
Chapter 4
Planar Parallel Robotic Machine Design

4.1 Preamble

Parallel kinematic machines with their unique characteristics of high stiffness (their
actuators bear no moment loads but act in a simple tension or compression) and
high speeds and feeds (high stiffness allows higher machining speeds and feeds
while providing the desired precision, surface finish, and tool life), combined with
versatile contouring capabilities have made parallel mechanisms the best candidates
for the machine tool industry to advance machining performance. It is noted that the
stiffness is the most important factor in machine tool design since it affects the pre-
cision of machining. Therefore, to build and study a general stiffness model is a very
important task for machine tool design. In this chapter, we will build a general stiff-
ness model through the approach of kinematic and static equations. The objective
of this model is to provide an understanding of how the stiffness of the mechanism
changes as a function of its position and as a function of the characteristics of its
components. This can be accomplished using stiffness mapping.

There are two methods to build mechanism stiffness models [170]. Among them,
the method which relies on the calculation of the parallel mechanism’s Jacobian
matrix is adopted in this book.

It will be shown that the stiffness of a parallel mechanism is dependent on the
joint’s stiffness, the leg’s structure and material, the platform and base stiffness, the
geometry of the structure, the topology of the structure, and the end-effector position
and orientation.

Since stiffness is the force corresponding to coordinate i required to produce a
unit displacement of coordinate j, the stiffness of a parallel mechanism at a given
point of its workspace can be characterized by its stiffness matrix. This matrix re-
lates the forces and torques applied at the gripper link in Cartesian space to the
corresponding linear and angular Cartesian displacements. It can be obtained using
kinematic and static equations. The parallel mechanisms considered here are such
that the velocity relationship can be written as in (4.1),

P� D JPx; (4.1)
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52 4 Planar Parallel Robotic Machine Design

where P� is the vector of joint rates and Px is the vector of Cartesian rates – a six-
dimensional twist vector containing the velocity of a point on the platform and its
angular velocity. Matrix J is usually termed Jacobian matrix, and it is the mapping
from the Cartesian velocity vector to the joint velocity vector. From (4.1), one can
conclude that

ı� D Jıx; (4.2)

where ı� and ıx represent joint and Cartesian infinitesimal displacements, respec-
tively. Then, one can get the stiffness of this mechanism using the principle of
kinematic/static duality. The forces and moments applied at the gripper under static
conditions are related to the forces or moments required at the actuators to main-
tain the equilibrium by the transpose of the Jacobian matrix J. This is also true for
parallel mechanism [? ], and one can then write

F D JT f; (4.3)

where f is the vector of actuator forces or torques, and F is the generalized vector
of Cartesian forces and torques at the gripper link, which is also called the wrench
acting at this link [14,165]. The actuator forces and displacements can be related by
Hooke’s law, one has

f D KJ ı� (4.4)

with KJ D diagŒk1; : : : ; kn�, where each of the actuators in the parallel mechanism
is modeled as an elastic component, KJ is the joint stiffness matrix of the parallel
mechanism, ki is a scalar representing the joint stiffness of each actuator, which is
modeled as linear spring, and the i th component of vector f, noted fi is the force or
torque acting at the i th actuator. Substituting (4.2) into (4.4), one obtains

f D KJJıx: (4.5)

Then, substituting (4.5) into (4.3), yields

F D JTKJJıx: (4.6)

Hence, KC, the stiffness matrix of the mechanism in the Cartesian space is then
given by the following expression

KC D JTKJ J: (4.7)

Particularly, in the case for which all the actuators have the same stiffnesses, i.e.,
k1 D k2 D � � � D kn, then (4.7) will be reduced to

K D kJTJ; (4.8)

which is the equation given in [57].
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The stiffness matrix is a positive semidefinite symmetric matrix whose eigenval-
ues represent the coefficients of stiffness in the principal directions, which are given
by the eigenvectors. These directions are in fact represented by twist vectors, i.e.,
generalized velocity vectors. Moreover, the square root of the ratio of the smallest
eigenvalue to the largest one gives the reciprocal of the condition number � of the
Jacobian matrix [83], which is a measure of the dexterity of the mechanism [56]. It
can be written as

1

�
D

s
�min

�max
; (4.9)

where �min and �max are the smallest and largest eigenvalues of the stiffness matrix,
respectively.

From (4.7), it is clear that if the Jacobian matrix of a mechanism J is singular,
then obviously, the stiffness matrix of the mechanism, JTKJ J is also singular, thus
the mechanism loses stiffness, there is no precision also for the mechanism. Hence,
one can study the precision of machine tools through their stiffness model, and then
find the most suitable designs.

The flexibilities included in the model can be classified in two types [36] 1) the
flexibilities at the joints and 2) the flexibilities of the links. Hence, the complete
lumped model should include the following three submodels:

� The Denavit–Hartenberg model which defines the nominal geometry of each of
the kinematic chains of the mechanism, the kinematics described by the Denavit–
Hartenberg matrix are straightforward and systematic for mechanisms with rigid
links. They are also effective for mechanisms with flexible links

� A lumped joint model which is defined in Table 4.1
� An equivalent beam model at each link which accounts for the deformations of

the link caused by the external forces and torques

In order to simplify the model of the stiffness, link stiffnesses will be lumped into
local compliant elements (spring) located at the joints. This is justified by the fact
that no dynamics is included in the model (it is purely kinematic) and that limited
numerical accuracy is acceptable. Indeed, the objective of this study is to obtain
engineering values for the stiffness and to determine which areas of the workspace
lead to better stiffness properties.

Physically, the bending deformation in joints is presented in different ways. In
the planar case, the unactuated revolute joint does not induce any bending whereas
in the spatial case, a bending is presented in a direction perpendicular to the joint.
Hence, it is necessary to establish a lumped joint model for each possible case. In
the lumped joint model, deformations caused by link flexibility can be considered
as virtual joints fixed at this point; the details are given in [62] and Table 4.1.

A linear beam is shown in Fig. 4.1, where F is the external force, E the elas-
tic modulus, L the length of the beam, and I is the section moment of inertia of
the beam. In a lumped model, the flexible beam will be replaced by a rigid beam
mounted on a pivot plus a torsional spring located at the joint, as illustrated in
Fig. 4.1b. The objective is to determine the equivalent torsional spring stiffness that
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Table 4.1 Lumped joint models for planar system

Joint type
If actuated,
the equivalent model

If unactuated,
the equivalent model

Revolute 2 Torsional springs

τr

τj

No bending

Prismatic Actuated spring Uncertainty

will produce the same tip deflection as that of the beam under the load F . As it can
be seen on the figure, the lumped model will lead to a different orientation of the tip
of the beam. However, assuming that the deformation is small, angle � will also be
small, thus the difference in orientation between the original beam and the equiva-
lent link can be neglected. Moreover, since in the mechanisms considered here, the
legs are attached to the platform with spherical joints, there is not any moment pre-
sented at the spherical joint, hence, the end link orientation of the beam is irrelevant.
Let ı be the deflection of the beam. Based on the Castiliano’s theorem [143], one
can build an equivalent rigid beam model based solely on the deflection of the free
end. With a force F applied at the free end of the beam, the resulting deformation
can be written as (see Fig. 4.1a)

ı D
FL3

3EI
(4.10)
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Fig. 4.1 Link deformation induced by wrench

and assuming small deformations, the corresponding rotational deformation of an
equivalent rigid beam with a torsional spring would be

� '
ı

L
: (4.11)

Let the deflection in both cases (Fig. 4.1a, 4.1b) be the same. Substituting (4.10)
into (4.11), yields

� D
FL2

3EI
; (4.12)

where ı is the flexible beam’s deflection at the free end and � is the rigid beam’s
rotation around the joint.

Since the flexible beam model can be lumped into a torsional spring with equiva-
lent stiffness kb at the shoulder joint (Fig. 4.1b), based on the principle of work and
energy, one has

1

2
F ı D

1

2
kb.�/

2; (4.13)

where kb is the lumped stiffness of the flexible beam. Substituting (4.11) to (4.13),
one obtains

FL� D kb�
2 (4.14)

or
kb D

FL
�
: (4.15)
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Fig. 4.2 Link deformation induced by torque

Substituting (4.12) into (4.15), one obtains the equivalent stiffness for the flexible
beam as

kb D
3EI
L
: (4.16)

Here the lumped stiffness expression for a single flexible beam undergoing twist-
ing is addressed. A linear beam is shown in Fig. 4.2, where m(Nm) is the external
torque,G.N=m2/ the shear elastic modulus, l(m) the length of the beam, and I .m4/

is the section moment of inertia of the beam. Similarly to the preceding section, the
flexible beam is replaced by a rigid beam mounted at the end plus a torsional spring
located at the end. The objective is to determine the equivalent torsional spring
stiffness that will produce the same tip deflection as that of the beam under the
load m. Assuming that the deformation is small, angle � will also be small, then,
with a twist m applied at the free end of the beam, the resulting deformation can be
written as

�� D
ml
GI

for circular cylinder; (4.17)

�� D
ml

Gˇh3b
for rectangular parallelepiped; (4.18)
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where b is the height of the flexible beam, h is the width of the flexible beam and ˇ
is a coefficient related to b and h. Since one has

m D kt�� (4.19)

hence one can obtain the lumped stiffness kt of the beam as

kt D
GI
l

for circular cylinder; (4.20)

kt D
Gˇh3b

l
for rectangular parallelepiped: (4.21)

4.2 Planar Two Degrees of Freedom Parallel Robotic Machine

As shown in Fig. 4.3, we take the case of revolute type into account. A planar two-
degree-of-freedom mechanism can be used to position a point on the plane and the
Cartesian coordinates associated with this mechanism are the position coordinates
of one point of the platform, noted .x; y/. Vector � represents the actuated joint
coordinates of the planar parallel mechanism and is defined as � D Œ�1; �2; : : : ; �n�T,
where n is the number of degrees of freedom of the mechanism studied, and the only
actuated joints are those directly connected to the fixed link [59, 61, 133].

As illustrated in Fig. 4.3, a 2-dof planar parallel mechanism is constructed by four
movable links and five revolute joints (noted as O1 to O5). The two links – whose
length are l1 and l3 – are the input links. They are assumed to be flexible beams, and

Y

X

l3

l4

O2

O4

l1

l2

θ θ2

O1(x1, y1) O3(x3, y3)

O5 (x , y)

Fig. 4.3 A planar 2-dof parallel mechanism with revolute actuators
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points O1 and O3 are the only actuated joints in this planar 2-dof parallel mecha-
nism. The lengths of the other two links are denoted as l2 and l4, respectively. Point
O5.x; y/ is the point to be positioned by the mechanism. The origin of the fixed
Cartesian coordinate system is located on joint O1. .x1; y1/ and .x3; y3/ are the
coordinates of points O1 and O3, respectively, and one has x1 D y1 D y3 D 0.

At points O2 and O4, one has

x2 D l1 cos �1 C x1; (4.22)
y2 D l1 sin �1 C y1; (4.23)
x4 D l3 cos �2 C x3; (4.24)
y4 D l3 sin �2 C y3: (4.25)

From this figure, one obtains

l22 D .x � x2/
2 C .y � y2/

2; (4.26)
l24 D .x � x4/

2 C .y � y4/
2: (4.27)

Substituting (4.22) – (4.25) into (4.26) – (4.27), one gets

l22 D .x � l1 cos �1/2 C .y � l1 sin �1/2; (4.28)
l24 D .x � .l3 cos �2 C x3//2 C .y � l3 sin �2/2: (4.29)

The kinematic relationship can be obtained as follows

F.�;p/ D
�

.x � l1 cos �1/2 C .y � l1 sin �1/2 � l22
.x � .l3 cos �2 C x3//2 C .y � l3 sin �2/2 � l24

�
D 0: (4.30)

Let
P� D

�
P�1
P�2

�
; Pp D

�
Px

Py

�
: (4.31)

One can obtain the Jacobian matrices of the parallel mechanism as

A D
@F
@p
; B D

@F
@�
: (4.32)

In particular, the Jacobian matrices of this planar 2-dof parallel mechanism are as
follows:

A D
�

.x � l1 cos �1/ .y � l1 sin �1/
.x � l3 cos �2 � x3/ .y � l3 sin �2/

�
; (4.33)

B D
�
.x sin �1 � y cos �1/l1 0

0 Œ.x � x3/ sin �2 � y cos �2�l3

�
: (4.34)
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The velocity equations can be written as A PpC B P� D 0 and

J D �B�1A D
�
a1=d1 b1=d1
a2=d2 b2=d2

�
(4.35)

with

a1 D x � l1 cos �1; (4.36)
a2 D x � l3 cos �2 � x3; (4.37)
b1 D y � l1 sin �1; (4.38)
b2 D y � l3 sin �2; (4.39)
d1 D �.x sin �1 � y cos �1/l1; (4.40)
d2 D �Œ.x � x3/ sin �2 � y cos �2�l3: (4.41)

In order to compute the Jacobian matrix of (4.35), one has to know the joint an-
gles of Fig. 4.3 first. Therefore, it is necessary to calculate the inverse kinematics of
this planar 2-dof parallel mechanism to determine the joint angles for any given end-
effector position and orientation. Unlike many serial mechanisms, the calculation of
the inverse kinematics of a parallel mechanism is generally straightforward.

From (4.28), one obtains

2l1x cos �1 C 2l1y sin �1 D x2 C y2 C L21 � L
2
2; (4.42)

therefore, one can obtain �1 as follow

sin �1 D
BC CK1A

p
A2 C B2 � C 2

A2 C B2
; (4.43)

cos �1 D
AC �K1B

p
A2 C B2 � C 2

A2 C B2
; (4.44)

where

A D 2l1x; (4.45)
B D 2l1y; (4.46)
C D x2 C y2 C L21 � L

2
2; (4.47)

K1 D ˙1 (4.48)

and K1 is the branch index, which can be used to distinguish the four branches of
the inverse kinematic problem. In the same way, from (4.29), one obtains

2l3.x � x3/ cos �2 C 2l3y sin �2 D .x � x3/2 C y2 C l23 � l
2
4 : (4.49)
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Hence one obtains the joint angle �2 as

sin �2 D
BC CK2A

p
A2 C B2 � C 2

A2 C B2
; (4.50)

cos �2 D
AC �K2B

p
A2 C B2 � C 2

A2 C B2
; (4.51)

where

A D 2l3.x � x3/; (4.52)

B D 2l3y; (4.53)

C D .x � x3/
2 C y2 C l23 � l

2
4 ; (4.54)

K2 D ˙1: (4.55)

Again, K2 is the branch index.
Assume the actuator stiffnesses of O1 and O3 are k1 and k01, respectively, and

the lumped stiffness for beam O1O2 and O3O4 are kb and k0b. Then the compound
stiffness at points O1 and O3 are written as

k D
k1kb

k1 C kb
; (4.56)

k0 D
k01k
0
b

k01 C k
0
b
; (4.57)

where k, k0 are the total stiffnesses at the active joint, k1, k01 are the actuator stiff-
nesses and kb, k0b are the lumped stiffnesses as indicated in (4.16). One can find the
kinetostatic model for this planar 2-dof parallel mechanism by using (4.7), i.e.,

KC D JTKJJ; (4.58)

where KJ is the joint stiffness matrix of the parallel mechanism and J is the Jacobian
matrix of this planar 2-dof parallel mechanism.

The analysis described above is now used to obtain the stiffness maps for this
planar 2-dof parallel mechanism. The maps are drawn on a section of the workspace
of the variation of the end-effector’s position.

A program has been written with the software Matlab. Given the values of l1 D
l4 D 0:5m, l2 D 0:6m, l3 D 0:8m, and O1O3 D 0:7m. The contour graph can be
shown in Fig. 4.4.
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Fig. 4.4 Stiffness contour graph for a planar 2-dof parallel mechanism with revolute actuators

4.3 Planar Three Degrees of Freedom Parallel Robotic Machine

A symmetric mechanism identical to the one studied in [56] and [58] is now an-
alyzed with the procedure described above. The characteristics of this mechanism
are as follows: Points Ai , i D 1; 2; 3 and points Bi , i D 1; 2; 3 (Fig. 4.5) are, re-
spectively, located on the vertices of an equilateral triangle and that the minimum
and maximum lengths of each of the legs are the same. The mechanism is therefore
completely symmetric. The dimensions and the stiffness of each leg are given in
Table 4.2.
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Fig. 4.5 A planar 3-dof
parallel mechanism with
prismatic actuators

O’(x, y)B1

B3

B2

x’

y’

y

x
O

φ

A1 (xa1, ya1)
A2 (xa2, ya2)

A3 (xa3, ya3)

Table 4.2 Geometric properties of symmetric planar parallel
mechanism (all length units in mm and stiffness units in N/m)
i xai yai xbi ybi ki

1 �1/2 �
p
3/6 �1/12 �

p
3/36 1,000

2 1/2 �
p
3/6 1/12 �

p
3/36 1,500

3 0
p
3/3 0

p
3/18 700

Since one has

xi D x � L cos�i � xai ; i D 1; 2; 3; (4.59)
yi D y � L sin�i � yai ; i D 1; 2; 3; (4.60)

pi D

q
x2i C y

2
i ; i D 1; 2; 3; (4.61)

where L is the length of the gripper and pi is the length of the leg. The Jacobian
matrix is given by [56] as follows

J D

2
4
a1=p1 b1=p1 c1=p1
a2=p2 b2=p2 c2=p2
a3=p3 b3=p3 c3=p3

3
5 (4.62)

with

ai D x � xai � L cos�i ; (4.63)
bi D y � yai � L sin�i ; (4.64)
ci D .x � xai /L sin�i � .y � yai /L cos�i : (4.65)

Hence, according to (4.7), one can find the stiffness model for this planar three-
degrees-of-freedom parallel mechanism.
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Fig. 4.6 Stiffness mesh graphs for a planar 3-dof parallel mechanism with prismatic actuators
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Fig. 4.7 Stiffness contour graphs for a planar 3-dof parallel mechanism with prismatic actuators
(� D 0)
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Fig. 4.8 Stiffness mesh graphs for a planar 3-dof parallel mechanism with prismatic actuators
(� D 	=2)
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Fig. 4.9 Stiffness contour graphs for a planar 3-dof parallel mechanism with prismatic actuators
(� D 	=2)
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Fig. 4.10 Validation model of the planar 3-dof parallel mechanism in Pro/Motion

Table 4.3 Geometric
properties of planar parallel
mechanism (all units in mm)

i xai yai xbi ybi ki

1 0 0 84.547 48.464 400
2 150 49 84.547 81.536 400
3 0 130 55.91 65 400

The above model is now used to obtain the stiffness maps for this planar 3-dof
parallel mechanism. Given the values shown in Table 4.2, one can obtain the stiff-
ness contour and mesh graphs in x, y, and � shown in Figs. 4.6 – 4.9.

One can find from the stiffness map that the symmetric mechanism is in a singu-
lar configuration when positioned at the center of the workspace. Also, from such
stiffness maps, one can determine which regions of the workspace will satisfy some
stiffness criteria. From the mesh graphs, one can view the stiffness distribution more
intuitively.

A model (Fig. 4.10) for this planar 3-dof parallel mechanism has been built using
the software Pro/Engineer to simulate the physical structure on Pro/Motion.

With the geometric properties given in Table 4.3 and the center of the trian-
gle located at .75; 65/, after applying the forces and torque Fx D 100 N; Fy D
100 N; 
 D 60 Nm at the center of the triangle, the three legs deform. One ob-
tains the deformation of the center using Pro/Motion as �x D 0:09697 mm, �y D
0:14959 mm, �� D �0:0020. Meanwhile, the results obtained from the equations
developed in the previous section are �x D 0:0962 mm, �y D 0:1548 mm,
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�� D �0:0020. This shows that the results from Pro/Motion and the kinetostatic
model are very close to each other.

4.4 Conclusions

A general stiffness model for fully- parallel mechanisms with different actuator
stiffnesses has been presented in this chapter. It has been shown that this general
stiffness model can be used to evaluate the stiffness properties of parallel mecha-
nisms. Examples have been given to illustrate how this model is used. Meanwhile,
the lumped models for joints and links are proposed. They can be applied to establish
kinetostatic models for both 2-dof and 3-dof mechanisms which are also mentioned
in this chapter. Finally, the reliability of the stiffness model has been demonstrated
using the computer program Pro/Engineer.
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