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Dantzig-Wolfe Decomposition Algorithm

A variant of the simplex method designed to solve

block-angular linear programs in which the blocks

define subproblems. The problem is transformed

into one that finds a solution in terms of convex

combinations of the extreme points of the subproblems.
See

▶Block-Angular System

▶Decomposition Algorithms
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Introduction

DEA (Data Envelopment Analysis) is a data oriented

approach for evaluating the performance of a collection

of entities called DMUs (Decision Making Units) which
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are regarded as responsible for converting inputs into

outputs. Examples of its uses have included hospitals and

U.S. Air Force Wings, or their subdivisions, such as

surgical units and squadrons. The definition of a DMU is

generic and flexible. The objective is to identify sources

and to estimate amounts of inefficiency in each input and

output for everyDMU included in a study. Uses that have

been accommodated include: (i) discrete periods of

production in a plant producing semiconductors in order

to identify when inefficiency occurred; and (ii) marketing

regions towhichadvertisingandother salesactivitieshave

been directed in order to identify where inefficiency

occurred. Inputs as well as outputs may be multiple and

eachmay bemeasured in different units.

A variety of models have been developed for

implementing the concepts of DEA, for example, the

following dual pair of linear programming models:

min h0 ¼ y0 � e
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !

subject to 0 ¼ y0xi0 �
Xn
j¼1

xij lj � s�i

yr0 ¼
Xn
j¼1

yrj lj � sþr

0 � lj; sþr ; s
�
i

(1a)

and

max y0 ¼
Xs
r¼1

mr yr0

subject to 1 ¼
Xm
i¼1

vi xi0

0 �
Xs
r¼1

mryrj �
Xm
i¼1

vixij

e � mr; vi

(1b)
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where xij ¼ observed amount of input i used by DMUj

and yrj ¼ observed amount of output r produced by

DMUj, with i¼ 1, . . ., m; r¼ 1, . . ., s; j¼ 1, . . ., n. All
inputs and outputs are assumed to be positive. (This

condition may be relaxed (Charnes et al. 1991).
Efficiency

The orientation of linear programming has changed

here from ex-ante uses, for planning, and apply it to

choices already made ex-post, for purposes of

evaluation and control. To evaluate the performance

of any DMU, (1) is applied to the input–output data for

all DMUs in order to evaluate the performance of each
DMU in accordance with the following definition:

Efficiency — Extended Pareto-Koopmans Definition :

Full (100%) efficiency is attained by any DMU if and

only if none of its inputs or outputs can be improved

without worsening some of its other inputs or outputs.

This definition has the advantage of avoiding the

need for assigning a priori weights or other measures of

relative importance to any input or output. In most

management or social science applications, the

theoretically possible levels of efficiency will not be

known. For empirical use, the preceding definition is

therefore replaced by the following:

Relative Efficiency: A DMU is to be rated as fully (100%)

efficient if and only if the performances of other DMUs

do not show that some of its inputs or outputs can be

improved without worsening some of its other inputs or

outputs.

To implement this definition, it is necessary only to

designate any DMUj as DMU0 with inputs xi0 and

outputs yr0 and then apply (1) to the input and output

data recorded for the collection of DMUj, j ¼ 1, . . ., n.

Leaving this DMUj¼ DMU0 in the constraints insures

that solutions will always exist with an optimal

y0 ¼ y0� � 1. The above definition applied to

(1) then gives

DEA Efficiency: The performance of DMU0 is fully

(100%) efficient if and only if, at an optimum, both (i)

y0� ¼ 1, and (ii) all slacks ¼ 0 in (1a) or, equivalently,Ps
r¼1 m�r yr0 ¼ 1 in (1b), where ∗ represents an optimal

value.

A value y�0 < 1 shows (from the data) that

a non-negative combination of other DMUs could
have achieved DMU0’s outputs at the same or higher

levels while reducing all of its inputs. Non-zero slacks

similarly show where input reductions or output

augmentations can be made in DMU0’s performance

without altering other inputs or outputs. These

non-zero slacks show where changes in mixes could

have improved performance in each of DMU0’s inputs

or outputs, while a y�0 < 1 shows “technical

inefficiency” in which all inputs could have been

reduced in the same proportion. (This is a so-called

input-oriented model. An output-oriented model can

be similarly formulated by associating a variable

’0 with all outputs to be maximized DMU0.

The measures are reciprocal, i.e., ’�0 y�0 ¼ 1, so this

topic is not developed here.)

Many applications to many different kinds of

entities engaged in complex activities with no clearly

defined bottom line have been reported in many

publications by many different authors in many

different countries. Examples include applications to

schools (including universities), police forces, military

units, and country performances (including United

Nations evaluations of country performances). See,

for example, Emrouznejad et al. (2008) who list

more than 1,600 published papers by more than

2,500 different authors in more than 40 different

countries. Also see Berber et al. (2011) and Cooper

et al. (2009).
Farrell Measure

The scalar y�0 is sometimes referred to as the Farrell

measure after M.J. Farrell (1957). Notice, however,

that a value of y�0 ¼ 1 does not completely satisfy the

above definition of Relative Efficiency if any of the

associated slacks, sþ�i or sþ�r , in (1) are positive —

because any such non-zero slack provides an

opportunity for improvement which may be used

without affecting any other variable, as should be

clear from the primal problem which is shown in (1a).

There is a need to insure that an optimum with

y�0 ¼ 1 and all slacks zero is not interpreted to mean

that full (100%) efficiency has been attained when an

alternate solution with y�0 ¼ 1 and some slacks

positive is also available. To see how this is dealt

with, attention is called to the fact that the slack

variables s�i and sþr in the objective of the primal

(minimization) problem, (1a), are each multiplied by
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e > 0 which is a non-Archimedean infinitesimal —

the reciprocal of the “big M” associated with the

artificial variables in ordinary linear

programming — so that choices of slack values

cannot compensate for any increase they might

cause in y0. This accords pre-emptive status to the

minimization of y0, and DEA computer codes

generally handle optimizations in a two-stage

manner which avoids the need for specifying e
explicitly. Formally, this amounts to minimizing

the value of y0 in stage 1. Then one proceeds in

a second stage to maximize the sum of the slacks

with the condition y0 ¼ y�0 fixed for the primal in

(1a). Since the sum of the slacks is maximized, one

can be sure that a solution with all slacks at zero in

the second stage means that DMU0 is fully efficient

if the first stage yielded y�0 ¼ 1.

N.B. Weak efficiency is another term used instead

of Farrell efficiency when attention is restricted to (i)

in DEA Efficiency above. It is also referred to as

a measure of technical efficiency. However, when

(1a) is used, this might be referred to as purely

technical efficiency in order to distinguish these

inefficiencies from the mix inefficiencies associated

with changes in the proportions used that are then

associated with non-zero slack. The term technical

efficiency can then be used to comprehend both

purely technical and mix inefficiencies as

determined by reference to technical conditions

without recourse to prices, costs, and/or subjective

evaluations.
Example

Figure 1 is a geometric portrayal of four DMUs

interpreted as points P1,. . ., P4, with coordinate

values corresponding to the amounts of two inputs

which each DMU used to produce the same amount of

a single output. P3 is evidently inefficient compared

to P2 because it used more of both inputs to achieve

the same output. In fact, its Farrell measure of

inefficiency relative to P2 can be determined via the

formula
y0 ¼ dð0; P2Þ
dð0; P3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 42

p ¼ 1

2
;

where d(.,.) refers to the Euclidean, or l2, measure of

distance.

Referred to as a radial measure of efficiency in

the DEA literature, y0 is really a ratio of two

distance measures, namely, the distance along the

ray from the origin to the point being evaluated

relative to the distance from the origin to the

frontier measured along this same ray. This same

value of y0 is obtained, and hence this same radial

measure, by omitting the slacks and rewriting

the primal problem in (1a) in the following

inequality form,
minimize y0
subject to

6y0 � 2l1 þ 3l2 þ 6l3 þ 1l4
4y0 � 2l1 þ 2l2 þ 4l3 þ 4l4
1 � 1l1 þ 1l2 þ 1l3 þ 1l4
0 � l1; . . . ; l4;

(2)

where the third constraint reflects the output y ¼ 1

which was produced by each of these DMUs.

An optimum is achieved with y�0 ¼ 1/2, l�2 ¼ 1 and

this designates P2 for the evaluation of P3. However,

it is also needed to take account of the slack

possibilities. This is accomplished without

specifying e > 0 explicitly by proceeding to
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a second stage by using the thus obtained value of y�0
to form the following problem:
maximize s�1 þ s�2 þ sþ

subject to

0 ¼ �6y0 þ 2l1 þ 3l2 þ 6l3 þ 1l4 þ s�1
0 ¼ �4y0 þ 2l1 þ 2l2 þ 4l3 þ 4l4 þ s�2
� 1 ¼ �1l1 � 1l2 � 1l3 � 1l4 þ sþ

0:5 ¼ y0
0 � l1; . . . ; l4; s�1 ; s�2 ; sþ

(3)

Following through in this second stage, with

y�0 ¼ 0.5, it can be found that l�2 ¼ 1 and s��1 ¼ 1,

with all other variables zero. This solution is

interpreted to mean that the evidence from other

DMUs (as exhibited by P1’s performance) shows that

P3 should have been able (a) to reduce both inputs to

one-half their observed values, as given by the value of

y0, and should also have been able (b) to reduce the first
input by the additional amount given by s��1 ¼ 1.

This slack, s��1 ¼ 1, represents the excess amount

of the first input used by P2, and it, too, must be

accounted for if the above definition of relative

efficiency is to be satisfied. In fact, using the primal

in (1a) to evaluate P2, it will be found that it is also

inefficient with y1
∗ ¼ 1 and l∗ ¼ s��1 ¼ 1. The use of

(1a) to determine whether the conditions (i) and (ii)

for relative efficiency are satisfied has a further

consequence in that it insures that only efficient

DMUs enter into the solutions with positive

coefficients in the basis sets that are used to effect

efficiency evaluations. Computer codes that have

been developed for DEA generally use this property

to reduce the number of computations by identifying

all such members of an optimal basis as efficient and,

hence, not in need of further evaluation.

As can be seen from Fig. 1, P1 dominates P2 and

hence also dominates P3. Only P1 and P4 are not

dominated and hence can be regarded as efficient

when DEA is restricted to dominance, as in Bardhan

et al. (1996). However, if an assumption of continuity

is added, then the entire line segment connecting P1

and P4 becomes available for use in effecting

efficiency evaluations. This line segment is referred

to as the efficiency frontier. The term efficient

frontier is appropriate because it is not possible to

move from one point to another on the line
connecting P1 and P4 without worsening one input to

improve the other input.

Given the assumption of continuity, points not on

the efficiency frontier are referred to it for evaluation.

Even when not dominated by actually observed

performances, the nonnegative combinations of l�j
and slack values will locate points on the frontier

which can be used for effecting efficiency evaluations

of any DMU in the observation set.

The following formulas, called the CCR projection

formulas, may be used to move points up to the

efficiency frontier:
x̂i0 ¼ y�0 x̂i0 � s��i � x̂i0; i ¼ 1; . . . ; m
ŷr0 ¼ yr0 þ sþ�r � yr0; r ¼ 1; . . . ; s

�
(4)

where each (x̂i0, ŷi0) represents a point on the efficiency

frontier obtained from (xi0, yr0), DMU0’s observed

values. The point on the efficiency frontier thus

obtained from these CCR projections is the point

used to evaluate (xi0, yr0), i ¼ 1, . . ., m; r ¼ 1, . . ., s,

for any DMU0.
Ratio Form Models

The name Data Envelopment Analysis is derived from

the primal (minimization) problem (1a) by virtue of the

following considerations. The objective is to obtain as

tight a fit as possible to the input–output vector for

DMU0 by enveloping its observed inputs from below

and its observed outputs from above. As can be seen

from (1a), an optimal envelopment will always involve

a touching of the envelopment constraints to at least

one of DMU0’s inputs and one of its outputs.

The primal problem, (1a), is said to be in envelopment

form. The dual problem, (1b), is said to be in multiplier

form by reference to the values of m and n as dual

multipliers. The objective is to maximize y0, which is

called the virtual output. This maximization is subject to

the condition that the corresponding virtual input is unity,

that is,
Pm

i¼1 ni xi0 ¼ 1, as given in the first constraint.

The other constraints require that the virtual output

cannot exceed virtual input for any of the DMUj,

j ¼ 1, . . ., n, that is,
Xs
r¼1

mr yrj �
Xm
i¼1

vi xij j ¼ 1; . . . ; n:
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Finally, the conditions mr, ni � e > 0 mean that

every input and every output is to be assigned “some”

positive value in this “multiplier” form, where as

previously noted, the value of e need not be specified

explicitly.

To add interpretive power for the use in DEA, all of

the variables in (1b) are multiplied, the (dual) problem

of (1a), by t > 0 and then introduce new variables

defined in the following manner:
mr ¼ tmr � te; ni ¼ tni � te;

t ¼
Xm
i¼1

tni xi0:
(5)

Multiplying and dividing the objective of the dual

problem in (1b) by t > 0 and then multiplying all

constraints by t gives the following model, which

accords a ratio form to the DEA evaluations:
max

Ps
r¼1

ur yr 0

Pm
i¼1

ni xi0

subject to

Ps
r¼1

uryrj

Pm
i¼1

ni xij
� 1; j ¼ 1; . . . ; n

urPm
i¼1

nixi0
� e; r ¼ 1; . . . ; s

niPm
i¼1

ni xi0
� e; i ¼ 1; . . . ; m:

(6)

An immediate corollary from this development is
0 �
Ps
r¼1

u�r yr0

Pm
i¼1

n�i xi 0
¼
Xs
r¼1

u�r yr0 ¼ y�0

�
Xm
i¼1

s��i þ
Xs
r¼1

sþ�r � 1;

(7)

where “∗” designates an optimal value. Thus, in

accordance with the theory of fractional
programming, as given in Charnes and Cooper

(1962), the optimal values in (6) and (1b) are equal.

The formulation (6) has certain advantages. For

instance, Charnes and Cooper (1985) used it to show

that the optimal ratio value in (6) is invariant to the

units of measure used in any input and any output and,

hence, this property carries over to (1b). Equation 6

also add interpretive power and provide a basis for

unifying definitions of efficiency that stretch across

various disciplines. For instance, as shown in

Charnes et al. (1978), the usual single-output to

single-input efficiency definitions used in science and

engineering are derivable from (6). It follows that these

definitions contain an implicit optimality criterion. The

relation of (6) to (4), established via fractional

programming, also relates these optimality conditions

to the definitions of efficiency used in economics. (See

the above discussion of Pareto-Koopmans efficiency.)

This accords a ratio form (as well as a linear

programming form) to the DEA evaluations.

As (6) makes clear, DEA also introduces a new

principle for determining weights. In particular the

weights are not assigned a priori, but are determined

directly from the data. A best set of weights is

determined for each of the j,. . ., n DMUs to be

evaluated. Given this set of best weights the test of

inefficiency for any DMU0 is whether any other DMUj

achieved a higher ratio value than DMU0 using the

latter’s best weights [Care needs to be exercised in

interpreting these weights, since (a) their values will

in general be determined by reference to different

collections of DMUs and (b) when determined via

(1), allowance needs to be made for non-zero slacks.

See the discussion in Charnes et al. (1989), where

dollar equivalents are used to obtain a complete

ordering to guide the use of efficiency audits by the

Texas Public Utility Commissions].

DEA also introduces new principles for making

inferences from empirical data. This flows from its

use of n optimizations — to come as close as possible

to each of n observations — in place of other

approaches, as in statistics, for instance, which uses

a single optimization to come as close as possible to

all of these points. In DEA, it is also not necessary to

specify the functional forms explicitly. These forms

may be nonlinear and they may be multiple

(differing, perhaps, for each DMU) provided they

satisfy the mathematical property of isotonicity

(Charnes et al. 1985).
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Other Models

The models in (1) and (6) are a subset of several DEA

models that are now available. Thus, DEA may be

regarded as a body of concepts, and methods which

unite these models and their uses to each other. These

concepts, models and methods comprehend extensions

to identify scale, and allocative and other inefficiencies.

By virtue of the already described relations between

(6) and (1) the models are referred to as the CCR ratio

model. Other models include the additive model,

namely,

max
Xm
i¼1

s�i þ
Xs
r¼1

sþr

subject to

0 ¼ x̂i 0 �
Xn
j¼1

x̂ijlj � s�i

ŷr0 ¼
Xn
j¼1

ŷrjlj � sþr

0 � lj; sþr ; s
�
i ; 8i; j; r

(8)

for which the conditions for efficiency are given by

Additive Model Efficiency: DMU0 is fully (100%)

efficient if and only if all slacks are zero — namely,

s��i , sþ�r ¼ 0, 8 i, r in (8).

With the constraint
P

j¼1n lj ¼ 1 adjoined, the

model (8) becomes “translation invariant.” That is, as

shown by Ali and Seiford (1990), the solution to (8) is

not altered if the original data (x̂ij,ŷrj) are replaced by

new data
x̂0ij ¼ x̂0ij þ di; i ¼ 1; : : : ; m

ŷ0rj ¼ ŷ0rj þ cr; r ¼ 1; : : : ; s
(9)

where the di and cr are arbitrarily constants. This

property can be of value in treating negative data

since most theorems in DEA assume that the data are

positive or at least semi-positive. See Pastor (1996) for

examples and extensions of the Ali-Seiford theorems.

Theorems like the following from Ahn et al. (1988)

relate the additive models to their CCR counterparts.

Theorem: A DMU0 will be evaluated as fully

(100%) efficient by the CCR model if and only if it is

rated as fully (100%) efficient by the corresponding

additive model.
Note, however, that the CCR and additive models

use different metrics, so they need not identify the

same sources and amounts of inefficiency in an

inefficient DMU.

The additive model (8) can also be related to

another class, called multiplicative models (Charnes

et al. 1982). An easy way is to assume that the (x̂ij,ŷrj)

are stated in logarithmic units. Taking antilogs then

gives
xi 0 ¼ a�i
Yn
j¼1

x
l�j
i j ; i ¼ 1; : : : ; m;

yr 0 ¼ b�r
Yn
j¼1

y
l�j
rj ; r ¼ 1; : : : ; s;

(10)

where a�i ¼ es��i, b�r ¼ esþ�r, and the (xij, yrj) are stated
in natural units. Each xi0, yr0 is thus generated by

a Cobb-Douglas process with estimated parameters

given by the starred values of the variables.

To relate these results to a ratio form for efficiency

evaluation, the dual to (8) is written as
min
Xm
i¼1

nix̂i 0 �
Xs
r¼1

mrŷr 0

subject toXm
i¼1

nix̂i j �
Xs
r¼1

mrŷr j � 0; j ¼ 1; : : : ; n

ni; m r � 1; i ¼ 1; : : : ;m; r ¼ 1; : : : ; s;

(11)

where the (x̂ij, ŷrj) are stated in logarithmic units.

Recourse to antilogarithms then produces
max
Ys
r¼1

ŷmrr0
Ym
i¼1

x̂uii0

,

subject to

Ys
r¼1

ŷmrrj
Ym
i¼1

x̂uii0 � 1; j ¼ 1; : : : ; n

,

ni; mr � 1; i ¼ 1; : : : ; m; r ¼ 1; : : : ; s;

(12)

and we once again make contact with a ratio form for

effecting efficiency evaluations.

To obtain conditions for efficiency, antilogs to (8)

are applied and (10) is used to obtain
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max

Qs
r¼1

es
þ�
r

Qm
i¼1

e�s��i
¼

Qs
r¼1

Qn
j¼1

yl
�
j

r j
yr0
�

Qm
i¼1

Qn
j¼1

xl
�
j

i j
xi0=

� 1: (13)

The lower bound on the right is obtainable if and

only if all slacks are zero. Thus the efficiency

conditions for the multiplicative model are the same

as for the additive model.

An interpretation of (13) can be secured by

noting that
Yn
j¼1

yl
�
j

r j

 !1
Pn
j¼1

l�j

�
;

Yn
j¼1

xl
�
j

i j

 !1
Pn
j¼1

l�j

�

represent weighted geometric means of outputs and

inputs, respectively. Thus (13) is a ratio of the

product of weighted geometric totals relative to the

outputs and inputs which each of these expressions is

evaluating.

It is necessary to note that the results in (13) are not

units invariant (i.e., they are not dimension free in the

sense of dimensional analysis) except in the case of

constant returns to scale (see Thrall, 1996). This

property, when wanted, can be secured by adjoiningP
j¼1nlj ¼ 1 to (8). See also Charnes et al. (1983).

To conclude this discussion it is noted that the

expression on the left of (13) is simpler and easier to

interpret and the computations from (8) are

straightforward.

The class of multiplicative models has not been

much used, possibly because other models are easier

to comprehend. Even allowing for this, however, they

have potentials for use either on their own or in

combination with other DEA models as when, for

instance, returns to scale characterization are needed

that differ from those which are available from other

types of DEA models. See Banker and Maindiratta

(1986) for further discussion of such uses.
Extensions and Uses of Dea Models

1. Returns to Scale — There is an extensive literature

on returns to scale and their uses in DEA which

reflects two different approaches. One approach,
due to F€are et al. (1985, 1994) proceeds in an

axiomatic manner and employs only radial

measures. The other approach is based on

mathematical programming. Conceptualized by

Banker et al. (1984), it was subsequently ex-tended

(and made wholly rigorous) by Banker and Thrall

(1992). As might be expected, equivalences between

the two approaches have been established in (among

other places) Banker et al. (1996). See also Banker

et al. (1998).

2. Returns to Scope — Partly because of difficulty in

assembling data in pertinent forms, the literature on

returns to scope is relatively sparse in DEA. Indeed,

a bare beginning has been made in Chapter 10 of

F€are et al. (1994).

3. Assurance Regions and Allocative Inefficiency —

Many other developments have occurred and

continue to occur. Thompson, Dharmapala and

Thrall and their associate introduced the now

widely used concept of assurance regions

(Thompson et al. 1986; Dyson and Thanassoulis,

1988). This approach uses a priori knowledge to set

upper and lower bounds on the values of the

multiplier variables in DEA models like (1b). This

can alleviate problems encountered in treating

allocative or price efficiency either because (i)

exact data on prices, costs, etc., are not available,

or (ii) because the presence of wide variations in

these data make the use of exact value

a questionable undertaking. See Schaffnit et al.

(1997), where limiting arguments are used to

establish an exact relation between allocative

efficiency and the bounds used in assurance region

approaches.

4. Cone Ratio Envelopments— In a similar spirit, but

in a different manner, Charnes et al. (1990) and their

associates developed what they refer to as

a cone-ratio envelopment approach. In contrast to

the assurance region treatments of bounds on the

variables, these cone-ratio approaches utilize

a priori information to adjust the data. This makes

it possible to take account of complex (multiple)

considerations that might otherwise be difficult to

articulate. See Brockett et al. (1997), who show how

to implement the Basle Agreement, which was

recently adopted by U.S. bank regulators to treat

multiple risk factors in banking by adjusting the

data reported in the FDIC call reports. These

regulations are rigid and ill-fitting, so Brockett
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et al. (1997) provide an alternative Cone-ratio

envelopment approach which uses results from

excellent banks (that are also found to be efficient)

to adjust the call-report data for other banks in a use

of DEA to effect such risk-adjusted evaluations.

5. Exogenous and Categorical Variables — Other

important developments include methods for

treating input or output values which are

exogenously fixed for some, or all, DMUs.

Developed by Banker and Morey (1986a) for

treating demographic variables as important inputs

in different locations for a chain of fast food outlets,

these methods have found widespread use in many

other applications. Similar remarks apply to the

Banker and Morey (1986b) introduction of

methods for treating categorical (classificatory)

variables in work which has since been modified

and extended by other authors; see Neralić and

Wendell (2000).

6. Statistical Treatments — Various attempts have

recently been made to join statistical and

probabilistic characterizations to the deterministic

models and methods of inference in DEA. For

instance, using relatively mild postulates, Banker

(1993) has shown that (i) DEA estimators of y�0 are
statistically consistent; (ii) DEA estimates

maximize the likelihood of obtaining the

corresponding true values; and (iii) these

properties hold under fairly general structures that

do not require assumptions about the parametric

forms of the probability density functions. See

pages 272–275 in Banker and Cooper (1994) for

a succinct discussion. See also Korostelev et al.

(1995), who show that the rates of convergence

are slow.

Simar and Wilson (1998) utilize bootstrap

procedures to study sampling properties of the

efficiency measures in DEA. Unlike Banker, who

restricts his analysis to the single output case, this

bootstrap approach accommodates multiple outputs

as well as multiple inputs. Omitted, however, is any

treatment of nonzero slacks. Brockett and Golany

(1996) also approach the topic of statistical

characterizations by means of Mann–Whitney

rank order statistics, but do not note that need for

explicitly stating a ranking principle. This is needed

because (as noted above) the DEA efficiency scores

are generally determined relative to different
reference sets (or peer groups) of efficient DMUs.

(For a discussion of how this problem is treated for

the efficiency audits conducted by Texas Public

Utility Commission, see Charnes et al. 1989).

7. Probabilistic Models — Alternate approaches via

chance constrained programming were initiated by

Land et al. (1994) and have been ex-tended by

others to include the use of joint chance

constraints in addition to the conditional chance

constraints used by Land, Lovell and Thore

(Olesen and Petersen 1995; Cooper et al. 1998).

Of special interest is the use of chance constraints

to obtain a satisficing approach for efficiency

evaluation, as in Cooper et al. (1996), where the

term satisficing is used in the sense of H.A. Simon’s

(1957) behavioral characterizations in terms of (i)

achievement of a satisfactory level of efficiency,

and (ii) a satisfactory probability (¼chance) of

achieving this level. Finally, allowance is also

made for situations in which these levels or

probabilities may need to be revised because the

data show that they are not possible of attainment.

Unlike the statistical characterizations described in

item 6, these chance constrained programs

generally require knowledge of the parameters as

well as the forms of the probability functions so that

here, too, there is more work to be done.

See Jagannathan (1985) for a start.

8. Cross-Checking — As noted in the earlier

discussions, the inference principles in DEA differ

from those in statistics. This suggests additional

possibilities for their joint use. One such

possibility is to use the two approaches as cross

checks on each other to help avoid what is referred

to as methodological bias in Charnes et al. (1988).

See also Ferrier and Lovell (1990).

9. Complementary Uses — Another possibility is to

use statistics and DEA in a complementary manner.

An example is provided by Arnold et al. (1996),

who applied this strategy in a two-stage manner to

a study of Texas public schools as follows. At stage

1, DEA is used to identify efficient schools; then, at

stage 2, these results are incorporated as dummy

variables in an OLS (Ordinary Least Squares)

regression. This yielded very satisfactory results on

data which had previously yielded unsatisfactory

results with an OLS regression. A subsequent

simulation study by Bardhan et al. (1998)
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compares this approach not only to OLS but also

to stochastic frontier regressions (i.e., regressions

which apply statistical principles to obtain

frontier estimates for efficiency evaluations).

Using observations that reflected mixtures of

efficient and inefficient performances the OLS

and SF approaches always failed to provide

correct estimates whereas, with only one minor

exception, the complementary two-stage use of

DEA and statistics always yielded estimates that

did not differ significantly from the true

parameter values.
Sources and References

As the above discussions suggest, many important

developments have been effected in DEA since its

initiation by Charnes et al. (1978). These

developments have occurred pari passu with

numerous and widely varied applications of DEA

which are being reported from many different parts

of the world. See the bibliography by Seiford (1994).

For a comprehensive text, see Cooper et al. (1999).
See

▶Dual Linear-Programming Problem

▶ Fractional Programming

▶Linear Programming
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Introduction

When Wal-Mart installed their 24 terabyte data

warehouse, it was among the largest in the world.

Just a few years later, they were adding over a billion

rows of data a day (Babcock 2006), and operating

a 5 petabyte database (Lai 2008). An even more

striking example is eBay, which started with

a 14 terabyte database in 2002. It has since been

adding over 40 terabytes of auction and purchase data

every day into a data warehouse that is expected to

exceed 20 petabytes by 2011. Clearly, as the cost of

capturing data has decreased and easier-to-use data

capture tools have become available, the volumes of

data being accumulated have grown at a very rapid

pace. Technological developments, with the evolution

of the Internet playing a fundamental role, have enabled

an increase in the volume of traditional data being

recorded. Further, such developments have made

possible the capture of information in far greater detail

than ever before (based on barcodes or RFID, for

example) and often of information that was not easily

recordable before, such as eye or mouse movements.
What is Data Mining?

The availability of large data repositories has resulted in

significant developments in themethodologies to analyze

them, both in terms of the technology available for

analysis, and in terms of its mainstream acceptance.

From what was a relatively esoteric technology at the

close of the 20th century, datamining – defined succinctly

as “the science of extracting useful information from

large data sets” (Hand et al. 2001) – has developed into

a powerful set of tools indispensable to most

organizations. In fact, it is gradually morphing into

a key component of the merger of quantitative

techniques into a new label called business analytics.
Many of the techniques used in data mining have

their roots in traditional statistics, artificial

intelligence, and machine learning. Developments in

data mining techniques went hand-in-hand with

developments in data warehousing and online

analytical processing (OLAP). From the early 1990s

when data mining started being viewed as a viable

business solution, the cost of computing has dropped

steadily, while processing power has increased. This

made the benefits of data mining apparent, and

triggered many companies to start using it regularly.

Commercial applications of data mining abound.

A 2010 poll of data miners (conducted by

KDNuggets) listed customer relations management,

banking, healthcare, and fraud detection as the top

four fields where data mining is applied. It is also

commonly used in finance, direct marketing,

insurance, and manufacturing. In fact, it has become

common practice in almost every industry to discern

new knowledge from data; only the extent of

penetration varies across industries.

This is, of course, in addition to the vast quantities of

data collected in the non-business world. It has found

application in disciplines as varied as astronomy,

genetics, healthcare, and education, just to name a few.

The U.S. Department of Homeland Security applies data

miningforavarietyofpurposes, including thecomparison

of “traveler, cargo, and conveyance information against

intelligence and other enforcement data by incorporating

risk-based targeting scenarios and assessments,” and “to

improve thecollection,use, analysis, anddisseminationof

information that is gathered for the primary purpose of

targeting, identifying, and preventing potential terrorists

and terrorist weapons from entering the United States”

(DHS 2009).

The availability of new types of data has opened up

additional opportunities for selective extraction of

useful information. Data originating from the Web

can be mined based on content, network structure, or

usage (e.g., when was a page used and by whom).

There has been considerable interest in the mining of

text from a variety of perspectives – to filter e-mail, to

gain intelligence about competitors, to analyze the

opinions of movie viewers to better understand movie

reviews, as well as the mining of social network data

both in terms of user behaviors and networks,

including text mining of comments. The analysis of

audio and video files is another difficult but promising
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avenue for data mining. Speech recognition

technologies have improved significantly. But, audio

mining goes much further by providing users the

ability to search and index the digitized audio content

in a variety of contexts like news and webcasts,

recorded telephone conversations, office meetings,

and archives in libraries and museums.
How Does Data Mining Work?

Most of the general ideas applicable to modeling of

any kind hold true for data mining as well. To work

effectively, data mining requires clearly stated

objectives and evaluation criteria. The process

(often referred to as the Knowledge Discovery in

Databases – or KDD – process) entails various

critical steps. All data need to be cleaned to eliminate

noise and correct errors. As data usually come from

multiple, heterogeneous sources, there has to be

a logical process of data integration. Once an

objective has been identified for analysis, all

appropriate data needs to be retrieved from the

storage warehouse(s). If necessary, extracted data

may need to be transformed into a form amenable for

mining. Once all these preprocessing steps are

completed, relevant data mining techniques can be

applied. As with any analysis technique, the output

from the mining process usually needs to be interpreted

by the analyst after imposing as much domain

knowledge as possible to intelligently glean useful

information. Any model that is built should be tested

and validated before putting to full use. Additionally, the

KDD process has to be iterative for it to be beneficial.

The knowledge discovered through mining can be used

to obtain feedback from the user which in turn can be

used to improve the mining process.

Data mining tasks fall into two main groups –

descriptive tasks that characterize properties of the

data being analyzed, and predictive tasks which

make predictions about new data points based on

inferences made from existing data. Data mining

algorithms traditionally fall into one of three

categories — classification and prediction, clustering,

and association discovery. Other functionalities like

data characterization and outlier analysis are also

common, as are applications that form key

components of recommender systems. Data

visualization plays an important role in many of these
techniques by guiding the users in the right direction.

Some of these techniques are described briefly below.

Classification. Classification, or supervised

induction, is perhaps the most common of all data

mining activities. The objective of classification is to

analyze the historical data stored in a database and

to automatically generate a model that can predict

future behavior. This induced model consists of

generalizations over the records of a training data set,

which help distinguish predefined classes. The hope is

that this model can then be used to predict the classes

of other unclassified records. When the output variable

of interest is categorical, the models are referred to as

classifiers, while models where the output variable

is numerical are called prediction models.

Tools commonly used for classification include

neural networks, decision trees, and if-then-else rules

that need not have a tree structure. Statistical tools like

logistic regression are also commonly used. Neural

networks involve the development of mathematical

structures with the ability to learn. They tend to be

most effective where the number of variables involved

is large and the relationships between them too

complex and imprecise. It can easily be implemented

in a parallel environment, with each node of the

network doing its calculations on a different

processor. There are disadvantages as well. It is

usually very difficult to provide a good rationale for

the predictions made by a neural network. Also,

training time on neural networks tends to be

considerable. Further, the time needed for training

tends to increase as the volume of data increases, and

in general, such training cannot be done on very large

databases. These and other factors have limited the

acceptability of neural networks for data mining.

Decision trees (DTs) classify data into a finite

number of classes, based on the values of the

variables. DTs are comprised of essentially a

hierarchy of if-then statements and are thus

significantly faster than neural nets. Logistic

regression models are used for binary classification,

with multinomial logistic models being used if there

are more than two output categories.

Clustering. Most clustering algorithms partition the

records of a database into segments where members of

a segment share similar qualities. In fact, clustering is

sometimes referred to as unsupervised classification.

Unlike in classification, however, the clusters are

unknown when the algorithm starts. Consequently,
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before the results of clustering techniques are put

to actual use, it might be necessary for an expert to

interpret and potentially modify the suggested clusters.

Once reasonable clusters have been identified, they

could be used to classify new data. Not surprisingly,

clustering techniques include optimization; we want to

create groups, which have maximum similarity among

members within each group and minimum similarity

among members across the groups. Another common

application is market basket analysis.

Association Discovery. A special case of

association rule mining looks at sequences in the

data. Sequence discovery has many applications, and

is a significant sub-field in itself. It can be to conduct

temporal analysis to identify customer behavior over

time, to identify interesting genetic sequences, for

website re-design, and even for intrusion detection.

Visualization. The insights to be gained from

visualizing the data cannot be over-emphasized. This

holds true for most data analysis techniques, but is of

special relevance to data mining. Given the sheer

volume of data in the databases being considered,

visualization in general is a difficult endeavor. It can

be used, however, in conjunction with data mining to

gain a clearer understanding of many underlying

relationships.

Recommender Systems. Many companies claim that

a substantial portion of their revenues are a result of

effective recommendations. Among the better known

examples are Amazon.com, which was one of the

earlier proponents of recommender systems, and

Netflix, which claims that “roughly two-thirds of the

films rented were recommended to subscribers by the

site” (Flynn 2006). The impact and importance of a

well implemented recommendation system is

exemplified by the fact that Netflix offered a

million-dollar prize for anyone who could improve

their recommendation accuracy by at least 10%.

A variety of techniques exist for making

recommendations, with user and item based

collaborative filtering being the most common.
Other Relevant Aspects

Software. There are many large vendors of data mining

software. Some of the key commercial packages

include SAS Enterprise Miner, IBM SPSS Modeler

(Formerly SPSS Clementine), Oracle, DigiMine,
Microsoft SQL Server, SAP Business Objects. Weka

is a well reputed freeware out of The University of

Waikato in New Zealand. Another open source data

mining software is Rapid Miner.

Privacy. Data mining has been restricted in its

impact due to privacy concerns. In particular, in

privacy concerns when applying data mining to

healthcare data. A contested court case concerns the

mining of physicians’ prescription history to increase

drug sales; some states are trying to limit access to this

information (Field 2010). The fundamental issue

underlying these concerns relate to the intent behind

data collection. For example, while consumers

explicitly agree to the use of data collected for bill

payment for that specific purpose, they may not

know or want to agree to the use of their data for

mining – that would go beyond the original intent

for which the data were acquired.

Another area of data mining privacy concerns

counterterrorist information Claburn (2008). A report

dealing with the balance between privacy and security

by the National Research Council recommends that

the U.S. government rethink its approach to

counterterrorism in light of the privacy risks posed by

data mining.

Although some work has been done to incorporate

privacy concerns explicitly into the mining process,

this is still a developing field. In all likelihood, the

matter of privacy in the context of data mining will

be an issue for some time. A simple solution is

unlikely. These issues will probably be resolved only

through a blend of legislation and additional research

into privacy preserving data mining.
The Role of Operations Research

Data mining algorithms are a heterogeneous group,

loosely tied together by the common goal of

generating better information. Operations research is

concerned with making the best use of available

information. By selecting the appropriate definition

of information, operations research has been playing

a significant role on both sides of the data mining

engine. Formulations for clustering and classification

were introduced in the 1960s and 70s (Ólafsson 2006).

Nonlinear programming solution techniques have

been adapted for faster training in neural network

applications. Scalability, the ability to deal with
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large amounts of data, is a difficult and important issue

in data mining, one in which OR could play

a significant role.

The lack of reliable data (or of the data itself) is

a common problem faced by operations researchers

trying to get a good model to work in the real world.

This problem becomes more acute when data needs to

be deciphered from terabytes of stored information.

Data mining tools make accessing and processing the

data easier and may provide more reliable data to the

OR modeler. There are opportunities for operations

research to be applied at a more fundamental level as

well. Ultimately, as with any analysis tool, the outputs

of dataminingmodels are only as good as the inferences

the analyst can make from them. OR techniques can be

of assistance in making the best use of the outputs

obtained. For example, research has been conducted to

improve recommendations by combining information

from multiple association rules, and to provide the best

set of recommendations to maximize the likelihood of

purchase. Similarly, combining information on prior

purchase histories and revenue optimization models

enables a new blend of practical business decision

making. As noted, this integration of data mining and

optimization has been labeled business analytics. IBM

and other major vendors are developing new business

groups focused on analytics that arise from

combinations of organizations in optimization and data

mining (Turban et al. 2010, pp. 78).
Concluding Remarks

By detecting patterns hitherto unknown, data mining

techniques could suggest new modes to pursue old

objectives. They could even allow the formulation of

better, more sophisticated models in the wake of new

information. In general, the gains to be made from

exploiting newly discovered information are

significantly higher than the marginal improvements

that can be made by improving existing solution

procedures. As the volume and types of data being

collected increase, so will the need for better tools to

analyze the data. Consequently, the future of data

mining seems to be full of possibilities. The

enthusiasm for discovering new information,

however, needs to be tempered with the need to

address privacy concerns, as not doing so could have

long term repercussions on the parties involved.
See
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Introduction

The data warehouse is one of the key information

infrastructure resources for Operations Researchers.

Its difference from the conventional transactional

database, which is used to keep track of individual

events, is shown in Table 1.

The typical transaction database contains details

about individual transactions such as the purchase of

merchandise or individual invoices sent or paid.

http://dx.doi.org/10.1007/978-1-4419-1153-7_42
http://dx.doi.org/10.1007/978-1-4419-1153-7_119
http://dx.doi.org/10.1007/978-1-4419-1153-7_145
http://dx.doi.org/10.1007/978-1-4419-1153-7_145
http://dx.doi.org/10.1007/978-1-4419-1153-7_220
http://dx.doi.org/10.1007/978-1-4419-1153-7_668
http://dx.doi.org/10.1007/978-1-4419-1153-7_682
http://dx.doi.org/10.1007/978-1-4419-1153-7_1112


Data Warehousing, Table 1 Data warehouse vs. transaction database

Data Warehouse Subject oriented Integrated Time-variant Non-volatile

Transaction

Database

Transaction oriented Un-integrated Current status Changes as trans- actions occur

Data Warehousing, Table 2 Data warehouse characteristics

Subject

orientation

Data are organized by how users refer to it, not

by client

Data

Integration

Data are organized around a common identifier,

consistent names, and the same values

throughout. Inconsistencies are removed.

Time Data provide time series and focus on history,

rather than current status.

Non-volatile Data can be changed only by the upload process,

not by the user.

Data Warehousing, Table 3 Characteristics of data in the

warehouse

Summarized In addition to current operational data when

needed, data summaries used for decision

making are also stored.

Larger database Time series implies much more data is

included.

Not normalized Data can be redundant.

Metadata Includes data about how the data is organized

and what it means.

Sources of input

data

Data comes from operational systems
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Transactional databases are concerned with operations

while data warehouses are organized by subject. For

example, operational data in a bank focuses on

transactions involving loans, savings, credit cards,

and trust accounts, while the data warehouse is

organized around customer, vendor, product, and

activity history.

The continually changing transactional data is not

in the form needed for planning, managing, and

analyzing. That is where the data warehouse comes in.

The classic data warehouse is defined as “a subject

oriented, integrated, non-volatile, time variant,

collection of data to support management’s decisions”

(Inmon 1992, p. 29).

The characteristics of the data warehouse that were

summarized in Table 1 are given in more detail in

Table 2.

In addition, the characteristics of the data itself are

different, as shown in Table 3.

Data warehouses are really databases that provide

both aggregated and detailed data for decision making.

They are usually physically separated from both the

organization’s transaction databases and its

operational systems.

Note that data normalization, which is used in

transactional databases, makes sure that an individual

data point appears once and only once. Normalization is

not required conceptually in data warehouses. Some data

warehouse designs, however, do normalize their data.
Flow of Data

The flow of data into and out of the data warehouse

follows these steps:

1. Obtain inputs

2. Clean inputs

3. Store in the warehouse

4. Provide output for analysis

Inputs to the data warehouse are the first step in

what is called the extract, transform, and load

process (ETL). Data sources, often from what are
called legacy systems, push data to the warehouse

rather than the warehouse pulling data from the

sources. The sources send updates to the data

warehouses at pre-specified intervals. This

operation is performed on a fixed schedule where

the interval between updates can range from nearly

real time to once a day or longer, depending on the

source.

Each source may have its own convention for what to

call things and may even use different names and/or

different metrics. For example, different transactional

databases may store gender as (m, f), (1, 0), (x, y),

(male, female) or may have different names for the

same person (e.g., S. Smith, Sam Smith, and

S. E. Smith). To overcome inconsistencies and to make
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sure that users see only one version of the truth, data

cleansing is performed by the warehouse on the input.

Data cleansing involves changing the input data so

that it meets the warehouse’s standards. Specialized

software (usually referred to as ETL) makes the input

data extracted from the sources consistent (e.g., in

format, scaling, and naming) with the way data is

stored in the warehouse. For example, the warehouse

standardizes on one of the formats for gender and

translates all other versions to the standard.

Transformation uses metadata (i.e., data about the

data) to accomplish this. The data are loaded (i.e.,

stored) in the warehouse only after they are cleansed.

The goal is to establish a single value of the truth

within the warehouse.

The data warehouse is used for analytics and routine

reporting. Both create information useful to managers

and professionals. Analytics refers to using models and

performing computations on the data. Routine

reporting refers to creating, documents, tables, and

graphics, usually on a repetitive schedule. Routine

outputs include dashboards (which mostly present

status), scorecards (which show how well goals are

being met), and alerts (which notify managers when

current values are outside prescribed limits).
What is in the Data Warehouse

The data warehouse contains not only the current detail

data that was transferred from the legacy systems, but

also lightly summarized or highly summarized data, as

well as old detail data. Metadata are usually also stored

in the data warehouse.

The current detail data reflects the most recent

happenings and is usually stored on disk. Detail data

is voluminous and is stored at higher levels of

granularity. Granularity refers to the level of detail

provided in the data warehouse. The more detail

provided, the higher the level of granularity. The

highest level is transaction data such as is required

for data mining. For decision support, analysis, and

planning, the level of granularity can be much lower.

Granularity is an important trade-off because the

higher the level of granularity, the more data must be

stored, the greater the level of detail available, and

the more computing needs to be done, even for

problems that do not use that level of granularity. For

example, if a gasoline company records every
motorist’s stop at its stations, it can use the credit

transaction to understand its customers detailed

buying patterns. For total sales by station, that level

of granularity is not needed.

Lightly summarized data is generally used at the

analyst level, whereas highly summarized data (which

is compact and easily accessible) is used by senior

managers. The choice of summarization level

involves tradeoffs because the more highly

summarized the data, the more the data is actually

accessed and used, the quicker it is to retrieve, but the

less detail is available for understanding it. One way to

speed query response time is to pre-calculate

aggregates which are referred to often, such as annual

sales data.

To keep storage requirements within reason, older

data are moved to lower cost storage with much slower

data retrieval. An aging process within the data

warehouse is used to decide when to move data to

mass storage.

Metadata contains two types of information:

1. What the user needs to know to be able to access the

data in the warehouse. It tells the user what is stored

in the warehouse and where to find it.

2. What information systems personnel need to know

about how data is mapped from operational form to

warehouse form, i.e., what transformations

occurred during input and the rules used for

summarization.

Metadata keeps track of changes made converting,

filtering, and summarizing data, as well as changes

made in the warehouse over time, e.g., data added,

data no longer collected, and format changes.
Warehouse Data Retrieval and Analysis

The data stored in the data warehouse are optimized for

speedy retrieval through on-line analytical processing

(OLAP). The retrieval methods depend on the data

format. The three most common are:

• Relational OLAP (ROLAP), which works with

relational databases

• Multidimensional OLAP (MOLAP) for data stored

in multi-dimensional arrays

• Hybrid OLAP (HOLAP) which works with both

relational and multidimensional databases.

OLAP involves answering multidimensional

questions such as the number of units of Product
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A sold in California at a discount to resellers in

November (i.e., product, state, terms of sale,

customer class, time).

To enable relational databases (that store data in

two dimensions) to deal with multidimensionality,

two types of tables are introduced: fact tables that

contain numerical facts, or dimension tables that

contain pointers to the fact tables and show where the

information can be found. A separate dimension table

is provided for each dimension (e.g., market, product,

time). Fact tables tend to be long and thin and the

dimension tables tend to be small, short, and wide.

Because a single fact table is pointed to by several

dimension tables, the visualization of this

arrangement looks like a star and hence is called

a star schema. A variant, used when the number of

dimensions is large and multiple fact tables share some

of the same dimension tables, is called a snowflake

schema.

Multidimensionality allows analysts to slice and

dice the data, i.e., to systematically reduce a body of

data into smaller parts or views that yield more

information. Slice and dice is also used to refer to the

presentation of warehouse information in a variety of

different and useful ways.
Why a Separate Warehouse?

A fundamental tenet of data warehouses is that their

data are separate from operational data. The reasons

for this separation are:

Performance. Requests for data for analysis are not

uniform. At some times, for example, when a proposal

is being written or a new product is being considered,

huge amounts of data are required. At other times, the

demand may be small. The demand peaks create havoc

with conventional on-line transaction systems because

they slow them down considerably, keeping users (and

often customers) waiting.

Data Access. Analysis requires data from multiple

sources. These sources are captured and integrated by

the warehouse.

Data Formats. The data warehouse contains

summary and time-based data as well as transaction

data. Because the data are integrated, the information

in the warehouse is kept in a single, standard format.

Data Quality. The data cleansing process of ETL

creates a single version of the truth.
Other Forms of Data Warehouses

As organizations found new ways of using the

warehouse, they created specialized forms for

specific uses. Among these are:

• Data marts

• Operational data stores

• Real-time warehouses

• Data warehouse appliances

• Data warehouses in the cloud

• Separate data warehouses for casual and power

users

Data marts are a small-scale version of a data

warehouse that include all the characteristics of an

enterprise data warehouse, but are much smaller in

size and cost. Data marts can be independent or

dependent.

• Independent data marts are typically stand-alone

units used by departments or small strategic

business units that often support only specific

subject areas. A data mart is appropriate if it is the

only data warehouse for a small or medium sized

firm. Multiple independent data marts become

a problem rather than a solution if they differ from

department to department. Integrating them so that

there is only a single value of the truth throughout

the organization is difficult, particularly if a

comprehensive data warehouse is later attempted.

• Dependent data marts, such as those used by

analytics groups, contain a subset of the

warehouse data needed by a particular set of users.

To maintain a single value of the truth, care is taken

that the dependent data mart does not change the

data from the warehouse.

An Operational Data Store (ODS) is a data

warehouse for transaction data. It is a form of data

warehouse for operational use. The ODS is used

where some decisions need to be made in near

real-time and require the characteristics of a

warehouse (e.g., clean data). The ODS is subject

oriented and integrated like the warehouse but, unlike

the data warehouse, information in an ODS can be

changed and updated rather than retained forever.

Thus, an ODS contains current and near-current

information, but not much historical data.

When data moves from legacy systems to the ODS,

the data are re-created in the same form as in the

warehouse. Thus, the ODS converts data, selects

among sources, may contain simple summaries of the



D 366 Data Warehousing
current situation for management use, alters the key

structures and the physical structure of the data, as well

as its internal representation. Loading data into a data

warehouse from an ODS is easier than loading from

individual legacy systems, because most of the work

on the data has been performed. It contains much less

data than a data warehouse but also includes some that

is not stored in the data warehouse. The ODS is usually

loaded more frequently by data sources than the

warehouse to keep it much more current. For

example, the Walmart ODS receives information

every 15 minutes.

The real-time data warehouse is used to support

ongoing analysis and actions. A form of operational

data store, real time data warehouses are closely tied to

operational systems. They hold detailed, current data

and try to use even shorter times between successive

loadings than operational data stores. With these data

warehouses, enterprises can respond to customer

interactions and changing conditions in real time. For

example, credit card companies use it to detect and

stop fraud as it happens, a transportation company uses

it to reroute its vehicles, and online retailers use it to

communicate special offers based on a customer’s

Web surfing or mobile phone behavior. The real-time

data warehouse is an integral part of both short-term

(tactical) and long-term (strategic) decisions.

The real-time data warehouse changes the decision

support paradigm, which has long been associated with

strategic decision making. It supplies support for

operational decision making such as customer-facing

(direct interactions or communications with customers)

and supply chain applications.

A data warehouse appliance is similar in concept to

an all-in-one PC, i.e., it integrates the physical

components of a data warehouse (servers, storage,

operating system) with a database management

system and software optimized for the data

warehouse. These low-cost appliances are designed

to provide terabyte to petabyte capacity warehouses.

Cloud computing refers to using the networked, on-

demand, shared resources available through the

Internet for virtual computing. Typically, rather than

each firm owning its own warehouse, a third-party

vendor provides a centralized service to multiple

clients based on hardware and software usage.

Although, as of 2010 - no data warehouse in the

cloud exists, some inferences can be drawn. Agosta

(2008) argues that in cloud computing the data in
a warehouse will have to be location independent and

transparent rather than being a centralized, non-

volatile repository. Furthermore, the focus will be on

distributed data marts and analytics rather than large

data stores because of the problems and costs in

moving the huge amounts of data in a warehouse to

the cloud.

Data warehouses attract two types of users

(Eckerson 2010):

• Casual users. These users are executives and other

knowledge workers who consume information but

do not usually create it. Their use is mostly

static. They check dashboards, monitor regular

reports, respond to alerts, and only occasionally

dig deeper into the warehouse to create ad hoc

reports.

• Power users. These users explore the data and build

models. Conventional reports are insufficient for

their needs. They model data in unique ways and

supplement warehouse contents with data obtained

from other sources.

In most organizations, the conventional data

warehouse is used by both types of users despite their

different needs. Some organizations, however, are

moving to separate warehouses, one for each type of

user. The conventional data warehouse feeds its data to

the one for the power users, so that there is still only

one version of the truth. In these organizations,

conventional data warehouses continue to serve

casual users whose requirements are mostly

static. The idea is that performance gains are

achieved by creating a separate warehouse

customized to power users. Over the years, the

special warehouses for power users have operated

under a variety of names such as exploration data

warehouse (for number crunching) (Inmon 1998),

prototype data warehouse (for new approaches to

warehouse design), and data warehouse sandbox.

Eckerson (2010) describes to three types of sandbox

architectures for analytics: physical, virtual, and

desktop.

The physical sandbox is built around a data

warehouse appliance or a specialized database with

rapid access (e.g., columnar or massively parallel

processing) that contains a copy of the data in

the warehouse. Complex queries from the data

warehouse are offloaded and used, together with data

not stored in the warehouse. The result is that runaway

queries (so large that they overload the warehouse) do
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not slow the warehouse and analysts can safely and

easily explore large amounts of data.

The virtual sandbox is created inside the

warehouse by using workload management utilities.

Again, data can be added to that available in the

warehouse. The advantage is that warehouse data

does not need to be replicated. The disadvantage is

that care must be taken to keep processing for casual

and power users separate.

In desktop sandboxes, analysts are provided with

powerful in-memory desktop databases that can be

downloaded from the warehouse. Analysts gain local

control and fast performance but much less data

scalability than in physical or virtual sandboxes.
Applications

Data warehousing is central to data mining and

business intelligence. Other applications include:

• Customer churn prediction

• Decision support

• Financial forecasting

• Insurance fraud analysis

• Logistics and inventory management

• Trend analysis
See

▶Business Intelligence

▶Data Mining

▶Decision Support Systems (DSS)

▶ Information Systems and Database Design in

OR/MS

▶Visualization
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Introduction

The term decision analysis identifies a collection of

technologies for assisting individuals and

organizations in the performance of difficult

inferences and decisions. Probabilistic inference is

a natural element of any choice made in the face of

uncertainty. No single discipline can lay claim to all

advancements made in support of these technologies.

Operations research, probability theory, statistics,

economics, psychology, artificial intelligence, and

other disciplines have contributed valuable ideas now

being exploited in various ways by individuals in many

governmental, industrial, and military organizations.

As the term decision analysis suggests, complex

inference and choice tasks are decomposed into

smaller and presumably more manageable elements,

some of which are probabilistic and others preferential

or value-related. The basic strategy employed in
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decision analysis is divide and conquer. The

presumption is that individuals or groups find it more

difficult to make holistic or global judgments required

in undecomposed inferences and decisions than to

make specific judgments about identified elements of

these tasks. In many cases we may easily suppose that

decision makers are quite unaware of all of the

ingredients that can be identified in the choices they

face. Indeed, one reason why a choice may be

perceived as difficult is that the person or group

charged with making this choice may be quite

uncertain about the kind and number of judgments

this choice entails. One major task in decision

analysis is to identify what are believed to be the

necessary ingredients of particular decision tasks.

The label decision analysis does not in fact

provide a complete description of the activities of

persons who employ various methods for assisting

others in the performance of inference and choice

tasks. This term suggests that the only thing

accomplished is the decomposition of an inference or

a choice into smaller elements requiring specific

judgments or information. It is, of course, necessary to

have some process by which these elements can be

reassembled or aggregated so that a conclusion or

a choice can be made. In other words, we require

some method of synthesis of the decomposed elements

of inference and choice. A more precise term for

describing the emerging technologies for assistance in

inference and choice would be the term decision

analysis and synthesis. This fact has been noted in an

account of progress in the field of decision analysis

(Watson and Buede 1987). As it happens, the same

formal methods that suggest how to decompose an

inference or choice into more specific elements can

also suggest how to reassemble these elements in

drawing a conclusion or selecting an action.
Processes and Stages of Decision Analysis

Human inference and choice are very rich

intellectual activities that resist easy categorization.

Human inferences made in natural settings

(as opposed to contrived classroom examples)

involve various mixtures of the three forms of

reasoning that have been identified: (1) deduction

(showing that some conclusion is necessary), (2)

induction (showing that some conclusion is
probable), and (3) abduction (showing that something

is possibly or plausibly true). There are many varieties

of choice situations that can be discerned. Some

involve the selection of an action or option such as

where to locate a nuclear power plant or a toxic waste

disposal site. Quite often one choice immediately

entails the need for another and so we must consider

entire sequences of decisions. It is frequently difficult

to specify when a decision task actually terminates.

Other decisions involve determining how limited

resources may best be allocated among various

demands for these resources. Some human choice

situations involve episodes of bargaining or

negotiation in which there are individuals or groups

in some competitive or adversarial posture. Given the

richness of inference and choice, analytic and synthetic

methods differ from one situation to another as

observed in several surveys of the field of decision

analysis (von Winterfeldt and Edwards 1986; Watson

and Buede 1987; Clemen 1991; Shanteau et al. 1999).

Some general decision analytic processes can,

however, be identified.

Most decision analyses begin with careful

attempts to define and structure an inference and/or

decision problem. This will typically involve

consideration of the nature of the decision problem

and the individual or group objectives to be served by

the required decision(s). A thorough assessment of

objectives is required since it is not possible to assist

a person or group in making a wise choice in the absence

of information about what objectives are to be served. It

has been argued that the two central problems in decision

analysis concern uncertainty and multiple conflicting

objectives (von Winterfeldt and Edwards 1986,

pp. 4–6). A major complication arises when, as usually

observed, a person or a group will assert objectives that

are in conflict. Decisions in many situations involve

multiple stakeholders and it is natural to expect that

their stated objectives will often be in conflict.

Conflicting objectives signal the need for various

tradeoffs that can be identified. Problem structuring

also involves the generation of options, actions, or

possible choices. Assuming that there is some element

of uncertainty, it is also necessary to generate hypotheses

representing relevant alternative states of the world that

act to produce possibly different consequences of each

option being considered. The result is that when an

action is selected we are not certain about which

consequence or outcome will occur.
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Another important structuring task involves the

identification of decision consequences and their

attributes. The attributes of a consequence are

measurable characteristics of a consequence that are

related to a decision maker’s asserted objectives.

Identified attributes of a consequence allow us to

express how well a consequence measures up to the

objectives asserted in some decision task. Stated in

other words, attributes form value dimensions in

terms of which the relative preferability of

consequences can be assessed. There are various

procedures for generating attributes of consequences

from stated objectives (e.g., Keeney and Raiffa 1976,

pp. 31–65). Particularly challenging are situations in

which we have multiattribute or vector consequences.

Any conflict involving objectives is reflected in

conflicts among attributes and signals the need for

examining possible tradeoffs. Suppose, for some

action Ai and hypothesis Hj, vector consequence Cvij
has attributes {A1, A2,. . ., Ar,. . ., As,. . ., At}. The

decision maker may have to judge how much of Ar to

give up in order to get more of As; various procedures

facilitate such judgments. Additional structuring is

necessary regarding the inferential element of choice

under uncertainty. Given some exhaustive set of

mutually exclusive hypotheses or action-relevant

states of the world, the decision maker will ordinarily

use any evidence that can be discovered that is relevant

in determining how probable are each of these

hypotheses at the time a choice is required. No

evidence comes with already-established relevance,

credibility, and inferential force credentials, these

credentials have to be established by argument. The

structuring of complex probabilistic arguments is

a task that has received considerable attention (e.g.,

see Pearl 1988; Neapolitan 1990; Schum 1990, 1994).

At the structural stage just discussed, the process of

decomposing a decision is initiated. On some occasions

such decomposition proceeds according to formal

theories of probability and value taken to be

normative. It may even happen that the decision of

interest can be represented in terms of some existing

mathematical programming or other formal technique

common in operations research. In some cases the

construction of a model for a decision problem

proceeds in an iterative fashion until the decision

maker is satisfied that all ingredients necessary for

a decision have been identified. When no new problem

ingredients can be identified the model that results is
said to be a requisite model (Phillips 1982, 1984).

During the process of decomposing the probability and

value dimensions of a decision problem it may easily

happen that the number of identified elements quickly

outstrips a decision maker’s time and inclination to

provide judgments or other information regarding each

of these elements. The question is: how far should the

process of divide and conquer be carried out? In

situations in which there is not unlimited time to

identify all conceivable elements of a decision

problem, simpler or approximate decompositions at

coarser levels of granularity have to be adopted.

In most decision analyses there is a need for a variety

of subjective judgments on the part of persons involved

in the decision whose knowledge and experience

entitles them to make such judgments. Some

judgments concern probabilities and some concern the

value of consequences in terms of identified attributes.

Other judgments may involve assessment of the relative

importance of consequence attributes. The study of

methods for obtaining dependable quantitative

judgments from people represents one of the most

important contributions of psychology to decision

analysis (for a survey of these judgmental

contributions, see von Winterfeldt and Edwards 1986).

After a decision has been structured and subjective

ingredients elicited, the synthetic process in decision

analysis is then exercised in order to identify the best

conclusion and/or choice. In many cases such synthesis

is accomplished by an algorithmic process taken as

appropriate to the situation at hand. Modern computer

facilities allow decision makers to use these algorithms

to test the consequences of various possible patterns of

their subjective beliefs by means of sensitivity analyses.

The means for defending the wisdom of conclusions or

choices made by such algorithmic methods re-quires

consideration of the formal tools used for decision

analysis and synthesis.
Theories of Analysis and Synthesis

Two major pillars upon which most of modern

decision analysis rests are theories of probabilistic

reasoning and theories of value or preference. A very

informative summary of the roots of decision theory

has been provided by Fishburn (1999). It is safe to say

that the conventional view of probability, in which

Bayes’ rule appears as a canon for coherent or
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rational probabilistic inference, dominates current

decision analysis. For some body of evidence Ev,

Bayes’ rule is employed in determining a distribution

of posterior probabilities P(Hk|Ev), for each

hypothesis Hk in an exhaustive collection of mutually

exclusive decision-relevant hypotheses. The

ingredients Bayes’ rule requires, prior probabilities

(or prior odds) and likelihoods (or likelihood ratios),

are in most cases assumed to be assessed subjectively

by knowledgeable persons. In some situations,

however, appropriate relative frequencies may be

available. The subjectivist view of probability,

stemming from the work of Ramsey and de Finetti,

has had a very sympathetic hearing in decision analysis

(see Mellor 1990, and de Finetti 1972, for collections

of the works of Ramsey and de Finetti).

Theories of coherent or rational expression of

values or preferences stem from the work of von

Neumann and Morgenstern (1947). In this work

appears the first attempt to put the task of stating

preferences on an axiomatic footing. Adherence to

the von Neumann and Morgenstern axioms places

judgments of value on a cardinal or equal-interval

scale and are often then called judgments of utility.

These axioms also suggest methods for eliciting utility

judgments and they imply that a coherent synthesis of

utilities and probabilities in reaching a decision

consists of applying the principle of expected utility

maximization. This idea was extended in the later work

of Savage (1954), who adopted the view that the

requisite probabilities are subjective in nature. The

canon for rational choice emerging from the work of

Savage is that the decision maker should choose from

among alternative actions by determining which one

has the highest subjective expected utility (SEU).

Required aggregation of probabilities is assumed to

be performed according to Bayes’ rule. In some

works, this view of action-selection is called

Bayesian decision theory (Winkler 1972; Smith 1988).

Early works by Edwards (1954, 1961) stimulated

interest among psychologists in developing methods

for probability and utility elicitation; these works also

led to many behavioral assessments of the adequacy of

SEU as a description of actual human choice

mechanisms. In a later work, Edwards (1962)

proposed the first system for providing computer

assistance in the performance of complex

probabilistic inference tasks. Interest in the very

difficult problems associated with assessing the utility
of multiattribute consequences stems from the work of

Raiffa (1968). But credit for announcing the existence

of the applied discipline now called decision analysis

belongs to Howard (1966, 1968).
Decision Analytic Strategies

There are now many individuals and organizations

employed in the business of decision analysis.

The inference and decision problems they encounter

are many and varied. A strategy successful in one

context may not be so successful in another. In most

decision-analytic encounters, an analyst plays the role

of a facilitator, also termed high priests (vonWinterfeldt

and Edwards 1986, p. 573). The essential task for the

facilitator is to draw out the experience and wisdom of

decision makers while guiding the analytic process

toward some form of synthesis. In spite of the

diversity of decision contexts and decision analysts,

Watson and Buede (1987, pp. 123–162) were able to

identify the following five general decision analytic

strategies in current use. They make no claim that

these strategies are mutually exclusive.

1. Modeling. In some instances decision analysts will

focus upon efforts to construct a conceptual model of

the process underlying the decision problem at hand.

In such a strategy, the decision maker(s) being served

not only provide the probability and value ingredients

their decision requires but are also asked to

participate in constructing a model of the context in

which this decision is embedded. In the process of

constructing these often-complex models, important

value and uncertainty variables are identified.

2. Introspection. In some decision analytic encounters,

a role played by the facilitator is one of assisting

decision makers in careful introspective efforts to

determine relevant preference and probability

assessments necessary for a synthesis in terms of

subjective expected utility maximization. Such

a process places great emphasis upon the

reasonableness and consistency of the often large

number of value and probability ingredients of

action selection.

3. Rating. In some situations, especially those involving

multiple stakeholders and multiattribute

consequences, any full-scale task decomposition

would be paralytic or, in any case, would not

provide the timely decisions so often required.
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In order to facilitate decision making under

such circumstances, models involving simpler

probability and value assessments are often

introduced by the analyst. In some forms of decision

analysis, many of the difficult multiattribute utility

assessments are made simpler through the use of

various rating techniques and by the assumption of

independence of the attributes involved.

4. Conferencing. In a decision conference the role of

the decision analyst as facilitator (or high priest)

assumes special importance. In such encounters,

often involving a group of persons participating to

various degrees in a decision, the analyst promotes

a structured dialogue and debate among participants

in the generation of decision ingredients such as

options, hypotheses and their probability, and

consequences and their relative value. The analyst

further assists in the process of synthesis of these

ingredients in the choice of an action. The subject

matter of a decision conference can involve action

selection, resource allocation, or negotiation.

5. Developing. In some instances, the role of the

decision analyst is to assist in the development of

strategies for recurrent choices or resource

allocations. These strategies will usually involve

computer-based decision support systems or some

other computer-assisted facility whose

development is justified by the recurrent nature of

the choices. The study and development of

decision support systems has itself achieved the

status of a discipline (Sage 1991). An active

and exciting developmental effort concerns

computer-implemented influence diagrams

stemming from the work of Howard and Matheson

(1981). Influence diagram systems can be used to

structure and assist in the performance of inference

and/or decision problems and have built-in

algorithms necessary for the synthesis of

probability and value ingredients (e.g., Shachter

1986; Shachter and Heckerman 1987; Breese and

Heckerman 1999). Such systems are equally

suitable for recurrent and nonrecurrent inference

and choice tasks.
Controversies

As an applied discipline, decision analysis inherits

any controversies associated with theories upon
which it is based. There is now a substantial

literature challenging the view that the canon for

probabilistic inference is Bayes’ rule (e.g., Cohen

1977, 1989; Shafer 1976). Regarding preference

axioms, Shafer (1986) has argued that no normative

theories of preference have in fact been established

and that existing theories rest upon an incomplete set

of assumptions about basic human judgmental

capabilities. Others have argued that the probabilistic

and value-related ingredients required in Bayesian

decision theory often reflect a degree of precision

that cannot be taken seriously given the imprecise or

fuzzy nature of the evidence and other information

upon which such judgments are based (Watson et al.

1979). Philosophers have recently been critical of

contemporary decision analysis. Agreeing with

Cohen and Shafer, Tocher (1977) argued against

the presumed normative status of Bayes’ rule.

Rescher (1988) argued that decision analysis can

easily show people how to decide in ways that are

entirely consistent with objectives that turn out not to

be in their best interests. Keeney’s work (1992) took

some of the sting out of this criticism. Others (e.g.,

Dreyfus 1984) question whether or not decomposed

inference and choice is always to be preferred

over holistic inference and choice; this same

concern is reflected in other contexts such as law

(Twining 1990, pp. 238–242). So, the probabilistic

and value-related bases of modern decision

analysis involve matters about which there will be

continuing dialogue and, perhaps, no final

resolution. This acknowledged, decision makers in

many contexts continue to employ the emerging

technologies of decision analysis and find, in the

process, that very complex inferences and choices

can be made tractable and far less intimidating.
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Decision Analysis in Practice

James E. Matheson

SmartOrg, Inc., Menlo Park, CA, USA
Introduction

Decision analysis (DA) is all about practice, as the title

of Ronald Howard’s defining paper (Howard 1966;

presented in 1965) was “Decision Analysis: Applied

Decision Theory.” He went on to elaborate: “Decision

analysis is a logical procedure for the balancing of the

factors that influence a decision. The procedure
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incorporates uncertainties, values, and preferences in

a basic structure that models a decision. Typically it

includes technical, marketing, competitive, and

environmental factors. The essence of the procedure

is the construction of a structural model of the decision

in a form suitable for computation and manipulation;

the realization of this model is often a set of computer

programs.”

In about 1968, a program of DA was begun at

Stanford Research Institute. This group rapidly grew

into a major department called the Decision Analysis

Group dedicated to helping decision makers in

organizations, both industry and government, reach

good decisions, while also consolidating these

experiences and doing research on DA methodology

(Howard and Matheson 1983). This group was the

most intensive DA consulting group through the early

1980s. One of the powerful new methodological tools

invented by this group was the Influence Diagram (see

entry). DA practice has always developed new tools and

approaches based on the challenges of real problems.

At the end of the next decade, with this experience

behind him, Professor Howard goes on to say (Howard

1980), “Decision Analysis, as I have described it, is, as

a formalism, a logical procedure for decision making.

When Decision Analysis is practiced as an applied art

the formalism interacts with the intuitive and creative

facilities to provide understanding of the nature of

the decision problem and therefore guidance in

selecting a desirable course of action. I know of no

other formal-artistic approach that has been so

effective in guiding decision-makers.”

In this sense there is no real theory of DA. Its

philosophy is grounded in decision theory and

systems engineering, with more recent contributions

from psychology, but in the end it is an applied art.

This Decision Engineering approach is discussed in

depth in an INFORMS tutorial (Matheson 2005).

This article describes some of the keys to good

application and the kinds of positive changes DA

promotes in the organizations that adopt it.
A Decision: The Defining Element

A decision is defined as an irrevocable allocation of

resources. Exactly what is meant by irrevocable

depends on the context. If a single individual—the

decision maker (DM)—makes and executes
a decision, then the decision and the irrevocable

action are one – the individual might decide to take

one path versus another along a road. Traveling down

the new path is an irrevocable decision in the sense that

changing the decision would require going back to the

junction and taking the second path, but at a later time.

However, when an organizational DM takes a big

strategic decision, the DM asks many other people

to take later irrevocable actions, which might not

even be fully specified at that time of the original

decision (for example, asking someone to find an

appropriate company and acquire it). In these

settings, a decision is often defined as a commitment

to allocate resources, which opens new questions of

possible execution failure and nested or sequential

decisions. In any case, the decisions at hand provide

the focus for DA, which distinguishes DA from all

kinds of studies and statistical analyses that are not

directly serving decisions. This means that, once the

decision arena has been defined, the DM can guide all

subsequent activity, such as modeling and information

gathering, on its ability to inform better decisions.

Issues that might make a great deal of difference to

the outcome, but do not have the potential to change

the decision taken, are unimportant, while issues of

less impact but that do inform the decision are of

greater importance. The DM uses this sort of decision

sensitivity to intuitively and analytically guide the

whole process, and to do what is most important to

making a decision in the limited time and resources

available to make it.
Framing: The Perceived Situation

Perhaps the biggest decision failure is a careful

analysis of the wrong problem. Often a decision

arises in an organization as just another tactical

decision, when actually new strategies are called

for – but strategy is not the prerogative or in the

comfort zone of those considering the decisions.

Thus, old products and whole companies are

displaced by competitors who perceived the situation

differently, and who were able to act in new ways.

Also, executives spend most of their time and energy

operating efficiently and find it difficult to “waste

time” on strategy or to get into a strategic mind set.

The beginning of a DA should review the decision

frame, possibly bringing in outside perspectives
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and new team members, often expanding the frame,

and then reviewing that frame at key points during the

process. When a DA process gets stuck, reframing

maybe in order (Matheson 1990).
Outcomes: What are the Results

In the face of uncertainty, the decision maker (DM)

is forced to distinguish between decisions – what

can be done, outcomes – what happens, and

preferences – what is wanted. The DM wants good

outcomes, but can only control the quality of the

decisions, not the outcomes. For example, the DM

may invest $10,000 in a venture having only a 10%

chance of returning $10,000,000, and considers that

a good investment. Quite likely, however, the bad

outcome may occur. Clearly, the quality of this

decision cannot be judged by its outcome; a bad

outcome should not dissuade the DM from looking

for similar good investments later. Given this

distinction between decision quality and outcome

quality, there is a need for a definition of a good

decision – DA itself is that definition!

In many organizational cultures, champions are

asked to claim that investment proposals are sure

things and guarantee that they will succeed. On

course, many of these investments fail, but

inconsistency does not stop this irrational culture

from persisting. However, organizations that can

overcome a culture of hiding from uncertainty and

instead actually search for the hidden uncertainties in

their investments often outperform those that do not.

Good DA vets these uncertainties, assesses

their probabilities and impacts, and determines what

to do about them, such as information gathering

and hedging, or even creating new alternatives,

before proceeding to recommend the primary

decision – a principle called embracing uncertainty

(Matheson and Matheson 1998).

There are well established procedures for assessing

uncertainties and avoiding well-known biases, such as

the work on probability assessment processes by

Spetzler and Staël von Holstein (1975). Most

practical decision analyses, however, do not require

such careful assessment; three points, say 10-50-90

percentiles, are so much better than one single and

often biased point. It is essential that those three

points not be biased. Most of the de-biasing
techniques of Spetzler and Staël von Holstein (1975)

are useful preparation before assessing even

a three-point distribution. Perhaps the most useful

technique is backcasting, as it simultaneously

eliminates all sorts of biases.
Preferences: What is Wanted

Because only one thing can be maximized, a good or

optimal decision cannot be defined without being clear

about value trade-offs that create a single measure to

maximize. In most commercial decision analyses, it is

best to reduce all values to monetary ones. In fact,

seeking a monetary value scale is always a good

practice, because money can often be spent to create

better alternatives or seek better information, and,

without a monetary scale, the DM cannot evaluate

those efforts. There is a story about a Swedish

executive who had promised the residents of a town

that he would never close their factory, but, under hard

times, he was facing heavy losses by keeping it open.

He was asked by a decision analyst if he would close it

if he were losing a million dollars a year, to which he

quickly answered, “of course not – this is Sweden

where we owe that much to the community.” He was

then asked if he would close the plant if it were losing

a hundred million dollars a year, to which he replied,

“it would be our duty to close it as the country and our

company cannot sustain such heavy losses.” After

haggling over the price, he realized that the high

monetary value he had just made explicit allowed

him to visualize new alternatives, where he would

close the plant, pay some additional closing costs to

the community and guarantee workers jobs in other

factories. He ultimately took these actions and saved

his company from financial ruin. Being forced to make

a monetary value tradeoff enabled him to invent to

better alternatives. He was not valuing things like

higher employment on an absolute scale. He was only

assessing a tradeoff value in the context of his specific

decision – this value is personal and subjective, just

like probability, in this case not his own, but one he

expresses as a fiduciary of the company he represents.

Converting values to monetary equivalents is an

excellent practice, because it establishes how

much money could be afforded to build new

alternatives – money is a common denominator to

translate disparate values.
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What about value over time? In a simple case,

a highly rated company regularly adjusts or rebalances

its financial capital at a weighted cost of capital of R%. If

the company has opportunities (or preferences) that

imply a value other than R%, the company should

rearrange its investments using its banking relationships

until its needs are exactly in line with the financial rate of

R%. At that point, the company’s own time preferences

are exactly the same as the financial rate. Because of this

harmonization process, this cost of capital becomes the

company’s own time value of money. Another way to

state this observation is that the company should invest to

maximize net present value (NPV) at its cost of capital,

and then spread that NPV over time optimally using

financial transactions at the same rate, separating

investment funding and usage decisions.

How should preferences under uncertainty be

treated? Assuming that each uncertainty has been

characterized satisfactorily in the form of probability

distributions over NPV, which investment should be

picked? If the company is large enough to undertake

many investments of this size during each year, then

maximizing the expected value is a reasonable way to

maximize long-term economic-value creation.

However, if the range of the uncertainties could

impact the financial structure or soundness of the

company, it would be wise for it to be risk averse.

Some financial pundits argue that companies traded

on the stock market should not be risk averse as the

shareholders can diversify. There are many arguments

against this position, including the actual behavior of

most companies, the cost of bankruptcy or other

financial distress, the inability of the shareholder to

gain information and change positions quickly (lack

of liquidity), but, perhaps most significantly, are the

availability of risk hedging options to the company that
are not available to shareholders. The risk attitude of

the company is assessed by asking series of questions

about which of several hypothetical investments they

would undertake or reject. This attitude is almost

always captured as the risk tolerance, say expressed

in millions of dollars, which is the parameter of an

exponential utility function:

UðxÞ ¼ �aeð�x=rÞ where a> 0 and r¼ risk tolerance

One test question to determine the risk tolerance is

considering a hypothetical but typical investment, in

terms of complexity and time duration, where there is

a 0.5 probability of winning the risk tolerance and a 0.5

probability of losing one-half that amount. The risk

tolerance is then adjusted until the DM is indifferent

between taking and rejecting this investment.

There are good arguments that risk tolerance should

be set for the total organization and not for a division or

a project. One advantage of being a division of a large

organization is to be able to use the corporate risk

tolerance, which a similar stand-alone organization

could not do. Figure 1 compares the measured risk

tolerances of three large corporations, which were all

engaged in a joint venture. This chart can be used to get

an initial approximation for other public companies,

commonly by estimating risk tolerance as 1/6 of

shareholders’ equity or 1/5 of the market value of

outstanding shares of stock.

Investments with a range of outcomes on the order

of the risk tolerance need explicit treatment using

utility theory. Investments with a range of outcomes

less than of 10% of the risk tolerance should usually be

evaluated using expected values, and investments with

a range of outcomes larger than the risk tolerance

should be avoided, partnered, or treated by a very
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experienced decision analyst. The author has seen one

such case in a lifetime of professional practice. If the

exponential utility will not suffice, the analysis is in

very deep water indeed! In dealing with uncertainties

large enough to require risk aversion, there is a need to

beware of dependencies among uncertainties in other

investments or the background cash flow of the

organization. Hedging and diversification impacts are

likely to overshadow other considerations.
Alternatives: What Can be Done

In simple decisions problems, such as classroom

examples, a limited number of well-specified

alternatives are given. In most real situations,

however, new alternatives can and should be created

to uncover more valuable ones. Part of the natural

reluctance of organizations to generate and consider

new alternatives is that the decision problems arise out

of situations where natural alternatives are evident. In

addition, those product or investment champions and

others who have made an emotional investment by

picking winners prematurely, see alternative

generation as a waste of time or even a direct threat.

There are many ways to create new alternatives, but

a simple one is to use the project team itself in a session

with a ground rule that at least five new significantly

different alternatives must be developed. There are

many tools to stimulate creativity, most requiring that

a wealth of information and new possibilities be put on

the table before evaluating them; such as examples of

what others have been done, what competitors are
saying, what consumers are asking for. After the

analysis enters the financial modeling stage;

sensitivity analysis should also be used to drive the

discussion of alternatives that minimize risk (hedge or

diversify) or take advantage of uncertainties.

For situations with complex multidimensional

alternatives, decision hierarchies and strategy tables

are extremely useful. The decision hierarchy for

a plant modernization decision (Fig. 2) identifies the

strategic decisions under consideration, the policy

decisions that are not currently being questioned, and

the tactical or implementation decisions which will be

made or optimized after the strategy is selected. The

list of identified strategic decisions are further

specified in the columns of the strategy table,

illustrated in Fig. 3. The columns list specific

mutually-exclusive alternatives for each strategy

variable. Thus, a selection of one item from each

column constitutes a well-specified strategic

alternative. The special column at the left gives

names and symbols for each alternative, which is

read by following its symbol across the columns.

Further descriptions of these tools can be found in

Matheson and Matheson (1998) and McNamee and

Celona (2007).
Decision Modeling: Analyzing as Simply as
Possible

The process of DA uses the decision to be made as

a guide to cut through many complex modeling issues.

Often details, such as numerous market segments or
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multiple product generations, can be treated with

multipliers, followed by sensitivity analysis to the

value of those multipliers, to determine if something

important was missed. Verisimilitude is unimportant,

only the impact on gaining clarity of action. Good

modeling for decision making is an important

professional task, see McNamee and Celona, (2007).

A special kind of sensitivity analysis called

a tornado chart (Fig. 4) is a key tool for checking the

model and gaining new insights. Each uncertain

variable is varied one at a time over the range of the

low (10 percentile) and high (90 percentile)

assessments, to determine the range of (deterministic)

NPV resulting from different runs of the model,

usually while holding the other values at their

medians. Notice that output ranges of each variable

correspond to the same range of uncertainty on their

inputs, so if the results are arranged in a decreasing

order of the output ranges, they are also in order of the

impact of each uncertainty on value, as in Fig. 4. Since

for independent variables, the uncertainty ranges

should add as the square root of the sum of the

squares, only the first several results are big

contributors, which often produces insight into which

factors are driving risk, as well as ideas for how to
reduce that risk. More sophisticated tornado diagrams

overlay results for multiple alternatives to give insight

into which uncertainties could actually cause

a decision switch, as these would be the most critical

to learn more about.
Commitment to Action: Getting It Done

The author has decided to diet many times, without

actually following through. And that is only dealing

with himself! It is much more difficult to align an

organization to carry out the chosen action. A good

analysis sets the stage for implementation success at

the beginning by the choice of individuals involved in

reaching the decision. It is natural not to put the

potential naysayers on the decision making or the

decision analyzing team, but if they are not chosen,

they will often veto the result, overtly if they have the

power and covertly if not. It is best to put any skeptical

person with veto power on the team, even if only in

a review board role, and require that they raise their

issues during the analysis process rather than objecting

later – speak up or forever hold your peace. In this way

they have the opportunity to inform the team of their
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important issues, which can be taken into account

during the analysis, and they acquire a deeper

understanding of the decision situation by

participating, giving them a much better chance of
ultimately buying in to the conclusions. It gives them

needed psychological time and space to reconsider and

revise long held convictions. Also, put key

implementers on the team so they understand and buy



A high-quality decision produces personal or organizational
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into what they are asked to implement. The Dialog

Decision Process (Fig. 5) was devised to organize all

of these actors into a highly workable project structure.
The Decision Quality Chain

The key elements described above are often arranged

in a decision quality chain (Fig. 6), originally proposed

by Carl Spetzler (Keelin and Spetzler 1992). The

metaphor of a chain is used to express that the chain

is only as good as its weakest link – that is the most

important one; the weakest link changes as the DA

proceeds. Decision analysts sometimes use a spider

diagram to score progress at each team review

(Keelin et al. 2009).
Embedding Good Decision-Making Skills
into Organizations

The book, The Smart Organization, (Matheson and

Matheson 1998), describes “Nine Principles of
a Smart Organization” that characterizes a set of habits

and a mindset conducive to good decisions, Fig. 7. This

book also presents an organizational IQ test to measure

compliance with these norms. These tests have been

administered to thousands of organizations. The payoff

for being a smart organization was striking –

organizations in the top quartile of IQ were over five

times more likely to be in the top quartile of financial

performance, as reported in Matheson and Matheson

(2001). Organizations with high scores have patterns

of behavior that enable them to spontaneously see the

need for decisions, request and frame appropriate

decision analyses, and conduct and participate in

decision analyses more efficiently and effectively. A

few organizations are leading the way by integrating

DA into their organizational DNA. Among them,

most notably, has been Chevron, which won the

annual Decision Analysis Society’s Practice Award

(2010) for “The implementation of Decision Analysis

Practice at Chevron: 20 years of building a DA culture.”

Matheson and Matheson (2007) discuss how DA

principles can become the basis of the Decision

Organization.
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Concluding Remarks

DA has evolved from specialized high-level

consulting to changing culture and embedding

processes into organizational routines. The various

roles that a DA professional might be called upon to

play include:

1. Decision Analyst - responsible for processing

numbers,

2. Decision Facilitator - responsible for meetings,

3. Decision Consultant - responsible for attaining

commitment,

4. Decision Engineer - responsible for process,

systems and organizational design,

5. Decision Change Agent - responsible for personal,

organizational, and cultural change necessary for

routine, high quality decision making.
See

▶Decision Analysis

▶Decision Making and Decision Analysis

▶Decision Trees

▶ Influence Diagrams
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D
Decision Maker (DM)

An individual (or group) who is dissatisfied with some

existing situation orwith the prospect of a future situation

and who possesses the desire and authority to initiate

actions designed to alter the situation. In the literature,

the letters DM are often used to denote decision maker.
See

▶Decision Analysis

▶Decision Analysis in Practice

▶Decision Making and Decision Analysis
Decision Making and Decision Analysis

Dennis M. Buede

Innovative Decisions, Inc., Vienna, VA, USA
Introduction

Decision making is a process undertaken by an

individual or organization. The intent of this process

is to improve the future position of the individual or

organization, relative to current projections of that

future position, in terms of one or more criteria. Most

scholars of decision making define this process as one

that culminates in an irrevocable allocation of

resources to affect some chosen change or the

continuance of the status quo. The most commonly

allocated resource is money, but other scarce

resources are goods and services, and the time and

energy of talented people.

Once the concept of making a decision is accepted

as a human action, an immediate question is “what is

the difference between a good and a bad decision?”

The common tendency is to attribute good decisions to
situations in which good outcomes were obtained. This

approach, however, implies that good decisions cannot

be recognized when they are made, but only after the

outcomes are observed (which may be seconds or

decades later). This common tendency also implies

that good decisions have nothing to do with the

decision-making process; throwing a dart at a chart of

alternatives may lead, on occasion, to good outcomes,

while long, hard thought about values and

uncertainties does not always yield good outcomes.

So leaders in the decision analysis field have defined

a good decision as one that is consistent with the values

and uncertainties of the decision maker (DM) after

considering as many relevant alternatives as possible

within the appropriate time frame and with the

available information. The belief is that better

outcomes will be more likely, but are not guaranteed,

with a sound decision making process than throwing

darts at a chart of alternatives.

Three primary decision modes have been identified

by Watson and Buede (1987): (1) choosing one option

from a list, (2) allocating a scarce resource(s) among

competing projects, and (3) negotiating an agreement

with one or more adversaries. Decision analysis is the

common analytical approach for the first mode,

optimization using decision analysis concepts of

value objectives for the second, and a host of

techniques have been applied to negotiation decisions.

The three major elements of a decision that cause

decision making to be troublesome are the creative

generation of options; the identification and

quantification of multiple conflicting criteria, as well

as time and risk preference; and the assessment and

analysis of uncertainty associated with the causal

linkage between alternatives and objectives. To claim

to have made a good decision, the DM must be able to

defend how these three elements were addressed.

Many DMs claim to be troubled by the feeling that

there is an, as yet unidentified, alternative that must

surely be better than those so far considered. The

development of techniques for identifying such

alternatives has received considerable attention

(Keller and Ho 1988; Keeney 1992). Additional

research has been undertaken to identify the pitfalls

in assessing probability distributions that represent the

uncertainty of a DM (Edwards et al. 2007). Research

has also focused on the identification of the

most appropriate preference assessment techniques

(Edwards et al. 2007). Keeney (1992) has advanced

http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_1161
http://dx.doi.org/10.1007/978-1-4419-1153-7_217
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concepts for the development and structuring of

a value hierarchy for key decisions. Very little

research has been done on the issue of causal

linkages between alternatives and the objectives.

The making of a good decision requires a sound

decision making process. However, doing research on

competing decision processes, with sound validation

using ground truth, is not possible. It is not possible to

create multiple versions of reality so that the DM can

try the preferred alternative from competing decision

processes to identify which would have turned out

best. Researchers have proposed multi-phased

processes for decision making, e.g., (Howard 1968;

Witte 1972; Mintzberg et al. 1976). The common

phases include: intelligence or problem definition,

design or analysis, choice, and implementation.

A weakness in one phase in the decision making

process often cannot be compensated for by strengths

in the other phases. In general, the decision-making

process must address the development of a reasoned

set of objectives and associated preference structure;

decision alternatives; and the facts, data, opinions, and

judgments needed to relate the alternatives to the

value model. Then, of course, the logic of evaluating

the alternatives in light of the value structure must

be sound.
Decision Analysis

The field of decision analysis involves both analysis

and synthesis. Analysis is a process for dividing

a problem into parts and performing some

quantitative assessment of those parts. Synthesis then

combines those assessments into a macro assessment.

Decision analysis provides an integrating framework

for doing this assessment, as well as the theory and

techniques for doing the analyses of the parts. These

parts are traditionally values (objectives for improving

the DM’s situation), alternatives (resources the DM

can expend to change the world), and the linkage

between the alternatives and the values (the facts and

uncertainties within the DM’s world). Nonetheless,

experienced decision analysts often ask the DM for

a holistic assessment of the alternatives prior to

showing the analysis results (as part of the synthesis

process) so that the analysis results can be compared to

this holistic standard and the differences noted and

examined. Often this comparison to the holistic
assessment identifies some issues that were missed in

the analysis.

Decision analysis has its roots in many fields.

Some of the most obvious are operations research,

engineering, business, psychology, probability and

statistics, and logic. Fishburn (1999) provides a

well-documented summary of these roots of decision

analysis. Von Neumann and Morgenstern (1947)

provided the first axiomatic structure for decision

making, incorporating both probabilistic and value

preferences into a principle of expected utility

maximization. Savage (1954) recognized the need for

subjective probabilities to be combined with subjective

utility judgments, leading to subjective expected utility

(SEU). Since decision making involves trying to

predict how the future world will evolve, the

subjectivist approach to uncertainty is the primary

perspective adopted in decision analysis. De Finetti

(1972) provides a detailed review of the subjectivist

approach. Bayes’ rule is often required in the

computation of expected utility, i.e., Bayesian

decision theory is used to describe the decision

analysis process (Smith 1988). Interestingly,

Bayesian probability and subjectivist probability are

used interchangeably. Howard (1966, 1968), Raiffa

(1968), and Edwards (1962) all made important

contributions in transforming an academic theory into

a practical discipline to guide DMs through the

difficulties of real world decision making.

Values represent what the DM wants to improve in

the future. As an example, when considering the

purchase of a new car, the DM may be weighing

reduced cost in the future against improved safety,

comfort, prestige, and performance. The context of

this decision and, therefore, the values, is the likely

uses of a car for commuting, long distance travel,

errands, etc. Keeney (1992) provides a structure for

thinking about how to separate out the ends (or

fundamental) objectives from the means objectives.

Several authors have defined the mathematics behind

the quantification of a value structure for the analysis

of alternatives, see Keeney and Raiffa (1976), French

(1986), and Kirkwood (1997). In general, the

quantification of preferences must deal with tradeoffs

among objectives, risk preference introduced by

uncertainty, and time preference introduced by

achieving payoffs across the objectives at different

points in time. Besides having complex issues to

quantify, the DM must deal with subjective
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judgments, because there can be no source of

preference information other than human judgment.

Those approaches that attempt to avoid human

judgment are throwing the proverbial baby out with

the bath water.

Alternatives are the actions (expenditures of

resources) that the DM can take now and into the

future. In general, the set of alternatives also includes

what are termed options or delayed actions that the DM

can decide to take in the future if certain events occur

between now and the time associated with the option.

The space of alternatives is commonly defined over

a discrete set, though there is nothing in the theory of

decision analysis that precludes a continuous selection

set. Various processes have been used to define this set

of alternatives, including brainstorming activities. The

most commonly discussed approach is called a strategy

table or morphological box (Buede 2009). The strategy

table divides the alternative space (including any

options) into a discrete number of elements or

components. For each element, multiple possible

selections are defined. The combination of elements

and choices within each element are analogous to

a buffet dinner during which each diner selects zero,

one or more choices from each element and places

them onto a plate. If we require each diner to take

one and only one selection from each of N elements

of the dinner, there are (n1 x n2 x . . . x nN) possible

dinners that could be selected. When the choice

process is broaden to include no selection or several

selections from each element, the number of possible

dinners grows. (Note: it is also possible that some of

these combinations are impossible or very negatively

valued.) Typically, members of the decision-making

team are asked to pick five to fifteen representative and

interesting selections from the large number of

possible selections for the analysis to consider. Often,

the evaluation of the initial selection of alternatives

from the strategy table will be followed by a second

selection of alternatives from the strategy table, with

a second round of analysis for this new set. The second

set (and possibly a third set) would examine

alternatives more like those that did well in the first

evaluation and less like those that did poorly.

The linkage between the alternatives and values

(both certain and uncertain) is the third element of

analytic decomposition of decision analysis. Some

parts of this linkage may be well known and

deterministic, such as a specific cost of a car,
a defined amount of money to purchase. Other parts

of this linkage may not be well known, thus requiring

the development of a probability distribution; for

example, the same car with a known purchase price

may not have such a well-known operating cost over

the next five to ten years. In some cases, we can

develop a probability distribution for this

intermediate variable which has a known relationship

to a measure for the relevant objective. In other cases,

the relationship to one of the objectives may also be

probabilistic, requiring the development of an

influence diagram with chance nodes separating some

or all of the alternatives from the objectives, see Fig. 1.

Once the analytical structure has been built by

decomposing the decision problem into such

constructs as alternatives, value models, and

uncertainties, there is a need to compute (or

synthesize) the expected utility of each possible

alternative, and to answer additional questions that

the DM may have. Examples of common questions

are: there is some disagreement about what the risk

preference (or time preference or value trade-offs or

probabilities) should be, does this make any

difference?; alternatives 1 and 2 are much better than

the rest, but are very close in expected utility, what are

the major differences between these two alternatives?;

if one cannot be sure about some parameter’s value in

the model, will changing it by x% change the order of

the alternatives in terms of expected utility? This whole

process of computing the results and posing/answering

questions regarding the meaning of the analysis and the

robustness of the parameters in the analysis is called

synthesis. This is exactly why a quantitative model is

so much more helpful than a qualitative model.

A qualitative model cannot provide these answers

without a great deal of fuzziness, leading to continued

discussion and argument.

A common criticism of decision analysis is that

those involved cannot provide the preference and

probabilistic numbers reliably and consistently. Many

years of research has demonstrated this conclusively

(Edwards et al. 2007; von Winterfeldt and Edwards

1986; Watson and Buede 1987). The real question,

however, is not whether humans can provide

these judgments accurately, but whether inaccurate

judgments for a specified quantitative model leads to

a better conversation about the decision being made

than does a meandering, fuzzy conversation that starts

and stops many times without having such a model or
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any other anchor guiding it. Those who have

participated in such meandering, fuzzy conversations

have been often left with an empty feeling that there is

no real agreement or understanding about the

implications of the decision. As long as the key DMs

have been involved in the quantitative modeling and

understand the results of the synthesis, it is possible to

argue that the quantitative analysis, with all of it flaws,

has produced useful insights into the decision and

provides an accurate audit trail about what was known

and not known at the time of decision. The quantitative

model is, however, a model and thus subject to the

famous quote: “Essentially, all models are wrong, but

some are useful” (Box and Draper 1987, p 424).
Decison Analytic Strategies

Many individuals and consulting companies have aided

DMs and their organizations to arrive at better decisions.

Watson and Buede (1987, pp. 123-159) identified five

strategies: (1) modeling, (2) introspection, (3) rating,

(4) conferencing, and (5) developing. A sixth strategy

that is added here is aggregating mathematically.

1. Modeling. The modeling strategy involves building

complex representations (models) that link the

selection of specific options or alternatives to the

values of the DM so that the expected utility across

time of each option can be calculated. These models

may be decision trees, influence diagrams (Shachter

1986) or simulation models. This approach runs the

risk that the DM cannot understand the modeling

and, therefore, does not gain the important insights

from the model nor trust the results.

2. Introspection. The introspection strategy requires

deep thought about (i.) the multiple-objective utility

function across competing objectives, and (ii.) the

joint probability distribution that relates the

alternatives to these objectives. This approach is

characterized by a question and answer process

involving the decision analyst and a single DM

(Keeney 1977). This approach does not benefit

from additional opinions and expertise beyond the

single DM.

3. Rating. The rating strategy is the simplest and most

used. This strategy typically involves the

assumption of an additive value model across

multiple objectives, while ignoring time and risk

preference, and a deterministic relationship
between each alternative, the set of objectives, and

their measures. Edwards (1971) introduced this

approach under the acronym SMART, but later

changed it to SMARTS to reflect the importance

of using swing weights rather than importance

weights. This approach ignores the complexities

of value issues and uncertainty relating the

alternatives to the objectives, and uses an ad hoc

approach towards gathering information from other

participants and experts.

4. Conferencing. The conferencing strategy employs

simple models as used in Rating with a carefully

constructed group (Phillips 2007). The advantage of

the simple model is that it is transparent enough to

the group to be trusted, and can then focus group

discussions across the spectrum of concerns

characterized by the objectives, allowing the

appropriate experts to weigh in on their topics of

expertise. This approach assumes the complexity

of the problem is being addressed by the collection

of individuals in their reasoning processes, but

always runs the risks that the collective reasoning

process has interpreted the complexity incorrectly.

This alternative reasoning process is difficult

to document and scrutinize. Other conferencing

approaches exist that utilize computer technology

extensively (Nunamaker et al. 1993). These

technological approaches to conferencing

emphasize giving every participant a chance to

enter their inputs via keypads, often limiting

discussion. The critical issue is information

transfer via open discussion versus group

domination by a few individuals. The collective

reasoning process is even harder to assess when

individuals are communicating via key pads.

5. Developing. The developing strategy involves the

development of a decision support system that will

be used by an individual or collection of individuals

for a specific class of decisions over time. This

approach usually adopts either a modeling or

rating approach to be embed inside the decision

support system, along with access to a changing

database (see Sauter (1997) for a summary). There

continues to be a wide variety of software

implementations that serve as a basis for these

decision support systems.

6. Aggregating mathematically. There are a number

of academics and some practitioners who believe

a group is best supported by analyzing the decision
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from each individual’s perspective, and then

creating a mathematical aggregation of those

individual perspectives. These approaches have

been categorized as: social choice theory, group

utility analysis, group consensus, and game theory.
See

▶Computational Organization Theory

▶Corporate Strategy

▶Decision Analysis

▶Decision Analysis in Practice

▶Decision Support Systems (DSS)

▶ Influence Diagrams

▶Multi-attribute Utility Theory

▶Multiple Criteria Decision Making

▶ Simulation of Stochastic Discrete-Event Systems

▶Utility Theory
References

Box, G., & Draper, N. (1987). Empirical model-building and
response surfaces. New York: John Wiley.

Buede, D. M. (2009). The engineering design of systems: Models
and methods. New York: John Wiley.

De Finetti, B. (1972). Probability induction, and statistics: The
art of guessing. New York: John Wiley.

Edwards, W. (1962). Dynamic decision theory and probabilistic

information processing. Human Factors, 4, 59–73.
Edwards, W. (1971). Social utilities. The Engineering

Economist, 6, 119–129.
Edwards, W., Miles, R. F., Jr., & von Winterfeldt, D. (Eds.).

(2007). Advances in decision analysis: From foundations to
applications. New York: Cambridge University Press.

Fishburn, P. (1999). The making of decision theory. In

J. Shanteau, B. Mellers, & D. Schum (Eds.), Decision
science and technology: Reflections on the contributions of
Ward Edwards (pp. 369–388). Boston, MA: Kluwer.

French, S. (1986). Decision theory: An introduction to the
mathematics of rationality. Chichester, UK: John Wiley.

Hammond, F. S., Keeney, R. L., & Raiffa, H. (1999). Smart
choices: A practical guide to making better decisions.
Cambridge, MA: Harvard Business School.

Howard, R. (1966). Decision analysis: Applied decision theory.

In Hertz, D.B., & Melese, J. (eds), Proceedings fourth
international conference on operational research. New

York: Wiley-Interscience.

Howard, R. (1968). The foundations of decision analysis. IEEE
Transactions on Systems, Science, and Cybernetics, SSC-4,
211–219.

Keeney, R. L. (1977). The art of assessing multiattribute utility

functions. Organizational Behavior and Human
Performance, 19, 267–310.
Keeney, R. (1992). Value-focused thinking. Boston: Harvard
University Press.

Keeney, R. A., & Raiffa, H. (1976). Decisions with multiple
objectives: Preferences and value tradeoffs. New York:

John Wiley.

Keller, L., & Ho, J. (1988). Decision problem structuring:

Generating options. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-15, 715–728.

Kirkwood, C. W. (1997). Strategic decision making: Multiple
objective decision analysis with spreadsheets. Belmont, CA:

Duxbury Press.

Mintzberg, H., Raisinghani, D., & Theoret, A. (1976). The

structure of ‘unstructured’ decision processes. Administrative
Sciences Quarterly, 21, 246–275.

Nunamaker, J., Dennis, A., Valacich, J., Vogel, D., & George, J.

(1993). Group support systems research: Experience from

the lab and field. In L. Jessup & J. Valacich (Eds.), Group
support systems. New York: Macmillan.

Phillips, L. D. (2007). Decision conferencing. In W. Edwards

et al. (Eds.), Advances in decision analysis. New York:

Cambridge University Press.

Raiffa, H. (1968). Decision analysis: Introductory lectures on
choices under uncertainty. Reading, MA: Addison-

Wesley.

Sauter, V. L. (1997). Decision support systems: An applied
managerial approach. New York: John Wiley.

Savage, L. J. (1954). The foundations of statistics. New York:

John Wiley.

Shachter, R. D. (1986). Evaluating influence diagrams.

Operations Research, 34, 871–882.
Smith, J. Q. (1988). Decision analysis: A Bayesian approach.

London: Chapman and Hall.

von Neumann, J., & Morgenstern, O. (1947). Theory of games
and economic behavior. Princeton, NJ: Princeton University
Press.

von Winterfeldt, D., & Edwards, W. (1986). Decision analysis
and behavioral research. New York: Cambridge University

Press.

Watson, S., & Buede, D. (1987). Decision synthesis: The
principles and practice of decision analysis. Chichester,

UK: Cambridge University Press.

Witte, E. (1972). Field research on complex decision-making

processes–The phase theorem. International Studies of
Management and Organization, 156–182.
Decision Problem

The basic decision problem is as follows: Given a set

of r alternative actions A¼ {a1,. . ., ar}, a set of q states

of nature S ¼ {s1,. . ., sq}, a set of rq outcomes

O ¼ {o1, . . ., orq}, a corresponding set of rq payoffs

P ¼ {p1,. . ., prq}, and a decision criterion to be

optimized, f (aj), where f is a real-valued function

defined on A, choose an alternative action aj that

optimizes the decision criterion f(aj).
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Decision Support Systems (DSS), Fig. 1 Components of

a DSS
Introduction

Throughout history there has been a deeply embedded

conviction that, under the proper conditions, some

people are capable of helping others come to grips

with problems in daily life. Such professional helpers

are called counselors, psychiatrists, psychologists,

social workers, and the like. In addition to these

professional helpers, there are less formal helpers,

such as ministers, lawyers, teachers, or even

bartenders, hairdressers, and cab drivers.

The proposition that science and quantitative

methods, such as those used in OR/MS, may help

people is relatively new, and is still received by many

with deep skepticism. There are some disciplines

overlapping and augmenting OR/MS. One important

one is called decision support systems (DSS).

Before discussion of DSS, it is to be stressed that the

expression is used in a different manner by different

people, and there is no general agreement of what DSS

really is. Moreover, the benefits claimed by DSS are in

no way different from the benefits claimed by OR/MS.

To appreciate DSS, a pluralistic view must be taken of

the various disciplines offered to help managerial

decision making.
Features of Decision Support Systems

During the early 1970s, under the impact of new

developments in computer systems, a new

perspective about decision making appeared. Keen
and Morton (1973) coined the expression decision

support systems, to designate their approach to the

solution of managerial problems. They postulated

a number of distinctive characteristics of DSS,

especially the five listed below:

• A DSS is designed for specific decision makers and

their decision tasks,

• A DSS is developed by cycling between design and

implementation,

• A DSS is developed with a high degree of user

involvement,

• A DSS includes both data and models, and

• Design of the user-machine interface is a critical

task in the development of a DSS.

Figure 1 shows the structure andmajor components of

a DSS. The database holds all the relevant facts of the

problem, whether they pertain to the firm or to the

environment. The database management system (Fig. 2)

takes care of the entry, retrieval, updating, and deletion of

data. It also responds to inquiries and generates reports.

The modelbase holds all the models required to

work the problem. The modelbase management

system (Fig. 3) assists in creating the mathematical

model, and in translating the human prepared

mathematical model into computer understandable

form. The critical process of the modelbase

management system is finding the solution to the

mathematical model. The system also generates

http://dx.doi.org/10.1007/978-1-4419-1153-7_215
http://dx.doi.org/10.1007/978-1-4419-1153-7_1161
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Database management system

Data entry
Data retrieval
Updating
Report generation

Decision Support Systems (DSS), Fig. 2 Database

management system

Modelbase management system

Create model
Verify model
Translate the model into computer form
Solve model
Verify answers

Create reports, dialogs

Decision Support Systems (DSS), Fig. 3 Modelbase

management system

D 388 Decision Support Systems (DSS)
reports and assists in the preparation of computer-

human dialogs.

While OR/MS stresses the model, DSS stresses

the computer-based database. DSS emphasizes the

importance of the user-machine interface, and the

design of dialog generation and management software.

Advocates of DSS assert that by combining the

power of the human mind and the computer, DSS is

capable of enhancing decision making, and that DSS

can grapple with problems not subject to the traditional

approach of OR/MS.

Note that DSS stresses the role of humans in

decision making, and explicitly factors human

capabilities into decision making. A decision support

system accepts the human as an essential subsystem.

DSS does not usually try to optimize in a mathematical

sense, and bounded rationality and satisficing provide

guidance to the designers of DSS.
Designing Decision Support Systems

The design phases of DSS are quite similar to the

phases of the design, implementation, and testing of
other systems. It is customary to distinguish six phases,

although not all six phases are required for every DSS.

1. During the systems analysis and design phase,

existing systems are reviewed and analyzed with

the objective of establishing requirements and

needs of the new system. Then it is established

whether meeting the specifications is feasible from

the technical, economical, psychological, and social

points of view. Is it possible to overcome the

difficulties, and are opportunities commensurate

with costs? If the answers are affirmative,

meetings with management are held to obtain

support. This phase produces a conceptual design

and master plan.

2. During the design phase, input, processing, and

output requirements are developed and a logical

(not physical) design of the system is prepared.

After the logical design is completed and found to

be acceptable, the design of the hardware and

software is undertaken.

3. During the construction and testing phase, the

software is completed and tested on the hardware

system. Testing includes user participation to assure

that the system will be acceptable both from the

points of view of the user and management, if they

are different.

4. During the implementation phase, the system is

retested, debugged, and put into use. To assure

final user acceptance, no effort is spared in

training and educating users. Management is kept

up-to-date on the progress of the project.

5. Operation and maintenance is a continued effort

during the life of the DSS. User satisfaction is

monitored, errors are uncovered and corrected, and

the method of operating the system is fine-tuned.

6. Evaluation and control is a continued effort to

assure the viability of the system and the

maintenance of management support.
A Forecasting System

Connoisseur Foods is a diversified food company with

several autonomous subdivisions and subsidiaries

(adapted from Alter 1980, and Turban 1990). Several

of the division managers were old-line managers relying

on experience and judgment to make major decisions.

Topmanagement installed a DSS to provide quantitative

help to establish and monitor levels of such marketing
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efforts as advertising, pricing, and promotion. The DSS

model was based on S-shaped response functions of

marketing conditions to such decision functions as

advertising. The curves were derived by using both

historical data and marketing experts. The databases

for the farm products division contained about

20 million data items on sales both in dollars and

number of units for 400 items sold in 300 branches.

The DSS assisted management in developing better

marketing strategies and more competitive positions.

Top management, however, stated that the real benefit

of the DSS was not so much the installation of isolated

systems and models, but the assimilation of new

approaches in corporate decision making.
A Portfolio Management System

The trust division of Great Eastern Bank employed 50

portfolio managers in several departments (adapted

from Alter 1980 and Turban 1990). The portfolio

managers controlled many small accounts, large

pension funds, and provided advice to investors in

large accounts. The on-line DSS portfolio

management system provided information to the

portfolio managers.

The DSS includes lists of stocks from which the

portfolio managers could buy stocks, information, and

analysis on particular industries. It is basically a data

retrieval system that could display portfolios, as well

as specific information on securities.

The heart of the system is the database that allowed

portfolio managers to generate reports with the

following functions:

• Directory by accounts,

• Table to scan accounts,

• Graphic display of breakdown by industry and

security for an account,

• Tabular listing of all securities within an account,

• Scatter diagrams between data items,

• Summaries of accounts,

• Distribution of data on securities,

• Evaluation of hypothetical portfolios,

• Performance monitoring of portfolios,

• Warnings if deviations from guidelines occur; and

• Tax implications.

The benefits of the systems were better investment

performance, improved information, improved

presentation formats, less clerical work, better
communication, improved bank image, and enhanced

marketing capability.
Concluding Remarks

Advocates of DSS claim that DSS deals with

unstructured or semistructured problems, while OR/

MS is restricted to structured problems. Few workers

in OR/MS would agree.

At the onset, it is frequently the case that a particular

business situation is confusing, and, to straighten it out,

a problem must be instituted and the problem must be

structured. Thus, whether OR/ MS or DSS or both are

involved, attempts will be made to structure as much of

the situation as possible.

The problem will be structured by OR/MS or DSS

to the point that some part of the problem can be taken

care of by quantitative methods and computers, and

some others are left to human judgment, intuition, and

opinion. There may be a degree of difference between

OR/MS and DSS: OR/MS may stress optimization, the

model base; DSS the database.

Attempts to draw the line between DSS and OR/MS

are counterproductive. Those who are dedicated to

help management in solving hard problems need to

be concerned with any and all theories, practices, and

principles that can help. To counsel management in the

most productive manner requires that no holds be

barred when a task is undertaken.

The principles of DSS are often used without

mention in simulation programs. Moreover, as in the

spirit of DSS, the user-machine interface is often

visual, given the animation capability of modern

computers. Thus, managerial decisions may be

influenced not only by using traditional quantitative

measures, but also by judging customer perceptions.
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Introduction

A decision tree is a pictorial description of a well-

defined decision problem. It is a graphical

representation consisting of nodes (where decisions

are made or chance events occur) and arcs (which

connect nodes). Decision trees are useful because

they provide a clear, documentable, and discussible

model of either how the decision was made or how it

will be made.

The tree provides a framework for the calculation of

the expected value of each available alternative. The

alternative with the maximum expected value is the

best choice path based on the information and mind-set

of the decision makers at the time the decision is made.

This best choice path indicates the best overall

alternative, including the best subsidiary decisions at

future decision steps, when uncertainties have been

resolved.

The decision tree should be arranged, for

convenience, from left to right in the temporal order
in which the events and decisions will occur.

Therefore, the steps on the left occur earlier in time

than those on the right.
Decision Nodes

Steps in the decision process involving decisions

between several choice alternatives are indicated by

decision nodes, drawn as square boxes. Each available

choice is shown as one arc (or path) leading away from

its decision node toward the right. When a planned

decision has been made at such a node, the result of

that decision is recorded by drawing an arrow in the

box pointing toward the chosen option. As an example

of the process, consider a pharmaceutical company

president’s choice of which drug dosage to market.

The basic dosage choice decision tree is shown in

Fig. 1. Note that the values of the eventual outcomes

(on the far right) will be expressed as some measure of

value to the eventual user (for example, the patient or

the physician).
Chance Nodes

Steps in the process which involve uncertainties are

indicated by circles (called chance nodes), and the

possible outcomes of these probabilistic events are

again shown as arcs or paths leading away from the

node toward the right. The results of these uncertain

factors are out of the hands of the decision maker;

chance or some other group or person (uncontrolled

by the decision maker) will determine the outcome of

this node. Each of the potential outcomes of a chance

node is labeled with its probability of occurrence.
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All possible outcomes must be indicated, so the sum of

the potential outcome probabilities of a chance node

must equal 1.0. Using the drug dose selection problem

noted above, the best choice of dose depends on at least

one probabilistic event: the level of performance of the

drug in clinical trials, which is a proxy measure of the
Dosage A

Dosage B

Dosage C
Decision Trees, Fig. 3 The

choice of dosage based on

uncertain efficacy and toxicity

Dosage A

Efficacy Level E1

P1
Efficacy Level E2

Value of level E1

P2
Efficacy Level E3

Value of level E2

P3
Value of level E2

Dosage B 

Dosage C 

Decision Trees, Fig. 2 The choice of drug dosage based on

efficacy outcome

D

efficacy of the drug. A simplified decision tree for that

part of the firm’s decision is shown in Fig. 2. Note that

each dosage choice has a subsequent efficacy chance

node similar to the one shown, so the expanded tree

would have nine outcomes. The probabilities (p1, p2,

and p3) associated with the outcomes are expected to

differ for each dosage.

There are often several nodes in a decision tree; in

the case of the drug dosage decision, the decision will

also depend on the toxicity as demonstrated by both

animal study data and human toxicity study data, as

well as on the efficacy data. The basic structure of this

more complex decision is shown in Fig. 3. The

completely expanded tree has 27 eventual outcomes

and associated values. Notice that although not

always the case, here the probabilities (q1, q2, and

q3) of the toxicity levels are independent of the

efficacy level.

One use of a decision tree is to clearly display the

factors and assumptions involved in a decision. If the

decision outcomes are quantified and the probabilities

of chance events are specified, the tree can also be

analyzed by calculating the expected value of each

alternative. If several decisions are involved in the

problem being considered, the strategy best suited to

each specific set of chance outcomes can be planned

in advance.
Efficacy Level E1

P1
Toxicity level T1

Q1

Value of E2 & T1

Toxicity level T2

Q2

Value of E2 & T2

Toxicity level T3

Q3

Value of E2 & T3

Efficacy Level E2

P2

Efficacy Level E3

P3
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Probabilities

Estimates of the probabilities for each of the outcomes

of the chance nodesmust bemade. In the simplified case

of the drug dose decision above, the later chance node

outcome probabilities are modeled as being

independent of the earlier chance nodes. While not

intuitively obvious, careful thought should show that

the physiological factors involved in clinical efficacy

must be different from those involved in toxicity, even if

the drug is being used to treat that toxicity. Therefore,

with most drugs, the probability of high human toxicity

is likely independent of the level of human efficacy. In

the more general non-drug situations, however, for

sequential steps, the latter probabilities are often

dependent conditional probabilities, since their value

depends on the earlier chance outcomes.

For example, consider the problem in Fig. 4, where

the outcome being used for the drug dose decision is

based on the eventual sales of it. The values of the

eventual outcomes now are expressed as sales for

the firm.

The probability of high sales depends on the efficacy

as well as on the toxicity, so the dependent conditional

probability of high sales is the probability of high sales

given that the efficacy is level 2 and toxicity is level 2,

which can be written as p(High Sales|E2&T2).
Dosage A

Efficacy Lev

Efficacy Level E

Efficacy Lev

Dosage B

Dosage C
Decision Trees, Fig. 4 The

choice of dosage based on

efficacy and toxicity and their

eventual effect on sales
Outcome Measures

At the far right of the tree, the possible outcomes are

listed at the end of each branch. To calculate numerical

expected values for alternative choices, outcomes must

be measured numerically and often monetary measures

will be used. More generally, the utility of the

outcomes can be calculated. Single or multiple

attribute utility functions have been elicited in many

decision situations to represent decision makers’

preferences for different outcomes on a numerical

(although not monetary) scale.
The Tree as an Aid in Decision Making

The decision tree analysis method is called fold-

back and prune. Beginning at a far right chance

node of the tree, the expected value of the

outcome measure is calculated and recorded for

each chance node by summing, over all the

outcomes, the product of the probability of the

outcome times the measured value of the outcome.

Figure 5 shows this calculation for the first step in

the analysis of the drug-dose decision tree.

This step is called folding back the tree since the

branches emanating from the chance node are folded
el E1

Toxicity level T1

High Sales
Value of High Sales

Medium Sales
Value of Medium Sales

Low Sales
Value of Low Sales

Toxicity level T2

Toxicity level T3

2

el E3



P(9.2|B,E2,T2)=0.50

Dosage A

Efficacy Level E1

Toxicity level T1
Value

High Sales

P(11.5|B,E2,T2)=0.30
$11.5 M

Medium Sales
$9.2 M

Low Sales

P(6.3|B,E2,T2)=0.20
$6.3 M

Toxicity level T2

Toxicity level T3
Value

Efficacy Level E2

Efficacy Level E3

Dosage B

Dosage C

EV = 9.31

Decision Trees, Fig. 5 The

first step, calculating the

expected value of the chance

node for sales: EV¼ 0.3(11.5)

+ 0.5(9.2) + 0.2(6.3) ¼ 9.31

Surgery

Wait 5 Yrs

No Surgery

Decision Trees, Fig. 6 The initial decision point
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up or collapsed, so that the chance node is now

represented by its expected value. This is continued

until all the chance nodes on the far right have been

evaluated. These expected values then become the

values for the outcomes of the chance or decision

nodes further to the left in the diagram. At a decision

node, the best of the alternatives is the one with the

maximum expected value, which is then recorded by

drawing an arrow towards that choice in the decision

node box and writing down the expected value

associated with the chosen option. This is referred to

as pruning the tree, as the less valuable choices are

eliminated from further consideration. The process

continues from right to left, by calculating the

expected value at each chance node and pruning at

each decision node. Finally the best choice for the

overall decision is found when the last decision node

at the far left has been evaluated.
Example

In this example, a decision faced by a patient who is

considering laser eye surgery to improve her vision

will be considered. The basic decision process is

shown in Fig. 6. The initial decision a patient
encounters is whether to: have the surgery, wait for

more technological advances, or not have the surgery

at all.

Suppose that if a patient chooses to wait at the first

decision node, she will observe the outcome of

possible technological advances at the first chance

node, and then will have to make the decision of

whether to have the surgery or not. Figure 7 shows

a detailed decision tree of this patient’s decision

process. The entries at the end of the branches can be

seen as a measure of health utility to the patient, on

a 0-100 scale, where 100 is the best level of health

utility. Other patients can customize this tree to their

personal circumstances using a combination of chance

and decision nodes.



Successful
0.75

100

Successful w/ Setbacks
0.21

70

Unsuccessful
0.04

0

Surgery

Successful

0.95
95

Successful w/ Setbacks

0.04
65

Unsuccessful

0.01
0

Surgery

No Surgery
40

Significant Tech
Improvements

0.70

Successful

0.92
95

Successful w/ Setbacks

0.06
65

Unsuccessful

0.02
0

Surgery

No Surgery
40

Moderate Tech
Improvements

0.20

Successful

0.75
95

Successful w/ Setbacks

0.21
65

Unsuccessful

0.04
0

Surgery

No Surgery
40

No Tech Improvements

0.10

Wait 5 years

No Surgery
40

Decision Trees, Fig. 7 Complete mapping of the decision process of whether or not to have lasik surgery
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Following the method of folding back the tree, the

expected health utility of having the surgery

immediately is 89.70, waiting 5 years is 91.74, and

not having the surgery at all is 40.00, where the

calculation of each chance node is the expected

health utility. And so waiting 5 years is the optimal

decision for the patient in this example.
See

▶Bayesian Decision Theory, Subjective Probability,

and Utility

▶Decision Analysis

▶Decision Analysis in Practice

▶Decision Making and Decision Analysis
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▶ Preference Theory
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Decision Variables

The variables in a given model that are subject to

manipulation by the specified decision rule.
D
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Introduction

The notion of uncertainty has taken different meanings

and emphases in various fields, including the physical

sciences, engineering, statistics, economics, finance,

insurance, philosophy, and psychology. Analyzing

the notion in each discipline can provide a specific

historical context and scope in terms of problem

domain, relevant theory, methods, and tools for

handling uncertainty. Such analyses are given by

Agusdinata (2008), van Asselt (2000), Morgan and

Henrion (1990), and Smithson (1989).
In general, uncertainty can be defined as limited

knowledge about future, past, or current events. With

respect to policy making, the extent of uncertainty

clearly involves subjectivity, since it is related to the

satisfaction with existing knowledge, which is colored

by the underlying values and perspectives of the

policymaker and the various actors involved in the

policy-making process, and the decision options

available to them.

Shannon (1948) formalized the relationship between

the uncertainty about an event and information in

“A Mathematical Theory of Communication.”

He defined a concept he called entropy as a measure

of the average information content associated with

a random outcome. Roughly speaking, the concept of

entropy in information theory describes how much

information there is in a signal or event and relates

this to the degree of uncertainty about a given event

having some probability distribution.

Uncertainty is not simply the absence of

knowledge. Funtowicz and Ravetz (1990) describe

uncertainty as a situation of inadequate information,

which can be of three sorts: inexactness, unreliability,

and border with ignorance. However, uncertainty can

prevail in situations in which ample information

is available (Van Asselt and Rotmans 2002).

Furthermore, new information can either decrease or

increase uncertainty. New knowledge on complex

processes may reveal the presence of uncertainties

that were previously unknown or were understated. In

this way, more knowledge illuminates that one’s

understanding is more limited or that the processes

are more complex than previously thought (van der

Sluijs 1997).

Uncertainty as inadequacy of knowledge has

a very long history, dating back to philosophical

questions debated among the ancient Greeks about

the certainty of knowledge, and perhaps even further.

Its modern history begins around 1921, when Knight

made a distinction between risk and uncertainty

(Knight 1921). According to Knight, risk

denotes the calculable and thus controllable part of

all that is unknowable. The remainder is the

uncertain � incalculable and uncontrollable. Luce

and Raiffa (1957) adopted these labels to distinguish

between decision making under risk and decision

making under uncertainty. Similarly, Quade (1989)

makes a distinction between stochastic uncertainty

and real uncertainty. According to Quade, stochastic

http://dx.doi.org/10.1007/978-1-4419-1153-7_200076
http://dx.doi.org/10.1007/978-1-4419-1153-7_200982
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Context A clear enough
future

Alternate futures
(with probabilities)

Alternate futures
with
ranking

A multiplicity of
plausible futures

An unknown
future

System

model

A single
(deterministic)
system model

A single
(stochastic) system
model

Several system 
models, one of 
which is most 
likely 

Several system
models, with
different
structures

Unknown system
model; know we
don’t know

System

outcomes

A point
estimate for
each outcome

A confidence
interval for each
outcome

Several sets of 
point estimates, 
ranked according 
to their perceived 
likelihood 

A known range
of outcomes

Unknown
outcomes; know
we don’t know

Weights on

outcomes

A single set of
weights

Several sets of
weights, with a
probability
attached to each set

Several sets of 
weights, ranked 
according to their 
perceived 
likelihood 

A known range
of weights

Unknown weights;
know we don’t
know

Deep Uncertainty, Fig. 1 The progressive transition of levels of uncertainty from complete certainty to total ignorance
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uncertainty includes frequency-based probabilities and

subjective (Bayesian) probabilities. Real uncertainty

covers the future state of the world and the

uncertainty resulting from the strategic behavior of

other actors. Often, attempts to express the degree of

certainty and uncertainty have been linked to whether

or not to use probabilities, as exemplified by Morgan

and Henrion (1990), who make a distinction between

uncertainties that can be treated through probabilities

and uncertainties that cannot. Uncertainties that cannot

be treated probabilistically include model structure

uncertainty and situations in which experts cannot

agree upon the probabilities. These are the more

important and hardest to handle types of uncertainties

(Morgan 2003). As Quade (1989, p. 160) wrote:

“Stochastic uncertainties are therefore among the

least of our worries; their effects are swamped by

uncertainties about the state of the world and human

factors for which we know absolutely nothing about

probability distributions and little more about the

possible outcomes.” These kinds of uncertainties are

now referred to as deep uncertainty (Lempert

et al. 2003), or severe uncertainty (Ben-Haim 2006).
Levels of Uncertainty

Walker et al. (2003) define uncertainty to be “any

departure from the (unachievable) ideal of complete

determinism.”

For purposes of determining ways of dealing

with uncertainty in developing public policies or

business strategies, one can distinguish two

extreme levels of uncertainty—complete certainty and

total ignorance—and five intermediate levels (e.g.

Courtney 2001; Walker et al. 2003; Makridakis et al.

2009; Kwakkel et al. 2010d). In Fig. 1, the five levels are

defined with respect to the knowledge assumed about

the various aspects of a policy problem: (a) the future

world, (b) the model of the relevant system for that

future world, (c) the outcomes from the system, and

(d) the weights that the various stakeholders will put

on the outcomes. The levels of uncertainty are briefly

discussed below.

Complete certainty is the situation in which

everything is known precisely. It is not attainable, but

acts as a limiting characteristic at one end of the

spectrum.
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Level 1 uncertainty (A clear enough future)

represents the situation in which one admits that one

is not absolutely certain, but one is not willing or able

to measure the degree of uncertainty in any explicit

way (Hillier and Lieberman 2001, p. 43). Level 1

uncertainty is often treated through a simple

sensitivity analysis of model parameters, where the

impacts of small perturbations of model input

parameters on the outcomes of a model are assessed.

Level 2 uncertainty (Alternate futures with

probabilities) is any uncertainty that can be described

adequately in statistical terms. In the case of

uncertainty about the future, Level 2 uncertainty is

often captured in the form of either a (single) forecast

(usually trend based) with a confidence interval or

multiple forecasts (scenarios) with associated

probabilities.

Level 3 uncertainty (Alternate futures with

ranking) represents the situation in which one is

able to enumerate multiple alternatives and is able

to rank the alternatives in terms of perceived

likelihood. That is, in light of the available

knowledge and information there are several

different parameterizations of the system model,

alternative sets of outcomes, and/or different

conceivable sets of weights. These possibilities can

be ranked according to their perceived likelihood

(e.g. virtually certain, very likely, likely, etc.). In

the case of uncertainty about the future, Level 3

uncertainty about the future world is often captured

in the form of a few trend-based scenarios based on

alternative assumptions about the driving forces

(e.g., three trend-based scenarios for air transport

demand, based on three different assumptions

about GDP growth). The scenarios are then ranked

according to their perceived likelihood, but no

probabilities are assigned, see Patt and Schrag

(2003) and Patt and Dessai (2004).

Level 4 uncertainty (Multiplicity of futures)

represents the situation in which one is able to

enumerate multiple plausible alternatives without

being able to rank the alternatives in terms of

perceived likelihood. This inability can be due to

a lack of knowledge or data about the mechanism or

functional relationships being studied; but this

inability can also arise due to the fact that the

decision makers cannot agree on the rankings. As

a result, analysts struggle to specify the appropriate

models to describe interactions among the system’s
variables, to select the probability distributions to

represent uncertainty about key parameters in the

models, and/or how to value the desirability of

alternative outcomes (Lempert et al. 2003).

Level 5 uncertainty (Unknown future) represents

the deepest level of recognized uncertainty; in this

case, what is known is only that we do not know.

This ignorance is recognized. Recognized

ignorance is increasingly becoming a common

feature of life, because catastrophic, unpredicted,

surprising, but painful events seem to be occurring

more often. Taleb (2007) calls these events “Black

Swans.” He defines a Black Swan event as one that

lies outside the realm of regular expectations (i.e.,

“nothing in the past can convincingly point to its

possibility”), carries an extreme impact, and is

explainable only after the fact (i.e., through

retrospective, not prospective, predictability). One of

the most dramatic recent Black Swans is the

concatenation of events following the 2007 subprime

mortgage crisis in the U.S. The mortgage crisis (which

some had forecast) led to a credit crunch, which led to

bank failures, which led to a deep global recession in

2009, which was outside the realm of most

expectations. Another recent Black Swan was the

level 9.0 earthquake in Japan in 2011, which led to

a tsunami and a nuclear catastrophe, which led to

supply chain disruptions (e.g., for automobile parts)

around the world.

Total ignorance is the other extreme on the scale of

uncertainty. As with complete certainty, total

ignorance acts as a limiting case.

Lempert et al. (2003) have defined deep

uncertainty as “the condition in which analysts do

not know or the parties to a decision cannot agree

upon (1) the appropriate models to describe

interactions among a system’s variables, (2) the

probability distributions to represent uncertainty

about key parameters in the models, and/or (3) how

to value the desirability of alternative outcomes. They

use the language ‘do not know’ and ‘do not agree

upon’ to refer to individual and group decision

making, respectively. This article includes both

individual and group decision making in all five of

the levels, referring to Level 4 and Level 5

uncertainties as ‘deep uncertainty’, and assigning

the ‘do not know’ portion of the definition to Level

5 uncertainties and the ‘cannot agree upon’ portion of

the definition to Level 4 uncertainties.
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Decision Making Under Deep Uncertainty

There are many quantitative analytical approaches to

deal with Level 1, Level 2, and Level 3 uncertainties.

In fact, most of the traditional applied scientific work

in the engineering, social, and natural sciences has

been built upon the supposition that the uncertainties

result from either a lack of information, which

“has led to an emphasis on uncertainty reduction

through ever-increasing information seeking and

processing” (McDaniel and Driebe 2005), or from

random variation, which has concentrated efforts on

stochastic processes and statistical analysis. However,

most of the important policy problems faced by

policymakers are characterized by the higher

levels of uncertainty, which cannot be dealt

with through the use of probabilities and cannot

be reduced by gathering more information, but are

basically unknowable and unpredictable at the

present time. And these high levels of uncertainty can

involve uncertainties about all aspects of a policy

problem — external or internal developments,

the appropriate (future) system model, the

parameterization of the model, the model outcomes,

and the valuation of the outcomes by (future)

stakeholders.

For centuries, people have used many methods to

grapple with the uncertainty shrouding the long-term

future, each with its own particular strengths. Literary

narratives, generally created by one or a few

individuals, have an unparalleled ability to capture

people’s imagination. More recently, group

processes, such as the Delphi technique (Quade

1989), have helped large groups of experts combine

their expertise into narratives of the future. Statistical

and computer simulation modeling helps capture

quantitative information about the extrapolation of

current trends and the implications of new driving

forces. Formal decision analysis helps to systematically

assess the consequences of such information.

Scenario-based planning helps individuals and groups

accept the fundamental uncertainty surrounding the

long-term future and consider a range of potential

paths, including those that may be inconvenient or

disturbing for organizational, ideological, or political

reasons.

Despite this rich legacy, these traditional methods

all founder on the same shoals: an inability to grapple

with the long term’s multiplicity of plausible futures.
Any single guess about the future will likely prove

wrong. Policies optimized for a most likely future

may fail in the face of surprise. Even analyzing

a well-crafted handful of scenarios will miss most of

the future’s richness and provides no systematic means

to examine their implications. This is particularly true

for methods based on detailed models. Such models

that look sufficiently far into the future should raise

troubling questions in the minds of both the model

builders and the consumers of model output. Yet the

root of the problem lies not in the models themselves,

but in the way in which models are used. Too often,

analysts ask what will happen, thus trapping

themselves in a losing game of prediction, instead of

the question they really would like to have answered:

Given that one cannot predict, which actions available

today are likely to serve best in the future?

Broadly speaking, although there are differences in

definitions, and ambiguities in meanings, the literature

offers four (overlapping, not mutually exclusive) ways

for dealing with deep uncertainty in making policies,

see van Drunen et al. (2009).

Resistance: plan for the worst conceivable case or

future situation,

• Resilience: whatever happens in the future, make

sure that you have a policy that will result in the

system recovering quickly,

• Static robustness: implement a (static) policy that

will perform reasonably well in practically all

conceivable situations,

• Adaptive robustness: prepare to change the policy,

in case conditions change.

The first approach is likely to be very costly and

might not produce a policy that works well because of

Black Swans. The second approach accepts short-term

pain (negative system performance), but focuses on

recovery.

The third and fourth approaches do not use models

to produce forecasts. Instead of determining the best

predictive model and solving for the policy that is

optimal (but fragilely dependent on assumptions), in

the face of deep uncertainty it may be wiser to seek

among the alternatives those actions that are most

robust — that achieve a given level of goodness

across the myriad models and assumptions consistent

with known facts (Rosenhead and Mingers 2001). This

is the heart of any robust decision method. A robust

policy is defined to be one that yields outcomes that are

deemed to be satisfactory according to some selected
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assessment criteria across a wide range of future

plausible states of the world. This is in contrast to an

optimal policy that may achieve the best results among

all possible plans but carries no guarantee of doing so

beyond a narrowly defined set of circumstances. An

analytical policy based on the concept of robustness is

also closer to the actual policy reasoning process

employed by senior planners and executive decision

makers. As shown by Lempert and Collins (2007),

analytic approaches that seek robust strategies are

often appropriate both when uncertainty is deep and

a rich array of options is available to decision makers.

Identifying static robust policies requires reversing

the usual approach to uncertainty. Rather than seeking

to characterize uncertainties in terms of probabilities,

a task rendered impossible by definition for Level 4

and Level 5 uncertainties, one can instead explore how

different assumptions about the future values of these

uncertain variables would affect the decisions actually

being faced. Scenario planning is one approach to

identifying static robust policies, see van der Heijden

(1996). This approach assumes that, although the

likelihood of the future worlds is unknown, a range

of plausible futures can be specified well enough to

identify a (static) policy that will produce acceptable

outcomes in most of them. It works best when dealing

with Level 4 uncertainties. Another approach is to ask

what one would need to believe was true to discard one

possible policy in favor of another. This is the essence

of Exploratory Modeling and Analysis (EMA).

Long-term robust policies for dealing with Level 5

uncertainties will generally be dynamic adaptive

policies—policies that can adapt to changing

conditions over time. A dynamic adaptive policy is

developed with an awareness of the range of

plausible futures that lie ahead, is designed to be

changed over time as new information becomes

available, and leverages autonomous response to

surprise. Eriksson and Weber (2008) call this

approach to dealing with deep uncertainty Adaptive

Foresight. Walker et al. (2001) have specified

a generic, structured approach for developing

dynamic adaptive policies for practically any policy

domain. This approach allows implementation to

begin prior to the resolution of all major

uncertainties, with the policy being adapted over time

based on new knowledge. It is a way to proceed with

the implementation of long-term policies despite the

presence of uncertainties. The adaptive policy
approach makes dynamic adaptation explicit at the

outset of policy formulation. Thus, the inevitable

policy changes become part of a larger, recognized

process and are not forced to be made repeatedly on

an ad hoc basis. Under this approach, significant

changes in the system would be based on an analytic

and deliberative effort that first clarifies system goals,

and then identifies policies designed to achieve those

goals and ways of modifying those policies as

conditions change. Within the adaptive policy

framework, individual actors would carry out their

activities as they would under normal policy

conditions. But policymakers and stakeholders,

through monitoring and corrective actions, would try

to keep the system headed toward the original goals.

McCray et al. (2010) describe it succinctly as keeping

policy “yoked to an evolving knowledge base.”

Lempert et al. (2003, 2006) propose an approach

called Robust Decision Making (RDM), which

conducts a vulnerability and response option analysis

using EMA to identify and compare (static or dynamic)

robust policies. Walker et al. (2001) propose a similar

approach for developing adaptive policies, called

Dynamic Adaptive Policymaking (DAP).
Some Applications of Robust Decision
Making (RDM) and Dynamic Adaptive
Policymaking (DAP)

RDM has been applied in a wide range of decision

applications, including the development of both static

and adaptive policies. The study of Dixon et al.

(2007) evaluated alternative (static) policies

considered by the U.S. Congress while debating

reauthorization of the Terrorism Risk Insurance Act

(TRIA). TRIA provides a federal guarantee to

compensate insurers for losses due to very large

terrorist attacks in return for insurers providing

insurance against attacks of all sizes. Congress was

particularly interested in the cost to taxpayers of

alternative versions of the program. The RDM

analysis used a simulation model to project these

costs for various TRIA options for each of several

thousand cases, each representing a different

combination of 17 deeply uncertain assumptions

about the type of terrorist attack, the factors

influencing the pre-attack distribution of insurance

coverage, and any post-attack compensation
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decisions by the U.S. Federal government. The RDM

analysis demonstrated that the expected cost to

taxpayers of the existing TRIA program would prove

the same or less than any of the proposed alternatives

except under two conditions: the probability of a large

terrorist attack (greater than $40 billion in losses)

significantly exceeded current estimates and future

Congresses did not compensate uninsured property

owners in the aftermath of any such attack. This

RDM analysis appeared to help resolve a divisive

Congressional debate by suggesting that the existing

(static) TRIA program was robust over a wide range of

assumptions, except for a combination that many

policymakers regarded as unlikely. The analysis

demonstrates two important features of RDM: (1) its

ability to systematically include imprecise

probabilistic information (in this case, estimates of

the likelihood of a large terrorist attack) in a formal

decision analysis, and (2) its ability to incorporate very

different types of uncertain information (in this case,

quantitative estimates of attack likelihood and

qualitative judgments about the propensity of future

Congresses to compensate the uninsured).

RDM has also been used to develop adaptive

policies, including policies to address climate change

(Lempert et al. 1996), economic policy (Seong et al.

2005), complex systems (Lempert 2002), and health

policy (Lakdawalla et al. 2009). An example that

illustrates RDM’s ability to support practical adaptive

policy making is discussed in Groves et al. (2008) and

Lempert and Groves (2010). In 2005, Southern

California’s Inland Empire Utilities Agency (IEUA),

that supplies water to a fast growing population in an

arid region, completed a legally mandated (static) plan

for ensuring reliable water supplies for the next

twenty-five years. This plan did not, however,

consider the potential impacts of future climate

change. An RDM analysis used a simulation model to

project the present value cost of implementing IEUA’s

current plans, including any penalties for future

shortages, in several hundred cases contingent on

a wide range of assumptions about six parameters

representing climate impacts, IEUA’s ability to

implement its plan, and the availability of imported

water. A scenario discovery analysis identified three

key factors — an 8% or larger decrease in

precipitation, any drop larger than 4% in the rain

captured as groundwater, and meeting or missing the

plan’s specific goals for recycled waste water— that, if
they occurred simultaneously, would cause IEUA’s

overall plan to fail (defined as producing costs

exceeding by 20% or more those envisioned in the

baseline plan). Having identified this vulnerability of

IEUA’s current plan, the RDM analysis allowed the

agency managers to identify and evaluate alternative

adaptive plans, each of which combined near-term

actions, monitoring of key supply and demand

indicators in the region, and taking specific additional

actions if certain indicators were observed. The

analysis suggested that IEUA could eliminate most of

its vulnerabilities by committing to updating its plan

over time and by making relative low-cost near-term

enhancements in two current programs. Overall, the

analysis allowed IEUA’s managers, constituents, and

elected officials, who did not all agree on the likelihood

of climate impacts, to understand in detail

vulnerabilities to their original plan and to identify

and reach consensus on adaptive plans that could

ameliorate those vulnerabilities.

An example of DAP comes from the field of airport

strategic planning. Airports increasingly operate in

a privatized and liberalized environment. Moreover,

this change in regulations has changed the public’s

perception of the air transport sector. As a result of

this privatization and liberalization, the air transport

industry has undergone unprecedented changes,

exemplified by the rise of airline alliances and low

cost carriers, an increasing environmental awareness,

and, since 9/11, increased safety and security concerns.

These developments pose a major challenge for

airports. They have to make investment decisions that

will shape the future of the airport for many years to

come, taking into consideration the many uncertainties

that are present. DAP has been put forward as a way to

plan the long-term development of an airport under

these conditions (Kwakkel et al. 2010a). As an

illustration, a case based on the current challenges of

Amsterdam Airport Schiphol has been pursued. Using

a simulation model that calculates key airport

performance metrics such as capacity, noise, and

external safety, the performance of an adaptive policy

and a competing traditional policy across a wide range

of uncertainties was explored. This comparison

revealed that the traditional plan would have

preferable performance only in the narrow bandwidth

of future developments for which it was optimized.

Outside this bandwidth, the adaptive policy had

superior performance. The analysis further revealed
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that the range of expected outcomes for the adaptive

policy is significantly smaller than for the traditional

policy. That is, an adaptive policy will reduce the

uncertainty about the expected outcomes, despite

various deep uncertainties about the future. This

analysis strongly suggested that airports operating in

an ever increasing uncertain environment could

significantly improve the adequacy of their long-term

development if they planned for adaptation (Kwakkel

et al. 2010b, 2010c).

Another policy area to which DAP has been applied

is the expansion of the port of Rotterdam. This

expansion is very costly and the additional land and

facilities need to match well with market demand as it

evolves over the coming 30 years or more. DAP was

used to modify the existing plan so that it can cope with

a wide range of uncertainties. To do so, adaptive policy

making was combined with Assumption-Based

Planning (Dewar 2002). This combination resulted in

the identification of the most important assumptions

underlying the current plan. Through the adaptive

policy making framework, these assumptions were

categorized and actions for improving the likelihood

that the assumptions will hold were specified (Taneja

et al. 2010).

Various other areas of application of DAP have

also been explored, including flood risk management

in the Netherlands in light of climate change (Rahman

et al. 2008), policies with respect to the

implementation of innovative urban transport

infrastructures (Marchau et al. 2008), congestion

road pricing (Marchau et al. 2010), intelligent speed

adaptation (Agusdinata et al. 2007), and magnetically

levitated (Maglev) rail transport (Marchau et al.

2010).
See

▶Exploratory Modeling and Analysis
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Degeneracy

The situation in which a linear-programming problem

has a basic feasible solution with at least one basic

variable equal to zero. If the problem is degenerate,

then an extreme point of the convex set of solutions

may correspond to several feasible bases. As a result,

the simplex method may move through a sequence of

bases with no improvement in the value of the

objective function. In rare cases, the algorithm may

cycle repeatedly through the same sequence of bases

and never converge to an optimal solution. Anticycling

rules, and perturbation and lexicographic techniques

prevent this risk, but usually at some computational

expense.
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See

▶Anticycling Rules

▶Bland’s Anticycling Rules

▶Cycling

▶Linear Programming

▶ Simplex Method (Algorithm)
D

Degeneracy Graphs

Tomas Gal

Fern Universit€at in Hagen, Hagen, Germany
Degeneracy Graphs, Table 1 Values for s, Umin, Umax

n s Umin Umax

5 3 16 56

10 5 12 3003

50 5 752 3.48 � 106

50 40 6.59 � 1012 5.99 � 1025

100 30 3.865 � 1010 2.61 � 1039

100 50 2.93 � 1016 2.01 � 1040

100 80 1.33 � 1025 3 � 1052
Introduction

For a given linear-programming problem, primal

degeneracy means that a basic feasible solution has at

least one basic variable equal to zero. The problem is

dual degenerate if a nonbasic variable has its reduced

cost equal to zero (the condition for a multiple optimal

solution to exist). Primal degeneracy may arise when

there are some (weakly) redundant constraints

(Karwan et al. 1983) or the structure of the

corresponding convex polyhedral feasible set causes

an extreme point to become overdetermined.

In nonlinear programming, such points are

sometimes called singularities (Guddat et al. 1990).

Here, constraint redundancy is equivalent to the

failure of the linear independence constraint

qualification of the binding constraint gradients,

which, in general, leads to the nonuniqueness of

optimal Lagrange multipliers (Fiacco and Liu 1993).

We focus here on primal degeneracy in the linear

case: it is associated with multiple optimal bases and it

allows for basis cycling to occur, that is, the

nonconvergence of the simplex method due to the

repeating of a sequence of nonoptimal feasible bases.

Let s, called the degeneracy degree, be the number

of zeros in a basic feasible solution. Also, let Umin and

Umax be the minimal and the maximal number of

possible bases associated with a degenerate vertex,

respectively (Kruse 1986). To illustrate how many

bases can be associated with a degenerate vertex,

Table 1 shows, for some values for n, the number

of (decision) variables, the associated values of s,
Umin and Umax.
Historical Background

Soon after the simplex method had been invented by

George Dantzig, he recognized that degeneracy in the

primal problem could cause a cycle of bases to occur.

In fact, Dantzig’s original convergence proof of the

simplex method assumed that all basic feasible

solutions were nondegenerate. In the Fall of 1950,

Dantzig made the first suggestion of a nondegeneracy

procedure in a lecture on linear programming (LP)

(Dantzig 1963). Charnes (1952) proposed a so-called

perturbation method to prevent cycling. Since then,

many variants of nondegeneracy and anticycling

methods have been developed. For a review of

degeneracy and its influence on computation, see Gal

(1993).
In the end of the 1970s, a unifying approach to the

analysis of degeneracy problems was proposed in

terms of degeneracy graphs (Gal 1985). These graphs
are used to define the connections among the bases

associated with a degenerate vertex. From Table 1, it

obvious that for real-world problems, with large

numbers of constraints and variables, such systems of

connections might have quite complex structures. It

was felt that the language of graph theory could be

applied to good advantage in explaining the

relationships between degenerate bases.

Since they were first proposed, degeneracy graphs

have become an important topic of research

(Geue 1993; Kruse 1986; Niggemeier 1993; Zörnig

1993). In these works, the general theory of

degeneracy graphs has been developed, the

possibilities for their application to transportation,

integer programming and other problems have been

studied, and algorithmic aspects to solve various

degeneracy problems have been investigated.

The main problem that led to the idea of using

a graph theoretical representation was the so called

http://dx.doi.org/10.1007/978-1-4419-1153-7_200956
http://dx.doi.org/10.1007/978-1-4419-1153-7_200009
http://dx.doi.org/10.1007/978-1-4419-1153-7_200118
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
http://dx.doi.org/10.1007/978-1-4419-1153-7_200768
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neighboring problem: Given a vertex of a convex

polytope, find all neighboring vertices. This is not

a problem if the given vertex is nondegenerate. It

becomes a problem (Table 1) when the given vertex

is degenerate.
Degeneracy Graphs

Given a s-degenerate vertex xo; to this vertex the set
Bo ¼ BjB feasible basis of xof g

is assigned. Denote
by ‘‘ þ! ’’ a pivot � stepwith a positive

pivot a positive pivot� stepð Þ
by ‘‘ �! ’’ a pivot� stepwith a negative

pivot a negative pivot � stepð Þ
by ‘‘ ! ’’ a pivot� step if any nonzero

pivot can be used pivot� stepð Þ:

The graph of a polytope X is the undirected graph
GðXÞ :¼ G ¼ V;Eð Þ;

where
V ¼fBjB is a feasible basis of the corresponding

system of equationsg

and
E ¼ B;B0f g � VjB þ! B0f g:

The degeneracy graph (DG) that is used to study

various degeneracy problems with respect to a

degenerate vertex is defined as follows.

Let xo ∈ X � ℜn be a s-degenerate vertex. Then

the (undirected) graph
G xoð Þ :¼ Go ¼ Bo;Eoð Þ

where

Eo ¼ Bu;Bvf g � BojBu  ! Bvf g; u; v
2 1; . . . ;Uf g;Umin � U � Umax (1)
and U, the degeneracy power of xo, is called the

general s � n � G of xo. If, in (1), the operator

is ← + ! or ← � !, then the corresponding graph

is called the positive or negative DG of xo,

respectively.

These notions have been used to develop a theory of

the DG. For example: the diameter, d, of a general DG

satisfies d � min{s, n}; a general DG is always

connected; a formula to determine the number of

nodes of a DG has been developed; the connectivity

of a DG is �2; every pair of nodes in any DG lies on

a cycle (Zörnig 1993).

An interesting consequence of this theory is that

every degenerate vertex can be exited in at most d

(diameter) steps. Other theoretical properties of DGs

help in explaining problems in, for example,

sensitivity analysis with respect to a degenerate

vertex (Gal 1997; Kruse 1993). Also, this theory

helps to work out algorithms to solve the

neighborhood problem and to determine all vertices

of a convex polytope (Gal and Geue 1992; Geue

1993; Kruse 1986). With respect to a degenerate

optimal vertex of an LP-problem, algorithms to

perform sensitivity analysis and parametric

programming have been developed (Gal 1995).

Also, the connection between weakly redundant

constraints, degeneracy and sensitivity analysis has

been studied (Gal 1992).
Concluding Remarks

Degeneracy graphs have been applied to help solve

the neighborhood problem, to explain why cycling in

LP occurs, to develop algorithms to determine

two-sided shadow prices, to determine all vertices of

a (degenerate) convex polyhedron, and to perform

sensitivity analysis under (primal) degeneracy.

DGs can be used in any mathematical-programming

problem that uses some version of the simplex

method or, more generally, in any vertex searching

method.
See

▶Degeneracy

▶Graph Theory

▶Linear Programming

http://dx.doi.org/10.1007/978-1-4419-1153-7_200126
http://dx.doi.org/10.1007/978-1-4419-1153-7_402
http://dx.doi.org/10.1007/978-1-4419-1153-7_545
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▶ Parametric Programming

▶Redundant Constraint

▶ Sensitivity Analysis
D
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Degenerate Solution

A basic (feasible) solution in which some basic

variables are zero.
See

▶Anticycling Rules

▶Cycling

▶Degeneracy

▶Degeneracy Graphs
Degree

The number of edges incident with a given node in

a graph.
See

▶Graph Theory
Delaunay Triangulation

▶Computational Geometry

▶Voronoi Constructs
Delay

The time spent by a customer in queue waiting to start

service.
See

▶Queueing Theory

▶Waiting Time
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James A. Dewar and John A. Friel
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Introduction

The Delphi method was developed at the RAND

Corporation from studies on decision making that

began in 1948. The seminal work, “An Experimental

Application of the Delphi Method to the Use of

Experts,” was written by Dalkey and Helmer (1963).

The primary rationale for the technique is the

age-old adage “two heads are better than one,”

particularly when the issue is one where exact

knowledge is not available. It was developed as an

alternative to the traditional method of obtaining

group opinions — face-to-face discussions.

Experimental studies had demonstrated several

serious difficulties with such discussions. Among

them were: (1) influence of the dominant individual

(the group is highly influenced by the person who talks

the most or has most authority); (2) noise (studies

found that much communication in such groups had

to do with individual and group interests rather than

problem solving); and (3) group pressure for

conformity (studies demonstrated the distortions of

individual judgment that can occur from group

pressure).

The Delphi method was specifically developed to

avoid these difficulties. In its original formulation

it had three basic features: (1) anonymous

response — opinions of the members of the group are

obtained by formal questionnaire; (2) iteration and

controlled feedback — interaction is effected by

a systematic exercise conducted in several iterations,

with carefully controlled feedback between rounds;

and (3) statistical group response — the group

opinion is defined as an appropriate aggregate of

individual opinions on the final round.

Procedurally, the Delphi method begins by having

a group of experts answer questionnaires on a subject

of interest. Their responses are tabulated and fed back

to the entire group in a way that protects the anonymity

of their responses. They are asked to revise their own

answers and comment on the group’s responses. This

constitutes a second round of the Delphi. Its results are
tabulated and fed back to the group in a similar manner

and the process continues until convergence of

opinion, or a point of diminishing returns, is reached.

The results are then compiled into a final statistical

group response to assure that the opinion of every

member of the group is represented.

In its earliest experiments, Delphi was used for

technological forecasts. Expert judgments were

obtained numerically (e.g., the date that a

technological advance would be made), and in that

case it is easy to show that the mean or median of

such judgments is at least as close to the true answer

as half of the group’s individual answers. From this,

the early proponents were able to demonstrate that the

Delphi method produced generally better estimates

than those from face-to-face discussions.

One of the surprising results of experiments

with the technique was how quickly in the successive

Delphi rounds that convergence or diminishing returns

is achieved. This helped make the Delphi technique

a fast, relatively efficient, and inexpensive tool for

capturing expert opinion. It was also easy to

understand and quite versatile in its variations.

By 1975, there were several hundred applications of

the Delphi method reported on in the literature. Many

of these were applications of Delphi in a wide variety

of judgmental settings, but there was also a growing

academic interest in Delphi and its effectiveness.
Critique

Sackman (1975), also of the RAND Corporation,

published the first serious critique of the Delphi

method. His book, Delphi Critique, was very critical

of the technique — particularly its numerical

aspects — and ultimately recommended (p. 74)

“that . . . Delphi be dropped from institutional,

corporate, and government use until its principles,

methods, and fundamental applications can be

experimentally established as scientifically tenable.”

Sackman’s critique spurred both the development

of new techniques for obtaining group judgments

and a variety of studies comparing Delphi with other

such techniques. The primary alternatives can be

categorized as statistical group methods (where the

answers of the group are tabulated statistically

without any interaction); unstructured, direct

interaction (another name for traditional, face-to-face
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discussions); and structured, direct interaction (such as

the Nominal Group Technique of Gustafson et al.

1973). In his comprehensive review, Woudenberg

(1991) found no clear evidence in studies done for

the superiority of any of the four methods over the

others. Even after discounting several of the studies

for methodological difficulties, he concludes that the

original formulation of the quantitative Delphi is in no

way superior to other (simpler, faster, and cheaper)

judgment methods.

Another comprehensive evaluation of Delphi

(Rowe et al. 1991) comes to much the same

conclusion that Sackman and Woudenberg did, but

puts much of the blame on studies that stray from the

original precepts. Most of the negative studies use

non-experts with similar backgrounds (usually

undergraduate or graduate students) in simple tests

involving almanac-type questions or short-range

forecasts. Rowe et al. (1991) point out that these are

poor tests of the effects that occur when a variety of

experts from different disciplines iterate and feed back

their expertise to each other. They conclude that

Delphi does have potential in its original intent as

a judgment-aiding technique, but that improvements

are needed and those improvements require a better

understanding of the mechanics of judgment change

within groups and of the factors that influence the

validity of statistical and nominal groups.
Applications

In the meantime, it is generally conceded that Delphi is

extremely efficient in achieving consensus and it is in

this direction that many subsequent Delphi evaluations

have been used. Variations of the Delphi method, such

as the policy Delphi and the decision Delphi, generally

retain the anonymity of participants and iteration of

responses. Many retain specific feedback as well, but

these more qualitative variations generally drop the

statistical group response. Delphi has been used in

a wide variety of applications from its original

purpose of technology forecasting (one report says

that Delphi has been adopted in approximately 90%

of the technological forecasts and studies of

technological development strategy in China) to

studying the future of medicine, examining possible

shortages of strategic materials, regional planning of

water and natural resources, analyzing national drug
abuse policies, and identifying corporate business

opportunities.

In addition, variations of Delphi continue to

be developed to accommodate the growing

understanding of its shortcomings. For example, a

local area network (LAN) was constructed, composed

of lap-top computers connected to a more capable

workstation. Each participant had a dedicated

spreadsheet available on a lap-top computer. The

summary spreadsheet maintained by the workstation

was displayed using a large-screen projector, and

included the mean, media, standard deviation, and

histogram of all the participants scores. In real-time,

the issues were discussed, the various participants

presented their interpretation of the situation,

presented their analytic arguments for the scores they

believed to be appropriate, and changed their scoring

as the discussion developed. Each participant knew

their scores, but not those of the other participants.

When someone was convinced by the discussions to

change a score they could do so anonymously. The

score was transmitted to the workstation where a new

mean, median, standard deviation, and histogram were

computed and then displayed using a large screen

projector. This technique retained all the dimensions

of the traditional Delphi method and at the same time

facilitated group discussion and real-time change

substantially shortening the time typically required to

complete a Delphi round.
See

▶Decision Analysis

▶Group Decision Computer Technology

▶Group Decision Making
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Density

The proportion of the coefficients of a constraint matrix

that are nonzero. For a given (m� n) matrix A¼ (aij), if

k is the number of nonzero aij, then the density is given
by k/(m � n). Most large-scale linear-programming

problems have a low density of the order of 0.01.
See

▶ Sparse Matrix

▶ Super-Sparsity
Density Function

When the derivative f(x) of a cumulative probability

distribution function F(x) exists, it is called the density

or probability density function (PDF).
See

▶ Probability Density Function (PDF)
Departure Process

Usually refers to the random sequence of customers

leaving a queueing service center. More generally, it is

the random point process or marked point process with

marks representing aspects of the departure stream

and/or the service center or node from which they

are leaving. For example, the marked point process

(Xd, Td) for departures from an M/G/1 queue takes Xd

as the Markov process for the queue length process
immediately after the departure time and Td is the

actual time of departure.
See

▶Markov Chains

▶Markov Processes

▶Queueing Theory
Descriptive Model

A model that attempts to describe the actual

relationships and behavior of a man/machine system.

For a decision problem, such a model attempts to

describe how individuals make decisions.
See

▶Decision Problem

▶Expert Systems

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model
Design and Control

For a queueing system, design deals with the

permanent, optimal setting of system parameters

(such as service rate and/or number of servers), while

control deals with adjusting system parameters as the

system evolves to ensure certain performance levels

are met. A typical example of a control rule is that

a server is to be added when the queue size is greater

than a certain number (sayN1) and when the queue size

drops down to N2< N1, the server goes to other duties.
See

▶Dynamic Programming

▶Markov Decision Processes

▶Queueing Theory
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Detailed Balance Equations

A set of equations balancing the expected, steady-state

flow rates or probability flux between each pair of

states or entities of a stochastic process (most

typically a Markov chain or queueing problem), for

example written as:

D

pjq j; kð Þ ¼ pkq k; jð Þ

where pm is the probability that the state is m and

q(m, n) is the flow rate from states m to n.
The states may be broadly interpreted to be

multi-dimensional, as in a network of queues, and

the entities might be individual service centers or

nodes. Contrast this with global balance equations,

where the average flow into a single state is equated

with the flow out.
See

▶Markov Chains

▶Networks of Queues

▶Queueing Theory
Determinant

▶Matrices and Matrix Algebra
Deterministic Model

A mathematical model in which it is assumed that all

input data and parameters are known with certainty.
See

▶Descriptive Model

▶Mathematical Model

▶Model

▶Normative Model

▶ Prescriptive Model

▶ Stochastic Model
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Introduction

OR started to establish itself in the developing

countries in the 1950s, approximately one decade

after its post-war inception in Great Britain and the

United States. The main organizational basis of OR in

the developing world are the national OR societies.

These are in some cases well established, in other

cases incipient. A number of them are members of

the International Federation of Operational Research

Societies (IFORS) and belong to regional groups

within IFORS. In particular, ALIO, the Association

of Latin American OR Societies, has the majority of

its member societies belonging to developing

countries. APORS, the Association of Asian-Pacific

OR Societies within IFORS, also represents OR

societies from developing countries. In 1989

a Developing Countries Committee was established

as part of the organizational structure of IFORS, with

the objective of coordinating OR activities in the

developing countries and promoting OR in these

countries.
The Social, Political, and Technological
Environment

To speak of developing countries in general may

lead to erroneous conclusions, since the conditions

vary enormously from one country to another.

First of all, how to characterize a developing

country? Which countries may be classified as

developing? The United Nations has, for some

years now, started to distinguish between more

and less developed countries in the developing

world. It has adopted the term “less developed

countries” (LDCs) to address those developing

countries that fall below some threshold levels

measured by social and economic indicators.

But these questions are clearly well beyond the

scope here.
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The view here is that developing countries are those

in which large strata of the population live at or below

the subsistence level, where social services are

practically nonexistent for the majority of the

population, where the educational and cultural levels

are in general very low. The political consequence of

this state of affairs is a high degree of instability for the

institutions of these countries, at all levels.

The economy is generally very dependent on the

industrialized nations. Bureaucracy, economic

dependence and serious problems of infrastructure

conspire against economic growth. In the technical

sphere there is again a high level of dependency on the

industrialized world, with very little technological

innovation produced locally. It is against this difficult

background that one must consider the role OR can play

and how OR can be used as a tool for development.
The Use of OR

Here the existence of three different emphases in the

development of OR is considered: (i) development of

theory, which takes place mostly in the universities;

(ii) development of methods for specific problems,

which occurs both in the universities and in the

practical world; (iii) applications, which occur mostly

in the practical world. The problems of OR are

therefore a continuum, and both developing and

industrialized nations share in all these three aspects

of the continuum. The more important aspect for the

developing countries tends, however, to be

applications due to the nature of problems these

nations have to face and their social, political, and

technological environment discussed above.

According to Rosenhead (1995), another important

aspect is that existing theory and methods, grown in

the developed world, are in many cases a poor fit for

the problems facing the developing countries. Work on

novel applications will be likely to throw up new

methods and techniques of general interest.

The use of OR in the developing world is often seen

as disconnected from the socio-economic needs of the

respective countries, see Galvão (1988). Valuable

theoretical contributions originate in these countries,

but little is seen in terms of new theory and methods

developed for the problems facing them.

A common situation in developing countries is

a highly uncertain environment, which leads to the
notion of wicked problems. These are, for example,

problems for which there is often little or no data

available, or where the accuracy of data is very poor.

Complex decisions must nevertheless be made, against

a background of competing interests and decision

makers. There are not many tools available for

solving these wicked problems, which are quite

common in developing countries.

One of the main characteristics of applied OR

projects in developing countries is that a large

majority of them have not been implemented, see

Löss (1981). This is due to a high degree of

instability in institutions in these countries, to a lack

of management education in OR, and to a tendency by

OR analysts to attempt to use sophisticated OR

techniques without paying due attention to the local

environment and to the human factor in applied OR

projects. These issues arise both in developed and

developing countries, but experience indicates that

they are more often overlooked in the latter.

A Special Issue of the European Journal of

Operational Research (Bornstein et al. 1990) was

dedicated to OR in Developing Countries. A review

paper (White et al. 2011) provides an overall picture of

the state of OR in the developing countries. In

particular, it examines coverage in terms of countries

and methods and highlights the contribution which OR

is making towards the theme of poverty, the reduction

of which is regarded as the key focus of development

policy interventions as reflected in the Millennium

Development Goals. Jaiswal (1985) and Rosenhead

and Tripathy (1996) contain important contributions

to the subject of OR in developing countries.
ICORD ’92: The Ahmedabad Conference

Since the 1950s, there has been a controversy on the

role of OR in developing countries. The central issue in

this controversy is the following: Is there a separate OR

for developing countries? If so, what makes it different

from traditional OR? What steps could be taken to

further OR in developing countries?

This issue has been discussed in different venues

and several published papers have addressed it, see,

for example, Bornstein and Rosenhead (1990).At one

end of the scale there are those who think that there is

nothing special about OR in developing countries,

perhaps only less resources are available in these
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countries to conduct theoretical/applied work. They

argue that the problem should resolve itself when

each country reaches appropriate levels of

development, and not much time should be

dedicated to this issue. At the other end there are

those who think that because of a different material

basis and due to problems of infrastructure, OR does

have a different role to play in these countries. In the

latter case, steps should be taken to ensure that OR

plays a positive role in the development of their

economies and societies.

Much changed in the latter part of the 1990s with

the demise of communism in Europe and the

emphasis on the globalization of the economy. The

viewpoint that there is a separate OR for developing

countries lost strength as a consequence. It had its

high moment during ICORD ’92, the first

International Conference on Operational Research

for Development, which took place in December

1992, at the Indian Institute of Management (IIM) in

Ahmedabad. It was supported by IFORS, The British

OR Society and the OR Society of India. It was partly

funded by IIM itself, The Tata Iron and Steel

Company (India) and (indirectly) by the

Commonwealth Secretariat. Participants at the

Conference numbered more than 60 and countries

represented included Australia, Brazil, Eire, Great

Britain, Greece, India, Kenya, Malaysia, Mexico,

Nigeria, Peru, South Africa, Sri Lanka, United

States, and Venezuela. Some 40 contributed papers

were delivered and plenary speakers included the

President of IFORS, Professor Brian Haley,

Professor Kirit Parikh, Director of the Indira Ghandi

Institute for Development in Bombay, and Dr.

Francisco Sagasti of Peru, who had just spent five

years in senior positions at the World Bank

(Rosenhead 1993).

A series of plenary sessions were held, which

resulted in a statement which has come to be known

as the Ahmedabad Declaration, a political document

drafted with the intention of strengthening the OR

for Development movement, that called for

a range of actions from IFORS to support and

strengthen OR in developing countries, including

a call for more space for discussion of OR for

Development issues in OR departments in developed

countries, for IFORS support for successor

conferences to ICORD ’92, and for IFORS increased

economic support of OR activities in developing
countries. It relied mainly on IFORS for its

implementation. Despite IFORS’ continued support

of some OR activities in the developing countries,

few of the main recommendations of the declaration

were implemented. ICORD ’96, the second

Conference in the series, which took place in Rio de

Janeiro, Brazil, in August 1996, was a disappointing

sequel to the Ahmedabad Conference and signaled the

decline of the movement.

Despite the perceived lack of commitment on the

part of IFORS to implement these proposals

(Rosenhead 1998), IFORS support of development

related OR activities have continued, including the

support of successor ICORDs, held in Manila, The

Philippines (1997), Berg-en-Dal, South Africa

(2001), Jamshedpur, India (2005), Fortaleza, Brazil

(2007) and Djerba Island, Tunisia (2012). The IFORS

Prize for OR in Development (known as the Third

World Prize until 1993) competition has been held at

every triennial conference since 1987. The Prize

recognizes exemplary work in the application of OR

to address issues of development. More recently,

a particular focus has been encouraging the

development of an OR infrastructure in Africa, and,

with EURO, IFORS has sponsored conferences and

scholarships in the African continent.

A fuller account of IFORS initiatives in promoting

the use of OR for development is described in by Rand

(2000). See also del Rosario and Rand (2010).

Is it safe to conclude, therefore, that those who

advocate that there is nothing special about OR in

developing countries had the better insight on the

controversy? The hard facts of life show that little has

changed in the social, political and technological

environment in the developing countries. The decline

of the OR for Development movement is a consequence

of the new balance of power in global affairs since the

Soviet Union ceased to exist. This decline did not occur

because conditions in the developing world improved,

or because OR has failed to contribute to the

development of the respective economies and societies.
See

▶ IFORS

▶ Practice of Operations Research and Management

Science

▶Wicked Problems
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Development Tool

Software used to facilitate the development of expert

systems. The three types of tools are programming

languages, shells, and integrated environments.
See

▶Expert Systems
Devex Pricing

A criterion for selecting the variable entering the basis in

the simplex method. Devex pricing chooses the

incoming variable with the largest gradient in the space
of the initial nonbasic variables. This is contrasted with

the usual simplexmethod entering variable criterion that

chooses the incoming variable based on the largest

gradient in the space of the current nonbasic variables.

The Devex criterion tends to reduce greatly the total

number of simplex iteration on large problems.
See

▶Linear Programming

▶ Simplex Method (Algorithm)
Deviation Variables

Variables used in goal programming models to

represent deviation from desired goals or resource

target levels.
See

▶Goal Programming
DFR

Decreasing failure rate.
See

▶Reliability of Stochastic Systems
Diameter

Themaximumdistancebetweenany twonodes inagraph.
See

▶Graph

▶Graph Theory
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Diet Problem

A linear program that determines a diet satisfying

specified recommended daily allowance (RDAs)

requirements at minimum cost. Stigler’s diet problem

was one of the first linear-programming problems

solved by the simplex method.

D

See

▶Linear Programming

▶ Simplex Method (Algorithm)

▶ Stigler’s Diet Problem
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Introduction

Differential games offer a valuable modeling

approach for problems in operations research

(OR) and management science (MS). Differential

game models are useful because they combine the

key aspects of dynamic optimization and game

theory. As such, differential game modeling

allows the analysis of a broad set of problems

that involve decisions by multiple players over

a time horizon. After a discussion of the

essential concepts of differential games,

applications from the literature are reviewed as

examples of how differential game methodology

has been used to study problems of interest to OR

and MS.
Discussion

A differential game is a game with continuous-time

dynamics. Two types of variables are involved, state

variables and control variables, both of which vary with

time. Control variables are managed by the players.

State variables are subject to the dynamic influence of

the control variables, and evolve according to

differential equations. Each player has an objective

function that consists of a stream of instantaneous

payoffs integrated over a horizon, plus, perhaps,

a salvage value if the horizon is finite. The decision

problem for each player is to determine a continuous

path of control variable values that maximizes the

player’s objective function, while taking into account

what the player knows or anticipates about the decisions

of the other players in the game.

Complete information is assumed in a differential

game, so that player outcomes given different

combinations of player strategies are known to all

players, and each player is able to infer correctly the

best strategies for the other players. Also, an

assumption is typically made that the players are

unable to agree to cooperate, and so are engaged in

a noncooperative differential game. Further, if the

players choose their strategies simultaneously,

the appropriate way to determine what strategies the

players are likely to adopt is to identify a Nash

equilibrium. A Nash equilibrium is a set of player

strategies such that each player is unable to improve

their outcome, given the strategies of the remaining

players. In a Nash equilibrium, no individual player

has an incentive to deviate to another strategy.

There are two types of Nash equilibrium that can be

derived: open-loop and feedback. Alternative terms for

feedback are closed-loop and Markovian (Dockner

et al. 2000, p. 59). The two equilibrium types differ

in terms of what information is used to develop the

players’ strategies. In an open-loop Nash equilibrium,

the players’ strategies are a function of time only,

while feedback Nash equilibrium strategies depend

on levels of the state variables as well as time.

Further, for a differential game with an infinite

horizon, and in which time is an explicit factor in the

objective functions only through discount factors, it is

appropriate to focus on stationary feedback strategies,

which depend on levels of the state variables only

(Jørgensen and Zaccour 2004, pp. 7–8).
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Different methods are typically used to derive the

different Nash equilibrium concepts. The maximum

principle of optimal control, with Hamiltonians and

costate variables, is used to determine open-loop

Nash equilibria (Kamien and Schwartz 1991, p. 274).

To derive an open-loop equilibrium, a Hamiltonian is

created for each player, and necessary conditions

produce a system of differential equations that can be

solved numerically as a two-point boundary value

problem.

In theory, a feedback Nash equilibrium can also be

determined using optimal control methods, but the

maximum principle is difficult to apply for feedback

strategies, since the solution requires that the strategies

of the players be known even as they need to be

derived. An alternative way to develop feedback

Nash equilibrium strategies is through a dynamic

programming approach with value functions and

Hamilton-Jacobi-Bellman equations (Kamien and

Schwartz 1991, p. 276). The Hamilton-Jacobi-Bellman

equations form a system of partial differential

equations, which for many problems are inherently

impossible to solve. For certain problems, though, it is

possible to discern an appropriate functional form for

the value functions that allows a solution. In particular,

for infinite horizon games, it is often possible to derive

stationary feedback equilibrium strategies analytically

as closed-form functions of the state variables.

An alternative to simultaneous play of strategies is

that of Stackelberg games (Dockner et al. 2000, ch.5;

Jørgensen and Zaccour 2004, pp. 17–22). Stackelberg

games have an alternative information structure, one in

which one player takes on a leadership role and makes

their strategy choice known before other players

choose their strategies. Such a structure can be

appropriate for certain problems, such as supply

chain management, where coordination may be

achieved to benefit of the supply chain overall

through one of the members of the supply chain

taking a leadership role.

As for Nash equilibria in games with simultaneous

play, there are open-loop and feedback Stackelberg

equilibria that can be derived. In an open-loop

Stackelberg equilibrium with two players (Dockner

et al. 2000, pp. 113–134; Jørgensen and Zaccour

2004, pp. 17–20), the Stackelberg leader announces

a control path, and, if the Stackelberg follower

believes that the leader will stay with the announced

control path, the follower will determine their best
response control path by solving an optimal control

problem with the leader’s control path as given. The

leader then solves an optimal control problem that

incorporates the follower’s best response.

For a feedback Stackelberg equilibrium, Basar and

Olsder (1995, pp. 416–420) present a feedback

Stackelberg solution, which involves instantaneous

stagewise Stackelberg leadership, where a stage is an

arbitrary combination of time and state variable values.

In the development of the feedback Stackelberg

solution, stagewise Hamilton-Jacobi-Bellman

equations are formed for the leader and the follower,

the equation for the follower defining an optimal

response and that for the leader incorporating the

optimal response of the follower.

The open-loop and feedback equilibrium concepts

for both Nash and Stackelberg games can be further

examined on the basis of important credibility-related

criteria. Dockner et al. (2000, pp. 98–105) and

Jørgensen and Zaccour (2004, pp. 15-16) discuss two

such criteria, time consistency and subgame

perfectness.

A Nash equilibrium is time consistent if at some

intermediate point in a differential game, the players

choose not to depart from their equilibrium strategies.

Dockner et al. (2000, p. 99) and Jørgensen and Zaccour

(2004, p. 15) define a subgame that begins at an

intermediate time point in the game, and has particular

values for the state variables at the time. An equilibrium

for the original game “. . .is time consistent if it is also an

equilibrium for any subgame that starts out on the

equilibrium state trajectory. . .” (Jørgensen and

Zaccour 2004, p. 15). Both open-loop and feedback

Nash equilibria are time consistent. The open-loop

Stackelberg equilibrium is not always time consistent,

however. As Dockner et al. (2000, pp. 113–134)

discuss, an open-loop Stackelberg equilibrium fails to

be time consistent in games in which the leader finds it

to their benefit to reset its control path at a some point in

time after the game has begun.

Subgame perfectness is a stronger condition than

time consistency, requiring that an equilibrium also be

an equilibrium for any possible subgame, “. . .not only

along the equilibrium state trajectory, but also in any

(feasible) position. . .off this trajectory.” (Jørgensen

and Zaccour 2004, p. 16). A feedback Nash

equilibrium that satisfies the Hamilton-Jacobi-Bellman

equations, is by construction subgame perfect. Also, the

feedback Stackelberg solution is, according to Basar
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and Olsder (1995, p. 417), “. . .strongly time consistent

(by definition)”, and strong time consistency coincides,

at least essentially, with subgame perfectness (Dockner

et al. 2000, pp. 106–107).
D

Differential Game Applications

The differential game framework is designed to model

the decisions of multiple decision makers in

a continuous-time dynamic context. This framework

can be applied to a variety of problem areas of interest

and relevance to OR and MS. Furthermore, modeling

the passage of time as continuous, rather than discrete,

allows the possibility of mathematical, and therefore

generalizable, conclusions. This section discusses

applications in advertising, pricing, production, and

supply chain management.

Advertising

Competitive advertising in the context of dynamics has

been especially a popular area of study. Erickson

(2003) provides a review. Two particular models of

demand evolution have acted as foundations for

differential-game applications to advertising. Kimball

(1957, pp. 201–202) presents four versions of

Lanchester’s formulation of the problem of combat,

one of which, Model 4,
dn1 dt= ¼ k1n2 � k2n1; dn2 dt= ¼ k2n1 � k1n2

has become the foundation for what is known as the

Lanchester model. Kimball (1957, p. 203) offers the

following interpretation of Model 4: “The n1 and n2
are then to be interpreted as the numbers of customers

for two similar products, while k1 and k2 are in

essence the amounts of advertising.” The Lanchester

model in application is generally interpreted in terms

of market shares rather than numbers of customers

(Erickson 2003, p. 10), so that advertising for

a competitor works to attract market share from the

competitor’s rival.

Vidale and Wolfe (1957) introduce a model of sales

evolution for a monopolistic company
dS dt= ¼ bAðtÞ M � Sð Þ M= � lS

in which A(t) is the advertising rate, S the sales rate,M

the maximum sales potential, b an advertising
effectiveness coefficient, and l a sales decay

parameter. In the Vidale-Wolfe model, advertising

attracts demand from the untapped sales potential,

and the sales attracted are subject to decay. Although

the Vidale-Wolfe model is defined for a monopolist, it

has been adapted for the study of advertising

competition.

Many differential-game applications using the

Lanchester and Vidale-Wolfe models study open-loop

Nash equilibria, since the two models do not readily

allow the derivation of subgame-perfect feedback Nash

equilibria. Sorger (1989) offers a modification of the

Lanchester model that does allow a feedback

equilibrium to be derived for duopolistic competitors.

Sorger (1989, p. 58) develops a differential game with

market-share dynamics

_xðtÞ ¼ u1ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xðtÞ

p
� u2ðtÞ

ffiffiffiffiffiffiffiffi
xðtÞ

p
; xð0Þ ¼ x0:

where _xðtÞ ¼ dx dt= ; x(t) is competitor 1’s market

share, and u1ðtÞ and u2ðtÞ are advertising rates for

firm’s 1 and 2, respectively. The square-root form in

the market share equation in the model allows

value functions that are linear in the market share

state variable, which allows a solution to the

Hamilton-Jacobi-Bellman equations for the

differential game. Sorger derives both open-loop and

feedback equilibria, and finds that the feedback and

open-loop equilibria do not coincide.

The Sorger (1989) modification of the Lanchester

model allows subgame-perfect feedback Nash

equilibria for a duopoly. Feedback equilibria,

however, are not achievable in an extension of the

Lanchester model to a general oligopoly, in which

the number of competitors may exceed two. For an

oligopoly, Erickson (2009a, b) provides a modification

of the Vidale-Wolfe model that allows the derivation

of feedback equilibria. Erickson’s (2009a) model has

sales dynamics for each oligopolistic competitor i of

n > 2 total competitors,

_si ¼ biai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N �

Xn
j¼1

sj

vuut � risi:

In the model, ai is the advertising rate, si the sales

rate, N the maximum sales potential, bi an advertising

effectiveness parameter, and ri a sales decay

parameter. The expression under the square-root sign
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represents untapped potential, that is, the maximum

sales potential minus the total sales for all n

competitors, including competitor i. An instantaneous

change in the sales rate for a competitor comes from two

sources: (1) the competitor’s advertising attracting sales

from the untapped potential in square-root form,

(2) a decay from the competitor’s current sales rate.

Erickson (2009b) extends the model to allow multiple

brands for each competitor. As for the Sorger (1989)

model, the square-root form in the model allows value

functions linear in the state variables, so that the

Hamilton-Jacobi-Bellman equations can be solved.

Both the Sorger (1989) and Erickson (2009a, b)

models are related to a monopolistic modification of

the Vidale-Wolfe model suggested by Sethi (1983).

Erickson (2009a) uses the derived expressions

for feedback Nash equilibrium advertising strategies in

an empirical study of the U.S. beermarket, and Erickson

(2009b) empirically applies the multiple-brand model

extension to the carbonated soft drink market.

Pricing

Pricing is a primary and challenging task for

management. Prices are the source of revenue for the

firm, but also affect demand for the firm’s products,

especially in a competitive setting. The challenge is

compounded when dynamics are involved, and prices

are expected not to stay at the same levels. This is the

case for new products, in particular new durable

products, for which demand tends to develop through

a diffusion process that is influenced by the price

strategies of competing firms.

Bass (1969) provides a diffusion model of first-time

adoption of a new durable product that combines

innovation and imitation on the part of customers
SðTÞ ¼ pþ qYðTÞ=mð Þ m� YðTÞð Þ;

where S(T) represents current sales at time T and Y(T)
cumulative sales, so that S(T) ¼ dY(T) / dT. Further,

p is an innovation coefficient, q is an imitation

coefficient, and m is the total number of customers

who will eventually adopt the new product. The Bass

(1969) model has been accepted by much of the OR

and MS literature as the primary model of new durable

product diffusion.

The Bass (1969) model is for a single firm, and does

not consider price explicitly. Dockner and Jørgensen

(1988) develop a more general framework for new
product diffusion, one that includes competition and

prices, which they use to study new-product pricing

strategies through differential-game analysis. Dockner

and Jørgensen (1988, p. 320) offer the general

diffusion model specification
_xi ¼ f iðx1; :::; xM; p1; :::; pMÞ; xið0Þ ¼ xi0 � 0:

In the model, xi is the cumulative sales volume of

competitor i ¼ 1, 2,. . ., M, and the prices p1,. . ., pM of

the competitors are assumed to vary with time. To

determine their dynamic price strategies, each

competitor is assumed to seek to maximize its

objective function

Ji ¼
ZT
0

e�rit pi � cið Þf idt

where unit cost ci is a nonincreasing function of

cumulative sales xi, as is often the case with new

durable products, that unit cost declines with

experience. For mathematical tractability reasons,

Dockner and Jørgensen (1988) study open-loop Nash

equilibria.

Dockner and Jørgensen (1988) derive the necessary

conditions for an open-loop Nash equilibrium for their

differential game involving the general diffusion

model; for further insights, they analyze more

specific functional forms. They consider three special

cases, competition with price effects only,

multiplicative separable price and adoption effects,

and adoption effects only with a multiplicative

own-price effect.

Production

The management of production quantities and timing

is a critical operations function. Dynamics are

involved, since production plans may imply that

production does not equal customer demand at

particular times. This can result in inventories, which

need to be carried at a cost, or backlogs, which involve

delay in delivery to customers, presumably at a cost to

the firm.

Production management can be studied in

a competitive context. Eliashberg and Steinberg

(1991) consider the dynamic price and production

strategies of two competing firms with asymmetric
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cost structures. As Eliashberg and Steinberg (1991,

p. 1453) explain: “The objective of this paper is to

gain insight into the dynamic nature of the

competitive aspects of the various policies of two

firms, one operating at or near capacity, facing

a convex production cost, and the other operating

significantly below capacity, facing a linear cost

structure. The firms are assumed to face a demand

surge condition. We will refer to the firm operating at

or near capacity as the ‘Production-smoother’ and the

firm operating below capacity as the ‘Order-taker.’ ”

Eliashberg and Steinberg (1991) define a differential

game in which production levels and prices are control

variables for the two competing firms, and pursue an

open-loop Nash equilibrium. They derive several

propositions regarding the equilibrium policies of the

two competitors. A particular finding is that the

Production-smoother follows a strategy of first building

up inventory, then drawing the inventory down, and

finishing a seasonal period by engaging in a policy of

carrying zero inventory for a positive interval.

Supply Chain Management

A supply chain involves various independent players—

e.g., supplier, manufacturer, wholesaler, retailer—as raw

materials become products that are distributed to retail

locations where final customers are able to buy them. All

players have an economic stake in their position in the

supply chain that is affected by the decisions of the other

players. The interest of supply chain management is in

coordination of the decisions of the players, given the

players’ strategic interdependence.

When dynamics are involved, the interdependence

of the players in a supply chain can be interpreted as a

differential game. A cooperative differential game

would produce full coordination. However, since

binding agreements among the supply chain players

are difficult to establish and maintain, an alternative

focus is to consider noncooperative games with

coordinating mechanisms.

One mechanism for achieving coordination is

through one of the players in the chain becoming the

leader. If there are two players in a supply chain, the

differential game becomes a leader-follower game in

which a Stackelberg equilibrium provides the

coordinating solution. A study that considers this

approach is Jørgensen et al. (2001), who analyze the

advertising and pricing strategies of two players in

a marketing channel, a manufacturer and a retailer.
With the differential game that they develop,

Jørgensen et al. (2001) derive four different

equilibrium solutions: Markovian (feedback) Nash,

feedback Stackelberg with the retailer as the

Stackelberg leader, feedback Stackelberg with the

manufacturer as the leader, and a coordinated channel

solution. They give a detailed comparison of the

outcomes for the four solutions.
Concluding Remarks

This article outlines the basic concepts of differential

games, along with brief descriptions of relevant

applications. More in-depth coverage is given in

Dockner et al. (2000) and Jørgensen and Zaccour

(2004). Differential games provide a powerful

modeling framework for the study of the interaction

of multiple decision makers in dynamic settings. As

the applications illustrate, the understanding of

dynamic and game-theoretic OR and MS problems

has been advanced through the analysis of

differential-game models.
See

▶Advertising

▶Decision Analysis

▶Dynamic Programming

▶Game Theory

▶Marketing

▶ Production Management

▶ Supply Chain Management
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Diffusion Approximation

A heavy-traffic approximation for queueing systems

in which the infinitesimal mean and variance of

the underlying process are used to develop

a Fokker-Planck diffusion type differential equation

which is then typically solved using Laplace transforms.
See

▶Queueing Theory
Diffusion Process

A continuous-time Markov process on  or 00 which
is analyzed similar to a continuous-time physical

diffusion.
Digital Music

Elaine Chew

Queen Mary University of London, London, UK
Introduction

The advent of digital music has enabled scientific

approaches to the systematic study, computational

modeling, and explanation of human abilities in

music perception and cognition, and in music

making, which includes the activities of music

performance, improvisation, and composition. The

move from analog to digital music, and from music

stored on a compact disc to music streamed live over

the Internet, has brought new engineering challenges,

innovation opportunities, and creative outlets.

The pervasiveness of computing power and the

Internet has changed the ways in which people

interact with, and make, music. The research

communities at the cusp of music science and

engineering came about after the turn of the last

millennium, and have been increasing exponentially

since. A short list of the communities involved in

scholarly pursuits in music science and engineering is

provided in Chew (2008).
Impact of Digital Music Research

Science and technology has changed the face of arts

and humanities scholarship. Advances in digital music

technology have enabled new discoveries by

harnessing the computational power of modern

computers for music scholarship. For example, the

Joyce Hatto scandal, documented in The Economist

and elsewhere in 2007, in which over 100 CDs

released in recent years under her name were in fact

the work of other pianists, was unveiled in part because

of the machinery available to automatically evaluate

and compare recordings of musical works. The

technology exists to begin mapping the myriad

decisions involved in composing and performing

music, and to start charting human creativity. The

fact that mathematical models, and by extension

operations research (OR) methods, are widely applied

in digital music research and practice should come as

http://dx.doi.org/10.1007/978-1-4419-1153-7_847
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no surprise, given the historical connections between

music, mathematics, and computing.

The music technology industry has emerged as

a major economic force. The phenomenal explosion

in digital music information has led to the need for new

technologies to organize, retrieve, and navigate digital

music databases. Examples of major advances in the

organizing and retrieval of digital music include

Pandora, a personalized Internet radio service that

helps people discover new music according to their

tastes, and Shazam, a service that helps people

identify and locate the music they are hearing.

Pandora generates a playlist based on an artist or

song entered by the user, and refines future

recommendations based on user preference ratings of

the songs in that list. Shazam identifies the song and

artist, and the precise recording, from a musical

excerpt supplied by the user over a device such as an

iPhone. In both Pandora and Shazam, the user is

offered the opportunity to purchase the song that is

playing, or that has been identified, from various

vendors. As of 2010, Pandora had 50 million

registered users, and more than 1 billion stations,

covering 52% of the Internet radio market share. In

December 2010, Shazam announced that it has

surpassed 100 million users in 200 countries.

Any young or young-at-heart person may be familiar

with the music video game, Guitar Hero®, which allows

everyone to live the dream of being a rock star in their

own living room by pushing colored buttons on the

guitar interface in sync with approaching knobs in the

video screen. In a few short years, Guitar Hero took over

a significant share of the video game market, grossing

over two billion dollars by 2009 and leading to it being

featured in a South Park television episode. Bands

featured in the game — owned and marketed by

Activision — experience significant increases in song

sales, so much so that major labels vie for their music to

be included in new versions of it and in its successor,

Rock Bandpt® vie for their music to be included in new

versions.
Music Structure

The understanding of music structure is fundamental to

computer analysis of music, and a precursor to digital

music processing and manipulation. Music consists of

organized sounds with perceptible structures in both
time and frequency domains. Often, music can be

considered to comprise of a sequence of tones, or

several concurrent sequences of tones. Each tone has

properties such as pitch (the perceived fundamental

frequency of the tone), duration, timbre, and

loudness. Much of the music that is heard consists of

more than a single stream of tones. When hearing

multi-tone textures, the ear can segregate the

collection of sounds into streams. The most

prominent of these streams is often considered to be

the melody of the music piece. Structures relating to

individual streams as they progress over time are

sometimes referred to as horizontal structures. Like

language, music streams can be segmented into

phrases. Salient tone patterns in music phrases form

motifs, short patterns that recur and vary throughout

the piece. The varying of these patterns forms the

surface structure of the music piece.

Overlapping pitches in the overlay of multiple tone

sequences form chords; conversely, one could say that

chords consist of the synchronous sounding of two or

more pitches. Chords constitute mid-level structure in

music. Structures, such as chords, that relate to

synchronous sounds or chunks of music over

overlapping streams are sometimes referred to as

vertical structures. In Western tonal music, the pitches

and durations and their ordering generates the

perception of pitch stability relative to one another.

This pattern of perceived stability is set up as soon as

the ear hears as few as only three to four tones in the

sequence. The most stable pitch is the name of the key

of the tone sequence. The key, in turn, implies

adherence to the pitch set of the scale. The pitches in

a scale have varying levels of perceived stability, the

result of the physics of sound, the physiology of the ear,

or exposure to music. The varying of the most stable

pitch over time forms the deep structure of the piece.

The structure of a musical piece can also be

conceptualized as a sequence of section labels such

as AB (binary form), ABA (ternary form),

ABACAC0ADA (a sample rondo form), and

intro-(verse-chorus)n-outro (a common popular music

form). While some composers, when writing in a

particular genre, choose to adopt a particular form for

a composition, structure can also emerge from choices

made in composition or improvisation to manage a

listener’s attention.

Sequences of durations, or sequences of

inter-onset-intervals, form rhythms. Periodic onsets
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generate perceived beats, and accent and stress patterns

in beat and in rhythm sequences. The periodic accent

patterns in beat sequences, in turn, result in meter.

For example, there are cyclic patterns of four beats in

the march with a strongest-weak-strong-weak

accent pattern, whereas each of the four beats in a

tango is subdivided into two with a resulting

strong-weak-weak-strong-weak-weak-strong-weak

accent pattern. Conversely, the meter of a composition

often implies a persistent periodic accent pattern. The

beat rate charts the tempo of the music: a high beat rate

results in fast music, and a low beat rate results in slow

music. Like many things in art, it is deviations from the

norm that form the core of artistic expression. Thus, a

large part of expressive musical performance is the art

of systematically varying the tempo, and deviating

from an underlying time grid. For example, not

playing the beats as notated is essential to playing a

convincing swing rhythm. Other important parameters

of variation in expressive performance include

loudness and timbre.

Structure guides expressive decisions in

performance, and expressive performance, in turn,

influences structure. For example, a performer may

choose to emphasize unusual key changes by slowing

down the tempo and dramatically reducing the

loudness of the sound produced at the juncture of

change. Alternatively, by punctuating the playback of

a tone stream with judicially placed accents and

pauses, the performer can impute phrase and motivic

structure on a music stream.

Music problems can be broadly categorized into the

areas of analysis, performance, and composition and

improvisation. When the problems are concerned with

human abilities in music making and listening, they

also touch upon the area of music perception and

cognition. It is beyond the scope of this article to give

a comprehensive survey of problem formulations and

solutions in computational modeling of music. Rather,

this article focuses on representative problems in each

category and solutions, covering some essential

background on music representation and computation.
Computational Music Analysis

The goal of computational music analysis is to

automatically abstract structures, such as those

described above, from digital music.
Key and Harmony

The determination of key is a problem in the detection

of vertical pitch structure. Key finding (a.k.a. tonal

induction) can be described as the problem of finding

the note on which a music piece is expected to end. The

most stable pitch in a key is also the one that is expected

to end a piece of music in that key. Key finding is an

important step preceding a number of music

applications such as automatic music transcription,

accompaniment, improvisation, and similarity

assessment. While the focus here is key finding, it is

worthwhile to mention chord tracking, a related

problem for which the solution bears similarities to

key finding. A survey of automatic chord analysis

algorithms can be found in Mauch (2010).

Key Finding Using Correlation:Key is most often

inferred from pitch information. Each pitch can be

represented as an integer, according to pitch height.

For example, in MIDI (musical instrument digital

interface) notation, the pitches A, B[, B, C in the

middle range of the piano keyboard are represented

as 57, 58, 59, 60. Pitches repeat on the keyboard, and

the twelfth tone above C is C again, one octave higher.

Sometimes only the pitch class is of interest, and pitch

numbers can be collapsed into pitch classes using

modulo arithmetic. If p is a pitch number, then the

corresponding pitch class is p mod 12.

Key-finding algorithms tend to match music data

with templates representing the prototypical profile for

the 24 major and minor keys. A key-finding algorithm

by Krumhansl and Schmuckler (described in

Krumhansl 1990) compares a vector, d ¼ ½di	,
summarizing total note duration for each of the

twelve pitch classes, to experimentally obtained

probe tone profiles for each of the major and minor

keys, vi ¼ ½vij	 for i ¼ 1 . . . 24, by calculating their

correlation coefficients, rdvi . Each probe tone profile

is generated by playing a short sequence of chords to

establish the key context, then having listeners rate

(on a scale of 1 to 7) how well a probe tone that is

then played fit in the context. The best match key probe

tone profile is the one having the highest correlation

coefficient with the query vector, i.e.
argmax
i

rdvi ¼ argmax
i

sdvi
sdsvi

:

Creating Spatial Models: Having a spatial model

that mirrors the mental representation of tonal space is
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something that is of interest not only to cognitive

scientists, but also to computational scientists who use

these spaces to design algorithms for tonal induction.

Kassakian and Wessel (2005) proposed a convex

optimization solution for incrementally creating spatial

representations of musical entities, such as key and

melody, in Euclidean space in such a way as to satisfy

a set of dissimilarity measures. Assuming the existing

elements to be ri 2 n and the vector of dissimilarity

distances between the new element and existing ones to

be s ¼ ½si	 � 0, where i ¼ 1; 2; . . . ;m. The problem

then becomes one of finding
argmin
x;g

Xm
i¼1
ðjjx� rijj � gsiÞ2:

Using the geometric insight that each

ðjjx� rijj � gsiÞ is the optimal value of

minbi jjx� bijj2 for some bi 2 n inscribed on the

ball of radius gsi around the point ri, the problem can

be re-written as:
min
x;g;b

jjJx� bjj2

s:t: jjri � bijj2 ¼ g2s2i ; i ¼ 1; 2; . . . ;m

where b 
 ½bT1 ; bT2 ; . . . ; bTm	
T 2 mn

and J 
 ½I; I; . . . ; I	T 2 mn�n

While the primal problem is not convex, the dual

obtained by Lagrangian relaxation is convex, as is the

dual of the dual. The authors used a semi-definite

programming solver to obtain a solution to the dual of

the dual. Because the dual’s dual is a relaxation of the

primal, they computed a primal feasible solution from the

relaxation using a randomized method reported by

Goemans and Williamson, and generalized by

Nesterov. The problem can also be solved using more

conventional gradient descent methods.The resulting key

space map generated in this fashion corresponds well to

Krumhansl’s map created using multi-dimensional

scaling (Krumhansl 1990).

Key Finding Using Geometric Spaces: Starting

from a model of tonal space that concurs with human

perception can be an advantage in the design of

computational algorithms for key finding. Observing

that the pitch classes in a major key and in a minor key

each occupy distinctly shaped compact spaces on the
harmonic network or tonnetz, Longuet-Higgins, and

Steedman (1971) proposed a shape matching

algorithm to determine key from pitch class

information.

The tonnetz is a network model for pitch classes

where horizontal neighbors are pitch classes whose

elements have a fundamental frequency ratio of

approximately 2:3 (four major/minor scale steps

apart), neighbors on the northeast diagonal have

a ratio of approximately 4:5 (two major scale steps

apart), and neighbors on the northwest diagonal have

a ratio of approximately 5:6 (two minor scale steps

apart). The dual graph of the harmonic network

connects all triads (three-note chords) sharing two

pitches, the transition between which has the property

of smooth voice leading. Lewin (1987) lays the

foundation for the theory underlying transformations

on this space in his treatise on Generalized Intervals

and Transformations. Callendar, Quinn, and

Tymoczko (Tymoczko 2006; Callender et al. 2008)

further generalized these chord transition principles

to non-Euclidean space.

The tonnetz is inherently a toroid structure. By

rolling up the planar network so that repeating pitch

classes line up one on top of another, one gets the pitch

class spiral configuration of the harmonic network.

Inspired by interior point approaches, Chew (2000)

proposed the spiral array model, which uses

successive aggregation to generate higher level

representations, inside this three-dimensional

structure, from their lower level components. For

example, if pitch classes were indexed by their

positions on the line of fifths, then each pitch classes

can be represented as:
Pkþ1 
 R � Pk þ h;

where R ¼
0 1 0

�1 0 0

0 0 1

2
64

3
75; h ¼

0

0

h

2
64
3
75; k 2 :

The positions of major and minor chords are

computed as convex combinations of their

component pitches:
CM;k 
 o1 � Pk þ o2 � Pkþ1 þ o3 � Pkþ4;
and

Cm;k 
 u1 � Pk þ u2 � Pkþ1 þ u3 � Pk�3;
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respectively, where o1 � o2 � o3 > 0, u1 � u2 �
u3 > 0,

P3
i¼1 oi ¼ 1, and

P3
i¼1 ui ¼ 1. Major and

minor keys are generated from the weighted average

of their defining chords:
TM;k 
 o1 � CM;k þ o2 � CM;kþ1 þ o3 � CM;k�1;
Tm;k 
 u1 � CM;k þ u2 � ½a � CM;kþ1 þ ð1� aÞ � Cm;kþ1	

þ u3 � ½b � Cm;k�1 þ ð1� bÞ � CM;k�1	;

where o1 � o2 � o3 > 0, u1 � u2 � u3 > 0,P3
i¼1 oi ¼ 1,

P3
i¼1 ui ¼ 1, and 0 � a � 1;

0 � b � 1. The calibration of the spiral array, finding

solutions to the variables that satisfy perceived

properties of pitch relations, is a nonlinear constraint

satisfaction problem for which the author found

near-feasible solutions using a gradient-inspired

heuristic.

Given a music sequence of pitches that map to the

pitch representations Pif g, with corresponding

durations, d ¼ ½di	, where i ¼ 1; . . . ;m, the center of

effect of the sequence, CE 
Pm
i¼1 di � Pi. The most

plausible key for the sequence is given by the key

representation nearest to the center of effect of the

sequence:
arg min
m2fM;mg;k

jjCE� Tm;k jj:

Extensions: The descriptions of key-finding

algorithms have focussed on discrete information. It

is possible to apply probabilistic approaches using the

same representations. For example, Temperley (2007)

explores a Bayesian approach to the Krumhansl

key-finding framework.

Both Krumhansl’s probe tone profile method and

Chew’s spiral array center of effect generator

algorithm have been extended from symbolic to

audio key finding. The underlying methodology

remains the same. However, when starting from

audio, some pre-processing of the signal needs to be

done to convert it to pitch class information.

Similarly, the key templates may have to be adapted

for audio input. Common techniques for extracting

frequency information from the signal include the

Fast Fourier Transform and the Constant-Q

Transform. This step is followed by the mapping of

spectral information to pitch class bins, then the

key finding algorithm is applied accordingly.
While signal-based information tends to be more

noisy than discrete symbolic information, much of

the noise results from the harmonics of the

fundamental frequency of each tone, which tend to

be frequencies in the key, and help reinforce and

stabilize key identity.

Meter and Rhythm

While historically the modeling of meter and rhythm

has not received as much attention as that of key and

harmony, the feeling of pulse, and the grouping of

events embedded in that pulse, are some of the most

visceral responses humans have to music. An overview

of symbolic and literal (signal) representations of

rhythm can be found in Sethares (2007) and Smith

and Honing (2008). In symbolic music, tone onsets

are encoded explicitly in the representation.

When analyzing audio, a pre-processing step of

extracting onset information must first be performed.

An overview of onset detection methods is given in

Bello et al. (2003).

Meter Induction: The determining of meter can be

described as the finding of the periodic accent patterns

in the underlying pulse of music. Meter induction, like

key finding, is an important step for numerous music

applications such as automatic music transcription,

generation, and accompaniment. Most algorithms for

finding meter apply autocorrelation to find periodicity

in the signal, see for example, Gouyon and

Dixon (2006). A different computational model for

extracting meter from onset information is described

inMazzola’s extensive volume onmathematical music

theory (Mazzola 2002), and expanded by Volk (2008)

to investigate local versus global meters.

The solution method is restated here in a slightly

different format. Suppose  indexes the smallest grid

possible to capture all event onsets in a score. And

suppose we are interested in pulse layers at onset

times of all possible periodicities, g 2 , and offsets,

f ¼ 0; . . . ; i� 1, then a pulse layer might be indexed

by y ¼ 1
2
� gðg� 1Þ þ 1þ f and be represented as

a vector py ¼ ½pyi	, where

pyi ¼ 1 if i 2 fgk � f : k 2 g;
0 otherwise:

�

Suppose the onsets in the music are represented as

a vector, o ¼ ½oi	, where
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oi ¼
1 if an onset occurs on that grid marking; and

0 otherwise;

(

poyi ¼
1 if ðpyi ¼ 1Þ \ ðoi ¼ 1Þ; and
otherwise:

(

Effectively, poy serves as an indicator function

for when an onset in the music coincides with

a pulse at layer y. Introducing one more variable,

let ‘yi be the span of the longest chain of ones

surrounding poyi. ‘yi can be defined recursively as

follows:
‘yi ¼ ‘Ryi þ ‘Lyi;

where ‘Ryi ¼
0 if poyi ¼ 0;

1þ ‘yiþ1 if poyiþ1 ¼ 1;

(

‘Lyi ¼
0 if poyi ¼ 0;

1þ ‘yi�1 if poyi�1 ¼ 1:

(

The metric weight of an onset at time i is then given by
wi ¼
X
y

‘ayi:

The resulting vector, w gives a profile of the accents

and reveals the periodicity in the rhythm. Recall that

y ¼ 1
2
� gðg� 1Þ þ 1þ f . A variation on this

technique (Nestke and Noll 2001) assigns the

weight ‘yi to all points on pulse layer y, i.e.

8i ¼ gk � f ; k 2 .
Genre Classification using Metric Patterns:

Periodicity patterns are one of the defining

characteristics of dance music, and this feature has

been used to classify music into different genres such

as tango, rumba, and cha cha (Dixon et al. 2003; Chew

et al. 2005). Dixon et al. (2003) uses a set of rules, which

can be implemented using decision trees, to categorize the

music using tempo and periodicity features. Similar to the

key-finding methods, (Chew et al. 2005) uses correlation

to compare the metric weight profiles derived from the

data to templates for each dance category.

Segmentation in Time

Few pieces of music stay entirely in one key or one

rhythmic pattern. Composers generate interest by
varying the tonal and rhythmic content of the

music over time. Thus, it would be unrealistic to

compute only one key or one meter based on

available information. A common adaptation of

key-finding or meter induction algorithms to allow

for changing key or metric identity is to use

a sliding window (Shmulevich and Yli-Harja

2000), or an exponential decay function (Chew

and François 2005).

The determining of section boundaries is important

in music structure analysis, the applications for which

include music summarization. Using the key and meter

representation frameworks introduced above, it is

possible to create a dynamic programming

formulation, with an appropriate penalty function for

change between two adjacent windows, for assigning

boundaries in a piece of music, for example for key as

discussed in Temperley (2007). Another method for

determining key change is described in Chew (2002),

which borrows ideas from statistical quality control.

In large structure analysis, it is often useful to be able

to label sections (for example, as chorus or verse

in popular songs). Toward this end, Levy and

Sandler (2008) have applied a number of clustering

techniques to audio features extracted from music

signal.

Melody

Melody represents the horizontal structure of

music. Apart from the straightforward event string

representation of melody, melody can also be

decomposed into building blocks and represented as

grammar trees, as prescribed by Lerdahl

and Jackendoff (1983).

Similarity Assessment: Quantifying the similarity

between two melodies is important for music

information retrieval. Typke et al. (2003) describe

the use of the Earth Mover’s Distance (EMD) to

quantify melodic similarity. Represent each melody

as weighted points in pitch-time space, for example,

melody A ¼ fa1; a2; . . . ; amg and melody

B ¼ fb1; b2; . . . ; bng with respective weights,

oi; uj 2 þ [ f0g, where i ¼ 1; . . .m and

j ¼ 1; . . . n. The similarity measure between the two

melodies is the EMD, the minimum cost flow to

transform one melody into another by moving

weight from one point in A to one point in B, where

the cost is the weight moved times the distance

traveled.
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SupposeW ¼Pm
i¼1 wi andU ¼

Pn
i¼1 , and fij is the

flow of weight from ai to bj over the distance dij. The

problem can thus be stated as:
min
Xm
i¼1

Xn
j¼1

fijdij

s:t:
Xn
j¼1

fij � wi; i ¼ 1; . . . ;m;

Xm
i¼1

fij � uj; j ¼ 1; . . . ; n;

Xm
i¼1

Xn
j¼1

fij ¼ minðW;UÞ;

fij � 0; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

which can be solved using linear programming, and
EMDðA;BÞ ¼
Pm

i¼1
Pn

j¼1 f �ij dij
minðW;UÞ :

Stream Segregation: A number of approaches

have been proposed to tackle the problem of

automatically separating a polyphonic (multi-line)

music texture into its component voices. An example

might be to separate a fugue by Johann Sebastian Bach

into its four parts. A randomized local search method

to optimize a parametric cost function that penalizes

undesirable traits in a voice-separated solution was

proposed by Kilian and Hoos (2002). Chew and Wu

(2004) proposed a contig-mapping approach to first

break a piece of music into contigs with overlapping

fragments of music. Then, exploiting perceptual

principles such as voices tend not to cross in maximal

voice contigs, the algorithm re-connects the fragments

in neighboring contigs using distance minimization.
Composition and Improvisation

The use of mathematical models in music composition

has become an active area for musical innovation since

Xenakis (2001), who used stochastic processes,

probabilistic models, and game theory to guide his

compositions. With widespread access to computing

to help solve music composition mathematical

problems, computer-assisted composition has
emerged as a useful tool to help composers create

new music, as well as an important area of digital

music research.

Constraints

A number of music composition problems can be

naturally described as constraint satisfaction

problems (CSPs). Solution methods for CSPs include

combinatorial optimization and local search

techniques such as Tabu search, simulated annealing,

and genetic algorithms.

Truchet and Codognet (2004) list fourteen

examples of musical CSPs and propose to apply

a heuristic adaptive search technique to solve the

CSPs. An example of a compositional CSP is as

follows: Given a sequence of chords, suppose the

composer is interested in finding an ordering of

the sequence such that two adjacent chords have the

maximal number of common tones. If the chords were

represented as nodes, and the distance between any

two nodes is the number of common tones, then the

problem of interest takes the form of the Traveling

Salesman Problem. Every chord must be visited

once, and the desired solution must minimize

ð�1Þ � distance.

Related to this is the classic problem of providing

harmonization for a given melody. The most widely

used solution method for generating a score from

a melody is via constraints, and a variety of approaches

and results are reviewed in Pachet and Roy (2004).

Markov Chains and Other Network Models

The use of Markov chains (MCs) forms another

solution method that is commonly used in the

generating of music. In the case of MCs, the

probabilities are estimated from existing data, and

used to generate music in the style of the training

data set. Farbood and Schoner (2001) use MCs to

generate music in the style of Palestrina. Using the

tonnetz as scaffolding to reduce the search space,

Chuan and Chew (2007a) use MCs to generate

style-specific accompaniment for melodies given

only a few examples. MCs are excellent models for

imitating local structure, but lack high level structure

knowledge to guide the shaping of a composition. To

remedy this deficiency, researchers have considered

computer systems that create the local surface

structure while relegating higher level structural

control to humans.
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In Pachet’s Continuator, the system builds prefix

trees from music data, weights each possible

continuation with a probability estimated from the

data, and uses the resulting MC to generate music in

dialog with a human musician. Extensions of the basic

MC model consider hierarchical representations and

ways of imputing rhythmic structure to the resulting

music. Assayag and Dubnov (2004) describe an

alternate approach using factor oracles. The suffix

links in the resulting network model is assigned

transition probabilities that causes the original music

material to be recombined smoothly. Using the same

factor oracle approach, François et al. (2010) created

Mimi4x, an installation that allows users to make

high-level structural improvisation decisions while

the computer manages surface details on four

improvising systems.
Expressive Music Performance

Music is rarely performed as notated. The score is an

incomplete description of the experience of a music

piece, and leaves much to interpretation by

a performer. In expressive music performance,

a performer manipulates parameters such as tempo,

loudness, and articulation for expressive or interpretive

ends, and to guide the listener’s perception of groupings

andmeter. The expressive devices in the performance of

music is sometimes called musical prosody. See Palmer

and Hutchins (2006) for a definition and review of

research on musical prosody. The extraction of

performance parameters can be viewed as the

continuous monitoring of expressive features such as

tempo and loudness over time.

Representation

Tempo and loudness are two important features of

music performance. Suppose the list of onsets in the

performed music are O ¼ fo0; o1; . . . ; ong. Then the

inter-onset-interval at time i is IOIi ¼ oi � oi�1. If

a listener sat and tapped along to the beat of the

music, then the list of beat onsets might be

B ¼ fb0; b1; . . . ; bng. The interbeat-interval would be

IBIi ¼ bi � bi�1, and the instantaneous tempo would

be Ti ¼ 1
IBIi

. Often, some smoothing is desired, and one

would report a moving average for the smoothed

tempo. Sometimes, the acceleration is desired, where

ai ¼ DTi ¼ Ti � Ti�1. A number of models for
deriving loudness from the signal exist, many of

which have been implemented in Matlab. Timmers

(2005) surveys some ways of measuring tempo and

loudness in musical performance and of comparing

them across performances.

Using the tempo-loudness representation proposed

by Langner and Goebl, Dixon et al. (2002) created

a computer system for for real-time visualization of

performance parameters in the Performance Worm.

The exploration of Langner’s tempo-loudness space

for performance analysis led to its use for performance

synthesis in the Air Worm (Dixon et al. 2005).

In the spirit of annotations of speech prosody,

Raphael proposed a series of markup symbols for

expressing musical flow (Raphael 2009). The

symbols consist of
fl�; l�; lþ; l!; l ; l�g:

fl�; l�; lþg denote a sense of arrival, where l� is a direct
and assertive stress, l� is a soft landing that relaxes upon
arrival, and lþ is an arrival whose momentum continues

to carry forward into the future. fl!; l�gmark notes that

continue to move forward toward a future goal, l! is

a passing tone and l� is a passing stress, and fl g
denotes a pulling back movement. Because it is hard

to determine the exact sets of tempo and loudness

parameters, and more locally, the exact amounts of

delay or anticipating of an onset, that lead to these

flow sensations, Raphael uses a hidden Markov model

(HMM) to estimate the most likely hidden variables to

have given rise to the observed prosodic annotation.

Phrases

In expressive performance, performers indicate phrase

groupings by varying tempo (accelerate and decelerate

at beginnings and ends of phrases) and/or loudness

(crescendo and decrescendo at beginnings and ends

of phrases). As a result, this aspect of a performer’s

interpretations can be directly inferred from tempo and

loudness data. For example, Chuan and Chew (2007b)

propose a dynamic programming (DP) method for

automatic extraction of phrases. The authors test

a model that fits a series of quadric curves (first

modeled by polynomials of degree two, then by

a series of quadratic splines) to the tempo time series.

The best fit curve is found using quadratic

programming, and the phrase boundaries are

determined using DP.
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Alignment

A common use of DP in music processing is in the

alignment of music sequences that may be in the same

or different format. Arifi et al. (2004) reviews the state

of the art, and describes an algorithm for aligning music

sequences in two of three possible formats � score,

Musical Instrument Digital Interface (MIDI), and

pulse-code modulation (PCM) audio format.

Assuming the two sequences are the score, s ¼ ½si	,
and a PCM representation of the audio performance,

p ¼ ½pj	. The first task is to generate a cost matrix for

aligning any point, si, in the score with any point, pj, in

the PCM audio. In Arifi et al. (2004), the distance

minimization step is embedded in the cost matrix.

Suppose the cost matrix is represented by C ¼ ½cij	,
each element of which expresses the cost minimizing

SP-match for ½s1; s2; . . . ; si	 and ½p1; p2; . . . ; pj	, i.e.
cij ¼ min ci;j�1; ci�1;j; ci�1;j�1; dSPij
n o

:

Then, the algorithm for synchronizing the two streams

is as follows:

SCORE-PCM-SYNCHRONIZATION(C, s, p)

1 i = length(s), j = p, SP-Match = 0

2 while (i > 0) and ( j > 0)

3 do if c[i, j] = c[i, j � 1]

4 then j = j � 1

5 else if c[i, j] = c[i � 1, j]

6 then i = i � 1

7 else SP-Match = SP-Match [
{(i, j)}, i = i�1, j = j�1

8 return SP-Match

Dixon and Widmer (2005) introduced MATCH,

a tool chest for efficient alignment of two time series

using variations on the classic dynamic time warping

(DTW) algorithm. Niedermayer and Widmer (2010)

proposed a multi-pass algorithm that uses anchor notes

(notes for which the alignment confidence is high) to

correct inexact matches.
Concluding Remarks

Digital music research has rapidly evolved with

computing advances and the increasing possibilities for

connections between music and computing. The latest
advances in the field are reported in the annual

Proceedings of the International Conference on Music

Information Retrieval, Proceedings of the Sound and
Music Computing Conference, and the Proceedings of

the International Symposium on Computer Music

Modeling and Retrieval, the biennial Proceedings of
the International Conference on Mathematics and

Computation in Music, and the occasional Proceedings

of the International Conference on Music and Artificial
Intelligence. They can also be found in the traditional

conferences of the multimedia, databases, human

computer interaction, and audio signal processing

communities. The archival journals include the

Computer Music Journal, the Journal of New Music

Research, and the Journal of Mathematics and Music.
There exist close ties between digital music

research and the fields of music perception and

cognition and computer music (which places greater

emphasis on the creating of music), and the community

of researchers interested in interfaces for musical

expression. Work that overlaps with these other areas

can be found in the biennial Proceedings of the

International Conference on Music Perception and

Cognition, and the annual Proceedings of the
International Computer Music Conference and

Proceedings of the International Conference on New

Interfaces for Musical Expression.
See

▶Constraint Programming

▶Dynamic Programming

▶Linear Programming

▶Markov Chains

▶Mathematical Programming
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Digraph

A graph all of whose edges have a designated one-way

direction.
See

▶Graph Theory
Dijkstra’s Algorithm

A method for finding shortest paths (routes) in

a network. The algorithm is a node labeling, greedy

algorithm. It assumes that the distance cij between any

pair of nodes i and j is nonnegative. The labels have

two components {d(i), p}, where d(i) is an upper bound

on the shortest path length from the source (home)

node s to node i, and p is the node preceding node i
in the shortest path to node i. The algorithmic steps for

finding the shortest paths from s to all other nodes in

the network are as follows:

Step 1. Assign a number d(i) to each node i to denote

the tentative (upper bound) length of the shortest

path from s to i that uses only labeled nodes as

intermediate nodes. Initially, set d(s) ¼ 0 and

d(i) ¼ 1 for all i 6¼ s. Let y denote the last node

labeled. Give node s the label {0, �) and let y ¼ s.
Step 2. For each unlabeled node i, redefine d(i) as

follows:

d(i) ¼ min{d(i), d(y) + cyi)}. If d(i) ¼ 1 for all

unlabeled vertices i, then stop, as no path exists

from s to any unlabeled node i with the smallest
value of d(i). Also, in the label, let p denote the

node from which the arc that determined the

minimum d(i) came from. Let y ¼ i.

Step 3. If all nodes have been labeled, stop, as the

unique path of labels {d(i), p} from s to i is

a shortest path from s to i for all vertices i.

Otherwise, return to Step 2.
See

▶Greedy Algorithm

▶Minimum-Cost Network-Flow Problem

▶Network Optimization

▶Vehicle Routing
Directed Graph

▶Digraph
Direction of a Set

A vector d is a direction of a convex set if for every

point x of the set, the ray (x + ld), l� 0, belongs to the

set. If the set is bounded, it has no directions.
See

▶Convex Set
Directional Derivative

A rate of change at a given point in a given direction of

the value function of a optimization problem as

a function of problem parameters.
See

▶Nonlinear Programming

http://dx.doi.org/10.1007/978-1-4419-1153-7_402
http://dx.doi.org/10.1007/978-1-4419-1153-7_200276
http://dx.doi.org/10.1007/978-1-4419-1153-7_200468
http://dx.doi.org/10.1007/978-1-4419-1153-7_664
http://dx.doi.org/10.1007/978-1-4419-1153-7_1105
http://dx.doi.org/10.1007/978-1-4419-1153-7_200147
http://dx.doi.org/10.1007/978-1-4419-1153-7_200082
http://dx.doi.org/10.1007/978-1-4419-1153-7_682


Hydrological

Geophysical
Earthquakes

Landslides

Tsunamis

Volcanic Activity

Avalanches

flood

Disaster Management: Planning and Logistics 429 D
Disaster Management: Planning and
Logistics

Gina M. Galindo Pacheco1,2 and Rajan Batta1

1University at Buffalo, The State University of

New York, Buffalo, NY, USA
2Universidad del Norte, Barranquilla, Colombia
Natural

Technological

Biological

Meteorological

Climatoligical
Extreme

temperatures

Drought

Wildfires

Cyclones

Storms/wave surges

Disease epidemics

Insect/animal plagues

Complex/social

   emergencies/conflicts

Industrial accidents

Transport accidents

Disaster Management: Planning and Logistics,
Fig. 1 Types of disasters

D

Introduction

Due to significant losses of life, as well as extremely

high economic costs, the prevention and improvement

of disaster response has been a continuing area of

research. OR analysts have been in the forefront

of such work and have made significant contributions

that have helped to mitigate the impact of disasters.

This article reviews some of the basic concepts related

to disaster management (DM) and summarizes many

of the topics that have been addressed.

The presentation is as follows: section one reviews

disaster definitions and types; section two focuses on the

role of DM, the concepts associated, and the stages that

are traditionally identified within DM; section three

discusses the role of the planning process; section four

reviews the related logistics issues; section five

discusses DM topics based on a sample of work from

the period 2005-2010; and the last section presents

a summary and concluding remarks.
Definition of Disaster

According to the International Federation of Red Cross

and Red Crescent Societies (IFRC), a disaster is a

sudden event that causes disruption of the normal

functioning of a community; causes human,

economic, and environmental losses; and generates

requirements that exceeds the capacity of response

using available resources.

Losses due to disasters may be of the order of

thousands of lives and billions of dollars. Kunkel,

Pielke, and Changnon (1999) give some statistics

about human and economic losses due to weather and

climate extremes in the U.S. They estimate that

between 1986 and 1995 there was an annual mean

loss of 96 lives due to floods and 20 due to
hurricanes. In the same period, the annual mean of

economic losses was $6.2 billion for hurricanes. In

2005, the National Hurricane Center estimated that

hurricane Katrina left a total of 1,200 reported

casualties, with a total damage cost of $81 billion.

Man-made disasters can also have drastic

consequences if they are purposely planned.

For example, according to the National Commission

on Terrorist Attacks upon United States, more than

2,981 people died in the attacks of 9/11. Even though

environmental disasters typically do not involve many

human casualties, they do cause great ecological

damages, e.g., the Gulf of Mexico oil spill that

affected thousands of turtles, birds, and mammals, as

reported by the International Disaster Database Web

site (in addition to the considerable monetary loss for

British Petroleum). The types of natural and man-made

disasters are listed in Fig. 1.

This classification derives partly from IFRC,

Alexander (2002), and Van Wassenhove (2006).
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Natural disasters may be grouped into predictable

ones, such as hurricanes, and unpredictable events,

such as earthquakes. Data about predictable disasters

are not deterministic, but some information about the

time and place of such disasters is available. Such

disasters can also be classified with respect to their

time of onset. Tornadoes happen suddenly and last

for a short period of time, while events such as

pandemics may go from a few days to several

months. These classifications become important at

the time of planning and responding: for predictable

disasters actions like evacuation or prepositioning of

supplies are possible, while for unpredictable ones,

such actions are not possible alternatives; for very

short-term disasters it is easier to estimate the amount

of resources needed to overcome the situation, where

for long-term disasters this is a more difficult task.

Figure 2 summarizes these classifications.
Role of Disaster Management

According to the IFRC, themanagement of resources and

responsibilities to respond to humanitarian needs after an

emergency is known as Disaster Management (DM).

DM can be viewed as including the strategic,

tactical, and operational activities, as well as the

personnel and technologies involved at various stages

of a disaster situation for the purpose of mitigating its

possible consequences (Lettieri et al. 2009).

The different stages involved in DM are classified

as mitigation, preparedness, response, and recovery
(McLoughlin 1985). Miller, Engemann, and Yager

(2006) provide a detailed explanation of the four DM

stages. Each of these stages is briefly discussed below

with respect to a flood disaster.

Mitigation consists of those activities that help to

reduce the long-term risk of the occurrence of

a disaster or its consequences. For a flood scenario,

mitigation would involve not building on low

lands, and creating barriers along rivers or ponds.

Preparedness refers to planning operational activities

to respond to a disaster—creating shelters,

prepositioning supplies, and evacuating people

from most dangerous locations is a way in which

preparedness may be applied for a flood setting.

The response stage includes actions that correspond

to those performed upon the occurrence of the disaster

to help affected people to overcome their needs of

essential resources or getting them out from

danger e.g., delivering supplies and rescuing people.

The recovery phase involves short and long-term

activities to restore normal functioning of the

community, as well as repairing roads and buildings.

The recovery phase should be designed in such

a way that it contributes to mitigation efforts. For the

flood example, rebuilt houses should not be located in

lands known to be highly exposed to floods. This is

how DM could be viewed as a cycle created by the link

of mitigation and recovery activities. In general, the

different stages of DM require a previous planning

process to coordinate all the ulterior actions that

would be performed. In addition, a logistic process is

involved mainly, but not exclusively, for the

preparedness and response phases.
Disaster Management and Planning Process

The Oxford English Dictionary defines the verb “to

plan” as meaning “to devise, contrive, or formulate

(something to be done, or some action or proceeding

to be carried out.)” For DM, Alexander (2002)

distinguishes emergency planning in terms of long

and short-term. The former gives the context for the

latter. It involves forecasting, warning, educating, and

training people for the event of a disaster. It includes

the study of patterns to predict the possible time and

place at which a disaster could occur. Seasonal natural

disasters, such as tropical storms in the Caribbean, are

examples. The concept of long-term planning is related
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to the definition of emergency planning given by Perry

and Lindell (2003) for whom emergency planning

focuses on the two objectives of hazard assessment

and risk reduction. The purpose of short-term

planning is to guarantee the prompt deployment of

resources where and when needed.

Alexander (2002) describes an outline of the

methodological components of an emergency plan

and includes a generic emergency planning

model. The planning process may be summarized as

gathering information, managing and analyzing it,

extracting some conclusions and actions to be

developed, and communicating the resulting plan to

the staff involved.
Disaster Management and Logistics

Several definitions are used for the term logistics. Van

Wassenhove (2006) gives a brief and illustrative

review of some of these definitions as applied to

business, military, and humanitarian DM logistics. In

summary, logistics, when applied to DM, is referred to

as the storage and deployment of resources and

information, as well as the mobilization of people in

an effective way to reduce the impact of the disaster.

Kovács and Spens (2007) and VanWassenhove (2006)

reflect upon the comparison between business and

humanitarian DM logistics. However, despite the

differences, business and humanitarian logistics are

intrinsically related and they both refer to a process

that includes planning, distribution and transportation,

storage, location and supply chain management

(SCM).

In what follows, some common problems related to

planning and logistics in DM and OR are discussed.
OR and DM

A survey of OR research related to DM since 2005 was

conducted. A total of 222 items in journals, books,

book chapters, and conference papers were reviewed.

A finding was that topics of planning and logistics in

DM attracted most of the attention. For planning, the

most common topics were evacuation and risk

analysis. General humanitarian logistics was a topic

addressed in terms of (i) transportation, (ii) inventory,

(iii) location analysis, and (iv) humanitarian logistics
(in general). Material from (i) to (iii) are referred to as

specific activities inside the concept of logistics, while

that from (iv) considers logistics as a whole or that

combines different aspects of humanitarian logistics.

Other topics of logistics are reviewed separately

because they constitute a widely studied topic as is

the case for transportation that includes research on

routing, traffic and network management.

Even though there were many other topics of OR

interest in the reviewed research such as demand

forecast, business continuity, and hospital capacity,

the topics mentioned earlier represent the main

streams that were studied. In the following sections,

the topics will be discussed separately focusing on the

relationship to DM phases, methodologies, objectives,

and real-life applications.

Evacuation: The major way for reducing the

potential population affected by a disaster is

evacuation. An evacuation typically involves

mobilizing people from endangered zones to safer

ones, which includes routing strategies and

preparation of shelters, among other activities. This

process is mostly associated with the preparedness

phase of DM, and, therefore, to the planning

processes. However, some related work for real-time

decisions may be linked to the response phase

(Chiu and Zheng 2007). For predictable disasters, it

is possible to develop evacuation plans to be performed

before the disaster strikes; no pre-disaster-evacuation

planning is possible for unpredictable disasters.

The most common objective in evacuation research

was minimizing the evacuation time of the total

affected population (Chen and Zhan 2008).

Other objectives included maximizing the total

number of evacuees during a given evacuation time

(Miller-Hooks and Sorrel 2008), maximizing the

minimum probability of reaching an exit for any

evacuee (Opasanon and Miller-Hooks 2009),

and minimizing total system travel time (Chiu et al.

2007). Some studies considered multiple objectives.

In Saadatseresht, Mansourian, and Taleai (2009)

the objectives were to minimize travel distance,

evacuation time, and overload capacity of safe areas.

Stepanov and Smith (2009) provide a critique of

performance measures for evacuation that include

clearance time, total traveled distance, and blocking

probabilities.

Simulation was the most used method to solve

evacuation problems. Bonabeau, (2002) and
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Chen and Zhan, (2008) used agent-based simulation—

the process in which entities termed autonomous

agents assess their situations and make decisions

according to a set of rules(say something about

validation). Other studies developed multi-level

models (Liu et al. 2006), queue analysis (Stepanov

and Smith 2009), mixed integer linear programming

(Sayyady and Eksioglu 2010); others used Cell

Transmission Models (Chiu et al. 2007), and genetic

algorithms (Miller-Hooks and Sorrel 2008).

Most of the studies employed real data to validate

their results. For example, Chen, Meaker and Zhan

(2006) developed a simulation model for evacuating

the Florida Keys under a hurricane setting.

They considered two questions: one related to the

time for evacuating the total population, while

the other considered how many residents would need

to be accommodated if evacuation routes were

impassable. The authors used a previous study as

a reference for comparing the results of their model.

However, no validation based on real evacuation times

is reported.

Risk Analysis: DM risk analysis is mainly

concerned with quantifying the risk of the occurrence

of an undesirable event, as well as developing

measures to diminish the impact of a disaster. Risk

analysis is mainly a planning tool related to the

mitigation. The objectives of the DM risk analysis

studies were forecasting, infrastructure planning and

design, vulnerability, and analysis of uncertainty, as

discussed next.

In relation to forecasting, Hu (2010) uses

a Bayesian approach to analyze flood frequencies.

Infrastructure planning and design based on risk

analysis refers in some cases to making the

infrastructure (buildings, networks, supply chains,

etc.) more resistant to disaster damages and

disruptions, and to building physical barriers or

diversions to diminish the impact of a disaster on an

endangered community. Snyder et al. (2006) reviewed

several models for designing supply chains resilient to

disruptions. These models considered costs from the

business point of view, with objectives, in most of

the cases, being the minimization of the expected or

the worst case cost. Li, Huang and Nie (2007) used

a model for flood diversion planning under uncertainty

where, among the objectives considered, was the

minimization of risk of system disruption.

Vulnerability relates to the way in which current
systems are affected by damages. Matisziw and

Murray (2009) maximized system flow for

a disrupted network. Barker and Haimes (2009)

focused on a sensitivity analysis of extreme

consequences due to uncertainties on the parameters,

and Xu, Booij and Tong (2010) analyzed the sources of

uncertainty in statistical modeling.

Probability and statistics were the main methods

used to analyze risk analysis. In the case of Li,

Huang, and Nie (2007) the authors used a

methodology that combines fuzzy sets and stochastic

programming. Another example in which fuzzy sets

have been incorporated into risk analysis is given by

Huang and Ruan (2008). In this DM area, even though

some researchers used real data to develop numerical

examples, complete case studies were rare.

Transportation: Transportation problems

typically deal with routing, vehicle schedule, traffic,

and network management. The problems may be to

transport goods to provide relief supplies, evacuate

people from endangered areas, or movement of

resources such as medical staff to areas where their

services are required.

For transportation analyses, as applied to DM, there

are a wide variety of objectives related to the efficiency

of delivery times. Campbell, Vandenbussche, and

Hermann (2008) considered two objectives for

minimizing the arrival times of relief to demand

points. Similarly, Yuan and Wang (2008) minimized

the total travel time through a path selection

methodology, while Jin and Ekşioğlu (2008)

minimized vehicle delay.

Methods used included mathematical programming

and its derivates, such as stochastic and integer

programming, Campbell, Vandenbussche, and

Hermann (2008) and Yuan and Wang (2009). Jotshi,

Gong and Batta (2009) used the HAZUS program to

develop a post-earthquake scenario in Los Angeles.

[HAZUS is a computer-based system created and

distributed via the Web by the Federal Emergency

Management Agency (FEMA) for estimating

potential losses caused by earthquakes, floods and

hurricanes].

Inventory: Traditionally, in the commercial area,

inventory analyses address a number of areas:

materials, components, work-in-process, and finished

goods (Nahmias 2009). But, businesses may use

inventory theory to pre-analyze forecasted disasters,

e.g., Taskin and Lodree (2011) developed an inventory
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model for a manufacturing facility whose demand

could be impacted by a potential storm. This might

also be appropriate for DM in the case of items such

as canned food, lamps, and coolers. In general,

humanitarian logistics inventory concerns are mostly

related to the prepositioning or early acquisition of

relief goods. Decisions related to inventory problems

fit better in the preparedness phase of DM, but they

may affect directly the effectiveness of the response

phase if a shortage of inventory occurs.

Most of the inventory-oriented papers shared one

common objective: minimize expected cost. This cost

may be expressed as a loss function (Taskin and

Lodree 2011) or may be a composition of traditional

inventory costs including the cost per order, holding

inventory cost, and back-order cost (Beamon and

Kotebla 2006). Salmerón and Apte (2010)

developed a two-stage model for a humanitarian

logistics for optimally allocating a budget for

acquiring and positioning relief assets. Two

objectives were pursued: minimization of the

expected number of casualties, and minimization of

the expected amount of unmet transfer population.

Here, casualties were the result of seriously injured

people who were not served promptly by medical

staff, and people needing relief supplies who do not

get them on time. On the other hand, transfer

population represent people who are not in a critical

condition, but still need to be evacuated to relief

centers. Unmet transfer population applies when

these people are not promptly evacuated.

DM inventory problems were analyzed using

stochastic optimization combined with statistical

tools such as Bayesian methods. Taskin and Lodree,

(2011) present some numerical examples with

simulated data, while other research used

hypothetical data from previous studies.

Location: In general, location analysis deals with

problems of siting facilities in a given area (ReVelle

and Eiselt 2005). Such problems are commonly

classified by businesses as strategic, i.e., a type of

decision whose effects are expected to last for a long

period due to the fixed cost of opening a facility, and/or

changing the location of a facility may be a very

expensive. In humanitarian logistics, however,

location analysis may be best defined as a tactical

decision, as most often it considers locating

temporary shelters and warehouses where relief

assets may be kept safe. These facilities generally
consist of existing sites suitable, such as schools,

stadiums, or churches.

Depending on the objectives pursued, results from

location analysis may set the framework for ulterior

decision problems such as: where to store

prepositioned supplies; given the location of such

relief supplies, how they would be distributed;

where the evacuees will be directed to; and where

to locate emergency vehicles or provisional health

centers. Location analysis may be more accurately

relate to the preparedness phase of DM. But, it could

also be associated to the mitigation phase for locating

facilities in low-risk areas, or, based on the disaster,

in the response phase to improvise additional shelters

or medical centers other than those that were

planned.

Facility location applied in the preparedness phase

is discussed by Balcik and Beamon (2008) who sought

to locate distribution centers and determine the amount

of supply to preposition at such centers to maximize

the total expected demand covered. Lee et al. (2009)

studied multiple dispensing points to service a large

population searching for prophylaxis, with the

objective to minimize the maximum expected

traveled distance.

For the mitigation phase, Berman et al. (2009)

analyzed where to locate p facilities to maximize

coverage on a network whose links could be

destroyed. Beraldi and Bruni (2009) studied

the location of emergency vehicles under congested

settings with the objective of minimizing cost.

Most of the DM location analysis research used

mixed integer programming (MIP) and, in some

cases, applied heuristic methods to help determine

the solution of large problems (Berman et al. 2009).

Other studies used stochastic programming models

(Beraldi and Bruni 2009), or simulation to generate

potential scenarios so as to compare the model results

to actual data form a case study (Afshartous et al.

2009).
Logistics Models Overview

DM logistics involves several activities that include

planning, warehousing, location, and distribution,

among other elements. Some studies combined one

or more of these activities, with others focused on an

integrated and general concept of logistics.
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Kovács and Spents (2007) and Van Wassenhoven

(2006) describe humanitarian logistics as a whole.

They sought a better understanding of planning and

carrying out of logistics in disaster relief through

a literature review. Van Wassenhoven presents

a parallel between private and humanitarian logistics,

and also proposes some guidelines for developing

a better preparedness strategy for the latter.

Yi and Özdamar (2007) define an integrated

capacitated location-routing model. Their model was

designed to coordinate the distribution of relief

material and the transportation of evacuees to

emergency units selected through location analysis.

The objective was to minimize the relationship

between the weighted sum of unsatisfied demand

and the weighted sum of wounded people at

temporary and permanent emergency units using

a two stage MIP model.

Chang, Tseng and Chen (2007) analyze

a combination of location and transportation: the

coordination activities related to rescue logistics

efforts under a flood setting in an urban area. They

consider the location of rescue resource inventory,

allocation and distribution of rescue resources, and

the structure of rescue organizations. Using two

models, they first classified the rescue areas

according to levels of emergency with the objective

of minimizing the shipping cost of rescue equipments;

the second model was a two stage stochastic-

programming model that minimized set-up cost of

storehouses and rescue equipment costs.

Yan and Shih (2009) developed a model for

roadway repair scheduling and subsequent

distribution of relief supplies. The objective was the

minimizing the total expected time for repair and

distribution using a MIP model. A related study in

which a distribution system is modeled as a supply

chain where the echelons are the relief suppliers,

relief distribution centers, and relief demanding areas

is described in Sheu (2007). Here, the objective was to

minimize the expected cost of relief distribution during

the three days following the onset of the disaster using

a hybrid fuzzy-clustering method.

Balcik, Beamon and Smilowitz (2008) studied what

is termed the last mile relief distribution, i.e., the

distribution of relief assets from distribution centers

to final demand. Their model dealt with the allocation

of relief supplies to local distribution centers, and the

delivery of schedules and routes for distributing
vehicles. Their MIP model minimized the expected

cost of distribution that included routing costs and

a penalty for unmet demand.
Concluding Remarks

This article presented an overview of DM focused on

planning and logistics. It is clear that planning and

logistics are inseparable, intrinsically related, and

both present in different phases of DM. These phases

should be performed in a cyclic fashion so that the

recovery efforts should also pursue mitigation

objectives. Related research showed that many OR/

MS-based studies have been directed at improving

the effectiveness and efficiency of DM. The impetus

for this is probably due to the catastrophic events of the

Twin Towers attack in 2001, the 2004 tsunami in the

Indian Ocean, and hurricane Katrina in 2005. These

events have contributed to generating an increasing

concern of reducing both the risk of such disasters

happening and diminishing their consequences.

A comparison between humanitarian and business

logistics highlighted both their differences as well as

their commonalities.

The main topics found from the review of OR/MS

research, as related to DM, appear to be evacuation,

risk analysis, and logistics. The following remarks

with respect to these main topics are based on

a review of a fraction of the available literature in

this area; it is felt, however, that they do represent an

accurate view of the state of the art in this growing

field, circa 2011.

In general, the evacuation problems showed that the

main concern was the minimization of evacuation

time. Some researchers stated that one of the

important limitations of such studies was predicting

the behavior of evacuees—many variables would have

to be considered, as well as social context of the

evacuated population. Peacock, Morrow, and

Gladwin (1997) analyzed how some people may not

respond to evacuation measures before a disaster

strikes as a function of their ethnic origin or their

socio-economic level. The authors’ main conclusion

dealt with the perception the evacuee population may

have about authorities who may stop them from

following pre-disaster evacuation orders.

Risk analysis has proved to be a useful concept

when planning for disasters, especially during the
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mitigation phase. A problem is the difficulty of

enumerating the possible risk scenarios. Moreover,

many studies are based on statistical analyses to

historical data, but in some occasions, the events

being studied are so infrequent that no reliable

analysis can be achieved.

For humanitarian logistics research, a distinction

was made between transportation, location analysis,

inventory, and humanitarian logistics, in general.

A limitation that may arise in a transportation study

is the inability to incorporate the presence of

congestion, even though some studies do, see for

example Beraldi and Bruni (2009). Inventory theory

has been used by both business and humanitarian

logistics to better prepare for disasters, including, as

well, location analysis problems from business being

applied in humanitarian location settings.

The research papers reviewed referred mainly to

the preparedness phase of DM, followed by response

and mitigation phases; no work was found related to

the recovery phase. Altay and Green, (2006) noted

the lack of OR studies related to recovery efforts in

comparison to the other phases. Another aspect in

which the findings obtained here agree with the

ones presented by Altay and Green (2006) is that

most of the studies reviewed consists of the

development of models, rather than theoretical

studies or application tools such as software. For

the disasters most commonly studied, there was not

a clear reference to man-made disasters such as

terrorist attacks; the case studies always dealt with

natural disasters.

For DM, an important challenge for the OR/MS

community “is to develop a science of disaster

logistics that builds upon, among others, private

sector logistics and to transfer to private business the

specific core capabilities of humanitarian logistics,”

(Van Wassenhove 2006).
See
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Discrete-Time Markov Chain (DTMC)

A discrete-time, countable-state Markov process. It is

often just called a Markov chain.
D
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Introduction

Advances in medical treatment have resulted in

a patient population that is more complex, often with

multiple diseases, competing risks of complications,

and medication conflicts, rendering medical decisions

harder because what helps one patient or condition

may harm another. The use of Operations Research

(OR) methods for the study of healthcare has a long

history. Furthermore, there is a growing literature on

emerging applications in this area. This article

provides examples of contributions of OR methods,

including mathematical programming, dynamic

programming, and simulation, to the prevention,

detection, and treatment of diseases. More extensive

surveys of OR studies of health care delivery,

including medical decision making, can be found in

Pierskalla and Brailer (1994), Brandeau et al. (2004),

and Rais and Viana (2010).

Advances in medical treatment have extended the

average lifespan of individuals, and transformed many

diseases from life threatening in the near term to

chronic conditions in need of longterm management.
Many new applications of OR are emerging as

treatment options and population health evolve over

time. For example, new treatments have become

available for various forms of cancer, HIV, and heart

disease. In some cases, patients are living decades with

diseases that previously had low short-term survival

rates. As a result, more patients are living with

co-morbid conditions, and competing risks, creating

challenging decisions that must balance the downside

of treatment (e.g., medication side effects and

long-term complications) with the benefits of

treatment (e.g., longer life expectancy and better

quality of life).

Diabetes is a good example of a chronic disease for

which medical treatment is complex. With nearly 8%

of the U.S. population estimated to have diabetes, it is

recognized as a leading cause of mortality and

morbidity. It is associated with long-term

complications that affect almost every part of the

body, including coronary heart disease (CHD),

stroke, blindness, kidney failure, and neurological

disorders. For many patients, diabetes might be

prevented through improved diet and exercise.

However, due to the slow development of symptoms

in many patients, diabetes can go undetected for years.

For patients that are diagnosed with diabetes, risk

models exist to predict the probability of

complications, but alone these models do not provide

optimal treatment decisions. Rather, they provide raw

data that can be used in OR models to make optimal

treatment decisions. This general situation is true of

many chronic diseases. As a result, there are many

emerging opportunities for applications of OR to

disease prevention, detection, and management.

This article is organized as follows. The section on

Disease Prevention and Screening describes

important contributions of OR to disease

prevention, including vaccination and screening

methods for detecting disease in a population of

potentially infected people. The section on

Treatment Choices focuses on applications to long-

term management of chronic diseases, including

selection among multiple treatment choices, and

decisions about timing and dosage of treatment. The

section on Emerging Applications reviews some

emerging applications to real-time decision making

at the point of care and patient decision aids. Finally,

research opportunities are discussed in the

Conclusions section.

http://dx.doi.org/10.1007/978-1-4419-1153-7_579
http://dx.doi.org/10.1007/978-1-4419-1153-7_582
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Disease Prevention and Screening

Prevention and screening are important factors in

determining overall population health. OR has been

applied to help inform decisions related to prevention

and screening for decades. Two major topics in this

area, that are prominent in the OR literature, are

vaccination and disease screening. Vaccination

emphasizes the prevention of infectious diseases,

while disease screening is common for both

non-infectious and infectious diseases. Each of these

topics will be discussed in detail in this section.

Vaccination

The biological and genetic sciences have greatly

increased the knowledge of how viruses and bacteria

operate within the body to create disease. This has led

to the discovery of many new vaccines. However, the

myriad interactions as well as controversy about their

effects on individuals, and an overall population, have

drawn considerable public attention. These

interactions and effects present several challenges in

the utilization of the vaccines for disease control. First,

there are a large number of diseases for which effective

vaccines are available. Some have specific

requirements, such as multiple doses that must be

administered within a minimum or maximum time

window. Also, some have conflicts with other

vaccines. Second, many new vaccines are coming on

the market, including combination (multi-valent)

vaccines that can cover multiple diseases. Third, for

some diseases there is uncertainty about the future

evolution of epidemic strains, leading to questions

about optimal design of vaccines. Finally, there are

challenges in the vaccine manufacturing process

including uncertain yields, quality control, supply

chain logistics, and the optimal storage location of

vaccine supplies. OR models have been applied to

address many of these challenges.

Pediatric Vaccination

Pediatric or childhood vaccination is the most common

means of mass vaccination. OR researchers have

developed models to aid in the selection of a vaccine

formulary, pricing of vaccines, and design of

vaccination schedules. Jacobson et al. (1999)

proposed integer-programming models to determine

the price of combination vaccines for childhood

immunization. Their models considered all available
vaccine products at their market prices and constraints

based on the U.S. national recommended childhood

immunization schedule. Their objective was to find

the vaccine formularies with the lowest overall cost

from the patient, provider, and societal perspectives.

Their integer-programming models considered the

first five years of the recommended childhood

immunization schedule against six diseases. They

used binary decision variables to denote whether

a vaccine is scheduled for a particular month’s visit.

In a later study, Jacobson et al. (2006) investigated

a pediatric vaccine supply shortage problem to assess

the impact of pediatric vaccine stockpile levels on

vaccination coverage rates of the guidelines during

supply interruption. Their model was similar to

inventory models that consider stock-outs, as well as

lot sizing problems with machine breakdowns.

Objectives of their model included optimizing service

level and minimizing a standard loss function. Using

their model, they concluded that the guidelines are

only sufficient to mitigate a vaccine production

interruption of eight months.

Hall et al. (2008) considered a childhood

vaccination formulary problem that allows

for combination vaccines. They proposed an

integer-programming model to minimize the cost of

fully immunizing a child under the constraints of

a recommended schedule. They proved their

proposed model is NP-hard. They proposed exact

algorithms using dynamic programming and

heuristics for approximating near optimal solutions to

their model. Engineer et al. (2009) further investigated

an extension that involves catch-up scheduling for

childhood vaccination. They provided details of

a successful implementation of their model as

a decision support system.

Flu Vaccination

Some diseases evolve rapidly over time, necessitating

frequent vaccination on a regular basis. For example,

the composition of seasonal flu vaccine changes every

year. Wu et al. (2005) proposed a model for flu vaccine

design. They used a continuous-state discrete-time

dynamic-programming model to find the optimal

vaccine-strain selection policy. In their dynamic

program, the state was represented by the antigenic

history, including previous vaccine and epidemic

strains. The decision variable (action) was the

vaccine strain to be selected, and the reward is the
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cross-reactivity representing the efficacy of

the vaccine. The objective was to maximize the

expected discounted reward. Approximate solutions

were obtained by state-space aggregation and

compared to an easy to-implement myopic policy

based on approximating the multi-stage problem by

a series of single period problems. They compare

policies suggested by their model to theWorld

Health Organization (WHO) recommended policy.

Based on their results, the authors suggested that the

WHO policy is reasonably effective and should be

continued.

Vaccination for Bio-defense

OR researchers have contributed to problems related to

vaccination strategy for bio-defense. For instance,

Kaplan et al. (2003) analyzed bio-terror response

logistics using smallpox as an example. The authors

proposed a trace vaccination model using a system of

ordinary differential equations (ODEs) incorporating

scarce vaccination resources and queueing of people

for vaccination. An approximate analysis of the ODEs

yields closed-form estimates of numbers of deaths and

maximum queue length. They also obtained

approximate closed-form expressions for the total

number of deaths under mass vaccination. Using

these results, approximate thresholds for controlling

an epidemic were derived.

Kress (2006) also considered the problem of

optimizing vaccination strategy in response to

potential bio-terror events. The author developed

a flexible, large-scale analytic model with discrete-

time decisions. The author used a set of difference

equations to describe the transition of the number of

people at each epidemic stage and proposed

a vaccination policy, which is a mixture of mass and

trace vaccination policies.

Other Vaccination Related Problems

Several other vaccine-related problems have been

investigated by OR researchers. For example, vaccine

allocation problems must consider criteria and

constraints related to vaccine manufacturing and

supply chain logistics. Becker and Starczak (1997)

formulated the optimal allocation of vaccine as

a linear-programming problem. Their objective was

to prevent epidemics with the minimum required

vaccine coverage. Their linear-programming model

considered heterogeneity among individuals and
minimized the initial reproduction number for

a given vaccination coverage. The optimal vaccine

allocation strategy suggested more individuals need

to be vaccinated in larger households.
Disease Screening

Disease screening is important in extending life

expectancy and improving people’s quality of life.

Effective screening can also reduce costs to the

healthcare system by avoiding the high costs

associated with treatment of late-stage disease.

However, when and how to screen for a specific

disease is a complex decision. For instance, model

formulation is often difficult due to unclear pathology

and risk factors, uncertainty in disease staging and the

relationship to symptoms and test results, and the

trade-off between the benefit of early detection and

the side effects and costs of screening and treatment.

The types of OR methods employed depend on

whether the disease is non-infectious or infectious.

Following are several examples from each category

of diseases.

Non-infectious Disease Screening

Modeling disease progression among different

stages throughout a patient’s lifetime, as well as the

trade-off between pros (e.g., longer life expectancy

and better quality of life) and cons (e.g., side effects

and costs of over-diagnosis and over-treatment) of

disease screening are central to non-infectious

diseases. Shwartz (1978) proposed one of the first

models for breast cancer screening to evaluate and

compare alternative screening strategies. Their

stochastic model consisted of a discrete set of

breast cancer disease states and criteria including

life expectancy and the probability of diagnosis.

A significant amount of research on breast cancer

screening has developed; see Mandelblatt et al.

(2009) for a review of breast cancer screening

models.

Eddy (1983) presented a general model of

monitoring patients with repeated and imperfect

medical tests. The model considered clinical and

economic outcomes such as the probability of

detecting a disease, the method and timing of

detection, the stage at which the disease is detected,

costs, and the benefit of screening based on the
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willingness to pay. The model incorporated disease

incidence, the natural history of disease progression,

the effectiveness of tests and subsequent treatments,

and the order and frequency of tests. The model was

illustrated using a hypothetical example. The model

had subsequently been applied in clinical practice to

several cancer screening problems.

To capture uncertainty in identifying disease states,

OR techniques such as partially observable Markov

decision process (POMDP) have been applied. For

example, Zhang et al. (2012) developed a POMDP

model for prostate cancer screening. Due to the slow

growing nature of prostate cancer, the imperfect nature

of diagnostic tests, and the quality of life impact of

treatment, whether and when to refer a patient for

biopsy is controversial. The objective of their model

was to maximize the quality adjusted life expectancy

and minimize the costs of screening and treatments.

They assumed that cancer states are not directly

observable, but the probability a patient has cancer

can be estimated from their PSA test history.

A control-limit type policy of biopsy referral and the

existence of stopping time of prostate cancer screening

were proven. The authors compared policies suggested

by their model, to commonly recommended screening

policies, and concluded there may be substantial

benefits from using prostate cancer risk to make

screening decisions.

Screening for disease is greatly influenced by the

diagnostic accuracy of the tests. An example of work

done in this area is given by Rubin et al. (2004) in

which the authors used a Bayesian network to

assist mammography interpretation. Interpreting

mammographic images and making correct diagnoses

are challenging even to experienced radiologists.

False-negative interpretations can cause delay in

cancer treatment and lead to higher morbidity and

mortality. False positives, on the other hand, result in

unnecessary biopsy causing anxiety and increased

medical costs. The American College of Radiology

developed BI-RADS which is a lexicon of

mammogram findings and the distinctions that

describe them. The authors showed that their

Bayesian network model may help to reduce

variability and improve overall interpretive

performance in mammography.

Many other diagnostic areas have been addressed

including gastrointestinal diseases, neurological

diseases, and others.
Infectious Disease Screening

In infectious diseases screening, one of the goals

is to prevent an epidemic outbreak. Therefore,

disease progression and communication throughout

a population is an important consideration.

Lee and Pierskalla (1988) proposed a

mathematical-programming model for contagious

diseases with little or no latent periods. The objective

of their model was to minimize the average number of

infected people in the population. Their model was

converted to a knapsack problem. They considered

both perfect and imperfect reliability of tests and

showed the optimal screening policy has equally

spaced screening intervals when the tests have perfect

reliability.

Disease screening problems often involve multiple

criteria, stemming from the patient, provider, and

societal perspectives. For example, Brandeau et al.

(1993) provided a cost-benefit analysis of HIV

screening for women of childbearing age based on

a dynamic compartmental model incorporating

disease transmission and progression over time. The

model was formulated as a set of simultaneous

nonlinear differential equations. The authors found

the primary benefit of screening is to prevent the

infection of their adult contacts, and that screening of

the medium to high risk groups may be cost-beneficial,

but it is not likely to be cost-beneficial for low

risk women.

Blood screening tests have been used to improve the

quality of the blood supply. An early example to

improve the performance of testing strategies in the

1980s was provided by Schwartz et al. (1990) for

screening blood for the HIV antibody, and making

decisions affecting blood donor acceptance. At the

time the work was done, limited knowledge was

available about the biology, epidemiology, and early

blood manifestations of HIV. Furthermore, the initial

and conditional sensitivities and specificities of

enzyme immunoassays and Western blot tests had

wide ranges of errors. A decision tree, with the

decisions probabilistically based on which screening

test to use, and in what sequence, was used to minimize

the number of HIV infected units of blood and blood

products entering the nation’s blood supply subject to

a budget constraint. The model was used at a meeting

of an expert panel of the U.S. National Heart Lung and

Blood Institute to inform the panelists who were

deciding which blood screening protocol to
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recommend. The model provided outputs including:

expected number of infected units entering the blood

supply per unit time, expected number of uninfected

units discarded per unit time, expected number of

uninfected donors falsely notified, and the

incremental cost among screening regimens.

Efficiency of screening can be a defining factor in

the success or failure of proposed screening methods.

Wein and Zenios (1996) proposed models for pooled

testing of blood products for HIV screening.

Optimization of pooled testing involves decisions

such as transfusion, discarding of samples in the pool,

and division of the pool into sub-pools. Several models

were proposed to minimize the expected costs. The

outcome of an HIV test was measured by an optical

density (OD) reading, a continuous measurement

which is determined by the concentration of the

antibodies. The states of the system were the previous

history of the OD readings. A dynamic-programming

model with a discretized state space and a heuristic

solution algorithm were introduced to obtain near

optimal solutions. The policy obtained by the

heuristic algorithm was proposed as a cost-effective,

accurate, and relatively simple alternative to the

implemented HIV screening policies.
Treatment Choices

The following section focuses on treatment decisions

for patients with chronic diseases such as diabetes,

HIV, cancer, and end-stage renal disease. Treatment

of patients with chronic diseases is often complex due

to the long-term nature of the illness and the future

uncertainty in patient health. Complicating matters,

these patients may have other comorbidities that need

to be taken into account when treatment decisions are

made. In the following section, two areas related to

choice of treatment are presented where OR is used to

address challenges related to drug treatment decisions

and organ transplantation for patients with chronic

conditions.

Drug Treatment Decisions

Many diseases involve complex drug treatment

decisions, particularly for chronic conditions.

Decisions about which medications to initiate, when

to initiate treatment, and the appropriate dosage are of

primary importance. Additional challenges arise from
the fact that there is uncertainty about the future health

of the patient, adherence to treatment, and the efficacy

of drugs for a particular patient. Treatment decisions

must also take into account the often irreversible

nature of treatment decisions. Many treatment

optimization models employ the use of a natural

history model of the disease and all-cause mortality,

incorporating the influence of competing risks into the

treatment decision.

Choice of Treatment

When there are multiple candidate treatments

available, the choice of treatment may be unclear. OR

techniques have been used to select treatments. For

example, Pignone et al. (2006) presented a Markov

model to select among aspirin, statins, and

combination treatment, for the prevention of coronary

heart disease (CHD). The model simulated the

progression of middle-aged males with no history of

CHD. The model was used to estimate cost per

quality-adjusted life year (QALY) gained. The

authors found that aspirin dominates no treatment

when a patient’s ten-year risk of CHD is at least

7.5%. If a patient’s risk is greater than 10%,

combination treatment is recommended.

Hazen (2004) used dynamic influence diagrams to

analyze a chain of decisions as to whether a patient

should proceed to total hip replacement surgery or not.

The objective in making this decision was to calculate

the optimal expected costs and QALYs under each

choice. The use of QALYs for the objective was

important because an older person undergoing hip

replacement may not have more expected years of

life relative to not doing surgery, but the quality of

life improvement can be considerable and, quite

possibly, worth the cost.

Timing of Treatment

With chronic conditions that can span many years, the

optimal time to initiate particular treatments may be

unknown. There have been several studies that

researched the optimal timing of treatment. Two

models relate to the optimal timing of HIV treatment.

This question is of particular interest since patients that

begin HIV treatment will only be able to use the drug

for a limited amount of time, as the virus builds up

resistance to the drug. Shechter et al. (2008) used

a Markov decision process (MDP) model to find the

optimal time to initiate HIV therapy, while
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maximizing the patient’s quality of life. At monthly

decision epochs, the decision was made to initiate

therapy or wait until the next month to decide. The

health states were based on the number of CD4 white

blood cells, the primary target of HIV, and the reward

was the expected remaining lifetime in months. They

assumed a stationary infinite horizon model and found

that if it is optimal to initiate treatment at a given CD4

count, it is also optimal to initiate treatment for patients

with higher CD4 counts. The model supported earlier

treatment, despite trends toward later treatment.

Braithwaite et al. (2008) analyzed the timing of

initiation based on CD4 counts for varying viral

loads. They used a simulation to compare different

CD4 count treatment thresholds for initiation of

therapy. The model compared life expectancy and

QALYs for the different strategies of initiation. In

agreement with Shechter et al.’s finding, the

simulation suggested that the use of earlier initiation

of treatment (higher CD4 count thresholds) results in

greater life years and QALYs.

Agur et al. (2006) developed a method to create

treatment schedules for chemotherapy patients using

local search heuristics. The model simulated cell

growth over time and finds two categories of drug

protocols: one-time intensive treatment and a series

of nonintensive treatments. Chemotherapy schedules

were evaluated based on a patient’s state at the end of

a given time period, number of cancer and host cells,

and the time to cure. Simulated annealing, threshold

acceptance, and old bachelor acceptance—a variant of

threshold acceptance in which the trial length is set by

users—were used to obtain better treatment schedules.

The authors reported good results with all three

techniques, but they showed simulated annealing

resulted in the greatest computational effort.

Denton et al. (2009) investigated the optimal timing

of statin therapy for patients with type 2 diabetes. This

problemwas formulated as a discrete time, finite horizon,

discounted MDP in which patients transition through

health states corresponding to varying risks of future

complications, their history of complications, and death

from other causes unrelated to diabetes. The objective

was to maximize reward for QALYs minus costs of

treatment. The optimal timing of treatment for patients

was determined using three published risk models for

predicting cardiovascular risk. The earliest time to start

statins was age 40 for men, regardless of which risk

model was used. However, for female patients, the
earliest optimal start time varied by 10 years, depending

on the riskmodel.Mason et al. (2012) extended this work

to account for poor medication adherence. The authors

used a Markov model to represent uncertain future

adherence after medication was initiated. They

observed that the optimal timing of statins should be up

to 11 years later for patients with uncertain future

adherence. However, they also found that improving

adherence has a much larger effect on QALYs than

delaying the timing of initiation.

Paltiel et al. (2004) constructed a simulationmodel to

treat asthma. The model forecasted asthma-related

symptoms, acute exacerbations, quality adjusted life

expectancy, health-care costs, and cost-effectiveness.

Their intent was to reduce asthma manifestations,

improve life quality, and reduce costs of care. The

authors pointed out that similar models could be

constructed for the control of other subpopulation-wide

diseases such as obesity, smoking, and diabetes.

A great deal of work has also been done on

modeling CHD interventions. Cooper et al. (2006)

provided an excellent review of many models used

for this disease. Most of the models reviewed by the

authors are decision trees, Markov processes, or

simulation models. Decisions included when and

what types of interventions, and what types of drugs

to employ, at various stages of disease.

Dosage of Treatment

Given a particular treatment has been selected, the

appropriate dosage must be determined. He et al.

(2010) provided a discrete-state MDP model for

determining gonadotropin dosages for patients

undergoing in vitro fertilization-embryo transfer

therapy. This work focused on patients with the

chronic condition of polycystic ovaries syndrome that

tend to be more sensitive to the gonadotropin

treatment. The resulting policies from the MDP

model were evaluated through simulation to

determine the impact of misclassifying patients. In

general, the use of OR techniques can be used to

provide a better starting dosage with less fine tuning

needed after initiation of treatment.

Dosage decisions are also important in radiation

treatment planning. Several studies have focused on

radiotherapy for cancer using mathematical

optimization techniques. Although the vast majority

of these treatment plans are designed by clinicians

through intelligent trial and error, it is becoming
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essential to use optimization for extremely

complicated and complex plans. Holder (2004) used

linear programming for intensity modulated

radiotherapy treatment (IMRT). Ferris et al. (2004)

discussed various optimization tools for radiation

treatment planning. In both of these papers, the

objective was to deliver a specified dose to the target

area (above a minimum and below a maximum level of

dosage) and spare or minimize damage to surrounding

healthy tissue and nearby critical body structures and

organs.

Organ Transplants

End-stage liver disease (ESLD) and end-stage renal

disease (ESRD) have received a great deal of study in

the OR literature. They are chronic conditions that

can result in patients eventually needing liver or

kidney transplants, respectively. Chronic liver

disease or liver failure can result from many causes,

including liver cancer and chronic hepatitis. Often,

initial treatment of liver failure attempts to manage

the underlying cause, followed by intensive care and

management of complications such as bleeding

problems. If patients continue to deteriorate to

ESLD, liver transplantation may be the only option.

Patients with chronic kidney disease have

a continuing loss of renal function, leading to

ESRD. Once a patient has ESRD, renal replacement

therapy in the form of dialysis or kidney

transplantation is necessary.

While organ transplants are the best long-term

solution for patients with chronic liver or kidney

disease, there is a shortage of organs for transplant

and a growing waiting list of patients. OR techniques

have been applied to optimize the allocation of organs

and timing of transplants for increasing quality and

length of life of the recipients. The allocation of

kidneys and livers for transplantation is challenging

because both living and cadaveric donors are possible.

With living donors, there is more flexibility in the

timing of the transplant, allowing for the transplant

timing decision to be optimized. For both kidney and

liver transplantation, there are challenging decisions

about whether to use a living or cadaveric donor

(if both are available), and when the transplant should

occur. OR techniques have also aided in finding the

greatest number of donor-recipient matches,

considering the challenges of blood and tissue type

compatibilities.
Alagoz et al. (2004) studied the question of the

optimal timing of liver transplantation. They

developed an MDP model to find the optimal timing

for a patient to have a transplant from a living donor.

The patients transitioned through health states defined

by a scoring system for ESLD. With the donor assumed

to be available at any time, the MDP maximized the

patient’s quality adjusted lifetime—striking a balance

between having the transplant before the patient

becomes too sick and waiting long enough due to the

limited amount of time a patient can live after

a transplant.

Su and Zenios (2004) presented an M/M/1 queueing

model to determine if incorporating patient choice into

allocation will improve efficiency and reduce waste of

organs offered to patients but not accepted. Their model

incorporated uncertain arrival of patients and organs,

with the service process being the kidney transplant.

Since organs cannot be stored, the service time was

given by the interarrival time of organs. In addition to

the traditional M/M/1 assumptions, each organ had

a reward corresponding to its quality, and patients

may reject an organ they believe has poor quality. The

authors found that a first-come-first-serve policy can

lead patients to refuse organs of lesser quality, leading

to waste of up to 15% of organs. They also found that

last-come-first-serve (LCFS) allocation lowers the

wasteful effect of patient preference. While LCFS was

not a feasible rule to implement, their results

highlighted the need for adjustment of incentives

associated with patient choice to prevent wasting

organs.

A common way for patients to find organ donors is

to ask willing family members or friends to be tested

for compatibility. Another area, where OR has

contributed, considers patients with willing donors

that are not matches. Segev et al. (2005) considered

the problem of paired kidney donation, matching two

incompatible pairs with each other resulting in two

successful transplants. The study considered a graph

theory representation of a large pool of incompatible

patient-donor pairs where each pair was represented

with a node and two compatible pairs were linked with

an edge. An algorithm based on the Edmonds matching

algorithm (Edmonds 1965) was used to find all

feasible matching solutions, and the best solution was

chosen based on some predefined criteria, including

the number of total matches and the number of

transplant patients alive five years after the operation.
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This matching strategy was compared to the first-

accept scheme, which only finds one feasible

solution, that is used in practice. The authors found

that their algorithm could increase the total number of

matches and take into account patient priorities.
Emerging Applications

Rapid advances in medicine are driving new OR

research opportunities. As evidence of this, over the

period from 2000–2010 the total number of health care

related presentations at the Institute for Operations

Research and Management Science (INFORMS)

annual meeting has grown from 35 in 2000 to 281 in

2009 (Denton and Verter 2010). This section provides

some specific examples of emerging areas of research.

Personalized Medicine

With the sequencing of the human genome and many

advances in biomarkers for certain diseases, the idea of

personalized medicine has received a great deal of

attention. There are some examples of successful

applications of personalized medicine, such as breast

cancer treatment. However, for most diseases even

basic risk factors are not yet considered as part of the

standard guidelines. For example, gender is a well

known risk factor for heart disease and stroke. While

this has been known for decades, in many countries,

including the U.S., the published treatment guidelines

for control of risk factors such as cholesterol and blood

pressure are the same for men and women. These

examples point to opportunities to improve the design

of screening and treatment guidelines through

consideration of individual patient risk factors.

Decision Aids

The use of OR techniques in the development of

decision aids is not as wide as in other areas of

treatment choices. This is an area of research that

must expand if OR models are to be translated into

practice. Researchers have attempted to use artificial

intelligence and computer science/information

systems to provide decision support to the physician

and/or patient. However, many clinicians still hesitate

to use models for diagnosis or treatment. There are

many possible reasons for the slow diffusion into

practice. An important goal is the study of the

clinician-model interface. In spite of adoption
difficulties, there are examples of where OR has

contributed significantly to treatment decisions.

Several examples follow.

White et al. (1982) developed a quantitative

model for diagnosing medical complaints in an

ambulatory setting with the goal of reducing costs

and improving quality of diagnoses. The model

structure was influenced by three methods: decision

analysis, partially observed semi-Markov decision

process models, and multi-objective optimization

therapy (MOOT). The authors used Bayesian-based

modeling of disease progression and heuristics (a

single-stage decision tree that reduces the amount

of computation time and storage space per patient) to

consider individual patient and physician

preferences. For the MOOT heuristic, suggested by

White et al. (1982), the list of possible diagnosis

tests were provided, highlighting nondominated

tests. The authors described a detailed example of

the decision aid to treat a patient in an ambulatory

setting.

Policies related to health information exchanges

assume patients want to explicitly decide who can

have access to their medical records. Marquard and

Brennan (2009) tested this assumption by questioning

31 patients from a neurology clinic about their

willingness to share information about their

medication with a primary care physician,

a neurologist, and an emergency room physician.

Almost all patients decided to share their current

medication usage with all three doctors citing the

potential clinical care benefits. However, not all

patients understood the possible effects of sharing

this information. The use of realistic decision

scenarios and structured conversations used in this

study are likely to reveal more true patient

preferences than abstract opinion surveys that are

commonly used in practice. In addition to correctly

identifying patient preferences, it is important to

assess patient understanding of the consequences of

their choices. Understanding the true willingness of

patients to share health information is an important

step in the development of decision aids and the

inclusion of patient choices in medical decisions.

Using multi-attribute utility theory, Simon (2009)

considered the choice of treatments for prostate cancer

including surgery, external beam radiation,

brachytherapy, and no treatment. The model used

data collected from the medical literature to compute
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probabilities regarding the likelihood of death and

other side effects for each of the choices. The model

also incorporated the patient’s individual preferences

regarding length of life and quality of life in view of the

possible side effects (impotence, incontinence, and

toxicity). The model evaluated each treatment

alternative and compared the results for the particular

patient.

Real Time Decision Making

Many medical treatment decisions must be made in

real time. Depending on the particular application, the

definition of real time could be anything from a few

seconds to several minutes. Such applications can be

highly demanding, often trading off the need for high

quality decisions with available time.

One area in which OR has contributed to real time

decision making is blood glucose control in patients

with diabetes. Patients with type 1 diabetes are insulin

dependent, and careful control of blood glucose within

defined physiological limits is necessary to avoid

a potentially life threatening occurrence of

hypoglycemia (very low blood glucose that can lead

to coma and/or death if not treated immediately).

Blood glucose levels can change significantly over

very short periods of time (seconds) depending on

a variety of factors, such as caloric intake. The most

common treatment for patients with type 1 diabetes is

to inject insulin. However, the need for regular

injection has a serious impact on a patient’s quality

of life. Research has been conducted on the design of

closed loop control algorithms that could enable an

implantable device to optimize insulin delivery

(Parker et al. 2001).

Outpatient procedures can also pose a series of

challenging decisions that must be made in real

time (minutes). For instance, radiation treatment for

cancer patients involves a series of complex

decisions that can influence the effectiveness of

treatment. One example is brachytherapy for

prostate cancer treatment, that involves the

implantation of radioactive seeds in close proximity

to a tumor. The method of brachytherapy is to place

seeds in and around a tumor such that dual goals of

maximizing dose to the tumor and minimizing dose

to healthy tissue are balanced. Due to changes that

occur in tumor size and shape and the physical

movement of healthy tissue and organs in proximity

to the tumor over short time periods, such decisions
must be made in real time at the point of placement.

This real time analysis selects the actual placements

of the seeds in the prostate from the thousands of

possible locations, millimeters apart. Lee and

Zaider (2008) presented a nonlinear mathematical-

programming model to make location decisions

using real time imaging information. They

demonstrated a practical application in which the

clinical goals of reduced complications (e.g.,

impotence and incontinence) and reduced costs

($5,600 per patient) were achieved.
Concluding Remarks

The use of OR for the study of disease treatment and

screening decisions has a long history. Furthermore,

advances in medicine are creating new challenges

which are in turn resulting in new applications of OR

and new methods. This article surveyed some of the

significant contributions of OR methods, including

mathematical programming, dynamic programming,

and simulation. Contributions of OR to disease

prevention and screening, long term management of

chronic conditions, and several emerging application

areas for OR were discussed.

Many examples of successful OR applications were

described, as well as many challenges. For example,

the availability of data for analyzing medical decisions

is often more complex compared to other real-world

decision situations. This is true for a variety of reasons

including confidentiality concerns, the fragmented

nature of health care delivery, and the lack of the

requisite information systems. There are also

challenges related to the fundamental difficulty of

measuring criteria related to medical decision

making, such as the cost to the patient as a result of

a burdensome treatment plan. Finally, there are

significant challenges in the translation of OR models

from theory to practice.
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Introduction

The choice of appropriate probability distributions is

the most important step in any complete stochastic

system analysis and hinges upon knowing as much as

possible about the characteristics of the potential

distribution and the physics of the situation to be

modeled. Generally, the first thing that has to be

decided is which probability distributions are

appropriate to use for the relevant random

phenomena describing the model. For example, the

exponential distribution has the Markovian

(memoryless) property. Is this a reasonable condition

for the particular physical situation under study?

Assume the problem is to describe the repair

mechanism of a complex maintained system. If the

service for all customers is fairly repetitive, then an
assumption might be that the longer a failed item is in

service for repair, the greater the probability that its

service will be completed in the next interval of time

(non-memoryless). In this case, the exponential

distribution would not be a reasonable candidate for

consideration. On the other hand, if the service is

mostly diagnostic in nature (the trouble must be

found and fixed), or there is a wide variation of

service required from customer to customer so that

the probability of service completion in the next

instant of time is independent of how long the

customer has been in service, the exponential with its

memoryless property might indeed suffice.

The actual shape of the density function also gives

quite a bit of information, as do its moments. One

particularly useful measure is the ratio of the standard

deviation to the mean, called the coefficient of

variation (CV). The exponential distribution has

a CV ¼ 1, while the Erlang or convolution of

exponentials has a CV < 1, and the hyperexponential

or mixture of exponentials has a CV > 1. Hence,

choosing the appropriate distribution is a

combination of knowing as much as possible about

distribution characteristics, the physics of the

situation to be modeled, and statistical analyses when

data are available.
Hazard Rate

An important concept that helps in characterizing

probability distributions that is strongly associated

with reliability modeling is the hazard-rate (also

termed the failure-rate) function. This concept,

however, can be useful in general when trying to

decide upon the proper probability distribution to

select. In the discussion that follows, the hazard rate

will be related to the Markov property for the

exponential distribution, and its use as a way to gain

insight about probability distributions will be

discussed.

Suppose it is desired to choose a probability

distribution to describe a continuous lifetime

random variable T with a cumulative distribution

function (CDF) of F(t). The density function,

f(t) ¼ df(t)/dt, can be interpreted as the approximate

probability that the random time to failure will be in

a neighborhood about a value t. The CDF is, of course,
the probability that the time will be less than or equal to
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the value t. Then the hazard rate h(t) is defined as the

conditional probability that the lifetime will be in

a neighborhood about the value t, given that the time

is already at least t. That is, if the situation deals with

failure times, h(t)dt is the approximate probability that

the device fails in the interval (t, t + dt), given it is

working at time t.

From the laws of conditional probability, it can be

shown that
hðtÞ ¼ f ðtÞ
1� FðtÞ :

This hazard or failure-rate function can be

increasing in t (called an increasing failure rate, or

IFR), decreasing in t (called a decreasing failure

rate, or DFR), constant (considered to be both IFR

and DFR), or a combination. The constant case

implies the memoryless or ageless property, and

this holds for the exponential distribution, as will

be shown. If, however, it is believed that the device

ages and that the longer it has been operating the

more likely it is that the device will fail in the next

dt, then it is desired to have an f(t) for which h(t) is
increasing in t; that is, an IFR distribution. This

concept can be utilized for any stochastic

modeling situation. For example, if instead of

modeling lifetime of a device, the concern is with

describing the service time of a customer at a bank,

then, if service is fairly routine for each customer,

then an IFR distribution would be desired. But if

customers required a variety of needs (say a queue

where both business and personal transactions were

allowed), then a DFR or perhaps a CFR exponential

might be the best choice.

Reversing the algebraic calculations, a unique F(t)
can be obtained from h(t) by solving a simple linear,

first-order differential equation, i.e.,

FðtÞ ¼ � exp �
Z t

0

hðuÞ du
� �

:

The hazard rate is another important information

source (as is the shape of f(t) itself) for obtaining

knowledge concerning candidate probability

distributions.

Consider the exponential distribution

f ðtÞ ¼ y expð�ytÞ:
From the discussion above, it is easily shown that

hðtÞ ¼ y. Thus, the exponential distribution has

a constant failure (hazard) rate and is memoryless.

Suppose, for a particular situation, there is a need for

an IFR distribution for describing some random times.

It turns out that the Erlang has this property. The

density function is

f ðtÞ ¼ yktk�1 expð�ytÞ=ðk � 1Þ!

(a special form for the gamma), with its CDF

determined in terms of the incomplete gamma

function or equivalently as a Poisson sum. From

these, it is not too difficult to calculate the Erlang’s

hazard rate, that also has a Poisson sum term, but is

somewhat complicated to ascertain the direction of h(t)
with twithout doing some numerical work. It does turn

out, however, that h(t) increases with t and at

a decelerating rate.

Suppose the opposite IFR condition is desired,

that is, an accelerating rate of increase with t. The

Weibull distribution can obtain this condition. In fact,

depending on how the shape parameter of the Weibull

is chosen, an IFR can be obtained with decreasing

acceleration, constant acceleration (linear with t), or
increasing acceleration, as well as even obtaining

a DFR or the constant failure rate exponential. The

CDF of the Weibull is given by

FðtÞ ¼ 1� expð�at bÞ

and its hazard rate turns out to be the simple monomial

h(t) ¼ abt b-1, with shape determined by the value of b
(called the shape parameter).

As a further example in the process of choosing an

appropriate candidate distribution for modeling,

suppose, for an IFR that has a deceleration effect,

such as the Erlang, there is a believe that the CV

might be greater than one. This latter condition

eliminates the Erlang from consideration. But, it is

known that a mixture of (k) exponentials (often

denoted by Hk) does have a CV > 1. It is also

known that any mixture of exponentials is DFR. In

fact, it can be shown that all IFR distributions have

CV < 1, while all DFR distributions have CV > 1

(Barlow and Proschan 1975). Thus, if there is

convincing evidence that the model requires an

IFR, CV < 1 must be accepted. Intuitively, this can

be explained as follows. Situations that have CV > 1
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often are cases where the random variables are

mixtures (say, of exponentials). Thus, for example,

if a customer has been in service a long time, chances

are that it is of a type requiring a lot of service, so the

probability of completion in the next infinitesimal

interval of width dt diminishes over time. Situations

that have an IFR condition indicate a more consistent

pattern among items, thus yielding a CV < 1.

D

Range of the Random Variable

Knowledge of the range of the random variable under

study can also help narrow the possible choices in

selecting an appropriate distribution. In many cases,

there is a minimum value that the random variable can

assume. For example, suppose the analysis concerns

the interarrival times between subway trains, and it is

given that there is a minimum time for safety of g. The
distributions discussed thus far (and, indeed, many

distributions) have zero as their minimum value.

Any such distribution, however, can be made to

have a minimum other than zero by adding

a location parameter, say g. This is done by

subtracting g from the random variable in the

density function expression. Suppose the

exponential distribution is to be used, but we have

a minimum value of g. The density function would

then become f ðtÞ ¼ y expð�y½t� g	Þ. It is not quite so
easy to build in a maximum value if this should be the

case. For this situation, a distribution with a finite

range would have to be chosen, such as the uniform,

the triangular or the more general beta distribution

(Law and Kelton 1991).
Data

While much information can be gained from

knowledge of the physical processes associated

with the stochastic system under study, it is very

advantageous to obtain data, if at all possible. For

existing systems, data may already exist or can be

obtained by observing the system. These data can

then be used to gain further insight on the best

distributions to choose for modeling the system.

For example, the sample standard deviation and

mean can be calculated, and it can be observed

whether the sample CV is less than, greater than,
or approximately equal to one. This would give an

idea as to whether an IFR, DFR or the exponential

distribution would be the more appropriate.

If enough data exist, just plotting a histogram can

often provide a good idea of possible distributions

from which to choose, since theoretical probability

distributions have distinctive shapes (although some

do closely resemble each other). The exponential

shape of the exponential distribution is far different,

for example, than the bell-shaped curve of the normal

distribution.

There are rigorous statistical goodness of fit

procedures to indicate if it is reasonable to assume

that the data could come from a potential candidate

distribution. These do, however, require a considerable

amount of data and computation to yield satisfactory

results. But, there are statistical packages, for example,

Expert Fit (Law and Vincent 1995), which will analyze

sets of data and recommend the theoretical

distributions that are the most likely to yield the kind

of data being studied.

Distribution selection (or input modeling, as it is

sometimes called) is not a trivial procedure. But

this is a most important aspect of stochastic

analysis, since inaccuracies in the input can make

the output meaningless. Fitting data to standard

statistical distributions, which are mostly two-

parameter distributions, limits focus on the first

two moments only. There is evidence to suggest

that this is not always sufficient (see Gross and

Juttijudata 1997).

Finally, for emphasis, the point is made again

that choosing an appropriate probability model is

a combination of knowing as much as possible

about the characteristics of the probability

distribution being considered and as much as

possible about the physical situation being

modeled.
See

▶ Failure-Rate Function

▶Hazard Rate

▶Markov Chains

▶Markov Processes

▶Reliability of Stochastic Systems

▶ Simulation of Stochastic Discrete-Event Systems

▶ Stochastic Input Model Selection
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Decision making unit.
See

▶Data Envelopment Analysis
Documentation

Saul I. Gass

University of Maryland, College Park, MD, USA
Introduction

As many operations research studies involve

a mathematical decision model that is quite complex

in its form, it is incumbent upon those who developed

the model and conducted the analysis to furnish

documentation that describes the essentials of the

model, its use, and its results. Of especial concern are

those computer-based models that are represented by

a computer program and its input data files. The most

serious weakness in the majority of OR model

applications, both those that are successful and those

that fail, is the lack of documents that satisfy the

minimal requirements of good documentation

practices (Gass et al. 1981; Gass 1984). The reasons
for requiring documentation are many-fold and

include, among others, “to enable system analysts

and programmers, other than the originators, to use

the model and program,” “to facilitate auditing and

verification of the model and the program

operations,” and “to enable potential users to

determine whether the model and programs will serve

their needs” (Gass 1984).

The most acceptable view of model documentation

is that which calls for documents that record and

describe all aspects of the model development

life-cycle. The life-cycle model documentation

approach given in Gass (1979) calls for the

production of 13 major documents. However, it is

recognized that in terms of the basic needs of model

users and analysts, these documents can be rewritten

and combined into the following four manuals:

Analyst’s Manual, User’s Manual, Programmer’s
Manual, and Manager’s Manual. Brief descriptions

of the contents of these manuals are given below;

detailed tables of contents for each are given in

Gass (1984).
Analyst’s Manual

The analyst’s manual combines information from the

other project documents and is a source document for

analysts who have been and will be involved in

the development, revisions, and maintenance of the

model. It should include those technical aspects

that are essential for practical understanding and

application of the model, such as a functional

description, data requirements, verification and

validation tests, and algorithmic descriptions.
User’s Manual

The purpose of the user’s manual is to provide

(nonprogramming) users with an understanding of

the model’s purposes, capabilities, and limitations so

they may use it accurately and effectively. This

manual should enable a user to understand the

overall structure and logic of the model, input

requirements, output formats, and the interpretation

and use of the results. This manual should also

enable technicians to prepare the data and to set up

and run the model.

http://dx.doi.org/10.1007/978-1-4419-1153-7_212
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Programmer’s Manual

The purpose of the programmer’s manual is to provide

the current and future programming staff with the

information necessary to maintain and modify the

model’s program. This manual should provide all

the details necessary for a programmer to understand

the operation of the software, to trace through it for

debugging and error correction, for making

modifications, and for determining if and how the

programs can be transferred to other computer

systems or other user installations.
Manager’s Manual

The manager’s manual is essential for computer-based

models used in a decision environment. It is directed at

executives of the organization who will have to

interpret and use the results of the model, and support

its continued use and maintenance. This manual should

include a description of the problem setting and origins

of the project; a general description of the model,

including its purpose, objectives, capabilities, and

limitations; the nature, interpretation, use, and

restrictions of the results that are produced by the

model; costs and benefits to be expected in using

the model; the role of the computer-based model in

the organization and decision structure; resources

required; data needs; operational and transfer

concerns; and basic explanatory material.
See

▶ Implementation

▶Model Evaluation

▶Model Management

▶ Practice of Operations Research and Management

Science
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Domain Knowledge

The knowledge that an expert has about a given subject

area.
See

▶Artificial Intelligence

▶ Forecasting
DP

▶Dynamic Programming
DSS

▶Decision Support Systems (DSS)
Dual Linear-Programming Problem

A companion problem defined by a linear-programming

problem. Every linear-programming problem has an

associated dual-programming program. When the

linear-programming problem has the form
Minimize cTx

subject to Ax � b

x � 0

then its dual problem is also a linear-programming

problem with the form
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Maximize bTy

subject to ATy � c

y � 0

The original problem is called the primal problem.

If the primal minimization problem is given as

equations in nonnegative variables, then its dual is

a maximization problem with less than or equal to

constraints whose variables are unrestricted (free).

The optimal solutions to primal and dual problems

are strongly interrelated.
See

▶Complementary Slackness Theorem

▶Duality Theorem

▶ Symmetric Primal-Dual Problems

▶Unsymmetric Primal-Dual Problems
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Duality Theorem

A theorem concerning the relationship between the

solutions of primal and dual linear-programming

problems. One form of the theorem is as follows:

If either the primal or the dual has a finite optimal

solution, then the other problem has a finite optimal

solution, and the optimal values of their objective

functions are equal. From this it can be shown that

for any pair of primal and dual linear programs, the

objective value of any feasible solution to the

minimization problem is greater than or equal to

the objective value of any feasible solution to the

dual maximization problem. This implies that if one

of the problems is feasible and unbounded, then the

other problem is infeasible. Examples exist for which

the primal and its dual are both infeasible. Another

form of the theorem states: if both problems have
feasible solutions, then both have finite optimal

solutions, with the optimal values of their objective

functions equal.
See

▶Dual Linear-Programming Problem

▶ Strong Duality Theorem
Dualplex Method

A procedure for decomposing and solving a

weakly-coupled linear-programming problem.
See

▶Block-Angular System
Dual-Simplex Method

An algorithm that solves a linear-programming

problem by solving its dual problem. The algorithm

starts with a dual feasible but primal infeasible

solution, and iteratively attempts to improve the

dual objective function while maintaining dual

feasibility.
See

▶Dual Linear-Programming Problem

▶ Feasible Solution

▶ Primal-Dual Algorithm

▶ Simplex Method (Algorithm)
Dummy Arrow

A dashed arrow used in a project network diagram to

show relationships among project items, a logical

dummy, or to give a unique designation to an
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activity, thus called a uniqueness dummy. A dummy or

dummy arrow represents no time or resources.
See

▶Network Planning
D

Dynamic Programming

Chelsea C. White III

Georgia Institute of Technology, Atlanta, GA, USA
Introduction

Dynamic programming (DP) is both an approach to

problem solving and a decomposition technique that

can be effectively applied to mathematically

describable problems having a sequence of interrelated

decisions. Such decision-making problems are

pervasive. Determining a route from an origin

(e.g., home) to a destination (e.g., school) on a network

of roads requires a sequence of turns. Managing a retail

store (e.g., that sells, say, television sets) requires

a sequence of wholesale purchasing decisions.

Such problems share important characteristics. Each

is associated with a criterion to be optimized: choosing

the shortest or most scenic route from home to school,

and the buying and selling of television sets by the retail

store manager to maximize expected profit. Also, each

problem has a structure such that a currently determined

decision has impact on the future decision-making

environment. In going from home to school, the turn

currently selected will determine the geographical

location of the next turn decision; in managing the

retail store, the number of items ordered today will

affect the level of inventory next week.
Roots and Key References

In his 1957 book, Richard Bellman described the

concept of DP and its broad potential for application.

See Bellman’s earlier publications that describe

his initial developments of DP (Bellman 1954a, b);
also see Bertsekas (1987); Denardo (1982); Heyman

and Sobel (1984); Hillier and Lieberman (2004,

Chapter 10), and Ross (1983) for in depth

descriptions and applications of DP.

Central to the philosophy and methodology of DP is

the Principle of Optimality, as related to the following

multistage decision problem (Bellman 1957).

Let {q1, q2,. . . qn} be a sequence of allowable

decisions called a policy; specifically, an n-stage
policy. A policy that yields the maximum value of

the related criterion function is called an optimal

policy. Decisions are based on the state of the

process, that is, the information available to make

a decision. The basic property of optimal policies is

expressed by the following:

Principle of Optimality: An optimal policy has the

property that whatever the initial state and the initial

decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the

first decision (Bellman 1957).

The Principle of Optimality can be expressed as an

optimization problem over the set of possible decisions

by a recursive relationship, the application of which

yields the optimal policy. This is illustrated next by

two examples.

1. An itinerary selection problem. The problem is to

find the shortest path from home to school. A map

of the area describes the network of streets that

includes home and school locations, intermediate

intersections, connecting streets, and the distance

from one intersection to any other intersection that

is directly connected by a street. The DP model of

this problem is as follows. Let N be the set

composed of home, school, and all intersections.

An element of N is termed a node. For simplicity,

assume all of the streets are one-way. A street is

described as an ordered pair of nodes; that is, (n, n0)
is the street going from node n to node n0 (n0 is an
immediate successor of node n). Let m(n, n0) be the
distance from node n to node n0; that is, m(n, n0)
represents the length of street (n, n0).

The problem is examined recursively as follows.

Let f (n) equal the shortest distance from the node n

to the goal node school. The objective is to find f
(home), the minimum distance from home to school,

and a path from home to school that has a distance

equal to f (home), a minimum distance path.

http://dx.doi.org/10.1007/978-1-4419-1153-7_665
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Note that f (n)�m(n, n0) + f(n0) for any node n0 that is
an immediate successor of node n. Assume that an

immediate successor n00 of n such that f (n)¼m(n, n00)
+ f (n00) has been found. Then, if at node n, it seems

reasonable that the street that takes us to node n00 is
traversed. Thus, the evaluation of all of the values f

(n) determine both f (home) and a minimum distance

path from home to school. Formally, determination

of these values can proceed recursively from the

equation f (n) ¼ min {m(n, n0) + f (n0)}, where the

minimum is taken over all nodes n0 that are

immediate successors of node n and where f

(school) ¼ 0 is the initial condition.

2. An inventory problem. Let x(t) be the number of

items in stock at the end of week t, d(t + 1) the

number of customers wishing to make a purchase

during week t + 1, and u(t) the number of items

ordered at the end of week t and delivered at the

beginning of week t + 1. Although it is unlikely

that d(t) is known precisely, assume the probability

that d(t)¼ n is known for all n¼ 0, 1, . . . . Keeping

backorders, then x(t + 1) ¼ x(t) � d(t + 1) + u(t).
A reasonable objective is to minimize

the expected cost accrued over the period from

t ¼ 0 to t ¼ T (T > 0) by choice of u(0), . . .,
u(T � 1), assuming that ordering decisions are

made on the basis of the current inventory level,

that is, the mechanism that determines u(t) (e.g., the
store manager) is aware of x(t), for all t ¼ 0, . . .,

T � 1. Costs might include a shortage cost

(a penalty if there is an insufficient amount of

inventory in stock), a storage cost (a penalty if

there is too much inventory in stock), an ordering

cost (reflecting the cost necessary to purchase items

wholesale), and a selling price (reflecting the

income received when an item is sold; a negative

cost). Let c(x, u) represent the expected total cost

to be accrued from the end of week t till the end

of week t + 1, given that x(t) ¼ x and u(t) ¼ u.

Then the criterion to be minimized is
E fc ½x ð0Þ; u ð0Þ	 þ . . .þ c½x ðT � 1Þ; u ðT � 1Þ	g;

where E is the expectation operator associated with

the random variables d(1), . . ., d(T).

This problem can be examined recursively. Let

f (x, t) be the minimum expected cost to be accrued

from time t to time T, assuming that x(t) ¼ x. Clearly,

f (x, T) ¼ 0. Note also that
f ½x ðtÞ; t	 � c ½x ðtÞ; u ðtÞ	
þ E ff ½x ðtÞ � d ðtþ 1Þ þ u ðtÞ; tþ 1	g

for any available u(t). As was true for Example 1, an

order number u00 which is such that
f ½x ðtÞ; t	 ¼ c ½x ðtÞ; u00	
þE ff ½x ðtÞ � d ðtþ 1Þ þ u00; tþ 1	g

is an order to place at time twhen the current inventory

is x(t). Thus, the recursive equation determines both

f (x, 0) for all x and the order number as a function of

current inventory level.
Common Characteristics

Two key aspects of DP are the notion of a state and

recursive equations. The state of the DP problem is the

information that is currently available to the decision

maker on which to base the current decision.

For example, in the itinerary selection problem,

the state is the current node; in the inventory problem,

the state is the current number of items in stock.

In both examples, how the system arrived at its current

state is inconsequential from the perspective of decision

making. For the itinerary selection problem, all that is

needed is the current node and not the path that lead to

that node to determine the best next street to traverse. The

determination of the number of items to order this week

depends only on the current inventory level equations

(other names include functional equations and optimality

equations) that can be used to determine the minimum

expected value of the criterion and an optimal sequence

of decisions that depend on the current node or current

inventory level. In both cases, the recursive equations

essentially decompose the problem into a series of

subproblems, one for each node or current state value.
See

▶Approximate Dynamic Programming

▶Bellman Optimality Equation

▶Dijkstra’s Algorithm

▶Markov Decision Processes

▶Network
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