
CHAPTER 7

The Adenomatous Polyposis Coli
Tumor Suppressor and Wnt Signaling
in the Regulation ofApoptosis
Hassina Benchabane and Yashi Ahmed"

Abstract

The adenomatous polyposis coli (APC) tumor suppressor is an essential negative regulator
in the evolutionarily conservedWnt/Wingless (Wg) signal transduction pathway. During
normal development, Wnt signaling is required not only to induce cell proliferation and

cell fate specification, but also to induce apoptotic cell death. However in some malignant states
triggered byAPC loss, inappropriate activation ofWnt signaling promotes cellsurvival and inhibits
cell death, indicating that the cellular response to APC lossand Wnt signaling is highly dependent
on cell cont ext. This chapter summarizes our current understanding of the role ofAPC and Wnt
signaling in the regulation of apoptosis, based upon studi es from fly and mouse in vivo models,
as well as cultured carcinoma cells.

Introduction
Mutation of both alleles of the human adenomatous polyposis coli (APC) tum or suppressor

gene triggers the development ofupper and lower gastrointestinal polyps and carcinoma and less
frequently, hepatocellular carcinoma and heparoblastoma."? In addition to developing a number
ofextra-intestinal manifestations, individuals with a germline mutation in oneAPCallele develop
hundreds to thousands of neoplastic colorectal polyps as a consequence of somatic mutation in
the other APC allele (reviewed in ref. 8) . Some of these polyps invariably progress to carcinoma
and without surgical intervention, the mean age at diagnosis ofcolorectal adenocarcinoma is 39
years,"Biallelic inactivation ofAPC is also found in the earliest developmental stages of greater
than 80% of sporadic colorectal carcinomas, which are the second and third leading cause of
cancer-related death, respectively, in men and women living in the United States.":" Together,
these observations identify APC as a primary gatekeeper of cell proliferation and survival in the
colonic epithelium. " (see also Kwong and Dove, this volume)

APC is an essential negative regulator in the evolut ionarily conserved Wnt/Wingless (Wg )
signal transduction pathway (Fig. 1). 14-16 In the absence ofWnt signaling,APC forms a "destruction
complex" in the cytoplasm with Glycogen Synthase Kinase 3 (GSK3), Casein Kinase 1 (CKl) ,
Axin and ~-cateninlArmadillo (Arm) (see also Kennell and Cadigan, this volume) . GSK3 and
CKI sequentially phosphorylate specific serine and threonine residues in the amino-terminus
of ~-cateninlArm, an event that depends on th e scaffolding functions of Axin and AP C.
Phosphorylated ~-cateninlArm is targeted for ubiquitination by the E3 ubiquitin-ligase ~-TrCP

and subsequently degraded by the protea some. Bindingofthe Wnt ligand to its coreceptors Frizzled
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Figure 1. Schematic representation of the evolutionarily conserved Wnt/Wingless signal
transduction pathway.

and Low-density lipoprotein-receptor-related proteins 5/6 (LRP5/6), stimulates the dissociation
ofAxin from APC and leads to the stabilization of cytoplasmic and nuclear ~-catenin/Arm.
Nuclear ~-catenin/Arm binds to the transcription factor T-cell factor/lymphoid enhancement
factor (TCF/LEF) and activates transcription of target genes in cooperation with Legless/Bcl-9
and Pygopus. ~-cateninlArm regulates the transcription ofgenes involved in a number ofcellular
events, including cell fate determination, cell proliferation, cell differentiation and apoptosis.

This chapter summarizes our current understanding of the role ofAPC and Wnt signaling in
induction ofapoptotic celldeath.Activation ofthe Wnt signaling pathway has been shown to both
positively and negatively regulate apoptosis.P:" In concordance with its essential role as a negative
regulator ofWnt signaling,APC activity impacts the induction ofprogrammed celldeath in a num­
ber ofcell types. We describe examples from flyand mouse model systemsin which APC is required
to prevent apoptosis and thereby promote cell survival during normal development. Conversely,
analysis of APC loss in cultured colonic carcinoma cells reveals that the resultant activation of
~-cateninsignaling promotes cell survival and inhibits cell death. Together, these studies indicate
an essential role for APC and Wnt signaling in regulating the decision to undergo apoptotic death
and reveal the importance ofcell context in determining the response to APC loss.

Overview ofApoptotic CellDeath
Apoptotic cell death is an evolutionarily-conserved process that is critical for normal develop­

ment and for homeostasis in the adult life ofanimals (reviewed in ref 28). Duringembryogenesis,
apoptotic death is required for the patterning of many tissues and for eliminating tissues that
have outlived their usefulness. In adults, apoptosis serves to eliminate infected cells, cells having
undergone DNA damage and inappropriately proliferating cells. In addition, apoptotic death is
also important in selecting the immune repertoire and for maintaining homeostasis in tissue size.
Apoptosis is particularly important in maintaining homeostasis in regenerating tissues, such as the
absorptive epithelium of the small intestine, which in mice, turns over entirely every three to five
days (reviewed in ref 14). Maintenance of the normal crypt-villus intestinal structures requires
continual production of new cells in the crypt compartment, as well as elimination of cells by
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Figure 2.Simplified schematic representationoftheapoptosis pathwayinmammals and Drosophila.
The Drosophila proteinsare boxed in dark grey. The extrinsic pathway is boxed in light grey.

apoptotic death at the tip of the villus (for more detail s see Kwong and Do ve, and Sansom, thi s
volume) .

Apoptosis is med iated by a family of cysteine proteases known as caspases. Caspases are
initially expressed as inactive pro -caspase precursors that must und ergo proteolytic activation.
Initiator caspases are activated in respon se to developmental signals and cellular stress and cleave
the precursor forms ofeffecto r caspases. Activated effector caspases in turn cleave a series ofcel­
lular substrates, such as Bid, Retinoblastoma and Poly(ADP-ribose) polymerase (reviewed in ref.
29), result ing in apoptosis. Two pathwa ys trigger caspase activation and apoptosis in mammalian
cells: the int rinsic and extrinsic pathways (Fig. 2; reviewed in refs. 30-32). The int rinsic apoptosis
pathway involves the release of Cytochrome c from mitochondria and is regulated through the
Bcl-2 family ofproteins, while the extrinsic apoptosis pathway is initiated by the binding ofdeath
ligand s, such as Fas and TNF-a, to cell surface death reccptors.P:"

APe Prevents Neuronal Apoptosis during Retinal Development
in Drosophila

As the Wnt/Wg signaling pathway is evolutionarily conserved, genetic studies in Drosophila
have been instrumental in identifying new components in the pathway and for elucidating their
in vivo function . While Wg signaling has well-established roles in cell proliferation and cell fate
specification during normal development , recent studies have revealed that Wg signaling is also
important for developmentally regulated apoptotic cell death and highlight the importance of
~-cateninlArm signaling in thi s process. Two well-established examples of Wg-induced apop ­
tosis occur dur ing the developm ent of the fly retina. First, Wg signaling is required to refine the
highly-ordered compound eye structu re by eliminating excesscells that are present between each
ofapproximately 750 un it ommatidia." Second, Wg signaling is also requ ired to induce the death
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Figure 3. Inactivation of Apc1 causes apoptosis of Drosophila retinal photoreceptors. (A, C,
E) Wild type (WT) eye. (B, D, F) Ape1 mutant. Cross-sections of the retina are presented in
A and B. In WT (A), Photoreceptors (in blue) are surrounded by pigment cells. In the Ape1
mutant (B), photoreceptors are absent and only pigment cells remain. Activated Caspase-3
expression is presented in C-F. Whole retinas are shown in C and D and dose-ups of the
retina are shown in Eand F.

of all retinal neurons (photoreceptors) at the edge of the eye (Fig. 3), a process believed to be
important for eliminating defective neurons and for sculpting ofthe retinal periphery.18.34 During
eye development, Wg is secreted by epithelial cells that surround the retina and spreads into the
eye edge to activate j3-catenin/Arm signaling. Transduction ofhigh-level j3-catenin/Arm signal­
ing activates the transcription ofthree major apoprosis effectors, reaper, hidandgrim (see Fig. 2) .
Inactivation ofWg signaling in the retinal periphery results in an excessiveaccumulation ofretinal
neurons and a disordered eye structure, revealing an essential role for Wg in developmentally
regulated apoptotic death.18.34
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Analysis ofAPC function in the flyeye confirms the critical role ofWg signaling in regulating
apoptosis during retinal development. In Drosophila, as in humans, there are two APC homologs
(Apcl andApe2) and genetic studies have provided evidence that the function ofAPC as a critical
negative regulator of p-catenin signaling is conserved from flies to humans.17.35.36 Inactivation of
Apcl results in hyperactivation ofp-catenin/Arm signaling in all retinal photoreceptors,17.37which
induces both their apoptotic death and a concomitant hypertrophy of the neighboring retinal
pigment cells (Fig. 3).17 Supporting the conclusion that this photoreceptor apoptosis results from
ectopic p-catenin/Arm signaling, the apoptosis can be suppressed simply by reducing the gene
dosage ofArm,or its transcriptional activator dTCF/Pangolin. Conversely, in otherwise wild-type
flies, photoreceptor apoptosis can be induced by overexpression ofWingless or Arm .17.38.39 Thus,
the apoptotic response ofall photoreceptors upon Ape 1 loss is similar to the response ofperipheral
photoreceptors to Wgsignalingat the retinal edge during normal eyedevelopment. I 8.34 Furthermore,
in both wild-type and in Ape1 mutant flies, elimination of the apoptosis effectors hid,reaper and
grim prevents photoreceptor apoprosis:" however, whether these three genes are direct targets
ofWg transduction remains to be elucidated. Together, these studies reveal a critical role for Wg
transduction in promoting apoptosis and for APC in promoting cell survival in retinal cells in
which Wg is low or absent .

Unexpectedly, the fly retinal cell death phenotype induced by Apcl loss parallels a retinal
defect found in humans with germline mutations in APC, termed congenital hypertrophy of the
retinal pigment epithelium." In these individuals, congenital retinal lesions are ofien bilateral and
multifocal. In the rare instances in which these lesions have been sectioned at autopsy, they have
been found to be composed ofdegenerated photoreceptors and hypertrophied pigment cells.4 1

,42

Thus, reduction ofAPC activity in flies and humans results in retinal defects that are at least su­
perficially similar. A mouse model for APC loss recapitulates these rerinal lesions" and provides
a means to determine whether, as in the fly, the retinal neuronal degeneration induced by APC
loss in mammals results from an apoptotic response to hyperactivation ofp-catenin signaling. This
model will also be useful in determining whether heterozygosity for APC is sufficient to induce
these changes, or whether, like in the intestinal epithelium, both wild type copies have to be lost .

APC Prevents the Apoptotic Death ofMammalian Cephalic
and Cardiac Neural Crest Cells

Neural crest development in the mouse provides another interestingexample ofthe roleofAPC
in preventing apoptosis and promoting cell survival. Neural crest cells are a multipotent stem cell
population that migrates from the dorsal neural tube to diverse positions throughout the body,
differentiating into a variety ofcell rypes." Derivatives ofneural crest include bone and cartilage
tissues, peripheral nerves, glia, smooth muscle cells, Schwann cells and melanocytes. The Wnt
signaling pathway plays an important role in the early stages of neural crest development, such
as neural crest induction and melanocyte formadon.v" Hasegawa et a149 analyzed the function
ofAPC in neural crest cells by specifically inactivating Apein the neural crest of mice, using the
Cre-loxP recombination system. The mutant mice generated had markedly increased apoptosis,
as revealed by TUNEL staining, in the ventral craniofacial mesenchyme, the branchial arch and
the cardiac outflow tract, indicating that APC loss leads to the apoptosis ofa subset ofneural crest
derivatives. As a result, these mice had severe craniofacial and cardiac defects and died shortly afier
birth. All bones derived from the cephalic neural crest were affected and cardiac defects included
ventricular septal defects and persistent truncus arteriosus. Remarkably, neural crest derivatives
destined to become bone or cartilage undergo apoptosis, wheras those that differentiate asperipheral
nerves, Schwann cells, or melanocytes survive, indicating that the apoprotic response of neural
crest cells to APC loss is context dependent. Increased p-catenin levels were observed in tissues
containing TUNEL-positive cells, indicating that the apoprosis induced by APC loss may result
from increased p-catenin activity; however a direct link between the apoptosis and increased Wnt
signaling awaits further investigation.



80 APeProteins

APC Loss and Activation ofWnt Signaling Results in Both Increased
Cell Proliferation and Increased Apoptosis in Mammalian Intestinal
Epithelia

Analysis of the mammalian intestinal epithelium exposed to different levels ofWnt signaling
revealed unexpected effects on proliferation and apoptosis. The mammalian intestinal epithelium
is a self-renewing tissue organized into highly ordered structures composed of villi and crypts
(see Kwong and Dove , and Sansom, this volume). Mitotically active stem cells present at the base
ofeach crypt migrate along the crypt-villus axis where they differentiate, carry out their specific
role in the epithelium and finally undergo apoptosis and are shed into the gut lumen. The Wnt
signalingpathway isa key regulator ofcell fate along the crypt-villus axiS.14.So-S2 Inactivation ofWnt
signaling results in a complete loss ofthe crypt progenitor compartment, while hyperactivation of
signaling results in ectopic expression ofWnt-target genes and hyperproliferation ofcells in the
crypt compartment. Asa result ofWnt pathway activation, epithelial cells displayed a number of
phenotypes associated with colorectallesions. Migration ofepithelial cells along the crypt-villus
axis was abrogated,differentiation was arrested and increased proliferation was observed. In addi­
tion, proliferation was no longer confined to the base ofthe crypt. Together, these studies reveal
the critical role ofWnt signaling in regulating self-renewal ofthe intestinal epithelium.

Unexpectedly, hyperactivation ofWnt signaling in the intestinal epithelium results not only
in increased cell proliferation, but also in increased apoptosis. Increased apoptosis was observed
in three distinct mouse models that address the effects ofincreased Wnt signaling in the intestinal
epithelium. First, directed expression ofa constitutively activated ~-catenin, similar to that found
in some colonic carcinomas, resulted not only in increased cellproliferation in crypt epithelial cells,
but also in increased apoptotic death." Second, conditional inactivation ofAPe in the mouse
intestinal epithelium led to the accumulation and nuclear translocation of~-cateninand increased
Wnt signaling." This in vivo model for increased Wnt signaling resulted in qualitatively similar
results : not only was cellproliferation increased, but apoptotic cell death was increased also.Third,
expression ofa ~-catenin/Lef-l fusion protein that enhances Wnt signaling in the intestinal epi­
thelium ofa chimeric mouse model also resulted in increased apoptosis.ss In these mice, increased
apoptosis was restr icted to only those intestinal epithelial cells that expressed the ~-catenin/Lef-l

fusion protein and unexpectedly was not associated with increased cell proliferation.
Based on these data, it has been proposed that different levels of ~-cateninsignaling result in

qualitatively dist inct cellular responses.ss In this model, high levels of~-catenin signaling in the
intestinal epithelia induce apoptosis, wheras intermediate levelsofsignaling result in sustained cell
proliferation. Conversely, complete loss of~-catenin signaling results in the absence ofprolifera­
tion and differentiation. Evidence supporting dosage-dependent cellular responses to APC loss
and ~-cateninsignaling has been documented in severalmodels, including mouse embryonic stem
cells.s6.57 Whether high-level ~-catenin signaling isimportant for an apoptotic response in intestinal
epithelia and whether there exists a direct link between ~-cateninmediated target gene activation
and the induction ofapoptosis in these cells awaits further experimental analysis.

Promotion ofCell Survival and Negative Regulation ofApoptosis
byWnt Signaling in Carcinomas

Although activation ofWnt signalingcan induce both proliferation and apoptosis during normal
development, Wnt signaling is also thought to have the opposite role ofpromoting cell survival
and increasing cell proliferation in cancer cells. For instance, Wnt expression is upregulated in a
number ofhuman cancersS8-64and monoclonal antibodies or siRNA directed against Wnt-l and
Wnt-2 in cultured carcinoma cells leads to ~-catenin downregulation and induction ofapopto­
sis.22

•
2sWhen either melanoma, non-small cell lung carcinoma, breast carcinoma, mesothelioma,

or sarcoma cells overexpressing Wnt-l or Wnt-2 are injected in nude mice along with the Wnt-l
or Wnt-2 monoclonal antibody, respectively, tumor growth is inhibited and more apoptotic cells
are observed compared to mice injected with the Wnt-l or Wnt-2 overexpressing cells alone .22,24
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Similarly, in several different types ofcultured carcinoma cells, decreased ~-catenin levels in­
duced by forced expression ofmembers ofthe destruction complex lead to induction ofapoptosis.
Hepatocellular and colorectal carcinoma cells, for instance, havehigh levelsofnuelear ~-catenin due
to lossoffunction mutations inAPC orkin,or hyperactivatingmutations in fJ-catenin. Expressing
APC or Axin in these cellsinduces apoptosis.f Similarly, expressingAPC or a dominant negative
TCF in a colon carcinoma cell line lacking endogenous APC increases caspase expression and
activity and stimulates apoptosis. 66.67 Together, these studies provide evidence that activation of
Wnt signaling is important for promoting cell survival in some types ofcarcinoma cellsand again
suggest that the cellular response to Wnt Signaling is highly dependent upon cell context.

Recent studies have identified several candidate target genes that prevent apoptosis and are
regulated by Wnt signaling. Huang et al68 analyzed the expression profile of HeLa cells in which
~-catenin expression wasdown regulated by RNAi.The expressionofa number ofapoptosis-related
genes, ineludingMYBL2, BAG2, BAG3, PTEN, HIFIA, PDCD6IPand DAP3, is increased in
these cells. The anti-apoptoric protein Bel-XLhas also been identified as a potential target ofWnt
rransduction/" In thymocytes, whose survival depends on Wnt signaling, inactivation ofTCF-I
leads to a decrease in Bel-XLexpression. These studies are among the first to delineate targets
of Wnt transduction that are important for regulating apoptosis. It is important to note that
disruption ofAPC may affect apoptosis independently ofWnt signaling as well.7o•

71 Dikovskaya
et al recently demonstrated that loss ofAPC resulted in decreased apoptosis to the same degree
in wild type cultured cells as in a cell line where the Wnt pathway was activated by mutation in
~-catenin?O The mechanisms by which loss of APC may affect apoptosis independent ofWnt
signaling are not known.

Conclusion
The Wnt signal transduction pathway has well-established roles in promoting cellproliferation

and differentiation in both vertebrates and invertebrates. Recent studies have revealed that during
normal development, Wnt signaling also has an essential role in promoting apoptosis. In some
cells that are not normally destined to die, loss ofAPC activates ectopic Wnt signaling and results
in excessive apoptotic death, revealing that APC is required to promote cell survival in different
developmental contexts. Conversely, in some cultured carcinoma cells, Wnt signaling is critical
for cell survival and inhibition of apoptosis and recent work has revealed a number of putative
target genes that might directly regulate this Wnt signaling-induced response. Together, these
studies in both in vivo models and cultured cell lines highlight the importance ofcellular context
in determining the apoptotic response to APC loss and Wnt transduction.

How do some cells respond to the lossofAPC by proliferating, while others respond by dying ?
One current challenge in addressing thisquestion isto determine the cellcontexts in which elevated
~-catenin signaling directly induces an apoptotic response upon AP C loss and whether apoptosis
results specifically from high-level of ~-catenin signaling. The recent generation of numerous
reagents that allow either conditional activation or conditional inhibition ofWnt transduction
will be instrumental in addressing this issue. In addition, determining the molecular factors that
establish the context ofa cell and thereby influence the cellular response to activated Wnt signal­
ing,also awaits further analysis.Understanding how these effectors regulate the decision to induce
proliferation, differentiation, or death isoffundamental importance in developing novel therapies
that redirect APC mutant colonic tumor cells from a proliferation to a cell death program.
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