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12.1 Introduction

Wine- or cider-making is highly associated with biotechnology owing to the traditional 
nature of must fermentation.. Nowadays, there have been considerable developments 
in wine- or cider-making techniques affecting all phases of wine or cider production, 
but more importantly, the fermentation process. It is well-known that the transforma-
tion of grape must by microbial activity results in the production of wine, and the 
fermentation of apples (or sometimes pears) in the production of cider. In this process, 
a variety of compounds affecting the organoleptic profile of wine or cider are synthe-
sized. It is also common sense that in wine- or cider-making, the main objective is to 
achieve an adequate quality of the product. The technological progress and the 
improved quality of the wines or ciders have been associated with the control of tech-
nical parameters. Herein, cell immobilization offers numerous advantages, such as 
enhanced fermentation productivity, ability for cell recycling, application of continu-
ous configurations, enhanced cell stability and viability, and improvement of quality 
(Margaritis and Merchant 1984; Stewart and Russel 1986; Kourkoutas et al. 2004a).

The objective of the present chapter is to analyze and assess data on the impact of 
immobilization technologies of viable microbial cells on the alcoholic and malolactic 
fermentation (MLF) of wine and cider. The immobilized biocatalysts are evaluated 
for their scale-up ability and their potential future impact in industrial application is 
highlighted and assessed. Handicaps associated with maintenance of cell viability and 
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fermentation efficiency during preservation and storage, constraining the industrial 
use of immobilized cell systems are discussed.

12.2 Cell Immobilization Methods

12.2.1 Prerequisites for Cell Immobilization

Various materials are available for cell immobilization. However, not all carriers are 
considered suitable for food production. The main prerequisites that should be 
fulfilled by cell immobilization supports include:

1. A large surface of the immobilization support, with functional groups for cells to 
adhere to,

2. Easy-handling and regeneration of the immobilization support,
3. Cost-effectiveness of the support and immobilization process,
4. Acceptance of immobilization support by the consumers and avoidance of nega-

tive effects on the final food product (e.g., off-flavor formations),
5. Retention of immobilized cell viability,
6. Avoidance of negative effects of cell immobilization on biological and meta-

bolic activity of immobilized cells, and
7. Food-grade purity of the immobilization support.

12.2.2 Effects of Cell Immobilization

Cell immobilization might cause desirable or undesirable alterations in the metabo-
lism of cells (Melzoch et al. 1994; Norton and D’Amore 1994; Walsh and Malone 
1995). It might affect cell growth and physiology (Melzoch et al. 1994; Jamai et al. 
2001), metabolic activity (Navarro and Durand 1977; Buzas et al. 1989; Hilge-
Rotmann and Rehm 1990; Jamai et al. 2001), stress tolerance (Nolan et al. 1994; 
Norton and D’Amore 1994; Lodato et al. 1999), cells survival and viability 
(Argiriou et al. 1996; Kourkoutas et al. 2003a) and flavor formation (Bakoyianis et 
al. 1993; Bardi et al. 1997). It has been difficult to predict the type and magnitude 
of these possible metabolic changes due to immobilization as a number of param-
eters are involved, such as mass transfer limitations by diffusion (Webb et al. 1986), 
changes in the cell morphology and oxygen uptake (Shirai et al. 1988), altered 
membrane permeability (Brodelius and Nilsson 1983), media components defi-
ciency (Chen et al. 1990), surface pressure and osmotic pressure changes 
(Vijayalakshmi et al. 1979), contacts between cells in limited space (Shuler 1985), 
etc. For example, immobilization of Saccharomyces cerevisiae resulted in increased 
ethanol production and glucose consumption, higher ploidy and RNA content 
(Doran and Bailey 1986), lower internal pH value (Galazzo et al. 1987) and altered 
glucose catabolic pathways compared to free cells in suspensions, and in increased 
enzyme activity and therefore productivity (Galazzo and Bailey 1990).
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12.2.3 Advantages of Immobilized Cell Systems

The advantageous effects of immobilization applications could be summarized in 
the following:

1. Prolonged activity and stability of the immobilized cells, since the immobilization 
support may act as a protective agent against physicochemical changes (pH, 
temperature, heavy metals, solvents, etc.),

2. Higher cell densities than usually achieved, resulting in higher productivities 
and increased substrate uptake and yield,

3. Increased tolerance to high substrate concentration and final product inhibition,
4. Reduced risk of microbial contamination attributed to high cell densities and 

enhanced fermentation activity,
5. Ability for low-temperature fermentation and/or maturation for certain food 

products,
6. Ability for regeneration and re-use,
7. Versatility in the selection of bioreactors,
8. Ability for continuous operation bioreactor systems, and
9. Reduction of maturation times in certain circumstances.

12.3 Alcoholic Fermentation by Immobilized Cells

Cell immobilization in alcoholic fermentation is a rapidly expanding research area 
because of its attractive technical and economic advantages compared to the con-
ventional free cell system (Sakurai et al. 2000; Sree et al. 2000; Shindo et al. 2001; 
Lu et al. 2002). However, for industrial wine and cider production it is important to 
identify a suitable support for cell immobilization that meets the prerequisites 
named above and results in overall improvement of the sensory characteristics of 
the final product. Another criterion that is sought after in an immobilized system is 
the suitability for use in low temperature fermentations, since low temperature 
fermentation leads to an improved quality product.

12.3.1 Alcoholic Fermentation of Wine Using Immobilized Cells

Immobilization supports have been grouped into four categories (Kourkoutas et al. 
2004a):

1. Inorganic supports,
2. Organic supports,
3. Membrane systems,
4. Natural supports and cell aggregates.
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12.3.1.1 Inorganic Supports

Kissiris (a cheap, porous volcanic mineral found in Greece, similar to granite, 
containing 70% SiO

2
, 13% Al

2
O

3
, and other inorganic oxides) was successfully 

used as immobilization support of S. cerevisiae for wine production in both batch 
(Kana et al. 1989) and continuous bioreactor systems (Bakoyianis et al. 1992; 
Bakoyianis et al. 1993). Kissiris-supported biocatalyst showed increased ethanol 
productivity and biocatalytic stability for about 2.5 years during successive pres-
ervations at 0°C (Argiriou et al. 1996). Similar studies involved g-alumina in the 
form of porous cylindrical pellets as immobilization support for wine making 
(Kana et al. 1989; Loukatos et al. 2000).

Although inorganic supports offered many advantages such as abundance, 
enhanced fermentation productivity and cost effectiveness, they were considered 
inappropriate for wine-making because they are characterized as unsuitable materi-
als for human nutrition. Nevertheless, they seem to have a potential in production 
of alcohol (Bakoyianis and Koutinas 1996; Koutinas et al. 1997) or distillates 
(Loukatos et al. 2003), as mineral residues do not distill.

12.3.1.2 Organic Supports

Organic immobilization supports mainly include those composed of polysaccharides or 
other polymers. The most popular polysaccharides proposed in wine fermentation are 
alginates (Suzzi et al. 1996; Silva et al. 2002). Calcium alginate was used for immobi-
lizing Candida stellata alone or in combination with S. cerevisiae to enhance glycerol 
formation in wine (Ciani and Ferraro 1996). The same immobilized biocatalyst along 
with an inoculum of S. cerevisiae was used at pilot scale and under non-sterile condi-
tions, in order to control wild microflora (Ferraro et al. 2000). Most efforts have focused 
on application of alginates for the secondary fermentation of sparkling wines (Fumi 
et al. 1988; Busova et al. 1994; Colagrande et al. 1994). In fact, application of immobi-
lized cell technology in the production of sparkling wines is the only case to have been 
commercially available, imitating the traditional Champagne method.

However, gel-like supports discourage scale-up and industrial applications, 
since they are mechanically unstable in high-capacity bioreactors. In addition, it is 
difficult to attain consumer acceptance, in case they are not of food-grade purity 
(e.g., polyvinyl alcohol).

12.3.1.3 Membrane Systems

References concerning the use of membrane systems in wine and cider production 
are scarce in literature. In a previous study, a single-vessel membrane bioreactor 
was found unsuitable for continuous dry wine production, as high levels of unfer-
mented sugars were reported (Takaya et al. 2002). However, a double-vessel con-
tinuous membrane configuration resulted in sugar content  < 4 g/L, which was 
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considered satisfactory for dry wine-making. Additionally, wine productivity in the 
latter was 28 times higher compared to batch systems.

12.3.1.4 Natural Supports and Cell Aggregates

Food-grade natural immobilization supports, such as delignified cellulosic materials 
(Bardi and Koutinas 1994), gluten pellets (Bardi et al. 1996), and brewer’s spent 
grains (Mallouchos et al. 2007), were successfully used for ambient and low-
temperature wine-making, resulting in improved profiles of volatile by-products 
(Bardi et al. 1997; Mallouchos et al. 2002; Mallouchos et al. 2003). The commercial 
potential of immobilized yeast on gluten pellets and delignified cellulosic material 
was evaluated by the production of freeze-dried biocatalysts without using a pro-
tecting medium during freezing and freeze-drying (Iconomopoulou et al. 2002; 
Iconomopoulou et al. 2003). The freeze-dried immobilized biocatalysts retained 
high viability and showed long operational stability during low-temperature 
wine-making. The possibility of storage of freeze-dried immobilized biocatalysts 
for long time intervals without any loss of cell viability and fermentation activity 
is of crucial importance for industrial application.

The use of fruit pieces in developing an immobilized biocatalyst that would 
meet all the required prerequisites was an obvious alternative. Fruit pieces are of 
food-grade purity, cheap, abundant and could be easily accepted by consumers. 
Apple (Kourkoutas et al. 2001), quince (Kourkoutas et al. 2003b) and pear pieces 
(Mallios et al. 2004) were proposed as immobilization supports due to ease in the 
immobilization technique and to the distinctive aromatic potential and improved 
sensory characteristics of the produced wines. The immobilized yeasts resulted in 
rapid fermentations, as wine production was effective in 12 h at 30°C and in 4 
days at 10°C (Kourkoutas et al. 2003b). Apple-supported biocatalyst was able to 
reactivate and ferment after successively increased periods of storage (up to 120 
days) at 30°C (Kourkoutas et al. 2003a). The ability of storage at ambient tempera-
ture for such long time periods is considered very attractive for the industrialization 
of the process.

Apple pieces were also used as support for immobilizing Kluyveromyces marxi-
anus IMB3 for high-temperature wine-making at 45°C (Kourkoutas et al. 2004b). 
The fermented grape must contain 3–4% alcohol and special types of semi-sweet 
wines were produced by the addition of potable alcohol.

Additionally, fruit-based biocatalysts were found suitable for continuous wine-
making (Kourkoutas et al. 2002a, b; Mallios et al. 2004), as the immobilized bio-
catalyst showed high operational stability up to 95 days (Kourkoutas et al. 2002a).

Taking into account that grape skins are the principal undesired solid wastes of 
the wine-making process and raisins are directly related to the main raw material 
of wine, their use as immobilization supports was an interesting approach 
(Mallouchos et al. 2002; Tsakiris et al. 2004a, b). They were both found suitable for 
low-temperature fermentation and a positive influence on wine aroma was evident. 
The main advantage, however, is that the grape skins and the extracted residues of 
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raisins from wineries and potable producing plants, which are difficult to dispose 
of, could be alternatively beneficially exploited.

Natural immobilization of single microorganisms, such as flocculating yeasts 
and cell aggregates forming pellets or solid microspheres, offer practical potential-
ity as the metabolic state of the immobilized cells may remain unaltered, since 
artificial immobilization techniques may induce cell damage. This is the simplest 
and the least expensive immobilization method. However, interactions among cells 
are not easily controlled and cell aggregates are very sensitive to conditions usually 
dominating in fermentors. In Saccharomyces cereivisiae, a number of proteins 
called flocculins (Caro et al. 1997) are responsible for cell–cell adhesion and for-
mation of aggregates.

A novel technique of co-immobilization a filamentous fungus and a flor yeast 
avoiding chemical crosslinkers or external supports was recently reported (Peinado 
et al. 2005; Peinado et al. 2006). The technique was based on reproducing condi-
tions adequate for a forced symbiosis of Penicillium and Saccharomyces cereivi-
siae. As a result, formation of hollow biocapsules with walls composed of mycelium 
and trapped yeast cells was obtained after killing of Penicillium by the ethanol 
produced. The mycelium walls enclosed an inner space partially occupied by yeast 
cells. The yeast biocapsules were successfully used in must fermentation producing 
wine with increased acetaldehyde and isobutanol, but reduced ethyl acetate and 
acetoin contents compared to free cells fermentation.

12.4 Cell Immobilization and Malolactic Fermentation

MLF is a difficult and time-consuming process that does not always proceed favor-
ably under the natural conditions of wine. Traditional MLF is used worldwide to 
produce high-quality wines, although delay or failure is not an unusual outcome. 
During MLF l-malic acid is converted to l-lactic acid and carbon dioxide by 
malolactic bacteria, principally of the genera Oenococcus, Pediococcus and 
Lactobacillus. Lactic acid is “less acidic” than malic acid, as it is a mono-acid 
compared to the two-acid malic acid. Consequently, total acidity is decreased during 
MLF (deacidification).

MLF usually results in microbial stability (Lonvaud-Funel 1995) and in 
improvement of the organoleptic properties. Besides deacidification, it induces a 
dramatic change in the organoleptic quality of wines, since the characteristic taste 
of malic acid disappears. MLF is usually encouraged by wine-producers in cold 
climates where ripe grapes contain a high malic acid content resulting in too acidic 
wines, in instances where it is required enhanced microbial stability (i.e., prior 
bottling), and in situations where the flavorful by-products (such as diacetyl) are 
essential in order to provide the recognizable sensory notes desired in certain wine 
types. MLF is crucial for wines originating from Burgundy (especially for 
Chardonnay variety), as well as for heavy red wines, as such originating from 
Bordeaux. However, MLF is not always advantageous, as in wines with very low 
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total acidity; it may cause a further reduction affecting both flavor and biological 
stability (Lonvaud-Funel 1995; Versari et al. 1999). Hence, it should be discour-
aged and may even be considered destructive in grapes from warm regions having 
small amounts of malic acid, in wines of poor microbial stability, and in wines 
where by-products of MLF may provide an unpleasant character.

During recent years several attempts have been proposed to induce biological 
deacidification of wines by involving the use of immobilized cells on various matri-
ces. The use of immobilized lactic acid bacteria (LAB) for controlling MLF is 
desirable, as it offers the following advantages:

1. As spontaneous MLF is time consuming and growth of malolactic bacteria 
microflora depends on physicochemical properties and composition of wine 
(e.g., fatty acids, ethanol and SO

2
 may inhibit growth of malolactic bacteria), cell 

immobilization techniques aim to increase tolerance of malolactic bacteria.
2. The use of immobilized malolactic bacteria results in higher cell densities and 

hence, acceleration of the process.
3. The use of selected cultures results in development of characteristic organoleptic 

properties (Maicas et al. 1999).
4. The immobilized cultures allow reuse of cells and favor application of continu-

ous process (Lonvaud-Funel 1995; Kosseva et al. 1998; Maicas et al. 2001).

The first efforts involved immobilization of Lactobacillus casei cells in polyacryl-
amide gels (Diviès and Siess 1976; Totsuka and Hara 1981; Rossi and Clementi 
1984). Nevertheless, the proposed technology was practically restricted to laboratory 
use, since industrial application of the immobilized biocatalysts was never attempted 
due to safety regulations. The use of alginates (Spettoli et al. 1982; Naouri et al. 
1991) hardly offered an alternative, because they proved mechanically unstable in 
long term industrial applications (e.g., when exposed to high pressures).
k-Carrageenan, a naturally occurring polysaccharide isolated from sea wood, 

was used as support for immobilizing several LAB species, including Lactobacillus 
and O. oeni (formerly Leuconostoc oenos) cells (McCord and Ryu 1985; Crapisi 
et al. 1987a, b). Lactobacillus sp. cells were immobilized in 2% k-carrageenan gel 
and subsequently used in a continuous-flow bioreactor to promote and control 
MLF. The immobilized cells showed enhanced operational stability in malic acid 
metabolism with the addition of 5% purified bentonite to the matrix and conversion 
rates up to 53.9% were reported (Crapisi et al. 1987a). The half-life of the bioreactor 
was extended to 46 days, while the minimum retention time for MLF accomplish-
ment was decreased to about 2 h. Kosseva et al. (1998) reported an approximate 
30% degradation of malic acid using immobilized L. casei cells on calcium pectate 
gels and chitopearls with an operational stability up to 6 months. The degradation 
of malic acid obtained using the immobilized cells was twice as high as compared 
to that obtained with the free cells. In another study, the possibility of using immo-
bilised O. oeni cells on positively charged cellulose sponge [diethyl (DE) or dieth-
ylaminoethyl (DEAE) cellulose] for MLF of wine was investigated in a semi- 
continuous bioreactor (Maicas et al. 2001). The first 24 h, malic acid was almost 
completely metabolized, while in subsequent fermentations a drastic reduction of 
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malolactic activity was evident. Recently, Lactobacillus casei ATCC 393 cells 
immobilized on delignified cellulosic material (DCM) were used for MLF of wine 
(Agouridis et al. 2005). As the repeated MLF batches proceeded, the activity of the 
immobilized biocatalyst was reduced from 80 to 2%. Acetic acid content was 
slightly reduced or remained stable and concentrations of the higher alcohols 1-pro-
panol, isobutyl alcohol and amyl alcohol were decreased by 84, 23 and 11%, 
respectively, resulting in improved quality.

12.5 Cell Immobilization in Cider-Making

Cider-making is a complex process requiring two successive fermentations: (a) the 
alcoholic fermentation, and (b) the MLF. During cider production, the reduction of 
beverage acidity by bacteria inducing MLF is generally recognized as an important 
phase for flavor development. Therefore, attempts have been focused on simultaneous 
alcoholic and MLF.

A sponge-like material was proposed to immobilize both S. cerevisiae and L. 
plantarum for carrying out fermentation and partial maturation of cider (Scott and 
O’Reilly 1996). The sponge’s open porous network promoted extensive and rapid 
surface attachment of the microorganisms. Fermentations carried out with immobi-
lized yeast and sequential addition of LAB enhanced fermentation rate and had a 
positive effect on flavor development. In another study, a bi-reactor composed of an 
alcoholic fixed immobilized Saccharomyces bayanus bed bioreactor coupled to a 
second fixed immobilized Leuconostoc oenos bed bioreactor was used for dry as 
well as sweet ciders by controlling dilution rate of the influent (Simon et al. 1996). 
Malic acid metabolism and acetaldehyde content in cider produced by Saccharomyces 
cerevisiae and immobilised L. oenos was temperature dependent, while concentrations 
of ethyl acetate and methanol were influenced by the type of L. oenos inoculation 
(Cabranes et al. 1998). Co-immobilization of Saccharomyces bayanus and L. oenos 
in Ca-alginate matrix was proposed for simultaneous alcoholic and MLF of apple 
juice in a continuous packed bed bioreactor (Nedovic et al. 2000). The continuous 
process resulted in faster fermentation compared to the traditional batch process, 
whereas a reduction of higher alcohols and an increase in diacetyl, attributed to the 
altered metabolism of immobilized cells was evident. Production of soft or dry 
cider was possible by controlling the feeding flow rates. Cells of Oenococcus oeni 
immobilized in alginate beads resulted in reduced ethyl acetate and acetic acid 
content when used as starter culture to conduct MLF of cider compared to the free 
cells system (Herrero et al. 2001).

The situation of conducting alcoholic and MLFs simultaneously by the same 
microorganism has been sought after by wine scientists. The first attempts involved 
transferring DNA encoding the malolactic enzyme from Lactobacillus delbrueckii to 
Saccharomyces serevisiae (Williams et al. 1984). Later on, a S. cerevisiae strain was 
generated containing the metabolic machinery for malate degradation, which was able 
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to grow at pH values  < 2.9 (Volschenk et al. 1997). However, the use of a novel yeast 
replacing all malolactic procedures is doubtful, but in no case efforts aiming at the 
accomplishment of such a splendid achievement should be distracted. Although there 
are some arguments concerning concurrent conduction of the two fermentations, it is 
not uncommon, especially among wine manufacturers in California (Kunkee 1997), 
who usually inoculate wine must with both malolactic bacteria and yeast.

12.6 Bioreactors in Wine and Cider-Making

Although there have been tremendous research activities, the main drawbacks 
constraining industrial application of immobilized bacteria for MLF apparently are: 
(a) inactivity of malolactic enzyme at wine pH (Colagrande et al. 1994), (b) instability 
of the required cofactor NAD which is particularly unstable in wine (Colagrande 
et al. 1994; Diviès et al. 1994), and (c) inhibition of LAB and MLF due to the high 
ethanol content (Rossi and Clementi 1984; Crapisi et al. 1987a). Nevertheless, they 
have already been widely studied at pilot plant production sizes. A summary of the 
main immobilization systems proposed for alcoholic and MLF of wine and cider 
is presented in Table 12.1. Although the high number of proposed immobilization 
supports and the advantages associated with the use of immobilized cells, industrial 
application is still limited. There are only a few attempts  aimed at the application 
of immobilized cell technologies in wine and cider-making on a large scale 
(Colagrande et al. 1994; Diviès et al. 1994). Most of these efforts concern production 
of sparkling wine, and secondary MLF of wine. A wide range of fermentors varying 
shape and technical design are nowadays available to provide preferred flow/mixing 
and external mass transfer characteristics during processing. However, in the majority 
of wine and cider-making studies, packed bed configuration has been used, operating 
in batch, and in fewer cases, continuous mode on lab-to-pilot scale. The reason is a 
simple design, consisting of a column which is packed with the immobilized bio-
catalyst. However, for possible industrial applications, the use of mechanically 
unstable materials, such as hydrogels, should be limited to lower bed heights. 
Furthermore, packed-bed bioreactors are linked to several engineering problems 
associated with mass transfer limitations, accumulation of evolved gas (which can 
be in high concentrations mortal to living cells and reduces the useful volume), 
formation of preferential paths or channeling (causing concentration and temperature 
gradients), excessive pressure drop, as well as short circuiting and clogging.

In a recent study, a modification of packed-bed fermentor, a multi-stage fixed-bed 
tower (MFBT) bioreactor has been proposed for batch and continuous wine-
making (Sipsas et al. 2009). It consists of a vertical cylindrical tank with five packed 
sections containing freeze-dried immobilized cells on gluten pellets. The MFBT 
bioreactor resulted in higher alcohol productivity compared to fermentations carried 
out in a packed-bed bioreactor and showed high operational stability. A relatively 
small (5,000–10,000 L) MFBT bioreactor (Fig. 12.1) (Loukatos et al. 2000; Koutinas 
et al. 1997) is proposed for the industrialization of immobilized cells in wine-making, 
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as handling of the support at this scale could be performed without any problems, 
while cell immobilization could be carried out in the bioreactor. Application of the 
MFBT bioreactor at industrial scale eliminates insufficient mass transfer and enables 
support division, especially when mechanically unstable supports are used in order 
to minimize high pressures, which may result in support destruction and reduction 
of fermentation activity. Experiments concerning long term storage of the immobi-
lized biocatalysts (Kourkoutas et al. 2003a) are very promising, since the preparation 
of new biocatalyst, emptying and filling of the bioreactor could be avoided when 
industrial production is halted. Taking into consideration the above discussion of 
technical problems, the scale-up of the proposed technology seems feasible.

Future research efforts should be directed towards application of other types of 
reactors (such as fluidized or gas-lift) already approved in beer production. A recent 
study was focused on the use of a membrane bioreactor for MLF of ethanol con-
taining media (Lovitt et al. 2006).

12.7 Conclusions

Microbial cell immobilization can improve the efficiency of fermentation of alco-
holic and MLF and the quality of the fermentation products. The selection of 
the suitable carrier and bioreactor system is a challenge and many issues should be 
taken into account, such as product quality, safety and stability, processing, invest-
ment and operating costs, as well as matters of legality (food grade purity, the use 
of cross linking agents, etc.). It is obvious that in alcoholic fermentation process a 
high number of technologies (cell adsorption, entrapment, and flocculation) and 
immobilization materials (both organic and inorganic) may have a positive impact 

Fig. 12.1 Schematic diagram of MFBT 
bioreactor
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on cell metabolism. The ability of storage for long time periods of freeze-dried 
immobilized biocatalysts produced by food-grade natural materials is considered 
very attractive for the industrialization of the process. Packed-bed reactors are still 
the first choice in the industrial sector, mainly due to the simplicity of the design 
and in combination with natural supports (such as fruit-based or cellulosic materials) 
seem to have potential in scale-up. The use of mechanically unstable materials, 
such as hydrogels, depends on innovations on the design of packed-bed columns 
(e.g., multiple sections are usually applied for biocatalysts division). Therefore, 
problems related to high pressures and insufficient mass transfers are minimized. 
Investment cost and difficulties in scale up are still the main issues constraining 
application of other bioreactor types in the fermentation processes.

In wine and cider production, the development of a fine taste is an undisputable 
goal and thus control of MLF is an important step. Immobilization in either gels or 
cellulosic materials aims to increase tolerance of malolactic bacteria and to accelerate 
the process. In cider-making, attempts have been focused on simultaneous alcoholic 
and MLF by co-immobilization of two different species or by the same microorganism, 
usually after genetic modification. Production of soft or dry cider is possible by 
controlling the feeding flow rates.

The main drawback inhibiting industrial use of immobilized biocatalysts for 
fermentation processes is related to maintenance of cell viability during produc-
tion and storage, especially when production is halted, as wine and cider products 
are season dependent. Further application will depend on research results upon 
preservation of immobilized cells, as well as development of processes that can be 
readily scaled-up. Thus, research should be oriented towards the evolvement of 
reliable preservation and storage techniques that could be easily adopted by the 
industrial sector.
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