1991) gives a thorough coverage

of the technical material and contains an extensive

bibliography. Since then there has been a period of

consolidation. The earlier theoretical work has largely

proved adequate for practical needs, though there have

been developments in closely related areas. See, for

example, Kalamatianou and McLean (2003).

The essence of manpower planning is summed up in

the aphorism that its aim is to have the right numbers of

people of the right kinds in the right places at the right

time. The basic approach is first to classify the

members of a system in relevant ways. These will

often be on the basis of such things as grade, salary

level, sex, qualifications, and job title. The state of the

system at any point in time can then be described by

the numbers in these categories, often referred to as the

stocks. Over time, changes occur as individuals join,
leave the system or move within it. The numbers

making these transitions are called the flows. The

factors giving rise to change may be predictable or

unpredictable but will include such things as

individual decisions to leave, changes in demand for

goods, management decisions on promotion or

organizational structure and so on. The operations

researcher’s role is to describe and model the system

as a basis for optimizing its performance.
Stochastic Models

The presence of uncertainty in so many aspects of the

functioning of a manpower system means that any

adequate model has to be stochastic. Two probability

processes, in particular, have proved to be both flexible

and realistic. These are the absorbing Markov chain

and the renewal process. The former is appropriate in

systems where the stocks are free to vary over time

under the impact of constant flow rates, or

probabilities. The art of successful application is to

define the classification of individuals that all those

within a category have approximately the same

probability of moving to any other category. Loss

from the system corresponds to absorption, and the

theory of Markov chains can then be used to predict

future stock numbers for various sets of transition

probabilities. Later work has extended these methods

by allowing the intervals between transitions to be

random variables in which case a semi-Markov

process or a Markov renewal process results.

When the numbers in the categories are fixed, as

they often are when the categories are grades or based

on job function, a different approach must be used.

Transitions cannot then be regarded as generated by

fixed probabilities, but arise in response to the

occurrence of vacancies. The result is a replacement,

or renewal process, where movement is driven by

wastage (or the creation of new places). It was shown

in Bartholomew, Forbes and McClean (1991) that the

flows of vacancies could be modelled by a Markov

chain in a manner very similar to that used for the

modeling of the flows of people.

If a system is relatively small or if the rules

governing its operation are complex, the only realistic

way to model it may be to use a computer-based

simulation model. The term simulation is commonly



Manpower Planning 911 M

used in two distinct senses in this context. Primarily it

means that each individual movement is generated in

the model by a random mechanism. Secondly, it is

sometimes used of any algorithm for computing

the aggregate properties of a system treated

deterministically.
Forecasting and Control

Broadly speaking all models may be used in twomodes

for forecasting or control. In the early stages of a study

one usually wishes to forecast the future state of the

system if current trends continue. Next, it will usually

be desirable to carry out a sensitivity analysis to explore

the consequences of variations from present conditions.

This leads on to questions of control where the question

is how those parameters under management control

should be chosen to achieve some desired goal. The

distinction between forecasting and control can be

illustrated using a simple form of the Markov model.

According to this model successive vectors of expected

stocks are related by an equation of the form
M
n T þ 1ð Þ ¼ nðTÞPþ R

where T represents time, P is a matrix of transition

probabilities, andR is a vector of recruitment numbers.

In forecasting mode, estimated or guessed values of P

and R could be used to predict future values of n(T). In
principle, P and R could both depend on T. In control

mode, one would be asking how some or all of the

elements of P and R should be chosen to attain a given

nwithin a specified time. This gives rise to questions of

attainability (whether the problem is solvable) and

maintainability (whether an n can be maintained once

it is reached). These matters have led to an interesting

set of theoretical questions about the solvability of

such problems in deterministic or stochastic

environments. At a more practical level it has led to

the formulation of optimization problems expressed in

goal programming and/or network analysis terms

(Gass 1991; Klingman and Phillips 1984).

The wastage flow (also known as attrition or

turnover) is an important element in a manpower

system both because it is highly variable and, largely,

beyond the control of management. It has been

intensively studied mainly through the survivor
function or, equivalently, the frequency distribution of

completed length of service. In practice the analysis is

complicated by the fact that the data are usually

censored and sometimes truncated also. This work has

three main objectives: measurement, prediction, and

gaining insight into the factors determining wastage.

The demand side of the manpower equation has

proved to be less tractable. Demand for people is

equivalent to the supply of jobs and this depends on

technological, political, social, and economic factors

many of which may be specific to particular

organizations or industries. To take only one

example, the demand for qualified medical manpower

will depend on such varied things as demographic

changes, the willingness of government or users of

the service to pay, and the appearance and spread of

new diseases like AIDS. The methods used have been,

and have to be, as diverse as the fields of application.

Because of the considerable uncertainties involved it

is important to monitor constantly the changing

environment and to adjust plans accordingly.

A once-and-for-all plan has no place in manpower

planning.
See

▶Goal Programming

▶Markov Chains

▶Markov Processes

▶Network
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Manufacturing

▶ Flexible Manufacturing Systems

▶Operations Management

▶ Production Management
MAP

Markov arrival process.
See

▶Matrix-Analytic Stochastic Models
Marginal Value

The marginal value is the extra cost of producing one

extra unit of output. Similarly, marginal revenue is the

extra revenue resulting from selling an extra unit of

goods. From the economics of a firm, when marginal

revenue equals marginal costs, the firm is in an

equilibrium optimal condition in terms of maximizing

profits. Depending on the application, the dual variables

of a linear-programming problem can be interpreted as

marginal values. The economic interpretation of the

dual variables is complicated by alternate optimum

solutions (corresponding to different bases) that may

yield different values of the dual variables. Thus, there

may be two or more marginal values for the same

constraint. Such multiple values must be interpreted

with care.
See

▶Dual Linear-Programming Problem

▶Duality Theorem
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Introduction

Marketing offers a rich and unique domain for

applications of operations research (OR) methods,

models, and approaches. Not only does the marketing

area offer opportunities to develop and apply ORmodels

and methods to increasingly important decisions

affecting ALL companies, nonprofits, governments,

societies, and individuals, but also unique opportunities

to further the much needed collaboration between

academics and practitioners, and for bridging the

silos between marketing and the other management

disciplines and functions.

Since customers (individuals or groups) are at the

heart of themarketing system, ORmodeling approaches

help characterize, understand, and predict their

behaviors. For consumers and organizational buyers,

that behavior involves the search for solutions to

a want or desire, the screening or evaluation of

alternatives, the selection of a best alternative, the act

of purchase, the post-purchase feedback to the firm as

well as to other customers and learning that affects

future purchasing behavior. In fact, such applications

of OR to marketing problems have become even more

prevalent, with website morphing (Hauser et al. 2009),

Netzer’s work on optimal email campaigns, and optimal

in-store movement using the traveling salesman

paradigm (Hui et al. 2009).

Firms and other non profit organizations (such as

museums, politicians, government organizations)

capitalize on that knowledge or model of individual

behavior by focusing on such decisions as product/

service design, pricing, distribution, promotion,

advertising, personal selling, and the likely customer

responses to them. In addition, at a higher level, these

http://dx.doi.org/10.1007/978-1-4419-1153-7_350
http://dx.doi.org/10.1007/978-1-4419-1153-7_702
http://dx.doi.org/10.1007/978-1-4419-1153-7_812
http://dx.doi.org/10.1007/978-1-4419-1153-7_598
http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_200159
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decisions must be integrated and coordinated with the

activities of other management functions (finance,

manufacturing, R&D, etc.) and linked to other product

and market decisions of the organization, including the

critical resource allocation decisions among products,

markets, distribution options, and businesses. Such

critical decisions are evaluated based on their return

on investment (ROI) under alternative scenarios

reflecting different views of the future.

The external scenarios range from pessimistic

views of recurring financial crisis, catastrophic

natural disasters, continued terrorist activities and

political unrest around the world, through

continuation of the status quo, to optimistic scenarios

of growth and prosperity driven by the fast growing

economies of Asia and a recovery of the West. For

marketers, these scenarios lead to consideration of

strategic alternatives derived from a narrow view of

modeling, e.g., the impact of a specific marketing

activity (such as advertising expenditures) through an

integrated view of all marketing touch points and

product/service/solutions/customer experience, to the

design of full strategy integration across the various

management functions, incorporating multiple short

and long-term performance measures.
Background

TheAmericanMarketingAssociation definesmarketing

as: “. . . the process of planning and executing the

conception, pricing, promotion, and distribution of

ideas, goods, and services to create exchanges that

satisfy individual and organizational objectives.”

As a management function, marketing includes such

activities as advertising, sales and marketing research.

Or, more simply put, marketing’s organizational role is

the interface between a firm and its customers. It is also

a critical participant in cross-functional processes aimed

at developing and launching new products and services

that create customer value, i.e., products and services

that customers want.

As a philosophy, marketing views the need to

understand, anticipate and meet customer needs as

the key to organizational success. As such, the

customer is the final arbitrator of the value of any

product or service offering. Marketing philosophy

also extends the concept of customer orientation to

internal customers and other stakeholders.
Thus, marketing is concerned with anticipating and

understanding human needs and wants and translating

those needs and wants into the demand (as economists

use the term) for products and services. Those needs

and wants are satisfied with products and services that

are increasingly being developed in collaboration with

empowered consumers. Businesses that exemplify this

view include Build-a-Bear, Dell, and others offering

opportunities for customization of the products and

services, as well as firms that now scrape blogs,

discussion forums, and other user-generated content

to bring the digital voice of the customer into the

firm, and help determine the appropriate responses

(Ghose and Han 2011).

Products and services have functional as well as

image characteristics. They are made available to the

customer through a variety of channels ranging from

physical retail stores to online websites, to mail order

to social network platforms (e.g., Facebook). In order

to effect an exchange, individuals have to be aware of,

emotionally engaged, and understand the product

(through advertising or other communication media),

find the product worth their money (by comparing the

product’s total cost — its purchase price adjusted by

any promotional offerings plus the cost of maintaining,

using and disposing of the product — with the benefits

promised in terms of performance and image), and

participate in the exchange process.

While historically marketing models of behavior

saw a product’s value as consisting of the sum of the

utilities of the features and benefits of which it is

comprised (Green et al. 1973), and that is still a

significant part of marketing modeling, newer

conceptual models also take into account the

perceived value of others, the recommendation of

others, and the ability to share those experiences with

others via one’s social network (Stephen and Toubia

2010), or via the network externalities generated by

other adopters.

Exchanges have typically been aggregated to the

context of a market segment, which consists of the

customers sharing a particular and similar need and

who are willing to engage in exchange to satisfy that

need. However, it is no longer uncommon to see

exchange activities take place between the firm and

individual consumers rather than at the level of

a market segment (which represents higher level of

aggregation). In essence, technology has allowed

marketing in the 21st century to be infinitely tailored
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because of the wealth of individual-level data that is

now tractable due to the advances in the interactive

media, and consumers’ motivation and ability to

customize the offerings.
OR Marketing Model Types

OR in marketing helps decision makers by harnessing

measurement models and theoretical models and

embedding them within a decision model (or more

generally, within a decision-support system). The

corresponding models are calledmeasurement models,

stylized theoretical models, and decision-making

models, respectively (although it may be equally

helpful to interpret these categories as classification

dimensions for interpreting the multiple purposes of

models).

Measurement Models — The purpose of

measurement models is to describe and predict

a current or anticipated either an individual consumer

or the market reaction to a product or service as

a function of various independent variables. The

phrase “market reaction” here should be interpreted

broadly. It is not necessarily units demanded but

could be some other related variables. For example,

in Guadagni and Little’s (1983) model, the dependent

(reaction) variable is the probability that the individual

will purchase a given brand on a given purchase

occasion. Choice models often have several

independent variables including whether the brand

was on sale (deal) at a given purchase occasion,

regular price of the brand, deal price (if any), brand

loyalty of the individual, etc. In addition, sometimes

the focus of such models may be on certain variables

preceding the steady-state demand (e.g., awareness,

first-trial, repeat purchase). These examples suggest

that measurement models can deal with individual

(disaggregate) demand or aggregate (segment or

market-level) demand as well as transitory or

steady-state demand. Note that advances in

measurement models can be due to better data (e.g.,

scanner data) or better estimation methods and

procedures (maximum-likelihood methods for

generalized logit models, for example). In traditional

marketing problems such as customer satisfaction and

customer-defined quality, OR measurement models

have greatly enhanced the relatively simplistic

survey-based approaches to the measurement of these
constructs. Relying on advances in structural equation

modeling. as well as the new area of empirical

industrial organization, allows researchers to address

more realistic and rich problems, such as competitive

pricing behavior in markets with a large number of

products (e.g., Sudhir 2001).

Stylized Theoretical Models — The purpose of

stylized theoretical models is to explain and provide

insights into marketing phenomena: a stylized

theoretical model typically begins with a set of

assumptions that describes a particular marketing

environment. Some of these assumptions may be

purely mathematical, but are also intuitively logical

with the objective of making the analysis tractable.

Others are substantive assumptions with real

empirical grounding. Two well-known theoretical

modeling efforts are Bell, Keeney and Little (1975),

who show what functional forms of market share

models are consistent with a certain set of reasonable

criteria, and Basu et al. (1985), who show what form of

sales force compensation plan is optimal under a set of

assumptions about firm and salesperson objectives and

behavior.

Such stylized theoretical models have helped

improve the ability to design optimal product lines,

issues related to specialization versus vertical

integration (McGuire and Staelin 1983), aligning the

incentives between manufacturers and retailers

(Jeuland and Shugan 1983), designing pricing

strategies for traditional goods, and also information

goods. Stylized models have helped improve how

companies offer short-term price discounts (Raju

et al. 1990), how such short-term price discounts pass

through to the consumer, and how retailers might

improve their private label offerings. As marketing

systems evolved, especially with the advent of new

technologies, such stylized models have significantly

improved understanding of new platforms and

mechanisms for interactions between buyers and

sellers. Stylized theoretical models have also helped

in the understanding of the role brands play in

a competitive market, including the symbolic role

that brands play in social interactions, and how firms

may improve their advertising and communications

strategies (Chen et al. 2009).

While the emphasis in this work is on developing

stylized theoretical models, most work in this area also

rigorously tests the ability of these models to predict

firm and market behavior. Recent empirical work in



Marketing, Table 1 The frontiers of decision models (DM)

DM frontiers today DM frontiers tomorrow

Time Scale Days and weeks, if not months Moving toward real time in data entry, data access, data analysis,

implementation, and feedback

Focus of DM Support strategic decisions Support both strategic and operational decisions

Mode of

Operation

Individual and PC-centric Organization and Network centric – support multiple employees

in multiple locations on multiple devices

Decision

Domain

Marketing Marketing and other functions, such as Supply Chain and Finance

Company

Interface

Loosely coupled to company’s IT systems Woven into IT-supported company’s operations and decision

processes

Intervention

Opportunities

Discrete, Problem-driven Continuous, Process-driven

DM Goal Support analysis and optimization Support robust and adaptive organizational decision processes

DM System

Design

As a tool to understand information and

enhance decisions

As tool to enhance productivity and success of business models

DM System

Operation

Interactive (User interacts with model) Interactive as well as autonomous (embedded)

DM Outputs Recommended actions; What if analyses Visualization of markets and their behavior (e.g., Dashboard),

Extended reality (e.g., Business model simulation), Explanation

(Why?), Automated implementation (e.g., create alerts, automate

actions)

DM

Implementation

Sequence

Intervention Opportunity ! Implementation

of decisions ! Integration with IT Systems

Integration with IT ! Intervention Opportunity !
Implementation of decisions
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the structural economics also contains stylized

theoretical models where observed outcomes are

assumed to arise from equilibrium actions taken by

agents, modulo stochastic error (Dube et al. 2010). In

this manner, joint theory and empirical work has begun

to play a larger role. Distinguishing features of stylized

theoretical models, especially the ones that use

economic modeling and game-theory as tools, are

that they explicitly recognize that companies must

make decisions in a competitive environment and

recognize that they compete with other firms who

also are capable of making sound decisions. It is

through this explicit recognition that these models are

able to provide companies with a theoretically sound

and empirically grounded means of improving

strategic marketing decisions.

Decision-Making Models — These models are

designed to directly help marketing managers make

better decisions. They incorporate measurement

models as building blocks, but go beyond

measurement models in recommending specific

actions (e.g., optimal marketing-mix decisions) for

the manager. The techniques used to derive the

optimal policies vary across applications, and include

calculus, dynamic programming, optimal control, and
calculus of variations techniques, as well as linear and

integer programming. These models have been

developed for each marketing variable and for the

entire marketing mix program (i.e., a product and

service offering including pricing, distribution, etc.).

Little’s BRANDAID is a classical example of such

a model. Lilien et al. (2011) elaborate on the impact

such models have had.

Since 2000, many enhanced decision-making

models have been developed that are embedded

inside enterprise information systems. Examples

include revenue management systems used by

airlines and hotels and recommender systems used by

web sites such as Amazon.com and netflix.com.

Table 1, adapted from Lilien and Rangaswamy

(2006), summarizes the many ways that decision

models are evolving to provide enterprises with

real-time and automated decision making capabilities.
The Emergence of Marketing Science

Bymost accounts, OR inmarketing began its growth in

the 1960s and 1970s. The literature used a variety of

OR methods to address marketing problems: those
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problems included product design/development

decisions, distribution system decisions, sales force

management decisions, advertising and mass

communication decisions, and promotion decisions

(Kotler 1971). The OR tools that were most prevalent

in the 1960s and earlier included mathematical

programming, simulation, stochastic processes

applied to models of consumer choice behavior,

response function analysis, and various forms of

dynamic modeling (difference and differential

equations, usually of the first order). Some uses of

game theory were reported, but most models that

included competition used decision analysis, risk

analysis, or market simulation games.

Nearly three times the number of marketing articles

appeared in the OR literature in the 1970s as appeared

in the period from 1952 though 1969. In addition to the

increase in the number of articles, reviews by Lilien

and Kotler (1983) showed that a number of new areas

had begun to emerge. These included descriptive

models of marketing decisions, the impact of and

interaction of marketing on organizational design,

subjective decision models, strategic planning

models, models for public and non-profit

organizations, organizational buying models, and the

emergence of the concept of the Marketing Decision

Support System (MDSS). In addition, while the

number of published articles rose dramatically, the

impact on organizational performance did not appear

to be equally significant, raising questions about

effective implementation. Much of the literature of

the 1970s pointed to the need to expand the domain

of application. The “limitations” sections of some of

the papers in the 1970s pointed out that many

important phenomena that were being overlooked

(such as competition, dynamics, and interactions

amongst marketing decision variables) were both

important and inherently more complex to model.

Hence, the level of model complexity and the

insightfulness of the analyses in marketing seemed

destined to escalate in the 1980s and beyond.

The 1980s saw another more-than doubling of the

number of published OR articles in marketing

compared to the earlier decade. Two of the areas that

produced much of this growth were stylized theoretical

models and process-oriented models. The shortening

of product life cycles and the impact of competitive

reactions in the market place preclude most markets

from approaching steady state or equilibrium. Areas of
special research focus in that decade included

extensive focus on consumer choice models (focusing

on the dynamics and heterogeneity of the choice

process and the implications for decision making)

and the new product area (where the moves and

countermoves of competitors keep the marketplace in

a constant state of flux).

The 1990s saw new trends in marketing science

(and in marketing in general), with the electronic

marketplace changing the locus and the nature of the

transaction. The concept of the physical marketplace is

being replaced by that of market space, and marketing

science has found new territories to develop theories

and applications. Most of this, of course, is due to the

applied nature of the marketing discipline in which

solutions to problems emanate from the data and the

problem at hand. As the physical marketplace is being

replaced by the physical in conjunction with

digital marketplace, OR methods that allow for

cross-channel optimization are being developed.

The first decade of the 21st century has seen the

marketspace/customer centricity trend continue, as

customers have gained increased influence and power

in all areas of marketing. User-generated content and

customers as co-producers and co-marketers are

increasingly accepted. Understanding and monitoring

these new market structures are central to the new

view of marketing. Markets are now made up of

customer-networks, and models for understanding

and managing such networks are being developed.

And the study of the role of the marketing manager

and the related decision support systems has

evolved from Little’s (1979) perspective to a domain

of mainstream interest both to academics and

practitioners (see Wierenga 2011).

Another important trend is the emergence of

two-sided and multi-sided platforms, wherein

a business builds a platform that enables many

distinct audiences to engage with the business as well

as interact with each other, to create economic value,

often in the presence of network externalities

(Eisenmann et al. 2006). Typically, value

appropriation occurs through cross-subsidies, wherein

the costs of acquiring one group (e.g., consumers) are

subsidized by another group (e.g., advertisers), and the

platform itself retains part of the value created. eBay

(buyers and sellers), Amazon.com (consumers and

affiliates), HMO (patients and doctors), and credit-

card payment systems (merchants and consumers) are
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often given as examples of platforms. Even many

traditional businesses are transforming into platforms

that connect players in a complex eco-system

(e.g., iPhone as a device connecting application

developers with consumers). Cross-subsidies between

audiences creates complex transaction flows that offer

opportunities for OR modelers to help in carefully

managing prices, revenues, and subsidies to optimize

business performance.
M

Trends of OR Use in Marketing

The OR literature in marketing is vast, as reviewed in

Lilien and Rangaswamy (2008). Models have been

used to explore most facets of marketing and the

marketplace, and increasingly marketing research is

integrated with appropriate modeling. Some key

trends include the following:

1. OR in marketing is having important impact

both on academic development in marketing

and in marketing practice. During the 1980s

two new and important journals were started that

emphasize the OR approach: Marketing Science
and the International Journal of Research in

Marketing (IJRM). Both are healthy, popular,

and extremely influential, especially among

academics. Another journal, Quantitative

Marketing and Economics was started in 2003.

Together, they reflect the developments of

marketing models.

2. Digital marketing represents vast area of

opportunity for OR. By transforming the

market place into marketspace, the revolution in

the marketplace brings a host of modeling

opportunities and challenges, such as: How are

new products and ideas generated, diffused, and

discussed in a digital environment? How can

a firm manage the natural conflict in physical and

electronic distribution channels? How can firms

offer different prices to different groups of

customers in an electronically linked world?

How and when word-of-mouth among consumers

evolves? When marketing, manufacturing and

the customer are interlinked in the digital

environment, what opportunities emerge in the

marketing-manufacturing interface? Digital

marketing has other major implications, such as

the development of newmarkets (on-line auctions,
electronic bargaining) and the possibility of

involving customers directly in the development

of information products (Dell stores, IBM Jam,

and others). More recently, it has become

feasible to model large-scale social networks

consisting of millions of nodes and billions

of links, such as for example to link in near

real-time a TV event (e.g., Super Bowl ad) with

the Twitter and Facebook feeds triggered by the

ad, to potential impact on market outcomes. These

provide opportunities to apply OR modeling for

analyzing flows of information and influence in

such networks to link those to consequences for

the firm (e.g., profit) or adverse spread of word of

mouth in the marketplace.

3. New data sources are having a major impact on

marketing modeling. One of the most influential

developments of the 1980s and 1990s has been

the impact of scanner data on the marketing

models field. Scanner data and the closely

related single source data (of communication

and consumption data) have enabled marketing

scientists to develop and test models with much

more precision than ever before. Indeed, the very

volume of new data has helped spawn tools to

help manage the flow of new information

inherent in such data. Data mining methods

applied to some of the new, massive direct-

response data bases has resulted in much more

precise customer targeting and promotion-

selection procedures. Two new data sources are

providing opportunities for OR modelers in

marketing: (1) Large integrated data warehouses

created by companies to feed enterprise systems,

such as CRM, are creating opportunities for

developing more fine-grained models that

integrate traditional demand side modeling

undertaken by marketing modelers with supply

side modeling issues such as inventory

management, multi-channel logistics, and the

like. (2) User-generated data (e.g., online

product reviews posted by consumers, social

media activities such as twitter feeds) that

provide information in real-time about market

sentiments offer opportunities for modelers to

develop new tools for supporting marketing

decision makers. New models for text analysis

and synthesis (e.g., to convert reviews into

numeric scores representing valence and volume
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of sentiments) developed by computer scientists

represent a start, but many new opportunities

exist in this nascent area to translate huge

volumes of raw data into insights for action.

Traditional quantitative data sources have been

employed by marketing modelers extensively,

but more and more attention is now being given

to analyzing qualitative and textual data through

data and text mining as well as sentiment analysis

software packages developed in computer

sciences. While the 1990s presented the land of

promise for these methods, the 2000s saw it

materialize. Thus, the number of people in the

information systems area working on traditional

marketing problems has increased dramatically,

blurring the lines between these related

disciplines.

4. Stylized theoretical modeling is still

a mainstream research tradition in marketing.

Stylized models allow researchers to state

explicitly as set of assumptions or axioms and

then derive theoretical propositions with respect

to the phenomena being considered. Such

propositions provide valuable managerial insights.

5. Competition and interaction are major thrusts

of marketing models today. The saturation of

markets and the economic fights for survival has

changed the focus of interest in marketing models,

probably forever. A key-word search of past

volumes of Marketing Science, Journal of

Marketing Research, and Management Science
(marketing articles only) reveals multiple

entries for “competition,” “competitive strategy,”

“non-cooperative games,” “competitive entry,”

“late entry,” and “market structure.” These terms

are largely missing in a comparable search in the

1960s and early 1970s.

6. Marketing research and modeling are facing

new challenges. Both marketing research and

modeling, especially as applied to new product

development, have to be reformed to address

such issues as global scope, electronically

interconnected product development sites, the

potential for mass customization and

rapid prototyping/testing. These issues drive

the development of models that incorporate

nontraditional customer information, including

trade show-participant feedback, user

co-development, lead user methods, data and text
mining, and Internet panels. Similarly, advertising

and marketing mix modeling face comparable

challenges, which have led to numerous efforts to

develop single source data, related modeling,

experiments, and dashboards. Another challenge

is to develop models, beyond those developed for

the consumer package good industry, that

capture adequately various idiosyncratic

characteristics of industries such as financial

services, entertainment, life sciences, and B2B

industries.

7. Beyond Marketing Analytics—Marketing

Engineering. Marketing analytics, a term that

refers to any systematic analysis of marketplace

behavior and transactions is giving way to advance

marketing analytics or marketing engineering,

a term Lilien and Rangaswamy (2006) have

popularized to refer to the use of decision models

for making marketing decisions. Many of these

decisions are now being automated, with

decision models making routine pricing and

promotion decisions in low-risk stable

environments. But the confluence of new data

sources, theories, hardware and software, and

computer networks has now put these decision

models on the desktop of marketing executives

everywhere. The use of OR in marketing through

marketing engineering is accelerating because of

at least six trends (Lilien and Rangaswamy 2008):
• Investments in infrastructure firms need to

maintain extensive, integrated corporate

information warehouses (also called data

warehouses).

• The use of On-Line Analytic Processing

(OLAP — or just-in-time OR!) to integrate

modeling capabilities with data bases.

• Deploying intelligent systems to automate

many modeling tasks.

• Developing computer simulations for decision

training and for exploring multiple options.

• Installing groupware systems to support group

decision making.

• Enhancing user interfaces to make the use of

even complex modeling systems accessible to

a wide range of users.
8. Marketing Management Support Systems and

Artificial Intelligence. A marketing management

support systems (MMSS) is defined as any device,

combining information technology, analytical
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capabilities, marketing data, and marketing

knowledge, made available to marketing decision

makers with the objective to improve the quality of

marketingmanagement (Wierenga andVanBruggen

2000). Marketing models, with their origin in OR

constitute the analytical part of MMSS. However,

in marketing there are also many weakly-structured

problem areas, where qualitative considerations and

judgment are more important. Here, the knowledge

and the expertise of the marketer are key resources.

Therefore, marketing management support systems

not only include the primarily quantitative, data-

driven decision-support systems, but also support

technologies that are aimed at supporting marketing

decision making in weakly structured areas.

9. Expert Systems. Marketing expert systems have

been developed for many domains of marketing,

e.g., (i) to find the most suitable type of sales

promotion; (ii) to recommend the execution of

advertisements (positioning, message, presenter)

(Burke et al. 1990); (iii) to screen new product

ideas, and (iv) to automate the interpretation of

scanner data, including writing reports. For an

overview, see Wierenga and Van Bruggen (2000,

Chapter 5). An example of a system especially

developed for supporting a particular marketing

function is BRANDFRAME. This system

supports the decision making of a product or

brand manager, which is a typical marketing job.

More recently, expert systems in marketing are

less often stand-alone systems, but are woven

into the company’s overall IT systems (Lilien

and Rangaswamy 2008).

10. Neural Networks and Predictive Modeling. As

mentioned earlier, in marketing companies can

work more and more with data about individual

customers. As a consequence of this development,

customer relationship management systems

(CRM) became important. An essential element

of CRM is the customer database that contains

information about each individual customer. This

information may refer to socio-economic

characteristics (age, gender, education, income),

earlier interactions with the customer (e.g., offers

made and responses to these offers, complaints,

service), and information about the purchase

history of the customer (i.e., how much

purchased and when). This data can be used to

predict the response of customers to a new offer
or to predict customer retention/churn. Such

predictions are very useful, for example, for

selecting the most promising prospects for

a mailing or for selecting customers in need of

special attention because they have a high

likelihood of leaving the company (campaign

optimization). A large set of techniques is

available for this kind of predictive modeling.

Prominent examples are neural networks and

classification and regression trees. Both

techniques are rooted in artificial intelligence.

CRM is a quickly growing area of marketing.

Companies want to achieve maximum return on

their often large investments in customer

databases. (Van Bruggen and Wierenga 2010).

11. Analogical Reasoning and Case-Based

Reasoning (CBR). Analogical reasoning plays an

important role in human perception and decision

making. When confronted with a new problem,

people seek similarities with earlier situations and

use previous solutions as the starting point for

dealing with the problem at hand. Analogical

reasoning is also the principle behind the field of

case-based reasoning (CBR) in Artificial

Intelligence. A CBR system comprises a set of

previous cases from the domain under study and

a set of search criteria for retrieving cases for

situations that are similar (or analogous) to the

target problem. Applications of CBR can be found

in weakly-structured domains such as architecture,

engineering, law, and medicine. By their nature,

many marketing problems have a good fit with

CBR. A recent application uses CBR as

a decision-support technology for designing

creative sales promotion campaigns (Van Bruggen

and Wierenga 2010).

12. Adaptive Experimentation. While OR

applications in marketing have been focused on

models, given the increased uncertainty,

complexity and speed of change of the business

environment, it is unlikely that one can model

optimal strategies. The alternative to the search for

a silver bullet is the adoption of an adaptive

experimentation philosophy (Wind 2007) that

allows experimentation with a number of

innovative strategies, facilitates learning, helps

create an innovative organizational culture that

reduces the pressures for risk averse decisions,

encourages relevant measurement and provides
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a competitive advantage. As sophisticated firms such

as Google and most direct response companies

Increasingly engage in adaptive experimentation,

a new role for many of the OR marketing models

(including marketing mix models) is in suggesting

hypotheses that guide the experimental variables and

design. Adaptive experimentation is consistent with

the philosophy of OR and should be considered in

any portfolio of approaches to aid decisionmakers in

making better decisions.

13. Documentation of the Impact of ORMarketing

Models on the Organization is Now

Mainstream. The emergence of the INFORMS

Society for Marketing Science Practice Prize and

work by Lilien (2011) and Wierenga (2011) have

underscored the need to study how marketing

integrated with the concepts of OR can become

a mainstream research domain for marketing

academics while having a greater impact on the

operations of firms. According to a Business Week

article in 2010, the Fortune 1,000 companies

spend over $1 trillion in marketing annually.

Yet, according to a McKinsey report (2009),

most of these companies do not use marketing

models to improve their marketing investment

related decision making, even though the

small percentage of companies that do (17% of

B2C and 7% of B2B) seem to realize considerable

benefits from their use. In a controlled experimental

study, Lilien shows that the managers using

decision models realize measurable

improvements in decision performance when

compared to managers who have access to the

same data, but without a decision-support model

to optimally interpret the data. Research is

ongoing on what factors influence companies to

deploy marketing models, under what conditions

their impact is maximized, and how decision tools

should be designed to enhance their usability and

impact.
Concluding Remarks

OR/marketing models and approaches have had

significant impact on academic research and practice.

Marketing science has also been used to address

important societal problems, e.g., Bradlow (2009)

discusses the use of marketing science to aid in
creatively solving problems related to the financial

crisis. Developments in constructing, testing and

applying new marketing science models will continue

to benefit management and society.
See

▶Advertising

▶Data Mining

▶Decision Analysis

▶Electronic Commerce

▶Game Theory

▶Linear Programming

▶Operations Management

▶Retailing
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Markov Chain Equations
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Introduction

For a continuous-time Markov chain, the probability

distribution at any time t, p(t), is calculated from the

Chapman-Kolmogorov differential equation,
dpðtÞ
dt

¼ pðtÞQ: (1)

where the vector p(t) is of length n, the number of

possible states in the Markov chain, and its ith
component, pi(t), expresses the probability that

the Markov chain is in state i at time t, and Q is the

infinitesimal generator or transition rate matrix,

a square matrix of order n whose elements satisfy
qij � 0; i 6¼ j;

qii ¼
Xn

j¼1; j6¼i

qij; for all i ¼ 1; 2; . . . ; n:

When the number of states in the Markov chain is

relatively small (e.g., less than a thousand), computing

numerical solutions of the chain equations is generally

easy, and (1) can be solved readily by software such

as MATLAB. But two difficulties arise when the

number of states is large: The first is the sheer size

of the matrices involved; the second is how

well-conditioned or how ill-conditioned the equations

are. These difficulties exist even in the simpler setting

considered here when all that is required is the

stationary solution of the Markov chain obtained by

setting the left-hand side of (1) to zero and solving the

linear system of equations that results.

It is not unusual for the number of states in

a Markov chain model to exceed the millions. Such

size impacts both the storage of the matrix and the

number of vectors needed to compute the solution.

Very large matrices cannot be stored in the usual

two-dimensional array format; there is simply not

enough storage space available. In addition, this

would be very wasteful, since most of the matrix

elements are zero. In general, each state

communicates directly with only a small number of

states and so the number of nonzero elements in the

matrix is usually equal to a small multiple of the

number of states. If the states can be ordered

sequentially so that each communicates only with its

closest neighbors, then the nonzero elements of Q lie

close to the diagonal and a banded storage technique can

be used. Otherwise, it is usual to store only the nonzero

elements in a double-precision one-dimensional array

and use two integer one-dimensional arrays to indicate

the position of each nonzero element in the matrix.

In addition to storing the transition matrix, a certain
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number of double-precision vectors, of size equal to the

number of states, is also needed. In the simplest

numerical methods, two such vectors suffice. In other

more sophisticated methods, many more (possibly in

excess of 50) may be needed.

A second difficulty in solving Markov chains

numerically is that of the degree of ill-conditioning

of Q. In certain models, the difference in the rates at

which events can occur may be many orders of

magnitude, as is the case when a model allows for

both human interaction and electronic transactions.

These differences in magnitude may lead to

ill-conditioned systems, that is to say, a small change

in one of the parameters can result in a large change in

the solution. It is appropriate to distinguish between

numerical conditioning and numerical stability; the

first has already been described and is a function of

the problem itself; the second describes the behavior of

an algorithm in attempting to compute solutions.

A stable algorithm will not allow the error to grow

out of proportion to the degree of ill-conditioning of

the problem. In other words, a stable algorithm will

give as good a solution as can be expected for the

particular problem to be solved. A further effect

of large differences in transitions rates is that they

can create convergence problems for iterative

solution methods.
Numerical Methods for Computing
Stationary Distributions

The goal is to solve the matrix equation
pQ ¼ 0: (2)

By setting P ¼ QDt + I, where Dt � (maxi jqiij)�1,

this equation may be written as
pP ¼ p: (3)

In carrying out this operation, the continuous-time

system represented by the transition rate matrix, Q, is

essentially converted to a discrete-time system

represented by the stochastic transition probability

matrix, P. In the discrete-time system, transitions

take place at intervals of time Dt, this parameter

being chosen so that the probability of two transitions
taking place in time Dt is negligible. The stationary

distribution p may be computed from either of these

equations.

Direct Methods — Since Eq. (2) is a homogeneous

system of linear equations, one may use standard linear

solution methods based on Gaussian elimination.

Assume that the Markov chain is ergodic. In this

case, the fact that the system of equations is

homogeneous does not create any problems, because

any of the n equations can be replaced by the n

normalizing equation,
Pn

j¼1 pj ¼ 1, and thereby

convert it into a nonhomogeneous system with

nonsingular coefficient matrix and nonzero right hand

side. The solution in this case is well defined. It turns

out that replacing an equation with the normalizing

equation is not really necessary.

The usual approach taken is to construct an LU

decomposition of Q and replace the final zero

diagonal element of U with an arbitrary value. The

solution computed by back substitution on U must

then be normalized. Furthermore, since the diagonal

elements are equal to the negated sum of the

off-diagonal elements (Q is, in a restricted sense,

diagonally dominant), it is not necessary to perform

pivoting while computing the LU decomposition. This

simplifies the algorithm considerably.

The problems of the size and nonzero structure

(the placement of the nonzero elements within the

matrix) still remain. Obviously this method works

well when the number of states is small. It will also

work well when the nonzero structure of Q fits into

a narrow band along the diagonal. In these cases,

a very stable variant, referred to as the GTH

(Grassmann, Taskar, and Heyman) algorithm, may

be used. In this variant, all subtraction is avoided by

computing diagonal elements as the sum of off-

diagonal elements. This is possible since the zero-

row-sum property of an infinitesimal generator is

invariant under the basic operation of Gaussian

elimination, namely adding a multiple of one row

into another. For an efficient implementation, the

GTH variant requires convenient access to both the

rows and the columns of the matrix. This is the case

when a banded structure is used to store Q, but is

generally not the case with other compact storage

procedures. When the number of states becomes

large and the structure in not banded, the direct

approach loses its appeal and one must resort to

other methods.



Markov Chain Equations 923 M

M

Iterative Methods—For iterative methods, the first

approach is to solve Eq. (3) in which P is a matrix of

transitions probabilities. Let the initial probability

distribution vector be given by p(0). After the first

transition, the probability vector is given by

p(1) ¼ p(0)P; after k transitions it is given by

p(k) ¼ p(k�1)P ¼ p(0)Pk. If the Markov chain is

ergodic, then limk!1p(k) ¼ p. This method of

determining the stationary probability vector, by

successively multiplying some initial probability

distribution vector by the matrix of transition

probabilities, is called the Power method. Observe

that all that is required is a vector–matrix

multiplication operation. This may be conveniently

performed on sparse matrices that are stored in

compact form. Because of its simplicity, this method

is widely used, even though it often takes a very long

time to converge. Its rate of convergence is a function

of how close the subdominant eigenvalue of P is to its

dominant unit eigenvalue. In models in which there are

large differences in the magnitudes of transition rates,

the subdominant eigenvalue can be pathologically

close to one, so that for all intensive purposes the

Power method fails to converge.

It is also possible to apply iterative equation solving

techniques to the system of equations given by (2). The

well-known Jacobi method is closely related to the

Power method, and it also frequently takes very long

to converge. A better iterative method is Gauss-Seidel.

Unlike the previous two methods, in which the

equations are only updated after each completed

iteration, the Gauss-Seidel method uses the most

recently computed values of the variables as soon as

they become available and, as a result, almost always

converges faster than Jacobi or the Power method. All

three methods can be written so that the only numerical

operation is that of forming the product of a sparse

matrix and a probability vector, so all are equal from

a computation per iteration point of view.

Block Methods — In Markov chain models, it is

frequently the case that the state space can be

meaningfully partitioned into subsets. Perhaps the

states of a subset interact only infrequently with the

states of other subsets, or perhaps the states possess

some property that merits special consideration. In

these cases, it is possible to partition the transition

rate matrix accordingly and to develop iterative

methods based on this partition. In general, such

block iterative methods require more computation per
iteration, but this is offset by a faster rate of

convergence.

If the state space of the Markov chain is partitioned

into N subsets of size n1, n2,. . ., nN with
PN

i¼1 ni ¼ n,

then block iterative methods essentially involve the

solution of N systems of equations of size ni,
i ¼ 1,2,. . ., N, within a global iterative structure, such

as Gauss-Seidel, for instance: thus the Block

Gauss-Seidel method. Furthermore, these n systems

of equations are nonhomogeneous and have

nonsingular coefficient matrices and either direct or

iterative methods may be used to solve them. It is not

required that the same method be used to solve all the

diagonal blocks, so that it is possible to tailor methods

to the particular block structures.

If a direct method is used, then a decomposition of

the diagonal block may be formed once and for all

before initializing the global iteration process. In

each subsequent global iteration, solving for that

block then reduces to a forward and backward

substitution operation. The nonzero structure of the

blocks may be such that this is a particularly

attractive approach. For example, if the diagonal

blocks are themselves diagonal matrices, or if they

are upper or lower triangular matrices or even

tridiagonal matrices, then it is very easy to obtain

their LU decomposition, and a block iterative method

becomes very attractive.

If the diagonal blocks do not possess such a structure,

and when they are of large dimension, it may be

appropriate to use an iterative method to solve each of

the block systems. In this case, there are many inner

iterative methods (one per block) within an outer (or

global) iteration. A number of tricks may be used to

speed up this process. First, the solution computed for

any block at global iteration k should be used as the

initial approximation to the solution of this same block at

iteration k + 1. Second, it is hardlyworthwhile computing

a highly accurate solution in early (outer) iterations. Only

a small number of digits of accuracy should be required

until the global process begins to converge. One

convenient way to achieve this is to carry out only a fixed

small number of iterations for each inner solution.

Iterative Aggregation/Disaggregation Methods —

Related to block iterative methods, these methods are

particularly powerful when the Markov chain is nearly

completely decomposable, as the partitions are chosen

based on how strongly the states of the Markov chain

interact with one another.
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Projection Methods — An idea that is basic to

sparse-linear systems and eigenvalue problems is that

of projection processes. Whereas iterative methods

begin with an approximate solution vector that is

modified at each iteration and which (supposedly)

converges to a solution, projection methods create

vector subspaces and search for the best possible

approximation to the solution that can be obtained

from that subspace. With a given subspace, for

example, it is possible to extract a vector p̂ that is

a linear combination of a set of basis vector for that

space and which minimizes jp̂Qj in some vector norm.

This vector p̂may then be taken as an approximation to

the solution of pQ ¼ 0. This is the basis for the

Generalized Minimal Residual (GMRES) algorithm.

Another popular projection method is the method of

Arnoldi. The subspace most often used is the

Krylov subspace, Km ¼ span{v1, v1Q,. . ., v1Q
m�1},

constructed from a starting vector v1 and successive

iterates of the power method. The computed vectors

are then orthogonalized with respect to one another.

It is also possible to construct iterative variants of these

methods. When the subspace reaches some maximum

size, the best approximation is chosen from this

subspace and a new subspace generated using

this approximation as the initial starting point.

Preconditioning techniques are frequently used to

improve the convergence rate of iterative Arnoldi and

GMRES. This typically amounts to replacing the

original system pQ ¼ 0 by pQM�1 ¼ 0, where M is

a matrix whose inverse is easy to compute. The

objective of preconditioning is to modify the system

of equations to obtain a coefficient matrix with a fast

rate of convergence. It is worthwhile pointing out that

preconditioning may also be used with the basic power

method to improve its rate of convergence. The inverse

of the matrix M is generally computed from an

incomplete LU factorization of the matrix Q.
Stochastic Automata Networks

Stochastic Automata Networks (SANs) provide

a means of performing Markov chain modeling

without the problem of having to store huge

transition matrices. A SAN consists of a number of

individual stochastic automata that operate more or

less independently of each other. Each individual

automaton is represented by a number of states and
rules that govern the manner in which it moves from

one state to the next. The state of an automaton at any

time t is just the state it occupies at time t, and the

state of the SAN at time t is given by the state of each

of its constituent automata. An automaton may be

thought of as a component in a Markov chain state

descriptor.

The use of SANs is important in the performance

modeling of parallel and distributed systems, since

such systems are often viewed as collections of

components that operate more or less independently,

requiring only infrequent interaction such as

synchronizing their actions or operating at different

rates depending on the state of parts of the overall

system. This is exactly the viewpoint adopted by

SANs. Furthermore, the state space explosion

problem associated with Markov chain models

is mitigated by the fact that the state transition matrix

is not stored, nor even generated. Instead, it is

represented by a number of much smaller matrices,

one for each of the stochastic automata that constitute

the system, and from these all relevant information

may be determined without explicitly forming the

global matrix. A considerable saving in memory is

realized by storing the matrix in this fashion.

The compact form in which the transition matrix

that characterizes the model is kept (called the SAN

Descriptor) is written as
XNþ2E

j¼1

�N
i¼1Q

ðiÞ
j ;

where N is the number of automata in the SAN, E is the

number of synchronizing events and Q
ðiÞ
j is a square

matrix of low dimension. In order to benefit from this

compact form, the descriptor is never expanded into

a single large matrix. Consequently, all subsequent

operations must necessarily work with the model in its

descriptor form, and hence, numerical operations on the

underlyingMarkov chain infinitesimal generator become

more costly. Research efforts directed at reducing these

costs include the development of a generalized tensor

algebra to permit functional transitions to be handled at

the same low costs as constant transitions, design of

algorithms to reduce the amount of computation

involved in forming the product of a vector and a SAN

descriptor, and finding suitable preconditioners with

which to speed up iterative methods.
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Introduction

Markov chain Monte Carlo (MCMC) methods

numerically approximate the integral or expectation,

E gðYÞ½ � ¼ ÐgðyÞf yjYð Þdy, where Y is a random

variable with distribution f ðyjYÞ, which is

parameterized by Y, and gðYÞ is an integrable

function of Y, where the integral is with respect to

either Lebesgue measure for continuous random

variables or counting measure for discrete ones.

A simple way to compute E gðYÞ½ � is through Monte

Carlo (MC) simulation, which approximates the

integral as an average of gðYÞ across a random

sample from f ðyjYÞ: gðYÞ ¼ 1
n

Pn
i¼1 gðyiÞ. The

estimation variance is proportional to n�1, regardless

of the dimension of Y, and the estimator can be made
arbitrarily accurate by letting the size of the sample

n ! 1 by the strong law of large numbers. MCMC

addresses settings where random variates for f yjYð Þ
cannot be generated easily, e.g., through the inverse

transform method, the acceptance-rejection method

(also called rejection sampling), or importance

sampling. These methods generally rely on

independent and identically distributed (i.i.d.)

random draws to approximate the integral.

MCMC methods relax this independence

assumption to construct a Markov chain of draws

fyi; i ¼ 1; . . . ; ng, with a stationary distribution

equal to. f yjYð Þ. MCMC uses recursive simulation

where the random number generator for Yi depends

on the previous draw yi�1, hence the name Markov

chain Monte Carlo. MCMC’s range of applications

is astonishing, and continues to expand. A large part

of these applications have been in Bayesian

statistics, but MCMC originated in image

processing and physics and continues to be used in

these fields, as well as in biology, engineering,

demography, finance and marketing. MCMC was

started by the work of Metropolis et al. (1953) and

Hastings (1970). Gibbs sampling as a special case

developed through the work of Besag (1974), Geman

and Geman (1984), and Gelfand and Smith (1990).

Important extensions were developed by Albert and

Chib (1993), Green (1995), Richardson and Green

(1997) and Neal (2003). Texts include Gill (2008),

Press (2003), Gelman et al. (2003), and Zellner

(1971). Essential MCMC methods are reviewed

here, while details can be found in the references

above.
Discussion

Metropolis-Hastings Sampler: The Metropolis-

Hastings (MH) sampler is very general and sparked

the MCMC revolution. For i ¼ 1; . . . ; n, it generates

a candidate sample yi from a proposal distribution

h yjyi�1;Fð Þ and transforms it to make it behave as if

it came from f yjYð Þ (The support of h is a subset of that
of f ). If the proposal distribution h depends on the

previous value yi�1, the algorithm is called Random

Walk Metropolis-Hastings (rMH), while if it does not

depend on previous values, it is called Independence

Metropolis-Hastings (iMH). The algorithm works as

follows, for i ¼ 1; 2; . . . ; n

http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_694
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200814
http://www.csc.ncsu.edu/faculty/WStewart
http://www.csc.ncsu.edu/faculty/WStewart
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1. Initialize the chain at y0 that is in the support of f .

2. Given that a prior value yi�1 has been obtained,

sample a candidate value y� � h yjyi�1;Fð Þ and

sample ui � Uð0; 1Þ.
3. Calculate aðyi�1; y

�Þ ¼ f y�jYð Þ
f yi�1jYð Þ 	 hðyi�1jy�;FÞ

hðy�jyi�1;FÞ .
4. Accept the candidate yi ¼ y�, if aðyi�1; y

�Þ > ui,

otherwise set yi ¼ yi�1.

The normalizing constants for f and h

cancel in Step 3, so that they only need to be

known up to such constants. The MH algorithm

creates a Markov chain with transition

function qðyi�1; yiÞ ¼ h yijyi�1;Fð Þtðyi�1; yiÞ where

tðyi�1; y
�Þ ¼ min aðyi�1; y

�Þ; 1½ � is the acceptance

probability from Step 4. The chain is reversible

because f yi�1jYð Þqðyi�1; yiÞ ¼ f yijYð Þqðyi; yi�1Þ, and
is therefore ergodic with stationary distribution f . This
has the crucial implication that regardless of the initial

value in Step 1, the draws from the Markov chain will

eventually be from f . Monte Carlo is a special case if

the candidate distribution h is equal to f : then

aðyi�1; y
�Þ ¼ 1. If h yjyi�1;Fð Þ is symmetric in

(y� yi�1), e.g. a normal distribution with mean yi�1,

then the ratio in h cancels in Step 3.

The performance of MH depends on the proposal

distribution. In rMH if the proposal distribution is too

tight around the last value of the chain, then the

candidate is highly likely to be accepted, and the

Markov chain will tour the support of f very slowly,

so n will have to be quite large to obtain reliable

MCMC estimates. Conversely, if the variance of the

proposals is too large, the MCMC algorithm will reject

most of the candidate values, and the chain will hardly

budge. For the estimator to be valid, the chain needs to

visit areas of the support of f with non-negligible

probabilities.

Convergence: Starting from an arbitrary y0, the

chain passes through a transitory period, say

i ¼ 1; . . . ; l for l < n, where the draws are not from

f . These initial draws are not used in the MCMC

approximation of E gðYÞ½ � : gðYÞ ¼ 1
n�l

Pn
i¼lþ1

gðyiÞ. In
theory, under very general conditions the rate of

convergence is geometric in the second eigen value

of the transition function. Problems can occur if the

target distribution is multimodal, and f is zero between

modes, so that subsets of the support do not

communicate with each other. Then the chain can

become stuck in isolated regions of the support
unless the proposal distribution h is sufficiently broad

to bridge the gaps. In practice, it may be difficult to

conclusively determine l. One procedure for

monitoring convergence is to run multiple chains

from different initial values and to compute multiple

estimates. If the between-chain variance of the

estimators is small relative to the within-chain

variance, then the chain has likely converged. A host

of other diagnostic measures are available, that may

help identify likely convergence of the chain.

Blocked MH Sampler: Depending on the structure

of f , it may be convenient to block Y into sub-vectors

Ys for s ¼ 1; 2; . . . ; S. The distribution of each

sub-vector is conditioned on all others to obtain the

full conditional distributions: f ysjy�s;Yð Þ, with y�s

denoting y with ys omitted hsðysjy�s;FÞ is the

proposal distribution for Ys. This leads to

the following algorithm for i ¼ 1; 2; . . . ; n and

s ¼ 1; 2; . . . ; S:

1. Initialize y0 in the support of f .

2. Sample a candidate value y�s � hs ysjy�s;i�1;F
� �

and

ui � Uð0; 1Þ.
3. Calculate as;i ¼ f y�jYð Þ

f yi�1jYð Þ 	 hsðys;i�1jy�;FÞ
hsðy�s jys;i�1;FÞ , where y� is

identical to yi�1, except for sub-vector s, which
equals y�s .

4. Accept the candidate ys;i ¼ y�s , if as;i > ui,

otherwise keep ys;i�1.

This algorithm cycles through the s sub-vectors

(in arbitrary order, systematically or randomly) and

updates them separately though MH-steps. Not every

sub-vector needs to be updated at every iteration i.

Gibbs Sampler: In many applications, some or

even all of the full conditional target distributions

f ysjy�s;Yð Þ can be sampled directly, which greatly

simplifies the Blocked MH algorithm. This can be

seen by substituting the full conditional distributions

for the proposal distributions in Step 3 of the

Blocked MH: as;i ¼ f y�jYð Þ
f yi�1jYð Þ 	 f ðys;i�1jy�;YÞ

f ðy�s jys;i�1;YÞ . Because

f yjYð Þ ¼ f ys; y�sjYð Þ, and y��s ¼ y�s;i�1, it holds that

as;i ¼ f y�s;i�1jYð Þ
f y�s;i�1jYð Þ ¼ 1. The algorithm for the Gibbs

sampler modifies the Blocked MH by replacing

Step 2 with directly drawing ys;i � f ys;ijy�s;i;Y
� �

and

skipping Steps 3 and 4 for these blocks.

Modifications of the Gibbs sampler have been

proposed to speed up convergence and provide the

chains with better properties. For three sub-vectors

y1; y2; y3, for example, the Collapsed Gibbs Sampler
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draws from the unconditional joint distribution

y1:2;i � f y1; y2jFð Þ, and the full conditional

distribution y3;i � f ðy3jy1;i; y2;i;FÞ. The Grouped

Gibbs Sampler on the other hand, groups two

sub-vectors and draws from the full conditionals

y1:2;i � f y1; y2jy3;i�1;F
� �

and y3;i � f ðy3jy1;i; y2;i;FÞ.
The relative simplicity of the Gibbs sampling

algorithms has contributed to their popularity, and

many extensions, three important ones being the

Auxiliary Variable, Slice and Reversible Jump Samplers.

Auxiliary Variable Sampler: Introducing an

auxiliary random variable Z can simplify MCMC if

there is a joint distribution h y; zjy;Cð Þ such that

f yjYð Þ ¼ Ð h y; zjy;Cð Þdz, and both h yjz;Y;Cð Þ and

h zjy;Y;Cð Þ are easy to sample. Using these two full

conditional distributions, it is then straightforward to

sample from h y; zjy;Cð Þ, using Gibbs sampling. The

Auxiliary Variable Gibbs Sampler is then, for

i ¼ 1; 2; . . . ; n:

1. Sample yi � h yjzi�1;Y;Cð Þ.
2. Sample zi � h zjyi;Y;Cð Þ.

An additional advantage is that the introduction of

the augmented variable helps mixing.

Slice Sampler: A special case of the Auxiliary

Variable Sampler arises if f yjYð Þ an be factored as

f yjYð Þ / k yjYð Þ 	 hðyjYÞ. The auxiliary variable Z in

this case is chosen such that the joint density

f ðy; zÞ / I 0 < z < k yjYð Þ½ � 	 h yjYð Þ. The resulting

sampler is called the Slice Sampler and iterates

between the following full conditional distributions,

for i ¼ 1; 2; . . . ; n:

1. Sample zi � U 0; k yi�1jYð Þð Þ, from a uniform

distribution on 0 and k yi�1jYð Þ.
2. Sample yi � h yjYð ÞI 0 < zi < k yjYð Þ½ �, from the

distribution h yjYð Þ truncated on the set

y : zi < k yjYð Þf g.
Slice sampling is applicable in cases where

k�1 yjYð Þ can be analytically obtained, and the

truncated distribution h yjYð ÞI 0 < zi < k yjYð Þ½ � can

be sampled from, often by using the inverse

transform method. The extension to distributions

that factor as f yjYð Þ / hðyjYÞ 	Q
t
kt yjYð Þ is

straightforward if all k�1
t yjYð Þ an be obtained,

now by sampling multiple zi;t � U 0; kt yi�1jYð Þð Þ.
Reversible Jump Sampler: The above algorithms

assume that the dimension of Y is constant.

The Reversible Jump (RJ) sampler is an extension of
MH that constructs a Markov chain that transverses

spaces of different dimensions. The spaces are labeled

m, and YðmÞ is the random variable Y restricted to space

m. The dimension of YðmÞ or dim YðmÞ� �
depends on m

(In Bayesian statistics – details below – RJ is used to

transverse different models where m indicates the

model, and then simulate YðmÞ given model m). The

state space for theMarkov chain is M; YðMÞ� �
with joint

distribution f m; yðmÞjY� � ¼ f yðmÞjm;Yy

� �
f mjYmð Þ

where PðM ¼ mÞ ¼ f mjYmð Þ is a discrete

distribution, and f yðmÞjm;Yy

� �
is the distribution of

Y restricted to space m. RJ is a strategy to simulate

M; YðMÞ� �
when a convenient random number

generator for f m; yðmÞjY� �
does not exist.

As with MH, the goal is to construct a reversible

Markov chain with stationary distribution f m; yðmÞjY� �
.

Reversible moves between any m; yðmÞ
� �

and

m0; yðm
0 Þ

� �
require a bijective mapping, which does

not exist when the spaces have different dimensions.

The trick is to augment yðmÞ with a random variable

uðmÞ so that dim yðmÞ
� �þ dim uðmÞ

� �
is constant across

allm: dim yðmÞ
� �þ dim uðmÞ

� � ¼ dim yðm
0Þ� �þ dim uðm

0Þ� �
.

RJ requires a bijective, differentiable function

yðm
0Þ; uðm

0Þ� � ¼ Tm;m0 yðmÞ; uðmÞ
� �

that uniquely maps

yðmÞ; uðmÞ
� �

to yðm
0Þ; uðm

0Þ� �
with reverse mapping

Tm0;m ¼ T�1
m;m0 . Given the current state m; yðmÞ

� �
of the

Markov chain, candidate values are generated by:

(1) selecting a new value m0 according to the

proposal distribution q m
0 jm;C� �

; (2) generating uðmÞ

from hm;m0 uðmÞjyðmÞ;F� �
; and (3) computing the

candidate yðm
0Þ; uðm

0Þ� � ¼ Tm;m0 yðmÞ; uðmÞ
� �

. For the

Markov chain to be reversible, the implied

distribution of uðm
0Þ; hm0;m uðm

0Þjyðm0Þ;F
� �

, is required

to move from yðm
0Þ; uðm

0Þ� �
to yðmÞ; uðmÞ
� �

using the

reverse mapping Tm0;m. Implementation details of the

RJ are as much art as science, because the construction

of Tm;m0
� �

for allm andm0 and the selection of proposal
distributions are tailored specifically for each

application. The RJ algorithm for i ¼ 1; 2; . . . ; n is:

1. Initialize the chain at m0; y
m0

0

� �
in the support of f .

2. Given mi�1 and y
ðmi�1Þ
i�1 are obtained, set m ¼ mi�1

and y ¼ y
ðmi�1Þ
i�1 and

a. Sample m0 � q m0jm;Cð Þ;
b. Sample u 
 uðmÞ � hm;m0 uðmÞjy;F� �

;

c. Compute proposal y0 
 yðm
0Þ from

ðy0; u0Þ ¼ Tm;m0 ðy; uÞ.
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3. Calculate

aðy;y0Þ ¼ f m
0
;y

0 jYð Þ
f m;yjYð Þ 	 hm0 ;m u

0 jy0 ;Fð Þ
h
m;m

0 ujy;Fð Þ 	 qðmjm
0
;CÞ

qðm0 jm;CÞ 	
@T

m;m
0 ðy;uÞ

@y@u

��� ���.
4. Sample vi � Uð0; 1Þ and accept the candidate

mi; y
ðmiÞ
i

� �
¼ ðm0

; y0Þ if aðy; y0Þ > vi, otherwise set

mi; y
ðmiÞ
i

� �
¼ mi�1; y

ðmi�1Þ
i�1

� �
.

In step 3,
@T

m;m
0 ðy;uÞ

@y@u

��� ��� is the Jacobian of the

transformation Tm;m0 , which is needed because it is a

deterministic function for the change in variables from

yðmÞ; uðmÞ
� �

to yðm
0 Þ; uðm

0 Þ
� �

. As in the MH algorithm,

the distributions f m; yðmÞjY� �
, q m

0 jm;C� �
, and

hm;m0 uðmÞjy;F� �
only need to be known up to

normalizing constants which cancel in step 3. It should

be noted that while aðy; y0Þ in its general form provided

in step 3 is somewhat complex, in a wide range of

practical applications it simplifies considerably, for

example when the proposal distributions are symmetric

(see above), when dim yðm
0 Þ

� �
> dim yðmÞ

� �
, in

which case the mapping reduces to

yðm
0 Þ

� �
¼ T yðmÞ; uðmÞ

� �
, and when moves are limited

to m0 2 ðmi�1 � 1Þ;mi�1; ðmi�1 þ 1Þf g.

Example: In Bayesian statistics the parameters of

a model are considered random variables, reflecting

a priori uncertainty on the part of the researcher that

is reduced a posteriori after the data are observed.

Inference focuses on their posterior distribution,

which summarizes all information about the

parameters. According to Bayes Theorem, the

posterior distribution is proportional to the prior

distribution of the parameters times the distribution

of the data given the parameters. Bayesian estimation

and inference has gained great popularity in business,

in particular in marketing and finance, because

even without strictly accepting the (attractive)

fundamental properties of Bayesian inference,

pragmatic Bayesians have found great value

in MCMC algorithms to estimate complex models,

especially as uninformative prior distributions can be

used. Simpler illustrative examples follow.

Example 1: The Weibull distribution is used in

duration analysis applications to bankruptcy in

finance, and in customer relationship management

(CRM) in marketing. The observations fxjg for
j ¼ 1; . . . ; J are a random sample of durations from

a Weibull distribution: f xjy; dð Þ ¼ ydxd�1 expð�yxdÞ
for x > 0. The prior distributions of the parameters are

Gamma distributions: pðyÞ ¼ s
r0

0

Gðr0Þ y
r0�1 expð�s0yÞ and

pðdÞ ¼ a
b0

0

Gðb0Þ d
a0�1 expð�b0dÞ. The joint

posterior distribution of the parameters is:

p y; djfxjg
� � / pðyÞpðdÞQJ

j¼1

f xjjy; d
� �

, which does not

have a convenient random number generator

and can be sampled with MH within Gibbs.

The full conditional distribution of y given the data

and di�1 is also a Gamma distribution: p yjdi�1; fxjg
� �

/ yr0þn�1 exp �y s0 þ
PJ

j¼1 x
di�1

j

h i� �
. The full

conditional distribution of d given the data and yi
does not have a known distributional form:

p djyi;fxjg
� �/ da0þn�1 QJ

j¼1

xd�1
j

" #
exp �b0d�yi

PJ
j¼1

xdj

 !
.

Thus, rMN can be used to generate the candidate d�.
The MCMC algorithm to approximate the posterior

distribution of the parameters is, for i¼ 1;2; . . . ;n:

1. Initialize the chain at ðy0; d0Þ.
2. Draw yi from a Gamma distribution

yi ¼ G r0 þ n; s0 þ
PJ
j¼1

xdi�1

j

 !
.

3. Sample ui � Uð0; 1Þ, and generate a candidate

d� from a log-normal distribution:

g d�jdi�1; sð Þ / 1
d�
exp � 1

2s2
lnðd�Þ � lnðdi�1Þð Þ2

h i
.

4. Compute aðdi�1; d
�Þ ¼ p d�jyi;fxjgð Þdi�1

p dijyi;fxjgð Þd� .

5. Accept di ¼ d� if aðdi�1; d
�Þ > ui, otherwise set

di�1 ¼ di�1.

Extensions involve the parameterization of y in

terms of predictor variables yj ¼ wjb, and the case

where the durations are censored by the observation

time; the estimations of the models in question involve

extensions of the algorithms above.

Example 2: Change-point regression models are

popular in finance to describe financial time series

data with a structural change, and used in marketing

in models of stochastic preference and market

shares. Here, the data fxtg are observed for time

points t ¼ 1; . . . ; T, and assumed to follow

a binomial distribution: f xtjptð Þ ¼ pxtt ð1� ptÞ1�xt ;

for xt 2 f0; 1g. Two regression functions are
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separated in time by an unknown switch-point

t : pt ¼ F w
0
tbk

� �
, with bk ¼ b1for t � t, and bk ¼ b2

for t > t. F is the Normal CDF used as an inverse

link function, wt is a vector of regressors, and

bk � Nðb0;B0Þ the prior distributions of its

coefficients. The ‘switch-point’ has a uniform

discrete prior on a subset of the observed

timepoints: t � Uðc; dÞ. The MCMC algorithm

simplifies through the introduction of an auxiliary

variable zt � N w
0
tbk; 1

� �
, with, xt ¼ Iðzt > 0Þ, and Ið	Þ

the indicator function. The MCMC algorithm to

approximate the posterior distribution of the

parameters is, for i ¼ 1; 2; . . . ; n:

1. Sample for: k ¼ 1; 2 : bk;i � Nðbk;i;Bk;iÞ, with bk,i =
Bk;i B�1

0 b0þ
Pt¼Uk;i

t¼Lk;i

w
0
tzt;i

 !
, Bk;i ¼ B�1

0 þ Pt¼Uk;i

t¼Lk;i

wtw
0
t

 !
,

and Lk;i ¼ 1 þðk� 1Þti, Uk;i ¼ tþðk� 1ÞðT� tiÞ:
2. Sample, for Lk;i < t < Uk;i:

zt;i � N w
0
tbk;i; 1

� �
Iðzt;i < 0Þ if xt ¼ 0, and

zt;i � N w
0
tbk;i; 1

� �
Iðzt;i > 0Þ if xt ¼ 1.

3. Sample ti using Prðti ¼ rÞ
¼

Q
t�r

f xtjw0
tb1;ið ÞQ

t>r
f xtjw0

tb2;ið ÞPd

s¼c

Q
t�s

f xtjw0
tb1;ið ÞQ

t>s
f xtjw0

tb2;ið Þ .
Extensions of this MCMC procedure for

multiples witch points are available, and extensions

to an unknown number of switch points require

RJMCMC.

Example 3: Mixture models are used in finance to

describe financial returns during different economic

regimes, and are popular in marketing to identify

unobserved heterogeneity in response-based market

segmentation. The data fxjg are observed for

individuals j ¼ 1; . . . ; J, and assumed to follow

a mixture Normal distribution with K classes

and probabilities dk for which 0 < dk < 1 andPm
k¼1 dk ¼ 1. Thus, xj �

Pm
k¼1 dkN w

0
jbk; s

2
k

� �
. Here,

bk are class-specific regression coefficients associated

with the vector of regressors wt, with prior

distributions bk � Nðb0;B0Þ. Further Inverse Gamma

and Dirichlet priors are specified for:

s2k � IG a0
2
; A0

2

� �
and d1:m � Dðc0; . . . ; c0Þ. The MCMC

algorithm simplifies by introducing an auxiliary

variable with a multinomial prior distribution:

zj � Mðd1:mÞ that indicates the membership of

individual j in class k, that is zj ¼ 1; . . . ;m. The

MCMC algorithm is, for i ¼ 1; 2; . . . ; n:
1. Sample, for k ¼ 1; . . . ;m : bk;i � Nðbk;i;Bk;iÞ,

with bk;i ¼ Bk;i B�1
0 b0 þ

P
fj:zj¼kg

w
0
jxj

 !
; and

Bk;i ¼ B�1
0 þ P

fj:zj¼kg
wjw

0
j

 !
.

2. Sample, for k ¼ 1; . . . ;m :

s2k;i � IG

	
a0þnk

2
;
A0þ
P

fj:zj¼kg xj�w
0
jbk;ið Þ2

2



, with

nk ¼
P

fj:zj¼kg
1.

3. Sample d1:m � Dðc0 þ n1; . . . ; c0 þ nmÞ.
4. Sample zj using Prðzj ¼ kÞ ¼ dkf xjjw0

tbk;i;s
2
k;ið ÞP

s
dsf xjjw0

tbs;i;s
2
s;ið Þ .

This sampler, like that for many mixture models,

suffers from “label switching,” a problem in which the

class parameters switch across the class labels during

the iterations. Several solutions are available,

including ordering the mixture probabilities or

post-processing of the draws.

Furthermore, the above algorithm can be extended

to include the number of classes m ¼ 1; . . . ;mmax,

using RJMCMC. A step is added to the algorithm in

which two randomly chosen classes (k1 and k2) are

merged (k�), or one randomly chosen class is split.

A splitting decision is usually made with probability

�m ¼ 0:5, a merging decision with ð1� �mÞ, for,

m ¼ 2; . . . ; ðmmax � 1Þ, and �1 ¼ 0 and �mmax
¼ 1.

The merge move involves matching of moments of

the class-distributions, involving the computation of

bk� such that the mean mk� ¼ w
0
bk� of the new class

matches that of k1 and k2, as does the variance s2k� :
M1. Randomly select k1 / 1=m and find k2 ‘most

similar’ to k1.
M2. Compute dk� ¼ dk1 þ dk2 .
M3. Match mk� ¼

dk1
dk�

mk1 þ
dk2
dk�

mk2 .

M4. Compute s2k� ¼
dk1
dk�

m2k1 þ s2k1

� �
þ dk2

dk�
m2k2 þ s2k2

� �
� m2k� .

M5. Recompute zj using step 4 above.

The split move operates as follows, and again

involves matching of the first two moments of the

class-distributions, of the old and new classes:

S1. Randomly select k� / 1=m, and draw the auxiliary

variables u1:3 � Betaða; bÞ.
S2. Compute dk1 ¼ u1dk� , and dk2 ¼ ð1� u1Þdk� .
S3. Match mk1 ¼ mk� � u2sk�

ffiffiffiffiffi
dk2
dk1

q
, and mk2 ¼ mk�þ

u2sk�
ffiffiffiffiffi
dk1
dk2

q
.
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S4. Compute s2k1 ¼ u3 1 � u22
� �

s2k�
dk�
dk1

, and s2k2 ¼
ð1 � u3Þ 1 � u22

� �
s2k�

dk�
dk2

.

S5. Recompute zj using step 4 above.

The split/merge proposal is accepted with

probability min aðy; y0Þ; 1ð Þ, computed as outlined

in the RJ algorithm above (and the split is rejected

if k2 is not ‘most similar’ to k1 to ensure

reversibility). Here hm uðmÞjy;F� � ¼ Beta ða; bÞ, and

q m
0 jm;C� � ¼ P m

0 jmi�1

� � ¼ 0:5 in the RJ algorithm

described above. The split/merge moves are

reversible, as Tm;m0 is defined in S2-S4, and T�1
m;m0 in

M2-M3. The split/merge moves may be combined

with “birth/death” moves, randomly chosen with

probabilities 0.5/0.5. In a birth move the parameters

of a new class are drawn at random from proposal

distributions on the appropriate support

(e.g., dk� � Beta; bk � MVN; s�2
k � Gamma), and the

weights are rescaled so that they sum to one. In a death

move an empty class is deleted, and the remaining

weights are rescaled (Richardson and Green 1997).
See

▶Acceptance-Rejection Method

▶ Importance Sampling

▶ Inverse Transform Method

▶Markov Chains

▶Monte Carlo Simulation

▶Reversible Markov Chain/Process

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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Markov Chains

Carl M. Harris

George Mason University, Fairfax, VA, USA
Introduction

A Markov chain is a Markov process XðtÞ; t 2 Tf g
whose state space S is discrete, while its time domain

T may be either continuous or discrete. Only

considered here is the countable state-space problem.

Classic texts treating Markov chains include Breiman

(1986), Çinlar (1975), Chung (1967), Feller (1968),

Heyman and Sobel (2004), Isaacson and Madsen

(1976), Iosifescu (1980), Karlin and Taylor (1975),

Kemeny and Snell (1976), Kemeny, Snell and

Knapp (1976), and Meyn and Tweedie (2009).

As a stochastic process of the Markov type, chains

possess the Markov or lack-of-memory (memoryless)

property, which means that the probabilities of future

events are completely determined by the present state

of the process and the probabilities of its behavior from

the present point on. In other words, the past behavior

of the process provides no additional information in

http://dx.doi.org/10.1007/978-1-4419-1153-7_200003
http://dx.doi.org/10.1007/978-1-4419-1153-7_200310
http://dx.doi.org/10.1007/978-1-4419-1153-7_200343
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http://dx.doi.org/10.1007/978-1-4419-1153-7_200485
http://dx.doi.org/10.1007/978-1-4419-1153-7_200715
http://dx.doi.org/10.1007/978-1-4419-1153-7_959
http://dx.doi.org/10.1007/978-1-4419-1153-7_958
http://dx.doi.org/10.1007/978-1-4419-1153-7_638
http://dx.doi.org/10.1007/978-1-4419-1153-7_638
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determining the probabilities of future events if the

current state of the process is known. Thus, the

discrete process XðtÞ; t 2 Tf g is a Markov chain if,

for any n > 0, any t1 < t2 < . . . < tn < tn+1 in the

time domain T, any states i1, i2,. . ., in and any state j in

the state space S,
M

Pr Xðtnþ1Þ ¼ jjXðt1Þ ¼ i1; . . . ;XðtnÞ ¼ inf g
¼ Pr Xðtnþ1Þ ¼ jjXðtnÞ ¼ inf g:

The conditional transition probabilities on the

right-hand side of this equation can be simplified by

mapping the n time points directly into the nonnegative

integers and renaming state in as i. Then the

probabilities are only a function of the pair (i, j) and

the transition number n. Oftentimes, it is assumed that

the transition probabilities are stationary, i.e., time

invariant, resulting in a square (possibly infinite)

matrix P ¼ [pij] (viz., the single-step transition

matrix), which gives all conditional probabilities of

moving to state j in a transition, given that the chain

is currently in state i. (Any matrix with the property

that its rows are nonnegative numbers summing to one

is called a stochastic matrix, whether or not it is

associated with a particular Markov chain).
Examples of Markov Chains

1. RandomWalk. In its simplest form, an object moves

to the left one space at each transition time with

probability p or to the right with probability 1 � p.
The problem can be kept finite by requiring

reflecting barriers at fixed left-and right-hand

points, say M and N, such that the transition

probabilities send the chain back to states M + 1

and N � 1, respectively, whenever it reaches M or

N. One important variation on this problem allows

the object to stay put with non-zero probability.

2. Gambler’s Ruin. A gambler makes repeated

independent bets and wins $1 on each bet with

probability p or loses $1 with probability 1 � p.

The gambler starts with an initial stake and will play

repeatedly until all money is lost or until the fortune

increases to $M. Let Xn equal the gambler’s wealth

after n plays. The stochastic process {Xn, n ¼ 0, 1,

2,. . .} is a Markov chain with state space {0, 1,

2,. . ., M}. The Markov property follows from the
assumption that outcomes of successive bets are

independent events. The Markov model can be

used to derive performance measures of interest

for this situation, such as the probability of losing

all the money, the probability of reaching the goal

of $M, and the expected number of bets before the

game terminates. All these performance measures

are functions of the gambler’s initial state x0,

probability p and goal $M. (The gambler’s fortune

is thus a random walk with absorbing boundaries

0 and M). The gambler’s ruin problem is

a simplification of more complex systems that

experience random rewards, risk, and possible

ruin, such as insurance companies.

3. Coin Toss Sequence. Consider a series of

independent tosses of a fair coin. One Markov chain

is obtained by associating state 1, 2, 3 or 4 at time n

depending on whether the outcomes of tosses n � 1

and n are (H,H), (H,T), (T,H) or (T,T), respectively.
Define the n-step transition probability p

ðnÞ
ij as the

probability that the chain moves from state i to

state j in n steps, and write
P
ðnÞ
ij ¼ Pr Xmþn ¼ jjXm ¼ if g for all m � 0 n > 0:

Then it follows that the n-step transition

probabilities can be computed using the

Chapman-Kolmogorov equations
P
ðnþmÞ
ij ¼

X1
k¼0

p
ðnÞ
ik p

ðmÞ
kj for all n;m; i; j � 0:

In particular, for m ¼ 0,
P
ðnÞ
ij ¼

X1
k¼0

p
ðn�1Þ
ik pkj

¼
X1
k¼0

pikp
ðn�1Þ
kj ; n ¼ 2; 3; . . . ; i; j � 0:

Denoting the matrix of n-step probabilities by P(n),

it follows that P(n) ¼ P(n�k) P(k) ¼ P(n�1) P and that

P(n) can be calculated as the nth power of the original

single-step transition matrix P.

To calculate the unconditional distribution of the

state at time n requires specifying the initial probability

distribution of the state, namely, Pr{X0¼ i}¼ pi, i� 0.

Then the unconditional distribution of Xn is given by
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PrfXn ¼ jg ¼
X1
i¼0

Pr Xn ¼ jjX0 ¼ if g PrfX0 ¼ ig

¼
X1
i¼0

pip
ðnÞ
ij

which is equivalent to multiplying the row vector p by

the jth column of P.
Properties of a Chain

The ultimate long-run behavior of a chain is fully

determined by the location and relative size of the

entries in the single-step transition matrix. These

probabilities determine which states can be reached

from which other ones and how long it takes on average

to make those transitions.More formally, state j is said to

be reachable from state i, written i! j, if it is possible for
the chain to proceed from i to j in a finite number of

transitions, i.e., if p(n)> 0 for some n� 0. If, in addition,

j ! i, then the two states are said to communicate with

each other, written as i ↔ j. If every state is reachable

from every other state in the chain, the chain is said to be

irreducible, i.e., the chain is not reducible into subclasses

of states that do not communicate with each other.

Furthermore, the period of state i is defined as the

greatest common divisor, d(i), of the set of positive

integers n such that p
ðnÞ
ii > 0 (with d(i) 
 0 when

p
ðnÞ
ii ¼ 0 for all n � 1). If d(i) ¼ 1, then i is said to be

aperiodic; otherwise, it is periodic with period d(i).

Clearly, any state with p
ðnÞ
ii � 0 is an aperiodic state.

All states in a single communicating class must have

the same period, and the full Markov chain is said to be

aperiodic if all of its states have period 1.

For each pair of states (i, j) of a Markov chain,

define f
ðnÞ
ij as the probability that a first return from i

to j occurs in n transitions and fij as the probability of

ever returning to j from i. If fij ¼ 1, the expectation mij

of this distribution is called the mean first passage time

from i to j. When j ¼ i, write the respective

probabilities as f
ðnÞ
i and fi, and the expectation as mi,

which is called the mean recurrence time of i. If fi ¼ 1

and mi < 1, state i is said to be positive recurrent or

nonnull recurrent; if fi¼ 1 andmi¼1, state i is said to

be null recurrent; if fi < 1, state i is said to be transient.

A major result that follows from the above is that if

i↔ j and i is recurrent, then so is j. Furthermore, if the

chain is finite, then all states cannot be transient and at
least one must be recurrent; if all the states in the finite

chain are recurrent, then they are all positive recurrent.

More generally, all the states of an irreducible chain

are either positive recurrent, null recurrent, or

transient.
Example: Reflecting Random Walk

Consider such a chain with movement between its four

states governed by the single-step transition matrix
P ¼
0 1 0 0

1=3 1=3 1=3 0

0 2=3 0 1=3
0 0 1 0

2
664

3
775: (1)

All the states communicate since there exists a path

with non-zero probability from state 1 back to state 1

hitting all the other states in the interim. All the states

are recurrent and aperiodic, as well.

If the randomwalk were infinite instead and without

reflecting barriers (on either side), then the chain

would be recurrent if and only if it is equally

probable to go from right to left from each state; for

otherwise the system would drift to + 1 or � 1
without returning to any finite starting point.
Limiting Behavior

The major characterizations of the stochastic behavior

of a chain are typically stated in terms of its long-run or

limiting behavior. Define the probability that the chain

is in state j at the nth transition as pðnÞj , with the initial

distribution written as pð0Þj . A discrete Markov chain is

said to have a stationary distributionp¼ (p0,p1, . . .) if
these (legitimate) probabilities satisfy the vector–matrix

equation p ¼ pP. When written out in simultaneous

equation form, the problem is equivalent to solving
pj ¼
X
i

pipij; j ¼ 0; 1; 2; . . . ; with

X
i

pi ¼ 1:

The chain is said to have a long-run, limiting,

equilibrium, or steady-state probability distribution

p ¼ (p0, p1,. . .) if
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lim
n!1 pðnÞj ¼ lim

n!1 PrfXn ¼ jg ¼ pj; j ¼ 0; 1; 2; . . .

A Markov chain that is irreducible, aperiodic and

positive recurrent is said to be ergodic, and the

following theorem relates these properties to the

existence of stationary and/or limiting distributions.

Theorem: If {Xn} is an irreducible, aperiodic,

time-homogeneous Markov chain, then limiting

probabilities

pj ¼ lim
n!1 PrfXn ¼ jg; j ¼ 0; 1; 2; . . .

always exist and are independent of the initial state

probability distribution. If all the states are either null

recurrent or transient, then pj ¼ 0 for all j and no

stationary distribution exits; if all the states are

instead positive recurrent (thus the chain is ergodic),

then pj > 0 for all j the set {pj} also forms a stationary

distribution, with pj ¼ 1/mj.

It is important to observe that the existence of

a stationary distribution does not imply that a limiting

distribution exists. An example is the simple Markov

chain
M

P ¼ 0 1

1 0

� 

:

For this chain, it is easy to show that the vector

p ¼ (1/2, 1/2) solves the stationary equation.

However, since the chain is oscillating between states

1 and 2, there will be no limiting distribution. The

chain clearly has period 2, which violates the

sufficient conditions for the above ergodic theorem.

Combined with the earlier discussion, this implies

that an irreducible finite-state chain needs to be

aperiodic to be ergodic. Note that the stationary

distribution (1/2, 1/2) still has meaning because it

gives the fraction of time the chain spends in each

state in the limit, even though there is periodic

oscillation.
More on the Reflecting Random Walk

The example Markov chain with single-step transition

matrix given by (1) is ergodic, so its steady-state

probabilities are found by solving p ¼ pP, written

out as the simultaneous system
p1 ¼ 1

3
p2

p2 ¼ p1 þ 1

3
p2 þ 1

3
p3

p3 ¼ 1

3
p2 þ p4

p4 ¼ 2

3
p3:

When these equations are solved and normalized (to

sum to 1), a unique solution is found p ¼ (1/9, 3/9, 3/9,

2/9). Furthermore, the limiting n-stepmatrix, limn!1 Pn,

would have identical rows all equal to the vector p.
More on the Gambler’s Ruin Problem

For the Gambler’s Ruin, there are three classes of

states, {0}, {1, 2,. . ., M � 1}, and {M}. After

a finite time, the gambler will either reach the goal

of M units or lose all the money. Of particular

interest is the probability that the gambler’s

fortune will grow to M before all the resources are

lost, denoted here by pi, i ¼ 0, 1,. . ., M. It is not too

difficult to show that

pi ¼
1� ½ð1� pÞ=p�i
1� ½ð1� pÞ=p�M if p 6¼ 1

2

i

M
if p ¼ 1

2
:

8>><
>>:
More on the Coin Toss Sequence Problem

For the coin toss sequence example, the single-step

transition matrix is given by
P ¼
1=2 1=2 0 0

0 0 1=2 1=2
1=2 1=2 0 0

0 0 1=2 1=2

2
664

3
775:

This particular matrix is very special since its

columns also add up to 1; such a matrix is said to be

doubly stochastic. It can be shown that any doubly

stochastic transition matrix coming from a recurrent

and aperiodic finite chain has the discrete uniform

stationary probabilities pj ¼ 1/M.
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Concluding Remarks

For continuous-time Markov chains, the analog for the

single-step transition matrix is the transition rate matrix

(infinitesimal generator), where the matrix entries of

probabilities are replaced by rates of exponentially

distributed random variables. The holding time

in a state in a continuous-time Markov chain is

exponentially distributed, the analog to the geometric

holding time in a state of a discrete-time Markov chain.

Well-known examples of continuous-time Markov

chains include birth-death processes (analog to random

walk), the Poisson process, and many queueing systems

with exponentially distributed interarrival and service

times, e.g., Jackson queueing networks.
See

▶Birth-Death Process

▶Markov Processes

▶Matrix-Analytic Stochastic Models

▶Networks of Queues

▶ Poisson Process

▶Queueing Theory

▶ Stochastic Process
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Introduction

The finite-state, finite-action Markov decision process

(MDP) is a model of sequential decision making under

uncertainty. MDPs have been applied in such diverse

fields as health care, highway maintenance, inventory,

machine maintenance, cash-flow management, and

regulation of water reservoir capacity (Derman 1970;

Hernandez-Lermer 1989; Ross 1995; White 1969).

After defining an MDP and providing a simple

illustrative example, various solution procedures for

several different types of MDPs are presented, all of

which are based on dynamic programming (Bertsekas

2007; Howard 1971; Puterman 2005; Sennott 1999).
Problem Formulation

Let k 2 0; 1; . . . ; K � 1f g represent the kth stage or

decision epoch, i.e., when the kth decision must be

selected; K < 1 represents the planning horizon of

the Markov decision process. Let sk be the state of the

system to be controlled at stage k. This state must be

a member of a finite set S, called the state space, where

sk 2 S, k ¼ 0, 1,. . ., K. The state process {sk, k ¼ 0,

1,. . .,K} makes transitions according to the conditional

probabilities
pijðaÞ ¼ Pr skþ1 ¼ jjsk ¼ i; ak ¼ af g;

where ak is the action selected at stage k. The action

selected must be a member of the finite action space A,

which is allowed to depend on the current state value,

i.e., ak 2 A(i) when sk ¼ i, thus allowing ak to be

selected on the basis of the current state sk for all k. Let

dk be a mapping from the state space into the action

space satisfying dk(sk) 2 A(sk). Then dk is called

a policy and a sequence of policies p ¼ {d0,. . ., dK�1}

is known as a strategy.

Let r(i, a) be the one-stage reward accrued at stage

k¼ 0, 1,. . .,K� 1, if sk¼ i and ak¼ a. Assume �r (i) is the

terminal reward accrued at stage K (assuming K<1) if

http://dx.doi.org/10.1007/978-1-4419-1153-7_200988
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_598
http://dx.doi.org/10.1007/978-1-4419-1153-7_667
http://dx.doi.org/10.1007/978-1-4419-1153-7_200606
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
http://dx.doi.org/10.1007/978-1-4419-1153-7_200814
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sk ¼ i. The total discounted reward over the planning

horizon accrued by strategy p ¼ {d0,. . ., dK�1} is then

given by

XK�1

k¼0

bkr sk; akð Þ þ bK�r skð Þ

where ak ¼ dk(sk), k ¼ 0, 1,. . ., K � 1, where b is the

nonnegative real-valued discount factor. The problem

objective is to select a strategy that maximizes the

expected value of the total discounted reward, with

respect to the set of all strategies. Any such strategy

is called an optimal strategy.

Example — An inspector must decide at each stage,

on the basis of a machine’s current state of

deterioration, whether to replace the machine, repair

it, or do nothing. Assume that the machine can be in

one of M states, i.e., the state space is S ¼ {1,. . ., M},

where 1 represents the perfect machine state, M

represents the failed machine state, and 1 < m < M
represents an imperfect but functioning state of the

machine. Each week the machine inspector can

choose to let the machine produce (the do-nothing

decision a ¼ 1), completely replace the machine (the

replace decision a ¼ R), or perform some sort of

maintenance on the machine, 1 < a < R. Thus, the
action space is A ¼ {1,. . ., R}. Generally, these

problems are expressed in terms of costs rather than

rewards, which can be formulated as r(i, a) ¼ -c(i, a),
where c(i, a) be the cost accrued over the following

week if at the beginning of the week the machine is in

state i and the machine inspector selects action a. Let b
be the current value of a dollar to be received next

week. Assume the transition probabilities pij(a) are

known for all i, j 2 S, a 2 A, where generally

pi1(R) ¼ 1 and pij (1) ¼ 0 if j < i.
Dynamic Programming Formulation (Finite
Stage Case)

To formulate the MDP as a dynamic program for the

finite planning horizon case, let fk(i) be the optimal

expected total discounted reward accrued from stage

k through the terminal stage K, assuming sk ¼ i. Note
that fk(i) should differ from fk+1(sk+1) only by the

reward accrued at stage k. In fact, it is easily shown

that fk and fk+1 are related by the dynamic programming

optimality equation
fkðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X
j2S

pijðaÞfkþ1ðjÞ
( )

;

which has boundary condition fK(i) ¼ �r (i). Note also

that an optimal strategy p∗ ¼ {d�0,. . ., d�K�1}

necessarily and sufficiently satisfies
fkðiÞ ¼ r½i; d�kðiÞ� þ b
X
j

pij½d�kðiÞ�fkþ1ðjÞ

for all k ¼ 0, 1,. . ., K � 1. Thus, the action that should

be taken at stage k, given sk ¼ i, is any action that

achieves the maximum in
max
a2AðiÞ

rði; aÞ þ b
X
j

pijðaÞfkþ1ðjÞ
( )

:

The Infinite Horizon Discounted
Reward Case

For the infinite horizon setting where K ¼ 1, there

may exist strategies that could generate an infinite

reward. However, if the discount factor b is strictly

less than 1, no such strategy exists, which can be

verified by noting that
X1
k¼0

bkrðsk; akÞ �
X1
k¼0

bk max
ði;aÞ

jrði; aÞj ¼
max
ði;aÞ

jrði; aÞj
1� b

:

Not surprisingly, the dynamic program for the

infinite horizon case can be related to the dynamic

program for the finite horizon case. Defining m as

the number of stages to go until the terminal

stage of the finite horizon case, the dynamic

program for the finite horizon problem can then

be rewritten as
gmþ1ðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X
j

pijðaÞgmðjÞ
( )

where fk(i) ¼ gK�k (i). Now the optimal expected total

discounted reward should be g(i) ¼ limm!1 g(i) for
initial state i, which should satisfy
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gðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X
j

pijðaÞgðiÞ
( )

(1)

if the limit and maximization operators can be

interchanged. It so happens that this interchange is

possible under the conditions considered here, and

hence the optimal expected total discounted reward

uniquely satisfies (1). It can also be shown that an

optimal strategy exists that is stage invariant and that

this strategy, or equivalently, policy, satisfies
gðiÞ ¼ r½i; d�ðiÞ� þ b
X
j

pij½d��gðjÞ (1a)

for all i 2 S.
Solution Procedures

Three different computational approaches for

determining g and d∗ in (1) are presented.

Linear Programming — The following linear

program can solve the infinite-horizon discounted

MDP:
minimize
X
i2S

gðiÞ

subject to gðiÞ � b
X
j

pijðaÞgðjÞ � rði; aÞ

where the constraint inequality must be satisfied for all

i 2 S and a 2 A(i), i 2 S.
Successive Approximations — This procedure, in

its simplest form, involves determining gm (i) for large

m, using the iteration equation
gmðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X
j

pijðaÞgm�1ðjÞ
( )

;

where g0(i) can be arbitrarily selected; however, it

is generally beneficial to select g0 as close to g as

possible if there is some way of estimating g

a priori.
Policy Iteration — This computational procedure

involves the following iterative approach:

Step 0: Select d
Step 1: Determine gd where gd, satisfy
gdðiÞ ¼ r½i; dðiÞ� þ b
X
j

pij½dðiÞ�gdðjÞ:

Note that

gd ¼ I � bPdð Þ�1rd

where Pd ¼ {p ij [d(i)]}, gd ¼ {gd (i)}, rd ¼ {r[i, d(i)]},
I is the identity matrix, and the inverse is guaranteed to

exist since b < 1.

Step 2: Determine d´ that satisfies

r½i; d0ðiÞ� þ b
X
j

pij½d0ðiÞ�gdðjÞ

¼ max
a2AðiÞ

rði; aÞ þ b
X
j

pijðaÞgdðjÞ
( )

:

Step 3: Set d ¼ d0 and return to Step 1 until gd and gd 0

are sufficiently close.

Note that each of the above solution procedures is

far more efficient than exhaustive enumeration.

Combining policy iteration and successive

approximations can lead to efficient computational

procedures for large-scale infinite-horizon

discounted MDPs.

Markov Decision Processes without
Discounting (The Average Reward Case)

Assume that the criterion is

lim
K!1

1

K þ 1

	 

E
XK
k¼0

rðSk; akÞ
( )

which is the expected average reward criterion. When

the system operates under stationary policy d, it can be
shown that there exist values vd (i), i 2 S, and a state

independent gain gd, which satisfy
gd þ vdðiÞ ¼ r½i; dðiÞ� þ
X
j

pij½dðiÞ�vdðiÞ (2)

if Pd is ergodic. Let g
∗, d∗ and v be such that

g� þ vðiÞ ¼ max
a2AðiÞ

rði; aÞ þ b
X
j

pijvðjÞ
( )

¼ r½i; d�ðiÞ� þ
X
j

pij½d�ðiÞ�vðjÞ
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where Pd is assumed ergodic for all d. Then, g∗ is the

value of the criterion generated by an optimal strategy

and d∗ is an optimal strategy. The following is a policy

iteration procedure for determining g∗, d∗ and v, where

it is necessary only to know v up to a positive constant

due to the sum-to-one characteristic of the probabilities.

Algorithm. Step 0: Choose d.
Step 1: Solve equation (2) for vd and gd, where for

some i, vd(i) ¼ 0.

Step 2: Determine a policy d´ that achieves the

maximum in

max
a2AðiÞ

rði; aÞ þ
X
j

pijvdðiÞ
( )

:

Step 3: Set d¼ d0 and go to Step 1 until gd and gd 0 are
sufficiently close.
M

Concluding Remarks

The discussion has focused on theMDP settingwhere the

state and action spaces are finite; the reward is separable

with respect to stage; all rewards, the discount factor, and

all transition probabilities are known precisely and the

current state can be accurately made available to the

decision maker before selection of the current

alternative. The references treat more general settings.

Much research effort is devoted to improving the

computational tractability of large-scale MDPs so as to

improve both the validity and tractability of this

modeling tool. One such approach is approximate

dynamic programming, which is treated in detail in

Volume II of Bertsekas (2007).
See

▶Approximate Dynamic Programming

▶Dynamic Programming

▶Markov Chains

▶Markov Processes
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Introduction

AMarkov process is a stochastic process {X(t), t 2 T}

with state space S and time domain T that satisfies the

Markov property, which is also known as lack of

memory. In general, probabilities of behavior of

a stochastic process at future times usually depend on

the behavior of the process at times in the past. The

Markov property means that probabilities of future

events are completely determined by the present state

of the process: if the current state of the process is

known, then the past behavior of the process provides

no additional information in determining the

probabilities of future events. Mathematically, the

process {X(t), t 2 T} is Markov if, for any n > 0, any

t1 < t2 < . . ., < tn < tn+1 in the time domain T, and any
states x1, x2,. . ., xn and any set A in the state space S,

PrfXðtnþ1Þ 2 AjXðt1Þ ¼ x1; . . . ;XðtnÞ ¼ xng
¼ PrfXðtnþ1Þ 2 AjXðtnÞ ¼ xng:

The conditional probabilities on the right-hand side

of this equation are the transition probabilities of the

Markov process; they play a key role in the study

of Markov processes. The transition probabilities

of the process are presented as a transition function

p(s, x; t, A)¼ Pr{X(t) 2 A | X(s)¼ x}, s< t, for s, t 2
T, x 2 S, and A � S. The initial distribution of the

http://dx.doi.org/10.1007/978-1-4419-1153-7_1189
http://dx.doi.org/10.1007/978-1-4419-1153-7_264
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
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process is q(A) ¼ Pr{X(0) 2 A}, for A � S. The

distribution of a Markov process is uniquely

determined by an initial distribution q(·) and

a transition function p(·,. . .,·): for 0 ¼ t0 < t1 < . . . < tn
in the time domain, and subsets A1, A2,. . ., An of the

state space S,

Pr Xðt1Þ 2 A1; . . . ;XðtnÞ 2 Anf g
¼
Z
x02S

qðdx0Þ
Z
x12A1

pðt0; x0; t1; dx1Þ 	 	 	Z
xn�12An�1

pðtn�2; xn�2; tn�1; dxn�1Þpðtn�1; xn�1; tn;AnÞ:

An equivalent interpretation of theMarkov property

is that the past behavior and the future behavior of

the process are conditionally independent given the

present state of the process: for any m > 0, any n > 0,

any t�m < . . ., < t�1 < t0 < t1 < . . ., < tn in the time

domain, and any state x0 and any sets A1, A2,. . ., Am and

B1, B2,. . ., Bn in the state space S,
PrfXðt�mÞ 2 Am; . . . ;Xðt�1Þ 2 A1;Xðt1Þ2 B1;

. . . ;XðtnÞ 2 BnjXðt0Þ ¼ x0g
¼ PrfXðt�mÞ 2 Am; . . . ;Xðt�1Þ 2 A1jXðt0Þ ¼ x0g

	 PrfXðt1Þ 2 B1; . . . ;XðtnÞ 2 BnjXðt0Þ ¼ x0g:

A Markov process has stationary transition

probabilities if the transition probabilities are time

invariant, i.e., for s, t > 0, Pr{X(s + t) 2 A |

X(s) ¼ x} ¼ Pr{X(t) 2 A|X(0) ¼ x}. In this case the

transition function takes the simplified form

pt (x, A) ¼ Pr{X(t) 2 A | X(0) ¼ x}. Most Markov

process models assume stationary transition

probabilities.
Classification of Markov Processes

There is a natural classification of Markov processes

according to whether the time domain T and the state

space S are denumerable or non-denumerable. This

yields four general classes. Denumerable time

domains are usually modeled as the integers or

non-negative integers. Non-denumerable time

domains are usually modeled as the continuum

(R or [0, 1]). Denumerable state spaces can be

modeled as the integers, but it is often useful to

retain other descriptions of the states rather than

simply enumerating them. Non-denumerable state
spaces are usually modeled as a one or higher

dimensional continuum. Roughly speaking, discrete

is equivalent to denumerable and continuous is

equivalent to non-denumerable. In 1907, Markov

considered a discrete time domain and a finite state

space; he used the word “chain” to denote the

dependence over time, hence the term Markov chain

for Markov processes with discrete time and

denumerable states. See Maistrov (1974) for some

historical discussion and see Appendix B of Howard

(1971) for a reprint of one of Markov’s 1907 papers.

There is no universal convention for the scope of

definition of Markov chain. Chung (1967) and most

elementary operations research/management science

textbooks (e.g., Hillier and Lieberman 2009) define

Markov processes with denumerable state spaces to

beMarkov chains. Iosifescu (1980) and the Romanian

school use the convention that Markov chain applies

to discrete time and any state space, while Markov

process applies to continuous time and any state

space. The terminology varies in popular texts:

Karlin and Taylor (1975, 1981) and Ross (1995)

agree with Chung; Breiman (1968) and Çinlar

(1975) agree with the Romanians. The terms

discrete-time Markov chain (DTMC) and

continuous-time Markov chain (CTMC) are sometimes

used to clarify the situation.

Here are four examples of Markov processes

representing the four classes with respect to discrete

or continuous time and denumerable or continuous

state space.

(a) Gambler’s Ruin (discrete time/denumerable

states). A gambler makes repeated bets. On each

bet he wins $1 with probability p or loses $1 with

probability 1� p. Outcomes of successive bets are

independent events. He starts with a certain initial

stake and will play repeatedly until he loses all his

money or until he increases his fortune to $M. Let

Xn equal the gambler’s wealth after n plays. The

stochastic process {Xn, n¼ 0, 1, 2,. . .} is a discrete

time Markov chain (DTMC) with state space {0, 1,

2, . . ., M}. The Markov property follows from the

assumption that outcomes of successive bets are

independent events. The Markov model can be

used to derive performance measures of interest

for this situation: for example, the probability he

loses all his money, the probability he reaches his

goal of $M, and the expected number of times he

makes a bet. All these performance measures are
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functions of his initial stake x0, probability p and

goal M. (The gambler’s fortune is a random walk

with absorbing boundaries 0 and M.) The

gambler’s ruin is a simplification of more

complex systems that experience random

rewards, risk, and possible ruin; for example,

insurance companies.

(b) A Maintenance System (continuous time/

denumerable states). A system consists of two

machines and one repairman. Each machine

operates until it breaks down. The machine is

then repaired and put back into operation. If the

repairman is busy with the other machine, the just

broken machine waits its turn for repair. So, each

machine cycles through the states: operating (O),

waiting (W), and repairing (R). Labeling the

machines as “1” and “2” and using the

corresponding subscripts, the states of the system

are (O1,O2), (O1,R2), (R1,O2), (W1,R2) and

(R1,W2). Assume that all breakdown instances

and repairs are independent of each other and

that the operating times until breakdown and

the repair times are random with exponential

distributions. The mean operating times for the

machines are 1/a1 and 1/a2, respectively (so the

machines break down at rates a1 and a2).
The mean repair times for the machines are 1/b1
and 1/b2, respectively (so the machines are

repaired at rates b1 and b2). Letting Xi(t) equal

the state of machine i at time t, the stochastic

process {(X1(t), X2(t)), 0�t} is a continuous time

Markov chain (CTMC) on a state space consisting

of five states. The Markov property follows from

the assumption about independent exponential

operating times and repair times. (The exponential

distribution is the only continuous distribution with

lack-of-memory.) For this type of system there are

several performance measures of interest: for

example, the long-run proportion of time both

machines are broken or the long-run average

number of working machines. This maintained

system is a simplified example of more complex

maintained systems.

(c) Quality Control System (discrete time/continuous

states). A manufacturing system produces

a physical part that has a particularly critical

length along one dimension. The specified value

for the length is a. However, the manufacturing

equipment is imprecise. Successive parts produced
by this equipment vary randomly from the desired

value, a. Let Xn equal the size of the nth part

produced. The noise added to the system at each

step is modeled asDn�Normal(0, d2). The system
can be controlled by attempting to correct the size

of the (n + 1)st part by adding cn ¼ �b (xn � a) to
the current manufacturing setting after observing

the size xn of the nth part; however,

there is also noise in the control so that, in fact,

Cn � Normal (cn,(gcn)
2) is added to the current

setting. This gives Xn+1 ¼ Xn + Cn + Dn. The

process {Xn, n ¼ 0, 1, 2,. . .} is a discrete-time

Markov process on a continuous state space. The

Markov property will follow if all the noise

random variables {Dn} are independent and the

control random variables {Cn} depend only on

the current setting (Xn) of the system.

Performance measures of interest for this system

include the long-run distribution of lengths

produced (if the system is stable over the long-

run). There is also a question of determining the

values of b for which the system is stable and then

finding the optimal value of b.
(d) Brownian Motion (continuous time/continuous

states). In 1828, English botanist Robert Brown

observed random movement of pollen grains on

the surface of water. The motion is caused by

collisions with water molecules. The

displacement of a pollen grain as a function of

time is a two-dimensional Brownian motion.

A one-dimensional Brownian motion can be

obtained by scaling a random walk: Consider a

sequence of independent, identically-distributed

random variables, Zi, with Pr{Zi ¼ +1} ¼ Pr

{Zi ¼ �1} ¼ 1/2, i ¼ 1, 2,.... Let Sn ¼
Pn

i¼1 Zi,
n ¼ 0, 1, 2,.... Then, let Xn (t) ¼ n �1/2 S[nt ],0 � t

� 1, n ¼ 1, 2,. . ., where [nt] is the greatest integer

� nt. As n!1, the sequence of processes {Xn(t),
0� t� 1} converges to {W(t), 0� t� 1}, standard

Brownian motion or the Wiener process; see

Billingsley (1968). The Wiener process is

a continuous-time, continuous-state Markov

process. The sample paths of the Wiener process

are continuous. Diffusions are the general class of

continuous-time, continuous-state Markov

processes with continuous sample paths.

Diffusion models are useful approximations to

discrete processes analogous to how the Wiener

process is an approximation to the above random
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walk process {Sn, n ¼ 0, 1, 2,. . .}; see Glynn

(1990). Geometric Brownian motion {Y(t), 0 � t}
is defined as Y(t) ¼ exp(sW(t)), 0 � t; it is

a diffusion. Geometric Brownian motion has

been suggested as a model for stock price

fluctuations; see Karlin and Taylor (1975).

A performance measure of interest is the

distribution of the maximum value of the process

over a finite time interval.

There are various performance measures that can be

derived for Markov process models. Some specific

performance measures were mentioned for the above

examples. Some general behavioral properties and

performance measures are now described. The

descriptions are for a discrete-time Markov chain

{Xn, n ¼ 0, 1, 2,. . .} but similar concepts apply to

other classes of Markov processes. A Markov chain

is strongly ergodic if Xn converges in distribution as

n ! 1, independent of the initial state x0. A Markov

chain is weakly ergodic if n�1Pn
i¼1 Xi converges to

a constant as n!1, independent of the initial state x0.

Also as n ! 1, under certain conditions and for

real-valued functions f: S ! , f(Xn) converges in

distribution, n�1Pn
i¼1 f Xið Þ converges to a constant,

and n�1/2Pn
i¼1 f Xið Þ � Ef Xið Þ½ � is asymptotically

normal. Markov process theory identifies conditions

for ergodicity, conditions for the existence of limits,

and provides methods for evaluation of limits when

they exist. For example, in the above maintained

system example, f(·) might be a cost function and the

performance measure of interest is long-run average

cost. The above performance is long-run

(or infinite-horizon, or steady-state, or asymptotic)

behavior. Short-run (or finite-horizon, or transient)

behavior and performance is also of interest. For

a subset A of the state space S, the first passage time TA
is the time of the first visit of the process to

A: TA ¼ min{n: Xn 2 A}. The hitting probability

Pr{TA < 1}, the distribution of TA, and E(TA) are of

interest. In the gambler’s ruin example, the gambler

wants to know the hitting probabilities for sets {0} and

{M}. Transient analysis of Markov processes

investigates these and other transient performance

measures. The analysis of performance measures takes

on different forms for the four different classes of

Markov processes.

Evaluation of performance measures for Markov

process models of complex systems may be difficult.

Standard numerical analysis algorithms are sometimes
useful, and specialized algorithms have been developed

for Markov models; for example, see Grassmann

(1990). Workers in the field of computational

probability have developed and evaluated numerical

solution techniques for Markov models by exploiting

special structure and probabilistic behavior of the

system or by using insights gained from theoretical

probability analysis. In this spirit, Neuts (1981) has

developed algorithms for a general class of Markov

chains. A structural property of Markov chains called

reversibility leads to efficient numerical methods of

performance evaluation; see Keilson (1979), Kelly

(1979), and Whittle (1986). There is a relationship

between discrete-time and continuous-time Markov

chains called uniformization or randomization that can

be used to calculate performance measures of

continuous-time Markov chains; see Keilson (1979)

and Gross and Miller (1984). For Markov chains with

huge state spaces, Monte Carlo simulation can be used

as an efficient numerical method for performance

evaluation; see, for example, Hordijk, Iglehart and

Schassberger (1976) and Fox (1990).

There are classes of stochastic processes related to

Markov processes. There are stochastic processes that

exhibit some lack of memory but are not Markovian.

Regenerative processes have lack of memory at special

points (regeneration points) but at other times the

process has a memory; see Çinlar (1975).

A semi-Markov process is a discrete-state continuous-

time process that makes transitions according to

a DTMC but may have general distributions of

holding times between transitions; see Çinlar (1975). It

is sometimes possible to convert a non-Markovian

stochastic process into a Markov process by expanding

the state description with supplementary variables; that

is, {X(t), 0� t} may be non-Markovian but {(X(t), Y(t)),
0� t} is Markovian. Supplementary variables are often

elapsed times for phenomena with memory; in this way

very general discrete state stochastic systems can be

modeled as Markov processes with huge state spaces.

The general model for discrete-event dynamic systems

is the generalized semi-Markov process (GSMP); see

Whitt (1980) and Cassandras and Lafortune (2008).

The index set T of a stochastic process {X(t), t 2 T}

may represent “time” or “space” or both, leading

to temporal processes, spatial processes, or

spatial-temporal processes when the index set is time,

space, or space-time, respectively. Stochastic processes

with multi-dimensional index sets are called random
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fields. The Markov property can be generalized to the

context of multi-dimensional index sets resulting in

Markov random fields; see Kelly (1979), Kindermann

and Snell (1980) and Whittle (1986). Markov random

fields have many applications. They are models for

statistical mechanical systems (interacting particle

systems). They are useful in texture analysis and

image analysis; see Chellappa and Jain (1993).
See

▶Hidden Markov Models

▶Markov Chain Monte Carlo

▶Markov Chains

▶Markov Decision Processes

▶Markov Random Field

▶Monte Carlo Simulation

▶Regenerative Process

▶Regenerative Simulation

▶Reversible Markov Chain/Process
M
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Markov Property

When the behavior of a stochastic process {X(t), t 2 T}
at times in the future depends only on the present state of

the process (past behavior of the process affects the

future behavior only through the present state of

the process); viz., for any n > 0, any set of time points

t1 < t2 < . . . < tn < tn+1 in the time domain T, and any

http://dx.doi.org/10.1007/978-1-4419-1153-7_417
http://dx.doi.org/10.1007/978-1-4419-1153-7_1164
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_580
http://dx.doi.org/10.1007/978-1-4419-1153-7_200434
http://dx.doi.org/10.1007/978-1-4419-1153-7_200485
http://dx.doi.org/10.1007/978-1-4419-1153-7_200698
http://dx.doi.org/10.1007/978-1-4419-1153-7_1163
http://dx.doi.org/10.1007/978-1-4419-1153-7_200715
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states x1, x2,. . ., xn and any set A in the same space,

Pr{X(tn+1) 2 A|X(t1) ¼ x1,. . ., X(tn) ¼ xn} ¼
Pr{X(tn+1) 2 A|X(tn) ¼ xn}.
See

▶Markov Chains

▶Markov Processes
Markov Random Field

A random field that satisfies a generalization of the

Markov property.
See

▶Markov Processes

▶Random Field
Markov Renewal Process

When the times between successive transitions of

a Markov chain are independent random variables

indexed on the to and from states of the chain.
See

▶Markov Chains

▶Markov Processes

▶Networks of Queues

▶Renewal Process
Markov Routing

The process of assigning customers to nodes in

a queueing network according to a Markov chain

over the set of nodes, where p(j, k) is the

probability that a customer exiting node j proceeds

next to node k, with 1 � P
p(j, k) being the

probability a customer leaves the network from
node j (the sum is over all nodes of the network,

including leaving the network altogether).
See

▶Networks of Queues
Markovian Arrival Process (MAP)

▶Matrix-Analytic Stochastic Models
Marriage Problem

Given a group of m men and m women, the marriage

problem is to couple the men and women such that the

total happiness of the group is maximized when the

assigned couples marry. The women and the men

determine an m � m table of happiness coefficients,

where the coefficient aij represents the happiness rating
for the couple formed by woman i and man j if they

marry. The larger the aij, the higher the happiness. The

problem can be formulated as an assignment problem

whose solution matches each woman to one man. This

result, which is due to the fact that the assignment

problem has a solution in which the variables can

take on only the values of 0 or 1, is sometimes used

to prove that monogomy is the best form of marriage.
See

▶Assignment Problem
Martingale

A stochastic process (with finite expectation) for which

the conditional expectation of future values is equal to

the present value. For example, for a discrete-time

process {X0, X1, X2,. . .},
E Xnþ1½ jX0;X1; . . .Xn� ¼ Xn:

http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_200680
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
http://dx.doi.org/10.1007/978-1-4419-1153-7_667
http://dx.doi.org/10.1007/978-1-4419-1153-7_880
http://dx.doi.org/10.1007/978-1-4419-1153-7_667
http://dx.doi.org/10.1007/978-1-4419-1153-7_598
http://dx.doi.org/10.1007/978-1-4419-1153-7_200965
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Master Problem

The transformed extreme-point problem that results

when applying the Dantzig-Wolfe decomposition

algorithm.
See

▶Dantzig-Wolfe Decomposition Algorithm
Matching

Richard W. Eglese

Lancaster University, Lancaster, UK
M

Introduction

Matching problems form an important branch of graph

theory. They are of particular interest because of their

application to problems found in Operations Research.

Matching problems also form a class of integer-linear

programming problems which can be solved in

polynomial time. A good description of the historical

development of matching problems and their solutions is

contained in the preface of Lovasz and Plummer (2009).

Given a simple non-directed graphG ¼ [V,E] (where
V is a set of vertices and E is a set of edges), then

a matching is defined as a subset of edges M such that

no twoedges ofM are adjacent.Amatching is said to span

a set of verticesX inG if every vertex inX is incidentwith

an edgeof thematching.Aperfectmatching is amatching

which spans V. A maximum matching is a matching of

maximum cardinality, i.e. a matching with the maximum

number of members in the set.

A graph is called a bipartite graph if the set of

vertices V is the disjoint union of sets V1 and V2 and

every edge in E has the form (v1, v2) where v1 is

a member of V1 and v2 is a member of V2.
Matching on Bipartite Graphs

The first type of matching problems consists of those

which can be formulated as matching problems on
a bipartite graph. For example, suppose V1 represents

a set of workers and V2 represents a set of tasks to be

performed. If each worker is able to perform a subset

of the tasks and each task may be performed by some

subset of the workers, the situation may be modeled

by constructing a bipartite graph G, where there is an
edge between v1 in V1 and v2 in V2 if and only if

worker v1 can perform task v2. If it is assumed that

each worker may only be assigned one task and each

task may only be assigned to be carried out by one

worker, the problem is an assignment problem.

To find the maximum number of tasks which can

be performed, the maximum matching on G must be

found. If a measure of effectiveness can be associated

with assigning a worker to a task, then the question

may be asked as to how the workers should be

assigned to tasks to maximize the total

effectiveness. This is a maximum weighted

matching problem. If costs are given in place of

measures of effectiveness, the minimum cost

assignment problem can be solved as a maximum

weighted matching problem after replacing each

cost by the difference between it and the maximum

individual cost. This assumes all workers or all tasks

must be assigned.

Both forms of assignment problem can be solved

by a variety of algorithms. For example, a maximum

matching on a bipartite graph can be found by

modeling the problem as a network flow problem

and finding a maximum flow on the model network.

A more efficient algorithm is due to Hopcraft and

Karp (1973). A well-known algorithm for solving

the maximum weighted matching problem (for

which the maximum matching problem can be

considered a special case) on a bipartite graph is

often referred to as the Hungarian method and was

introduced by Kuhn (1955, 1956). Kuhn casts the

procedure in terms of a primal-dual linear program.

The algorithm can be implemented so as to produce

an optimal matching in O(m 2 n) steps, where n is the

number of vertices andm is the number of edges in the

graph. The details are given in Lawler (1976).

Although this is an efficient algorithm, it may be

necessary to find faster implementations for

problems of large size or when the algorithm is used

repeatedly as part of a more complex procedure.

Various methods have been proposed including

those due to Jonker and Volgenant (1986) and

Wright (1990).

http://dx.doi.org/10.1007/978-1-4419-1153-7_200119
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Job Scheduling

Another example of a problem which can be modeled

as a matching problem arises from job scheduling

(Coffman and Graham 1972). Suppose n jobs are to

be processed and there are two machines available. All

jobs require an equal amount of time to complete and

can be processed on either machine. However there are

precedence constraints which mean that some jobs

must be completed before others are started. What is

the shortest time required to process all n jobs?

This example can be modeled by constructing

a graph G with n vertices representing the n jobs and

where an edge joins two vertices if and only if they can

be run simultaneously. An optimum schedule

corresponds to one where the two machines are used

simultaneously as often as possible. Therefore the

problem becomes one of finding the maximum

matching on G, from which the shortest time can be

derived. In this case though, the graph G is no longer

bipartite and so an algorithm for solving the maximum

matching problem on a general graph is required.

The first efficient algorithm to find a maximum

matching in a graph was developed by Edmonds

(1965a). Most successful algorithms to find

a maximum matching have been based on Edmonds’

ideas. Gabow (1976) and Lawler (1976) show how to

implement the algorithm in a time of O(n3). It is

possible to modify the algorithm for more efficient

performance on large problems. For example, Even

and Kariv (1975) present an algorithm running in

a time of O(n5/2) and Micali and Vazirani (1980)

describe an algorithm with running time of O(mn1/2).
Arc Routing

There is a close connection between arc routing

problems and matching. Suppose a person must

deliver mail along all streets of a town. What route

will traverse each street and return to the starting point

in minimum total distance? This problem is known as

the Chinese Postman Problem as it was first raised by

the Chinese mathematicianMeigu Guan (1962). It may

be formulated as finding the minimum length tour on

a non-directed graph G whose edges represent the

streets in the town and whose vertices represent the

junctions, where each edge must be included at least

once. Edmonds and Johnson (1973) showed that this
problem is equivalent to finding a minimum weighted

matching on a graph whose vertices represent the set of

odd nodes in G and whose edges represent the shortest

distances in G between the odd nodes. Odd nodes are

vertices where an odd number of edges meet. This

minimum weighted matching problem can be solved

efficiently by the algorithm introduced by Edmonds

(1965b) for maximum weighted matching problems

where the weights on each edge are the distances

multiplied by minus one. The Chinese Postman

Problem is therefore easier to solve than the

Traveling Salesman Problem where a polynomially

bounded algorithm has not yet been established.

For large problems, faster versions of the weighted

matching algorithm have been developed by Galil,

Micali and Gabow (1982) and Ball and Derigs (1983)

which require O(mn log n) steps. A starting procedure

which significantly reduces the computing time for the

maximum matching problem is described by Derigs

and Metz (1986) and involves solving the assignment

problem in a related bipartite graph.
b-Matchings

Given an integer bi for each vertex vi of V,

a b-matching of G is defined as a subset M of edges,

such that at each vertex vi, the number of edges of M

incident on vi is less than or equal to bi. A matching is

therefore a special case of a b-matching where bi ¼ 1

for all i. Efficient algorithms for b-matching problems

are described in Gerards (1995), which also provides

a good survey of matching in general.

Lower bounds for Vehicle Routing problems can be

obtained by relaxing the subtour elimination

and vehicle capacity constraints to give a perfect

b-matching problem. Miller (1995) shows that this

approach can be used in a branch-and-bound

frame-work for this application.
See

▶Assignment Problem

▶Branch and Bound

▶Chinese Postman Problem

▶Dual Linear-Programming Problem

▶Graph Theory

▶Hungarian Method

http://dx.doi.org/10.1007/978-1-4419-1153-7_200965
http://dx.doi.org/10.1007/978-1-4419-1153-7_200019
http://dx.doi.org/10.1007/978-1-4419-1153-7_110
http://dx.doi.org/10.1007/978-1-4419-1153-7_200158
http://dx.doi.org/10.1007/978-1-4419-1153-7_402
http://dx.doi.org/10.1007/978-1-4419-1153-7_200297
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▶ Integer and Combinatorial Optimization

▶Maximum-Flow Network Problem

▶Network

▶Transportation Problem

▶Traveling Salesman Problem

▶Vehicle Routing
M

References

Ball, M. O., & Derigs, U. (1983). An analysis of alternate

strategies for implementing matching algorithms. Networks,
13, 517–549.

Coffman, E. G., Jr., & Graham, R. L. (1972). Optimal scheduling

for two processor systems. Acta Informatica, 1, 200–213.
Derigs, U., & Metz, A. (1986). On the use of optimal fractional

matchings for solving the (integer) matching problem.

Computing, 36, 263–270.
Edmonds, J. (1965a). Paths, trees, and flowers. Canadian

Journal of Mathematics, 17, 449–467.
Edmonds, J. (1965b). Maximum matching and a polyhedron

with (0,1) vertices. Journal of Research National Bureau of
Standards, Section B, 69B, 125–130.

Edmonds, J., & Johnson, E. L. (1973). Matching, Euler tours and

the Chinese postman. Math Programming, 5, 88–124.
Even, S., &Kariv, O. (1975). AnO(n5/2) algorithm for maximum

matching in general graphs. 16th Annual symposium on
foundations of computer science, IEEE Computer Society

Press, New York, pp. 100–112.

Gabow, H. N. (1976). An efficient implementation of

Edmond’s algorithm for maximum matching on graphs.

Journal of the Association for Computing Machinery, 23,
221–234.

Galil, Z., Micali, S., & Gabow, H. (1982). Priority queues with

variable priority and an O (EV log V) algorithm for finding

a maximal weighted matching in general graphs. 23rd
Annual symposium on foundations of computer science,
IEEE Computer Society Press, New York, pp. 255–261.

Gerards, A. M. H. (1995). Matching. In M. O. Ball, T. L.

Magnanti, C. L. Monma, & G. L. Nemhauser (Eds.),

Network models, handbooks in operations research and
management science (Vol. 7, pp. 135–224). Amsterdam:

Elsevier.

Gondran, M., & Minoux, M. (1984). Graphs and algorithms.
Chichester: Wiley.

Guan, M. (1962). Graphic programming using odd and even

points. Chinese Mathematics, 1, 273–277.
Hopcroft, J. E., & Karp, R. M. (1973). An n5/2 algorithm for

maximum matchings in bipartite graphs. SIAM Journal on
Computing, 2, 225–231.

Jonker, R., & Volgenant, A. (1986). Improving the Hungarian

assignment algorithm. Operations Research Letters, 5,
171–175.

Kuhn, H. W. (1955). The Hungarian method for the assignment

problem. Naval Research Logistics Quarterly, 2, 83–97.
Kuhn, H. W. (1956). Variants of the Hungarian method for

assignment problems. Naval Research Logistics Quarterly,
3, 253–258.
Lawler, E. L. (1976). Combinatorial optimization, networks and
matroids. New York: Holt, Rinehart and Winston.

Lovasz, L., & Plummer, M. D. (2009). Matching theory.
Providence, RI: AMS Chelsea.

McHugh, J. A. (1990). Algorithmic graph theory. London:

Prentice-Hall.

Micali, S., & Vazirani, V. V. (1980). An O(V 1/2E) algorithm for

finding maximum matching in general graphs. 21st Annual
symposium on foundations of computer science, IEEE

Computer Society Press, New York, pp. 17–27.

Miller, D. L. (1995). A matching based exact algorithm for

capacitated vehicle routing problems. ORSA Journal of
Computing, 7, 1–9.

Wright, M. B. (1990). Speeding up the Hungarian algorithm.

Computers and Operations Research, 17, 95–96.
Material Handling

Meir J. Rosenblatt

Washington University in St. Louis, St. Louis,

MO, USA

Technion – Israel Institute of Technology, Haifa, Israel
Introduction

Material handling is concerned with moving raw

materials, work-in-process, and finished goods into

the plant, within the plant, and out of the plant to

warehouses, distribution networks, or directly to the

customers. The basic objective is to move the right

combination of tools and materials (raw materials,

parts and finished products) at the right time, to the

right place, in the right form, and in the right

orientation. And to do it with the minimum total cost.

It is estimated that 20% to 50% of the total operating

expenses within manufacturing are attributed to

material handling (Tompkins et al. 1996). Material

handling activities may account for 80% to 95% of

total overall time spent between receiving a customer

order and shipping the requested items (Rosaler and

Rice 1994). This indicates that improved efficiencies

in material handling activities can lead to substantial

reductions in product cost and production lead-time;

better space and equipment utilization, improved

working conditions and safety, improvements in

customer service; and, eventually to higher profits and

larger market share. Material handling adds to the

product cost but contributes nothing to the value added

of the products.

http://dx.doi.org/10.1007/978-1-4419-1153-7_129
http://dx.doi.org/10.1007/978-1-4419-1153-7_200454
http://dx.doi.org/10.1007/978-1-4419-1153-7_200508
http://dx.doi.org/10.1007/978-1-4419-1153-7_200865
http://dx.doi.org/10.1007/978-1-4419-1153-7_1068
http://dx.doi.org/10.1007/978-1-4419-1153-7_1105
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Design of material handling systems play a critical

role in just-in-time (JIT) manufacturing. Under JIT,

production is done in small lots so that production

lead-times are reduced and inventory holding costs

are minimized, requiring the frequent conveyance of

material. Thus, successful implementation of JIT

needs a fast and reliable material handling system as

a prerequisite. A major, related development with

great impact on the material handling process has

been the extensive implementation of Total Quality

Management (TQM) plans.

Production lot-sizing decisions have a direct impact

on the assignment of storage space to different items

(products) and consequently on the material handling

costs. Therefore, lot sizing decisions must take into

account not only setup and inventory carrying costs

but also warehouse and material handling costs. In

other words, production lot sizing, warehouse storage

assignment, and material handling equipment

decisions must be made simultaneously.

Also, in a flexible manufacturing environment, where

batches of productsmay have several possible alternative

routes, the choice of routing-mix can have a significant

effect on shop throughput and work-in-process

inventory. However, for such a system to be efficient,

an appropriate material handling system needs to be

designed. This design issue is especially important

when expensive machines are being used. Major waste

can be caused by a material handling system that is

inappropriate and becomes a bottleneck.

Finally, it should be recognized that

(computer-aided) facility layout determines the

overall pattern of material flow within the plant and,

therefore, has a significant impact on the material

handling activities and costs. It is estimated that

effective facilities planning and layout can reduce

material handling costs by at least 10% to 30%

(Tompkins et al. 1996). However, an effective layout

requires an effective material handling system.

Therefore, it is critical that these decisions are made

simultaneously.
Material Handling Equipment

There are several ways of classifyingmaterial handling

equipment: (1) type of control (operator controlled vs.

automated); (2) where the equipment works (on

the floor vs. suspended overhead); (3) travel path
(fixed vs. flexible). The fixed vs. flexible travel path

classification is used here as in Barger (1987). Flexible

path equipment can be moved along any route and in

general is operator-controlled. Trucks are a common

mode of operations. There are several types of trucks

depending on the type of handling that is needed, and

the following are the most common:

Counterbalanced fork trucks — used both for

storage at heights of 20 feet or more, as well as for

fast transportation);

Narrow-aisle trucks — mainly used for storage

applications;

Walkie Pallet trucks — mainly used for

transportation over short hauls; and

Manual trucks — mainly used for short hauls and

auxiliary services.

There are three important types of fixed-path

equipment:

Conveyors — Conveyors are one of the largest

families of material handling equipment. They can

be classified based on the load-carrying surface

involved: roller, belt, wheel, slat, carrier chain; or

on the position of the conveyor: on-floor or

overhead;

Automatic Guided Vehicles (AGVs) — these are

electric vehicles with on-board sensors that enable

them to automatically track along a guide path

which can be an electrified guide wire or a strip of

(reflective) paint or tape on the floor. The AGVs

follow their designated path using their sensors to

detect the electromagnetic field generated by the

electric wire or to optically detect the path marked

on the floor. AGVs can transport materials

between any two points connected by a guide

path — without human intervention. Most of

today’s AGVs are capable of loading and

unloading materials automatically. Most

applications of AGVs are for load transportation,

however, they could also be used in flexible

assembly operations to carry the product being

assembled through the various stages of assembly.

While AGVs have traditionally been fixed path

vehicles, advances in technology permit them to

make short deviations from their guide path. Such

flexibility may considerably increase their

usefulness; and

Hoists, Monorails, and Cranes — Hoists are a basic

type of overhead lifting equipment and can be

suspended from a rail, track, crane bridge or beam.
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A hoist consists of a hook, a rope or chain used for

lifting, and a container for the rope/chain.

Monorails consist of individual wheeled trolleys

that can move along an overhead track. The

trolleys may be either powered or non-powered.

Cranes have traditionally found wide application

in overhead handling of materials, especially

where the loads are heavy. Besides the overhead

type, there are types of cranes that are wall or floor

mounted, portable ones and so on. Types such as

stacker cranes are useful in warehouse operations.
M

Interaction with Automated Storage and
Retrieval Systems (AS/RS)

AS/RS consist of high-density storage spaces,

computer-controlled handling and storage

equipment (operated with minimal human

assistance) and may be connected to the rest of the

material handling system via some conveying

devices such as conveyors and AGVs. Several types

of AS/RS are available including: Unit Load,

Miniload, Man-On-Board, Deep Lane and

Carousels. The AS/RS systems help achieve very

efficient placement and retrieval of materials, better

inventory control, improved floor space utilization,

and production scheduling efficiency. They also

provide greater inventory accountability and reduce

supervision requirements. Normally, stacker cranes

that can move both horizontally and vertically at the

same time are used for material handling. Typically,

a crane operates in a single aisle, but can be moved

between aisles (Rosenblatt et al. 1993). Items to be

stored or retrieved are brought to/picked from the

AS/RS by a conveyor or an AGV. Such integration

can be used to automate material handling

throughout the plant and warehouse. A great deal of

research has been done on scheduling jobs and

assigning storage space in the AS/RS (Hausman

et al. 1976).
Issues in Material Handling System Design

Unit load concept — Traditional wisdom is that

materials should be handled in the most efficient,

maximum size using mechanical means to reduce the

number of moves needed for a given amount of
material. While reducing the number of trips required

is a good objective, the drawback of this approach is

that it tends to encourage the acceptance of large

production lots, large material handling equipment,

and large space requirements. Small unit loads allow

for more responsive, less expensive, and less

consuming material handling systems. Also, the trend

toward continuous manufacturing flow processes and

the strong drive for automation necessitate the use of

smaller unit loads (Apple and Rickles 1987).

Container size and standardization — This is an

issue related to the unit load concept. Container size

has an obvious correlation with the size of unit load.

Hence, not surprisingly, the current trend is to employ

smaller containers. The benefits of smaller containers

include compact and more efficient workstations,

improved scheduling flexibility due to smaller

transfer batch size, smaller staging areas, and lighter

duty handling systems. Another consideration that

strongly influences the optimal container size is the

range of items served by one container. In warehouse

operations, unless items vary widely in their physical

characteristics, the cost of employing two or more

container sizes is almost always higher than in the

one-size case (Roll et al. 1989). Use of standard

containers eliminates the need for container

exchanges between operation sites.

Capacity of the system or number of pieces of

equipment — The margins in the design of material

handling system require a careful examination of the

relative costs of acquiring and maintaining of work

centers and handling equipment. In the design of the

material handling system for an expensive job shop,

enough excess capacity should be provided so that the

handling system never becomes the bottleneck.
OR Models in Material Handling

Operations Research (OR) tools have been applied to

model and study a variety of problems in the area of

material handling. One example, dealing with the

initial design phase of material handling, used

a graph-theoretic modeling framework (Kouvelis and

Lee 1990). Other examples include conveyor systems

problems using queueing theory, and transfer lines

where dynamic programming techniques were

applied. Most of the theoretical work has focused on

AGVs and AS/RS. The design and control of AGVs are
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extremely complex tasks. The design decisions include

determining the optimal number of AGVs (Maxwell

and Muckstadt 1982), as well as determining the

optimal flow paths (Kim and Tanchoco 1993).

Factors to be considered in the design decisions

include hardware considerations, impacts on facilities

layout, material procurement policy, and production

policy. Resulting problems tend to be intractable for

any realistic scenario, and hence, heuristics and

simulation are the most used techniques in addressing

design issues. Control problems including dispatching

and routing tasks require real time decisions, making it

difficult to obtain optimal solutions. Researchers have

attempted to solve simplified problems, for example,

by examining static versions instead of dynamic

systems (Han and McGinnis 1989), and using simple

single-loop layouts (Egbelu 1993).

In the study of warehousing in general, and AS/RS

in particular, many different measures of effectiveness

of warehouse designs have been considered. The most

common ones are throughput as measured by the

number of orders handled per day, average travel

time of a crane per single/dual command, and

average waiting time per customer/order (Hausman

et al. 1976). Researchers have considered either

simulation or optimization models, usually of the

nonlinear integer form, to solve these problems. Yet

others have combined optimization and simulation

techniques to obtain solutions that are both cost

effective and operationally feasible (reasonable

service time) (Rosenblatt et al. 1993).

Since factories are increasingly automated,

numerical control of machine tools and flexible

manufacturing systems is common. Material handling

systems frequently involve the use of robots. In the

absence of an effective material handling system, an

automated factory would be reduced to a set of islands

of automation. In the integrated and fiercely

competitive global economy, material handling

systems play a crucial role in the battle to cut costs

and improve productivity and service levels.
See

▶ Facilities Layout

▶ Flexible Manufacturing Systems

▶ Integer and Combinatorial Optimization

▶ Inventory Modeling
▶ Job Shop Scheduling

▶ Just-in-Time (JIT) Manufacturing

▶ Simulation of Stochastic Discrete-Event Systems

▶Total Quality Management
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Material Requirements Planning

A material requirements planning (MRP) system is

a collection of logical procedures for managing, at

the most detailed level, inventories of component

assemblies, subassemblies, parts and raw materials in

a manufacturing environment. It is an information

system and simulation tool that generates proposals

for production schedules that managers can evaluate

in terms of their feasibility and cost effectiveness.
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See

▶Hierarchical Production Planning

▶ Production Management
M

Mathematical Model

A mathematical description of (usually) a real-world

problem. In operations research/management

science, mathematical models take on varied forms

(e.g., linear programming, queueing, Markovian

systems), many of which can be applied across

application areas. The basic OR/MS mathematical

model can be described as the decision problem of

finding the maximum (or minimum) of a measure of

effectiveness (objective function) E ¼ F(X, Y), where
X represents the set of possible solutions (alternative

decisions) and Y the given conditions of the problem.

Although a rather simple model in its concept,

especially since it involves the optimization of

a single objective, this mathematical decision model

underlies most of the problems that have been

successfully formulated and solved by OR/MS

methodologies.
See

▶Decision Problem

▶Deterministic Model

▶ Stochastic Model
Mathematical Optimization Society

The Mathematical Optimization Society (MOS) is an

international organization dedicated to the support and

development of the application, computational methods,

and theory of mathematical optimization. The society

sponsors the triennial International Symposium on

Mathematical Optimization and other meetings

throughout the world. Until 2010, its name was the

Mathematical Programming Society (MPS), which was

founded in 1973.
Mathematical Programming

Mathematical programming is a major discipline in

operations research/management science and, in

general, is the study of how one optimizes the use

and allocation of limited resources. Here the

programming refers to the development of a plan or

procedure for dealing with the problem. It is

considered a branch of applied mathematics as it

deals with the theoretical and computational aspects

of finding the maximum (minimum) of a function f(x)

subject to a set of constraints of the form gi(x) � bi.
The linear-programming model is the prime example

of such a problem.
Mathematical-Programming Problem

A constrained optimization problem usually stated as

Minimize (Maximize) f(x) subject to gi(x) � 0,

i ¼ 1,. . ., m. Depending on the form of the objective

function f(x) and the constraints gi(x) the problem will

have special properties and associated algorithms.
See

▶Convex-Programming Problem

▶ Fractional Programming

▶Geometric Programming

▶ Integer and Combinatorial Optimization

▶ Integer-Programming Problem

▶Linear Programming

▶Nonlinear Programming

▶Quadratic Programming

▶ Separable-Programming Problem
Mathematical-Programming
System (MPS)

An integrated set of computer programs that are designed

to solve a range of mathematical-programming problems

is often referred to as a mathematical-programming

system (MPS). Such systems solve linear programs,

usually by some form of the simplex method, and often
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have the capability to handle integer-variable

problems and other nonlinear problems such as

quadratic-programming problems. To be effective, an

MPS must have procedures for input data handling,

matrix generation of the constraints, reliable

optimization, user and automated control of the

computation, sensitivity analysis of the solution,

solution restart, and output reports.
Matrices and Matrix Algebra

Alan Tucker

The State University of New York at Stony Brook,

Stony Brook, NY, USA
Introduction

A matrix is an m � n array of numbers, typically

displayed as
A ¼
4 3 8

1 2 3

4 5 6

2
64

3
75;

where the entry in row i and column j is denoted as aij.
Symbolically,A¼ (aij), for i¼ 1,. . .,m and j¼ 1,. . ., n.

A vector is a one-dimensional array, either a row or

a column. A column vector is an m � 1 matrix, while

a row vector is a 1 � n matrix. For a matrix A, its ith

row vector is usually denoted by a0i and its jth column

by aj. Thus an m � n matrix can be decomposed into

a set ofm row n-vectors or a set of n columnm-vectors.

Matrices are a natural generalization of single

numbers, or scalars. They arise directly or indirectly

in most problems in operations research and

management science.

The word matrix in Latin means womb. The term

was introduced by J.J. Sylvester in 1848 to describe an

array of numbers that could be used to generate (give

birth to) a variety of determinants. A few years later,

Cayley introduced matrix multiplication and the basic

theory of matrix algebra quickly followed. A more

general theory of linear algebra and linear

transformations pushed matrices into the background
until the 1940s and the advent of digital computers.

During the 1940s, Alan Turing, father of computer

science, introduced the LU decomposition and John

von Neumann, father of the digital computer, working

with Herman Goldstine, started the development of

numerical matrix algebra and introduced the condition

number of a matrix. Curiously, at the same time Cayley

and Sylvester were developing matrix algebra, another

Englishman, Charles Babbage, was building his

analytical engine, the forerunner of digital computers,

which are critical to the use of modern matrix models.
Basic Operations and Laws of Matrix Algebra

The language for manipulating matrices is matrix

algebra. Matrix algebra is a multivariable extension

of single-variable algebra. The basic building block

for matrix algebra is the scalar product. The scalar

product a · b of a and b is a single number (a scalar)

equal to the sum of the products ai bi, i.e.,

a 	 b ¼Pn
i¼1 aibi, where both vectors have the same

dimension n. Observe that the scalar product is a linear
combination of the entries in vector a and also a linear

combination of the entries of vector b.

The product of an m � n matrix A and a column

n-vector b is a column vector of scalar products a0i 	 b,
of the rows a0i of A with b. For example, if
A ¼ a11 a12 a13

a21 a22 a23

" #

is a 2 � 3 matrix and
b ¼
b1

b2

b3

2
64

3
75

is a column 3-vector, then
Ab ¼ a01 	 b
a02 	 b

" #
¼ a11b1 þ a12b2 þ a13b3

a21b1 þ a22b2 þ a23b3

" #
;

so that Ab is a linear combination of A. Moreover, for

any scalar numbers r, q, any m � n matrix A, and any

column n-vectors b, c:
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Aðrbþ qcÞ ¼ rAbþ qAc:

The product of a row m-vector c and an m � n

matrix A is a row vector of scalar products c · aj, of c

with the columns aj of A. For example, if
A ¼ a11 a12 a13

a21 a22 a23

" #
;

is a 2� 3 matrix and c¼ [c1, c2] is a row 2-vector, then
M

cA ¼ ½c 	 a1; c 	 a2; c 	 a3�
¼ ½a11c1 þ a21c2; a12c1 þ a22c2; a13c1 þ a23c2�:

If A is an m� rmatrix and B is an r� nmatrix, then

the matrix product AB is an m � n matrix obtained by

forming the scalar product of each row a0i in A with each

column bj in B. That is, the (i, j)th entry in AB is a0i 	 bj.
Column j of AB is the matrix–vector product Abj and

each column of AB is a linear combination of the

columns of A. Row i of AB is vector–matrix product

a0i B and each row of AB is a linear combination of the

rows ofB.Thematrix–vector productAb is a special case

of the matrix-matrix product in which the second matrix

has just one column; the analogous statement holds for

the vector–matrix product bA.

Matrix multiplication is not normally commutative.

Otherwise it obeys all the standard laws of scalar

multiplication.

Associative Law.Matrix addition andmultiplication

are associative:(A + B) + C ¼ A + (B + C) and (AB)

C ¼ A(BC).

Commutative Law. Matrix addition is

commutative: A + B ¼ B + A. Matrix multiplication

is not commutative (except in special cases):AB 6¼BA.

Distributive Law.A(B +C)¼AB +AC and (B +C)

A ¼ BA + CA.

Law of Scalar Factoring. r(AB)¼ (rA)B¼A(rB).
For n � n matrices A, there is an identity matrix I

with ones on the main diagonal and zeros elsewhere,

with the property that AI ¼ IA ¼ A. Furthermore,

the transpose of an m � n matrix A, denoted by AT, is

an n � m matrix such that the rows of A are the

columns of AT.

If matrices are partitioned into submatrices in

a regular fashion, say, a 4 � 4 matrix A is partitioned

into four 2 � 2 submatrices,
A ¼ A11 A12

A21 A22

" #
;

and a 4 � 4 matrix B is similarly partitioned, then the

matrix product AB can be computed in terms of the

partitioned submatrices:
AB ¼ A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

" #
:

Solving Systems of Linear Equations

Matrices are intimately tied to linear systems of

equations. For example, the system of linear equations
4x1 þ 2x2 þ 2x3 ¼ 100

2x1 þ 5x2 þ 2x3 ¼ 200

1x1 þ 3x2 þ 5x3 ¼ 300

(1)

can be written as
Ax ¼ b; where

A ¼
4 2 2

2 5 2

1 3 5

2
664

3
775; x ¼

x1

x2

x3

2
664

3
775; b ¼

100

200

300

2
664

3
775: (2)

Essentially, the only way to solve an algebraic

system with more than one variable is by solving

a system of linear equations. For example, nonlinear

systems must be recast as linear systems to be

numerically solved. Since operations research and

management science is concerned with complex

problems involving large numbers of variables,

matrix systems are pervasive in OR/MS.

Observe that the system of equations given by (1)

can be approached from the row point of view as a set

of simultaneous linear equations and solved by row

operations using Gaussian elimination or Gauss-

Jordan elimination. The result of elimination

will be either no solution, a unique solution or an

infinite number of solutions. In linear programming,

one typically wants to find a vector x maximizing or
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minimizing a linear objective function c · x subject to

a system Ax ¼ b of linear constraints. The simplex

method finds an optimal solution by a sequence of

pivots on the augmented matrix [Ab]. A pivot on

non-zero entry (i, j) consists of a collection of row

operations (multiplying a row by a scalar or

subtracting a multiple of one row from another

row) producing a transformed augmented matrix

[A0 b0] in which entry (i, j) equals 1 and all other

entries in the jth column are 0. The pivot step can be

accomplished by premultiplying A by a pivot matrix

P, which is an identity matrix with a modified ith
column.

The system of equations given by (1) can also be

approached from the column point of view as the

following vector equation:
x1

4

2

1

2
64
3
75þ x2

2

5

3

2
64
3
75þ x3

2

2

5

2
64
3
75 ¼

100

200

300

2
64

3
75: (3)

Writing the system as (3) raises questions such

as which right-hand side vectors b are expressible

as linear combinations of the columns of A? The set

of such b vectors is called the range of the matrix

A. For a square matrix, the system Ax ¼ b will have

a unique solution if and only if no column vector of

A can be written as a linear combination of other

columns of A, or equivalently, if and only if x ¼ 0

is the only solution to Ax ¼ 0, where 0 denotes

a vector of all zeroes. When this condition holds,

the columns are said to be linearly independent.

When Ax ¼ 0 has non-zero solutions (whether A

is square or not), the set of such nonzero solutions

is called the kernel of A. Kernels, ranges and linear

independence are the building blocks of the theory

of linear algebra. This theory plays an important

role in the uses of matrices in OR/MS. For

example, if x∗ is a solution to Ax ¼ b and xo is in

the kernel of A (i.e., Axo ¼ 0), then x∗ + xo is also

a solution of Ax + b, since A(x∗ + xo) ¼ Ax∗ +

Axo ¼ b + 0 ¼ b, and one can show that all

solutions to Ax ¼ b can be written in the form of

a particular solution x∗ plus some kernel vector xo.

In a linear program to maximize or minimize c · x

subject to Ax ¼ b, once one finds one solution x∗ to

Ax ¼ b, improved solutions will be obtained by

adding appropriate kernel vectors to x∗.
Matrix Inverse

The inverse A�1 of a square matrix A has the property

that A�1A ¼ AA�1 ¼ I. The inverse can be used to

solve Ax¼ b as follows: Ax ¼ b ) A�1ðAxÞ ¼ A�1b,

but A�1(Ax) ¼ (A�1A)x ¼ (I)x ¼ x. Thus x ¼ A�1 b.

The square matrix A has an inverse if any of the

following equivalent statements hold:

1. For all b, Ax ¼ b has a unique solution;

2. The columns of A are linearly independent;

3. The rows of A are linearly independent.

The matrix A�1 is found by solving a system of

equations as follows. The product AA�1 ¼ I implies

that if xj is the jth column ofA�1 and ij is the jth column

of I (ij has 1 in the jth entry and zeroes elsewhere), then

xj is the solution to the matrix system Axj ¼ ij. An

impressive aspect of matrix algebra is that even when

a matrix system Ax ¼ b has no solution, i.e., in (3) no

linear combination of the columns of A equals b, there

is still a “solution” y in the sense of a linear

combination Ay of the columns of A that is as close

as possible to b, i.e., the Euclidean distance in n-
dimensional space between the vectors Ay and b is

minimized. There is even an inverse-like matrix A∗,

called the pseudoinverse or generalized inverse, such

that y ¼ A∗b. The matrix A∗ is given by the matrix

formula A∗¼ (ATA)�1AT, where AT is the transpose of

A, obtained by interchanging rows and columns.
Eigenvalues and Eigenvectors

A standard form of a dynamic linear model is p0 ¼ Ap,

where A is an n � n matrix and p is a n-column vector

of populations or probabilities (in the case of

probabilities, it is the convention to use row vectors:

p0 ¼ pA). For some special vectors e, called

eigenvectors, Ae ¼ le, where l is a scalar called an

eigenvalue. That is, premultiplying e by A has the

effect of multiplying e by a scalar. It follows that

Ane ¼ lne. This special situation is very valuable

because it is obviously much easier to compute lne
than Ane.

Most n � n matrices have n different (linearly

independent) eigenvectors. If the vector p as a linear

combination p¼ a e1 + b e2 of, say, two eigenvectors e1
and e2, with associated eigenvalues l1, l2, then by the

linearity of matrix–vector products,Ap andA2 p can be

calculated as
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Ap ¼ Aðae1 þ be2Þ ¼ aAe1 þ bAe2 ¼ al1e1 þ bl2e2

and
A2p ¼ A2ðae1 þ be2Þ ¼ aA2e1 þ bA2e2

¼ al21e1 þ bl22e2:

More generally,
Akp ¼ Akðae1 þ be2Þ ¼ aAke1 þ bAke2

¼ alk1e1 þ blk2e2:

If jl1j > jlij, for i � 2, then for large k, lk1

will become much larger in absolute value than the

other lkj , and so Akp approaches a multiple of the

eigenvector associated with the eigenvalue of largest

absolute value. For ergodic Markov chains, this largest

eigenvalue is 1 and the Markov chain converges to

a steady-state probability p∗ such that p∗ ¼ p∗A.
M

Matrix Norms

The norm |v| of a vector v is a scalar value that is

nonnegative, satisfies scalar factoring, i.e., |r v| ¼ r |v|,

and the triangle inequality, i.e., |u + v| � |u| + |v|.

There are three common norms used for vectors:

1. The Euclidean, or l2, norm of v ¼ [v1, v2,. . ., vn] is

defined as jvje ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ 	 	 	 þ v2n:

p
2. The sum, or l 1, norm of v¼ [v1, v2,. . ., vn] is defined

jvjs ¼ jv1j þ jv2j þ 	 	 	 þ jvnj:
3. The max, or l1, norm of v ¼ [v1, v2,. . ., vn] is

jvjm ¼ max jv1j; jv2j; . . . ; jvnjf g:
The matrix norm ||A|| is the (smallest) bound such

that |Ax| � ||A|| |x|, for all x. Thus

jjAjj ¼ max
x6¼0

jAxj
jxj : (4)

It follows that |Akx| � ||A||k |x|.

The Euclidean, sum, and max norms of the matrix

are defined by using the Euclidean, sum, and max

vector norms, respectively, in (4). When A is

a square, symmetric matrix (aij ¼ aji), the

Euclidean norm ||A||e equals the absolute value of

the largest eigenvalue of A. When A is not

symmetric, ||A||e equals the positive square root of
the largest eigenvalue of ATA. The sum and max

norms of A are very simple to find and for this

reason are often preferred over the Euclidean norm:

jjAjjs ¼ maxj jAjjs
� �

and jjAjjm ¼ maxi jA0
ijs

� �
,

where Aj denotes the jth column of A and A0
i

denotes the ith row of A. In words, the sum norm of

A is the largest column sum (summing absolute

values), and the max norm of A is the largest row

sum.

Norms have many uses. For example, in a linear

growth model p0 ¼ Ap, the kth iterate p(k) ¼ Akp is

bounded in norm by | p(k) | � ||A||k |p|. One can show

that if the system of linear equations Ax ¼ b is

perturbed by adding a matrix E of errors to A, and if

x∗ is the solution to the original system Ax ¼ b while

x∗ + e is the solution to (A + E)x¼ b, then the relative

error |e|/| x∗ + e| is bounded by a constant c(A) times the

relative error ||E||/||A||, i.e., |e|/|x∗ + e| � c(A) ||E||/||A||.
The constant c(A) ¼ ||A|| ||A�1|| and is called the

condition number of A.

A famous linear input–output model due to Leontief

has the form x ¼ Ax + b. Here x is a vector of

production of various industrial activities, b is

a vector of consumer demands for these activities,

and A is an inter-industry demand matrix in which

entry aij tells how much of activity i is needed to

produce one unit of activity j. Here, Ax is a vector of

the input for the different activities needed to produce

the output vector x. The model x ¼ Ax + b can be

shown to have a solution if ||A||s< 1, i.e., if the columns

sums are all less than one. This condition has the

natural economic interpretation that all activities

must be profitable, i.e., the value of the inputs to

produce a dollar’s worth of any activity must be less

than one dollar.

Algebraically, x ¼ Ax + b is solved as follows:
x ¼Axþ b ! x� AX ¼ b ! ðI � AÞx
¼ b ! x ¼ ðI � AÞ�1b:

When ||A|| � 1, the geometric series I + A + A2 +

A3 + . . ., converges to (I � A)�1, guaranteeing not

only the existence of a solution to x ¼ Ax + b but also

a solution with nonnegative entries, since when A has

nonnegative entries, then all the powers ofAwill have

nonnegative entries implying that (I � A)�1 has

nonnegative entries and hence so does

x ¼ (I � A)�1b.
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See

▶Analytic Hierarchy Process

▶Gaussian Elimination

▶Gauss-Jordan Elimination Method

▶Linear Programming

▶LU Matrix Decomposition

▶Markov Chains

▶ Simplex Method (Algorithm)
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Matrix Game

▶Game Theory
Matrix Geometric

When the solution to a stochastic model is (vector)

proportional to a geometric distribution whose

parameter is a matrix instead of the usual scalar.
See

▶Matrix-Analytic Stochastic Models
Matrix-Analytic Stochastic Models

Marcel F. Neuts
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Introduction

A rich class of models for queues, dams, inventories,

and other stochastic processes has arisen out of matrix/

vector generalizations of classical approaches. Three
specific examples are presented: matrix-analytic

solutions for M/G/1-type queueing problems,

matrix-geometric solutions to GI/M/1-type queueing

problems, and the Markov arrival process (MAP)

generalization of the renewal point process.
Matrix-Analytic M/G/1-Type Queues

The unifying structure that underlies these models is an

imbedded Markov renewal process whose transition

probability matrix is of the form:
~QðxÞ ¼

B0ðxÞ B1ðxÞ B2ðxÞ B3ðxÞ B4ðxÞ 	 	 	
C0ðxÞ A1ðxÞ A2ðxÞ A3ðxÞ A4ðxÞ 	 	 	
0 A0ðxÞ A1ðxÞ A2ðxÞ A3ðxÞ 	 	 	
0 0 A0ðxÞ A1ðxÞ A2ðxÞ 	 	 	
: : : : : . . .

2
66664

3
77775
where the elements are themselves matrices of

probability mass functions. If the matrix
A ¼
X1
k¼0

Akð1Þ

is irreducible and has the invariant probability vector

p, then the Markov renewal process is positive

recurrent if and only if some natural moment

conditions hold for the coefficient matrices and if
r ¼p
X1
k¼1

kAke < 1 for e ¼ ð1; . . . ; 1ÞT :

The quantity r is the generalized form of the traffic

intensity for the elementary queueing models.

The state space is partitioned in levels i, which are

the sets of m states (i, j), 1� j� m. The crucial object
in studying the behavior of the Markov renewal

process away from the boundary states in the level

0 is the fundamental period, the first passage time

from a state in i + 1 to a state in i. The joint

transform matrix ~G(z; s) of that first passage time,

measured in the number of transitions to lower levels

(completed services in queueing applications) and in

real time, satisfies a nonlinear matrix equation of the

form

http://dx.doi.org/10.1007/978-1-4419-1153-7_31
http://dx.doi.org/10.1007/978-1-4419-1153-7_200254
http://dx.doi.org/10.1007/978-1-4419-1153-7_200255
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200424
http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_372
http://dx.doi.org/10.1007/978-1-4419-1153-7_598
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~Gðz; sÞ ¼ z
X1
k¼0

~AðsÞ ~Gðz; sÞ� �k
:

M

This equation can be analyzed by methods of

functional analysis, which leads to many explicit

matrix formulas for moments. In terms of the matrix
~G(z; s), the boundary behavior of the Markov renewal

process can be studied in an elementary manner. In

queueing applications, the analysis leads to equations

for the busy period and the busy cycle. Waiting-time

distributions under the first-come, first-served

discipline are obtained as first passage time

distributions. Extensive generalizations of the

Pollaczek-Khinchin integral equation for the

classical M/G/1 queue have been obtained (see

Neuts 1986b).

Applications of Markov renewal theory lead to

a matrix formula for the steady-state probability vector

x0 for the states in level 0 in the imbeddedMarkov chain.

Next, a stable numerical recurrence due to Ramaswami

(1988) permits computation of the steady-state

probability vector xi of the other levels i, i � 1.

There is an interesting duality between the random

walks on the infinite strip of states (i, j),�1< i<1,

1� j� m, that underlie the Markov renewal processes

of M/G/1 type and those of GI/M/1-type (which lead to

matrix-geometric solutions). That duality is

investigated in Asmussen and Ramaswami (1990)

and Ramaswami (1990a).

The class of models with an imbedded Markov

renewal process of M/G/1-type is very rich. It is

useful in the analysis of many queueing models in

continuous or discrete time that arise in

communications engineering and other applications.

In queueing theory, results for a variety of classical

models have been extended to versatile input processes

and to semi-Markovian services. These generalizations

often lead to natural matrix generalizations of familiar

formulas. For a discussion of what happens to the

M/G/1 model when the input is changed to

a Markovian arrival process (MAP — as more

precisely presented in a subsequent section), see

Lucantoni (1993). A treatment of cycle maxima for

the MAP/G/1 queue is found in Asmussen and Perry

(1992). A mathematically rigorous discussion of the

complex analysis aspects of the models of M/G/1-type

is found in Gail, Hantler, and Taylor (1994).

Asymptotic results on the tail probabilities of queue
length and waiting time distributions are discussed

in Abate, Choudhury and Whitt (1994), and

Falkenberg (1994).
Matrix-Geometric Solutions

Under ergodicity conditions, discrete-time Markov

chains with transition probability matrix P of the

form
P ¼

B0 A0 0 0 0 	 	 	
B1 A1 A0 0 0 	 	 	
B2 A2 A1 A0 0 	 	 	
B3 A3 A2 A1 A0 	 	 	
: : : : : 	 	 	

2
66664

3
77775;

where the Ak are m � m nonnegative matrices

summing to a stochastic matrix A, and the Bk are

nonnegative matrices such that the row sums of P are

one, have an invariant probability vector x of

a matrix-geometric form. That is, the unique

probability vector x which satisfies xP ¼ x, can be

partitioned into row vectors xi, i � 0, which satisfy

xi¼ x0R
i. The matrix R is the unique minimal solution

to the equation
R ¼
X1
k¼0

RkAk;

in the set of nonnegative matrices. All eigenvalues ofR

lie inside the unit disk. The matrix,
B½R� ¼
X1
k¼0

RkBk;
is an irreducible stochastic matrix. The vector x0 is

determined as the unique solution to the equations
x0 ¼ x0B½R�
1 ¼ x0ð1� RÞ�1e

�

where e is the column m-vector with all components

equal to one. If the matrix A is irreducible and has the

invariant probability vector p, the Markov chain is

positive recurrent if and only if
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p
X1
k¼1

kAke>1:
Analogous forms of the matrix-geometric theorem

hold for Markov chains with a more complicated

behavior at the boundary states and for continuous

Markov chains with a generator Q of the same

structural form. A comprehensive treatment of the

basic properties of such Markov chains and a variety

of applications is given in Neuts (1981).

This result has found many applications in queueing

theory. The subclass where the matrixP or the generator

Q are block-tridiagonal are called quasi-birth and death

(QBD) processes. These arise naturally as models for

many problems in communications engineering and

computer performance. The matrix-geometric form of

the steady-state probability vector of a suitable

imbedded Markov chain leads to explicit matrix

formulas for other descriptors of queues, such as the

steady-state distributions of waiting times, the

distribution of the busy period and others.

In addition to its immediate applications, this

construct has also generated much theoretical

interest. Its generalization to the operator case was

established in Tweedie (1982).

The largest eigenvalue � of the matrix R is

important in various asymptotic results. Graphs of �

as a function of a parameter of the queue are caudal

characteristic curves. Some interesting behavioral

features of the queues can be inferred from them

(Neuts and Takahashi 1981; Neuts 1986a; Asmussen

and Perry 1992). A matrix-exponential form for

waiting-time distributions in queueing models was

obtained in Sengupta (1989). Its relation to the

matrix-geometric theorem was discussed in

Ramaswami (1990b). A matrix-analytic treatment,

covering all cases of reducibility, of the equation for

R, is given in Gail, Hantler and Taylor (1994).

The matrix R, which is crucial to all applications of

the theorem, must be computed by an iterative

numerical solution of the nonlinear matrix equation
R ¼
X1
k¼0

RkAk

A major survey and comparisons of various

computational methods is found in Latouche (1993).
For the block tri-diagonal case (QBD-processes),
a particularly efficient algorithm was developed by

Latouche and Ramaswami (1993).
Markovian Arrival Processes

The analytic tractability of models with Poisson or

Bernoulli input is due to the lack-of-memory

property, an extreme case of Markovian

simplification. At the expense of performing matrix

calculations, more versatile arrival processes can be

used in a variety of models. The Markovian arrival

process (MAP) is a point process model in which

only one of a finite number of phases must be

remembered to preserve many of the simplifying

Markovian properties. It can be incorporated in many

models which remain highly tractable by

matrix-analytic methods. The MAP has found many

applications in queueing and tele-traffic models to

represent bursty arrival streams. Many queueing

models for which traditionally Poisson arrivals were

assumed are also amenable to analysis with

MAP input.

It was first introduced in Neuts (1979), but

a more appropriate notation was proposed by

David Lucantoni in conjunction with the queueing

model discussed in Lucantoni, Meier-Hellstern, and

Neuts (1990). Although discrete-time versions of

the MAP, as well as processes with group arrivals

have been defined, their discussion requires only

more elaborate notation than the single-arrival

MAP in continuous time described here.

Expositions of the basic properties and many

examples of the MAP are found in Neuts (1989,

1992) and Lucantoni (1991).

Consider an irreducible infinitesimal generator D

of dimension m with stationary probability vector y.
Write D as the sum of matrices D0 and D1, where

D1 is nonnegative and D0 has nonnegative off-

diagonal elements. The diagonal elements of D0

are strictly negative and D0 is nonsingular.

Consider an m-state Markov renewal process {(Jn,

Xn), n � 0} in which each transition epoch has an

associated arrival. Its transition probability matrix

F(·) is given by

FðxÞ ¼
ðx
0

expðD0uÞduD1; for x � 0:
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The most familiar MAPs are the PH-renewal
process and the Markov-modulated Poisson Process

(MMPP). These, respectively, have the pairs of

parameter matrices D0 ¼ T, D1 ¼ Toa, where (a, T)
is the (irreducible) representation of a phase-type

distribution and the column vector To ¼ �Te, and

D0 ¼ D � L, D1 ¼ L, where L is a diagonal matrix

and e is the column m-vector with all components

equal to one.

The matrix-analytic tractability of the MAP is

a consequence of the matrix-exponential form of the

transition probability matrix F(·). It, in turn, follows

from the Markov property of the underlying chain with

generator D, in which certain transitions are labeled as

arrivals. A detailed description of that construction is

found in Lucantoni (1991).

The initial conditions of the MAP are specified by

the initial probability vector g of the underlying

Markov chain with generator D. Taking g ¼ u, the

stationary probability vector of D, leads to

the stationary version of the MAP. The rate g∗ of the

stationary process is given by g∗¼ uD1 e.By choosing

g ¼ (g∗)�1uD1 ¼ yarr, the time origin is an arbitrary

arrival epoch.

Computationally tractable matrix expressions are

available for various moments of the MAP. These

require little more than the computation of the matrix

exp(Dt). A comprehensive discussion of these

formulas is found in Neuts and Narayana (1992). For

example, the Palm measure, H(t) ¼ E[N(t) | arrival at
t ¼ 0], the expected number of arrivals in an interval

(0, t] starting from an arbitrary arrival epoch, is

given by

HðtÞ ¼ l � tþ yarr I � expðDtÞ½ �ðeu� DÞ�1D1e:

Other MAPs are constructed by considering

selected transitions in Markov chains, by certain

random time transformations or random thinning of a

given MAP, and by superposition of independent

MAPs. Statements and examples of these

constructions are found in Neuts (1989, 1992).

Specifically, the superposition of two (or more)

independent MAPs is again an MAP. If two

continuous-time MAPs have the parameter matrices

{Dk(i)} for i ¼ 1, 2, the parameter matrices for their

superposition are given by Dk ¼ Dk(1)
N

I +

I
N

Dk(2) ¼ Dk(1)
N

Dk(2), for k � 1, 2, where
N

is the Kronecker pairwise matrix product.
See

▶Markov Chains

▶Markov Processes

▶Matrices and Matrix Algebra

▶ Phase-Type Probability Distributions

▶Queueing Theory
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▶Multi-Attribute Utility Theory
Max-Flow Min-Cut Theorem

For a maximum-flow network problem, it can be

shown that the maximum flow through the network is

equal to the minimum capacity of all the cuts that

separate the source (origin) and the sink (destination)

nodes, where the capacity of a cut is the sum of the

capacities of the arcs in the cut.
See

▶Maximum-Flow Network Problem
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Maximum

A function f(x) is said to have a maximum on a set S
when the least upper bound of f(x) on S is assumed by

f(x) for some x0 in S. Thus, f(x0) � f(x) for all x in S.
See

▶Global Maximum (Minimum)
Maximum Feasible Solution

▶Minimum (Maximum) Feasible Solution
Maximum Matching Problem

Involves finding in a graph a maximal set of links

which meet each node at most once.
See

▶Matching
Maximum-Flow Network Problem

For a directed, capacitated network with source and

sink nodes, the problem is to find the maximum

amount of goods (flow) that can be sent from the

source to the sink.
See

▶Network Optimization
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MCDM

▶Multiple Criteria Decision Making
Measure of Effectiveness (MOE)

In a decision problem, the single objective that is to be

optimized is called the measure of effectiveness

(MOE). In a linear-programming problem, the MOE

is the objective function. In a queueing-theory

problem, frequently used MOEs include the

expected steady-state queue length and the mean

delay in queue.
M
See

▶Mathematical Model
Measure-Valued Differentiation

▶Weak Derivatives
Memetic Algorithms

Hybrid metaheuristic evolutionary algorithms (EAs)

that combine population-based approaches such as

genetic algorithms with local search improvement

procedures or individual learning. Also known as

Baldwinian EAs, Lamarckian EAs, cultural

algorithms or genetic local search. Derived from the

word “meme” that was coined by the British scientist

Richard Dawkins in his book, The Selfish Gene (1976),
to represent an evolutionary unit for cultural

transmission analagous to a gene in biological

evolution.
See

▶Evolutionary Algorithms

▶Genetic Algorithms

▶Metaheuristics
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Memoryless Property

For stochastic processes, lack-of-memory is

synonymous with the Markov property. For a positive

random variable T that models the duration of some

phenomenon, lack-of-memory means that the time

remaining is independent of the time already passed,

i.e., Pr{T > t + s | T > s} ¼ Pr{T > t} for s, t > 0. The

exponential distribution is the only continuous

distribution with lack-of-memory, while the

geometric distribution is the only discrete distribution

with lack-of-memory.
See

▶Exponential Arrivals

▶Markov Processes

▶Markov Property

▶ Poisson Arrivals

▶ Poisson Process

▶Queueing Theory
Menu Planning

A diet problem in which the variables represent

complete menu items such as appetizers and entrees,

instead of individual foods. The problem is

formulated as an integer-programming problem in

which the integer binary variables represent the

decision of selecting or not selecting a complete

menu item.
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Metagame Analysis

A problem structuring method that addresses situations

of conflict and cooperation between independent

actors. Based on game-theoretic concepts, it identifies

explicit and implicit threats and promises between the

actors to analyze the stability of alternative scenarios.
Metaheuristics

Kenneth Sörensen1 and Fred W. Glover2,3

1University of Antwerp, Antwerp, Belgium
2OptTek Systems, Inc., Boulder, CO, USA
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Introduction

A metaheuristic is a high-level problem-independent

algorithmic framework that provides a set of

guidelines or strategies to develop heuristic

optimization algorithms. The term is also used to

refer to a problem-specific implementation of

a heuristic optimization algorithm according to the

guidelines expressed in such a framework. It

combines the Greek prefix meta- (metά, beyond in

the sense of high-level) with heuristic (from the

Greek heuriskein or EuriswEin; to search) and was

coined by Fred Glover in 1986.

Most metaheuristic frameworks have their origin in

the 1980s (although in some cases roots can be traced

to the mid 1960s and 1970s) and were proposed as an

alternative to classic methods of optimization such as

branch-and-bound and dynamic programming. As

a means for solving difficult optimization problems,

metaheuristics have enjoyed a steady rise in both use

and popularity since the early 1980s. EU/ME – the

metaheuristics community – is the EURO-sponsored

working group on metaheuristics and the largest

platform for communication among metaheuristics

researchers worldwide. Conferences and journals

devoted to metaheuristics, along with some software,

are described at the end of this article.

Different metaheuristics can vary significantly

in their underlying foundations. Some metaheuristics

mimick a process seemingly unrelated to optimization,
such as natural evolution, the cooling of a crystalline

solid, or the behavior of animal swarms. Attending

such variation is also a striking similarity among

some methods that rely on a common foundation.

For example, many methods have been proposed

(and given different names) that differ in

not much more than the metaphor underlying them,

which is often a close variant of an original

method’s metaphor. In this manner, the metaheuristic

framework of ant colony optimization, for instance,

has spawned a steady stream of different social

insect-based methods (using bees, flies, termites, etc.).

Most metaheuristic frameworks advise the

use of randomness, although some propose completely

deterministic strategies. In optimization, metaheuristics

are most often used to solve combinatorial optimization

problems, although metaheuristics for other problems

exist (see below).

One of the defining characteristics of

a metaheuristic framework is that the resulting

methods are — as the name suggests — always

heuristic in nature. Exact methods for combinatorial

optimization, such as branch-and-bound or dynamic

programming, are subject to combinatorial explosion,

i.e., for NP-hard problems the computing time required

by such methods increases as an exponential function

of the problem size. By relaxing the demand that the

optimal solution should be found in a finite (but often

prohibitively large) amount of time, optimization

methods can be built that attempt to find a solution

that is good enough in a computing time that is small

enough. However, there are important aspects of

metaheuristics that link them more closely with exact

methods and that give rise to a number of hybrids that

unite these two types of methods. These aspects will be

discussed later.

The required quality of a solution and the maximum

allowable computing time can, of course, vary greatly

across optimization problems and situations.

Metaheuristic frameworks, being defined in very

general terms, can be adapted to fit the needs of most

real-life optimization problems, from the smallest and

simplest to the largest andmost complex. Additionally,

metaheuristics do not put any demands on the

formulation of the optimization problem (like

requiring constraints or objective functions to be

expressed as linear functions of the decision

variables), in contrast, for example, to methods for

mixed-integer programming. As a result, several
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commercial software vendors have implemented

metaheuristics as their primary optimization engines,

both in specialized software packages for production

scheduling, vehicle routing (Sörensen et al. 2008) and

nurse rostering (Burke et al. 2004), as well as in

general-purpose simulation packages (April et al.

2003; Fu 2002; Glover et al. 1999).

However, the research field of metaheuristics is not

without its critics, most of whom attack the perceived

lack of a universally applicable design methodology

for metaheuristics and the lack of scientific rigor in

testing and comparing different implementations. The

no free lunch theorems (Wolpert and Macready 1997)

state that, when averaged over all problems, all

optimization methods perform equally well. This

suggests that no single metaheuristic can be

considered as a panacea for combinatorial

optimization problems, but rather that a lot of

problem-specific tuning is necessary to achieve

acceptable performance. Moreover, metaheuristics

often have a large number of parameters and tuning

them is a notoriously difficult process. Consequently,

computational testing to compare different

metaheuristics is very difficult and often done in an

ad-hoc way, rather than by established scientific

standards (Barr et al. 1995; Hooker 1995; Rardin and

Uzsoy 2001) This has motivated work on self-adaptive

metaheuristics that automatically tune their parameters

(Cotta et al. 2008; Kramer 2008; Nonobe and Ibaraki

2001, 2002) From an alternative perspective, if

a research study identifies parameter values that work

well for a selected class of applications — as most

studies attempt to do — then for practical purposes

other researchers can consider these parameters as

being constants (Of course, this doesn’t prevent

future experimentation from seeking better parameter

values.)

Another criticism sometimes levied at

metaheuristics concerns the occasional tendency to

create overly intricate methods (Michalewicz and

Fogel 2004) with many different operators, where the

contribution of these operators to the final quality of

the solutions found may be poorly understood (Watson

et al. 2006). Despite some theoretical results, such as

proofs for the convergence of some metaheuristics

under special assumptions – usually infinite running

time (Eiben et al. 1991; Mitra et al. 1985) – or attempts

to explain why genetic algorithms work (such as the

heavily criticized Wright et al. (2003) building block
hypothesis (Holland 1975)), research papers that

attempt to capture the fundamental reasons why

metaheuristics work are still few and far between.

Despite these criticisms, the ability to obtain good

solutions where other methods fail has made

metaheuristics the method of choice for solving

a majority of large real-life optimization problems,

both in academic research and in practical

applications.
Metaheuristic Concepts

Like all optimization methods, metaheuristics attempt

to find the best (feasible) solution out of all possible

solutions of an optimization problem. In order to do

this, they examine various solutions and perform

a series of operations on them in order to find

different, better solutions.

Metaheuristics operate on a representation or

encoding of a solution, an object that can be stored in

computer memory and can be conveniently

manipulated by the different operators employed by

the metaheuristic. Since metaheuristics are most often

used to solve combinatorial optimization problems,

representations too are generally combinatorial in

nature (i.e., they are able to represent only

a finite number of solutions). Representations used in

the metaheuristics literature are quite diverse (see, e.g.,

Talbi (2009) for an overview) and range from vector-

representations (binary, integer) over permutations to

more complex representations such as trees and other

graphs. Many metaheuristic algorithms use

a combination of different representation types, such

as a vector of permutations. Contrary to exact

algorithms, metaheuristics do not require the

encoding of solutions to be a bijection, i.e., several

solutions may share the same encoding and a single

solution may be encoded in different ways. Often, an

encoding is chosen on the grounds of being convenient

to manipulate, although sometimes a time-consuming

decoding procedure may be required to obtain the

actual solution (such as the encoding used in Prins

(2004)).

Although many different metaheuristics have been

proposed, their mechanisms for obtaining good

solutions primarily operate by manipulating solutions

in three ways: by iteratively making small changes to

a current solution (local search metaheuristics), by
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constructing solutions from their constituting parts

(constructive metaheuristics), and by iteratively

combining solutions into new ones (population-based

metaheuristics). Each of these manipulation

mechanisms gives rise to a class of metaheuristic

frameworks that are discussed separately below. It is

important to note that these classes are not mutually

exclusive, and many metaheuristic algorithms

combine ideas from each of them. Also, in some

instances the transitions from one solution to another

are achieved by solving specially generated

subproblems.

Local Search Metaheuristics

Local search metaheuristics find good solutions by

iteratively making small changes, called moves, to

a single solution, called the current solution. The set

of solutions that can be obtained by applying a single

move to a given solution is called the neighborhood of

that solution. In each iteration, a solution from the

neighborhood of the current solution is selected to

become the new current solution. The sequence of

moves defines a trajectory through the search space.

Hence, local search metaheuristics are also known

under the names of neighborhood search methods or

trajectory methods.

For almost all problem representations, different

move types can be defined, resulting in different

neighborhood structures. The rule used to select the

new current solution is called the move strategy or

search strategy and determines the aggressiveness of

the search. Metaheuristics that use the steepest descent

or steepest ascent strategy select the best move from

the neighborhood and are often called hill-climbers.

Other move strategies include selecting the first move

that improves upon the current solution (called the

mildest ascent/descent or first-improving strategy), as

well as selecting a random improving solution.

In general, the set of allowable moves is restricted

to those that result in solutions that are both feasible

and improve upon the current solution. Some

metaheuristics allow infeasible moves in a strategy

that is called strategic oscillation. In this strategy, the

search is usually only allowed to temporarily remain in

the infeasible region of the search space. A striking

example of the utility of this strategy is shown in

Glover and Hao (2010).

A solution whose neighborhood does not contain

any better solutions is called a local optimum
(as opposed to a global optimum, i.e., a best possible

solution to the optimization problem). When the

current solution is a local optimum, the metaheuristic

utilizes a strategy to escape to other regions of the

search space. It is this strategy that distinguishes

metaheuristics from simple heuristics and from each

other. The metaheuristic’s name therefore usually

refers to the strategy to prevent the search from

becoming ensnared within regions whose local

optima may be substantially inferior to a global

optimum.

The simplest strategy to escape to potentially more

fertile regions is to either start the search again from

a new, usually random, solution or to make a relatively

large change (called a perturbation) to the current

solution. These strategies are respectively called

multi-start local search (MLS) and iterated local

search (ILS) (Lourenco et al. 2003).

A number of metaheuristics define different move

types and change the move type used once a local

optimum has been reached. The rationale for this

strategy is that a local optimum relative to a specific

move type can often be improved by performing local

search with a different move type. The global optimum

on the other hand is a local optimum with respect to

every possible move type. Metaheuristics that use this

strategy are commonly called variable neighborhood

search (VNS) (Mladenović and Hansen 1997)

algorithms, but using more than one neighborhood is

far more common in the metaheuristics literature and

not restricted to algorithms labeled VNS (Sörensen

et al. 2008).

Using memory structures is a third commonly

encountered way for metaheuristics to avoid

remaining trapped in a local optimum and to guide

the search in general so as to find good

solutions more quickly. Algorithms that use memory

structures are commonly grouped under the umbrella

term tabu search (Glover 1989, 1990, 1996)

algorithms (sometimes also called adaptive memory

programming algorithms). Different memory

structures may be used to explicitly remember

different aspects about the trajectory through the

search space that the algorithm has previously

undertaken and different strategies may be devised to

use this information to direct the search (Glover and

Laguna 1993) to promising areas of the search space.

Often-used memory structures include the tabu list

(from which the name of the metaheuristic



Metaheuristics 963 M

M

framework derives) that records the last encountered

solutions (or some attributes of them) and forbids these

solutions (or attributes) from being visited again as

long as they are on the list. Some variants record

move attributes rather than solution attributes on the

tabu list, for the purpose of preventing moves from

being reversed. The tabu list is usually organized in

a first-in, first-out (FIFO) fashion, i.e., the current

solution replaces the oldest one on the list. The length

of the tabu list is called the tabu tenure. Frequency

memory records how often certain attributes have been

encountered in solutions on the search trajectory,

which allows the search to avoid visiting solutions

that display the most often encountered attributes or

to visit solutions with attributes seldom encountered.

Such memory can also include an evaluative

component that allows moves to be influenced by the

quality of solutions previously encountered that

contain various attributes or attribute combinations.

Other memory structures such as an elite set of the

best solutions encountered so far are also common.

Another example of the use of memory can be found

in a metaheuristic called guided local search (GLS)

(Voudouris and Tsang 1999). GLS introduces an

augmented objective function that includes a penalty

factor for each potential element. When trapped in

a local optimum, GLS increases the penalty factor for

all elements of the current solution, making other

elements (and therefore other moves) more attractive

and allowing the search to escape from the local

optimum. Similarly, some variants of tabu search use

penalties to determine the tabu status of moves, though

drawing more strongly on memory.

Contrary to most other local search metaheuristics,

simulated annealing uses a random move strategy,

emulating the annealing process of a crystalline solid.

At each iteration, this strategy selects a random

solution x0 from the neighborhood of the current

solution x and accepts x0 as the new current solution

with probability e�½f ðx0Þ�f ðxÞ�=T , where f ð	Þ is the

objective function value (to be maximized) of

the solution and T is an endogenous parameter called

the temperature. The acceptance probability increases

as the increase in solution quality is higher (or the

decrease is lower). The temperature is initially set to

a high value, which leads to higher acceptance

probabilities, and then gradually lowered as the

search progresses (although it may be increases again

at certain moments during the search). The function
that describes the evolution of T throughout the

different iterations is called the cooling schedule.

Simulated annealing was first described in

Kirkpatrick et al. (1983), based upon an algorithm by

Metropolis et al. (1953).

Relaxation induced local search (RINS) (Danna

et al. 2005) is a metaheuristic that constructs

a promising neighborhood using information

contained in the continuous relaxation of the mixed

integer programming (MIP) model of the optimization

problem. Because it does not need problem-specific

information to construct its neighborhood, RINS can

be more easily built into general-purpose MIP solvers

[11] and is currently available in the latest versions of

LINDO/LINGO and CPLEX. Contrary to other

metaheuristics, RINS requires the problem to be

formulated as a MIP which makes it less general than

other metaheuristics.

Constructive Metaheuristics

Constructive metaheuristics constitute a separate class

from local search metaheuristics in that they do not

operate on complete solutions, but rather construct

solutions from their constituent elements, starting

from an empty set and adding one element during

each iteration, an operation that is also called

a move. After each iteration except the last, the

algorithm therefore operates on a partial solution

(e.g., a traveling salesperson tour that does not visit

all cities), of which it may not be possible to determine

the objective function value or the feasibility status.

Constructive metaheuristics are often adaptations of

greedy algorithms, i.e., algorithms that add the best

possible element at each iteration, a myopic strategy

that may result in suboptimal solutions.

GRASP, the acronym for greedy randomized

adaptive search procedure (Feo and Resende 1995),

uses randomization to overcome this drawback of

purely greedy algorithms by adding some

randomness to the selection process. Several variants

of GRASP have been proposed, founded on the

following basic idea. At each iteration, a restricted

candidate list, which contains the a best elements that

can be added, is updated. From the restricted candidate

list, a random element is selected for addition to the

partial solution, after which the list is updated to reflect

the new situation. The parameter a determines the

greediness of the search: if a equals 1, the search

is completely greedy, whereas if a is equal to the
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number of elements that can be added, the search is

completely random. A particularly useful advance in

GRASP algorithms has occurred by blending them

with the path relinking strategy of tabu search.

Notable examples of this approach include

Commander et al. (2008); Nascimento et al. (2010);

Resende et al. (2010).

Rather that using randomness to outperform

a greedy heuristic, more strategic ways of performing

constructive (or destructive) moves, once again

making use of memory, are examined in Fleurent and

Glover (1999); Glover et al. (2000). Another approach

is embodied in a look-ahead strategy (Pearl 1984),

which evaluates the elements that can be added by

considering not only the next move, but several

moves into the future. The pilot method (Duin and

Voß 1999), for example, uses a (usually greedy)

constructive heuristic to determine a pilot solution for

each potential move, i.e., the value of a potential

element is evaluated by determining the objective

function value of the solution that results from

applying the heuristic to generate a complete solution

from the current partial solution with this element

added. The idea of looking ahead has a long history,

having been proposed in probing strategies for integer

programming in (Lemke and Spielberg 1967).

Ant colony optimization (ACO) (Dorigo et al. 1996,

2006) is an umbrella term for a set of related

constructive metaheuristics that build solutions by

imitating the foraging behavior of ants. Perhaps

because of the appeal of its imagery, this class of

approaches has received and continues to

receive widespread attention in the popular press

(e.g., Anonymous 2010). Ant colony optimization

introduces an external parameter for each potential

element called the pheromone level (a pheromone is

a chemical factor that triggers a social response in the

same species), initially set to zero for all elements. The

metaheuristic uses multiple parallel artificial agents

(called ants) that each construct a solution by an

iterative constructive process in which elements are

selected based on a combination of the value of that

element and its pheromone level. Once all ants have

constructed a solution, the pheromone level of all

elements is updated in a way that reflects the quality

of the solution found by that ant (the elements of better

solutions receive more pheromone). Each ant then

constructs a new solution, but elements that were

present in high-quality solutions will now receive
a higher probability of being selected by the ants.

Periodically, the pheromone level of all elements is

reduced to reflect evaporation. The process of

constructing solutions in the way described above

is repeated, and the best solution found is reported at

the end.

To improve the quality of the final solutions, most

constructive metaheuristics include a local search

phase after the construction phase.

Population-Based Metaheuristics

The main mechanism that allows population-based

metaheuristics to find good solutions is the

combination of existing solutions from a set, usually

called the population. The fundamental reasoning

behind this class of metaheuristics is that good

solutions can be found by exchanging solution

attributes between two or more (usually high-quality)

solutions. The most important members of this class

are called evolutionary algorithms because they mimic

the principles of natural evolution. Following

Michalewicz and Fogel (2004), here the term

evolutionary algorithms is used as an umbrella term

to encompass the wide range names given to

metaheuristics based on evolution. This includes

genetic algorithms (Goldberg et al. 1989; Holland

1975), genetic/evolutionary programming (Koza

1992), evolutionary computation (Fogel 2006),

evolution strategies (Beyer and Schwefel 2002), and

many others. The literature on evolutionary algorithms

is larger than that on other metaheuristics, and this field

has spawned several dedicated journals and

conferences.

Typical of the field of evolutionary algorithms is

that its researchers tend to adopt the vocabulary of the

metaphor on which the algorithms are based. The

descriptions of these algorithms therefore are stated

in terms of chromosomes (instead of solutions),

fitness (instead of objective function value), genotype

(instead of encoding), etc. The driving force behind

most evolutionary algorithms is selection and

recombination. Selection ensures that predominantly

high-quality solutions in the population are selected for

recombination, usually by biasing the probability of

each solution in the population to be selected towards

its objective function value. Recombination utilizes

specialized operators to combine the attributes of two

or more solutions into new ones. The new solutions

are then added to the population by a process called
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reinsertion, possibly subject to feasibility or minimum

quality demands, to replace (usually low-quality)

solutions. In a large majority of cases, all operators

(selection, recombination and reinsertion) make heavy

use of randomness. A large number of evolutionary

algorithms additionally include a mutation operator

that (again, randomly) changes a solution after it has

been recombined.Most evolutionary algorithms iterate

the selection, recombination, mutation, and reinsertion

phases a number of times, and report the best solution

in the population.

Scatter search and path relinking (Glover et al.

2000, 2003) are both population-based metaheuristics

for continuous (or mixed-integer) and combinatorial

optimization respectively, proposed as a deterministic

alternative for the highly stochastic evolutionary

algorithms. Scatter search encodes solutions as

real-valued vectors (or rounded real-valued vectors

for integer values) and generates new solutions by

considering convex or concave linear combinations

of these vectors. Path relinking, on the other hand,

generalizes this idea, making it applicable to

combinatorial optimization problems, by generating

paths between high-quality solutions. Paths consist of

elementary moves such as the ones used in local search

metaheuristics and essentially link one solution (called

the initiating solution) to a second solution (called the

guiding solution) in the solution space. Contrary to

local search metaheuristics, path relinking uses

a move strategy that chooses the move to execute

based on the fact that this move will bring the

solution closer to the guiding solution. In both scatter

search and path relinking, the selection of both

initiating and guiding solution from a population

(called the reference set) is done in a deterministic

way, as are the mechanisms for updating the

reference set once new solutions have been generated.

Hybrid Metaheuristics

Metaheuristics that combine aspects or operators from

different metaheuristics paradigms are called hybrid

metaheurstics. The term has lost much of its

discriminatory power, however, since such

combinations of operators from different

metaheuristic frameworks have become the norm

rather than the exception. Indeed, there is a tendency

in the metaheuristics research field to look at

metaheuristics frameworks as providing general ideas

or components to build optimization algorithms, rather
than to consider them as recipes that should be closely

followed (Michalewicz and Fogel 2004). In this spirit,

many metaheuristics use specialized heuristics to

efficiently solve subproblems produced by the

metaheuristic method (e.g., Gendreau et al. 1994).

Also, a large number of local search metaheuristics

use a construction phase to find an initial solution

(or a set of initial solutions) from which to start the

neighborhood search. In fact the original description of

the GRASP metaheuristic (Feo and Resende 1995)

prescribes a local search phase to follow the greedy

randomized construction phase.

Memetic algorithms (Moscato 1989) are the only

class of hybrid metaheuristics that has been given

a specific name. Metaheuristics belonging to this

class combine recombination operators from the class

of evolutionary algorithms with local search (meta)

heuristics. Although the name is commonly used,

many evolutionary algorithms either replace or

complement their mutation operator with a local

search phase and can also be considered memetic.

Metaheuristics and Exact Methods

A more recent development has been a special focus

on combining ideas from different metaheuristics,

usually local search, with exact methods such as

branch-and-bound or branch-and-cut. Sometimes

called matheuristics, the resulting method usually

integrates existing exact procedures to solve

subproblems and guide the higher-level heuristic

(Dumitrescu and St€utzle 2009; Raidl and Puchinger

2008). In a similar way, ideas and operators from

constraint programming techniques are integrated with

metaheuristics (Van Hentenryck andMichel 2009). The

links between metaheuristics and exact methods

provide examples of additional forms of combinations:

1. There exist exact methods for solving various

special classes of optimization problems, such as

linear programming and certain graph (or matroid)

problems, that can be incorporated to solve

subproblems produced by a metaheuristic method.

Such subproblems can be generated by

a decomposition strategy, a restriction strategy or

a relaxation strategy (see Glover and Klingman

(1988); Rego (2005)).

2. Exact methods for more complex problems can

sometimes solve small instances of these problems

effectively. A metaheuristic may operate by

constructing collections of such small instances as
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a strategy for generating structured moves

that transition from a given solution to a new one

(see, e.g., Glover (2005)).

3. An exact method can be run for a very long time to

obtain optimal solutions (to at least some instances

of a problem class), and these optimal solutions can

be used in the learning approach called target

analysis (Glover 1990; Glover and Laguna 1997)

as a way to produce improved decision rules for

both metaheuristics and exact methods.

4. Metaheuristics can be integrated with exact

methods to improve the performance of the exact

methods (Friden et al. 1989; Glover 1990;

Puchinger et al. 2009).

5. By not demanding that the optimal solution be

found, metaheuristics can, for example, employ

a truncated optimization method in place of (or in

conjunction with) generating subproblems that are

structured to be easier to solve.
Metaheuristics for Different Optimization
Problems

Continuous Optimization

Although metaheuristics are predominantly used

for combinatorial optimization, many of them have

been adapted for continuous optimization. Some

metaheuristics are very naturally defined over

continuous search spaces. Notable examples include

scatter search (Glover et al. 2000), particle swarm

optimization (Kennedy et al. 1995) and an

evolutionary approach called differential evolution

(Storn and Price 1997). Other, especially constructive

and local search approaches, require a considerable

adaptation from their original formulation.

Nonetheless, algorithms for continuous optimization

based on tabu search (Chelouah and Siarry 2000;

Glover 1994), GRASP (Hirsch et al. 2007), variable

neighborhood search (Liberti and Drazič 2005), and

others, have been proposed.

Multi-objective Optimization

Many real-life problems have multiple objectives, for

which the notion of optimality is generally replaced

with the notion of dominance. A solution is said

to dominate another solution if its quality is at least

as good on every objective and better on atleast one. In

multi-objective optimization, the set of non-dominated
solutions is called the Pareto set and the projection

of this set onto the objective function space is

called the Pareto front or Pareto frontier. The aim

of multi-objective metaheuristics, i.e., metaheuristics

specifically designed to solve multi-objective

optimization problems, is to approximate the Pareto

front as closely as possible (Zitzler et al. 2004).

The outcome of any multi-objective algorithm is

therefore generally a set of mutually non-dominated

solutions, the Pareto set approximation. To measure

the quality of such an approximation, many different

measures exist (Jaszkiewicz 2004). Although

adaptations to the multi-objective paradigm of both

tabu search and simulated annealing exist (Czyżak

et al. 1998; Hansen 1997), most multi-objective

metaheuristics are of the evolutionary type (Jones

et al. 2002), a fact generally attributed to the

observation that these algorithms naturally operate on

a set of solutions. Evolutionary multi-objective

metaheuristics include the vector evaluated genetic

algorithm (VEGA) (Schaffer 1985), the non-

dominated sorting algorithm (NDSA) (Srinivas and

Deb 1994), the multi-objective genetic algorithm

(MOGA) (Fonseca and Fleming 1993) and the

improved strength pareto evolutionary algorithm

(SPEA2) (Zitzler and Thiele 1999).

Stochastic Optimization

Stochastic combinatorial optimization problems

include uncertain, stochastic or dynamic information

in their parameters. Metaheuristics for such problems

therefore need to take into account that the objective

function value is a random variable and that the

constraints are violated with some probability.

Evaluating a solution’s objective function

value and/or its feasibility can be done either exactly

(if a closed-form expression is available), by

approximation or by Monte Carlo simulation.

Metaheuristicsusing each of these possibilities have

been proposed to solve different stochastic problems

(Bianchi et al. 2009; Ribeiro and Resende 2010).
Research in Metaheuristics

Conferences

The premier conference on metaheuristics is MIC,

the Metaheuristics International Conference.
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Other conferences on metaheuristics include the yearly

EU/ME meeting on a specific metaheuristics-related

topic, organized by EU/ME in collaboration with

a local research group, and the Hybrid Metaheuristics

conference series that focuses on combinations of

different metaheuristics and the integration of AI/OR

techniques. The Learning and Intelligent Optimization

conferences aim at exploring the boundaries between

machine learning, artificial intelligent, mathematical

programming and algorithms for optimization.

A large number of conferences focus exclusively

on evolutionary algorithms, including Parallel

Problem Solving From Nature (PPSN), the Genetic and

Evolutionary Computation Conference (GECCO),

EvoStar (a multi-conference comprising EuroGP,

EvoCOP, EvoBIO,and EvoApplications), Evolutionary

Multi-Criterion Optimization (EMO), and the IEEE

Congress on Evolutionary Computation (CEC).

The Ants conference series is dedicated to research

in swarm intelligence methods.

Journals

The field of metaheuristics has several dedicated

journals: the well-established Journal of Heuristics
and the newer International Journal of

Metaheuristics and International Journal of Applied

Metaheuristic Computing (IJAMC). However, a large

majority of articles on metaheuristics are published in

general OR/MS journals.

Several journals are devoted exclusively to

evolutionary algorithms: Evolutionary Computation,

IEEE Transactions on Evolutionary Computation,

Genetic Programming and Evolvable Machines, and
the Journal of Artificial Evolution and Applications.

The journal Swarm Intelligence is currently the main

journal for advances in the swarm intelligence area.
Metaheuristics Software

Several vendors of commercial optimization

software have included (albeit to a limited extent)

metaheuristics in their packages. Frontline Systems’

Risk Solver Platform and its derivatives,

an extension of the Microsoft Excel Solver,

include a hybrid evolutionary solver. Tomlab/GENO

is a package for static or dynamic, single- or

multi-objective optimization based on a real-coded

genetic algorithm. Both LINDO/LINGO and CPLEX
include the relaxation induced neighborhood search

(RINS) metaheuristic.

Open source metaheuristics software frameworks

have recently appeared in the COIN-OR library.

These include METSlib, an object oriented

metaheuristics optimization framework, and Open

Tabu Search (OTS), a framework for constructing

tabu search algorithms.

Besides these solvers for combinatorial

optimization, most commercial (stochastic)

simulation packages today include an optimization

tool (Fu 2002). Autostat, included in AutoMod, and

Simrunner, included in ProModel, both use

evolutionary algorithms. A variety of companies in

the simulation industry, as well as general

management service and consulting firms like

Rockwell Software, Dassault Systemes, Flextronics,

Halliburton, HP, Planview and CACI, employ

OptQuest, which uses tabu search and scatter search.
See

▶Artificial Intelligence

▶COIN-OR Computational Infrastructure for

Operations Research

▶Heuristics

▶ Integer and Combinatorial Optimization

▶Multi-attribute Utility Theory

▶Neural Networks

▶ Simulated Annealing

▶ Simulation Optimization

▶Tabu Search
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M. Sevaux, K. Sörensen, & V. T’kindt (Eds.),Metaheuristics
for multiobjective optimization (Lecture notes in economics

and mathematical systems, Vol. 535, pp. 3–38). Berlin:

Springer-Verlag.
Metamodeling

For simulation models, the objective is to provide

an explicit input-output relationship through a fitted

mathematical function, e.g., using statistical

regression, splines, neural networks, or kriging.

Differs from the use of the term in computer

science.
See

▶Response Surface Methodology

▶ Simulation Metamodeling
Method of Stages

An analysismethod that extends the birth-and-death-type

analysis to queueing systems with Erlangian service or

interarrival times. Since an Erlang random variable can

be represented as the sum of independent and identically

distributed exponential random variables, the method of

stages increases the state space to coincide with the

underlying exponential random variables and the

resulting system of equations is generally solved using

generating functions.
See

▶Queueing Theory
Military Operations Other Than War

Dean S. Hartley III

Oak Ridge National Laboratory, Oak Ridge, TN, USA
Introduction

Operations Other Than War (OOTW) suffer from an

identity crisis. Sometimes called Military

Operations Other Than War (MOOTW), sometimes

known as Low Intensity Conflict (LIC), sometimes

called Stability Support Operations (SSO), and

sometimes designated as Small Scale

Contingencies (SSC), these operations have caused

both theoretical and practical problems for the

military.

• These operations range in size from airlifting

several fire trucks from Tennessee to Florida to

fighting the 1998 Summer fires to the Bosnia

Peacekeeping operation involving tens of

thousands of U.S. military personnel and tens of

thousands of other nations’ military personnel,

hardly a small-scale contingency.

• They include operations to provide stability to

foreign countries, such as Haiti; however, they

also include support to insurgencies, a “stability

support operation” only in the negative.

• They include Non-combatant Evacuation

Operations (NEOs) in which armed force may be

needed to support the evacuation; they include

operations such as Somalia that result in a number

of U.S. military deaths in combat, low intensity

conflict providing cold comfort to families of the

dead; and they include operations such as

fire-fighting that can be defined as conflict only by

stretching the definition.

These operations cannot even be distinguished

from other operations by time frame or geographic

impact:

• Their time span ranges from the one-day cruise

missile strike against Iraq to the 17-year

peacekeeping operation in the Sinai (or the

45-year peacekeeping operation in Korea).

• Their geographic impact ranges from the purely

local issues of disaster relief in Hawaii for

Typhoon Iniki to the global geopolitical concerns

stirred by peacekeeping in Bosnia.

http://dx.doi.org/10.1007/978-1-4419-1153-7_1143
http://dx.doi.org/10.1007/978-1-4419-1153-7_957
http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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Clumsy as the OOTW designation may be, it is

accurate: operations (as opposed to training

activities) that are not war are included and

operations that are part of a war are not included.

Strictly speaking, the people who are using the

designation are Department of Defense people and

the operations so designated are military operations,

leading to a preference for the term MOOTW;

however, henceforth the shorter term OOTW will be

used, because most of these operations are not led by

the military, but by the State Department or some

other agency. Figure 1 organizes OOTWs into

categories.

The discussion of OOTWs suffering from an

identity crisis is more than just a pleasant exercise in

rhetoric. The underlying diversity of activities

subsumed in the category creates a problem in

defining standing operating procedures (SOPs) for

dealing with them. The subordinate role of the

military creates problems in planning for and

executing them. The variability of participation of

other federal agencies, other governments, the United

Nations, non-governmental organizations (NGOs),

and private volunteer organizations (PVOs)

exacerbates the problem. Their ad hoc nature means

that they are not included in the military’s budget; the

accounting systems are not designed to capture

the costs; and recovering the resulting costs is
problematic. These problems would be less

troublesome if OOTWs were infrequent; however,

since 1990 they have been undertaken at a rate of

20–35 per year! Over the past several years, there has

been an increasing recognition of the need for analysis

tools to support military planning and execution of

OOTWs. Analysis tools to support decision making

for large-scale military combat operations (such as

major regional contingencies) are relatively mature

(Battle Modeling). In contrast, OOTW analysis tools

are embryonic or non-existent. The increasing

U.S. military involvement in OOTWs during the

post-Cold-War era has led to the need to develop

OOTW analysis tools.
Questions

The analytical requirements are characterized by the

questions that must be answered. The questions fall

into five groups:

• Those that are non-mission-related (e.g., what force

structure, equipment and plans are needed for the

future?).

• Those that support a decision to engage (or not to

engage) in a mission (e.g., what impacts will an

OOTW have on other operations and how much

will it cost?).



Wamings &
Impact Analysis

Tools

COA
Comparitor

MOE
Calculator

Communications
Tool

Disaster and
other specialized
impact models

Real-Time
Indicators &

Wamings

Impact
Simulation

Resource
Simulation Mission

Definition
Tool

Task Analysis
Tool

Force Design
Tool

Logistics
Tool

Transport
Tool

Cost
Tools

Cost
Tools

Info
Tools

Support
Data

Warehouse

Situation
Display

Integrated
Mission Planning

Tool

Tools

Military Operations Other
Than War, Fig. 2 OOTW

Analysis tool category

M 972 Military Operations Other Than War
• Those needed to plan a mission (e.g., what is the

right force structure and what transport support will

we provide to reporters, NGO/PVOs, etc.?).

• Those that occur during a mission (e.g., which

course of action will most quickly accomplish the

mission?).

• Those related to the termination of a mission

(e.g., how do we define success and what are its

Measures of Effectiveness (MOEs)?).

The question groups are identical to the question

groups for combat analysis. Most of the individual

questions are also identical. In general, the analysis

techniques required to answer the questions are the

same. The problem lies in the application: standard

applications make assumptions that are valid for

combat analysis and invalid for OOTW analysis.

The question of force structure for a mission

provides a simple example of the difference between

combat analysis and OOTW analysis. For a combat

mission, combat troops and equipment are determined

first and the balance of the force structure is composed

of the troops and materiel required to support them.

Analysis procedures and tools are structured to

support this situation. For an OOTW, however, the

primary forces may be engineers for disaster

reconstruction, medical personnel for disease

control, some other support function, or combat

troops, depending on the particulars of the mission.

The implied force structure consists of the troops and
materiel to support these forces and may (or may not)

include combat troops to protect them. Not only are

combat analysis procedures and tools set up

backwards for OOTW analysis, but also OOTW

analysis involves multiple possible permutations,

requiring significantly more flexibility.
Nature of The Analysis Tools

Generally, the desirable tools are decision support

tools, are simple (e.g., menu driven, point and click),

are deployable, are joint (multi-service), are rigorous,

use non-parochial data, have available data, and are

capable of rapid turnaround. Analysis tools range from

complex simulations of political, economic,

sociological, military interactions to database tools,

to spreadsheets, to checklists, with the emphasis on

small tools. Figure 2 shows the categories of OOTW

analysis tools.
Warnings and Impact Analysis Tools

These tools are among themost difficult (scientifically)

to create, but are essential to the analysis of OOTWs.

Three tools are included in this group.

• The real-time indicators and warnings tool serves to

filter and interpret world news in the light of
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possible future OOTWs: there are several attempts

being made to create such a tool, such as the

Protocol for the Assessment of Nonviolent Direct

Action (PANDA) (Bond and Vogele 1995).

• The impact simulation models the significant

relationships included in and surrounding

an OOTW to permit prediction of the results

of actions, whether human or environmental:

the commercial computer game, Sim CityTM, is an

example of an impact simulation. Unfortunately, the

nature of social interactions is amatter for debate and

consequently the proper mathematical expressions

of these interactions and the best methods for

modeling them are undecided. While at least two

candidate simulations exist, Spectrum (National

Simulation Center 1996) and the Deployable

Exercise Support system/Civil Affairs Module

(DEXES/CAM) (Woodcock 1996), these are

regarded with some misgivings by working

analysts, apparently because of lack of transparency

or because they are used for training. The Situational

Influence Assessment Module (SIAM) uses another

technique to address social interactions. It is an

influence diagram-based model, not a simulation

model, but may be useful in this category.

• The resource simulation models the changes in

resource consumption and sequestration over the

course of an OOTW: this need may well be

satisfied by the Joint Warfare Simulation (JWARS).
Integrated Mission Planning Tool

The five separate tools that comprise this group

should ultimately be seamlessly integrated,

although the initial integration may be loose. Each

tool feeds its successor, while permitting reentry for

iterative planning. These tools are relatively simple

(scientifically); however, to be useful in an OOTW

context, they require careful definition with respect

to applicability to joint, coalition (multi-country) and

non-military component analysis. The tools are

a mission definition tool, a task analysis tool,

a force design tool, a logistics tool, and

a transportation tool.

• The mission definition tool should provide a reality

check to ensure that the complete implications of

the mission are fully understood. The Conceptual

Model of Peace Operations (CMPO), a peace
operations influence diagram-based checklist, is an

example (Davis 1996).

• The object of the task analysis tool is to support an

accurate and complete analysis of the mission tasks.

The tool needed is a decision support tool that

connects missions to strategies to tasks, both

explicit and implied, in the OOTW domain.

It should identify both those tasks that are central

to the mission and any contingent tasks that might

be implied by reasonable shifts in mission

definition. It should also support replanning as the

situation changes. Lidy (1998) has produced

the data to support such a tool.

• The object of the force design tool is to support the

designation of U.S. forces required for an

operation in an OOTW context. The tool needed

is a decision support tool that connects the tasks to

generic resources and connects generic resources

to actual available resources, including U.S.

military, U.S. non-military, foreign government,

NGO/PVO, and contractor resources. Data

requirements include task capability for all

resources (or the facility for user input of unique

resources) and availability data (based on reserve

commitments, etc.). It should provide for

restrictions on choices based on cultural issues.

Processing should include selection of military

resources and substitution of other resources. The

tool should also support replanning as the situation

changes.

• The object of the logistics analysis tool is to

support the logistics analysis of the mission in an

OOTW context. The tool needed is a decision

support tool that derives the logistics

requirements from the total force structure. It

should allow for supply from outside sources and

provide for supply of non-military personnel. It

should support replanning as the situation

changes. Recent work has investigated the

availability and utility of existing tools of this

type (Brundage et al. 1998).

• The object of the transport analysis tool is to

support the transportation analysis for mission

arrival, sustainment, and departure in an OOTW

context. The tool needed is a decision support tool

that plans the transport requirements, based on all

appropriate constraints. It must support

replanning when the situation changes after

some transport has been accomplished. The Joint
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Flow and Analysis System for Transportation

(JFAST) and the Model for Intertheater

Deployment by Air and Sea (MIDAS) are

examples of this type tool.
Support Tools

This group contains three specific tools and a cluster of

several tools related by type. The COA comparitor

permits the development of courses of action

(COAs) through several levels of alternatives: an

influence diagram/decision tree methodology would

support this type analysis. The MOE calculator

supports the calculation and tracking of MOE values.

The communications tool supports planning the

communications system within the complex context

of OOTWs. The cluster of disaster impact

tools (e.g., hurricanes, volcanoes, earthquakes,

fires, and nuclear accident) supports the estimate of

the situation in several technical areas, such as

engineering and health. The Consequence

Assessment Tool Set (CATS) supports some of these

functions.
Cost Models

Seven tools make up this group. Their object is to

calculate the cost information for various aspects of

OOTWs: incremental costs of notional OOTWs, to

support long-term analysis; probable incremental

costs, to support the decision on engaging in

a particular OOTW; relative (full) costs, to support

the selection of the mission plan; costs incurred, to

support cost recovery from other U.S. agencies and

from foreign organizations and governments;

incremental costs of a particular OOTW, to support

the Congressional Budget process; costs of

a particular OOTW, including equipment

depreciation, readiness losses, increased reserve

recruitment and training costs, and perhaps other

costs, to support future acquisition, budgeting and

training decisions; and actual costs of a completed

OOTW, to support improved estimates of future

operations and reports to Congress on actual costs.

Work is underway to address analysis tools (Institute

for Defense Analyses 1998; Hartley and Packard

1998b).
Information Tools

There are two tools in this category. The situation

display presents the information concerning the

situation in a manner designed to maximize

understanding: the Virtual Information Center

(VIC) project represents a first attempt at creating

this type tool (Sovereign 1998). The data

warehouse either stores or provides links to (as

appropriate) all pertinent data. The data and their

useability are critical to good analysis in the

OOTW domain, as well as in the combat domain.

However, the data required for OOTW analysis and

the display requirements are in an embryonic state

when compared to the state of affairs of combat

analysis.
Tool Definition Process

Analysis of OOTWs is a new field and is in a state of

flux. The first concerted effort to address the need

for analytic tools is documented in Hartley (1996).

Follow-on efforts are documented in Staniec

(1998), Hartley and Packard (1998a), Brundage

et al. (1998), Lidy (1998), Sovereign (1998), Hartley

and Packard (1998b), and Hartley and Packard

(1999).
See

▶Analytic Hierarchy Process

▶Battle Modeling

▶Cost Analysis

▶Crime and Justice

▶Econometrics

▶Economics and Operations Research

▶Global Models

▶Health Care Management

▶ Influence Diagrams

▶Logistics and Supply Chain Management

▶Military Operations Research

▶Operations Management

▶ Production Management

▶ Public Policy Analysis

▶ Simulation of Stochastic Discrete-Event Systems

▶ Supply Chain Management

▶ System Dynamics
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Introduction

To say that Military Operations Research (MOR) is the

application to military operations of the methods of
operations research (OR) is strictly correct, but gives

only one clue to understanding the subject. The MOR

accomplishments in World War II, sketched below,

pioneered and greatly influenced the early

development and institutionalization of operations

research generally. Also, they led to the continuation

of MOR after the war, in the governments of World

War II participants, in academia, in industry, in

not-for-profit think tanks, and its adoption in similar

institutions of other nations. The emphasis in this

article is on practice and trends in the United States,

with particular emphasis on the Army.

The general methods of OR apply in particular to

many aspects of military applications. Such

differences as exist pertain mainly to the needs of

military security and classification procedures, the

nature of military operations and equipment, and the

concerns of strategy, operational art, and tactics that

relate to the use of military forces as instruments of

national policy.

Current developments in the field are described in

the quarterly bulletin Phalanx and the journalMilitary

Operations Research published by the Military

Operations Research Society (MORS) and the

Military Applications Society (MAS) of INFORMS.

MORS also conducts annual classified symposia, as

well as smaller mini-symposia and workshops

(some unclassified), from which they publish

proceedings and monographs.
World War II MOR Accomplishments

Although there were individual contributions to the

scientific study of military operations, ranging from

Archimedes to the work of Thomas A. Edison in

World War I, it was in World War II that MOR

became widespread and institutionalized. Solandt

(1955) recalled that MOR began in the services in

England as operational research in the early days of

the war. The British work centered about different

subjects depending on the service: in the Air Force it

was the problem of how to use radar, in the Navy it was

the problem of anti-submarine warfare, and in the

Army it was first limited to anti-aircraft problems and

again centered around radar. Professor Blackett is

sometimes said to have started the work in all three

services, and his account in Blackett (1962) drew on

earlier papers to describe both results and methods.

http://www.ida.org/COST
http://www.leav.army.mil/nsc/famsim/spectrum/infopapr.htm
http://www.leav.army.mil/nsc/famsim/spectrum/infopapr.htm


M 976 Military Operations Research
Schrader (2006) describes the organization and use of

OR by the U.S. Army from WWII until 1995. His

detailed account of how and where OR was used

represents a definitive study of the U.S. Army’s use

of OR in peace and war, and much of what is

summarized here is based on his writings.

Cooperation between the United States and Britain

over the use of OR did not begin immediately during

WW II. British liaison teams visited the U.S., but it was

not until late in 1940, just after the fall of France, that

President Roosevelt authorized the creation of the

National Defense Research Committee (NRDC) and

subsequently, the Office of Scientific Research and

Development (OSRD) under Professor Vannevar

Bush. This office helped recruit, manage and

organize the military OR effort in the U.S defense

establishment during the war.

While Britain fielded OR teams and detachments

with its Army and Navy during the war, only the U.S.

Navy and the U.S. Army Air Force (AAF) took full

advantage of the new discipline after Pearl Harbor. OR

teams of scientists and businessmen, recruited and

organized through the OSRD, formed the initial

groups. Small detachments were sent to AAF to

conduct bombing accuracy studies and assessments of

tactics. A useful account of World War II MOR,

centering about the AAF, is Brothers (1954). In

addition to illuminating examples such as aerial

bombing accuracy improvement, it gives valuable

guidance on the organization of MOR groups and

operating procedures. In World War II, most of the

MOR practitioners were civilians (though sometimes

in uniform), and they had to earn the trust of military

operators over time through useful work. This, of

course, is by nomeans unique toMOR inWorldWar II.

The U.S. Army’s Technical Services – the scientific

branches (Ordnance Department, the Medical

Services, Signal Corps and Chemical Warfare

Service) took advantage of the expertise offered by

the new multi-disciplinary teams and detachments

were deployed in Europe and in the U.S. The Army

ground forces, on the other hand, were reluctant to

begin using operational analysts (or “Op Annies” as

they were called) until 1944. Teams were primarily

used to support anti-aircraft weapons development and

support to U.S. Army forces in the Pacific area.

The AAF was quick to emulate its British comrades

and OR teams were soon supporting the various

major Air Force operations in Europe and elsewhere.
The Army’s technical services were slower, but before

the end of the war, studies in support of radar training,

development, and organization, signal work load in

message centers, transportation scheduling, loading,

and handling, as well as some operational studies

involving introduction of new equipment and

technology to units were undertaken. The ground

forces lagged well behind until late in 1944 when OR

teams were sent to the Pacific.

At the end of the war, the rapid demobilization of

the U.S. Army dissolved its existing teams and

organizations as civilian scientists quickly returned to

their academic or business careers. The national

offices, NRDC and OSRD, were also demobilized,

but the newly organized Department of Defense

(DoD) created the Weapon Systems Evaluation

Group (WSEG) to carry on work begun earlier. The

limited use of OR in the Army’s decision-making

process during the war lagged well behind the other

services. In the postwar period, the civilian leadership

recognized the benefit provided by the studies and

analysis of weapon systems and their development.

The ground Army quickly closed the gap in the

postwar period.

Early in the post-war period, Morse and Kimball

(1946) drew on the work of many early MOR analysts

of the Operations Research Group, U.S. Navy, to give

results and methods. That work, once it was

declassified and slightly modified, was republished in

1951 and was very influential, not only in introducing

MOR to future analysts, but also in introducing the

potential applications of OR generally to a wider

audience. This Morse and Kimball classic was

republished by MORS in 1998.

The above work quotes a letter from Admiral King

that enumerated helpful MOR applications (suggestive

also of the work in other services):

(a) The evaluation of new equipment to meet military

requirements.

(b) The evaluation of specific phases of operations

(e.g., gun support, anti-aircraft fire) from studies

of action reports.

(c) The evaluation and analysis of tactical problems to

measure the operational behavior of new material.

(d) The development of new tactical doctrine to meet

specific requirements.

(e) The technical aspects of strategic planning.

(f) The liaison for the fleet with the development and

research laboratories, naval and extra-naval.
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Morse and Kimball also gave some reasons for the

emergence inWorldWar II of the practical value of the

methods of MOR. As opposed to earlier wars there

were the following:

(i) more repetitive operations susceptible to

analysis — strategic bombing, submarine attacks

on shipping, landing operations, etc.;

(ii) increased mechanization of warfare, in that “. . . a

men-plus-machines operation can be studied

statistically, experimented with, analyzed, and

predicted by the use of known scientific

techniques just as a machine operation can be.”

(iii) increasing tempo of obsolescence in military

equipment . . . When we can no longer have the

time to learn by lengthy trial and error on the

battlefield, the advantages of quantitative

appraisal and planning become more apparent.”
M

Post-War MOR Developments

After World War II ended, a majority of the MOR

practitioners returned to non-military pursuits:

universities, laboratories, industry, etc. The military

services wondered how much MOR would be needed

in peacetime. Each decided to institutionalize its use of

MOR. An early chapter of Tidman (1984) gives an

interesting account of how the Navy chose to

continue MOR by establishing the Center for Naval

Analysis (CNA) after World War II and by 1948, each

service had a different choice or mix of civil service

groups, not-for-profit groups, use of industry, etc., and

their emphases varied over time. The newly organized

U.S. Air Force soon created Project RAND (later

RAND Corporation) in 1948 to support its research

and development efforts. The newly formed DoD

followed suit with establishment of WSEG. Fairly

soon, as the Cold War emerged, there was general

recognition that it would be necessary to increase the

use of MOR. Both Tidman and Schrader appropriately

addressed this topic as periods of consolidation and

growth in their respective histories.

The Army rapidly demobilized after the war, as

stated above, the civilian scientists quickly returned

to their jobs and homes. While the Army ground forces

quickly inactivated its MOR organizations, the

technical services (Ordnance and Signal) retained

theirs. By 1948, the Army’s leadership created

a relationship with John Hopkins University under
Dr. Ellis Johnson to form the Operations Research

Office (ORO), a relationship that was to last for

13 years. World War II had seen the introduction of

radar, atomic weapons, cruise missiles, and ballistic

missiles, but each type was still improving rapidly at

war’s end. Their implications for, and fuller integration

into, military forces needed more thought. The Cold

War climate also provided a sense of urgency, and

MOR offices took on these problems as important

foci of effort. The growing Cold War with the Soviet

Union forced the Army to address more than just

weapons design and tactical doctrine. ORO soon

began addressing areas well beyond weapons

development – entering international politics,

economics, national policy and global strategy while

the technical services and newly organized field force

boards maintained their focus on weapons

development. Several key MOR organizations were

created – ORO, Combat Operations Research Group

(CORG), the Human Resources Research

Organization (HumRRO), and Special Operations

Research Office (SORO) dealing with psychological

operations. Computer modeling of complex systems

met increased need to process large quantities of data.

At Headquarters, Department of the Army (HQ DA),

the Strategic Tactics and Analysis Group (STAG) was

formed to study force structure and future forces

capability through gaming and simulation. The

increasing use of MOR in the combat development

process fostered a need for increased numbers of

military officers with MOR training and a formal

Operations Research/Systems Analysis (ORSA)

specialty program was created in 1967 to satisfy the

growing need to form in-house MOR capabilities as

the Army moved toward a competitive contractual

arrangement with various commercial and academic

analytic groups. The Research Analysis Corporation

(RAC) took over as the primary research arm of the

Army staff in 1963 while primary research efforts were

funneled into academia through the Army Research

Office (ARO) at Duke University.

Some of the postwar applications of MOR

resembled wartime MOR, with combat operations

replaced by tests or exercises. With the rise of the

Continental Army Command (CONARC), MOR

organizations began efforts involving war gaming

and field experimentation. As technology increased

and problems became more complex,

recommendations soon increased the amount of field
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experimentation and testing, and by 1956, the first

combat development and testing command was

created. However, some of the OR (or operations

analysis or operations evaluation, as it was often

termed) remained devoted to operations of supply,

logistics, recruiting, and training. Moreover, much of

the post-war efforts went into thinking through the

implications of new weapons for new types of

combat operations. It fostered an atmosphere that led

to increased use of digital computing capabilities in

war gaming and simulation to help solve increasingly

more sophisticated and complex problems.
The Emergence of Systems Analysis

MOR also took on problems at a level higher than that

of individual weapon systems or engagements between

two opposing weapon systems. Even in a Cold War

climate, there were significant limits on national

expenditures for armed forces. It was necessary for

government to decide “how much is enough” and

MOR sought to aid this decision.

Applications of OR at this high level, often termed

systems analysis, face difficulties far greater than the

difficulties of World War II MOR, significant as the

latter were. Wartime combat analysis, sometimes

without recognizing it, had already faced criterion

problems of sub-optimization, as Hitch (1953) points

out. These become still more significant when

structuring forces for the future, seeking to be

prepared to deal with contingencies still beset with

great uncertainty.

Hitch (1955) gives an understanding of the relative

difficulty of systems analysis by comparing the World

War II problem of improving bomber accuracy with

the postwar problems of weapon system development

and force composition. In the former problem, difficult

as it seemed at the time, known were the types of

aircraft involved, how many there were, much about

their characteristics, the kind of bombs available, and

much about enemy targets and their defenses. These

become variables when considering an uncertain

future that may sometimes hold a multiplicity of

potential opposing forces.

The difficulties are in the problems, as Hitch went

on to point out. Despite these difficulties, governments

must make decisions and systems analysis, with all of

its limitations, has much to offer. MOR analysts
developed judgment in cutting problems down to

size, and Quade (1954) collected some of the helpful

approaches in an influential volume. Quade and

Boucher (1968) and Miser and Quade (1988) give

refinements and extensions to non-defense analysis.
The Institutionalization and Impact of
Systems Analysis

Hitch and McKean (1960) did much to introduce

cost-effectiveness studies as instruments of defense

systems analysis. In the Kennedy administration in

1961, Secretary of Defense McNamara brought

Hitch into the Office of the Secretary of Defense

(OSD) as Comptroller to install a system of planning-

programming-budgeting (PPB), and Enthoven, as

Hitch’s assistant, started an office of systems analysis.

Although the titles and organizational placement have

changed over the years, OSD has continued both PPB

and systems analysis.

These new offices had great impact. The

government sought to create similar offices in other

departments (Bureau of the Budget 1965). Within the

DoD, the new OSD offices played an important role in

departmental decisions. As its emphasis on, and

requests for, quantitative analysis increased, the

military services organized and enlarged their MOR

offices to meet the demand.

The above developments came at a time when

computer capabilities were rapidly increasing. Many

MOR offices sought to use the new capabilities in

producing cost-effectiveness studies required for

systems analysis. Computer simulation models began

to proliferate in the effort to understand what new or

proposed weapon systems would contribute to the

future battlefields. Because this effort contributed to

studies with great impact on weapon systems

acquisition, it has continued to grow.
Wartime Combat OR in Korea and Vietnam

Although its successes in World War II led service

leadership to gradually incorporate MOR into its

decision-making process, MOR efforts came to

emphasize future weapon system acquisition as

described above. For more details of what is

summarized here, see Schrader (2008).
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KOREA: Right from the beginning, the Army

leadership was admonished to deploy MOR teams to

Japan and Korea. As in WWII, the analysis of current

operations, organizations and tactics were

prominent. Increased interest in new organizations,

counter-measures, winter operations, clothing,

airborne operations, and psychological warfare were

undertaken. By the end of 1953, the efforts of the

deployed MOR teams had validated WWII

experience and demonstrated that MOR could be

successfully applied to land warfare. Between Korea

and Vietnam, multiple MOR organizations provided

analyses and supported the combat development

process. Major war gaming and simulation centers

were created to study the impact of new weapons,

organizations, and future force structure and tactics.

Centers grew within The U.S. Army Training and

Doctrine Command (TRADOC) at Fort Leavenworth

and White Sands to assist in defining new

organizations, doctrine and tactics while HQ DA

continued to rely upon the successor to STAG, the

Concepts Analysis Agency (CAA), to evaluate future

force structures. Individual weapons research and

evaluation continued to expand at Aberdeen Proving

Grounds where the Ballistics Research laboratory

(BRL) studied, evaluated, assessed and developed

new, improved weapons.

VIETNAM: While a shooting war was underway in

Southeast Asia (SEA), the rise of PPB at the Pentagon

split Army MOR activities. It developed additional

in-house capability to support the centralization of

decision-making begun under Secretary McNamara

and the Office, Secretary of the Army (OSA). More

MOR trained personnel were needed to support the

PPB System (PPBS) and a formal specialty program

was created in 1967 for military officers. This was

coupled with use of civilian contractors and Federally

Funded Research and Development Centers

(FFRDCs). That is not to say that MOR activities

were totally devoted to PPBS. Of particular interest

was the lengthy analysis and assessment of the air

mobility concept and organization of the air assault

division prior to the war in SEA. Multiple

organizations, field boards and MOR offices

significantly supported the vast testing and

experimentation of the air mobility concept.

The war in SEA renewed interest in the study of

current operations, battlefield performance of

weapons, equipment, organizations and tactics. RAC,
the successor to ORO, deployed teams to to collect

data along with HumRRO, SORO and Combat

Development Command (CDC). HQ Military

Assistance Command, Vietnam (MACV) established

an in-theater analysis and assessment capability.

Quantitative methods were employed extensively at

Field Force and Division level. Manually assisted war

games were run to help develop alternate strategies and

think through potential issues. Efforts were focused

upon counter-insurgency operations and suffered

from lack of large amounts of quantitative data

needed to adequately analyze it. Still, as one division

commander noted, the “judicious use of operational

analysis and analytic techniques when melded with

military judgment were quite effective in improving

performance of many activities.”

In Chapter I of Hughes (1989), Thomas observed

that combat OR both in Korea and later in Vietnamwas

very similar to that of World War II. Despite the

postwar increase in modeling and computer

capabilities, it did not make nearly as much

contribution in Korea or Vietnam as might have been

expected. “Though the menu of available techniques

increased with time, much that had been learned in

World War II was forgotten and relearned in later

conflicts.” The 1960s and 1970s were a time of great

growth in the analytic community. MOR efforts

greatly expanded force planning and management

with a commensurate need to expand the number of

MOR-trained officer personnel. A whole new set

of challenges faced the Army after Vietnam as the

MOR community assisted in helping the Army

reorganize, revitalize, and reorient itself prior to the

First Gulf War.
Contributions After Vietnam and the
Gulf War

The period after Vietnam was a time of recovery and

reorganization for the U.S. Army (see Schrader 2009

for more details). The multi-year conflict had severely

damaged the Army’s equipment modernization

process and MOR efforts concentrated upon

providing the analytic underpinning for major

changes in weapon systems, equipment,

organizations, doctrine and training. In light of two

major studies affecting MOR organizations,

competitive contracting was more formalized
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(RAC was disestablished) and MOR assets became

more concentrated into fewer organizations – CAA,

TRADOC Analysis Command (TRAC), the

Operational Test and Evaluation Command (OPTEC)

and the Army’s Material Systems Analysis Agency

(AMSAA) ultimately concentrated the efforts of the

majority of civilian and military MOR specialists and

performed the majority of all studies. MOR became

more integrated into the Army’s decision-making

process as new technology, better weapon systems,

and improved organizations were developed.

A pyramid of responsibility was formed with CAA at

the apex studying force structure and strategy, TRAC

focused on battalion to Corps level studies, and

AMSAA dealing with individual weapon system

analysis.

The end of the Cold War in 1989 presented the

Army and the MOR community with entirely new

issues – much more complex and demanding that

ever before – and MOR support to the material

acquisition process became more important. The

ever-increasing improvements in technology and

computing power brought with it an expanding use

of models and simulations to solve the issues facing

the Army. This expansion also created issues in

validation, verification and accreditation of the

analytic tools used to support the decision making

process.

During the First Gulf War in 1991, the efforts of

20 years of MOR involvement in conjunction with

new organizations, new equipment and weapon

systems, new doctrinal, and training improvements,

fielded the finest fighting force in the history of the

United States. Each of the major organizations

actively supported the collection of data. CAA was

intimately involved in the evaluation of the forces

involved during the planning phase of the operation.

War games and separate assessments assisted Army

planners and major headquarters in preparing for the

deployment and employment of forces. Multiple

rapid response assessments – some as short as

12 h – were provided during Operation Desert

Shield. Ultimately, a small MOR cell was deployed

to support HQ Central Command (CENTCOM), but

most MOR efforts were conducted in the continental

U.S. (CONUS). The successful military outcome

underscored the need for rapid and flexible support

to deployed forces with a full range of theater level

analysis capabilities.
MOR Lessons from Desert Shield/Desert
Storm

The new computer and modeling capabilities seemed

to have more impact in MOR for the Gulf War combat

of 1991. Vandiver et al. (1992) concluded that while

some of its analytic lessons were reminiscent of World

War II, and some lessons were probably peculiar to

wars like the Gulf War, there were trends indicative of

future combat analysis:

– Computer influence on analysis is increasingly

varied and pervasive.

– Software analytical tools are increasingly available

to all - including non-analysts.

– The demand for good databases is growing more

rapidly than the supply.

– There is growing need for coalition and joint service

analysis.

– There is increasing analytical interest in operational

art and campaign focus.

– There is a need to have MOR teams ready to join,

and planning models and simulations in place with

deployed forces.

– Teams must be ready to improvise quickly to

support ongoing and planned operations in the

field.

– There is less danger of central misuse of field

analysis and data than formerly. The lessons of

better methods of data collection and selection of

more accurate measures of effectiveness learned in

earlier conflicts have been absorbed by the MOR

community.
Concluding Remarks

Although MOR has been a flourishing enterprise with

an expanding technological menu, there are still issues

to resolve, some long standing. While it is clear that

MOR tools and techniques improved the material

acquisition process and the PPBS, a significant

fraction of the issues relate to modeling and

simulation, or are frequently so characterized. Some

of the more serious concerns address scientific

foundations (including verification and validation);

DoD organization and management (including that

for MOR); management; filling a perceived need;

and taking suitable advantage of technological

opportunities.
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See

▶Air Force Operations Research

▶Battle Modeling

▶Center for Naval Analyses

▶Cost Analysis

▶Cost-Effectiveness Analysis

▶Exploratory Modeling and Analysis

▶Military Operations Other Than War

▶Operations Research Office and Research Analysis

Corporation

▶RAND Corporation

▶ Simulation of Stochastic Discrete-Event Systems

▶ Systems Analysis

▶War Game
M
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MIMD

Multiple instruction, multiple data. A class of parallel

computer architectures in which each processing

element fetches and decodes its own stream of

instructions, possibly different from the instruction

streams for other processors.
Minimum

A real-valued function f(x) is said to have a minimum

on a set S when the greatest lower bound of f(x) on S is

assumed by f(x) for some x0 in S. Thus, f(x0) � f(x) for

all x in S.
See

▶Global Maximum (Minimum)
Minimum (Maximum) Feasible Solution

In a mathematical-programming problem, the solution

that both satisfies the constraints of the problem and

minimizes (maximizes) the objective function is

a minimum (maximum) feasible solution. Such

solutions may not be unique.
Minimum Spanning Tree Problem

Given a connected network with n nodes and

individual costs associated with all edges, the

problem is to find the least-cost spanning trees.
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See

▶Network Optimization

▶ Spanning Tree
Minimum-Cost Network-Flow Problem

In a directed, capacitated network with supply and

demand nodes, the problem is to determine the flows

of a single, homogeneous commodity from the supply

nodes to the demand nodes that minimize a linear cost

function. In its general form, when the network

contains transshipment or intermediate nodes – nodes

that are neither supply nor demand nodes – the

problem is called the transshipment problem.

Conservation of flow through each node is assumed.

Due to its special mathematical structure, this problem

has a solution in integer flows, given that the data that

define the network are integers. It is a linear-

programming problem whose major constraints form

a node-arc incidence matrix.
See

▶Conservation of Flow

▶Maximum-Flow Network Problem

▶Network Optimization
MIP

▶Mixed-Integer Programming Problem (MIP)
MIS

Management information systems.
See

▶ Information Systems and Database Design in

OR/MS
Mixed Network

A queueing network in which some customers can

enter and leave the network while others neither enter

nor leave but cycle through the nodes endlessly.

A queueing network in which the routing process

contains at least one closed set of states for some

types of customers but not others.
See

▶Closed Network

▶Networks of Queues

▶Open Network

▶Queueing Theory
Mixed-Integer Programming Problem
(MIP)

A mathematical-programming problem in which the

constraints and objective function are linear, but some

of the variables are constrained to be integer valued.

The integer variables can either be binary or take on

general integer values.
See

▶Binary Variable

▶ Integer and Combinatorial Optimization

▶Linear Programming

▶Mathematical Programming
Model

An idealized — abstract and simplified —

representation of a real-world situation that is to be

studied and/or analyzed. Models can be classified in

many ways. A mental model is an individual’s

conceptual, unstated, view of the situation under

review; a verbal or written model is a description of

one’s mental model; an iconic model looks like what it

is supposed to represent (e.g., an architectural model of
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a building); an analogue model relates the properties of

the entity being studied with other properties that are

both descriptive and meaningful (e.g., the concept of

time as described by the hands and markings of

a clock); a symbolic or mathematical model

represents a symbolic representation of the process

under investigation, e.g., Einstein’s equation

E ¼ mc2, a linear-programming model, or a computer

simulation model.
See

▶Descriptive Model

▶Deterministic Model

▶Linear Programming

▶Mathematical Model

▶Normative Model

▶ Predictive Model

▶ Prescriptive Model

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Model
M

Model Accreditation

Saul I. Gass

University of Maryland, College Park, MD, USA
Model accreditation is an official determination that

a model is acceptable for a specific purpose (Williams

and Sikora 1991; Ritchie 1992). Accreditation certifies

that the element being accredited meets given

standards. For a model, accreditation must be done

with respect to the model’s explicit specifications and

the demonstration that the computer-based model does

or does not meet the specifications. This demonstration

is the responsibility of the model developers, who must

show that their work passes agreed-to user and

developer acceptance tests. If the modeling process

was done properly and was accompanied by

appropriate documentation, accreditation of the

model for its specified uses should follow.

Accreditation of a model must rely on a review and

evaluation of its available documentation. Such an

evaluation, usually done by an independent

third-party, is made against various criteria to
determine the levels of accomplishment of the

criteria, in particular those of verification and

validation. The review is made with a specific user

and uses in mind. The review should produce a report

that gives guidance to the user on whether or not the

model in question can be used with confidence for the

designated uses, that is, the model is or is not

accredited for specific uses (Gass 1993).

The ideas, if not the general process behind model

accreditation, have been accepted by modeling

agencies within government and private industry,

most notably by the U.S. Department of Defense

(2009) in the context of modeling and simulation

(see also Sargent 2005).
See

▶Model Evaluation

▶Model Management

▶ Practice of Operations Research and Management

Science

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models
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Model Builder’s Risk

Probability of rejecting the credibility of a model when

in fact the model is sufficiently credible.
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▶Verification, Validation, and Testing of Models
Model Evaluation

Saul I. Gass

University of Maryland, College Park, MD, USA
Model evaluation or assessment is a process by which

interested parties, who were not involved in a model’s

origins, development and implementation, can assess

the model’s results in terms of its structure and data

inputs so as to determine, with some level of

confidence, whether or not the results can be used in

decision making. Model evaluation encompasses:

(1) verification, validation, and quality control of the

usability of the model and its readiness for use, and

(2) investigations into the assumptions and limitations

of the model, its appropriate uses, and why it produces

the results it does.

There are three reasons for advocating evaluation of

models: (1) for many models, the ultimate decision

maker is far removed from the modeling process and

a basis for accepting the model’s results by such

a decision maker needs to be established; (2) for

complex models, it is difficult to assess and to

comprehend fully the interactions and impact of

a model’s assumptions, data availability, and other

elements on the model structure and results without

a formal, independent evaluation; and (3) users of

a complex model that was developed for others must

be able to obtain a clear statement of the applicability

of the model to the new user problem area

(Gass 1977a).

All procedures for evaluating a model are

basically information gathering activities, with the

detail and level of information being a function of

the purposes of the assessment and the skills of

the assessors. Specific evaluation approaches are

given in Gass (1977a, b), Gass (1980), U.S GAO

(1979), with an evaluation case study given in

Fossett et al. (1991).
A model evaluation procedure and its objectives

should be tailored to the scope and purposes of the

model and will vary with the model, model developers,

assessors, users, and available resources. Model

assessment is an expensive and involved undertaking;

all models need not be assessed. Model developers and

users should recognize that by applying proper

modeling management procedures, the burdens that

evaluators of models have to contend with are

alleviated greatly (Gass 1987).
See

▶Model Accreditation

▶Model Management

▶ Practice of Operations Research and Management

Science

▶ Project Management

▶Verification, Validation, and Testing of Models
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Introduction

The term model management was coined in the

mid-1970s in the context of work on decision support

systems (DSS) (Sprague andWatson 1975;Will 1975).

An important objective of the DSS concept was to

provide an environment in which decision makers

could gain materially useful insights by interactively

exercising OR/MS models. However, developing such

an environment required principled solutions to

problems of specifying, representing and interacting

with models. This focus on models, and in turn on

modeling, led to the study of model management,

defined broadly to encompass the study of model

representation, the set of operations facilitated by

such representation at various stages of the modeling

life cycle, and computer-based environments that

facilitate modeling.

What follows is a brief review of work in two areas

that have been actively studied in model management.

First, work on languages to specify models, and on the

development of techniques to facilitate operations

that support modelers in both the pre-solution and post-

solution phases of the modeling life cycle. Second, work

on the representation of a collection of models (e.g., a

model library) and the development of techniques to

enable model selection and configuration. As with other

information technology-based fields,modelmanagement

has benefitted from the growth of Internet technologies.

A detailed review of the implications for model

management of the growth in Internet, and in particular

the World Wide Web technologies, is in Bhargava and

Krishnan (1998), and Bhargava, Power, and Sun (2007).
Model Management-I

Modeling languages—The need to represent a model

in a notation that is easy to validate, verify, debug,
maintain and communicate motivated the development

of modeling languages (Fourer 1983). Prior to

their development, the only computer-executable

representation of a model was in an arcane format

optimized for efficient solution (e.g., the

Mathematical Programming System MPS format).

Current modeling languages provide a high-level

symbolic notation to specify models. Solution

operations can also be declared and all the required

details of binding the model instance to the data

structures required by solver done transparently.

Further, this has greatly increased the productivity of

model-based work.

Four principles have been articulated as essential to

modeling language design (Bhargava and Kimbrough

1993; Fourer 1983; Geoffrion 1992a; Krishnan and

Chari 2000). These are:

• Model data independence: requires the

mathematical structure of the model to be

independent of the data used to instantiate it. This

permits model data to be modified in format,

dimension, units or values without any

modification to the model representation.

• Model solver independence: requires the model

representation to be independent of the

representation required by the solver. This permits

more than one solver to be used with a given model.

Further, it recognizes the fundamental differences

in the requirements placed on model

representations and representations required by the

solver.

• Model paradigm independence: requires that the

modeling language allow the representation of

models drawn from different paradigms (e.g.,

mathematical programming and discrete event

simulation).

• Meta level representation and reasoning: requires

that the modeling language represent information

aboutmodel components and models, in addition to

their mathematical structure in order to enable

semantic consistency checking.

Modeling languages incorporate these principles to

varying degrees. Examples of modeling languages

include spreadsheet-based languages such as IFPS

(Gray 1987), algebraic modeling languages such as

GAMS (Bischop and Meeraus 1982), AMPL (Fourer

et al. 1990), and MODLER (Greenberg 1992),
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relational modeling languages such as SQLMP

(Choobineh 1991), graphical modeling languages

such as NETWORKS (Jones 1991), and Model

Graphs (Chari and Sen 1997), typed modeling

languages such as ASCEND (Piela et al. 1992), and

XML-based languages such as OptML, SNOML,

FML, and MathML. A survey of XML-based

representations can be found in Valente and Mitra

(2007). New developments in algebraic modeling

languages include extensions for constraint

programming (Fourer and Gay 2002), and extensions

for stochastic programming (Valente et al. 2009). The

formal analysis of the semantics of typed modeling

languages is in Bhargava, Krishnan, and Piela (1997).

There is also an active market in commercial modeling

languages and systems. A survey of these systems can

be found in Sharda and Rampal (1995).

Two developments have had a significant impact on

modeling languages. One is the seminal work on

Structured Modeling (SM) (Geoffrion 1987).

Developments and research directions are described

in a survey of structured modeling (Geoffrion 1999a),

and an annotated bibliography is given in Geoffrion

(1999b). While previous work on modeling languages

had sought to provide a computer executable

representation of the notation traditionally used by

modelers, SM defines a theory that treats models as

hierarchical collections of definitional dependencies.

This enables structured modeling languages to

satisfy all the four design principles discussed above.

While several languages have implemented SM, the

most completely developed of these is SML (Geoffrion

1992a, b). The other important development is the

embedded languages technique, which can be used to

define an architecture of considerable generality for

modeling environments. This technique is used to

specify modeling languages, as well as information

about the terms and expressions stated in these

languages. The TEFA modeling environment

(Bhargava and Kimbrough 1993) has been implemented

using this technique.

Operations — The early work on model

management focused on model solution. The

objective was to transparently bind solution

algorithms to model instances. As noted above,

modeling languages have realized this objective.

Model management research has since focused on

operations required to support both pre-solution and

post-solution phases of the modeling life cycle. Next,
research related to a pre-solution phase, model

formulation, and a post-solution phase, model

interpretation, are described.

Model Formulation — Model formulation is the

task of converting a precise problem description into

a mathematical model (Krishnan and Chari 2000). It is

a complex task requiring diverse types of knowledge.

The appropriateness of a model depends on a variety

of factors such as accuracy, tractability, availability of

relevant data, and understandability. Model formulation

research has primarily focused on the development of

theory, tools and techniques to support the formulation

of deterministic mathematical programming models.

Work by Gassmann and Ireland (1996) has studied the

formulation of stochastic mathematical programming

models.

Using protocol analysis, detailed studies of the expert

modeling process have been conducted and process

models have been developed (Krishnan et al. 1992;

Raghunathan et al. 1994). Domain-independent and

domain-specific model formulation strategies have

been implemented in model formulation support

systems (Krishnan 1990; Ma et al. 1989; Raghunathan

et al. 1994) and a variety of representation and

(deductive) reasoning schemes have been investigated.

Liang and Konsynski (1993) have also investigated

alternative approaches such as analogical reasoning

and case-based reasoning to implement model

formulation systems. A principled approach to

formulating mathematical programming models is in

Murphy, Stohr, and Asthana (1992). A survey of this

research is given in Bhargava and Krishnan (1993).

Model Interpretation — Model interpretation

consists of a variety of techniques to help a modeler

comprehend a model. These include parametric

analysis, structural analysis, and structure inspection.

Parametric analysis has long been supported in

model management systems. Spreadsheets routinely

support what-if analysis and goal seeking. Modeling

languages for mathematical programming implement

the theory of sensitivity analysis.

The pioneering work on structural analysis is due to

Greenberg on the ANALYZE system (Greenberg

1987). ANALYZE extracts model structures that

cause exceptions such as redundancy and infeasibility

in linear programming models. The stream of work

begun with ANALYZE has been considerably

extended. Guieu and Chinneck (1999) described

work and a toolkit called Mprobe that analyzes
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infeasibility in mixed integer and integer linear

programming models. Sharda and Steiger (1996)

presented work on applying inductive learning

techniques to facilitate model analysis. Kimbrough

and Oliver (1994) examined the issue of post-solution

analysis for models other than linear programs and

have at-tempted to fashion a solution along the lines

of ANALYZE. An important feature of their approach

is the analysis of the impact on the solution to a model

when changes are made to the parameters of

a surrogate model.

Piela et al. (1992) described the use of a browser to

inspect the structure of a model. Dhar and Jarke (1993)

and Raghunathan et al. (1995) examined the usefulness

of recording the rationale underlying a model. The

documented rationale is used to aid comprehension as

well as to correctly and consistently propagate the

changes made to the structure of a model. Work on

analyzing assumptions associated with models and

visualizing the structure as a graph is reported in

Basu and Blanning (1998). More recently, model

ontology and model schema developed using OWL,

a web ontology language based on XML, has been

used for model representation and interpretation

(Bhrammanee and Wuwongse 2008).
Model Management-II

Model libraries —In contrast to the work reviewed in

the previous section, the focus of this stream of

research assumes the existence of a library of

debugged and validated models. This has led to the

study of issues such as the representation of model

libraries and operations such as model selection and

configuration.

Model Representation — Predominantly, models

are abstractly represented as black boxes, i.e., as a set

of named inputs and outputs. This is in contrast to the

detailed representation of the structure of the model in

the previous section. A variety of representations,

including virtual relations (Blanning 1982) and

predicate logic (Bonczek et al. 1978) have been used

to represent models. Additional structure has been

imposed on these representations. Mannino,

Greenberg, and Hong (1990) proposed the use of

categories such as model type, model template, and

model instance to organize the collection of models in

a library. A model type is a general description of
a model class such as linear programming. A model

template is a refinement of a model type such as

a production planning LP model, and a model

instance is an instance of a model template in which

the source of values for each parameter has been

declared. Model templates have been represented

using key-value pairs and filter lists in (Chari 2002),

as Web Services Description Language (WSDL)

service descriptors (Madhusudan 2007), and as OWL

(XML-based) model profiles (Bhrammanee and

Wuwongse 2008). Metagraphs (Basu and Blanning

1994a; Basu et al. 1997), a specialized type of graph

structure, has been the significant development in this

area.

Model Selection — Model selection leverages the

existence of previously developed models to create

a model for a new problem. In addition to the set of

inputs and outputs associated with a model, additional

information such as model assumptions need to be

represented. Mannino et al. (1990) described model

selection operators that match, either exactly or

fuzzily, the assumptions associated with a model and

those that are part of a problem statement. Work by

Banerjee and Basu (1993) adopted the same

framework as Mannino et al. (1990) but differed in

its use of structuring technique called the Box

Structure method (Mills et al. 1986), borrowed from

the domain of systems analysis and design to develop

its taxonomy of model types. Later, Guenther, Muller,

Schmidt, Bhargava, and Krishnan (1997) studied the

problem of selecting models and methods from web-

based electronic catalogs. Chari (2002), implemented

an approach based on matching filter spaces in

selecting models. More recently, the work by

Guntzer, Muller, Muller, and Schimkat (2007) have

used a graph-matching procedure for selecting

structured models represented as graphs. The

problem of selecting and composing appropriate data

mining models from a model library is now gaining

attention (Liu and Tuzhilin 2008).

Model Configuration — Model configuration

leverages previously developed models by either

linking them together (referred to as model

composition) or by integrating them (referred to as

model integration). Model composition links together

independent models such that the output of one model

becomes an input to another. Model composition is

often used in conjunction with model selection when

no one model meets the requirements of a problem.



M 988 Model Management
An example of model composition is the linking

together of a demand forecasting model and

a production scheduling model.

While the early work only permitted links between

variables with the same name, later work of Muhanna

(1992) and Krishnan, Piela, and Westerberg (1993)

permitted linkages between objects (variables, arrays,

instances of types, etc.) as long as certain semantic

constraints are met. Muhanna (1992) also proposed

methods that determine the order in which

a collection of linked models should be solved.

Representation methods and algorithms that can

determine the set of models that need to be composed

in order to obtain a set of outputs from a given set of

inputs have been a major focus of model composition

research. While the early work was based on virtual

relations (Blanning 1982) and predicate logic

(Bonczek et al. 1978), later work based on a construct

called metagraphs (Basu and Blanning 1994a) has

shown considerable promise. In addition to model

composition (Basu and Blanning 1994b), the

metagraph construct enables the representation of and

reasoning with metadata such as assumptions

associated with models (Basu, Blanning and Shtub,

1998). Work within the last ten years has focused on

automating model composition and execution process,

and combining partial solutions from multiple

composite models and databases as in Chari (2002),

leveraging XML in model composition (Bhrammanee

and Wuwongse 2008) and implementing model

composition through a sequence of web service

invocations as in the WEBOPT project (Valente and

Mitra 2007), and in (Madhusudan 2007).

Model integration differs from model composition

in allowing modifications to be made to the models

being integrated. Model integration involves both

schema integration and solver integration (Dolk and

Kotteman 1993). Schema integration is the task of

merging the internal structure of two or more models

to create a new model, while process integration is the

task of interweaving associated solution processes in

order to solve the integrated model.

Support for conflict resolution is a major focus of

research in schema integration. This has involved the

development of a variety of typing schemes that seek

to integrate data typing (Muhanna 1992), and concepts

such as quiddity and dimensions (Bhargava et al.

1991).
Detailed procedures for integrating models

specified in the Structured Modeling Language

(SML) (Geoffrion 1992a, b) have been proposed

(Geoffrion 1989) and extended (Tsai 1998). The

method uses to advantage the ability of structured

modeling to trace the effects of changes and the

formal definition of what constitutes a structured

model. An update to structured modeling research is

given in Geoffrion (1999a).

The pioneering work on solver integration is the

work of Dolk and Kotteman (1993). They used the

theory of communicating sequential processes (Hoare

1985) to address the problem of solver integration.

A simplified version of the problem was addressed by

Muhanna (1992) in the SYMMS system. As software

components have emerged as a viable technology for

web-based deployment of solvers on the Web, recent

work has studied integration of solvers/methods on the

Web (Guenther et al. 1997). Technology has made it

possible to wrap a solver with a software layer that

exposes standard interfaces thereby enabling multiple

solvers to be invoked in a standard manner as in the

case of Open Solver Interface (OSI) in the COIN-OR

repository (Saltzman 2002).
Concluding Remarks

Research in the general area of model management

since 2000 has contributed to (1) the extension of

modeling languages to represent a variety of models;

(2) the development of distributed model management

systems using web technologies to support models

as services; (3) the automation of model composition

process; and (4) the integration of modeling languages

and systems with databases. Among the numerous

surveys that have been published on the subject, the

model management chapter in the book on

information systems and decision processes (Stohr and

Konsynski 1992), the special issue of Decision Support

Systems edited byBlanning (1993), and the special issue

of the Annals of Operations Research edited by Shetty

(1992) deserve special mention for their broad coverage

of issues and their quality of exposition. A survey of the

model management literature may be found in Krishnan

and Chari (2000). A survey of model management

issues pertaining to data mining models can be found

in Liu and Tuzhilin (2008).
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See

▶Algebraic Modeling Languages for Optimization

▶Decision Support Systems (DSS)

▶ Structured Modeling

▶Verification, Validation, and Testing of Models
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Model Testing

Investigating whether inaccuracies or errors exist in

a model.
See

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models
Model User’s Risk

Probability of accepting the credibility of a model

when in fact the model is not sufficiently credible.
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Model Validation

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models
Model Verification

▶Validation

▶Verification

▶Verification, Validation, and Testing of Models
Model-based Search Methods

A class of global optimization methods that uses

a probability distribution to generate candidate solutions,

where in each iteration of the algorithm, the probability

distribution is updated according to the performance of the

population of candidate solutions. Examples include

estimation of distribution algorithms, the cross-entropy

method, and model reference adaptive search.

M

See

▶Cross-Entropy Method
References
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algorithms: A new tool for evolutionary computation.
Boston: Kluwer Academic.
MODI

Modified Distribution Method. A procedure for

organizing the hand computations when solving

a transportation problem using the transportation

simplex method.

See

▶Transportation Simplex (Primal-Dual) Method
MOIP

Multi-objective integer programming.
See

▶Multiple Criteria Decision Making
MOLP

Multi-objective linear programming.
See

▶Multiobjective Programming
Moment Generating Function

For a random variable X, the moment generating

function is given by MXðtÞ ¼ E½etX�, assuming the

expectation exists. For non-negative continuous

random variables, it is basically identical to the

Laplace transform for the corresponding probability

density function.
Monte Carlo Methods

General term used to refer to the use of random

numbers in a particular methodology, e.g., evaluating

a high-dimensional deterministic integral or carrying

out a randomized algorithm or simulation of

a stochastic system, all based on statistical sampling

techniques. The term “Monte Carlo” signifies the

random or uncertain component that characterizes the
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method and was coined in the 1940s by physicists

working on the Manhattan nuclear weapons project,

an allusion to gambling inMonte Carlo casinos. One of

the strengths of the Monte Carlo method is that in

many applications its computational burden grows

only linearly in the dimension of problems where

other methods suffer from an exponential (geometric)

growth in computation.
See

▶Las Vegas Algorithm

▶Monte Carlo Simulation

▶Randomized Algorithm

▶ Simulation of Stochastic Discrete-Event Systems
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Monte Carlo Simulation

Simulation of systems modeled using random variables

and/or stochastic processes. The underlying inputs are

generally random numbers, sequences of independent

and identically distributed random variables uniformly

distributed on the unit interval. Sometimes called the

Monte Carlo method, where the term “Monte Carlo”

signifies the random or uncertain component that

characterizes the method and was coined in the 1940s

by physicists working on theManhattan nuclear weapons

project, an allusion to gambling in Monte Carlo casinos.

Monte Carlo simulation is one of the most widely used

tools in operations research and management science

(OR/MS) and can be used to provide detailed models

of complex systems arising in various OR/MS fields

from manufacturing to transportation to computer/

communications networks to financial engineering. One

of the strengths of theMonteCarlomethod is that inmany

applications its computational burden grows only linearly

in the dimension of problemswhere other methods suffer

from an exponential (geometric) growth in computation.
See

▶ Simulation of Stochastic Discrete-Event Systems

▶ Simulation Optimization

▶Variance Reduction Techniques in Monte Carlo

Methods
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MOR

Military operations research; also used as an abbreviation

for the journalMathematics of Operations Research.
See

▶Military Operations Research
Moral Hazard

A term in economics describing a situation in which

a decision maker’s actions are taken without bearing

full risk, responsibility, or consequences for the

potential outcomes. For example, having a valuable

item with full insurance coverage against theft might

make the owner more lax in safeguarding it.

Economist Paul Krugman described moral hazard

as: “. . .any situation in which one person makes the

decision about how much risk to take, while someone

else bears the cost if things go badly.”
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MORS

Military Operations Research Society.
See

▶Military Operations Research
MPS

▶Mathematical-Programming System (MPS)
MRP

▶Material Requirements Planning
M

MS

Management Science
MSE

Mean square error.
Multicommodity Network Flows

Bala Shetty

Texas A&M University, College Station, TX, USA
Introduction

The multicommodity minimal cost network flow

problem may be described in terms of a distribution
problem over a network [V, E], where V is the node set

with order n and E is the arc set with order m. The

decision variable xjk denotes the flow of commodity k
through arc j, and the vector of all flows of commodity k

is denoted by xk¼ [x1k,. . ., xmk]. The unit cost of flow of

commodity k through arc j is denoted by cjk and the

corresponding vector of costs by ck¼ [c1k,. . ., cmk]. The

total capacity of arc j is denoted by bj

with corresponding vector b ¼ [b1,. . ., bm].
Mathematically, the multicommodity minimal cost

network flow problem may be defined as follows:
Minimize
X
k

ckxk

s:t:

Axk ¼ rk; k ¼ 1; . . . ; KX
k

xk � b

0 � xk � uk; for all k;

where K denotes the number of commodities, A is

a node-arc incidence matrix for [V, E], rk is

the requirements vector for commodity k, and uk

is the vector of upper bounds for decision

variable xk.

Multicommodity network flow problems are

extensively studied because of their numerous

applications and because of the intriguing network

structure exhibited by these problems (Ahuja et al.

1993; Ali et al. 1984; Assad 1978; Castro and

Nabona 1996; Kennington 1978; McBride 1998).

Multicommodity models have been proposed for

planning studies involving urban traffic systems

(Chen and Meyer 1988; LeBlanc 1973; Potts and

Oliver 1972) and communications systems (LeBlanc

1973; Naniwada 1969). Models for solving scheduling

and routing problems have been proposed by

Bellmore et al. (1971) and by Swoveland (1971).

A multicommodity model for assigning students to

achieve a desired ethnic composition was suggested

by Clark and Surkis (1968). Multicommodity models

have also been used for casualty evacuation of war

time casualties, grain transportation, and aircraft

routing for the USAF. A discussion of these

applications can be found in Ali et al. (1984).

Additional applications of multicommodity flows are

given in Gautier and Granot (1995), and Popken

(1994).

http://dx.doi.org/10.1007/978-1-4419-1153-7_615
http://dx.doi.org/10.1007/978-1-4419-1153-7_200446
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Solution Techniques

There are two basic approaches which have been

employed to develop specialized techniques for

multicommodity network flow problems:

decomposition and partitioning. Decomposition

approaches may be further characterized as

price-directive or resource directive. A price-directive

decomposition procedure directs the coordination

between a master program and each of several

subprograms by the changing the objective functions

(prices) of the subprograms. The objective is to obtain

a set of prices (dual variables) such that the combined

solution for all subproblems yields an optimum for the

original problem. A resource-directive decomposition

procedure (Held et al. 1974; Kennington and Shalaby

1977), when applied to a multicommodity problem

having K commodities, is to distribute the arc capacity

among the individual commodities in such a way that

solving K sub-programs yields an optimal flow for the

coupled problem. At each iteration, an allocation is

made and K single commodity flow problems are

solved. The sum of capacities allocated to an arc over

all commodities is equal to the arc capacity in the

original problem. Hence, the combined flow from the

solutions of the subproblems provides a feasible flow

for the original problem. Optimality is tested and

the procedure either terminates or a new arc capacity

allocation is developed. Partitioning approaches are

specializations of the simplex method where the

current basis is partitioned to exploit its special

structure. These techniques are specializations of

primal, dual, or primal-dual simplex method. The

papers of Hartman and Lasdon (1972), and Graves and

McBride (1976) are primal techniques, while the work

of Grigoriadis andWhite (1972) is a dual technique. An

extensive discussion of these techniques can be found in

Ahuja et al. (1993) and Kennington and Helgason

(1980).

Several researchers have suggested algorithms

for the multicommodity flow problem: Gersht and

Shulman (1987), Barnhart (1993), Farvolden and

Powell (1990), Farvolden et al. (1993), Liu (1997),

and Schneur and Orlin (1998) all present alternative

approaches for the multicommodity model. Parallel

optimization has also been applied for the solution of

multicommodity networks. Pinar and Zenios (1990)
present a parallel decomposition algorithm for the

multicommodity model using penalty functions.

Shetty and Muthukrishnan (1990) develop

a parallel projection which can be applied to

resource-directive decomposition. Chen and Meyer

(1988) decompose a nonlinear multicommodity

problem arising in traffic assignment into single

commodity network components that are

independent by commodity. The difficulty of

solving a multicommodity problem explodes when

the decision variables are restricted to be integers.

Very little work is available in the literature for the

integer problem (Evans 1978; Evans and Jarvis

1978; Gendron and Crainic 1997).

Several computational studies involving

multicommodity models have been reported in

the literature. Ali et al. (1980) present

a computational experience using the price-directive

decomposition procedure (PPD), the resource

directive-decomposition procedure (RDD), and the

primal partitioning procedure (PP). They find the

primal partitioning and price directive decomposition

methods take approximately the same amount of

computing time, while the resource directive

decomposition runs in approximately one-half the

time of the other two methods. Convergence to the

optimal solution is guaranteed for PPD and PP,

whereas RDD may experience convergence

problems. Ali et al. (1984) present a comparison

of the primal partitioning algorithm for solving

the multicommodity model with a general purpose

LP code. On a set of test problems, they find that

the primal partitioning technique runs in

approximately one-half the time required by the

LP code. Farvolden et al. (1993) report very

promising computational results for a class of

multicommodity network problems using a primal

partitioning code (PPLP). On these problems, they

find PPLP to be two orders of magnitude faster than

MINOS and about 50 times faster than OB1,

a state-of-the-art LP solver.

Linear, nonlinear, and integer multicommodity

models have numerous important applications

in scheduling, routing, transportation, and

communications. Real-world multicommodity models

tend to be very large and there is a need for faster and

more efficient algorithms for solving these models.
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Thus, multicommodity models present unlimited

opportunities for future research in large-scale

optimization.
See

▶Large-Scale Systems

▶Linear Programming

▶Logistics and Supply Chain Management

▶Minimum-Cost Network-Flow Problem

▶Network Optimization

▶Transportation Problem
M
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Multicommodity Network-Flow Problem

Aminimum-cost network flow problem in which more

than one commodity simultaneously flows from the

supply nodes to the demand nodes. Unlike the single

commodity problem, an optimal solution is not

guaranteed to have integer flows. The problem takes

on the block-angular matrix form that is suitable

for solution by Dantzig-Wolfe decomposition.

Applications areas include communications, traffic

and logistics.
See

▶Dantzig-Wolfe Decomposition Algorithm

▶Minimum-Cost Network-Flow Problem

▶Multicommodity Network Flows

▶Network Optimization
Multidimensional Transportation
Problem

Usually a transportation problem with a third index

that refers to a product type available at the origins

and demanded at the destinations. The variables xijk
represent the amount of the kth product type shipped

from the ith origin to the jth destination. The

constraint set is a set of linear balance equations,

with the usual linear cost objective function. It is

also a special form of the multicommodity

network-flow problem. Unlike the transportation

problem, its optimal solution may not be integer-

valued even if the network data are given as

integers. The problem can also be defined with

more than three indices.
See

▶Multicommodity Network Flows

▶Transportation Problem
Multiobjective Linear-Programming
Problem

This problem has the usual set of linear-programming

constraints (Ax ¼ b, x �; 0) but requires the

simultaneous optimization of more than one linear

objective function, say p of them. It can be written as

“Maximize” Cx subject to Ax ¼ b, x � 0, where C is

a p � n matrix whose rows are the coefficients defined

by the p objectives. Here “Maximize” represents the

fact that it is usually impossible to find a solution to

Ax ¼ b, x � 0, that simultaneously optimizes

all the objectives. If there is such an (extreme)

point, the problem is thus readily solved. Special

multiobjective computational procedures are required

to select a solution that is in effect a compromise

solution between the extreme point solutions that

optimize individual objective functions. The possible

compromise solutions are taken from the set of

efficient (nondominated) solutions. This problem is

also called the vector optimization problem.
See

▶Efficient Solution

▶Multiobjective Programming

▶ Pareto-Optimal Solution
Multiobjective Programming

Ralph E. Steuer

University of Georgia, Athens, GA, USA
Introduction

Related to linear, integer, and nonlinear programming,

multiobjective programming addresses the extensions

to theory and practice of mathematical programming

http://dx.doi.org/10.1007/978-1-4419-1153-7_200119
http://dx.doi.org/10.1007/978-1-4419-1153-7_200468
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problems with more than one objective function.

Single objective programming must settle on a single

objective such as to maximize profit or minimize cost.

However, many if not most real-world problems are

in an environment of multiple conflicting criteria.

A sample of problems modeled with multiple

objectives:

Oil Refinery Scheduling

min {cost}

min {imported crude}

min {high sulfur crude}

min {deviations from demand slate}

Production Planning

max {total net revenue}

max {minimum net revenue in any period}

min {backorders}

min {overtime}

min {finished goods inventory}

Forest Management

max {timber production}

max {visitor days of recreation}

max {wildlife habitat}

min {overdeviations from budget}

Emerging as a new topic in the 1970s,

multiobjective programming has grown to the

extent that numerous books have been written on the

subject (e.g., Zeleny 1982; Yu 1985; Steuer 1986;

Miettinen 1999; Ehrgott 2005) and applications of

multiobjective programming can now be found in

virtually all areas of operational research.
Terminology

A multiobjective programming problem is the

following:

maximize f1ðxÞ ¼ z1f g
..
.

maximize fkðxÞ ¼ zkf g
subject to x 2 S

where k is the number of objectives, the zi are

criterion values, and S is the feasible region in

decision space. Let Z � Rk be the feasible region in

criterion space where z∈ Z if and only if there exists an
x∈ S such that z¼ (f1(x),. . ., fk (x)). LetK¼ {1,. . ., k}.

Criterion vector z 2 Z is nondominated if and only if
there does not exist another z ∈ Z such that zi � zi for
all i ∈ K and zi > zi for at least one i ∈ K. The set of

all nondominated criterion vectors is designated N and

is called the nondominated set. A point x 2 S is

efficient if and only if its criterion vector

z ¼ f1 xð Þ; . . . ; fk xð Þð is nondominated. The set of all

efficient points is designated E and is called the

efficient set.

LetU: Rk! R be the utility function of the decision

maker (DM). A z
 ∈ Z that maximizes U over Z is

an optimal criterion vector and any x
 ∈ S such that

(f1(x

),. . ., fk (x
)) ¼ z
 is an optimal solution of the

multiobjective program. The interest in the efficient

set E and the nondominated set N stems from the

fact that if U is coordinatewise increasing (i.e., more

is always better than less of each objective), x
 ∈ E and

z
 ∈ N. In this way, a multiobjective program

can be solved by finding the most preferred criterion

vector in N.

One might think that the best way to solve a

multiobjective program would be to assess the DM’s

utility function and then solve

maximize U z1; . . . ; zkð Þf g
subject to fiðxÞ ¼ zi; i 2 K; x 2 S

because any solution that solves this program is an

optimal solution of the multiobjective program.

However, multiobjective programs are usually not

solved in this way because (1) of the difficulty in

assessing an accurate enough U, (2) U would

almost certainly be nonlinear, and (3) the DM

would not likely see other candidate solutions

during the solution process from which to gain an

appreciation of the tradeoffs inherent in the

problem.

Consequently, multiobjective programming

employs mostly interactive procedures that only

require implicit, as opposed to explicit, knowledge

about the DM’s utility function. In interactive

procedures, the goal is to search the nondominated

set for the DM’s most preferred criterion vector.

Unfortunately, because of the size of N, finding the

best criterion vector in N is not a trivial task. As

a result, interactive procedures are carefully crafted

and can generally only be expected to conclude

with what is called a final solution, a solution that is

either optimal or close enough to being optimal

to satisfactorily terminate the decision process.



x4

x3

x2

x2

M 998 Multiobjective Programming
Background Concepts

Along with the basics of conventional mathematical

programming, multiobjective programming requires

additional concepts not widely employed elsewhere

in operations research. The key ones are as follows.

1. Decision Space vs. Criterion Space. Whereas single

objective programming is typically studied in

decision space, multiobjective programming is

mostly studied in criterion space. To illustrate,

consider
z4

z3

z2

z1

Z
z5

z1

z2

Multiobjective Programming, Fig. 2 Representation in

criterion space

S

x1
x6

x5

x1

Multiobjective Programming, Fig. 1 Representation in

decision space
maximize x1 � 1 2= x2 ¼ z1f g
maximize x2 ¼ z2f g
subject to x 2 S

where S in decision space is in Fig. 1, and Z in

criterion space is in Fig. 2. For instance z4, which

is the image of x4 ¼ (3, 4), is obtained by plugging

the point (3, 4) into the objective functions to

generate z4 ¼ (1, 4). In Fig. 2, the nondominated

set N is the set of boundary criterion vectors z3

through z4 to z5 to z6, inclusive. In Fig. 1, the

efficient set E is the set of inverse images of the

criterion vectors in N, namely the set of boundary

points x3 through x4 to x5 to x6, inclusive. Note that

Z is not necessarily confined to the nonnegative

orthant.

2. Unsupported Nondominated Criterion Vectors.

A z ∈ N is unsupported if and only if it is possible

to dominate it by a convex combination of other

nondominated criterion vectors. In Fig. 2, the set of

unsupported nondominated criterion vectors is

the set of criterion vectors from z3 through z4 to z5,

exclusive of z3 and z5. The set of supported

nondominated criterion vectors is the set that

consists of z3 plus the line segment z5 to z6,

inclusive. Unsupported nondominated criterion

vectors can only occur in problems that possess

non-convex feasible regions; hence, they can

easily be present in integer and nonlinear

multiobjective programs.

3. Identifying Nondominated Criterion Vectors. To

graphically determine whether a z 2 Z is

non-dominated or not, visualize the nonnegative

orthant in Rk translated so that its origin is at z.

Note that, apart from z, a vector dominates z if and
only if the vector is in the translated nonnegative

orthant. In other words, z is nondominated if and

only if the translated nonnegative orthant is empty

of feasible criterion vectors other than for z.

Visualizing in Fig. 2 the nonnegative orthant

translated to z4, it can be seen that z4 is

nondominated. Visualizing the nonnegative

orthant translated to z2, it can be seen that z2 is

dominated.
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4. Payoff Tables. Assuming that each objective is

bounded over the feasible region, a payoff table is

of the form

1

21

k1

1k

2k

k2

121

k
∗

2
∗

∗1

2

k

2 k

where the rows are criterion vectors resulting from

individually maximizing the objectives. For

instance, z12 is the value of the second objective

function at the point that maximizes the first

objective. The z∗i entries along the main diagonal of

the payoff table are the maximum criterion values of

the different objectives over the nondominated set.

The minimum value in the ith column of the payoff

table is often used as an estimate of the minimum

criterion value of the ith objective overN because the

true minimum criterion values over N (called nadir

values) are typically difficult to obtain (Isermann and

Steuer 1988; Alves and Costa 2009)

5. z∗∗ Reference Criterion Vectors. A z∗∗ ∈ Rk

reference criterion vector is a criterion vector that

is suspended above the nondominated set. Its

components are given by
z��i ¼ z�i þ 2i

where the ∊i are small computationally significant

positive values.

6. Weighting Vector Space. Without loss of generality,

let
L ¼ l 2 Rkjli 2 0; 1ð Þ;
X
i2 k

li ¼ 1

( )

be weighting vector space. In an interactive

environment, subsets of L called interval defined

subsets are of the form
LðhÞ ¼ l 2 Rkjli 2 ‘
ðhÞ
i ; mðhÞi

� �
;
X
i2 k

li ¼ 1

( )
where h is the iteration number and
0 � l
ðhÞ
i � mðhÞi � 1 i 2 K

mðhÞi � l
ðhÞ
i ¼ mðhÞj � l

ðhÞ
j for all i 6¼ j

Sequences of successively smaller interval subsets

can be defined by reducing the mðhÞi � l
ðhÞ
i interval

widths at each iteration.

7. Sampling Programs. The weighted-sums program
max
X
i2K

li fiðxÞjx 2 S

( )

can be used to sample the nondominated

set because, as long as l ∈ L, the program

returns an efficient point. A disadvantage of the

weighted-sums program is that it cannot generate

unsupported points.

To make downward probes of the nondominated

set from a z∗∗ as required in many of

the interactive procedures of multiobjective

programming, the augmented Tchebycheff

program is employed
minimize a� r
X
i2K

zi

( )

subject to

a � li z��i � zi
� �

i 2 K

fiðxÞ ¼ zi i 2 K

x 2 S

z 2 Rk unrestricted

where a ∈ R, l ∈ L, and r is a small

computationally significant positive number.

A disadvantage of the augmented Tchebycheff

program is that, regardless of the value of r, there
may still remain unsupported members of the

nondominated set that the program is unable to

compute (Steuer 1986).

A program that has better mathematical

properties, although somewhat more difficult to

implement, is the lexicographic Tchebycheff

program



Multiobjective Programming, Table 1 Average numbers of

MOLP efficient extreme points

MOLP size k� m� n
Efficient extreme

points

Approximate times

in seconds

3 � 50 � 75 1,798 2

3 � 100 � 150 11,897 40

3 � 200 � 300 128,237 1,600

4 � 50 � 75 9,921 30

4 � 100 � 150 682,920 3,500

5 � 50 � 75 141,444 300

M 1000 Multiobjective Programming
lex min a,�
X
i2K

zi

( )

subject to

a � li z��i � zi
� �

i 2 K

fiðxÞ ¼ zi i 2 K

x 2 S

z 2 Rk unrestricted

where l ∈ L. At the first lexicographic level it is

solved to minimize a. At the second lexicographic

level, subject to only those solutions that minimize

a, �Pi2K zi is minimized. Not only does the

lexicographic Tchebycheff program always

return a nondominated criterion vector, but if z is

nondominated, there then exists a l 2 L such that z

uniquely solves the program (Steuer 1986).

8. Aspiration Criterion Vectors. An aspiration

criterion vector q ∈ Rk is a criterion vector

specified by a DM to reflect his or her hopes or

expectations from a problem. An aspiration

criterion vector, when specified, is typically

projected onto N by an augmented or

lexicographic Tchebycheff program in order

to find the nondominated criterion vector closest

to the aspiration criterion vector.

9. T-vertexl-vectorDefined by q and z∗∗. TheT-vertex
(Tchebycheff-vertex) l-vector defined by q and z∗∗

is the l∈ L whose components are given by

li ¼ 1

z��i � qi
� � X

i2K

1

z��j � qj

� �
2
4

3
5
�1

TheT-vertexl-vector,when installed in anaugmented

or lexicographic Tchebycheff program, causes the

program to probe the nondominated set along a line

that goes through both z∗∗ and q in the direction
� 1

l1
; . . . ;

1

lk

	 

Vector-Maximum Algorithms

In the linear case, a multiple objective linear program

(MOLP) is sometimes written in vector-maximum form
‘‘ max ’’ , Cx ¼ zjx 2 Sf g

where C is the k � n matrix whose rows are the

coefficient vectors of the k objectives. A point is

a solution to a vector-maximum problem if and

only if it is efficient. Algorithms for characterizing

the efficient set E of an MOLP are called

vector-maximum algorithms. In the 1970s,

considerable effort was spent on the development of

vector-maximum codes to compute all efficient

extreme points. The thought was that, by reviewing

the list of nondominated criterion vectors associated

with the efficient extreme points, a DM would be

able to identify his or her efficient extreme point of

greatest utility in hopes of satisfactorily terminating

the decision process.

Unfortunately, MOLPs have many efficient

extreme points as indicted in Table 1 (sample size of

ten for each problems size). Whereas the number of

variables and the number of constraints play a role,

the factor most dramatically affecting the number

of efficient extreme points is the dimensionality of

the criterion cone, the convex cone generated by the

gradients of the k objective functions.

With nondominated sets of sizes indicated in

Table 1, other approaches have been attempted

such as by Klamroth, Tind and Wiecek 2002, but

mostly, the figures have led to interactive procedures

moving to the forefront of multiobjective

programming.
Interactive Procedures

In interactive multiobjective programming, an

exploration over the feasible region for the best point

in the non-dominated set is conducted. Interactive



Start

Set controlling parameters
for the first iteration

Further preparations
(if necessary)

Solve sampling
program(s)

Done?
Y

N

Stop

Reset controlling parameters
for the next iteration

Examine criterion
vector results

Multiobjective Programming, Fig. 3 General algorithmic

outline
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procedures are characterized by phases of decision

making alternating with phases of computation.

A pattern is generally established and kept repeating

it until termination. At each iteration, a solution,

or a group of solutions, is generated for examination.

As a result of the examination, the DM inputs updated

preference information to the solution procedure in

the form of values of the controlling parameters

(preference weights, aspiration criterion vectors,

l-vector interval widths, criterion vector components

to be increased/decreased/held fixed, criterion vector

lower bounds, etc., depending upon the particular

interactive procedure).

While many interactive procedures have been

proposed, virtually all of them more or less follow

the same general algorithmic outline. As portrayed

in Fig. 3, the general algorithmic outline includes:

• an initial setting of the controlling parameters;

• optimization of one or more mathematical

programming problems to probe (i.e., sample)

the nondominated set;

• examination of the criterion vector results; and

• a resetting of the controlling parameters for the

next iteration in the light of what was learned on

the current iteration

With the consensus being that a range of interactive

procedures is necessary because the most appropriate

one to use is often application or user decision-making

style dependent, ten of the most prominent interactive

procedures, along with the dates of their original

articles, are as follows:

1. ECON: e-Constraint Method, Traditional method

2. STEM: (Benayoun et al. 1971)

3. GDF: Geoffrion-Dyer-Feinberg Procedure (1972)

4. ZW: Zionts-Wallenius Procedure (1976)

5. IGP: Interactive Goal Programming (Spronk 1981)

6. WIERZ:Wierzbicki’s Aspiration Criterion Vector

Method (1982, 1986)

7. TCH: Tchebycheff Method (Steuer and

Choo 1983)

8. RACE: Pareto Race (Korhonen and Laakso 1986;

Korhonen and Wallenius 1988)

9. NIMBUS: (Miettinen 1999)

10. MICA: Modified Interactive Chebychev

Algorithm (Luque et al. 2010)

Other interactive multiobjective programming

procedures include those by Nakayama and Sawaragi

(1984), Climaco and Antunes (1987), and Koksalan

and Karasakal (2006).
Selected Interactive Procedures

The Aspiration Criterion Vector Method (WIERZ)

begins by asking the DM to specify an aspiration

criterion vector q(1) < z∗∗. Using the T-vertex

l-vector defined by q(1) and z∗∗, the augmented

Tchebycheff program is solved, thus projecting q(1)

onto N in order to produce z(1). In the light of z(1),

the DM specifies a new aspiration criterion vector

q(2). Using the T-vertex l-vector defined by q(2) and

z∗∗, the augmented Tchebycheff program is solved,

thus projecting q(2) onto N in order to produce z(2). In

the light of z(2), the DM specifies a third aspiration

criterion vector q(3), and so forth. Algorithmically,

the steps are as follows:

Step 1. h ¼ 0. Construct a payoff table, form a z∗∗

reference criterion vector, and specify r > 0 for

use in the augmented Tchebycheff program. The

DM specifies aspiration criterion vector q(1).

Step 2. h ¼ h + 1. Compute T-vertex l-vector defined
by q(h) and z∗∗.
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Step 3. Using the T-vertex l-vector, solve the

augmented Tchebycheff program for z(h).

Step 4. In the light of what the DM has been able to

learn about the problem so far, the DM

contemplates z(h).

Step 5. If the DM wishes to cease iterating, stop with

(z(h), x(h)) as the final solution. Otherwise, continue

on to Step 6.

Step 6. The DM specifies another aspiration criterion

vector, designated q(h�1). Go to Step 2.

Consider Fig. 4 in which N is the set of boundary

criterion vectors z1 through z(h) to z2, inclusive. In the

figure, it can be seen the way aspiration criterion vector

q(h) is projected onto the nondominated set by means of

the augmented Tchebycheff program. Note that the

direction of the arrow emanating from z∗∗ and going

through q(h) is given by

the nondominated set
� 1

l1
; . . . ;

1

lk

	 


where the li are the components of the T-vertex

l-vector defined by q(h) and z∗∗. Thus changing q(h)

changes the z(h) generated by the sampling program.

Instead of generating only one solution at each

iteration, the Tchebycheff Method (TCH) generates

groups of solutions by making multiple probes of

each subset in a sequence of progressively smaller

subsets of N. Letting P be the number of solutions to

be presented to the DM at each iteration, TCH begins

by generating P well-spaced l-vectors from L(1) ¼ L.
Then the lexicographic Tchebycheff program is solved

for each of the l-vectors. From the P resulting

nondominated criterion vectors, the DM selects his or

her most preferred, designating it z(1). At this point, the

interval widths of L(1) are reduced and centered

about the T-vertex l-vector defined by z(1) and z∗∗ to

form an interval defined subset L(2). Then P
well-spaced l-vectors are generated from L(2) and

the lexicographic Tchebycheff program is solved for

each of the l-vectors. From the P resulting

non-dominated criterion vectors, the DM selects

the most preferred, designating it z(2). Now the

interval widths of L(2) are reduced and centered

about the T-vertex l-vector defined by z(2) and z∗∗ to

form an interval defined subset L(3). Then P

well-spaced l-vectors are generated from L(3) and

the lexicographic Tchebycheff program is solved for

each of them, and so forth.
Another procedure that also generates

multiple solutions at each iteration, but

employs the weighted-sums program, is the

Geoffrion-Dyer-Feinberg (GDF) procedure. GDF

begins with the specification of an initial feasible

criterion vector z(0). Then the DM specifies a l-vector
that is to be reflective of the local marginal

tradeoffs at z(0). Using this l-vector, the weighted-sums

program is solved for criterion vector y(1). Then the line

through the feasible region in criterion space Z that starts

at z(0) and ends at y(1) is divided into segments so as to

create P equally spaced criterion vectors. The most

preferred of the equally spaced criterion vectors

becomes z(1). Then the DM specifies a new l-vector
that is to be reflective of the local marginal tradeoffs at

z(1). Using this l-vector, the weighted-sums program is

solved for criterion vector y(2). Then the line segment

through Z that starts at z(1) and ends at y(2) is divided into
segments so as to create P new equally spaced criterion

vectors. The most preferred of the new equally spaced

criterion vectors becomes z(2), and so forth.

Features from different procedures can easily be

combined. For instance, drawing from STEM, WIERZ

and NIMBUS, one could have the following. After

forming a z∗∗ reference criterion vector, an initial

aspiration criterion vector q(1) specified. Then one of

the Tchebycheff programs is solved using the T-vertex
l-vector defined by q(1) and z∗∗ to produce z(1). TheDM

then specifies the components of z(1) that are to be
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increased, the amounts of each increase, the components

that are to be relaxed, and the amounts of each relaxation

in order to form a second aspiration criterion vector q(2).

Using the T-vertex l-vector defined by q(2) and z∗∗, one

of the Tchebycheff programs is solved to produce z(2).

The DM then specifies which components of z(2) are to

be increased, the amounts of each increase, the

components that are to be relaxed, and the amounts of

each relaxation in order to form q(3). Using the T-vertex
l-vector defined by q(3) and z∗∗, one of the Tchebycheff

programs is solved to produce z(3), and so forth.
M

Concluding Remarks

Because the weighted-sums, augmented Tchebycheff,

and other variants of these programs that are used to

sample the nondominated set are single criterion

optimization problems, conventional mathematical

programming software can in most cases be

employed (Gardiner and Steuer 1994). In this way,

interactive procedures can address multiobjective

programming problems with as many constraints and

variables as in single objective programming.

Unfortunately, in multiobjective programming,

there are limitations with regard to the number of

objectives. Problems with up to about five objectives

can generally be accommodated, but above this

number, difficulties can arise because of the rate at

which the nondominated set grows as the number of

objectives increases.
See

▶Decision Analysis

▶Goal Programming

▶Linear Programming

▶Multiple Criteria Decision Making

▶Utility Theory
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Multi-armed Bandit Problem

Sequential decision-making problem under

uncertainty involving a set of machines (arms) each

offering random unknown rewards, in which the

decision maker must decide each period which

machine (arm) to play (pull), with the objective of

maximizing the total reward received. The problem is

analogous to playing slot machines in a gambling

casino, but has many practical OR/MS applications

involving dynamic stochastic resource allocation.

One of the basic trade-offs in these types of problems

is between exploitation (e.g., playing the machine that

has given the best mean reward thus far) versus

exploration (playing a machine that has not been tried

or one that has been tried infrequently with highly

variable rewards).
Multi-attribute Utility Theory

Rakesh K. Sarin

University of California, Los Angeles, CA, USA
Consider a decision problem such as selection

of a job, choice of an automobile, or resource

allocation in a public program (education, health,

criminal justice, etc.). These problems share a common

feature—decision alternatives impact multiple

attributes. The attractiveness of an alternative therefore

depends on how well it scores on each attribute of

interest and the relative importance of these attributes.

Multi-attribute utility theory (MAUT) is useful in

quantifying relative attractiveness of multi-attribute

alternatives.

The following notation will be used:

Xi the set of outcomes (scores, consequences) on the ith

attribute

xi a specific outcome in Xi

X X1 � X2 � . . .� Xn (Cartesian product)

ui a single attribute utility function ui : Xi ! ℝ
u the overall utility function, u: X ! ℝ
≳ “is preferred to”

A decision maker uses the overall utility function, u,

to choose among available alternatives. The major

emphasis of the work on multi-attribute utility theory
has been on questions involving u: on conditions for its
decomposition into simple polynomials, on methods

for its assessment, and on methods for obtaining

sufficient information regarding u so that the

evaluation can proceed without its explicit

identification with full precision.

The primitive in the theory is the preference

relation ≳ defined over X. Luce et al. (1965) and

Fishburn (1964) provide conditions on a decision

maker’s preferences that guarantee the existence of

a utility function u such that

x1; . . . ; xnð Þ≳ y1; . . . ; ynð Þ;
xi; yi 2 Xi; i ¼ 1; . . . n

if and only if

u x1; . . . ; xnð Þ � u y1; . . . ynð Þ

(1)

Additional conditions are needed to decompose

the multi-attribute utility function u into simple parts.

The most common approach for evaluating

multi-attribute alternatives is to use an additive

representation. For simplicity, assume that there exist

the most preferred outcome x�i and the least preferred

outcome x0i on each attribute i ¼ 1 to n. In the additive

representation, a real value u is assigned to each

outcome (x1,. . ., xn) by
u x{; . . . ; xnð Þ ¼
Xn
i¼{

wiui xið Þ (2)

where the {ui} are single attribute utility functions over
Xi that are scaled from 0 to 1, i.e., ui (x

�
i )¼ 1, ui (x

0
i )¼ 0

for i ¼ 1 to n, and the {wi} are positive scaling

constants reflecting relative importance of the

attributes with
Pn

j¼1 wj ¼ 1.

If the interest is in simply rank-ordering

the available alternatives, then the key condition for

the additive form in (2) is mutual preferential

independence. The resulting utility function is called

an ordinal value function. Attributes Xi and Xj are

preferentially independent if the tradeoffs

(substitution rates) between Xi and Xj are independent

of all other attributes. Mutual preferential

independence requires that preference independence

holds for all pairs Xi and Xj. Essentially, mutual

preferential independence implies that the

indifference curves for any pair of attributes are

unaffected by the fixed levels of the remaining



Multi-attribute Utility Theory 1005 M

M

attributes. Debreu (1960), Luce and Tukey (1964), and

Gorman (1968) provide axiom systems and analysis

for the additive form (2).

If, in addition to rank order, one is also interested

in the strength of preference between pairs of

alternatives, then additional conditions are needed.

The resulting utility function is called a measurable

value function, and it may be used to order the

preference differences between the alternatives.

The key condition for an additive measurable value

function is difference independence (see Dyer

and Sarin 1979). This condition asserts that the

preference difference between two alternatives that

differ only in terms of one attribute does not depend

on the common outcomes on the other n� 1 attributes.

Finally, perhaps the most researched topic is the

case of decisions under risk where the outcome of

an alternative is characterized by a probability

distribution over X. Denote ~X as the set of all simple

probability distributions over X. Assume that for any

p 2 ~X there exists an alternative that can be identified

with p, and thus p could be termed as a risky

alternative. The outcome of an alternative p 2 ~X
might be represented by the lottery which assigns

probabilities p1; . . . ; pl;
Pl

j¼1 pj ¼ 1, to the outcomes

xl,. . ., xl ∈ X, respectively. For the choice among risky

alternatives p; q 2 ~X, von Neumann and Morgenstern

(1947) specified conditions on the decision maker’s

preference relation ≳ over ~X that imply:

p≳q

if and only ifX
x2X

pðxÞuðxÞ �
X
x2X

qðxÞuðxÞ:
(3)

Notice that the same symbol u has been used to denote
ordinal value function, measurable value function, and

now the von Neumann-Morgenstern utility function. The

context, however, makes the interpretation clear.

A majority of the applied work in multi-attribute

utility theory deals with the case when the von

Neumann-Morgenstern utility function is decomposed

into the additive form (2). Fishburn (1965a, b) derived

necessary and sufficient conditions for a utility function

to be additive. The key condition for additivity is the

marginality condition, which states that the preferences

for any lottery p ∈ X should depend only on

the marginal probability distributions over Xi and not
on their joint probability distribution. Thus, for

additivity to hold, the two lotteries below must be

indifferent:

.5

.5.5

.5

(x1, x2)∗ ∗

(x1, x2)0 0 (x1, x2 )0 ∗

(x1, x2 )∗ 0

~

Notice that in either lottery, the marginal

probability of receiving the most preferred outcome

or the least preferred outcome on each attribute is

identical. A decision maker may, however, prefer the

right-hand side lottery over the left-hand side lottery if

the decision maker wishes to avoid a 0.5 chance of the

poor outcome ðx01; x02Þ on both attributes.

The assessment of single attribute utility

functions {ui} in (2) will require different methods

depending on whether the overall utility represents an

ordinal value function, a measurable value

function, or a von Neumann-Morgenstern utility

function. Keeney and Raiffa (1976) discuss methods

for assessing multi-attribute ordinal value function

and multi-attribute von Neumann-Morgenstern

utility function. Dyer and Sarin (1979) and von

Winterfeldt and Edwards (1986) discuss assessment

of multi-attribute measurable value function.

Besides the additive form (2), a multiplicative form

for the overall utility function has also found

applications in a wide variety of contexts. In the

multiplicative representation, a real value u is

assigned to each outcome (x1,. . ., xn) by

1þ ku x{; . . . ; xnð Þ ¼
Yn
i¼{

1þ kkiui xið Þ½ �
" #

where the {ui} are single attribute utility functions over

Xi that are scaled from zero to one, the {ki} are positive
scaling constants, k is an additional scaling constant

satisfying k > �1, and
1þ k ¼
Yn
i¼{

1þ kkið Þ½ �:

If u is a measurable value function, then

weak difference independence along with mutual
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preference independence provides the desired result.

An attribute is weak difference independent of the

other attributes if preference difference between pairs

of levels of that attribute do not depend on fixed levels

of any of the other attributes. Thus, for xi, yi,wi, zi∈ Xi,

the ordering of preference difference between xi and yi,
and wi and zi, remains unchanged whether one fixes the

other attributes at their most preferred levels or at their

least preferred levels.

If the overall utility function is used for ranking

lotteries as in (3), then a utility independence condition,

first introduced by Keeney (1969), is needed to provide

the multiplicative representation (4). An attribute is said

to be utility independent of the other attributes if the

decision maker’s preferences for lotteries over this

attribute do not depend on the fixed levels of the

remaining attributes. Mutual preferential independence

and one attribute being utility independent of the others

are sufficient to guarantee either the multiplicative form

(4) or the additive form (2). The additive form results if

in (4) k ¼ 0 or
Pn

j¼1 kj ¼ 1. Keeney and Raiffa (1976)

discuss methods for calibrating the additive and

multiplicative forms for the utility function. In the

literature, other independence conditions have been

identified that lead to more complex nonadditive

decompositions of the utility function. These general

conditions are reviewed in Farquhar (1977).
If utilities, importance weights, and probabilities

are incompletely specified, then the approaches of

Fishburn (1964) and Sarin (1975) can be used to

obtain a partial ranking of alternatives.

The key feature of multi-attribute utility theory is to

specify verifiable conditions on a decision maker’s

preferences. If these conditions are satisfied, then the

multi-attribute utility function can be decomposed into

simple parts. This approach of breaking the complex

value problem (objective function) into manageable

parts has found significant applications in decision

and policy analysis. In broad terms, multi-attribute

utility theory facilitates measurement of preferences

or values. The axioms of the theory have been found to

be useful in suggesting approaches for measurement of

values. In physical measurements (e.g., length), the

methods for measurement have been known for

a long time and the theory of measurement has added

little to suggesting new methods. In the measurement

of values, however, several new methods have been

developed as a direct result of the theory.
See

▶Analytic Hierarchy Process

▶Decision Analysis

▶Multiple Criteria Decision Making

▶ Preference Theory

▶Utility Theory
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Multi-Echelon Inventory Systems

Inventory systems comprised of multiple stages of

inventory control decision making, e.g., in a supply

chain, there are inventory decisions to be made at the

production facility, the distributor, and the retail outlet,

among others.
See

▶ Inventory Modeling
Multi-Echelon Logistics Systems

Logistics systems comprised of several layers of

individual logistics problems.
M

See

▶Logistics and Supply Chain Management
Multiple Criteria Decision Making

Ramaswamy Ramesh and Stanley Zionts

University at Buffalo, The State University of

New York, Buffalo, NY, USA
Introduction

Multiple Criteria Decision Making (MCDM) refers to

making decisions in the presence of multiple, usually

conflicting, objectives. Multiple criteria decision

problems pervade almost all decision situations

ranging from common household decisions to

complex strategic and policy level decisions in

corporations and governments. Prior to the

development of MCDM as a discipline, such

problems have been traditionally addressed as

single-criterion optimization problems by (i) deriving

a composite measure of the objectives and optimizing
it, or (ii) by choosing one of the objectives as the main

decision objective for optimization and solving the

problem by requiring an acceptable level of

achievement in each of the other objectives. MCDM

as a discipline was founded on two key concepts of

human behavior, introduced and explored in detail by

Herbert Simon in the 1950s: satisficing and bounded

rationality (Simon 1957). The two are intertwined

because satisficing involves finding solutions that

satisfy constraints rather than optimizing the

objectives, while bounded rationality involves

setting the constraints and then searching for

solutions satisfying the constraints, adjusting the

constraints, and then continuing the process until

a satisfactory solution is found. The rest of this article

overviews important aspects of MCDM, including

basic concepts, a taxonomy, modeling techniques,

and algorithms.
Basic Concepts

An MCDM problem can be broadly described as

follows. Let D ¼ {d1,. . ., dn} denote the decision

space, comprising the set of possible decision

alternatives to a problem. Let C ¼ {C1,. . ., Cp}

denote the objective space, comprising of a set of p
mutually conflicting objectives. Without loss of

generality, assume all objectives are to be

maximized. Let E: D ! C be a mapping of the

decision space on to the objective space, where E(di)

is the vector (Ci
1,. . .,C

i
p). Each element of this vector is

an assessment, or the value of the corresponding

objective provided by the decision alternative di.

A fundamental concept in MCDM is that of

dominance, defined as follows.

Definition 1 (Dominance). A decision alternative di
said to be dominated by another alternative dj if

Ci
k � Cj

k, k¼ 1,. . ., p with at least one strict inequality.

In the above definition, if all the inequalities hold as

strict inequalities, then the dominance is said to be

strong; otherwise, it is called weak. The following

concept is a logical extension of the dominance

concept.

Definition 2 (Convex Dominance). An alternative di
is said to be convex dominated by a subset D̂ � D if it

http://dx.doi.org/10.1007/978-1-4419-1153-7_479
http://dx.doi.org/10.1007/978-1-4419-1153-7_559
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MCDM approaches

Decision

outcome

Decision space

Explicit Implicit

Deterministic Deterministic

Multiattribute

Decision Analysis

Deterministic

Multiobjective

Mathematical

Programming

Stochastic Stochastic

Multiattribute

Decision Analysis

Stochastic Multiobjective

Mathematical

Programming
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is dominated by a convex combination of the

alternatives in D̂
The above definitions lead to a central theme of all

MCDM techniques as follows.

Definition 3 (Efficiency). An alternative dj is said to

be efficient or nondominated in D if there is no other

alternative in D that dominates it, even weakly.

The concept of efficiency can be extended

to convex dominance as well. In this case, an

efficient alternative is known as convex-efficient or

convex-nondominated. The following theorem of

Geoffrion (1968) shows how the efficiency of an

alternative can be determined. Zionts and Wallenius

(1980) introduced a different but equivalent

methodology that solves a number of problems

including that one.

Theorem 1. Consider any decision alternative di and
its mapping on the objective space (Ci

1,. . ., C
i
p). The

decision di is efficient if only if the following linear

program is unbounded:
Maximize
Xp
j¼1

wjC
i
j

subject to
Xp
j¼1

wjC
k
j � 0; k ¼ 1; . . . ; n; k 6¼ i

wj � 0; j ¼ 1; . . . ; p:
A Taxonomy of MCDM Methods

The MCDM methods proposed in the literature cover

a wide spectrum, and there are several alternative ways

of organizing them into a taxonomy. The taxonomy

described here is based on Chankong et al. (1984),

which is one of the interpretations of the world of

MCDM models. At the outset, MCDM methods

can be classified into two broad classes: vector

optimization methods and utility optimization

methods. Vector optimization is primarily concerned

with the generation of all efficient decision

alternatives. These methods do not require

intervention of a decision maker. These methods

do generate a subset of nondominated solutions.

Some of the well-known vector optimization methods
include those of Geoffrion (1968), Villarreal and

Karwan (1981), and Yu and Zeleny (1976).

The utility optimization methods can be broadly

organized according to the following dimensions

(see, for example, Zionts 1979):

1. Nature of decision space: Explicit or Implicit; and

2. Nature of decision outcomes: Stochastic or

Deterministic.

In an explicit decision space, decision alternatives

are stated explicitly. A classical example is the home

buying problem, where a decision maker/home buyer

is faced with a set of possible homes to consider

purchasing. For an implicit decision, alternatives

are stated using a set of constraints, such as in

linear or nonlinear programming where a feasible

alternative must satisfy the constraints. An implicit

decision situation can be further categorized as

continuous or discrete. The decision outcomes are

stochastic or deterministic depending on whether

the mapping function E: D ! C is stochastic or

deterministic. Table 1 classifies MCDM methods

broadly along the two dimensions. There are many

approaches in the various segments of this

classification. Here, the discussion focuses on the

best-known methods.
Methodological Approaches

Deterministic Decision Analysis — Deterministic

decision analysis is concerned with finding the most

preferred alternative in decision space by constructing

a value function representing a decision maker’s

preference structure, and then using the value

function to identify the most preferred solution.

A value function v(C1, C2,. . ., Cp) is a scalar-valued
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function defined with the property that v(C1, C2,. . .,
Cp) > v (C0,. . ., C0

p) if and only if (C1, C2,. . ., Cp) is at

least as preferred as (C0
1,. . ., C

0
p) (Keeney and Raiffa

1976). The construction of the value function involves

choice decisions made by the decision maker.

Generating value functions is simplified if certain

conditions hold, in which case it is possible to

decompose the above functions into partial value

functions vk(Ck) for each value of k.
The decomposition and certain simplifications of

the value function may be carried out if certain

underlying assumptions on the decision maker’s

preference structure hold. One of these is

preferential independence, which is stated as

follows: Consider a subset of objectives denoted as

Ĉ. If the decision maker’s preferences in the space

C � Ĉ are the same for any set of arbitrarily fixed

levels of the objectives Ĉ, then Ĉ is said to be

preferentially independent of C � Ĉ. The set C is

said to be mutually preferentially independent if

every subset of C is preferentially independent of its

complement with respect to C. When mutual

preferential independence holds, an additive value

function of the form

uðdiÞ ¼
Xp
k¼1

lkuk Ci
k

� �
where lk is a scalar constant

is appropriate. There are other nonlinear forms that can

be used as well. Of course, an additive value function,

if appropriate, is highly desirable. Once the value

function has been determined, it can be used to

evaluate and rank the alternatives.

Stochastic Decision Analysis — Stochastic

decision analysis is similar to the deterministic case,

except that the outcomes are stochastic, and utility

functions are constructed instead of value functions.

The ideas are similar. There is an analogous condition

to that described for the discrete case above. It

involves utility independence. A subset of objectives

Ĉ is utility independent of its complement if the

conditional preference order for lotteries involving

changes in Ĉ does not depend on the levels at which

the objectives in Ĉ are fixed. Since utility

independence refers to lotteries and preferential

independence refers to deterministic outcomes,

utility independence implies preferential

independence, but not vice versa. Analogous to

mutual preferential independence, the set C is said
to be mutually utility independent if every subset of C
is utility independent of its complement with respect

to C. Keeney and Raiffa (1976) show that if C is

mutually utility independent, then a multiplicative

utility function is appropriate. This function is of the

form

uðdiÞ ¼
Yp
k¼1

mkuk Ci
k

� �
;

where u(di) is the overall utility of the decision

alternative di, uk (C
i
k) is the utility of its kth objective

component, and mk is a scalar constant. A more

stringent set of assumptions must hold in order that

the utility function be additive. In the stochastic case,

not only must a utility function be estimated, but

probabilities of various outcomes must also be

estimated by the decision maker.

Multiobjective Mathematical Programming —

Considerable work has been done in the multiobjective

mathematical programming area. These include

Multiobjective Linear Programming (MOLP) and

Multiobjective Integer Programming (MOIP). Goal

programming (Lee 1972), the method of Zionts and

Wallenius (1976, 1983), the Step Method of Benayoun

et al. (1971), and themethod of Steuer (1976) are some of

the better-known MOLP methods. Goal programming

and the method of Zionts and Wallenius are now

described in more detail.

Goal programming is an extension of linear

programming and was proposed by Charnes and

Cooper in 1961. A description of this technique is as

follows. Consider the following MOLP problem:
Maximize Cx

subject to Ax � b ðMOLPÞ
x � 0

where C ¼ (ckj) is a (p � n) matrix, A is an (m � n)
matrix and x is an (n � 1) vector. Let (a1,. . ., ap)
denote the goals with respect to the desired levels

of attainment in the objectives specified by

a decision maker. Introduce over and under

attainment variables yk
+ and y�k for each objective

and add the following constraints, where ck is the

kth row of C:

ckx� yþk þ y�k ¼ ak; k � 1; . . . ; p:
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Let wk denote the penalty for the net deviation from

the goal of objective k ¼ 1,. . ., p. Then the goal

programming problem is formulated as follows:
Minimize
Xp
j¼1

wk yþk þ y�k
� � ðGPÞ

subject to
Xn
j¼1

ckjxj � yþk þ y�k ¼ ak; k ¼ 1; . . . ; p

Ax � b

x; y � 0

The above problem minimizes a weighted sum of

deviations from the desired goals, where weights are

required from the decision maker. The goal

programming formulation is an attempt to find

a solution that is closest to the decision maker’s

desired goals, while also responding to his

differential emphasis on the nonattainment of the

various goals.

The Zionts and Wallenius method follows an

interactive approach using pairwise evaluations of

decision alternatives by a decision maker to solve

problem MOLP. The method starts by choosing an

initial set of weights l 2 Rp, and maximizing a linear

composite objective lCx. This generates a corner point
of {Ax � b, x � 0} that is efficient. Call this solution

x0. Next, the adjacent corner points of x0 that are also

efficient (and whose edges leading to them are also

efficient) are determined. Call this set S0. The decision

maker is asked to choose between x0 and a solution

from S0 until: (i) either he or she prefers x0 to all the

points in S0, or (ii) prefers some solution in S0 to x0. If

x0 is preferred to all the points in S0, then the method

stops with x0 as a “locally” best preferred corner-point

solution. Otherwise, if some solution in S 0 is preferred

to x0, then it is devoted as x0. Linear constraints of the
form l (Cx0 � Cx00) � �∊ where x0 is preferred to x00

and 2 is a small positive quantity are generated from

the decision maker’s pairwise preferences. A new set

of weights that satisfy these constraints are then

obtained. If these constraints are in conflict, then

some of them are dropped in determining the new

weights. Call the new set l00. Maximizing the

composite objective l00Cx, a new efficient corner

point is generated, and the above steps are repeated

until a corner point that is preferred to all its adjacent

efficient corner points is obtained.
Compared to MOLP, research on MOIP is rather

limited. Some of the earlier works on MOIP have been

in the domain of vector optimization. Bitran and

Rivera (1982) provided an implicit enumeration

algorithm for determining the efficient set of 0-1

MOIP problems. Pasternak and Passy (1973) studied

the vector optimization problem for two objectives.

Klein and Hannan (1982) extended Pasternak and

Passy’s work to more than two objectives. Villarreal

and Karwan (1981) generalized the classical dynamic

programming recursions to a multicriteria framework.

Ramesh et al. (1989) followed the utility optimization

approach to find the most preferred solution to an

MOIP problem.

The method of Ramesh et al. (1989) follows

a branch-and-bound search strategy using the Zionts

and Wallenius method for bounding. The decision

maker’s preference structure is assessed using

pairwise evaluations and an internal representation of

the preference structure is successively built during the

course of the branch-and-bound search. This

representation is used to deduce the decision maker’s

preferences wherever possible so that the cognitive

load arising out of the pairwise judgments can be

minimized. The internal representation is based on

the concept of convex cones as described below

(Korhonen et al. 1984).

Consider a two-dimensional objective space as

shown in Fig. 1. Let �C and Ĉ be two points in this

space such that Ĉ is preferred to �C. Assuming

a quasiconcave and nondecreasing utility function for

the decision maker, it follows that every point falling

on the ray ĈjĈ ¼ Ĉþ m ð �C� ĈÞ; m � 0
� �

is less

preferred than Ĉ and no more preferred than �C.

Consequently, every point in this ray and those

dominated by it can be eliminated from

consideration. This ray is called a convex cone, and

is illustrated in Fig. 1. Every pairwise judgment of

a decision maker yields a convex cone and the cones

are ordered into a tree structured to eliminate search

regions efficiently and minimize the need for the

decision maker’s pairwise evaluations throughout

the search procedure.

Other Explicit Decision Space Methods — Several

methods have been proposed for finding the most

preferred alternative from an explicitly stated

decision space without estimating a value function.

These techniques are methods of deterministic

decision analysis, and there is substantial interest in
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these problems. Three important methods in this

category are the Multiple Criteria Decision Making

(MCDM) Analytic Hierarchy Process (Saaty 1980),

the method of Korhonen et al. (1984), and the AIM

method (Lotfi et al. 1992).

The idea of Analytic Hierarchy Process (AHP) is

that one can structure a problem hierarchically, and

then make judgments regarding the relative

importance of various aspects of the problem. As

a result of these judgments, a ranking is produced.

A simple decision problem would have a hierarchy

that consists of three levels, from the top down: 1)

the goal; 2) the criteria involved; and 3) the

alternatives. The number of levels depends on the

nature of the problem involved. In general, consider

an n-alternative, p-criteria problem. Then the decision

maker is asked to fill in entries in p + 1 reciprocal

matrices as follows:

1. One (p � p) matrix relating each criterion to all

others; and

2. P (n� n) matrices, each relating one criterion to all

alternatives.

Each reciprocal matrix has all diagonal elements

one, and off-diagonal elements reciprocal, that

is, aij ¼ 1/aji. Accordingly, the decision maker need

only provide just less than half the entries,

more specifically, the [p(p � 1)/2] + p[n(n � 1)/2]

off-diagonal (lower or upper) entries in the matrix.

Though the amount can be reduced to as few as

(p � 1) + p(n � 1) entries (having no redundancy),

the reduction in information required increases the

cognitive load on the decision maker to provide

entries, and does not provide the redundancy and

cross checking that furnishing the complete input

provides.
In filling in the matrices, the decision maker is asked

to provide numbers between 1/9 and 9 reflecting the

relative importance between the aspects involved. One

of the matrices reflects the comparison among criteria

and the p other matrices reflect evaluations of

alternatives with respect to each criterion. AHP next

solves for the right eigenvector, or characteristic

vector, of each matrix. An eigenvector of a matrix

may be estimated by taking the geometric mean of the

elements of each row of the matrix (for a p � p matrix,

the pth root of the product of the p elements of a row),

and then normalizing the resulting vector so that the sum

of the elements is unity. The consistency of the matrix

(as differentiated from a matrix generated at random)

may be tested using a calculation on the matrix. By the

user furnishing fewer than all p(p� 1)/2 entries required

in the matrix, the test on consistency is compromised.

The scaled eigenvectors are then used to score and rank

each alternative.

Korhonen et al. (1984) presented an interactive

method employing pairwise comparisons for solving

the discrete, deterministic MCDM problem. Assuming

a quasiconcave and nondecreasing utility function,

they introduce the concept of convex cones.

Choosing an arbitrary set of positive weights wi,

i ¼ 1,. . ., p, a composite linear utility function is

initially generated. Using the composite as a proxy

for the true utility function, the decision alternative

maximizing the composite is generated. Call this

solution d0. Using the mapping E: D ! C, all

adjacent efficient decision alternatives to d0 (as in the

Zionts-Wallenius method) are determined. This is

done for the region that consists of all convex

combinations of feasible solutions. Call the set of

such solutions S0. The decision maker is asked to

choose between d0 and some solution from S0. Based
on the response, a constraint on the weights is

generated, as in the Zionts and Wallenius method

for MOLP, and a convex cone is derived. Any

solution in the set S0 dominated by the cone is

removed from S0, and the above step is repeated until

either d0 is preferred to all solutions in S0 or some

solution in S0 is preferred to d0. The constraints on

the weights and the convex cones generated at each

iteration of this step are accumulated. The set of cones

is used to deduce the decision maker’s preferences

wherever possible. This reduces the search space,

while also minimizing the number of pairwise

comparisons the decision maker has to perform.
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Every solution in S0 that is less preferred than d0 is
dropped from consideration. If d 0 is preferred to all the

solutions in S0, then it is denoted as d. If some solution

in S0 is preferred to d0, then the preferred solution is

denoted as d. If d is the only efficient solution

remaining in the decision space, then the procedure

stops with d as the most preferred decision. Otherwise,

choosing a set of weights consistent with the weight

constraints (after dropping any conflicting constraints),

a new composite linear utility function is generated.

Denoting the decision alternative maximizing this

composite function as d, the decision maker chooses

between d and d. Denoting the preferred solution as d0,

the above steps are repeated.

Lotfi et al. (1992) develop an eclectic method called

the Aspiration-Level Interactive Method (AIM) for

MCDM. It involves a philosophy that aspiration

levels and feedback regarding the relative feasibility

of the aspiration levels provide a powerful tool for

decision making. The method is embodied in

a computer program called AIM. The method

provides the decision maker with various kinds of

feedback as he explores the solutions. Several

different kinds of objectives may be included:

objectives to be maximized; objectives to be

minimized; target objectives; any of the above kinds

of objectives with thresholds, or levels beyond which

the user is indifferent to further gains in the objective;

and qualitative objectives. To further explain the

idea of thresholds, suppose that in the purchase of

a house, the age of the house is an attribute to be

minimized. Suppose further that the buyer treats as

equivalent, however, any houses ten years or less in

age. In this case, there is a threshold of ten years, so

that an eight-year-old house is considered to be no

better than a ten-year-old house with respect to age.

To begin with, the decision maker has the following

basic information:

1. A current goal or aspiration level for each objective,

initially set to the median, together with the

proportion of alternatives having values of the

objective at least as good as that value.

2. Two other aspiration levels, the next better and the

next worse than the current goal occurring in

the data base.

3. The ideal and nadir solutions to the problem.

4. The proportion of alternatives that simultaneously

satisfy aspiration levels given in 1 and 2.
5. A nearest nondominated solution to the current

goal. The nearest solution is found by mapping

the current goal to a solution on the

efficient frontier or in the set of nondominated

solutions.

The current goal may be (and should be) changed by

the user, component by component, to any desired

realizable level of any objective. The intention,

however, is to keep the current goal near the efficient

frontier and therefore nearly achievable. As the user

changes the current goal, all but item(s) 3 above

change.

The user can invoke various options to help in

decision making. He or she can see which solutions,

if any, satisfy his current goal. Second, he or she can

obtain a ranking of solutions based on a function

resulting from his choice of a current goal. Third,

he or she can use a simplified version of a concept

called outranking to identify neighbor solutions that

are similar to his nearest solution. The decision maker

may also review the weights implied by the current

goal, see a quartile distribution of the problem

by objective, and identify and possibly delete

dominated solutions.
Concluding Remarks

The field of multiple criteria decision making has

been an active since the 1960s. Many interesting

approaches have been developed, explored, and

implemented in solving problems. Implementation

of MCDM methodologies include multiple criteria

decision support systems (MCDSS) and

negotiations, which may be regarded as multiple

criteria problems involving multiple decision

makers. MCDSS integrate the multiple criteria

approaches in user-friendly microcomputer systems,

such as the VIG/VIMDA system of Korhonen and

Laakso (1986), the Expert Choice software that

implements AHP, and the AIM package of Lotfi

et al. (1992) implemented on the World Wide Web

by Wang and Zionts (2005). An objective of most of

the MCDSS is to provide inexpensive stand-alone

software that is easy to use. A very useful set of

computer MCDM method software may be found on

the World Wide Web by a search on the word

decisionarium; the software is housed at the
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Helsinki University of Technology, now part of Aalto

University.

Negotiations or multiperson MCDM is a natural

extension of MCDM. Many decisions are made by

groups, and negotiation theory involves using some

of the MCDM concepts to simplify and assist

negotiations; see for example, Wang and Zionts

(2008).

In addition to the journals devoted to management

science and operations research and behavioral

science, there are two journals that contain articles

more exclusively in this area: Multi-Criteria Decision
Analysis and Group Decision and Negotiation. The

paper by Wallenius et al. (2008) explores recent

accomplishments and what lies ahead.
M

See

▶Analytic Hierarchy Process

▶Analytic Network Process

▶Decision Analysis

▶Decision Problem

▶Goal Programming

▶Multi-attribute Utility Theory

▶Multiobjective Programming

▶Utility Theory

▶Value Function
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Multiple Optimal Solutions

In an optimization problem, when different feasible

solutions yield the same optimal value for the

objective function, the problem has multiple optimal

solutions. If a linear-programming problem has

multiple optimal solutions, then such solutions

correspond to extreme point solutions and their

convex combinations.
See

▶Unique Solution
Multiple Pricing

When solving a linear-programming problem using the

simplex method, it is computationally efficient to

select a small number, say 5, possible candidate

vectors from which one would be chosen to enter the

basis. The candidate set consists of columns with large

(most negative or most positive) reduced costs, and the

vector in this set that yields the largest change in the

objective function is selected. Succeeding iterations

only consider candidate basis vectors from the

vectors that remain in the set that have properly

signed reduced costs. When all vectors in the set are

chosen or none can serve to change the objective

function in the proper direction, a new set is

determined.
See

▶ Partial Pricing

▶ Simplex Method (Algorithm)
Multiplier Vector

For a given feasible basis B to a linear-programming

problem, let the row vector cB be the ordered set of cost

coefficients for the vectors in B. The multiplier vector

is defined as p ¼ cB B�1. If B is an optimal basis, then
the components of p are the dual variables associated

with the corresponding primal constraints. The vector

p is also called the simplex multiplier vector, with the

components of p being the simplex multipliers.
See

▶ Simplex Method (Algorithm)
Multivariate Quality Control

Francis B. Alt1 and Scott D. Grimshaw2
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Introduction

A frequent quality control application in the chemical

and process industries is the simultaneous monitoring

of several correlated quality measurements. For

example, González and Sánchez (2010) apply

multivariate quality control to manufacturing the

window frame for the door of a vehicle, where the

five gaps on the window frame are measured at seven

locations on the frame. Control charts that

simultaneously evaluate all the information available

on a process are based on the foundational work of

Hotelling (1947) in a military application. While one

could create univariate control charts for each

measurement, ignoring the correlation between

measurements impacts the statistical properties in

many ways. Jackson (1956) showed that the use of

univariate control charts can be misleading even

when the measured characteristics are uncorrelated.

Alt (1985) points out that not only is it statistically

inefficient to monitor each measurement on its own

control chart because the proper out-of-control region

is elliptical, the process may exhibit frequent false

out-of-control alarms.

Multivariate quality control procedures can

be classified into two broad categories:

(1) Shewhart procedures designed to quickly detect

large out-of-control shifts from the in-control mean

vector, and (2) Multivariate EWMA procedures that

can be designed to efficiently detect persistent small

http://dx.doi.org/10.1007/978-1-4419-1153-7_200889
http://dx.doi.org/10.1007/978-1-4419-1153-7_200579
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
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and moderate shifts. These are discussed in turn,

followed by a discussion of other important methods

for multivariate quality control.
M

Shewhart Charts

At regular time intervals, observe a rational subgroup

of size n on p quality characteristics denoted by the

vector xi. When the process is in-control,

the quality characteristics will have mean m0 and

variance-covariance matrix S0.

The Shewhart w2 chart produces an out-of-control

signal when

w2 ¼ n �x� m0ð Þ0S�1
0 �x� m0ð Þ

exceeds the upper control limit. The �x is the mean of

each quality characteristic for the rational subgroup

assembled as a p� 1 vector.

The performance of a control chart is judged by

its average run length (ARL), which is the average

number of time periods taken before an

out-of-control signal is given. A control chart is

designed to have a large in-control ARL and

a small out-of-control ARL. For multivariate

Shewhart charts the upper control limit defines the

in- and out-of-control ARL. The run length of

Shewhart control charts follows a geometric

distribution since each time interval is independent

and the probability of an out-of-control signal is

identical for each time interval. If ARL0 denotes

the in-control ARL, the upper control limit (UCL)

is w2ð1=ARL0; pÞ, the 100ð1� ð1=ARL0ÞÞ%
percentile of the w2 distribution with p degrees of

freedom, if the �x is multivariate normal. The most

frequent choice is ARL0 ¼ 200, so the upper control

limit is the 95% percentile of the w2p. When the

process is out-of-control with mean m1, the

multivariate Shewhart statistic has a non-central

w2 distribution with p degrees of freedom and

non-centrality parameter
l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n m1 � m0ð Þ0S�1

0 m1 � m0ð Þ
q

;

and the out-of-control ARL, denoted by ARL1, can

be computed ARL1 ¼ 1=½1� FðUCL; p; lÞ�, where

Fð	; p; lÞ is the cdf of a non-central w2.
A frequent obstacle to applying the Shewhart

w2 control chart is the need for the in-control

variance-covariance matrix S0. The Hotelling T2

distribution, a generalization of the Student’s t

distribution, allows the estimated variance-covariance

matrix S to replace S0. The Shewhart T
2 control chart

compares the statistic
T2 ¼ n �x� m0ð Þ0S�1 �x� m0ð Þ

to the upper control limit
UCL ¼ pðn� 1Þ
n� p

Fð1=ARL0; p; n� pÞ

which uses a well-known relationship between the

Hotelling T2 distribution and the F distribution.

In many applications, the in-control mean m0 and

the in-control variance-covariance matrix S0 are

unknown, but are estimated from data collected while

the process is believed to be in-control. For this Phase

I data ofm time periods of rational subgroup size n, Alt

(1982) proposed estimating m0 by the mean of the m

sample mean vectors, denoted by x, and estimating S0

by the pooled variance-covariance matrix which is the

mean of the m sample variance-covariance matrices,

denoted by Sp. Because the in-control parameters are

estimated, the upper control limit is inflated to
UCL¼ pðm�1Þðn�1Þ
mn�m�pþ1

Fð1=ARL0;p;mn�m�pþ1Þ:

If any time period in Phase I has an out-of-control

signal and an assignable cause is found, this

time period is omitted and ��x and Sp are

recomputed. This step is iterated until all m�< m time

periods are considered in-control.

At this time, the monitoring of future time periods

begins by using the statistic
T2
f ¼ n �xf � ��x

� �0
S�1
p �xf � ��x
� �

with

UCL¼ pðm�þ1Þðn�1Þ
m�n�m��pþ1

Fð1=ARL0;p;m
�n�m��pþ1Þ

where �xf is a vector of sample means based on data for

a time period after m�. It is suggested that ��x and Sp be
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updated fairly often in the beginning, as the number of

future subgroups accumulates.

A common follow-up to a large T2 statistic is to use

standardized coefficients of the discriminant function

(Rencher 2002, Chap. 5). That is, compute
a ¼ sqrt½diagðSÞ� 	 S�1ðx� m0Þ;

where sqrt is the elementwise square root of the vector

and diagðSÞ creates a diagonal matrix from

the diagonal elements of the S matrix. The absolute

values of the coefficients in a give relative

contributions of each quality measurement to T2.

Another approach to interpreting a large T2 value

is a decomposition proposed by Mason et al. (1995,

1997). The T2 can be written as p independent terms,

each of which reflects the contribution of an individual

quality characteristic. Runger et al. (1996) use

this decomposition to improve diagnostics of an

out-of-control signal.
MEWMA Charts

The multivariate exponentially weighted moving

average (MEWMA) control charts are well suited to

observing a single observation (n ¼ 1) at each time

period t and combining the information from

a window of time to make a decision. The

generalization from the univariate EWMA was

formulated by Lowry et al. (1992). A weighted

average of the observed xt is formed by
Zt ¼ lðxt � m0Þ þ ð1� lÞZt�1

where the value l is chosen in designing the control

chart to represent the amount of smoothing

(0 < l < 1) and Z0 ¼ 0. Small values of l pool

the data over a wide time interval and produce

a control chart that effectively identifies small,

persistent changes from the in-control mean, m0,

or a gradual drift from m0. Large values of l yield

a Zt with high weight on the current observation so

the control chart is sensitive to immediate large

shifts from m0.

The MEWMA chart signals a process is

out-of-control at time t when

T2
t ¼ ZtS

�1
Z Zt
exceeds an upper control limit. The variance-covariance

matrix SZ depends on l and t, and is given by

SZ ¼
l 1� 1� lð Þ2t
h i

2� l

0
@

1
AS0;

where S0 is the in-control variance-covariance matrix

of xt. For a given l, the upper control limit is chosen to

provide an ARL for a specified out-of-control mean

m1. Tables of the ARL for different p, l, and upper

control limit are given by Prabhu and Runger (1997)

for in-control ARL0 ¼ 200.

In the univariate case, the CUSUM (cumulative

sum) control charts are quite similar to the EWMA

control charts. Although a number of multivariate

CUSUM procedures have been proposed, an early

suggestion by Woodall and Ncube (1985) was to

monitor each of the p quality characteristics

simultaneously with individual CUSUM charts. The

ARL of this collection of p CUSUM control charts is

the minimum of ARL1;ARL2; . . . ;ARLp
� �

if the

quality characteristics are independent. If the quality

characteristics are correlated, reduce the p dimensional

space to the p0 < p largest principal components. An

improvement to this collection of p CUSUMs is to

update the CUSUM at each observation and shrink

toward the zero vector as described in Crosier (1988).
Control Charts for Variance-Covariance

While monitoring the mean of p correlated quality

characteristics has been well researched, less work

has been performed on control charts for the

variance-covariance matrix (the generalization from

univariate control charts on process variability). The

most common approach summarizes the pðpþ 1Þ=2
variances and covariances in S into a scalar by

defining the generalized variance jSj, which is the

determinant of S. Montgomery and Wadsworth

(1972) proposed control limits based on the

asymptotic normality of jSj, the determinant of the

sample variance-covariance matrix based on the n

observations in the rational subgroup. Control limits

for the typical Shewhart control charts were proposed

by Alt (1985) and are E jSjð Þ � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var jSjð Þp

where

E jSjð Þ ¼ b1jSj and Var jSjð Þ ¼ b2jSj2 with
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b1 ¼ 1

ðn� 1Þp
Yp
i¼1

ðn� iÞ

and
b2 ¼ 1

ðn� 1Þ2p
Yp
i¼1

ðn� iÞ
" #

�
Yp
j¼1

ðn� jþ 2Þ �
Yp
j¼1

ðn� jÞ
" #

:

M

Profile Monitoring

Many manufacturing processes in the chemical

process and semiconductor industries have

finite-duration processing periods under controlled

conditions which result in the final product. With

improved metrology these processes can be

monitored during the processing time. In these

applications the collection of measurements taken on

each quality characteristic during processing when

plotted over time creates a profile.

Nomikos and MacGregor (1995a) organized the

large amount of profile data as a three-dimensional

array whose n rows correspond to the different runs, t

columns correspond to the measurements taken over

processing time for a given run and the third dimension

(depth) is the p different quality characteristics. While

this is perhaps the organization of the data in

a database, multivariate statistical methods require

the expression of Y as a vector, and an ‘unfolded’

structure generates a tp vector of each quality

characteristic at each processing time. Instead of

monitoring this extremely large vector, one approach

is to reduce the dimensionality to a set of summary

scores T. Nomikos and MacGregor (1995a) use

principal components of Y to form T, and Nomikos

and MacGregor (1995b) use partial least squares to

obtain linear combinations of Y which are highly

correlated with a product’s quality measurements

taken after processing. Grimshaw et al. (1998) allow

changing inputs that affect the profile and provide

a real-time processing control chart statistic.

When there is a hypothesized relationship between

the profile and an explanatory variable, the profile can
be modeled using the parameters of the relationship.

For example, if the relationship is linear the estimated

regression coefficients are monitored using a Hotelling

T2 following Kang and Albin (2000). In a Phase II

control chart where the profile has been estimated

from historical data, Kim et al. (2003) address the

linear case. The nonlinear profile case has been

modeled by multiple regression and higher-order

polynomials in Zou et al. (2007) and Kazemzadeh

et al. (2008); nonparametric regression methods are

used in Zou et al. (2008); and nonlinear profiles for

dose–response applications are in Jensen and Birch

(2009). Colosimo et al. (2008) monitor profiles of

geometric specifications such as roundness,

cylindricity, and flatness.
See

▶Quality Control

▶Total Quality Management
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