Chapter 6
Spatial Parallel Robotic Machines
with Revolute Actuators

6.1 Preamble

In this chapter, first, a six degrees of freedom fully parallel robotic machine with
revolute actuators is presented and analyzed. Then, a serial of parallel manipulators
with 3-dof, 4-dof, and 5-dof whose degree of freedom is dependent on an additional
passive leg, this passive leg is connecting the center between the base and the mov-
ing platform. Together with the inverse kinematics and velocity equations for both
rigid-link and flexible-link mechanisms, a general kinetostatic model is established
for the analysis of the structural rigidity and accuracy of this family of mechanisms,
case studies for 3-dof, 4-dof, and 5-dof mechanisms are given in detail to illustrate
the results.

6.2 Six Degrees of Freedom Parallel Robotic Machine
with Revolute Actuators

6.2.1 Geometric Modeling

Figures 6.1 and 6.2 represent a 6-dof parallel mechanism with revolute actuators.
This mechanism consists of six actuated legs with identical topology, connecting
the fixed base to a moving platform. The kinematic chains consist — from base to
platform — of an actuated revolute joint, a moving link, a Hooke joint, a second
moving link, and a spherical joint attached to the platform. A fixed reference frame
O — xyzis connected to the base of the mechanism and a moving coordinate frame
P — x’y’7 is connected to the platform.
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Fig. 6.1 CAD model of the spatial 6-dof parallel mechanism with revolute actuators (Figure by
Thierry Laliberté and Gabriel Coté)

Fig. 6.2 Schematic representation of the spatial 6-dof parallel mechanism with revolute actuators
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6.2.2 Global Velocity Equation

6.2.2.1 Rigid Model

The global velocity equation for rigid model can be expressed as

where vectors 6 and t are defined as

and

At = B6,
6=[6-66]".
t = [wT’ pT]T

A= [ml m; ms3 Imy m;s mG]T
B = diag[(p; — b))Te;. (p2 — by) ez, (p3 — b}y)Tes,
(P4 — by es. (ps — b5)"es, (ps — bf) " ee]

and mj; is a six-dimensional vector expressed as

[ (@Qr'y) x (pi — b)) .
ml_|: (pl—b;) i|, l—l,...,6

and again, the Jacobian matrix J can be written as

J=BA.

6.2.2.2 Compliant Model
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For the case of compliant model, one can obtain the global velocity equation as

At = B6,

where vector 6 is defined as

6 = [ 611 612 021 022 031 032 641 a2 Os1 052 061 62 |

6.8)

(6.9)
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matrix A and its terms are as given in (6.4) and (6.6) and

by b O 0 0 O 0 O O O O 0

0 0 by bp 0O 0 0 O 0O O 0 O

0 0 0 0 by b 0 0 0 0 0 O
Bexin = , (6.10
6x12 0 0 0 0 0 0 by by O 0 0 0 (6.10)

0 0 0 0 0 0 0 O bs bs 0 0

(00 0 0 0 0 0 0 0 0 bg be |
where

bij=(pi—b)'dy;, i=1,....6 j=12 6.11)

The derivation of the relationship between Cartesian velocities and joint rates is
thereby completed.

6.2.3 Stiffness Model

Again, the stiffness of the structure has been obtained as

K = J'K,J. (6.12)
One obtains ]
t=17J90, (6.13)
where
J=A"B (6.14)

according to the principle of virtual work, one has
7o =w't, (6.15)

where t is a vector of the actuator torques applied at each actuated joint or joint
with spring. If we assume that no gravitational forces act on any of the intermediate
links and w is a vector composed of forces and moments (hereafter called wrench)
applied by the end-effector. Substituting (6.13) into (6.15) one can obtain

r=J"w. (6.16)
The joint forces and displacements of each joint can be related by Hooke’s law, i.e.,

7 = K;A6. (6.17)
A6 only includes the actuated joints and joint with springs, i.e.,

KA =J"w (6.18)
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hence
AO =K' T w. (6.19)

premultiplying by J' on both sides, one obtains
VA0 =K' w. (6.20)
Substituting (6.13) into (6.20), one obtains
t=JK'J " w, 6.21)
therefore, one obtains the compliance matrix of the mechanism « as follow
k=JK " (6.22)
and the system stiffness matrix is
K=K 3" (6.23)
where
K; = diaglk11,k12, k21, ka2, k31, k32, ka1, kaz, ks1,ks2, ke, ke2] (6.24)
where k; is stiffness of the i th actuator and k;, is the lumped stiffness of each leg.
In order to illustrate the effect of the flexible links on the parallel mechanism, an
example of 6-dof mechanism is presented. The parameters are given as

0, = 22.34°, 6, = 42.883°,

R, =6cm, Ry, = 15¢cm,
li1 =46cm,l;, =36cm, i=1,...,6
kii =1,000Nm, i=1,...,6,

where k; is the stiffness of each leg, /;1, [;5 are the link lengths for the 1st and 2nd
link of each leg, and the Cartesian coordinates are given by

x € [-3,3]cm, y € [-3,3]cm, z = 68 cm,
¢=0,0=0,¢v =0.

Figure 6.3 shows the variation of the stiffness for the above example. The com-
parison between the parallel mechanism with rigid link and the parallel mechanism
with flexible links is given in Table 6.1. The results are similar to those obtained in
previous cases.

From Fig. 6.4, one can find that K and K, Kg, and Ky, are symmetric with
respect to each other. In Fig. 6.4(a), the stiffness in X becomes higher when the
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Fig. 6.3 Evolution of the stiffness as a function of the link’s lumped stiffness in different directions

Table 6.1 Comparison of the mechanism stiffness between the mechanism with rigid

links and the mechanism with flexible links

Kactuator Klink Kx K ¥y KZ K9x K 6y KGZ
1,000 1,000 3,700.65 3,700.65 10,082.1 18.1478  18.1478  20.633
1,000 10'K, 6967.15 6,967.15 18981.4 34.1665 34.1665 38.8454
1,000 10°K, 7,641.67 7,641.67 20819.1 37.4743 37.4743  42.6062
1,000 10°K, 7,716.37 7,716.37 21,022.6 37.8406 37.8406  43.0227
1,000 10*K, 7,723.92 7,723.92 21,0432 37.8777 37.8777 43.0648
1,000 10°K, 7,724.68 7,724.68 21,0452 37.8814 37.8814 43.069
1,000 10°K, 7,724.76  7,724.76 21,0454 37.8818 37.8818  43.0694
1,000 10K, 7,72476 7,724.76 21,0454 37.8818 37.8818 43.0695
1,000 Rigid 7,724.76  7,724.76 21,0454 37.8818 37.8818  43.0695
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Fig. 6.4 Stiffness mappings of the spatial 6-dof parallel mechanism with revolute actuators

(6 legs) (all length units in

m)



100

6 Spatial Parallel Robotic Machines with Revolute Actuators

d Stiffness in 0y
0.03} | l | < E
© L o o
g B oo
@ L
I
0.02} s & A
% K
(3
s ;/
0.01 | 2 -
~oop L LLo .
> o L
®
=
ol
-0.01} ’e. 27
"~
-0.02} j
®
L % 2 g 72
00315 % ‘;\ 2% “‘\ .‘,\///\q) ]
\ g Y . . ) . .
003 -002 -0.01 0 0.01 0.02 0.03
X
Stiffness in 6, (Nm)
e Stiffness in 6y
Evi . —— . . .
003l ¢ 2 ]
\ 726
72, \
0.02
I~ 12, IEN
0.01 | -
=
)
> Oof % %
o
-0.01} / j
-0.02 o -
5 ~
o
/ o
-0.03F N i
-0.03  -002 -0.01 0 0.01 0.02 0.03
X
Stiffness in 6, (Nm)
f Stiffness in 0,
0.03 o 73-8'—\>9.>5
A %,
0.02 & 85,
1‘39—’—\
0.01 >
. 0
-0.01
i wﬁ
-0.02 .
N T~ :
—0.03 [, , 73.8 / g
26, 3.75— _73.75 e PRy
003  -0.02 -0.01 0.01 0.02 0.03

Fig. 6.4 (continued)

0
X

Stiffness in 6, (Nm)



6.3 General Kinematic Model of n Degrees of Freedom Parallel Mechanisms 101

platform moves further from the Y -axis. This was to be expected because when
the platform moves aside along the X -axis, the projection of the legs on this axis
becomes larger, and the mechanism is stiffer in Y. And the same reasoning applies
to Fig. 6.4(b) for the stiffness in Y.

In Fig. 6.4d, e, the torsional stiffnesses in 6 and 6, are shown, the stiffness is
larger when the platform moves further from the Y -axis. However, in the center of
the workspace, the K is at its minimum, and the stiffness in the Z becomes higher
when the platform moves further from the center of the workspace. On the other
hand, from Fig. 6.4(f), the stiffness in 6, is higher near the center of the workspace,
which is the best position for supporting torsional loads around Z-axis. All these
are in accordance with what would be intuitively expected.

6.3 General Kinematic Model of n Degrees of Freedom Parallel
Mechanisms with a Passive Constraining Leg and Revolute
Actuators

6.3.1 Geometric Modeling and Lumped Compliance Model

An example of parallel mechanism belonging to the family of mechanisms studied
in this chapter is shown in Figs. 6.5 and 6.6. It is a 5-dof parallel mechanism with
revolute actuators.

Fig. 6.5 CAD model of the spatial 5-dof parallel mechanism with revolute actuators (Figure by
Gabriel Coté)
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X’

Fig. 6.6 Schematic representation of the spatial 5-dof parallel mechanism with revolute actuators

In order to obtain a simple kinetostatic model, link compliances are lumped at the
joints should be considered. In this framework, link bending stiffnesses are replaced
by equivalent torsional springs located at virtual joints.

6.3.2 Inverse Kinematics

6.3.2.1 Solution for the Case of Mechanisms with Rigid Links

In order to solve the inverse kinematic problem, one must first consider the passive
constraining leg as a serial n-dof mechanism whose n Cartesian coordinates are
known, which is a well-known problem. Once the solution to the inverse kinematics
of this n-dof serial mechanism is found, the complete pose (position and orienta-
tion) of the platform can be determined using the direct kinematic equations for this
serial mechanism. Figure 6.7 illustrates the configuration of the ith actuated joint
of the mechanism with revolute actuators. Point B/ is defined as the center of the
Hooke joint connecting the two moving links of the ith actuated leg. Moreover, the
Cartesian coordinates of point B/ expressed in the fixed coordinate frame are rep-
resented as (bj,. b}, b; ) and the position vector of point B; in the fixed frame is
given by vector b’. Since the axis of the fixed revolute joint of the ith actuated leg is
assumed to be parallel to the xy plane of the fixed coordinate frame, one can write
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Fig. 6.7 The ith actuated z
revolute joint

B!

X

bl = bix —liysin(Op; + Bi)cosbiy, i=1,....n, n=3,40r5 (6.25)
bl{y = biy + li1 cos(Op; + Bi)cosbi, i=1,...,n, n=3,4,0r5, (6.26)
bj. =bi:+liysinby, i=1,....n, n=34o0r5, (6.27)

where 0p; is the angle between the positive direction of the x-axis of the base coor-
dinate frame and the line connecting points O and B; and 6;; is the joint variable —
rotation angle around the fixed revolute joint — associated with the ith actuated leg,
Bi is the angle between the positive direction of the line connecting points O and
B; and the axis of the ith actuated joint. Moreover, [;; is the length of the first link
of the i th actuated leg. From the configuration of Fig. 6.7, the relationships between
the parameters can be written as

(b —xi) 2+ (b, —yi)* + (b, —z)> =1}, i=1...n n=340r5 (6.28)
where x;, y;,z; are the coordinates of point P; and /;, is the length of the second

link of the 7th actuated leg.
Substituting (6.25) — (6.27) into (6.28), one has

E;cosbj1 + Fisin0j1 =G;, i=1,....,n,n=3,4,0r5, (6.29)

where
E; = (yi — biy) cos(Opi + Bi) — (xi — bix) sin(Op; + i), (6.30)
Fi = zi — bz, (6.31)

(xi —bix)® + (i —biy)® + (zi —bi)* + 13 — 12,

G: =
' 211

(6.32)
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and angle 6;; can be obtained by

FiG; + K;E;V/H;

sin 6;; = o i=1,...,n, n=3,4,0r5, (6.33)
E? + F?
E;G; — K;F;VH;
cosbyy = —————L i=1,....n,n=34,0r5 (634
Ef + F

where K; = =1 is the branch index of the mechanism associated with the configu-
ration of the ith leg and

Hi=E?+F*~G? i=1,...,n,n=34o0r5. (6.35)
Finally, the solution of the inverse kinematic problem is completed by performing
0;1 = atan2[sin 6;1,cos0;1], i =1,...,n, n =3,4, 0r5. (6.36)
Meanwhile, referring to Fig. 6.7, the vector of leg length can be written as
b, =b; +11Qnd;, i=1,....,n, n=3,4,0r5 (6.37)
with

cos(By; + Bi) —sin(By; + Bi) O
Qi1 = Sin(@b,- —}-,3,) COS(Gbl' +ﬂl) of, i=1,....,n,n=3,4,0r5

0 0 1
(6.38)
and
0
dii=|cosO |, i=1,....,n,n=3,4,0r5 (6.39)
siné),-l

assuming that the distance between points P; and Bi/ is noted [;,, then one has

=@ —b)"(pi=b;). i=1..n n=34o0r5 (640

6.3.2.2 Solutions for the Mechanisms with Flexible Links

In order to uniquely describe the architecture of a kinematic chain, i.e., the relative
location and orientation of its neighboring pair axes, the Denavit-Hartenberg nota-
tion is used to define the nominal geometry of each of the serial kinematic chains
of the parallel mechanism. A coordinate frame F; is defined with the origin O; and
axes Xj, Yi, Z;, this frame is attached to the (i — 1)th link. Figure 6.8 represents
one of the identical kinematic chains for the n-dof parallel mechanism discussed
above. Joint 2 is a virtual joint used to model the compliance of the driven link.
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Fig. 6.8 One of the identical P
kinematic chains with flexible
links
0 Y
Op1

From Fig. 6.8, one has 6;, = 0, when there is no deflection. Angles 6;3 and 6;4
can be obtained by writing the coordinates of point P; in Frame 3 as

xi3 = ljpcosBiscosbi3, i=1,....,n,n=3,4,o0r5, (6.41)
viz = lipcosbigsinbz, i=1,...,n, n=3,4,0r5, (6.42)
ziz =1lipsinb4, i=1,...,n, n =34, or5, (6.43)
and
pls = QLQLQ%[p; —bi]. i=1.....n, n=234o0r5. (6.44)

then, combining (6.41) — (6.43) and (6.44), one can find 6;3 and 6;4 easily.
From Fig. 6.8, one can express the position of point B; as

b; =b; + Qioain + QioQi1a;2, i=1,....,n, n=3,4,0r5, (6.45)

where Q;g, a;1, a;2 and Q;1 can be expressed as

0 li1 cos ;5 cosf;; O sin6jg
a1 =1|0]|,a,=/|[li;sinbi |, Qi1 = |sinf;; 0 —cosb; |, (6.46)
0 0 0 1 0
—sin(y; + Bi) 0 cos(Bvi + Bi)
Qio = | cos(By; + Bi) 0 sin(6y; + Bi) |- (6.47)

0 1 0
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6.3.3 Jacobian Matrices

6.3.3.1 Rigid Mechanisms

The parallel mechanisms studied here comprise two main components, namely, the
passive constraining leg — which can be thought of as a serial mechanism — and the
actuated legs acting in parallel.

Considering the passive constraining leg, one can write

Jps16ps1 =t n=23,4,0r5, (6.48)

. 1T . .
where J, 41 consists of e; and r;, t = [a)T pT] is the twist of the platform,

w is the angular velocity of the platform, and én+1 = [én-‘,-l,l 9',,+1,n ]T ,(n =
3,4, or 5) is the joint velocity vector associated with the passive constraining leg.
Matrix J, 41 is the Jacobian matrix of the passive constraining leg which is taken as
a serial n-dof mechanism.

6.3.3.2 Compliant Model

If the compliances of the links and joints are included, (6 —n) virtual joints will then
be added to the passive constraining leg in order to account for the compliance of
the links [62]. Hence, the Jacobian matrix of the passive constraining leg becomes

o6 =t n=34o0r5, (6.49)
where

. ) . T
Opi1 = [Ons1,1 - Ons16] » n=340r5. (6.50)

6.3.3.3 Global Velocity Equations

1. Rigid Model:
Now, considering the parallel component of the mechanism, the parallel Jacobian
matrix can be obtained by differentiating (6.37), (6.39), and (6.40) with respect
to time. One has

b, =11 Quid;, i=1....n, n=340r5, (6.51)
O .
diy=| —sinb;; |6, i=1,...,n, n=23,4,0r5, (6.52)
cos 6;1

(i =)™, —(p; —b))Tp; =0, i=1,....n,n=340r5 (653
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One obtains

pi=p+OQr;, i=1,....n,n=34o0r5

assuming
0
e =101Qsi1| —sinbyy |, i=1,....n,n=3,4,0r5
cos 0;1
then
b; —efy, i=1,....n,n=23,40r5
therefore (6.53) can be rewritten as (fori = 1,...,n, n =3,4,0r5)

(pi = b)Tei6 = (p; — b)) + [(Qr') x (pi — b)) .
Hence, one has the velocity equation as
At = B9,

where vector § and t are defined as

. . PR—

6= [91 9,,] , n=23,4,0r5,

.. .qT
t=[w1 w2w3xyz] ,

vector w is the angular velocity of the platform, and

aj
a§ : '\T /\T
A= e B = diag[(p; —b}) e1,....(Pn —b;) 4],

T
a,

where a; is a six-dimensional vector, which can be expressed as

2 N
ai:[(Qr,)X(p, bl)], i=1,...,n, n=3,4,0r5.

(pi — b))

2. Compliant Model:
Differentiating (6.45) and (6.46) with respect to time, one has

b, = Qi0Qi1ai2 + Qi0Qiiain. i=1,....n, n=34,0r5,

107

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)
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—l,‘l sin 91‘2 .
fl,'z = lil COS@iz 09,‘2, I = 1,...,}’1, (664)
0

—sin6;1 0 cos 6;1 '
Q1= cosby Osinby |61, i=1,....,n, n=23,40r5. (6.65)

0 0 O
Fori =1,...,n, n =3,4,or5, assuming
—sin 6;1 0 cos 6;1 —l;1 sin B4
di1 = Qo | costy 0sinb;y | a2, diz = Q;0Qi1 | li1cosbiz (6.66)
0 0 0 0
then one has
b, = di1fi1 +dizbi2, i=1,....n,n=314o0r5. (6.67)

Differentiating (6.40) with respect to time, one obtains (6.53), and following a
derivation similar to the one presented above for the mechanism with rigid links,
fori =1,...,n, n =3,4,or5, one obtains

(i — b)) (161 + di26i2) = (p; —b)Pp + [(Qr') x (p; — b)) w.

(6.68)

Hence one has the velocity equation as
At = B16; + B,6,, (6.69)

where vectors 91 and 92 are defined as
912[911---9n1]T, n=23,4,or5, (6.70)
by =[b1p-6u2]" . n=34o0r5, 6.71)

matrices A, By and B, are given as

A= [a1 a, a3 a4 a5 ag ]T (6.72)
B, = diag[b11,....buon—1], n=3,4,0r5, (6.73)

B, = diag[biz,....by2n], n=3,4,0r5, (6.74)
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where a; is a six-dimensional vector and b; 2,1, b; »; are the diagonal items of
B; and B,, respectively. They can be expressed as

' b
a,-:[(Q"')X(p' bl)], i=1,....n.n=340r5 (675

(pi — b))
bisi-i=(pi—b)'di1, i=1,....n, n=34o0r5, (6.76)
bizi = (pi —b)din., i=1,....,n, n =3,4,0r5. (6.77)

6.3.4 Kinetostatic Model for the Mechanism with Rigid Links

According to the principle of virtual work, one can finally obtain the Cartesian com-
pliance matrix with the same approach as in Chap. 5.

Ce = Jut1(AJut1) ' BCB (AT, 1) T4, (6.78)

with
Ac = C.w, (6.79)

where C. is a symmetric positive semidefinite (6 x 6) matrix, as expected.

6.3.5 Kinetostatic Model for the Mechanism with Flexible Links

Again, based on the principle of virtual work, one can write
wit=1cl, 0, + 1161 + 130, (6.80)

where 7, and 7, correspond to a partition of vector , in components associated with
6 and 0,, respectively, i.e., the first and second joint of each leg. 7 is the vector of
actuator forces, 8 is the vector of actuator velocities (actuated joints and joints with
virtual springs), and 7,41 is the vector of joint torques in the passive constraining
leg. This vector is defined as follows, where K, is the stiffness matrix of the
passive constraining leg,

Tny1 = Knp 140, 4, (6.81)
o =K Ady, (6.82)
& = Kj500,, (6.83)

K1 = diaglku1. ... kni], (6.84)

Kj2 = diag[klz, ey kn2] (685)



110 6 Spatial Parallel Robotic Machines with Revolute Actuators

Matrix K+ is a diagonal 6 x 6 matrix in which the i th diagonal entry is zero if it is
associated with a real joint or it is equal to k; if it is associated with a virtual joint,
where k; is the stiffness of the virtual spring located at the i th joint. k11, ..., kp are
the compound stiffnesses of actuators and first links stiffnesses while k12,..., kx>
are the first links stiffnesses. One can rewrite (6.69) as

6, = B{'At— B[ 'B,6,. (6.86)
Substituting (6.86) and (6.49) into (6.80), one can obtain
W1 6p = T + 102 + T BTIAY, 16,0 — 1B 'Ba6s. (6.87)

Since there are 11 degrees of freedom in the compliant mechanism, this equation
must be satisfied for any value of 6, , and 0,. Therefore, one can equate the coef-

ficients of the terms in 9,’1 11 and the terms in 6>, hence one can obtain

Tpe)™W = Tug1 + 4 )TA™BT T, (6.88)
7 = BIB| 1. (6.89)

Substituting (6.81), (6.82), and (6.83) into (6.88) and (6.89), one obtains

Ji1)"™W = Kpp1 A0 np1 + T, ) "ATBTTK ;1 AGy, (6.90)
A6, = K3, BIBT K1 Af;. (6.91)
Substituting (6.91) into (6.69), one obtains

At = W6, (6.92)

where
W =B; +B,K;,B;B; K. (6.93)

Substituting (6.92) into (6.90), one obtains
Jps )W =Kup1(J, 1) " Ac+ I, )TATB]TK ;1 WA A, (6.94)

i.e.,
W= (J11)  Knt1 ()7 + ATBTTK i WA) A, (6.95)

which is in the form
w = KAec, (6.96)

where K is the stiffness matrix, which is equal to

K=[J,;) Kuy1Jy )" +A™BTK; ;WAL (6.97)
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Matrix Kis a symmetric (6 x 6) positive semidefinite matrix, as expected. Matrix
K will be of full rank in nonsingular configurations. Indeed, the sum of the two
terms in (6.97) will span the complete space of constraint wrenches.

6.3.6 Examples

6.3.6.1 5-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.5, the compliance matrix for the mechanism
with rigid links can be written as

C. = Jo(AJo) 'BCBT(AJ6)TJT, (6.98)
where
C= diag[cl ,C2,C3,C4, Cs] (699)

with ¢y, ¢z, c3,c4 and c5 the compliances of the actuators and Jg is the Jacobian
matrix of the passive constraining leg in this 5-dof case. Matrices A and B are the
Jacobian matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be writ-
ten as

K= J,) "Ke(Js) ' +ATB;TK;; WA, (6.100)
where
K¢ = diag[0, kg2, 0,0,0,0], (6.101)
Kjl = diag[ku,kzl,k31,k41,k51], (6102)
sz = diag[klz,kzz,k32,k42,k52], (6103)

where ke is the stiffness of the virtual joint of the passive constraining leg, and J
is the Jacobian matrix of the passive constraining leg in this 5-dof case. Matrices A
and B are the Jacobian matrices of the structure without the passive constraining leg.

The comparison between the parallel mechanism with rigid links (without virtual
joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.2.

6.3.6.2 4-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.9, the compliance matrix for the mechanism
with rigid links will be

C. = Js(AJs) 'BCB"(AJs)~"Ji (6.104)



112 6 Spatial Parallel Robotic Machines with Revolute Actuators

Table 6.2 Comparison of the 5-dof mechanism compliance between the mechanism with flexi-
ble links and the mechanism with rigid links

Kactator ~ Kiink Ko, Ko, Ko, Kx Ky Kz
1,000 1,000 0.255808 0.478997 0.766154 0.00479741 0.0116413  0.00169207

1,000  10'K, 0.137552 0257339 0.412528 0.00257412 0.00625667 0.000910745
1,000  10°K, 0.125726 0235173 0.377165 0.0023518  0.0057182  0.000832613
1,000 103K, 0.124543 0.232956 0.373629 0.00232956 0.00566435 0.000824799
1,000  10*K, 0.124425 0232734 0.373275 0.00232734 0.00565897 0.000824018
1,000  10°K, 0.124413 0232712 0.37324  0.00232712 0.00565843 0.00082394

1,000 10°K, 0.124412 0.23271  0.373236 0.00232709 0.00565838 0.000823932
1,000 107K, 0.124412 023271  0.373236 0.00232709 0.00565837 0.000823931
1,000  Rigid 0.124412 0.23271  0.373236 0.00232709 0.00565837 0.000823931

Fig. 6.9 CAD model of the spatial 4-dof parallel mechanism with revolute actuators (Figure by
Gabriel Coté)

where
C = diag[cy, 2, 3, C4] (6.105)

with ¢1, ¢2, ¢3, and ¢4 are the compliances of the actuators and J5 is the Jacobian
matrix of the constraining leg in this 4-dof case. Matrices A and B are the Jacobian
matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links can be
written as

K= J5"Ks(J5)' + ATB]TK;; WA, (6.106)
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Table 6.3 Comparison of the 4-dof mechanism compliance between the mechanism with flexible
links and the mechanism with rigid links

Kiactwaor Kiink Ko, Ko, Ko, Kx Ky K;
1,000 1,000 3.46122 0.138363 1.5x 1073 0.0146575 1.32691 x 10—3 0.000271569
1,000 IOIKa 1.49876 0.0703633 1.5 x 10™* 0.00717397 1.32691 x 10~* 0.000106446
1,000 10? K, 1.30251 0.0635633 1.5 x 10~° 0.00642561 1.32691 x 10> 0.0000899335
1,000 103K, 1.28289 0.0628833 1.5 x 10™° 0.00635078 1.32691 x 10~° 0.0000882822
1,000 104Ka 1.28093 0.0628153 1.5 x 10~7 0.0063433 1.32691 x 10~7 0.0000881171
1,000 10°K, 1.28073 0.0628085 1.5 x 10™% 0.00634255 1.32691 x 10—% 0.0000881006
1,000 IOGKa 1.28071 0.0628079 1.5 x 102 0.00634247 1.32691 x 10—° 0.000088099
1,000 107Ka 1.28071 0.0628078 1.5 x 10710 0.00634246 1.32691 x 10~1% 0.0000880988
1,000 Rigid 1.28071 0.0628078 0.0 0.00634246 0.0 0.0000880988
where
Ks = diag[0, ks, 0, ks4, 0, 0], (6.107)
K1 = diag[ki1, ka1, k31, ka1], (6.108)
K, = diaglki2, k22, k32, k42]. (6.109)

where ks, and k54 are the stiffnesses of the virtual joints of the passive constraining
leg, J5 is the Jacobian matrix of the passive constraining leg in this 4-dof case,
while A and By, B, are the Jacobian matrices of the structure without the passive
constraining leg.

The comparison between the parallel mechanism with rigid links (without virtual
joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.3. Again, the effect of link flexibility is clearly demonstrated.

6.3.6.3 3-dof Parallel Mechanism

This mechanism is illustrated is Fig. 6.10, the compliance matrix for the rigid mech-
anism can be written as
Cc = J4(AJs)"'BCB'(AJy) "I}, (6.110)

where C. = diag[cy, ¢2, ¢3], with ¢1, ¢, and c3 are the compliances of the actuators
and J4 is the Jacobian matrix of the passive constraining leg in this 3-dof case. A and
B are the Jacobian matrices of the structure without the passive constraining leg.

Similarly, the stiffness matrix for the mechanism with flexible links will be writ-
ten as

K =[J) "Ka(Jp ' +ATBTK ;1 W A] 6.111)
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Fig. 6.10 CAD model of the
spatial 3-dof parallel
mechanism with revolute
actuators (Figure by Gabriel
Coté)

Table 6.4 Comparison of the 3-dof mechanism compliance between the mechanism with flexible
links and the mechanism with rigid links

Kacwaor  Kiink Ko

X Ko, Ko, Ky Ky K,

1,000 1,000 0.09937 0.09937 103 1.06152x 103 1.06152 x 1073 0.000186579

1,000 10'K, 0.02904 0.02904 10~* 1.06152 x 10~* 1.06152 x 10~* 0.0000975989
1,000 102K, 0.02201 0.02201 107> 1.06152 x 10™°> 1.06152 x 10~°  0.0000887009
1,000 10°K, 0.02131 0.02131 10~° 1.06152x 10~% 1.06152x 10~° 0.0000878111
1,000 10K, 0.02123 0.02123 10~7 1.06152 x 10~7 1.06152 x 10~7 0.0000877221
1,000 10°K, 0.02123 0.02123 10~% 1.06152x 10~% 1.06152 x 10~8  0.0000877132
1,000 10°K, 0.02123 0.02123 10~° 1.06152 x 10~? 1.06152 x 10~° 0.0000877123
1,000 10K, 0.02123 0.02123 1079 1.06152 x 10~ 1.06152 x 10~ 0.0000877122

1,000  Rigid 0.02123 0.02123 0.0 0.0 0.0 0.0000877122

where W is defined in (6.93) and

K4 = diag[k41,k42,k43, 0,0, 0], (6112)
K = diag[ki1, ka1, ka1l (6.113)
K> = diaglky2. k22, k3s] (6.114)

and J is the Jacobian matrix of the passive constraining leg with virtual joints.

The comparison between the parallel mechanism with rigid links (without virtual
joints) and the parallel mechanism with flexible links (with virtual joints) is given
in Table 6.4. The Cartesian compliance in each of the directions is given for a refer-
ence configuration of the mechanism, for progressively increasing values of the link
stiffnesses.

From Table 6.4, one can find that with the improvement of link stiffness, the
mechanism’s compliance with flexible links is very close to that of mechanism with
rigid links. This means that one can assume the flexible mechanism to be rigid only
if the link stiffness reaches a high value.



6.4 Conclusions 115

6.4 Conclusions

In this chapter, mechanisms with revolute actuators (whose degrees of freedom are
3,4, 5 and 6) have been considered. Solutions for the inverse kinematic problem
have been given. The Jacobian matrices obtained have been used to establish the
kinetostatic model of the mechanisms. The lumped models of the link and joint
compliances have been used for the study of the Cartesian compliance. It has been
shown that the kinetostatic analysis can be used to assess the stiffness properties of
this family of mechanisms. Finally, examples have been investigated and numerical
results have been obtained and the results clearly demonstrate the relevance of the
kinetostatic analysis in the context of design of such mechanisms.
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