
Chapter 6
Spatial Parallel Robotic Machines
with Revolute Actuators

6.1 Preamble

In this chapter, first, a six degrees of freedom fully parallel robotic machine with
revolute actuators is presented and analyzed. Then, a serial of parallel manipulators
with 3-dof, 4-dof, and 5-dof whose degree of freedom is dependent on an additional
passive leg, this passive leg is connecting the center between the base and the mov-
ing platform. Together with the inverse kinematics and velocity equations for both
rigid-link and flexible-link mechanisms, a general kinetostatic model is established
for the analysis of the structural rigidity and accuracy of this family of mechanisms,
case studies for 3-dof, 4-dof, and 5-dof mechanisms are given in detail to illustrate
the results.

6.2 Six Degrees of Freedom Parallel Robotic Machine
with Revolute Actuators

6.2.1 Geometric Modeling

Figures 6.1 and 6.2 represent a 6-dof parallel mechanism with revolute actuators.
This mechanism consists of six actuated legs with identical topology, connecting
the fixed base to a moving platform. The kinematic chains consist – from base to
platform – of an actuated revolute joint, a moving link, a Hooke joint, a second
moving link, and a spherical joint attached to the platform. A fixed reference frame
O � xyz is connected to the base of the mechanism and a moving coordinate frame
P � x0y0z0 is connected to the platform.
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94 6 Spatial Parallel Robotic Machines with Revolute Actuators

Fig. 6.1 CAD model of the spatial 6-dof parallel mechanism with revolute actuators (Figure by
Thierry Laliberté and Gabriel Coté)
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Fig. 6.2 Schematic representation of the spatial 6-dof parallel mechanism with revolute actuators
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6.2.2 Global Velocity Equation

6.2.2.1 Rigid Model

The global velocity equation for rigid model can be expressed as

At D B P�; (6.1)

where vectors P� and t are defined as

P� D
�
P�1 � � � P�6

�T
; (6.2)

t D
�
!T; PpT

�T
(6.3)

and

A D
�

m1 m2 m3 m4 m5 m6

�T
(6.4)

B D diagŒ.p1 � b01/
Te1; .p2 � b02/

Te2; .p3 � b03/
Te3;

.p4 � b04/
Te4; .p5 � b05/

Te5; .p6 � b06/
T e6� (6.5)

and mi is a six-dimensional vector expressed as

mi D

�
.Qr0i / � .pi � b0i /

.pi � b0i /

�
; i D 1; : : : ; 6 (6.6)

and again, the Jacobian matrix J can be written as

J D B�1A: (6.7)

6.2.2.2 Compliant Model

For the case of compliant model, one can obtain the global velocity equation as

At D B P�; (6.8)

where vector P� is defined as

P� D
�
P�11 P�12 P�21 P�22 P�31 P�32 P�41 P�42 P�51 P�52 P�61 P�62

�T
(6.9)
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matrix A and its terms are as given in (6.4) and (6.6) and

B6�12 D

2
66666664

b11 b12 0 0 0 0 0 0 0 0 0 0

0 0 b21 b22 0 0 0 0 0 0 0 0

0 0 0 0 b31 b32 0 0 0 0 0 0

0 0 0 0 0 0 b41 b42 0 0 0 0

0 0 0 0 0 0 0 0 b51 b52 0 0

0 0 0 0 0 0 0 0 0 0 b61 b62

3
77777775
; (6.10)

where
bij D .pi � b0i /

Tdij ; i D 1; : : : ; 6; j D 1; 2 (6.11)

The derivation of the relationship between Cartesian velocities and joint rates is
thereby completed.

6.2.3 Stiffness Model

Again, the stiffness of the structure has been obtained as

K D JTKJJ: (6.12)

One obtains
t D J0 P�; (6.13)

where
J0 D A�1B (6.14)

according to the principle of virtual work, one has


T P� D wTt; (6.15)

where 
 is a vector of the actuator torques applied at each actuated joint or joint
with spring. If we assume that no gravitational forces act on any of the intermediate
links and w is a vector composed of forces and moments (hereafter called wrench)
applied by the end-effector. Substituting (6.13) into (6.15) one can obtain


 D J0Tw: (6.16)

The joint forces and displacements of each joint can be related by Hooke’s law, i.e.,


 D KJ��: (6.17)

�� only includes the actuated joints and joint with springs, i.e.,

KJ�� D J0Tw (6.18)
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hence
�� D K�1J J0Tw: (6.19)

premultiplying by J0 on both sides, one obtains

J0�� D J0K�1J J0Tw: (6.20)

Substituting (6.13) into (6.20), one obtains

t D J0K�1J J0Tw; (6.21)

therefore, one obtains the compliance matrix of the mechanism � as follow

� D J0K�1J J0T (6.22)

and the system stiffness matrix is

K D ŒJ0K�1J J0T�
�1
; (6.23)

where

KJ D diagŒk11; k12; k21; k22; k31; k32; k41; k42; k51; k52; k61; k62� (6.24)

where ki1 is stiffness of the i th actuator and ki2 is the lumped stiffness of each leg.
In order to illustrate the effect of the flexible links on the parallel mechanism, an

example of 6-dof mechanism is presented. The parameters are given as

�p D 22:34
ı; �b D 42:883

ı;

Rp D 6 cm; Rb D 15 cm;
li1 D 46 cm; li2 D 36 cm; i D 1; : : : ; 6

ki1 D 1; 000Nm; i D 1; : : : ; 6;

where ki1 is the stiffness of each leg, li1, li2 are the link lengths for the 1st and 2nd
link of each leg, and the Cartesian coordinates are given by

x 2 Œ�3; 3� cm; y 2 Œ�3; 3� cm; z D 68 cm;
� D 0; � D 0;  D 0:

Figure 6.3 shows the variation of the stiffness for the above example. The com-
parison between the parallel mechanism with rigid link and the parallel mechanism
with flexible links is given in Table 6.1. The results are similar to those obtained in
previous cases.

From Fig. 6.4, one can find that Kx and Ky , K�x and K�y are symmetric with
respect to each other. In Fig. 6.4(a), the stiffness in X becomes higher when the
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Fig. 6.3 Evolution of the stiffness as a function of the link’s lumped stiffness in different directions

Table 6.1 Comparison of the mechanism stiffness between the mechanism with rigid
links and the mechanism with flexible links
Kactuator Klink Kx Ky Kz K�x K�y K�z

1,000 1,000 3,700.65 3,700.65 10,082.1 18.1478 18.1478 20.633
1,000 101Ka 6,967.15 6,967.15 18,981.4 34.1665 34.1665 38.8454
1,000 102Ka 7,641.67 7,641.67 20,819.1 37.4743 37.4743 42.6062
1,000 103Ka 7,716.37 7,716.37 21,022.6 37.8406 37.8406 43.0227
1,000 104Ka 7,723.92 7,723.92 21,043.2 37.8777 37.8777 43.0648
1,000 105Ka 7,724.68 7,724.68 21,045.2 37.8814 37.8814 43.069
1,000 106Ka 7,724.76 7,724.76 21,045.4 37.8818 37.8818 43.0694
1,000 107Ka 7,724.76 7,724.76 21,045.4 37.8818 37.8818 43.0695
1,000 Rigid 7,724.76 7,724.76 21,045.4 37.8818 37.8818 43.0695
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Fig. 6.4 Stiffness mappings of the spatial 6-dof parallel mechanism with revolute actuators
(6 legs) (all length units in m)
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Fig. 6.4 (continued)
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platform moves further from the Y -axis. This was to be expected because when
the platform moves aside along the X -axis, the projection of the legs on this axis
becomes larger, and the mechanism is stiffer in Y . And the same reasoning applies
to Fig. 6.4(b) for the stiffness in Y .

In Fig. 6.4d, e, the torsional stiffnesses in �x and �y are shown, the stiffness is
larger when the platform moves further from the Y -axis. However, in the center of
the workspace, the Kz is at its minimum, and the stiffness in the Z becomes higher
when the platform moves further from the center of the workspace. On the other
hand, from Fig. 6.4(f), the stiffness in �z is higher near the center of the workspace,
which is the best position for supporting torsional loads around Z-axis. All these
are in accordance with what would be intuitively expected.

6.3 General Kinematic Model of n Degrees of Freedom Parallel
Mechanisms with a Passive Constraining Leg and Revolute
Actuators

6.3.1 Geometric Modeling and Lumped Compliance Model

An example of parallel mechanism belonging to the family of mechanisms studied
in this chapter is shown in Figs. 6.5 and 6.6. It is a 5-dof parallel mechanism with
revolute actuators.

Fig. 6.5 CAD model of the spatial 5-dof parallel mechanism with revolute actuators (Figure by
Gabriel Coté)
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Fig. 6.6 Schematic representation of the spatial 5-dof parallel mechanism with revolute actuators

In order to obtain a simple kinetostatic model, link compliances are lumped at the
joints should be considered. In this framework, link bending stiffnesses are replaced
by equivalent torsional springs located at virtual joints.

6.3.2 Inverse Kinematics

6.3.2.1 Solution for the Case of Mechanisms with Rigid Links

In order to solve the inverse kinematic problem, one must first consider the passive
constraining leg as a serial n-dof mechanism whose n Cartesian coordinates are
known, which is a well-known problem. Once the solution to the inverse kinematics
of this n-dof serial mechanism is found, the complete pose (position and orienta-
tion) of the platform can be determined using the direct kinematic equations for this
serial mechanism. Figure 6.7 illustrates the configuration of the i th actuated joint
of the mechanism with revolute actuators. Point B 0i is defined as the center of the
Hooke joint connecting the two moving links of the i th actuated leg. Moreover, the
Cartesian coordinates of point B 0i expressed in the fixed coordinate frame are rep-
resented as .b0ix ; b

0
iy ; b

0
iz/ and the position vector of point B 0i in the fixed frame is

given by vector b0i . Since the axis of the fixed revolute joint of the i th actuated leg is
assumed to be parallel to the xy plane of the fixed coordinate frame, one can write
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Fig. 6.7 The i th actuated
revolute joint
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b0ix D bix � li1 sin.�bi C ˇi / cos �i1; i D 1; : : : ; n; n D 3, 4, or 5; (6.25)
b0iy D biy C li1 cos.�bi C ˇi / cos �i1; i D 1; : : : ; n; n D 3, 4, or 5; (6.26)
b0iz D biz C li1 sin �i1; i D 1; : : : ; n; n D 3, 4, or 5; (6.27)

where �bi is the angle between the positive direction of the x-axis of the base coor-
dinate frame and the line connecting points O and Bi and �i1 is the joint variable –
rotation angle around the fixed revolute joint – associated with the i th actuated leg,
ˇi is the angle between the positive direction of the line connecting points O and
Bi and the axis of the i th actuated joint. Moreover, li1 is the length of the first link
of the i th actuated leg. From the configuration of Fig. 6.7, the relationships between
the parameters can be written as

.b0ix�xi /
2C.b0iy�yi /

2C.b0iz�zi /2 D l2i2; i D 1; : : : ; n; n D 3, 4, or 5; (6.28)

where xi ; yi ; zi are the coordinates of point Pi and li2 is the length of the second
link of the i th actuated leg.

Substituting (6.25) – (6.27) into (6.28), one has

Ei cos �i1 C Fi sin �i1 D Gi ; i D 1; : : : ; n; n D 3, 4, or 5; (6.29)

where

Ei D .yi � biy/ cos.�bi C ˇi / � .xi � bix/ sin.�bi C ˇi /; (6.30)
Fi D zi � biz; (6.31)

Gi D
.xi � bix/

2 C .yi � biy/
2 C .zi � biz/2 C l2i1 � l

2
i2

2li1
(6.32)
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and angle �i1 can be obtained by

sin �i1 D
FiGi CKiEi

p
Hi

E2i C F
2
i

; i D 1; : : : ; n; n D 3, 4, or 5; (6.33)

cos �i1 D
EiGi �KiFi

p
Hi

E2i C F
2
i

; i D 1; : : : ; n; n D 3, 4, or 5; (6.34)

where Ki D ˙1 is the branch index of the mechanism associated with the configu-
ration of the i th leg and

Hi D E
2
i C F

2
i �G

2
i ; i D 1; : : : ; n; n D 3, 4, or 5: (6.35)

Finally, the solution of the inverse kinematic problem is completed by performing

�i1 D atan2Œsin �i1; cos �i1�; i D 1; : : : ; n; n D 3, 4, or 5: (6.36)

Meanwhile, referring to Fig. 6.7, the vector of leg length can be written as

b0i D bi C li1Qti1di ; i D 1; : : : ; n; n D 3, 4, or 5 (6.37)

with

Qti1 D

2
4

cos.�bi C ˇi / � sin.�bi C ˇi / 0

sin.�bi C ˇi / cos.�bi C ˇi / 0

0 0 1

3
5 ; i D 1; : : : ; n; n D 3, 4, or 5

(6.38)

and

di1 D

2
4

0

cos �i1
sin �i1

3
5 ; i D 1; : : : ; n; n D 3, 4, or 5 (6.39)

assuming that the distance between points Pi and B 0i is noted li2, then one has

l2i2 D .pi � bi /T.pi � bi /; i D 1; : : : ; n; n D 3, 4, or 5: (6.40)

6.3.2.2 Solutions for the Mechanisms with Flexible Links

In order to uniquely describe the architecture of a kinematic chain, i.e., the relative
location and orientation of its neighboring pair axes, the Denavit–Hartenberg nota-
tion is used to define the nominal geometry of each of the serial kinematic chains
of the parallel mechanism. A coordinate frame Fi is defined with the origin Oi and
axes Xi , Yi , Zi , this frame is attached to the .i � 1/th link. Figure 6.8 represents
one of the identical kinematic chains for the n-dof parallel mechanism discussed
above. Joint 2 is a virtual joint used to model the compliance of the driven link.
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Fig. 6.8 One of the identical
kinematic chains with flexible
links
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From Fig. 6.8, one has �i2 D 0, when there is no deflection. Angles �i3 and �i4
can be obtained by writing the coordinates of point Pi in Frame 3 as

xi3 D li2 cos �i4 cos �i3; i D 1; : : : ; n; n D 3, 4, or 5; (6.41)
yi3 D li2 cos �i4 sin �i3; i D 1; : : : ; n; n D 3, 4, or 5; (6.42)
zi3 D li2 sin �i4; i D 1; : : : ; n; n D 3, 4, or 5; (6.43)

and

Œp�3 D QT
i2QT

i1QT
i0Œpi � b0i �; i D 1; : : : ; n; n D 3, 4, or 5: (6.44)

then, combining (6.41) – (6.43) and (6.44), one can find �i3 and �i4 easily.
From Fig. 6.8, one can express the position of point B 0i as

b0i D bi CQi0ai1 CQi0Qi1ai2; i D 1; : : : ; n; n D 3, 4, or 5; (6.45)

where Qi0, ai1, ai2 and Qi1 can be expressed as

ai1 D

2
4
0

0

0

3
5 ; ai2 D

2
4
li1 cos �i2
li1 sin �i2

0

3
5 ; Qi1 D

2
4

cos �i1 0 sin �i1
sin �i1 0 � cos �i1
0 1 0

3
5 ; (6.46)

Qi0 D

2
4
� sin.�bi C ˇi / 0 cos.�bi C ˇi /

cos.�bi C ˇi / 0 sin.�bi C ˇi /

0 1 0

3
5 : (6.47)
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6.3.3 Jacobian Matrices

6.3.3.1 Rigid Mechanisms

The parallel mechanisms studied here comprise two main components, namely, the
passive constraining leg – which can be thought of as a serial mechanism – and the
actuated legs acting in parallel.

Considering the passive constraining leg, one can write

JnC1 P�nC1 D t; n D 3, 4, or 5; (6.48)

where JnC1 consists of ei and ri , t D
�
!T PpT

�T
is the twist of the platform,

! is the angular velocity of the platform, and P�nC1 D
�
P�nC1;1 � � � P�nC1;n

�T
; .n D

3, 4, or 5/ is the joint velocity vector associated with the passive constraining leg.
Matrix JnC1 is the Jacobian matrix of the passive constraining leg which is taken as
a serial n-dof mechanism.

6.3.3.2 Compliant Model

If the compliances of the links and joints are included, .6�n/ virtual joints will then
be added to the passive constraining leg in order to account for the compliance of
the links [62]. Hence, the Jacobian matrix of the passive constraining leg becomes

J0nC1 P�
0
nC1 D t; n D 3, 4, or 5; (6.49)

where

P� 0nC1 D
�
P�nC1;1 � � � P�nC1;6

�T
; n D 3, 4, or 5: (6.50)

6.3.3.3 Global Velocity Equations

1. Rigid Model:
Now, considering the parallel component of the mechanism, the parallel Jacobian
matrix can be obtained by differentiating (6.37), (6.39), and (6.40) with respect
to time. One has

Pb0i D li1Qti1
Pdi ; i D 1; : : : ; n; n D 3, 4, or 5; (6.51)

Pdi1 D

2
4

0

� sin �i1
cos �i1

3
5 P�i1; i D 1; : : : ; n; n D 3, 4, or 5; (6.52)

.pi � b0i /
T Pb0i � .pi � b0i /

T Ppi D 0; i D 1; : : : ; n; n D 3, 4, or 5: (6.53)
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One obtains

Ppi D PpC PQr0i ; i D 1; : : : ; n; n D 3, 4, or 5 (6.54)

assuming

ei D li1Qti1

2
4

0

� sin �i1
cos �i1

3
5 ; i D 1; : : : ; n; n D 3, 4, or 5 (6.55)

then
Pb0i D ei P�i1; i D 1; : : : ; n; n D 3, 4, or 5 (6.56)

therefore (6.53) can be rewritten as (for i D 1; : : : ; n; n D 3, 4, or 5)

.pi � b0i /
Tei P�i1 D .pi � b0i /

T PpC Œ.Qr0i / � .pi � b0i /�
T!: (6.57)

Hence, one has the velocity equation as

At D B P�; (6.58)

where vector P� and t are defined as

P� D
�
P�1 � � � P�n

�T
; n D 3, 4, or 5; (6.59)

t D
�
!1 !2 !3 Px Py Pz

�T
; (6.60)

vector ! is the angular velocity of the platform, and

A D

2
6664

aT
1

aT
2
:::

aT
n

3
7775 ; B D diagŒ.p1 � b01/

Te1; : : : ; .pn � b0n/
Ten�; (6.61)

where ai is a six-dimensional vector, which can be expressed as

ai D
�
.Qr0i / � .pi � b0i /

.pi � b0i /

�
; i D 1; : : : ; n; n D 3, 4, or 5: (6.62)

2. Compliant Model:
Differentiating (6.45) and (6.46) with respect to time, one has

Pb0i D Qi0
PQi1ai2 CQi0Qi1 Pai2; i D 1; : : : ; n; n D 3, 4, or 5; (6.63)
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Pai2 D

2
4
�li1 sin �i2
li1 cos �i2

0

3
5 P�i2; i D 1; : : : ; n; (6.64)

PQi1 D

2
4
� sin �i1 0 cos �i1
cos �i1 0 sin �i1
0 0 0

3
5 P�i1; i D 1; : : : ; n; n D 3, 4, or 5: (6.65)

For i D 1; : : : ; n; n D 3, 4, or 5, assuming

di1 D Qi0

2
4
� sin �i1 0 cos �i1
cos �i1 0 sin �i1
0 0 0

3
5 ai2; di2 D Qi0Qi1

2
4
�li1 sin �i2
li1 cos �i2

0

3
5 (6.66)

then one has

Pb0i D di1 P�i1 C di2 P�i2; i D 1; : : : ; n; n D 3, 4, or 5: (6.67)

Differentiating (6.40) with respect to time, one obtains (6.53), and following a
derivation similar to the one presented above for the mechanism with rigid links,
for i D 1; : : : ; n; n D 3, 4, or 5, one obtains

.pi � b0i /
T.di1 P�i1 C di2 P�i2/ D .pi � b0i /

T PpC Œ.Qr0i / � .pi � b0i /�
T!:

(6.68)

Hence one has the velocity equation as

At D B1 P�1 C B2 P�2; (6.69)

where vectors P�1 and P�2 are defined as

P�1 D
�
P�11 � � � P�n1

�T
; n D 3, 4, or 5; (6.70)

P�2 D
�
P�12 � � � P�n2

�T
; n D 3, 4, or 5; (6.71)

matrices A, B1 and B2 are given as

A D
�

a1 a2 a3 a4 a5 a6
�T

(6.72)

B1 D diagŒb11; : : : ; bn;2n�1�; n D 3, 4, or 5; (6.73)

B2 D diagŒb12; : : : ; bn;2n�; n D 3, 4, or 5; (6.74)
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where ai is a six-dimensional vector and bi;2i�1, bi;2i are the diagonal items of
B1 and B2, respectively. They can be expressed as

ai D
�
.Qr0i / � .pi � b0i /

.pi � b0i /

�
; i D 1; : : : ; n; n D 3, 4, or 5; (6.75)

bi;2i�1 D .pi � b0i /
Tdi;1; i D 1; : : : ; n; n D 3, 4, or 5; (6.76)

bi;2i D .pi � b0i /
Tdi;2; i D 1; : : : ; n; n D 3, 4, or 5: (6.77)

6.3.4 Kinetostatic Model for the Mechanism with Rigid Links

According to the principle of virtual work, one can finally obtain the Cartesian com-
pliance matrix with the same approach as in Chap. 5.

Cc D JnC1.AJnC1/�1BCBT.AJnC1/�TJT
nC1 (6.78)

with
�c D Ccw; (6.79)

where Cc is a symmetric positive semidefinite (6 � 6) matrix, as expected.

6.3.5 Kinetostatic Model for the Mechanism with Flexible Links

Again, based on the principle of virtual work, one can write

wTt D 
T
nC1
P� 0nC1 C 


T
1
P�1 C 


T
2
P�2; (6.80)

where 
1 and 
2 correspond to a partition of vector 
 , in components associated with
P�1 and P�2, respectively, i.e., the first and second joint of each leg. 
 is the vector of
actuator forces, P� is the vector of actuator velocities (actuated joints and joints with
virtual springs), and 
nC1 is the vector of joint torques in the passive constraining
leg. This vector is defined as follows, where KnC1 is the stiffness matrix of the
passive constraining leg,


nC1 D KnC1��
0
nC1; (6.81)


1 D Kj1��1; (6.82)

2 D Kj2��2; (6.83)

Kj1 D diagŒk11; : : : ; kn1�; (6.84)
Kj2 D diagŒk12; : : : ; kn2�: (6.85)
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Matrix KnC1 is a diagonal 6�6matrix in which the i th diagonal entry is zero if it is
associated with a real joint or it is equal to ki if it is associated with a virtual joint,
where ki is the stiffness of the virtual spring located at the i th joint. k11; : : : ; kn1 are
the compound stiffnesses of actuators and first links stiffnesses while k12; : : : ; kn2
are the first links stiffnesses. One can rewrite (6.69) as

P�1 D B�11 At � B�11 B2 P�2: (6.86)

Substituting (6.86) and (6.49) into (6.80), one can obtain

wTJ0nC1 P�
0
nC1 D 


T
nC1
P� 0nC1 C 


T
2
P�2 C 


T
1B�11 AJ0nC1 P�

0
nC1 � 


T
1B�11 B2 P�2: (6.87)

Since there are 11 degrees of freedom in the compliant mechanism, this equation
must be satisfied for any value of P� 0nC1 and P�2. Therefore, one can equate the coef-
ficients of the terms in P� 0nC1 and the terms in P�2, hence one can obtain

.J0nC1/
Tw D 
nC1 C .J0nC1/

TATB�T
1 
1; (6.88)


2 D BT
2B�T

1 
1: (6.89)

Substituting (6.81), (6.82), and (6.83) into (6.88) and (6.89), one obtains

.J0nC1/
Tw D KnC1��

0
nC1 C .J0nC1/

TATB�T
1 Kj1��1; (6.90)

��2 D K�1j2BT
2B�T

1 Kj1��1: (6.91)

Substituting (6.91) into (6.69), one obtains

At DW P�1; (6.92)

where
W D B1 C B2K�1j2BT

2B�T
1 Kj1: (6.93)

Substituting (6.92) into (6.90), one obtains

.J0nC1/
Tw D KnC1.J0nC1/

�1�cC .J0nC1/
TATB�T

1 Kj1W�1A�c; (6.94)

i.e.,
w D ..J0nC1/

�TKnC1.J0nC1/
�1 C ATB�T

1 Kj1W�1A/�c; (6.95)

which is in the form
w D K�c; (6.96)

where K is the stiffness matrix, which is equal to

K D Œ.J0nC1/
�TKnC1.J0nC1/

�1 C ATB�T
1 Kj1W�1A�: (6.97)
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Matrix K is a symmetric (6�6) positive semidefinite matrix, as expected. Matrix
K will be of full rank in nonsingular configurations. Indeed, the sum of the two
terms in (6.97) will span the complete space of constraint wrenches.

6.3.6 Examples

6.3.6.1 5-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.5, the compliance matrix for the mechanism
with rigid links can be written as

Cc D J6.AJ6/�1BCBT.AJ6/�TJT
6; (6.98)

where

C D diagŒc1; c2; c3; c4; c5� (6.99)

with c1; c2; c3; c4 and c5 the compliances of the actuators and J6 is the Jacobian
matrix of the passive constraining leg in this 5-dof case. Matrices A and B are the
Jacobian matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be writ-
ten as

K D .J06/
�TK6.J06/

�1 C ATB�T
1 Kj1W�1A; (6.100)

where

K6 D diagŒ0; k62; 0; 0; 0; 0�; (6.101)
Kj1 D diagŒk11; k21; k31; k41; k51�; (6.102)
Kj2 D diagŒk12; k22; k32; k42; k52�; (6.103)

where k62 is the stiffness of the virtual joint of the passive constraining leg, and J06
is the Jacobian matrix of the passive constraining leg in this 5-dof case. Matrices A
and B are the Jacobian matrices of the structure without the passive constraining leg.

The comparison between the parallel mechanism with rigid links (without virtual
joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.2.

6.3.6.2 4-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.9, the compliance matrix for the mechanism
with rigid links will be

Cc D J5.AJ5/�1BCBT.AJ5/�TJT
5 (6.104)
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Table 6.2 Comparison of the 5-dof mechanism compliance between the mechanism with flexi-
ble links and the mechanism with rigid links
Kactuator Klink ��x ��y ��z �x �y �z

1,000 1,000 0.255808 0.478997 0.766154 0.00479741 0.0116413 0.00169207
1,000 101Ka 0.137552 0.257339 0.412528 0.00257412 0.00625667 0.000910745
1,000 102Ka 0.125726 0.235173 0.377165 0.0023518 0.0057182 0.000832613
1,000 103Ka 0.124543 0.232956 0.373629 0.00232956 0.00566435 0.000824799
1,000 104Ka 0.124425 0.232734 0.373275 0.00232734 0.00565897 0.000824018
1,000 105Ka 0.124413 0.232712 0.37324 0.00232712 0.00565843 0.00082394
1,000 106Ka 0.124412 0.23271 0.373236 0.00232709 0.00565838 0.000823932
1,000 107Ka 0.124412 0.23271 0.373236 0.00232709 0.00565837 0.000823931
1,000 Rigid 0.124412 0.23271 0.373236 0.00232709 0.00565837 0.000823931

Fig. 6.9 CAD model of the spatial 4-dof parallel mechanism with revolute actuators (Figure by
Gabriel Coté)

where

C D diagŒc1; c2; c3; c4� (6.105)

with c1; c2; c3, and c4 are the compliances of the actuators and J5 is the Jacobian
matrix of the constraining leg in this 4-dof case. Matrices A and B are the Jacobian
matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be
written as

K D .J05/
�TK5.J05/

�1 C ATB�T
1 Kj1W�1A; (6.106)
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Table 6.3 Comparison of the 4-dof mechanism compliance between the mechanism with flexible
links and the mechanism with rigid links
Kactuator Klink ��x ��y ��z �x �y �z

1,000 1,000 3.46122 0.138363 1:5� 10�3 0.0146575 1:32691 � 10�3 0.000271569
1,000 101Ka 1.49876 0.0703633 1:5� 10�4 0.00717397 1:32691 � 10�4 0.000106446
1,000 102Ka 1.30251 0.0635633 1:5� 10�5 0.00642561 1:32691 � 10�5 0.0000899335
1,000 103Ka 1.28289 0.0628833 1:5� 10�6 0.00635078 1:32691 � 10�6 0.0000882822
1,000 104Ka 1.28093 0.0628153 1:5� 10�7 0.0063433 1:32691 � 10�7 0.0000881171
1,000 105Ka 1.28073 0.0628085 1:5� 10�8 0.00634255 1:32691 � 10�8 0.0000881006
1,000 106Ka 1.28071 0.0628079 1:5� 10�9 0.00634247 1:32691 � 10�9 0.000088099
1,000 107Ka 1.28071 0.0628078 1:5� 10�10 0.00634246 1:32691 � 10�10 0.0000880988
1,000 Rigid 1.28071 0.0628078 0.0 0.00634246 0.0 0.0000880988

where

K5 D diagŒ0; k52; 0; k54; 0; 0�; (6.107)

Kj1 D diagŒk11; k21; k31; k41�; (6.108)

Kj2 D diagŒk12; k22; k32; k42�; (6.109)

where k52 and k54 are the stiffnesses of the virtual joints of the passive constraining
leg, J05 is the Jacobian matrix of the passive constraining leg in this 4-dof case,
while A and B1, B2 are the Jacobian matrices of the structure without the passive
constraining leg.

The comparison between the parallel mechanism with rigid links (without virtual
joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.3. Again, the effect of link flexibility is clearly demonstrated.

6.3.6.3 3-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.10, the compliance matrix for the rigid mech-
anism can be written as

Cc D J4.AJ4/�1BCBT.AJ4/�TJT
4; (6.110)

where Cc D diagŒc1; c2; c3�, with c1; c2 and c3 are the compliances of the actuators
and J4 is the Jacobian matrix of the passive constraining leg in this 3-dof case. A and
B are the Jacobian matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links will be writ-
ten as

K D Œ.J04/
�TK4.J04/

�1 C ATB�T
1 Kj1W�1A� (6.111)
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Fig. 6.10 CAD model of the
spatial 3-dof parallel
mechanism with revolute
actuators (Figure by Gabriel
Coté)

Table 6.4 Comparison of the 3-dof mechanism compliance between the mechanism with flexible
links and the mechanism with rigid links
Kactuator Klink ��x ��y ��z �x �y �z

1,000 1,000 0.09937 0.09937 10�3 1:06152� 10�3 1:06152 � 10�3 0.000186579
1,000 101Ka 0.02904 0.02904 10�4 1:06152� 10�4 1:06152 � 10�4 0.0000975989
1,000 102Ka 0.02201 0.02201 10�5 1:06152� 10�5 1:06152 � 10�5 0.0000887009
1,000 103Ka 0.02131 0.02131 10�6 1:06152� 10�6 1:06152 � 10�6 0.0000878111
1,000 104Ka 0.02123 0.02123 10�7 1:06152� 10�7 1:06152 � 10�7 0.0000877221
1,000 105Ka 0.02123 0.02123 10�8 1:06152� 10�8 1:06152 � 10�8 0.0000877132
1,000 106Ka 0.02123 0.02123 10�9 1:06152� 10�9 1:06152 � 10�9 0.0000877123
1,000 107Ka 0.02123 0.02123 10�10 1:06152� 10�10 1:06152 � 10�10 0.0000877122
1,000 Rigid 0.02123 0.02123 0.0 0.0 0.0 0.0000877122

where W is defined in (6.93) and

K4 D diagŒk41; k42; k43; 0; 0; 0�; (6.112)
Kj1 D diagŒk11; k21; k31�; (6.113)
Kj2 D diagŒk12; k22; k32� (6.114)

and J04 is the Jacobian matrix of the passive constraining leg with virtual joints.
The comparison between the parallel mechanism with rigid links (without virtual

joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.4. The Cartesian compliance in each of the directions is given for a refer-
ence configuration of the mechanism, for progressively increasing values of the link
stiffnesses.

From Table 6.4, one can find that with the improvement of link stiffness, the
mechanism’s compliance with flexible links is very close to that of mechanism with
rigid links. This means that one can assume the flexible mechanism to be rigid only
if the link stiffness reaches a high value.
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6.4 Conclusions

In this chapter, mechanisms with revolute actuators (whose degrees of freedom are
3, 4, 5 and 6) have been considered. Solutions for the inverse kinematic problem
have been given. The Jacobian matrices obtained have been used to establish the
kinetostatic model of the mechanisms. The lumped models of the link and joint
compliances have been used for the study of the Cartesian compliance. It has been
shown that the kinetostatic analysis can be used to assess the stiffness properties of
this family of mechanisms. Finally, examples have been investigated and numerical
results have been obtained and the results clearly demonstrate the relevance of the
kinetostatic analysis in the context of design of such mechanisms.
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