
Chapter 9
Design Optimization of Parallel
Robotic Machines

9.1 Preamble

Optimization plays an important role in engineering design problems; it deals with
problems of minimizing or maximizing a function with several variables. The pur-
pose of optimization design is aiming at enhancing the performance indices by
adjusting the structure parameters such as link length, radii of fixed platform and
moving platform, and its distance between the center points of the two platforms.
The approach can been called dimensional-synthesis-based performance optimiza-
tion of parallel manipulator. In the optimum design process, several performance
criteria could be involved for a design purpose, such as stiffness, dexterity, accu-
racy, workspace, etc.

Many researchers have studied on the issue of optimal design of robot manip-
ulators [19, 89, 166, 178]. Zhao et al. [182] exploited the least number method of
variables to optimize the leg length of a spatial parallel manipulator for the pur-
pose of obtaining a desired dexterous workspace. Stock and Miller [138] presented
a method for multidimensional kinematic optimization of the linear Delta robot ar-
chitecture’s geometry. A utility objective function was formulated incorporating two
performance indices, including manipulability and space utilization. Rout and Mittal
[131] proposed the experimental approach for the optimization of the dimension of
2-dof R–R planar manipulator. Kucuk and Bingul [89] optimized the workspace of
two spherical three links robot manipulators using the local and global performance
indices. Mitchell et al. [108] presented kinematic optimization to confirm the small-
est configuration that would satisfy the workspace requirements for a lightweight
and compact surgical manipulator. Chablat and Angeles [31] investigated on opti-
mum dimensioning of revolute-coupled planar manipulators based on the concept of
distance of Jacobian matrix to a given isotropic matrix which was used as a reference
model. Boeij et al. [23] proposed numerical integration and sequential quadratic pro-
gramming method for optimization of a contactless electromagnetic planar 6-dof
actuator with manipulator on top of the floating platform. Ceccarelli and Lanni [29]
investigated the multiobjective optimization problem of a general 3R manipulator
for prescribed workspace limits and numerically using an algebraic formulation. As
the primary components of artificial intelligence approach, genetic algorithms and
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artificial neural networks play the important roles in various fields of science and
technology. In this chapter, the two methods are applied as the optimization criteria
for the synthesis of stiffness and other criteria.

The traditional optimization methods can only handle a few geometric variables
due to the lack of convergence of the optimization algorithm. However, genetic algo-
rithms have applied the powerful and broadly applicable stochastic search methods
and optimization techniques, and they can escape from local optima [69]. There-
fore, genetic algorithms have been selected as the best candidate to address the
convergence issue and are suitable for performance optimization of the proposed
mechanism in the previous several chapters. Neural networks possess the capabil-
ity of complex function approximation and generalization by simulating the basic
functionality of the human nervous system in an attempt to partially capture some of
its computational strengths. Since the solution of objective function must be solved
before using genetic algorithms, neural networks will be conducted to represent the
objective functions of performance indices. On the investigation of multiobjective
optimization problem in design process, since it is impossible to maximize or mini-
mize all objective function values if they are conflicting with each other, the trade-off
process should be executed. This methodology will pave the way for providing not
only the effective guidance, but also a new approach of dimensional synthesis for
the optimal design of general parallel mechanisms.

For the mechanisms studied here, the highest global stiffness are desired so as
to reach the high rigidity and high precision. This can be achieved either through
maximizing the global stiffness or through minimizing the global compliances for
a certain parallel mechanism by selecting mechanism’s geometric parameters (link
length, height, etc.) and behavior parameters (link stiffness). In this chapter, the
optimization criteria are first established. An optimization process based on genetic
algorithms is applied for the global stiffness of all the proposed spatial parallel/
hybrid mechanisms for 6dof to 3dof, and the rationale for using this method together
with the determination of parameters and objective function are addressed as well.
The detailed analysis of the kinetostatics of the parallel mechanisms conducted in
previous chapters will now be used to define and optimize their geometric sizes and
properties. Furthermore, for the issue of multiobjective optimization, two cases are
investigated where the integration methodology of genetic algorithms and artificial
neural networks is implemented to search the optimal architecture and behavior
parameters in terms of various optimization objectives including global stiffness,
dexterity, and manipulability.

9.2 Optimization Objective and Criteria

In this book, the main consideration for the optimization criteria is to maxi-
mize global stiffness (or minimize the global compliances). The global stiffness/
compliance used here is the diagonal entry of the Cartesian stiffness/compliance ma-
trix. It represents the pure stiffness/compliance in each direction. Genetic algorithm



9.3 Basic Theory of Evolutionary Algorithms 141

methods are used to conduct the optimal design of the system in terms of a better
system stiffness. The objective functions are established and maximized/minimized
in order to find the suitable geometric parameters (coordinates of the attachment
points, coordinates of the moving platform, link length, vertex distributions at base
and moving platform, platform height, etc.) and behavior parameters (actuator stiff-
ness, actuated link stiffness, kinetostatic model stiffness, etc.) of the mechanisms.
Since the objective function is closely related to the topology and geometry of the
structure, the general optimization methodology can be described as follows:

� Analyze the requirements including the stiffness, the mechanical interferences,
the workspace properties, and the singularities

� Analyze the constraints including geometric size and properties
� Establish a reasonable initial guess of the geometry of the mechanism, then use

a numerical optimization to further improve the kinematic properties and ensure
the optimum characteristics are obtained. Finally, a program gives a potential
solution to allow the verification of other important properties.

9.3 Basic Theory of Evolutionary Algorithms

Introduced in the 1970s by John Holland [69], genetic algorithms are part of the
larger class of evolutionary algorithms that also include evolutionary program-
ming [49], evolution strategies [126], and genetic programming [88]. The genetic
algorithms (GAs) are powerful and broadly applicable stochastic search and opti-
mization techniques based on the evolutionary principle of natural chromosomes
[53]. Specifically, the evolution of chromosomes due to the operation of crossover
and mutation and natural selection of chromosomes based on Darwin’s survival-
of-the-fittest principles are all artificially simulated to constitute a robust search and
optimization procedure. The genetic algorithms are the computer simulation of such
evolution where the user provides the environment (function) in which the popula-
tion must evolve.

A comparison between conventional optimization methods and genetic algo-
rithms is now given. The conventional methods are usually limited to convex regular
functions while the genetic algorithm is robust, global, and generally more straight-
forward to apply to all kinds of functions including multimodal, discontinuous,
and nondifferentiable functions. Goldberg [53] has summarized the differences as
follows:

1. Genetic algorithms work with a coding of the solution set, not the solutions
themselves.

2. Genetic algorithms search from a population of solutions, not a single solution.
3. Genetic algorithms use payoff information (fitness function), not derivatives or

other auxiliary knowledge.
4. Genetic algorithms use probabilistic transition rules, not deterministic rules.
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In recent years, the GAs have been applied to a broad range of real-world
problems [25, 26, 42, 43, 51, 54, 107, 110, 157] such as ecosystem modeling, com-
binatorial and parametric optimization, reliability design, vehicle routing and
scheduling, machine intelligence, robotic trajectory optimization, neural networks
implementations, pattern recognition, analysis of complex systems, and financial
prediction.

The basic procedure of genetic algorithms can be described as follows:

1. Create an initial population: The initial population of chromosomes is created
randomly.

2. Evaluate all of the individuals (apply some function or formula to the individuals)
The fitness is computed in this step. The goal of the fitness function is to numer-
ically encode the performance of the chromosomes.

3. Selection: Select a new population from the old population based on the fitness of
the individuals as given by the evaluation function. In this step, the chromosomes
with the largest fitness rates are selected while the chromosomes with low fitness
rates are removed from the population.

4. Genetic operations (mutation and crossover): If the parents are allowed to mate, a
recombination operator is employed to exchange genes between the two parents
to produce two children. If they are not allowed to mate, the parents are placed
into the next generation unchanged. A mutation simply changes the value for a
particular gene.

5. Evaluate these newly created individuals.
6. Repeat steps 3–5 (one generation) until the termination criteria have been

satisfied.

Suppose P.t/ and C.t/ are parents and children in current generation t , then a
genetic algorithm is expressed in Fig. 9.1. From Fig. 9.1, one can find that there are
only two kinds of operations included in genetic algorithms, i.e., genetic operations
(crossover and mutation) and evolution operation (selection).

Fig. 9.1 The structure
of genetic algorithms

begin

  t = 0;

  initialize P(t);

  evaluate P(t);

  while (unfinished condition) do

    select P ’ (t) from P(t);

    reproduce C(t) from P ’ (t);

    mutate C(t);

    evaluate  C(t);

    t = t + 1; 

  end

end
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Genetic algorithms have the advantages of robustness and good convergence
properties, namely:

� They require no knowledge or gradient information about the optimization prob-
lems. They can solve any kind of objective functions and any kind of constraints
(i.e., linear or nonlinear) defined on discrete, continuous, or mixed search spaces.

� Discontinuities present on the optimization problems have little effect on the
overall optimization performance.

� They are effective at performing global search (in probability) instead of local
optima.

� They perform very well for large-scale optimization problems.
� They can be employed for a wide variety of optimization problems.

Genetic algorithms have been shown to solve linear and nonlinear problems by
exploring all regions of state space and exponentially exploiting promising areas
through mutation, crossover, and selection operations applied to individuals in the
population [107].

In the present work, there are many optimization parameters (up to 13 variables,
depending on mechanism, make up the optimization problem) and complex ma-
trix computations. Hence, it is very difficult to write out the analytical expressions
for each stiffness element. Moreover, with traditional optimization methods, only
a few geometric parameters [60] could be handled due to the lack of convergence
of the optimization algorithm when used with more complex problems. This arises
from the fact that traditional optimization methods use a local search by a conver-
gent stepwise procedure (e.g., gradient, Hessians, linearity, and continuity), which
compares the values of the next points and moves to the relative optimal points.
Therefore, genetic algorithms are the best candidate for the optimization problems
studied here.

In order to use genetic algorithms properly, several parameter settings have to be
determined, they are: chromosome representation, selection function, genetic op-
erators, the creation of the population size, mutation rate, crossover rate, and the
evaluation function.

1. Chromosome representation:
This is a basic issue for the GA representation, it is used to describe each in-
dividual in the population of interest. In the original algorithm, each individual
or chromosome used to be expressed as a sequence of genes from binary digits
(0 and 1) [69]. However, it has been shown that more natural representations are
more efficient and produce better solutions [107]. Michalewicz [107] has done
extensive experimentation comparing real-valued and binary genetic algorithms
and shows that the real-valued genetic algorithm is an order of magnitude more
efficient in terms of CPU time. He also shows that a real-valued representation
moves the problem closer to the problem representation which offers higher pre-
cision with more consistent results across replications [107]. It outperformed
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binary genetic algorithm and simulated annealing in terms of computational
efficiency and solution quality [124]. Hence, real-valued expressions are used
in our case to represent each individual or chromosome for function optimiza-
tion. For the problem studied here, the chromosomes consist of the architecture
parameters (coordinates of the attachment points, coordinates of the moving plat-
form, link lengths, vertex distributions at base and moving platform, platform
height, etc.) and behavior parameters (actuator stiffness, actuated link stiffness,
kinetostatic model stiffness, etc.) of the mechanisms.

2. Selection function:
This step is a key procedure to produce the successive generations. It determines
which of the individuals will survive and continue on to the next generation.
A probabilistic selection is performed based on the individual’s fitness such that
the better individuals have an increased chance of being selected. There are sev-
eral methods for selection: roulette wheel selection and its extensions, scaling
techniques, tournament, elitist models, and ranking methods [53, 107]. In our
case, the normalized geometric ranking method [81] is used since it only requires
the evaluation function to map the solutions to a partially ordered set and it tends
to eliminate chromosomes with extreme values, thus allowing for minimization
and negativity. In normalized geometric ranking methods, Joines and Houck [81]
define a probability of selection Pi for each individual as

P Œselecting the i th individual� D q0.1 � q/.r�1/; (9.1)

where q represents the probability of selecting the best individual; r represents
the rank of the individual, where 1 is the best; P is the population size; and q0 =
q=.1 � .1 � q/P /.

3. Genetic operators:
The operators are used to create new children based on the current generation
in the population. Basically, there are two types of operators: crossover and mu-
tation. Crossover takes two individuals and produces two new individuals while
mutation alters one individual to produce a single new solution.

In binary representations, the applications of these two types of operators are
only binary mutation and simple crossover.

In real-valued representations, the applications of these two types of oper-
ators have been developed by Michalewicz [107], they are uniform mutation,
nonuniform mutation, multi-nonuniform mutation, boundary mutation, simple
crossover, arithmetic crossover, and heuristic crossover [107].

Uniform mutation randomly selects one variable and sets it equal to a uniform
random number while boundary mutation randomly selects one variable and sets
it equal to either its lower or upper bound.

Nonuniform mutation randomly selects one variable and sets it equal to
a nonuniform random number; according to [107], it is defined as follows:
If sxt D .x1; x2; x3; : : : ; xm/ is a chromosome (t is the generation number)



9.3 Basic Theory of Evolutionary Algorithms 145

and the element xj was selected for nonuniform mutation, the result is a vector
sx
tC1 D .x1; x2; x3; : : : ; x

0
j ; : : : ; xm/, where

x0j D xj C�.t;UB � xj /; if a random digit is 0; (9.2)
x0j D xj ��.t; xj � LB/; if a random digit is 1; (9.3)

where UB and LB are the upper and lower bounds for the variable and �.t; y/ is
given by

�.t; y/ D y.1 � r.1�
t
G /

b

/; (9.4)

where r is a uniform random number between (0,1), G represents the maximum
number of generations, t is the current generation, and b is a parameter deter-
mining the degree of dependency on the generation number.

4. Population size:
The population size represents the number of individuals or chromosomes in
the population. Usually, larger population sizes increase the amount of variation
present in the initial population and it requires more fitness evaluations. If the
population loses diversity, the population is said to have premature convergence
and little exploration is being done. For longer chromosomes and challenging
optimization problems, larger population sizes are needed to maintain diversity –
higher diversity can also be achieved through higher mutation rates and uni-
form crossover – and hence better exploration. Usually, the population size is
determined by the rule of thumb of 7–8 times the number of the optimization
parameters.

5. Mutation rate:
The mutation rate is defined as the percentage of the total number of genes in the
population [51]; it determines the probability that a mutation will occur. Mutation
is employed to give new information to the population and also prevents the
population from becoming saturated with similar chromosomes (premature con-
vergence). Large mutation rates increase the probability that good schemata will
be destroyed, but increase population diversity. The best mutation rate is appli-
cation dependent but for most applications it is between 0.001 and 0.1.

6. Crossover rate:
The crossover rate (denoted by pc) is defined as the ratio of the number of off-
spring produced in each generation to the population size, P [51]. This ratio
controls the expected number pc � P of chromosomes to undergo the crossover
operation. The best crossover rate is application dependent but for most applica-
tions it is between 0.80 and 0.95.

7. Evaluation functions:
Evaluation functions are subject to the minimal requirement that the function can
map the population into a partially ordered set. In the present work, the sum of
diagonal elements in stiffness/compliance matrix with relative weight factors for
each direction is set as the evaluation function.
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9.4 Single-Objective Optimization

9.4.1 Objective of Global Stiffness

In this research, the stiffness for certain mechanism configurations is expressed by
a (6 � 6) matrix, as discussed before. The diagonal elements of the matrix are
the mechanism’s pure stiffness in each Cartesian direction. To obtain the optimal
stiffness in each direction, one can write an objective function, (9.5), with stiffness
element to maximize or write an objective function, (9.6), with compliance elements
whose negative is to be maximized, i.e., maximize(val) where

val D 1K11 C 2K22 C 3K33 C 4K44 C 5K55 C 6K66 (9.5)

or
val D �.�1�11 C �2�22 C �3�33 C �4�44 C �5�55 C �6�66/; (9.6)

where, for i D 1; : : : ; 6, Kii represents the diagonal elements of the mechanism’s
stiffness matrix, �ii represents the diagonal elements of mechanism’s compliance
matrix, i is the weight factor for each directional stiffness, which characterizes
the priority of the stiffness in this direction, and �i is the weight factor for each
directional compliance, which characterizes the priority of the compliance in this
direction.

This would maximize/minimize the SUM of the diagonal elements. Although
we could not maximize/minimize each diagonal element individually, we always
can optimize each stiffness by distributing the weighting factors. Once the objective
function is written, a search domain for each optimization variable (lengths, angles,
etc.) should be specified to create an initial population. The limits of the search
domain are set by a specified maximum number of generations or population con-
vergence criteria, since the GAs will force much of the entire population to converge
to a single solution.

For the optimization of the stiffness, a real-valued method is used combined with
the selection, mutation, and crossover operators with their optional parameters used
for all these types of parallel mechanism stiffness/compliance function optimization
as shown in Table 9.1. The first optional parameter is the number of times to apply
the operators for real-valued representation, Gm represents the maximum number
of generations, and b is a parameter determining the degree of dependency on the
generation number, we use 3 in our case [107]. The other optional parameters de-
pend on the operators we are using. Since Matlab requires matrices to have the same
length in all rows, many of the parameters are 0 indicating that they are really place
holders only. In the following sections, we will describe it in more detail.
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Table 9.1 Genetic algorithm
parameters used for
real-valued stiffness function
optimization

Name Parameters
Uniform mutation [4 0 0]
Nonuniform mutation [4 Gm b]
Multi-nonuniform mutation [6 Gm b]
Boundary mutation [4 0 0]
Simple crossover [2 0]
Arithmetic crossover [2 0]
Heuristic crossover [2 3]
Normalized geometric selection 0.08

9.4.2 Spatial Six-Degree-of-Freedom Mechanism
with Prismatic Actuators

The spatial 6-dof mechanism with prismatic actuators is shown in Figs. 5.2 and 5.3.
In order to obtain the maximum global stiffness, five architecture and behavior pa-
rameters are used as optimization parameters, the vector of optimization variables is

s D ŒRp; Rb; z; Tp; Tb�; (9.7)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height
of the platform, Tp and Tb are the angles to determine the attachment points on the
platform and on the base, and their bounds are

Rp 2 Œ5; 10� cm; Rb 2 Œ12; 22� cm;
z 2 Œ45; 56� cm;

Tp 2 Œ18; 26�
ı; Tb 2 Œ38; 48�

ı:

In this research work, the objective function of (9.5) is maximized where the fol-
lowing is assumed

i D 1; i D 1; : : : ; 6;

P D 80;

Gmax D 100;

where P is the population size and Gmax is the maximum number of generations.
The genetic algorithm is implemented in Matlab to search for the best solutions.

The results are given only for one case with � D 0; � D 0, and  D 0. Figures 9.2
and 9.3 show the evolution of the best individual and the optimal parameters for 40
generations, respectively. The architectural and behavior parameters found by the
GA after 40 generations are

s D ŒRp; Rb; z; Tp; Tb� D Œ10; 12; 56; 18; 48�
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Fig. 9.2 The evolution of the
performance of the 6-dof
mechanism with prismatic
actuators

Fig. 9.3 The evolution of the geometrical parameters of the 6-dof mechanism with prismatic
actuators

and the stiffness in each direction is

K D ŒKx ; Ky ; Kz; K�x ; K�y ; K�z �

D Œ34:1918; 34:1918; 5931:6164; 29:65808182; 29:65808182; 0:68092535�:

The sum of the stiffness is 6059.997.
Before optimization, the parameters for this mechanism were given as

s0 D ŒRp; Rb; z; Tp; Tb� D Œ6; 15; 51; 22:34; 42:88�
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and the stiffness in each direction was

K0 D ŒK 0x ; K
0
y ; K

0
z; K

0
�x
; K 0�y ; K

0
�z
�

D Œ102:968; 102:968; 5794:06; 10:4293; 10:4293; 0:222188�

and the stiffness sum is 6021.08. Hence, after optimization, the stiffness sum is
improved 1.01 times.

9.4.3 Spatial Six-Degree-of-Freedom Mechanism
with Revolute Actuators

A spatial 6-dof mechanism with revolute actuators is represented in Fig. 6.2. The
vertex distribution is the same as in Fig. 5.3. From Fig. 6.3, it is clear that the Carte-
sian stiffness is a monotonically increasing function of the link stiffness (for all
the case with revolute actuators). Nevertheless, there exists a critical link stiff-
ness, which has tiny effects on mechanism’s Cartesian stiffness when it is larger
than the critical link stiffness, therefore, for all mechanisms with revolute actuators,
link stiffness are also included as optimization parameters. Seven optimization pa-
rameters are specified in this mechanism for maximizing the mechanism’s global
stiffness. The vector of optimization variables can be expressed as

s D ŒRp; Rb; z; Tp; Tb; l1; l2�; (9.8)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height
of the platform, Tp and Tb are the angles to determine the attachment points on the
platform and on the base, l1 and l2 are the link lengths, and the bound for each
parameter is

Rp 2 Œ5; 7� cm; Rb 2 Œ14; 16� cm;

z 2 Œ66; 70� cm;

Tp 2 Œ20; 26�
ı; Tb 2 Œ40; 45�

ı;

l1 2 Œ42; 48� cm; l2 2 Œ32; 40� cm:

In this case, the objective function of (9.5) is maximized assuming

i D 1; i D 1; : : : ; 6;

P D 80;

Gmax D 40;

where P is the population size and Gmax is the maximum number of generations.
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Fig. 9.4 The evolution of the
performance of the 6-dof
mechanism with revolute
actuators

Fig. 9.5 The evolution of the geometrical parameters of the 6-dof mechanism with revolute
actuators

A program based on the genetic algorithm is applied to search for the best
solutions. The results are given only for one configuration with � D 0; � D 0,
and  D 0. Figures 9.4 and 9.5 show that, after 40 generations, the track of the best
individual and the optimal parameters converge to the final best solution. The opti-
mal geometric and behavior parameters obtained by the GA after 40 generations are

s D ŒRp; Rb; z; Tp; Tb; l1; l2� D Œ5; 16; 70; 20; 45; 42; 32�
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and the stiffness in each direction is

K D ŒKx ; Ky ; Kz; K�x ; K�y ; K�z �

D Œ18873:14; 18873:14; 159835:85; 199:79; 199:79; 41:04�:

The sum of the stiffness is 198022.766.
Initially, the geometric and behavior values were given for this mechanism as

s0 D ŒRp; Rb; z; Tp; Tb; l1; l2�

D Œ6; 15; 68; 22:34; 42:883; 46; 36�

and the stiffness in each direction was

K0 D ŒK 0x ; K
0
y ; K

0
z; K

0
�x
; K 0�y ; K

0
�z
�

D Œ7725; 7725; 21045; 37:8818; 37:8818; 43:0695�:

The stiffness sum is 36613.8. Therefore, after optimization, the stiffness sum is
improved 5.4 times.

9.4.4 Spatial Five-Degree-of-Freedom Mechanism
with Prismatic Actuators

The spatial 5-dof mechanism with prismatic actuators is shown in Figs. 5.6 and 5.7.
In order to obtain the maximum global stiffness, the global compliance (since there
are infinite terms among the diagonal stiffness elements) is minimized. However,
it is clear that the Cartesian stiffness is a monotonically increasing function of the
link and actuator stiffness (for all the case with prismatic actuators). Hence, the
optimum solution always corresponds to the maximum link or actuator stiffness and
these parameters are not included in the optimization variables. Seven parameters
are specified as optimization parameters, they are

s D ŒRp; Rb; l61; l62; z; Tp; Tb�; (9.9)

where Rp is the radius of the platform; Rb is the radius of the base; l61 and l62 are
the link length for the first and second link of the passive leg, respectively; z is the
height of the platform; Tp and Tb are the angles to determine the attachment points
on the platform and on the base; and their bounds are

Rp 2 Œ10; 14� cm; Rb 2 Œ20; 26� cm;
l61 2 Œ52; 70� cm; l62 2 Œ52; 70� cm;

z 2 Œ66; 70� cm;
Tp 2 Œ18; 26�

ı; Tb 2 Œ38; 48�
ı:
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In this work, the objective function of (9.6) is minimized assuming

�i D 1; i D 1; : : : ; 6;

P D 80;

Gmax D 40:

Results are given here only for the case with �65 D �	 and �66 D 2	=3.
Figures 9.6 and 9.7 show the evolution of the best individual and the optimal pa-
rameters for 40 generations, respectively. The architectural and behavior parameters
found by the GA after 40 generations are

s D ŒRp; Rb; l61; l62; z; Tp; Tb�

D Œ14; 21:2; 52; 70; 66; 18; 48�

and the compliances in each direction are

� D Œ��x ; ��y ; ��z ; �x ; �y ; �z�

D Œ0:03687; 0:03113; 0:03646; 0:03962; 0:01657; 2:46 � 10�4�:

The sum of the compliances is 0.16.
Before optimization, the parameter values of the mechanism were given as

s0 D ŒRp; Rb; l61; l62; z; Tp; Tb�

D Œ12; 22; 68; 68; 68; 22:34; 42:883�

Fig. 9.6 The evolution of the
performance of the 5-dof
mechanism with prismatic
actuators
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Fig. 9.7 The evolution of the geometrical parameters of the 5-dof mechanism with prismatic
actuators

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ0:08627; 0:0981; 0:2588; 0:07342; 0:030325; 2:55 � 10�4�:

The compliance sum is 0.54714. After optimization, the compliance sum is im-
proved 3.4 times.

9.4.5 Spatial Five-Degree-of-Freedom Mechanism
with Revolute Actuators

The schematic representation of this type mechanism and its vertex distribution is
shown in Figs. 6.5 and 6.6, respectively. Twelve architecture and behavior param-
eters are specified as optimization parameters to minimize the compliances. They
can be represented as a vector of s

s D ŒRp; Rb; l61; l62; l1; l2; z; Tp; Tb�; (9.10)
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whereRp is the radius of the platform;Rb is the radius of the base; l61 and l62 are the
link lengths for the first and second link of the passive leg, respectively; l1 and l2 are
the link lengths for the first and second link of the each actuated leg, respectively;
z is the height of the platform; Tp and Tb are the angles to determine the attach-
ment points on the platform and on the base; and the bound of each optimization
parameter is

Rp 2 Œ5; 7� cm; Rb 2 Œ14; 18� cm;

l61 2 Œ67; 70� cm; l62 2 Œ67; 70� cm;

l1 2 Œ33; 35� cm; l2 2 Œ45; 47� cm;

z 2 Œ66; 70� cm; Tp 2 Œ18; 30�
ı; Tb 2 Œ38; 50�

ı:

For this mechanism, the objective function of (9.6) is minimized with

�i D 1; i D 1; : : : ; 6;

P D 80;

Gmax D 40:

Results are given here for the case with �65 D �	 and �66 D 2	=3. Figures 9.8
and 9.9 show the evolution of the best individual and the optimal parameters for
40 generations, respectively. The mechanism’s geometric and behavior parameters
found by the GA after 40 generations are

s D ŒRp; Rb; l61; l62; l1; l2; z; Tp; Tb�

D Œ7; 18; 69:052; 67:179; 33; 45; 70; 18:92; 50:03�

Fig. 9.8 The evolution of the
performance of the 5-dof
mechanism with revolute
actuators
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Fig. 9.9 The evolution of the geometrical parameters of the 5-dof mechanism with revolute
actuators

and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ7:77 � 10�2; 0:10345; 0:24256; 1:116 � 10�3; 1:87 � 10�3; 2:67 � 10�4�:

The sum of the compliances is 0.33977.
The initial guess of the geometric and structure behavior parameters of the mech-

anism was given as

s0 D ŒRp; Rb; l61; l62; l1; l2; z; Tp; Tb�

D Œ6; 15; 68; 68; 34; 46; 68; 22:34; 42:883�

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ0:1244; 0:2327; 0:3732; 0:001; 0:002464; 3:589 � 10�4�:

The compliance sum is 0.734195. Hence after optimization, the compliance sum is
improved 2.16 times.
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9.4.6 Spatial Four-Degree-of-Freedom Mechanism
with Prismatic Actuators

Figure 5.8 shows the spatial 4-dof mechanism with prismatic actuators. For this
mechanism, the optimization parameters are

s D ŒRp; Rb; l51; l52; z; Tp; Tb�; (9.11)

where Rp is the radius of the platform; Rb is the radius of the base; l51 and l52 are
the link lengths for the 1st and 2nd link of the passive leg, respectively; z is the
height of the platform; Tp and Tb are the angles to determine the attachment points
on the platform and on the base, and their bounds are

Rp 2 Œ10; 14� cm; Rb 2 Œ20; 26� cm;

l51 2 Œ52; 70� cm; l52 2 Œ52; 70� cm;

z 2 Œ66; 70� cm; Tp 2 Œ25; 35�
ı; Tb 2 Œ55; 65�

ı;

Again, the compliances are minimized as above.
Results are given here only for one case with �55 D �	=3 and �56 D 2	=3.

Figures 9.10 and 9.11 show the evolution of the best individual and the optimal
parameters for 40 generations, respectively. The geometric and behavior parameters
found by the GA after 40 generations are

s D ŒRp; Rb; l51; l52; z; Tp; Tb�

D Œ14; 26; 70; 55; 66; 35; 55�

Fig. 9.10 The evolution of
the performance of the 4-dof
mechanism with prismatic
actuators
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Fig. 9.11 The evolution of the geometrical parameters of the 4-dof mechanism with prismatic
actuators

and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ0:12; 0:5742; 3:747 � 10�3; 0:3165; 5:006 � 10�11; 3:345 � 10�3�:

The sum of the compliances is 1.017897.
Initially, the parameters for this mechanism were given as

s0 D ŒRp; Rb; l51; l52; z; Tp; Tb�

D Œ12; 22; 68; 68; 68; 30; 60�

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ0:5164; 1:4046; 1:5 � 10�10; 0:9087; 5:78 � 10�11; 0:011139�:

The compliance sum is 2.84085. Therefore, after optimization the compliance sum
has been improved 2.8 times.
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9.4.7 Spatial Four-Degree-of-Freedom Mechanism
with Revolute Actuators

A spatial 4-dof mechanism with revolute actuators is shown in Fig. 6.9. The
parameters are

s D ŒRp; Rb; l51; l52; L1; L2; z; Tp; Tb�; (9.12)

where Rp is the radius of the platform; Rb is the radius of the base; l51 and l52 are
the link lengths for the first and second link of the passive leg, respectively; L1 and
L2 are the link lengths for the first and second link of the actuated leg, respectively;
z is the height of the platform; Tp and Tb are the angles to determine the attachment
points on the platform and on the base; and their bounds are

Rp 2 Œ5; 7� cm; Rb 2 Œ14; 16� cm;
l51 2 Œ67; 69� cm; l52 2 Œ67; 69� cm;
L1 2 Œ33; 35� cm; L2 2 Œ45; 47� cm;

z 2 Œ66; 70� cm;
Tp 2 Œ25; 35�

ı; Tb 2 Œ55; 65�
ı;

Results are given here for one case with �55 D �	=3 and �56 D 2	=3.
Figures 9.12 and 9.13 show the evolution of the best individual and the optimal
parameters for 40 generations, respectively. The optimum geometric and behavior
parameters for this configuration are

s D ŒRp; Rb; l51; l52; L1; L2; z; Tp; Tb�

D Œ7; 16; 67; 69; 35; 47; 66; 35; 55�

Fig. 9.12 The evolution of
the performance of the 4-dof
mechanism with revolute
actuators
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Fig. 9.13 The evolution of the geometrical parameters of the 4-dof mechanism with revolute
actuators

and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ0:28857; 0:019376; 8:66 � 10�5; 9:39 � 10�4; 5:751 � 10�11; 3:646 � 10�5�:

The sum of the compliances is 0.29518.
The initial guess for this mechanism was

s0 D ŒRp; Rb; l51; l52; L1; L2; z; Tp; Tb�

D Œ6; 15; 68; 68; 34; 46; 68; 30; 60�

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ1:2807; 0:0628078; 0; 0:00276278; 0; 0:00003838�:

The compliance sum is 1.3463. Hence, after optimization, the total compliance is
improved 4.56 times.
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9.4.8 Spatial Three-Degree-of-Freedom Mechanism
with Prismatic Actuators

The spatial 3-dof mechanism with prismatic actuators is shown in Fig. 5.9. The
parameters are

s D ŒRp; Rb; z�; (9.13)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height of
the platform, and their bounds are set as

Rp 2 Œ5; 10� cm; Rb 2 Œ12; 14� cm;
z 2 Œ66; 70� cm:

Here only the case with �45 D 	=2 and �46 D 0 is discussed. Figures 9.14 and
9.15 show the evolution of the best individual and the optimal parameters for 40
generations, respectively. After 40 generations, the optimal geometric and behavior
parameters found by the GA are

s D ŒRp; Rb; z�

D Œ10; 12; 70�

and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ6:8355 � 10�2; 6:8355 � 10�2; 0; 0; 0; 3:4177 � 10�4�:

The sum of the compliances is 0.137.
The initial geometric and behavior values for this mechanism were given as

s0 D ŒRp; Rb; z�

D Œ6; 15; 68�

Fig. 9.14 The evolution of
the performance of the 3-dof
mechanism with prismatic
actuators



9.4 Single-Objective Optimization 161

Fig. 9.15 The evolution of the geometrical parameters of the 3-dof mechanism with prismatic
actuators

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ0:192; 0:192; 0; 0; 0; 3:4566 � 10�4�:

The compliance sum is 0.3844. Therefore, after optimization, the total compliance
is improved 2.81 times which is a minor gain.

9.4.9 Spatial Three-Degree-of-Freedom Mechanism
with Revolute Actuators

The spatial 3-dof mechanism with revolute actuators is shown in Fig. 6.10. The pa-
rameters are

s D ŒRp; Rb; l1; l2; z�; (9.14)

where Rp is the radius of the platform, Rb is the radius of the base, l1 and l2 are the
link length, z is the height of the platform, and their bounds are

Rp 2 Œ5; 7� cm; Rb 2 Œ14; 16� cm;
l1 2 Œ33; 35� cm; l2 2 Œ45; 47� cm;

z 2 Œ66; 70� cm:
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Fig. 9.16 The evolution of
the performance of the 3-dof
mechanism with revolute
actuators

Fig. 9.17 The evolution of the geometrical parameters of the 3-dof mechanism with revolute
actuators

Here only one case with �45 D 	=2 and �46 D 0 is analyzed. Figures 9.16 and
9.17 show the evolution of the best individual and the optimal parameters for 40
generations, respectively. After running the program for 40 generations, the optimal
architectural and behavior parameters can be found as

s D ŒRp; Rb; l1; l2; z�

D Œ7; 16; 33; 45; 70�
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and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ1:0782 � 10�2; 1:0782 � 10�2; 0; 0; 0; 2:64 � 10�5�:

The sum of the compliances is 0.018659.
Before optimization, a series of parameters were guessed as

s0 D ŒRp; Rb; l1; l2; z�

D Œ6; 15; 34; 46; 68�

and the compliance in each direction can be computed as

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ2:12264 � 10�2; 2:12264 � 10�2; 0; 0; 0; 3:82 � 10�5�:

The compliance sum is 0.04249. Hence, after optimization, the total compliances is
improved 2.28 times.

9.4.10 The Tricept Machine Tool Family

The schematic representation of the Tricept machine tool and the geometry of the
joint distribution both on the base and the platform are shown in Figs. 9.18 and 9.19,
respectively. The vector of optimization variables is therefore

s D ŒRp; Rb; z�; (9.15)

where Rp is the radius of the platform, Rb is the radius of the base, z is the height of
the platform, and their bounds are specified based on the dimensions of the Tricept
machine tool

Rp 2 Œ200; 300�mm; Rb 2 Œ400; 600�mm;
z 2 Œ900; 1500�mm:

The case with �41 D 	=2 and �42 D 0 is discussed here. Figures 9.20 and
9.21 show the evolution of the best individual and the optimal parameters for 40
generations, respectively. The optimal architectural and behavior parameters found
by the GA after 40 generations are

s D ŒRp; Rb; z� D Œ300; 600; 900�



164 9 Design Optimization of Parallel Robotic Machines

Fig. 9.18 Schematic
representation of the Tricept
machine tool

Fig. 9.19 Position of the
attachment points on the base
and platform

and the compliances in each direction are

� D Œ��x ;��y ;��z ;�x ;�y ;�z�

D Œ2:0576� 10�3; 2:0576� 10�3; 0; 1:667� 10�3; 1:667� 10�3; 3:703� 10�4�:

The sum of the compliances is 0.0078189. Before optimization, the dimensions of
the Tricept machine tool provided by Neos Robotics AB were

s0 D ŒRp; Rb; z� D Œ225; 500; 1300�
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Fig. 9.20 The evolution of
the performance of the
Tricept machine tool

Fig. 9.21 The evolution
of the geometrical parameters
of the Tricept machine tool

and the compliances in each direction were

�0 D Œ�0�x ;�
0
�y
;�0�z

;�0x ;�
0
y ;�
0
z�

D Œ2:786� 10�3; 2:786� 10�3; 0; 4:708� 10�3; 4:708� 10�3; 3:4825� 10�4�:

The sum of the compliances is 0.0153369. Hence, after optimization, the sum of the
compliances is improved by a factor of 1.96 just by slightly enlarging the radius of
the base and the platform.
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9.5 Multiobjective Optimization

9.5.1 Case Study 1: Three Degrees of Freedom Parallel
Manipulator – Two Translations and One Rotation

9.5.1.1 Structure Description

The new 3-dof parallel manipulator is composed of a base structure, a moving plat-
form, and three legs connecting the base and platform. Among those three legs, two
of them are in same plane and consist of identical planar four bar parallelograms
as chains connected to the moving platform by revolute joints, while the third leg
is one rectangular bar connected to the moving platform by a spatial joint. There is
one revolute joint on the top end of each leg, and the revolute joint is linked to the
base by an active prismatic joint.

The CAD model of the 3-dof parallel mechanism is shown in Fig. 9.22.
The dof for a closed-loop kinematic chain can be determined using the

Chebychev–Grübler–Kutzbach formula [170]:

l D d.n � g � 1/C

gX
iD1

fi ; (9.16)

where l is the degree of freedom of the kinematic chain; d the degree of freedom
of each unconstrained individual body (6 for the spatial case, 3 for the planar case);

Fig. 9.22 CAD modeling of
3-dof parallel manipulator



9.5 Multiobjective Optimization 167

n the number of rigid bodies or links in the chain; g the number of joints; and fi is
the number of degrees of freedom allowed by the i th joint.

With eq. (9.16), the degree of freedom of the proposed parallel manipulator is

M D 6.8 � 9 � 1/C .5C 5C 5/ D 3: (9.17)

In Fig. 9.22, the parallelograms play the role of improving the kinematics perfor-
mance and the leg stiffness can be increased largely [21]. In regard to the types of
actuated joints, they can be either revolute or prismatic. Since the prismatic joints
can easily achieve high accuracy and heavy loads, the majority of the 3-dof parallel
mechanism in reality use actuated prismatic joints.

The output link of a planar parallelogram mechanism will remain in a fixed ori-
entation with respect to its input link, and the parallelogram can ensure the desired
output, in terms of translation and rotation. The advantages of the proposed parallel
manipulator are as follows:

1. The use of the parallelogram structure can greatly increase the stiffness of the
legs.

2. Two identical chains offer good symmetry.
3. The joint which connects the third leg and the moving platform gives the rotation

about y-axis with respect to reference frame attached to the end-effecter.

A kinematics model of the manipulator is shown in Fig. 9.23. The vertices of the
moving platform are pi .i D 1; 2; 3/, and the vertices of the base are bi .i D 1; 2; 3/.

Fig. 9.23 Schematic
representation



168 9 Design Optimization of Parallel Robotic Machines

A global reference system O W O � xyz is located at the point of intersection b1b2
and Ob3. Another reference system, called the moving frame O 0 W O 0 � x0y0z0, is
located at the center of p1p2 on the moving platform. The given position and orien-
tation of the end-effecter (the moving platform) is specified by its three independent
motions: y, z pure translations and � pure rotation about y-axis. The position is
given by the position vectors .O0/O and the orientation is given by rotation matrix
Q as follows:

.O0/O D . x y z/T; (9.18)

where x D 0 and

Q D

2
4

cos� 0 sin�
0 1 0

� sin� 0 cos�

3
5 ; (9.19)

where angle � is the rotation about y-axis. The coordinates of the point pi in refer-
ence system .O0/ can be described by the vector .pi /O0 .i D 1; 2; 3/

.p1/O0 D

0
@
�r

0

0

1
A ; .p2/O0 D

0
@
r

0

0

1
A ; .p3/O0 D

0
@
0

r

0

1
A : (9.20)

The vectors .bi /O .i D 1; 2; 3/ in frame O W O � xyz will be defined as position
vectors of joints:

.b1/ D

0
@
��1
0

0

1
A ; .b2/ D

0
@
�2
0

0

1
A ; .b3/ D

0
@

0
�3

0

1
A : (9.21)

The vector .pi /O .i D 1; 2; 3/ in frame O W O � xyz can be written as

.pi /O D Q.pi /O0 C .O0/O : (9.22)

That is

.p1/O D

2
4

cos� 0 sin�
0 1 0

� sin� 0 cos�

3
5
0
@
�r

0

0

1
AC

0
@
0

y

z

1
A D

0
@
�r cos�

y

r sin� C z

1
A ; (9.23)

.p2/O D

2
4

cos� 0 sin�
0 1 0

� sin� 0 cos�

3
5
0
@
r

0

0

1
AC

0
@
0

y

z

1
A D

0
@

r cos�
y

�r sin� C z

1
A ; (9.24)

.p3/O D

2
4

cos� 0 sin�
0 1 0

� sin� 0 cos�

3
5
0
@
0

r

0

1
AC

0
@
0

y

z

1
A D

0
@

0

r C y

z

1
A : (9.25)
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The inverse kinematics of the manipulator can be solved by applying the following
constraint equation:

kpi � bik D L: (9.26)

Hence, one can obtain the required actuator inputs:

�1 D
p
L2 � y2 � .zC r sin�/2 C r cos�; (9.27)

�2 D
p
L2 � y2 � .z � r sin�/2 C r cos�; (9.28)

�3 D
p
L2 � z2 C y C r: (9.29)

Equations (9.27), (9.28), and (9.29) can be differentiated with respect to time to
obtain the velocity equations,

.�1 � r cos�/ P�1 C y Py C .zC r sin�/PzC r.�1 sin� C z cos�/ P� D 0; (9.30)

.�2 � r cos�/ P�2 C y Py C .z � r sin�/PzC r.�2 sin� � z cos�/ P� D 0; (9.31)

Œ�3 � .y C r/� P�C Œ�3 � .y C r/� Py C zPz D 0: (9.32)

Rearranging (9.30), (9.31), and (9.32) we have

A P� D B Pp; (9.33)

where P� is the vector of input velocities defined as

P� D . P�1; P�2; P�3/
T (9.34)

and Pp is the vector of output velocities defined as

Pp D . Py; Pz; P�/T (9.35)

Matrices A and B can be expressed as

A D

2
4
r cos� � �1 0 0

0 r cos� � �2 0

0 0 y C r � �3

3
5 ; (9.36)

B D

2
4

y zC r sin� r.�1 sin� C z cos�/
y z � r sin� r.�2 sin� � z cos�/

y C r � �3 z 0

3
5 : (9.37)

The Jacobian matrix of the manipulator can be written as

J D A�1B or K D J�1 D B�1A: (9.38)
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9.5.1.2 Optimization

The purpose of optimization design is to enhance the performance indices by
adjusting the structure parameters. We propose the mean value and the standard de-
viation of the global stiffness as the design indices in this paper. It is noted that the
trace of the matrix is an invariant of the matrix, so the distribution of the system stiff-
ness (matrix) is the distribution of the trace. The mean value represents the average
stiffness of the parallel robot manipulator over the workspace, while the standard
deviation indicates the stiffness variation relative to the mean value. In general, the
higher the mean value the less the deformation, and the lower the standard devia-
tion the more uniform the stiffness distribution over the workspace. In this paper, the
suitability of these design indices for the system stiffness will be examined by devel-
oping their relationship with the stiffness of links and joints. We will further study
a design optimization based on the stiffness indices. A multiobjective optimization
problem will be defined. Ideally, it may require that the mean value should be a max-
imum, but the standard deviation is a minimum. However, these two goals could be
in conflict, so a trade-off process (e.g., Pareto set theory) will be considered.

The goal of structure parameters design, which is also called dimensional syn-
thesis, is to confirm the best geometric configuration according to objective function
and geometric restriction.

Since only a few geometric parameters can be handled due to the lack of con-
vergence, this arises from the fact that traditional optimization methods use a local
search by a convergent stepwise procedure, e.g., gradient, Hessians, linearity, and
continuity, which compares the values of the next points and moves to the rela-
tive optimal points [60]. Global optima can be found only if the problem possesses
certain convexity properties which essentially guarantee that any local optimum is a
global optimum. In other words, conventional methods are based on a point-to-point
rule; it has the danger of falling in local optima. The genetic algorithms are based
on the population-to-population rule; it can escape from local optima.

For the implementation of genetic algorithms, one problem is how to model
the objective function. It is very difficult and time-consuming exercise especially
when the parameters are multifarious and the objective functions are too complex
that genetic algorithm cannot work well based on the analytical expression of the
performance indices. In artificial neural networks implementation, knowledge is
represented as numeric weights, which are used to gather the relationships between
data that are difficult to realize analytically. The network parameters can be iter-
atively adjusted to minimize the sum of the squared approximation errors using a
gradient descent method, thereby being utilized to represent the system stiffness for
the 3-dof parallel manipulator.

Stiffness is a very important factor in many applications including machine tool
design, as it affects the precision of machining. Induced vibration is explicitly linked
to machine tool stiffness. For a metal-cutting machine tool, high stiffness allows
higher machining speeds and feeds while providing the desired precision, thus re-
duces vibration (such as chatter). Therefore, to build and study a general stiffness
model of parallel mechanisms is very important for machine tool design.



9.5 Multiobjective Optimization 171

From the viewpoint of mechanics, the stiffness is the measurement of the ability
of a body or structure to resist deformation due to the action of external forces. The
stiffness of a parallel mechanism at a given point of its workspace can be charac-
terized by its stiffness matrix. This matrix relates the forces and torques applied at
the gripper link in Cartesian space to the corresponding linear and angular Cartesian
displacements.

The velocity relationship of parallel mechanisms can be written as

P� D J Px; (9.39)

where P� is the vector of joint rates and Px is the vector of Cartesian rates, a six-
dimensional twist vector containing the velocity of a point on the platform and its
angular velocity. Matrix J is the Jacobian matrix in (9.23).

From (9.24), one can conclude that

ı� D Jıx; (9.40)

where ı� and ıx represent joint and Cartesian infinitesimal displacements, respec-
tively. Then, one can get the stiffness of this mechanism using the principle of
kinematic/static duality. The forces and moments applied at the gripper under static
conditions are related to the forces or moments required at the actuators to maintain
the equilibrium by the transpose of the Jacobian matrix J. One can then write

F D JTf; (9.41)

where f is the vector of actuator forces or torques and F is the generalized vector of
Cartesian forces and torques at the gripper link. The actuator forces and displace-
ments can be related by Hooke’s law, one has

f D KJı�: (9.42)

Here KJ is the joint stiffness matrix of the parallel mechanism, with KJ D

diagŒk1; : : : ; kn�, where each of the actuators in the parallel mechanism is mod-
eled as an elastic component. ki is a scalar representing the joint stiffness of each
actuator, which is modeled as linear spring. Substituting (9.25) into (9.26), one
obtains

f D KJJıx: (9.43)

Then, substituting (9.28) into (9.26), yields

F D JTKJJıx: (9.44)

Hence, KC, the stiffness matrix of the mechanism in the Cartesian space is then
given by the following expression

KC D JTKJJ: (9.45)
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Particularly, in the case for which all the actuators have the same stiffness, i.e.,
k D k1 D k2 D � � � D kn, then (9.30) will be reduced to

KC D kJTJ: (9.46)

Furthermore, the diagonal elements of the stiffness matrix are used as the system
stiffness value. These elements represent the pure stiffness in each direction, and
they reflect the rigidity of machine tools more clearly and directly. The objective
function for mean value and standard deviation of system stiffness can be written as:

�-stiffness D E.tr.KC//; (9.47)

� -stiffness D D.tr.KC//; (9.48)

where E.�/ and D.�/ represent the mean value and the standard deviation, respec-
tively, and tr is the trace of the stiffness matrix KC.

In order to obtain the optimal system stiffness of the 3-dof parallel manipulator,
three geometrical parameters are selected as optimization parameters. The vector of
optimization variables is

s D fL; h; rg; (9.49)

where L is link length, h is the height of the moving platform, r is the radii of fixed
platform, and their bounds are

L 2 Œ1; 2�m; h 2 Œ0:5; 0:8�m; r 2 Œ0:1; 0:3�m (9.50)

The standard back propagation learning algorithm, as the most popular train-
ing method for feed-forward neural network, is based on the principle of steepest
descent gradient approach to minimize a criterion function representing the instan-
taneous error between the actual outputs and the predicted outputs.

The criterion function can be expressed as follows:

E D

KX
kD1

E2k D
1

2NK

KX
kD1

"
NX
iD1

.yik � tik/
2

#
; (9.51)

where K is the number of output neurons, N is the vector dimension, and yik, tik
are the predicted outputs and actual outputs of the kth output neuron of the ith input
dimension, respectively.

The basic training steps of back propagation neural network are included as
follows:

1. Initialize the weights and bias in each layer with small random values to make
sure that the weighted inputs of network would not be saturated.

2. Confirm the set of input/output pairs and the network structure. Set some related
parameters, i.e., the desired minimal , the maximal iterative times, and the learn-
ing speed.
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3. Compare the actual output with desired network response and calculate the
deviation.

4. Train the updated weights based on criterion function in each epoch.
5. Continue the above two steps until the network satisfy the training requirement.

Figure 9.24 shows the topology of network developed as the objective function to
model the analytical solution of mean value of the system stiffness (�-stiffness). In
this case, two hidden layers with sigmoid transfer function are established in which
eight neurons exist, respectively. The input vectors are the random arrangement of
discretization values from the three structure variables.

Figure 9.25 illustrates the training result using standard back propagation learn-
ing algorithm, where the green curve denotes the quadratic sum of output errors
with respect to ideal output values. After training for 474 times, target goal error is
arrived.

The genetic algorithms can be implemented to search for the best solutions after
the trained neural network is ready for the objective function. To avoid the time-
consuming iterative operation using traditional technologies, the issue of stiffness
optimization can be converted into network optimization. Figure 9.26 shows the
evolution process of the best individual (network) based on genetic algorithms. The
optimal �-stiffness value is 2,218.

The evolution of �-stiffness arises from the optimization of architecture and be-
havior variables in the implementation process of genetic algorithm as shown in
Fig. 9.27. By adjusting the three parameters simultaneously with genetic operators
such as selection, crossover, and mutation, the optimal objective is obtained. The
final values of three parameters searched by genetic algorithm are

s D fL; h; rg D f1:5718m; 0:78579 m; 0:18845 mg: (9.52)

Fig. 9.24 The topology of feed forward neural network for the solution of �-stiffness
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Fig. 9.25 Network training of the objective function about �-stiffness

Fig. 9.26 The evolution of
�-stiffness

The topology of neural networks is similar with the above instance for the opti-
mization of variance of system stiffness (� -stiffness), in which the only difference
is that there are 12 neurons exist in each hidden layer. Figure 9.28 illustrates the
training result of the objective function about � -stiffness with the back propagation
algorithm, where the solid curve denotes the quadratic sum of output errors with
respect to ideal output values. After training for 294 times, target goal error is ar-
rived. The optimization process of � -stiffness with genetic algorithm is illustrated
in Fig. 9.29. After global stochastic search for 40 generations, optimal � -stiffness
value is convergent at 0.47. The evolution of geometrical parameters for � -stiffness
optimization is described in Fig. 9.30. Compared with Fig. 9.27, it can be found that
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Fig. 9.27 The evolution of geometrical parameters for �-stiffness optimization

Fig. 9.28 Network training of the objective function about �-stiffness

the corresponding convergent points of the three parameters in these two figures are
not the same, i.e.,

s D fL; h; rg D f1:5718m; 0:78579m; 0:18845mg: (9.53)

In other words, the two objective functions are conflicted with each other. This
issue will be addressed in the following section where multiobjective optimization
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Fig. 9.29 The evolution of �-stiffness

Fig. 9.30 The evolution of geometrical parameters for �-stiffness optimization

based on Pareto-optimal solution is conducted. Multiobjective optimization prob-
lems consist of simultaneously optimizing several objective functions that are quite
different from those of single-objective optimization. One single global optimal
search is enough for single-objective optimization task. However, in a multiobjec-
tive optimization problem, it requires to find all possible tradeoffs among multiple
objective functions that usually conflict with each other. The set of Pareto-optimal
solutions is generally used for decision maker.
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The basic concept of multiobjective optimization is the concept of domination
[115]. In the issue of maximizing the k objective functions, decision vector (sets of
variable) x* is the Pareto-optimal solution if no other decision vectors satisfy both
the following conditions:

fi .x/ � fi .x
�/; 8i 2 f1; 2; : : : ; kg; (9.54)

fj .x/ > fj .x
�/; 9j 2 f1; 2; : : : ; kg: (9.55)

With the same method, if both of the following conditions are true, decision
vector x dominates y in the maximization issue, noted by x > y. That is:

fi .x/ � fi .y/; 8i 2 f1; 2; : : : ; kg; (9.56)

fj .x/ > fj .x
�/; 9j 2 f1; 2; : : : ; kg: (9.57)

According to the above formulae, Pareto-optimal set can be defined as: if there is
no solution in the search space which dominates any member in the set P , then the
solutions belonging to the set P constitute a global Pareto-optimal set. The Pareto-
optimal set yields an infinite set of solutions, from which the desired solution can
be chosen. In most cases, the Pareto-optimal set is on the boundary of the feasible
region. Typical application of Pareto-based approach can be found in [64]. Since the
implementation of genetic algorithms – including selection, crossover, and mutation
operation – focuses on the whole colony which is consisted by all individuals, and
generally, Pareto-optimal solutions for multiobjective optimization issues are a mul-
tidimensional set. Therefore, genetic algorithms are the effective method to address
the Pareto-optimal solutions of multiobjective optimization issues.

Following initial parameters of Pareto-based genetic algorithms are set before
implementation:

Number of subpopulation D 3
Number of individuals in each subpopulation D 50, 30, 40
Mutation range D 0.01
Mutation precision D 24
Max generations for algorithm terminationD 200

After optimization, the possible optimal solutions in the whole solution space are
obtained without combining all the objective functions into a single one by weight-
ing factors. Figure 9.31 shows the Pareto-optimal frontier sets in which the designers
can intuitively determine the final solutions depending on their preferences. Hence,
the analysis process and cycle time is reduced. From this figure, the trade-off be-
tween the objectives of�-stiffness and � -stiffness is demonstrated in the distributing
trend of these Pareto points for selecting compromisingly. If any other pair of de-
sign variables is chosen from the upper/right area of Figure 9.31, its corresponding
values will locate an inferior point with respect to the Pareto frontier. Besides, the
lower/left side is the inaccessible area of all the possible solution pairs. That is why
Pareto solutions are called Pareto-optimal frontier sets. Figure 9.32 illustrates the
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Fig. 9.31 Pareto-optimal frontier sets

Fig. 9.32 Pareto search space: best individuals at end of optimization

solution distribution in the three-dimensional Pareto search space. It shows that a
set of satisfied optimal solutions which provide enough information about alter-
native solutions for the decision maker with great diversity can be obtained with
Pareto-based genetic algorithms. Therefore, the simulation shows the efficiency of
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the proposed single-objective and multiobjective optimization design methodology
of the 3-dof parallel manipulator.

9.5.2 Case Study 2: Tripod Compliant Parallel Micromanipulator

9.5.2.1 Structure Description

As shown Fig. 9.33, the mechanism is treated as two separated components: a par-
allel mechanism with three 7-dof SPS legs and a branched chain with a 3-dof RPR
passive leg. Compared to common tripod parallel mechanism with no passive leg,
more advantages can be found in this design. First, its motion comes solely from ac-
tuation of the prismatic components which facilitates in control and analysis of the
motion paths of the mechanism. Second, it provides an adequate working envelope
and due to the nature of the deformation incurred by the joints, it has a relatively
high duration. Finally, it has a high accuracy but still leaves room for improvement
due to the fact that input angles are used as the reliant factor. This also further com-
plicates the motion control slightly and the Jacobian matrix. Since rotation about
the z-axis is not required, this leg constrains that motion.

It also minimizes the torque and force on the other components of the mech-
anism. However, it must sustain induced bending and torsion created by external
loads on the moving platform. The additional leg provides further stiffness at the
end effecter and increases the overall precision and repeatability.

The repeated use of spherical joints has both advantages and disadvantages as-
sociated with it. It can cut down on the cost of the equipment because there are

Fig. 9.33 Conceptual design
of the parallel compliant
micro-manipulator
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Fig. 9.34 Kinematical
structure of a 3SPS+RPR
parallel mechanism

less different types of parts required. This also facilitates the manufacturing and as-
sembly processes. However, the use of spherical joints does limit the motion and
working envelope of the mechanism. Because the motion required of the device is
so tiny, this drawback can be neglected. In terms of analysis and motion control,
it appears to be suitable also. Each of the two mechanisms is solved separately to
determine the inverse kinematics.

There are some important assumptions that must be noted before progressing
with the inverse kinematic modeling. It is assumed that each leg is driven by one
actuator which drives the prismatic joint. It is supposed that the centers of the joints
which form a triangle on both the base and moving platform are located on cir-
cles. The centers of these circles serve as the origins for both the fixed reference
frame, denoted by O fx; y; zg in Fig. 9.34 and a moving coordinate frame, denoted
by P fx0; y0; z0g. The points of attachment of the revolute joints at the base are ex-
pressed by Bi and of the spherical joints at the moving platform by Pi where iD 1,
2, 3. Points B1, B2, and B3 lie on the x–y plane. Similarly, points P1, P2, and P3
lie on the y0–z0 plane. Furthermore, each platform is supposed to be an equilateral
triangle.

9.5.2.2 Performance Indices Optimization

The goal of structure parameters design, which is also called dimensional synthesis,
is to confirm the best geometric configuration according to objective function and
geometric restriction. To make sure that the parallel manipulator will possess well
performance such as high system stiffness and dexterity, dimensional synthesis for
optimization is one of the significant steps in the design process of parallel manip-
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ulators. Both the single-objective optimizing and multiobjective optimizing issues
will be investigated in this section to demonstrate the validity of synthesis of radial
basis function network (RBFN) and genetic algorithm for this case.

As one type of feed-forward neural networks that is different from common net-
works such as back propagation networks, RBFN has a special structure consisting
of two layers: a nonlinear hidden layer and a linear output layer. Each of the units
in hidden layer applies a fixed-feature detector which uses a specified kernel func-
tion (i.e., Gaussian, thin plate spline, or multiquadratic) to detect and respond to
localized portions of the input vector space. The network output is a weighted lin-
ear summation of the output of the hidden neurons [52, 141]. One advantage of
radial basis networks over BPNN is that the localized nature of the hidden layer re-
sponse makes the networks less susceptible to weight loss. The RBFN is a universal
function approximation approach that demonstrates more robustness and flexibility
than traditional regression approaches such as polynomial fits. The RBFN works
by choosing not just a single nonlinear function, but a weighted sum of a set of
nonlinear functions (Fig. 9.35).

The kernel functions in the hidden layer produce a localized response to the input
by using the distance between the input vector and the center associated with the
hidden unit as the variable. Suppose the input sample X 2 Rn, the corresponding
output of RBFN is:

�j .x/ D kj .
��X � Cj

��
2
; �/; (9.58)

where Cj is the center associated with the hidden node j and � is the controlling
coefficient of kernel function for hidden node j, which represent a measure of the
spread of data.

��X � Cj
�� is a norm of X ! Cj that is usually Euclidean, which

denotes the distance between the input vector X and Cj . kj is a kernel function with
radial symmetry, which achieves the unique maximum at the point of Cj . Generally,
Gaussian function is selected as the kernel function, namely,

kj .
��X � Cj

��
2
; �/ D exp

 
�

��X � Cj
��2
2

2�2

!
: (9.59)

Fig. 9.35 The topology of
RBFN
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The response of each output node is calculated by a linear function of its input
(including the bias), that is the output of hidden layer. Suppose that the number of
hidden neurons and output neurons isK andM , respectively, the output value ym of
the mth output neuron for the input variable X can be represented by the following
equation:

ym D

KX
iD1

wmikj .
��X � Cj

�� ; �/; (9.60)

where wmi , which is adjusted to minimize the mean square error of the net output,
is the weight between the mth output neuron and the ith hidden neuron.

Most of the training algorithms for RBFN have been divided into two stages.
First, using unsupervised learning algorithm, the centers for hidden layer nodes can
be determined. After the centers are fixed, the widths are determined in a way that
reflects the distribution of the centers and input patterns. The pseudoinverse learning
algorithm yields improved performance at a fraction of the computational and struc-
tural complexity of existing gradient descent algorithms for net weights training.

According to (9.60), the expression of error cost function E.W / is as:

E.W/ D
1

2
kT � Yk2F ; (9.61)

where T is the net target output and k�kF represents the F -norm of the given matrix.

E.W/ D
1

2
kT �HWk2F D

1

2

MX
jD1

LX
iD1

 
tij �

mX
kD1

hikwkj

!2
; (9.62)

where H denotes the output matrix of hidden layer. The partial derivative of E.W /
can be calculated as:

@E.W/

@W
D

�
@E
@wuv

�

M�M

(9.63)
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@wuv

D �

LX
jD1

hT
ui

 
eiv �

MX
iD1

hikwkj

!
: (9.64)

Thus following equation can be deduced:

�
@E
@wuv

�

M�M

D HT.T �HW/: (9.65)

To achieve zero error of the net output, it has

HTHW D HTE: (9.66)
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Then the optimal solution of weights W � can be obtained as

W� D .HTH/�1HTE D HCE; (9.67)

where HC is the Moore–Penrose pseudoinverse of hidden output H.
Since only a few geometric parameters can be handled due to the lack of con-

vergence, this arises from the fact that traditional optimization methods use a local
search by a convergent stepwise procedure, e.g., gradient, Hessians, linearity, and
continuity, which compares the values of the next points and moves to the rela-
tive optimal points [60]. Global optima can be found only if the problem possesses
certain convexity properties which essentially guarantee that any local optimum is a
global optimum. In other words, conventional methods are based on a point-to-point
rule; it has the danger of falling in local optima.

The genetic algorithms are based on the population-to-population rule; it can
escape from local optima. Genetic algorithms have the advantages of robustness
and good convergence properties, i.e.,

1. They require no knowledge or gradient information about the optimization prob-
lems; only the objective function and corresponding fitness levels influence the
directions of search.

2. Discontinuities present on the optimization problems have little effect on the
overall optimization performance.

3. They are generally more straightforward to introduce, since no restrictions for
the definition of the objective function exist.

4. They use probabilistic transition rules, not deterministic ones.
5. They perform well for large-scale optimization problems.

Genetic algorithms have been shown to solve linear and nonlinear problems by
exploring all regions of state space and exponentially exploiting promising areas
through mutation, crossover, and selection operations applied to individuals in the
population. Therefore, genetic algorithms are suitable for the optimization problems
studied here.

Although a single-population genetic algorithm is powerful and performs well
on a wide variety of problems. However, better results can be obtained by intro-
ducing multiple subpopulations. Figure 9.36 shows the optimization rationale of the
extended multipopulation genetic algorithm adopted in this research.

Multiobjective optimization problems consist of simultaneously optimizing sev-
eral objective functions that are quite different from those of single-objective
optimization. One single global optimal search is enough for single-objective op-
timization task. However, in a multiobjective optimization problem, it is required to
find all possible tradeoffs among multiple objective functions that are usually con-
flicting with each other. The set of Pareto-optimal solutions is generally used for
decision maker.
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Fig. 9.36 Schematic
representation of the
optimization rationale based
on genetic algorithms

Following initial parameters of Pareto-based genetic algorithms are set before
implementation:

Number of subpopulation D 5
Number of individuals in each subpopulation D 110, 90, 90, 100, 110
Mutation range D 0.01
Mutation precision D 24
Max generations for algorithm terminationD 80

Global stiffness (compliance), dexterity, and manipulability are considered to-
gether for the simultaneous optimization. After implementation, the possible op-
timal solutions in the whole solution space are obtained without combining all the
objective functions into a single-objective function by weighting factors. Figure 9.37
shows the Pareto-optimal frontier sets in which the designers can intuitionistically
determine the final solutions depending on their preferences. Hence, the analysis
process and cycle time is reduced in large scale. From this picture, trade-off between
the objectives of system stiffness, dexterity, and manipulability is demonstrated in
the distributing trend of these Pareto points for selecting compromisingly. It shows
that a set of satisfied optimal solutions which provide enough information about al-
ternative solutions for the decision maker with great diversity can be obtained with
Pareto-based genetic algorithms. Therefore, the simulation shows the efficiency of
the proposed single-/multiobjective optimization methodology of the 3-dof parallel
manipulator.



9.6 Conclusions 185

Fig. 9.37 Pareto-optimal solutions and Pareto frontier in the solution space

9.6 Conclusions

The kinetostatic model with its underlying design principles has been made more
explicit through the implementation of optimization based on genetic algorithms in
this chapter. A very remarkable implementation is the optimization of the Tricept
machine tool family. After slightly adjusting the radius of the platform and the base,
the total global stiffness can be improved 1.96 times. For the other mechanisms, the
global stiffness are all obviously improved (normally 1.01–5.4 times). The kineto-
static model analyzed and obtained in previous chapters is employed for optimal
structure design. From the results which have been achieved, it can be seen that
the kinetostatic model can be applied for flexible mechanism analysis and global
stiffness analysis and it can be further used as an optimization tool for parallel mech-
anisms. Moreover, the versatility of genetic algorithm compared to the conventional
optimization methods is shown in this chapter; it is quite appropriate for dealing
with multiparameters problem.
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