
Chapter 3
Composite Indicator of Poverty

As stated in the introduction, our main objective is to operationalize multidimen-
sional poverty comparisons. After some clarification on this objective and on a
first methodological choice in Section 3.1, Section 3.2 presents a quick review
of the main methodologies used to build a composite indicator of poverty (CIP).
Our second methodological choice takes us to a short presentation of different vari-
ants of factorial approaches and to the argument supporting our third methodolog-
ical choice, the multiple correspondence analysis (MCA) technique (Section 3.3).
Finally, Section 3.4 develops the MCA technique and illustrates it with a numerical
case study on Vietnam.

3.1 Individual and Population Poverty Comparisons

For discussion, it is important to clarify the terminology regarding the three concepts
of poverty indicator, poverty measure, and poverty index. Let Iik be the value of
indicator Ik for the elementary population unit i , called here individual i for simpli-
cation.1 Iik is then a poverty indicator value. The value Iik can be transformed as
gk(Iik), with the function gk , to better reflect a poverty concept relative to indicator
Ik. This is frequently the case, especially with a quantitative indicator Ik to which
is associated a poverty threshold (poverty line) zk . A basic transformation is simply
the censoring of Ik at zk to get I ∗

k . In this case, well-known transformations are
gk(I ∗

ki) = (zk − I ∗
ik)α or gk(I ∗

ki) = (1 − I ∗
ik/zk)α. Then, gk(Iik) is called a poverty

measure value, again defined for individual i. In the particular case where the func-
tion gk is the identity function, the poverty indicator and the poverty measure are
the same. Finally, poverty measure values can be aggregated over the units for the
whole population U, as Wk{gk(Iik), i = 1, N}. Wk is then called a poverty index
relative to the indicator Ik for the population U. Obviously, this index Wk can be

1 The term “elementary population unit” can refer to individuals and households as well as to
villages, regions and countries.
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20 3 Composite Indicator of Poverty

defined on any subpopulation of U consisting of n individuals, n ≥ 1. For n =1, the
poverty index is a poverty measure on each individual.

Poverty indices are required for population comparisons, while poverty indica-
tors and poverty measures are sufficient for comparisons between individuals.

An interesting review in Maasoumi (1999) first distinguishes between the lit-
erature addressing the issue of computing a composite index of poverty from a
multidimensional distribution of poverty indicators on a given population, and the
literature aiming at defining a composite indicator of poverty on each unit of the
given population. The first type of this literature is well represented by Bourguignon
and Chakravarty (1999). The first distinction, referring to Sen (1976), is between
the identification and the aggregation problems. Any individual who is below the
poverty threshold for at least one of the poverty attributes included in the poverty
vector is identified as poor. It is thus the union concept of poverty that is used here,
in contrast with the intersection concept. The aggregation technique relies on an
axiomatic approach to the desired properties of the composite index, largely based
on standard axioms enunciated for a univariate poverty index, and on a composite
poverty measure referring to a given poverty threshold for each primary indicator.
The implicit context is thus a set of quantitative indicators and the resulting index is
usually relevant only for that type of indicators. In fact, the composite poverty mea-
sure proposed by Bourguignon and Chakravarty is a CES function of the shortfalls
(poverty gaps) in each of the primary poverty indicators. Since the direct focus of
this approach is on a poverty index, it is called a one-step approach to multidimen-
sional poverty indices.

It should be obvious, on the other hand, that solving in a first step the problem
of building a numerical composite indicator of poverty opens the way to comput-
ing a composite poverty index based on the composite indicator, relying then on
the univariate theory of poverty indices. This approach is designated as a two-step
approach to multidimensional poverty indices, where the focus is mainly on justi-
fying a methodology for the composite indicator, the most critical part of the whole
process.

This two-step approach is our first methodological choice.
We are thus also taken away from the multidimensional stochastic dominance

theory, extension of the well-known unidimensional one. It can be found in Duc-
los, Sahn, and Younger (2006). We can see it as another one-step approach, since
the focus is on classes of multidimensional poverty indices. This theory releases
poverty comparisons from having to make arbitrary choices of poverty lines and
poverty indices by looking at the relative position of distribution functions and at
identifying regions where a distribution “surface” is over or under another one.
This ordinal approach presents the theoretical interest of clarifying necessary and
sufficient conditions for the robustness of comparisons. Difficulties remain for the
operationalization: since the identification of dominance regions is often uneasy in
a two-dimensional case, we can expect difficulties when the number of primary
indicators can amount to tens, and when sampling errors must be taken into account
in applied work. There is obviously an important trade-off here between the degree
of robustness, here placed at a high level, and the power of the dominance tests.
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Due to its central role in a two-step approach, the rest of this chapter focuses on
the first step, the construction of a composite indicator of poverty (CIP).

3.2 Overview of Methodologies for a Composite Indicator
of Poverty (First Step)

In what follows, a composite indicator of poverty (CIP) C takes the value Ci (Iik ,
k = 1,K ) for a given elementary population unit Ui.

3.2.1 CIP Based on Inequality Indices: Entropy Concepts,
Shorrocks Index

Theil (1967) has first observed that Shannon’s entropy In(y)

In(y) =
n∑

i=1

yi log 2
1

yi
= −

n∑

i=1

yi log 2yi

where y represents the income shares in a population of n units, constitutes a natural
measure of income equality, taking the maximal value log2n when every unit has the
same income. The corresponding inequality measure is then taken as the difference
between the maximal entropy (from a uniform distribution) and In(y):

log 2n − In(y) =
n∑

i=1

yi log 2

(
yi

1/n

)
. (3.1)

We thus observe that equation 3.1 is the Rényi information gain or divergence mea-
sure I1(q||p),2 where we take q = y and p = {1/n}, the uniform distribution. It is
called Theil’s first inequality index.3

The pioneering work of Theil on entropy-based inequality indices has generated
a search for larger classes of inequality indices, on the basis of desirable properties
defined with respect to redistributions of income in a given population. In particular,
the requirement of additively decomposable inequality indices has led to important
results by Shorrocks (1980). He proved that the only admissible indices satisfying,

2 The concept of « divergence »between two distributions belongs to information theory. It is not a
metric as defined mathematically. The general expression of the Rényi divergence measure, which

he calls «information gain », between two distributions q and p is I1(q||p) =
n∑

k=1
qk log2

qk

pk
. For

details, see Rényi (1966).
3 To be more precise, Theil and other authors use the natural logarithm in base e instead of base 2;
from now on, we will not specify the base.
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among others, the decomposable additivity axiom belong to the following class4:

Iγ (y) = 1

n

1

γ (γ − 1)

n∑

i=1

[(
yi

1/n

)γ

− 1

]
for γ �= 0.1, (3.2)

I 1
γ (y) =

n∑

i=1

yi log

(
yi

1/n

)
.

I 0
γ (y) =

n∑

i=1

1/n log

(
1/n

yi

)

Observe that equation 3.2 can be written as

Iγ (y) = 1

γ (γ − 1)

n∑

i=1

yi

[(
yi

1/n

)γ−1

− 1

]
. (3.2’)

Obviously, I 1
γ (y) is Theil’s first inequality index, and I 0

γ (y) is his second inequality
index. This γ-class of entropy-based inequality indices is called the class of Gener-
alized Entropy indices.

What we highlight here is that this axiomatic development of inequality indices
generates a class of divergence measures including, as a particular case, the Rényi’s
information gain measure I1(q||p). In fact, the case γ =1 corresponds to I1(q||p)
where we take p= {1/n}, and the case γ = 0 corresponds to I1(q||p) where we take
q = {1/n}. The γ-class of inequality indices is an asymmetric measure of divergence
between a distribution y and the uniform distribution p = {1/n}.

Maasoumi (1986) relies on these developments of information theory to propose
his entropy approach to the composite indicator problem. He looks for a general
inter-distributional distance as a basis to derive the composite indicator C from an
optimization criterion. Let us observe that the Generalized Entropy index 3.2’ gen-
erates a divergence measure between any two distributions x and y if we substitute
a distribution x to the uniform distribution {1/n} appearing as the denominator. This
is precisely the divergence measure taken by Maasoumi as the distance between the
composite indicator we are looking for, C, and any one of the primary indicators Ik ,
k = 1, K. We thus have

Dγ (C, Ik) = 1

γ (γ − 1)

n∑

i=1

Ci

[(
Ci

Iik

)γ−1

− 1

]
for γ �= 0.1 (3.3)

and obtain Theil’s first and second measures for γ = 1 and 0 respectively.

4 We write the indices directly in terms of income shares instead of using mean income μ, in order
to keep more clearly the link with the theory of distributions.
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Maasoumi then proposes to define the optimal indicator as the C that minimizes
a weighted sum of the pairwise divergences, i.e., the C that minimizes

Dγ (C, I ; δ) =
K∑

k=1

δk

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑
i=1

Ci

[(
Ci
Iik

)γ−1
− 1

]

γ (γ − 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(3.4)

where the δk are arbitrary weights on the divergence component relative to the indi-
cator Ik ,

∑
δk = 1.5

By minimizing the divergence Dβ(C, I, δ) for the function C , Maasoumi finds
the following functional form for the composite indicator:

Ci =
(

K∑

k=1

δk I −γ

ik

)−1/γ

γ �= 0,−1 (3.5)

We recognize here a CES function. For the two specific values γ = 0, −1, the
functional forms are

Ci =
K∏

k=1

I δk
ik , for γ = 0. (3.6)

Ci =
K∑

k=1

δk Iik, for γ = −1. (3.7)

Conclusion on the entropy inequality indices approach

1. The whole context of entropy inequality indices, including the associated diver-
gence concept, refers to probability distributions, i.e., to numerical measures
taking values in the interval (0.1). Thus, and as can be seen particularly from
the divergence measure generated by the Generalized Entropy Index, the natural
domain of application for our problem is a set of meaningful numerical indica-
tors, i.e., of quantitative poverty indicators, expressed in terms of “shares,” so
that the individual value Iik is in the interval (0.1). The money-metric type of
poverty indicators, once transformed in individual shares, appears as the domain
of validity of a functional form like equation 3.5.

2. There is an important source of indetermination with the parametric nature of the
Maasoumi composite indicator. On what basis should we choose the parameter

5 The parametrization used by Maasoumi for the γ-class is slightly different from Shorrocks’s one,
followed here until now. Maasoumi’s parameter γ is Shorrocks’s −1. From now on, we will use
Maasoumi’s γ.



24 3 Composite Indicator of Poverty

value for the γ-Generalized Entropy indices? A strong point can be made for the
values γ = 1 and γ = 0, which provide a simple linear (log-linear) form.6

3. If the weighting approach is maintained for the optimization criterion, obviously
there remains the problem of determining the weights δk in a nonarbitrary way.
There is in fact an optimal system of weights for the functional form (B), as
Maasoumi (1999) has himself observed: the basic factorial method of principal
components. This is precisely the type of methods that is reviewed below.

3.2.2 CIP Based on Poverty Structure Analysis: Inertia Concepts,
Factorial Approaches

To a K-dimensional poverty vector is associated a K-dimensional distribution. In
some sense, the previous approach looks at the marginal distributions of the pri-
mary indicators Ik . A kind of distance between these marginal distributions, the
divergence measure, serves as a basis for identifying a “mean” distribution which
provides the CIP. It is like looking at the multidimensional distribution from outside,
from an external viewpoint. Another viewpoint is to look at the distribution from
inside, trying to identify the numerous associations between the poverty dimen-
sions determining the global form of the poverty “mass” dispersion. It is a search
for a poverty structure, an internal viewpoint. Intuitively, this is what any factorial
technique tries to operationalize, relying on the central concept of inertia which is
in fact a measure of the global dispersion of the distribution. Going through this
structural analysis, we can hope to come out with a CIP summarizing the most
relevant information identified in the distribution.

This structural approach to multidimensional poverty analysis can be seen as
an empirical step to implement the analysis of interconnections between different
freedoms that Sen calls for to assess the effectiveness of development.7

Let us consider an example with two numerical indicators, x1, money income,
and x2, area of agricultural land. Simply by representing the data in the R2-space of
individuals (here, households), we could see figures such as Figs. 3.1, 3.2, 3.3, and
3.4.8

In Case 1, money income and land area are perfectly correlated. It could be
approximately observed in a highly agricultural country with an easy access to
markets. An obvious way to rank the households with just one number is to use
for each of them their relative position on line Δ. This position, y, is given by the
linear function

y = β1 X1 + β2 X2 (3.8)

6 On this, see Asselin (2002) for a more extensive review of the entropy and information theory
approach.
7 Sen (1999), p.4
8 Variables are supposed to be centered.
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Fig. 3.3 Case 3
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X1

X2

Δ1

Δ2

Fig. 3.4 Case 4

where the unit vector β =
(

β1

β2

)
identifies the support of line Δ, β1 > 0, β2 > 0.

Equation 3.8 is thus a very relevant CIP. Cases 2, 3, and 4 are clearly situations
where there are two groups of households. Looking further at the two groups of
households on each line, we could discover that on Δ1 lie urban households whereas
on Δ2 we find rural households. Lines Δ1 and Δ2 would then express two types of
poverty: urban and rural poverty. The extreme situation of Case 2 could plausi-
bly correspond to a country where the rural area is completely disconnected from
markets. In Case 2, using the position on line Δ1 as a global poverty indicator
would formally be acceptable but would then not allow to discriminate between
rural households. The same is true with line Δ2 and urban households then being
not discriminated. A better composite indicator should be proposed using both lines.
Cases 3 and 4 are intermediate situations. In Case 3, the line Δ1 could be eligible as
a global poverty indicator, even if it does not discriminate between rural households.
The vector β has the expected positive signs, and the fact is that rural households
compensate a lower area of land with a higher money income, maybe by selling
their labor force to larger farms. In case 4, the line Δ2 could be eligible, with a
positive vector β and no discrimination between urban households, these possibly
leaving agricultural production for better opportunities in the labor market. But even
in cases 3 and 4, a deeper analysis could suggest a better composite indicator than
line Δ1or Δ2. Finally, Case 5 shows a situation where the position on line Δ cannot
be taken as a composite indicator of poverty, due to the negative sign of β2. But it
can be seen that there is more dispersion in x1 than in x2 and this fact can eventually
be exploited (Fig. 3.5).

This internal visualization of the multidimensional distribution from the individ-
ual (household) viewpoint, i.e., from the line-points of the data matrix X9 seen in
the R2-space, has a counterpart from the variable viewpoint, i.e., from the column-
points seen in the RN-space, where N is the number of individuals in the distribution.
In our case, with N = 12 individuals, the two column-vectors determine a plan

9 The convention used here is that in a matrix X, lines correspond to the statistical units (individu-
als) and columns to the variables (indicators).
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X2

X1

Fig. 3.5 Case 5

in the R12-space, which degenerates in a single line in Cases 1 and 5. Figure 3.6
summarizes Cases 1–5.

X1X2

Δ

Fig. 3.6 Case 1

All these examples suggest that detecting poverty structures, let us say poverty
types, through lines like Δ, Δ1, and Δ2 can be seen as a promising approach to know
more about the real multidimensionality in a given population and to the emergence
of a relevant composite indicator of this poverty. This is precisely what a factorial

X1X2

Δ

Fig. 3.7 Case 5

Δ1

Δ2

X1

X2

Fig. 3.8 Case 2, 3, 5
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approach tries to systematize. Principal component analysis (PCA) is now taken as
an example of what can be achieved in that direction (Figs. 3.7 and 3.8).

Essentially, PCA consists in building a sequence of uncorrelated (orthogonal) and
normalized linear combinations of input variables (K primary indicators), exhaust-
ing the whole variability of the set of input variables, named “total variance” and
defined as the trace of their covariance matrix, thus the sum of the K variances.
These uncorrelated linear combinations, in fact the lines Δ above and their related
unitary vectors β, are latent variables called “components.” The optimality in the
process comes from the fact that the first component looked for has a maximal
variance λ1, the basic idea being to visualize the whole set of data in reduced spaces
capturing most of the relevant information.

Let X(N,K) be the data matrix giving the distribution of the K numerical, cen-
tered, primary poverty indicators, K < N. From now on, let W be the normalized
(unitary) K-dimensional vector10 previously identified as β, and let Σ = X’X be
the covariance matrix. The problem of estimating the first component consists in
finding a linear combination XW such that W’ΣW is maximal under the constraint
W’W = 1. With λ as the Lagrange multiplier, the problem consists in solving the
equation

(Σ − λI )W = 0 (3.9)

where I is the unit (K,K) matrix. There are different ways of solving equation 3.9,
a frequent one being an iterative method.11 The vector W is called an eigen or char-
acteristic vector, and the value λ an eigen or characteristic value. The line whose
support is given by W is called a factorial axis, and the word “factor” is also taken
to be the same as “component.” The K elements of W are called “factor-score coef-
ficients.”

All subsequent components α have decreasing variances λα whose sum is the
total variance of the K indicators. This total variance is also named the total inertia
of the distribution of the K indicators. The stepwise reduction process just described
corresponds geometrically to a change in the Cartesian axis system (translation and
rotation) of the K-dimension euclidean space RK. It is neutral regarding the orienta-
tion of the factorial axis. The whole process relies on analyzing the structure of the
covariance matrix of the K initial variables.

The first component F1 is an interesting candidate for the composite indicator of
poverty C, but it must satisfy obvious consistency conditions relative to the signs of
the K elements of W . C has the following expression for the population unit i :

Ci =
K∑

k=1

W 1,k I ∗k
i . (3.10)

10 W is a (K.1) column-vector.
11 See Anderson (1958).
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The I ∗k are the standardized primary indicators, i.e., the columns of the data matrix
X after standardization. The factor score coefficients W 1,k must all be positive (neg-
ative) to interpret the first component as a decreasing (increasing) poverty indica-
tor, depending on whether the primary indicators increase (decrease) when people
become wealthier. At the end of the process, it comes out that the Wα,k are in fact
the usual multiple regression coefficients between the component Fα and the stan-
dardized primary indicators. Built this way, the first component can be described
as the best regressed latent variable on the K primary poverty indicators. No other
explained variable is more informative, in the sense of explained variance.

3.2.3 The Fuzzy Subset Approach12

The fuzzy subset approach is motivated by the artificial dichotomization between
the poor and the non-poor, which is determined by a poverty line whose definition
is rarely uncontroversial. Let x be a welfare indicator, e.g., total expenditure per
capita, which we want to use as a poverty indicator. The starting idea is then to
transform x in x’= 1 − F(x), where F(x) is the distribution function of x. x ′, taking
its values in [0.1), is then interpreted as a degree of poverty and the function 1−F(x)
is called a membership function. Clearly this definition can be applied also to any
categorical discrete ordinal indicator, which is then recoded as a numerical indicator.
In this categorical case, Betti et al. (2006) use instead the definition

x′ = {1 − F(x)/1 − F(x1)} (3.11)

where x1 is the smallest value taken by the indicator. The poorest individuals then
take the value 1, and the richest, the value 0.

Suppose now there are K indicators with transformed values x′k according to
equation 3.11, and the value x′k,I for individual i . The composite indicator C is then
defined as the weighted average:

Ci =

K∑
k=1

W kx ′k, i

K∑
k=1

wk

(3.12)

where wk is an indicator weight defined a priori from the average x ′k of x′k:

wk = ln
1

x ′k
. (3.13)

12 We follow here essentially Betti et al. (2006), focusing on the basic framework of the fuzzy
approach.
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It must be observed that, according to equation 3.11, x ′k tends to be smaller with
smaller frequencies of the most deprived ones (lower values of x ′k

1 ). In fact, for

a dichotomous indicator, it gives x ′k = N k
1

N , where N k
1 is the number of deprived

individuals. Then the weight given to indicator k is larger with a smaller number
of deprived people. “Thus deprivations which affect only a small proportion of the
population, and hence are likely to be considered more critical, get larger weights;
while those affecting large proportions, hence likely to be regarded as less critical,
get smaller weights”.13

We retain from the basic fuzzy approach that

a) it is immediately applicable to categorical ordinal indicators;
b) an important preliminary step before aggregation consists in a numerical rescal-

ing of each primary indicator, based on marginal distributions; and
c) indicator weights are defined a priori from the marginal distributions allowing

for greater importance given to less frequent deprivations.

At the end of this overview of methodologies for defining a composite indica-
tor of poverty, our second methodological choice is to explore deeper the factorial
approach, essentially since it seems a priori more promising, with its internal view-
point, to articulate our understanding of multidimensionality, while offering at first
sight an interesting proposal for a composite indicator. But some variants of the
factorial techniques still need to be discussed.

3.3 Factorial Techniques

3.3.1 Factor Analysis (FA)14 and Principal Component Analysis
(PCA)

As seen above (Section 2.2.2), PCA is a factorial technique searching for a small set
of independent linear combinations of the K primary indicators, called
“components,” to catch a maximal portion of the total variance of the distribution.
When all possible components have been extracted, the whole variance is explained.
The first component, accounting for the largest portion of the variance, is an inter-
esting CIP candidate if some consistency conditions are met. This is the approach
used by Filmer and Pritchett (1998) for their household asset index.

Factor analysis (FA) is the reverse way of exploring multidimensionality. It tries
to identify K linear combinations of m < K latent (nonobservable) variables, called
factors or communalities, able to predict the K observed indicators with as small an
error as possible. More precisely, the predictive model to be estimated is15

13 loc. cit.
14 A specific technique not to be confounded with Factorial Analysis, which is a generic term.
15 See Anderson (1958), Section 14.7.
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I = Λ f + U (3.14)

where I is the vector of the K primary indicators,16 Λ is a (K,m)-matrix of factor
loadings, f is an m-component vector of nonobservable factor scores and U is a
K-vector of error. A difficult decision has to be made on the number m of factors
to retain in the model. Different estimation techniques can be used, including a
principal component approach. Clearly this modeling factorial technique does not
respond directly to our research objective to get a CIP. But the m latent factors can
in fact be expressed as linear combinations of the K primary indicators through
equation17 3.15 linking factor-score coefficients and factor loadings:

W = Σ−1Λ (3.15)

where W is the (K,m) matrix of the factor-score coefficients as defined above with
PCA and Σ−1 is the inverse covariance matrix18 of the K primary indicators. Once
the matrix W is obtained through equation 3.15, as in PCA, the first factor is an
interesting candidate for a CIP, again if consistency conditions hold with the first
factor-score coefficients. This is in fact the way Sahn and Stifel (2000) proceed
to build a household asset index from data sets provided by the Demographic and
Health Surveys (DHS), taking m = 1 in the model, i.e., only one factor.

In comparison with PCA, it should be noted here that “in PCA, multicollinearity
is not a problem because there is no need to invert a matrix. For most forms of
FA and for estimation of factor scores in any form of FA, singularity or extreme
multicollinearity is a problem.”19

In addition to being theoretically developed for numerical variables as PCA, for
the objective of defining a CIP, the FA approach appears to us as an unnecessary
detour with possible technical difficulties.

3.3.2 Multiple Correspondence Analysis (MCA) and PCA

Interesting as it is, the PCA technique has some limitations:

a) the whole technique has been developed for a set of quantitative variables, mea-
sured in the same units. The optimal sampling properties for parameter estima-
tion depend on the multivariate normal distribution and do not any more exist
with categorical variables20;

16 We suppose here that the K indicators are standardized.
17 See Tabachnick and Fidell (2001), Chapter 13, Principal Components and Factor Analysis.
18 Here a correlation matrix since the indicators are supposed already standardized.
19 Tabachnick and Fidell (2001), p. 589.
20 See, among others, Kolenikov and Angeles (2004) for a similar critique of using PCA with dis-
crete data. The authors ignore MCA as a possible solution. They use a parametric approach based
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b) the operationalization of the composite indicator, for population units not
involved in the sample used for estimation, is not very appealing since weights
are applicable to standardized primary indicators. Particularly, standardization
adds some ambiguity in a dynamic analysis where the base-year weights are kept
constant, as we think they should.

Since concepts of multidimensional poverty are frequently measured with cate-
gorical ordinal indicators, for which PCA is not a priori an optimal approach, look-
ing for a similar but more appropriate factorial technique is justified. Here comes
naturally into the picture multiple correspondence analysis (MCA), designed in the
1960s and 1970s21 to improve the PCA approach when the latter loses its parametric
estimation optimal properties and to provide more powerful description tools of the
hidden structure in a set of categorical variables.

The most important technical difference between PCA and MCA is the use of
the χ2 metric (chi-square), instead of the usual Euclidean metric used in PCA, to
measure distances between two lines or two columns of the data matrix being ana-
lyzed. This χ2 metric has been introduced into the area of factorial analysis in the
years 1960–1970 by the French school of statistics led by J.-P. Benzécri, and then
appeared as factorial techniques specifically designed for categorical variables “Cor-
respondence Analysis” (CA) and its extension “Multiple Correspondence Analysis”
(MCA).

From now on, we will assume that the K primary indicators are categorical ordi-
nals, the indicator Ik having Jk categories. This is a very general setting, applicable
to any mix of quantitative and categorical poverty indicators, since a quantitative
variable can always be redefined in terms of a finite number of categories. Let us
associate with each primary indicator Ik the set of Jk binary variable 0/1, each cor-
responding to a category of the indicator. We introduce the following notation:

1. X(N,J): the matrix of N observations on the K indicators decomposed into Jk

binary variables, where J =
K∑

k=1
Jk is the total number of categories. X is named

the indicatrix matrix.
2. N j : the absolute frequency of category j, i.e., the sum of column j of X;
3. N ′: the sum of the elements of matrix X, i.e., N × K;
4. f j = N j

N ′ : the relative frequency of category j f i
j = X (i, j)

X (i) , where X(i) is the sum

of line i of the matrix X. The set f i
j =

{
f i

j , j = 1, J
}

is named the profile of

observation i.

on the multivariate normal distribution and the estimation of a polychoric correlation coefficient
matrix.
21 The French school of data analysis led by Benzécri has been particularly creative and influential
in the development of correspondence analysis.
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MCA is a PCA process applied to the indicatrix matrix X, i.e., to the set of the J
binary variables in the RN space, transformed into profiles, but with the χ2 metric
on row/column profiles, instead of the usual Euclidean metric.

The χ2 metric is in fact a special case of the Mahalanobis metric developed in
the 1930s and used in Generalized Canonical Analysis. It takes here the following
form, for the distance between two observed profiles i and i ′ in the RJ space:

d2
(

f i
J , f i ′

J

)
=

J∑

j=1

(
1

f j

)(
f i

j − f i ′
j

)2
. (3.16)

The only difference with the Euclidean metric lies in the term
(

1
f j

)
, by which low-

frequency categories receive a higher weight in the computation of
distance.

The χ2 metric has two important properties not possessed by the Euclidean met-
ric22: the distributional equivalence property and the duality property. The χ2 metric
is directly linked to statistics used in very old statistical tests like the Pearson χ2-
test of the theoretical distribution of a given empirical distribution and the Pearson
χ2-test of the independence of two categorical variables presented in a two-way
frequency table.

The distributional equivalence property means that the distance between two
lines (individuals, households, etc.) of the profile matrix remains invariant if two
identical columns (poverty variable) are merged, or if we add to the data matrix a
column identical to another one. And symmetrically, for modifying lines and keep-
ing invariant the distance between columns. Concretely, it means that the factorial
analysis run with the χ2 metric, as with MCA, is quite robust (stable, invariant),
to the way a set of categorical variables, as poverty indicators, is built: extending
a set of indicators with closely correlated additional indicators, defining categories
within a same indicator, etc. PCA, with the Euclidean metric, is sensitive to such
transformations. This theoretical property is empirically observed and illustrated in
references given in the preceding footnote.

The duality property is explicitly presented with the duality equations 3.18a
and 3.18b. These equations are also referred to in the literature as “transition” or
“barycentric” equations.23 This duality property is the theoretical basis (see the
literature just referred to) allowing the simultaneous representation, in the same
factorial plane, of the lines (individuals, households), often aggregated in socioe-
conomic groups, and of the columns (poverty attributes). This simultaneous rep-
resentation, unique to MCA, is a very powerful exploration tool for the identifi-

22 That these properties are specific to the χ2 metric can be found in Benzécri J.P. and F. Benzécri
(1980), pp. 37–40, Greenacre M. and J. Blasius (1994), p. 35, and Lebart L., A. Morineau and
M. Piron (1990), p. 74.
23 The duality equations can be found in Benzécri J.P. and F. Benzécri (1980), pp. 80–90, Lebart
L., A. Morineau and M. Piron (1990), pp. 75–79, and Greenacre M. and J. Blasius (1994), p. 14.
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cation of poverty determinants, associated with poverty types. In fact, this prop-
erty, much more than the distributional equivalence one, is the main advantage
of MCA for applying factorial concepts and methods to multidimensional poverty
analysis.

To sum up, due to using the χ2 metric, the difference between MCA and PCA
shows up particularly in two properties which seem highly relevant for the poverty
meaning of the numerical results.

Property #1 (marginalization preference)

Factorial scores produced by MCA overweight the smaller categories within each
primary indicator. In fact, we have

W α,k
jk

= N

N k
jk

Covariance
(
F∗

α , I k
jk

)
(3.17)

where

W α,k
jk

= the score of category jk on the factorial axis α(non – normalised)

I k
jk

= the binary variable 0/1 taking the value 1 when the population unit has

the category jk.

F∗
α = the normalized score on the factorial axis α

N k
jk

= the frequency of the category jk of indicator k

Thus, in the case of a binomial indicator, the marginal category will receive a higher
weight, since the covariance is the same for both categories.

In terms of poverty, if we think of (extreme) poverty in a given society as being
more relative than absolute and characterized by social marginalization, i.e., by the
belonging to a minority group within the population, the group of people charac-
terized by a poverty category jk , then this category will receive more weight in
the computation of a composite indicator of poverty. If we interpret the factorial
weights (regression weights) as expressing the social choice in poverty reduction,
then these highly weighted poverty attributes represent those which this society tries
to eliminate in priority. As noticed above (Section 3.2.3), this higher weight given to
a smaller number of deprived people is looked for by the indicator weighting system
defined a priori with the fuzzy approach.

Property #2 (reciprocal bi-additivity or duality)

The way it is defined, MCA can be applied on the indicatrix-matrix either to the
row-profiles (observations) or to the column-profiles (categories), so that it has the
following remarkable and unique duality property:

Fi
α =

K∑
k=1

Jk∑
jk=1

W α,k
jk√
λα

I k
i, jk

K
(3.18a)
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where

K = number of categorical indicators

Jk = number of categories for indicator k

Wα,k
jk = the score of category jk on the factorial axis α(non – normalised)

I k
i, jk

= the binary variable 0/1 taking the value 1 when the unit i has the

category jk.

Fi
α = the score (non - normalized) of observation i on the factorial axis α

and reciprocally

W α,k
jk =

N jk∑
i=1

Fi
α√
λα

N k
jk

. (3.18b)

Let us assume, for example, that the first factorial axis meets the consistency
conditions to be considered as a poverty axis24 and that we can take as the composite
indicator of poverty Ci = Fi

1 . Then the duality relationships stipulate

Equation 3.18a: the composite poverty score of a population unit is the simple
average of the factorial weights (standardized) of the K poverty categories to
which it belongs.

Equation 3.18b: the weight of a given poverty category is the simple average of
the composite poverty scores (standardized) of the population units belong-
ing to the corresponding poverty group.

We feel that these two properties, especially equation 3.18b for the reciprocal bi-
addivity, are quite relevant for the poverty meaning of the numerical results coming
out of this specific factorial analysis, MCA.25 With the simultaneous graphical rep-
resentation of population units and poverty attributes, MCA appears as an analytic
tool particularly efficient for the study of multidimensional poverty represented in a
set of categorical ordinal indicators.

It must also be observed that by breaking down each indicator Ik in as many
variables, Jk, as there are categories, MCA allows for non-linearity in the categorical
weights, contrary to a PCA which would be run on a numerical coding 1 to Jk of the
indicator Ik , as some researchers could be tempted to do.

Having looked at some variants of factorial analysis, FA, PCA, and MCA, our
third methodological choice is to go on with MCA, due essentially to its particu-
lar convenience for categorical variables, its remarkable duality properties and its
operationality. This is why we explore more attentively in the following section a
research strategy that is relevant in applying MCA to the problem of measuring
multidimensional poverty.

24 We come back to these consistency conditions in Section 3.4 below.
25 A complete description of MCA can be found in Lebart et al. (2000) or Greenacre and Blasius
(1994).
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3.4 MCA Technique Applied to Multidimensional Poverty
Measurement

Since MCA consists basically in exploring the internal structure of a covariance
matrix while producing at the same time an additive decreasing disaggregation of
the total variance (inertia) of the matrix, the rationale for using such a technique in
the context of multidimensional poverty consists in searching the real multidimen-
sionality of poverty reflected in a set of poverty indicators more or less correlated.
And the specific by-product of such a search is a significant composite indicator of
multidimensional poverty, as we will now see.

3.4.1 A Fundamental Consistency Requirement

We now consider more closely the conditions under which the factorial approach,
and especially the MCA variant, can generate a truly relevant composite indicator
of multidimensional poverty. We could have here a full axiomatic formulation so
that the objective of poverty comparison is satisfactorily met. But the axiomatic
requirements can be largely simplified with a two-step approach. If the first step
has provided a relevant composite indicator of poverty, the axiomatic requirements
for the second step, regarding the computation of aggregated poverty indices, can
rely on standard requirements now generally accepted in the case of unidimensional
poverty measurement, especially for the well-known case of money-metric poverty.
For the first step of constructing a composite indicator C from K ordinal categorical
indicators Ik, there is at least the following requirement:

Monotonicity axiom (M)26

The composite indicator of poverty must be monotonically increasing in each of
the primary indicators Ik.

The axiom just means that if a population unit i improves its situation for a given
primary indicator Ik, then its composite poverty value Ci increases: its poverty level
decreases.

Let us see what it means to take the first factorial component F1 as the composite
indicator of poverty C. From equation 3.18a above, its expression would be

Ci = Fi
1 =

K∑
k=1

Jk∑
jk=1

W 1,k
jk√
λ1

I k
i, jk

K
. (3.19a)

26 We assume that the sign of the composite indicator is selected in such a way that a larger value
means less poverty or, equivalently, a welfare improvement, and that the ordering relation A < B
between two categories A and B of the same indicator means that B is preferable to A.
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To simplify, let us write W ∗α,k = W α,k√
λα

for the normalized category-score on the
factorial axis α. Then we have

Ci =

K∑
k=1

Jk∑
jk=1

W ∗1,k
jk I k

i, jk

K
. (3.19b)

The monotonicity axiom translates into two requirements:

M1: First Axis Ordering Consistency (FAOC-I) for an indicator Ik

For an indicator Ik for which the ordering relation between categories is noted
<k, the ordering relation <w of the weights W ∗1,k

jk
must be equivalent to either

<k or to >k.
M2: Global First Axis Ordering Consistency (FAOC-G)
For all indicators Ik, the FAOC-I condition is fulfilled with the same orientation:

the ordering relation <w is equivalent to either <k for all indicators or to >k

for all.

If and only if the monotonicity axiom is satisfied can C = F1 be taken as a
composite indicator of poverty, after eventually changing the sign of F1 when <w

is equivalent to >k for all indicators. But then the reciprocal bi-addivity property
of MCA gives a very interesting consistency result for Ci . Due to equation 3.18b
which says that the weight of an indicator category, W 1,k

jk
, is given by the average

composite poverty score of the population group of size N jk having the category
(attribute) jk , we can state the following property of C :

Composite Poverty Ordering Consistency (CPOC)

With C = F1 satisfying the monotonicity axiom (M), for a given indicator Ik, let
the population group Pj1 have a category j1 of Ik inferior to the category j2 possessed
by the group Pj2. Then the group Pj1 is also poorer than Pj2 relative to the composite
poverty.

In other words, the population ordering for a primary indicator Ik is preserved
with the composite indicator. This is a remarkable consistency property specific to
MCA, due to the dual structure of the analysis.

Clearly, there is no guarantee that MCA run on the K primary indicators will
come out with the FAOC property, and then using the first factorial component as
the composite indicator of poverty would be inconsistent and not acceptable. In fact,
everything depends on the structure of the covariance matrix X’X.27

There are two ways of overcoming this unpredictable difficulty: minor adjust-
ments to the set of the K primary indicators, or exploiting more than one factorial
axis.

27 We use X for the matrix of centered variables.
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3.4.2 Positive Rescaling of the K Primary Indicators28

As seen above, due to the duality relationship equation 3.18b, the categorical weight

W ∗1,k
jk = W 1,k

jk√
λ1

appearing in the CIP equation 3.19b has a strong meaning in terms
of multidimensional poverty: it is the average multidimensional poverty level of
the group of individuals having the category jk of the primary indicator Ik. But the
numerical value of W ∗1,k

jk , either negative or positive since by construction the aver-
age is zero, is irrelevant inasmuch as the numerical scaling of Ik remains unchanged
relative to the distances between categories. Developing this idea, it is possible to
improve the meaning of the categorical weights by rescaling Ik with the gap between
the worst-off individuals, jk = 1, and any better-off group, jk = 1. We are thus
led to rescale the indicator Ik, on the factorial axis α, here supposed to satisfy the
consistency requirements, with the following categorical weights:

W +α,k
jk = W α,k

jk − W1
α,k

√
λα

. (3.20)

Thus, the most deprived category for Ik always has a weight equal to zero, and
the weight given to any superior category jk , strictly positive, represents the gain in
total poverty reduction, as measured on axis α, when an individual can get out of the
most deprived status in the primary indicator Ik by accessing the status jk ,k > 1.
Under the hypothesis that the first factorial axis satisfies the FAOC condition, the
definition of equation 3.19b of the CIP is now transformed as

Ci =

K∑
k=1

Jk∑
jk=1

W +1,k
jk I k

i, jk

K
, Ci ≥ 0. (3.21)

From this point of view, MCA appears as a technique of rescaling numerically,
in a meaningful way, a set of categorical ordinal indicators and of providing at the
same time the rationale for a consistent aggregation of the rescaled indicators.

3.4.3 Adjustments to the Set of the K Primary Indicators

It should be noted that a binomial indicator always meets the FAOC-I requirement.
In the case in which a multinomial indicator does not satisfy this requirement,
regrouping some categories can sometimes achieve the FAOC-I. If this operation
does not succeed, a more radical solution is to eliminate the indicator. Obviously,

28 This section assumes that the factorial axis referred to, usually the first axis, meets the FAOC-G
condition, with the orientation chosen such that welfare increases (poverty decreases) from left
(negative side) to right. A simple adaptation of this will be made below in a more general case.
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if the primary indicators have been carefully selected, defined and tested, this is a
high price to pay for satisfying a technical condition. Although we do not in general
favor the elimination of indicators, the option does become more acceptable when
the number of indicators K is large and there appears to be some duplication in a
specific domain (or dimension) of poverty.

If all indicators satisfy FAOC-I but FAOC-G is not met, it means that relative
to the first factorial axis there are two subsets of indicators with opposite ordering
on this axis, thus negatively correlated. Two such disjoint subsets of indicators will
always appear with K binomial indicators, this being in particular the case when
applying MCA to asset poverty, where the indicator for each asset is usually bino-
mial: ownership or not. In this last case, there is no consistency problem if one of
the two subsets is the empty subset ∅, which is not unusual. Let us assume that
both subsets are not empty. It means that the multivariate measurement of poverty
cannot be shrunk into a unidimensional poverty measurement restricted to the first
factorial axis, and that in spite of existing correlations, the poverty concept reflected
in the K chosen indicators is really deeply multidimensional. If we stick to the first
factorial axis, the only way to get out of this inconsistency would be to eliminate
one of the two subsets of indicators, which does not seem a priori acceptable: the
information loss would then be too important. We need a more appropriate research
strategy going beyond the first factorial axis.

3.4.4 A Research Strategy Using More than the First Factorial Axis

We need some additional tools to design a research strategy that will not consider
only the first factorial axis. Let L be the number of factorial axes, determined by the
rank of the matrix X . We have L ≤ J − K , where J is the total number of categories
for the K indicators.

Let Δk
l =

Jk∑
jk=1

N k
jk

W 2
k, jk ,l

N
(3.22)

be the discrimination measure of indicator Ik on the factorial axis I . It is in fact the
variance of the distribution of the categorical weights on axis I , since the average
weight is always 0.

We know from the theory of MCA that

λl =

K∑
k=1

Δk
l

K
, (3.23)

i.e., the eigenvalue of axis I , is the average of the discrimination measures of the K
indicators.

It follows from the basic factorial equation
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Total Inertia = Itot =
L∑

l=1

λl (3.24)

that we have the equation 3.25 below:

3.4.4.1 Total Inertia Decomposition

Itot =

L∑
l=1

K∑
k=1

Jk∑
jk=1

N k
jk

W 2
k, jk ,l

K × N
=

L∑
l=1

K∑
k=1

Δk
l

K
. (3.25)

In the case of MCA, Itot = J
K − 1, i.e., it is the average number of categories

per indicator minus 1.29 If all indicators are binomial, total inertia is precisely 1. It
is also shown that the contribution of indicator Ik to total inertia is Jk − 1.

Let us denote κ = {1, 2, . . . ., K } as the set of integers from 1 to K .
We will now generalize the previous approach to the composite indicator of

poverty.
First observe that there is an obvious one–one correspondence between the cat-

egorical coefficients appearing in the linear expression of the L possible factorial
components and the categorical contributions to the disaggregated total inertia, as
shown in matrices A and B. The general term of matrix B is the square of the matrix
A general term. The usual approach restricted to consider only the first factorial
axis to pick up from A the J coefficients of the composite indicator, conditional
on the FAOC-G requirement, is based on the fact that in matrix B the first line has
a maximal sum in the inertia decomposition. Equation 18a is then the functional
frame of the composite indicator, as proposed by the factorial theory. But there is
no specific reason why a maximal inertia criterion, conditional to ordering (poverty)
consistency as revealed in matrix A, should be restricted to the first line of matrix
B. A more efficient approach can be looked for, and this is the idea explored to
generalize the usual factorial approach to the CIP (Figs. 3.9 and 3.10).

1 … j1 … j1 1 … jk … Jk 1 … jK … JK

1
:

l kl
jkW

,

:
L

Fig. 3.9 Matrix A categorical coefficients in factorial components: Equation (3.18a)

For each factorial axis I, we can look for two subsets of indicators, each subset
satisfying the axis ordering consistency condition (AOC) in one of the two axis

29 See Lebart et al. (2000) p.120.
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1 … j1 … j1 1 … jk … Jk 1 … jK … JK

1
:

l
k, jk, lW
2

:
L

Fig. 3.10 Matrix B categorical contributions in total inertia disagregation: Equation (3.25)

orientations, i.e., both requirements AOC-I and AOC-G, which now no more refer
only to the first axis. The worst situation occurs when, for a given axis I, no indicator
meets AOC-I; both subsets are then the empty subset ∅. Among these AOC subsets,
we retain the one whose sum of discrimination measures is maximal. We will then
consider that there is a poverty type specific to axis I if and only if the sum of
discrimination measures of this AOC subset represents the larger part of the total
discriminating power of axis I , i.e., is larger than 50% of K × λl . Axis I will then
be named a poverty axis and the sum of discrimination measures of this AOC subset
is identified as the poverty-relevant inertia of axis I . To each factorial axis I , we
can thus associate a unique subset of the K indicators, whose indices are a subset κl

of κ .

Poverty Type Set of Axis l

The Poverty Type Set of the factorial axis I , {Ik}k∈κl
, is the most discriminating

subset of AOC indicators satisfying 2 × ∑
k∈κl

Δk
l > Kλl .

It should be clear that the set {Ik}k∈κ1
can be empty, which means that the factorial

axis I does not represent any poverty type set.
It should also be clear that the poverty type sets from different axes are not

necessarily disjoint: the same indicator can belong to many of them. The potential
intersection between these sets can be eliminated by a sequential process starting
with the first axis and continuing with the others as ordered by MCA, since the
discriminating power of each axis is decreasing. The way to eliminate these inter-
sections, while trying to retain at each step the maximal inertia, is naturally coming
out of the total inertia decomposition (3.25): at each step, we keep a given indicator
k into the poverty type set where its discrimination measure is larger. We refer to
this sequential process as to the algorithmic identification of independent poverty
types, more simply the poverty types algorithm. Let then κ∗

l ⊆ κl be the subset of
indicator indices at step L∗ ≥ 1 in the sequential process.

Normally, to ensure that the process retains a maximal proportion of Itot in the
disjoint poverty sets, the algorithm must be pursued until L∗ = L . We then have
built a complete sequence of poverty type sets.

3.4.4.2 Complete Sequence of Poverty Type Sets

The sequence of disjoint subsets of indicators {Ik}k∈κ∗
l

resulting from the application
of the poverty types algorithm until L∗ = L , is called a complete sequence of
poverty type sets. The number d of non-empty subsets is the number of independent
poverty types provided by the set of the K primary indicators.



42 3 Composite Indicator of Poverty

Two cases are then possible: all K indicators belong to the sequence, i.e.,
L⋃

l=1
κ∗

l = κ , or some indicators are not retained in the process. In this last case, they

could simply be eliminated from the search of a composite indicator: in a simultane-
ous factorial analysis of all K indicators, they do not meet the minimal consistency
requirement on any factorial axis. But again, we cannot necessarily assume that
these rejected indicators are not good. A less radical approach would be to pro-
cess them separately as a second set of indicators and to build with them a second
composite indicator.30 With two numerical CIP, any of the reviewed aggregation
techniques well fitted to quantitative indicators could be used, including PCA.

The poverty types algorithm can rapidly become quite demanding with a large
number K of primary indicators, let us say K ≥ 10, which is not unusual in applied
multidimensional poverty analysis. As an example, with 10 indicators having on
average 3 categories, the process could involve the analysis of L = 20 factorial
axis. Even if all well-known software allows such an analysis with some tedious
work for the analyst, to facilitate the operationalization, it seems admissible, even
if not optimal, to introduce the possibility of interrupting the algorithm when some
kind of ideal situation is met, that is, as soon as all K indicators appear in a sequence
of disjoint poverty type sets. This leads us to the following definition:

3.4.4.3 Minimal and Admissible Sequences of Poverty Type Sets

A minimal sequence of poverty type sets is obtained when the poverty types algo-

rithm is interrupted at the smallest value L∗ ≤ L for which either
L∗⋃

l=1
κ∗

l = κ , i.e.,

all indicators are included in the sequence of disjoint poverty sets, or L∗ = L.
Here also, the number d of non-empty subsets is the number of independent

poverty types provided by the set of the K primary indicators.
It should be stressed that this definition allows, in particular, for stopping the pro-

cess to the first factorial axis if the FAOC condition is achieved. To our knowledge,
this has been the usual practice until now, unfortunately at the expense of frequently
giving up a subset of the primary indicators or of merging relevant categories, which
means an information loss.

If a minimal sequence of poverty type sets is reached for a small L∗ < L , e.g.,
for L∗ = 1 (first axis), there can still be an important loss of information with
some indicators having a very low discriminating power. In that case, important
improvements can be obtained by considering additional axes beyond L*, without
necessarily going until L∗ = L . It is clear that beyond L*, all K indicators remain
in the disjoint sequence of poverty sets, but some indicators could be associated to a
poverty set and axis I in which their discrimination measure is higher. It then seems
better to extend the algorithm until some criterion is met. One possible criterion is
to stop the process when the sum of the L* eigenvalues represent at least 50% of

30 This means a rerun of the first factorial analysis without these indicators.
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the total inertia, Itot , given by Itot = J
K − 1. That type of minimal sequence can

then be called an admissible sequence of poverty type sets. Each axis that appears
in the sequence then has an inertia (eigenvalue) larger than the average inertia per
factorial axis, 1/K . This application of the algorithm obviously requires analyzing
less than half of the total number of factorial axes, possibly much less depending on
the inertia captured by the first axes. When a minimal sequence exists, especially
when it occurs immediately at L* = 1, our proposal would thus be to pursue the
algorithm until an admissible sequence has been reached.

We can now derive, from equation 3.21, a generalized definition of the composite
indicator of poverty, which can be applied when the first factorial axis does not meet
the FAOC-G requirement.

3.4.4.4 Generalized Definition of the Composite Indicator of Poverty

Let a complete or admissible sequence of complete poverty type sets be obtained,
which is always possible with the poverty dimensions algorithm. Then the value Ci

of the composite indicator of poverty for the population unit i is given by

Ci =

L∗∑
l=1

∑
k∈κ∗

l

Jk∑
jk=1

W +l,k
jk I k

i, jk

K
. (3.26)

Definition of equation 3.21 is the special case where L* = 1: all K indicators
belong to the poverty type subset of the first factorial axis. This is the case where
the multivariate measurement of poverty can be logically reduced to one aggregate
poverty type, due to the structure of the correlation matrix: all K indicators are
positively correlated. In the general case, there is more than one poverty type, in
fact one for each poverty type set; the way to aggregate them is suggested by the
structure of equation 3.19a and the fundamental equation of decomposition of the
total inertia 3.23: instead of picking up the Jk weights attributed to the indicator Ik

only from the set of weights provided by the first factorial axis, it takes them from
the axis which define the poverty type subset to which it belongs with a maximal
variance. The positive rescaling of the indicators (Section 3.4.2) is done only for
the poverty type set, with the orientation of the axis chosen consequently from left
(poorer) to right (less poor).

Coming back to matrices A and B above, this algorithmic approach to the CIP
means that we move simultaneously in the whole matrices A and B, A to identify
any existing poverty ordering consistency, B to keep the most relevant ones accord-
ing to the discrimination measure, and, avoiding any overlapping, this optimization
process is translated into a CIP according to the duality frame 3.18a.

Deliberately we did not use the term poverty dimension set in place of poverty
type set. A poverty dimension is identified a priori as a subset of indicators relative
to the same domain of basic needs or basic welfare. It is an a priori concept. A
poverty type is a statistical concept defined from the multivariate distribution of the
whole set of indicators in a given population. A poverty type can, and will usually
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be, poverty multidimensional. It is a concept that helps exploring, reducing, and
clarifying the meaning of multidimensional poverty in a given population, according
to a behavioral specificity of that population and/or to specific poverty reduction
policies. Numerous poverty dimensions can thus shrink into just one poverty type,
or some types, which obviously should simplify the analysis. This is what we try
to achieve by the proposed generalized construction of the composite indicator of
poverty.

It should be noted that the two very relevant properties of MCA, the marginal-
ization preference equation 3.17 and the reciprocal bi-additivity, especially equa-
tion 3.18b, are valid in each of the L* axes involved in the generalized definition
and thus keep their meaning, in the relevant poverty type I , for the interpretation
of the categorical weights of the κ∗

l indicators defining this type. Moreover, the
composite poverty ordering consistency remains valid for each identified poverty
axis, with obvious adaptation.

The whole generalization approach must be viewed as an effort to highlight the
multidimensional poverty structure hidden in the K-variate measurement of poverty,
and at the same time to integrate into the composite indicator of poverty the maxi-
mum amount of information from the full information contained in the K primary
indicators, as measured by the total inertia.

3.5 MCA: A Numerical Illustration

To illustrate the MCA technique described in Section 3.4, we use a household data
set provided by the poverty observatory experimented in Vietnam in 2002 for moni-
toring the National Programme for Hunger Eradication, Poverty Reduction and Job
Creation. The household survey was run in 4,000 households drawn from 20 com-
munes, following the CBMS methodology developed in Vietnam by the Vietnam
Socio-Economic Development Centre in partnership with MOLISA.31

Thirteen nonmonetary poverty indicators have been aggregated into a composite
indicator. These indicators come from the areas of education (schooling, literacy),
health (sickness events, sick days), housing conditions (type of house, toilet, and
electricity), and household equipment (bicycle/motorcycle, radio/TV). Education
and health indicators are broken down according to gender. These indicators are
presented in Table 3.1, which provides the main numerical results coming out of the
MCA computation.

The two columns “Factorial scores” give the values W α,k
jk and the columns show

the values Δk
l defined in equation 3.22.

31 MOLISA: Ministry of Labour, Invalides and Social Affairs.
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Table 3.1 Vietnam MOLISA poverty observatory; MCA results

Factorial score Discrimination measures

INDICATOR Category axis # 1 axis # 2 axis # 1 axis # 2

Male child. 6–15 not
going to school

Yes −1,109 −0,056 0,07 0,00
No 0,059 0,003

Female child. 6–15
not going to
school

Yes −1,166 0,132 0,09 0,00
No 0,074 −0,008

Hld with illiterate
male adults

Yes −2,04 0,222 0,27 0,00
No 0,134 −0,014

Hld with illiterate
female adults

Yes −1,371 0,267 0,29 0,01
No 0,211 −0,041

Sickness events
male per cap.

no sickness 0,03 0,518 0,00 0,61
0–1/2 −0,071 −0,734
1/2 to 1 −0,065 −1,049
103>=1 −0,051 −1,596

Sickness events
female per
cap.

no sickness 0,025 0,628 0,00 0,60
0–1/2 −0,146 −0,54
1/2 to 1 0,021 −0,832
103>=1 0,019 −1,335

Hld with radio or tv With radio or tv 0,37 −0,021 0,43 0,00
Without radio

and tv
−1,153 0,067

Hld with bicycle or
motocycle

With
bicycle/moto

0,265 −0,031 0,44 0,01

Without
bicycle/moto

−1,671 0,198

Type of housing Multi-storey
permanent

1,063 0,38 0,40 0,01

One-storey
permanent

0,577 −0,037

Semi-permanent 0,08 0,013
Temporary −1,125 −0,084
Not having

owned house
−1,948 −0,035

Type of toilet Flush toilet
septic tank

0,841 0,088 0,40 0,01

Double vault
compost
latrine

0,584 −0,045

On fish ponds 0,236 0,186
Simple toilet/pit

latrine
−0,482 0,016

On river, canal −0,505 −0,122
Not having

owned toilet
−0,905 −0,187

Hld with electricity Hld with
electricity

0,284 −0,03 0,49 0,01

Hld without
electricity

−1,761 0,185
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Table 3.1 (continued)

Factorial score Discrimination measures

INDICATOR Category axis # 1 axis # 2 axis # 1 axis # 2

Number of sick days
male per cap.

No sick days 0,053 0,445 0,01 0,57
Less than 5 days −0,046 −1,255
More than

5 days
−0,216 −1,305

Number of sick days
female per cap.

No sick days 0,045 0,528 0,00 0,56
Less than 5 days −0,121 −0,956
More than

5 days
−0,076 −1,122

average = eigenvalue 0,22 0,18

These results are summarized in Graphs 3.1, 3.2, 3.3, and 3.4.
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Discrimination measures for each indicator
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Graph 3.4 Discrimination measures, first two axes

From Graphs 3.1 and 3.3 we see that the subsets of the four education indicators
and the five household assets indicator meet the FAOC-I consistency requirement,
and since the orientation is the same, altogether these nine indicators are globally
consistent. But first-axis consistency problems appear with the health indicators. In
fact, three of these four indicators are not consistent with the first axis, as can be
seen from Graph 3.2. Only “number of sick days for male per capita” is FAOC-I
and could be kept in a composite indicator with the nine others since it is globally
consistent with them. Thus, considering only the first factorial axis, three health
indicators should be eliminated from the composite indicator.

But we observe immediately from Graph 3.2 that these three health indicators
are consistent relative to the second axis (as well as the fourth one). In fact, the four
health indicators have a high discrimination power on the second axis, and almost
no power relative to the first axis. Graph 3.2 illustrates very clearly this observa-
tion: education and asset indicator discriminate highly on axis #1 and very little on
axis #2, with the reverse situation for health indicators. This is precisely the case
where, to avoid an important loss of information, the poverty types algorithm of
Section 3.4.4 can be expected to be more efficient in the construction of a compos-
ite indicator by translating numerically what is immediately revealed graphically.
Computations are presented in Table 3.2.

The 13 indicators are listed in lines, with their discrimination measures on all
factorial axes as columns. Here we limit the table to the first three axes since the
algorithm, version “admissible sequence,” stops at axis #2. The algorithm has been
pursued until factorial axis #8, where 50% of the total inertia 2 (39/13 −1) is
reached, without providing any additional poverty set beyond axis #2.
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The first step identifies, on axis # 1, only one subset of indicators satisfying the
AOC condition, the 10 indicators colored32 in dark gray in the relevant column.
This identification requires going back to Graphs 3.1, 3.2, and 3.3 or to Table 3.1.
The other three indicators (health) are not consistent. Then we check if the inertia
explained by these 10 indicators, 2.886, is at least 50% of the first axis total inertia,
which is 1.448. We thus accept axis #1 as describing a poverty type, the poverty
type set being the 10 consistent indicators.

The second step, relative to axis #2, identifies a first subset of five consistent
indicators, dark gray colored: the four health indicators plus the male school atten-
dance indicator.33 Their discriminating power is 2.339. A second subset, light gray
colored, consistent in the direction opposite to the first subset, includes five indica-
tors with a discriminating power of 0.028. The dark gray subset has more inertia
than the required 50% of 1.192 and can thus be accepted as a poverty type subset
of indicators; it is completely dominated by the four health indicators. Then arises
the elimination of overlapping between the poverty type subsets of axes #1 and
#2. “Hld with male child. 6–15 not going to school” is kept in axis #1 where its
discriminating power 0.066 is much higher than the 0.000 on axis #2. “Number of
sick days for male per capita” is kept in the poverty type subset of axis #2 with a
discriminating power of 0.572 instead of 0.010 on axis # 1. The two overlapping
indicators are now labeled in white color on the axis where they are eliminated.

We then have two nonoverlapping poverty type subsets, one with nine indicators,
another with four, covering the whole set of the 13 indicators. According to the
minimal sequence algorithm, we can stop here. Just for curiosity, in Table 3.2 we
present the third axis. As can be seen, there are two subsets of AOC indicators,
but none of them can reach the requested inertia value 0.749. A similar situation
is met for all subsequent axes until axis #8, where at least 50% of the total inertia
is explained, and thus an admissible sequence is achieved. Only the first two axes
provide poverty sets.

There is a large information gain by using the poverty types algorithm:

– with 13 indicators and 39 categories, the total inertia is (39/13) −1 = 2;
– with reference to equation 3.25, “Total Inertia Decomposition,” and Table 3.2,

the inertia relative to the 10 indicators consistent on axis #1 is 2.886/13 =
0.222, 11.1% of total inertia;

– the inertia collected by the 13 indicators coming out of the first two axes is
(2.876 + 2.339)/13 = 0.401, 20.0% of total inertia, i.e., 81% more than with
only the first axis. But the most important fact is that all 13 primary indicators
appear in the composite indicator.

32 As a convention, the dark gray color identifies the left to right (bottom-up) axis orientation, and
the light gray color shows the reverse orientation.
33 Its very low discrimination measure is 0.000169.
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Table 3.2 Poverty types algorithm, minimal sequence

Discrimination measures
Indicators Dimension (factorial axis)

1 2 3
Hld with male child. 6–15 not going to school 0.066 0.000 0.047
Hld with female child. 6–15 not going to school 0.087 0.001 0.039
Hld with illiterate male adults 0.274 0.003 0.022
Hld with illiterate female adults 0.289 0.011 0.027
Sickness events for male per capita 0.002 0.605 0.271
Sickness events for female per capita 0.003 0.598 0.342
Hld with radio or TV 0.427 0.001 0.030
Hld with bicycle or motorcycle 0.443 0.006 0.007
Type of housing 0.399 0.008 0.020
Type of toilet rec 0.401 0.009 0.058
Hld with electricity 0.492 0.005 0.001
Number of sick days for male per capita 0.010 0.572 0.220
Number of sick days for female per capita 0.004 0.564 0.416

13*50% eigenvalue 1.448 1.192 0.749

Before eliminating intersections 2.886 2.339 0.135
0.028 0.038

After eliminating intersections- 3 axis 2.876 2.339

Table 3.3 summarizes the computation of the final rescaled weights appearing in
the generalized CIP formula 3.26 above.

Table 3.3 Final categorical weights

Factorial score Rescaled weights◦ 1000
Final

INDICATOR Category Axis # 1 Axis # 2 Axis # 1 Axis # 2 weight

Male child. 6–15
not going to
school

Yes −1.109 −0.056 0 0
No 0.059 0.003 2475 2475

Female child.
6–15 not
going to
school

Yes −1.166 0.132 0 0
No 0.074 −0.008 2627 2627

Hld with
illiterate male
adults

Yes −2.04 0.222 0 0
No 0.134 −0.014 4606 4606

Hld with
illiterate
female adults

Yes −1.371 0.267 0 0
No 0.211 −0.041 3352 3352

Sickness events
male per cap.

No sickness 0.03 0.518 4936 4936
0–1/2 −0.071 −0.734 2013 2013
1/2–1 −0.065 −1.049 1277 1277
I03>=1 −0.051 −1.596 0 0
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Table 3.3 (continued)

Factorial score Rescaled weights◦ 1000
Final

INDICATOR Category Axis # 1 Axis # 2 Axis # 1 Axis # 2 weight

Sickness events
female per
cap.

No sickness 0.025 0.628 4584 4584
0–1/2 −0.146 −0.54 1856 1856
1/2 to 1 0.021 −0.832 1175 1175
I03>=1 0.019 −1.335 0 0

Hld with radio or
TV

With radio or TV 0.37 −0.021 3227 3227
Without radio and

TV
−1.153 0.067 0 0

Hld with bicycle
or motorcycle

With bicycle/moto 0.265 −0.031 4102 4102
Without

bicycle/moto
−1.671 0.198 0 0

Type of housing Multi-storey
permanent

1.063 0.38 6379 6379

One-storey
permanent

0.577 −0.037 5350 5350

Semi-permanent 0.08 0.013 4297 4297
Temporary −1.125 −0.084 1744 1744
Not having owned

house
−1.948 −0.035 0 0

Type of toilet Flush toilet septic
tank

0.841 0.088 3699 3699

Double-vault
compost latrine

0.584 −0.045 3155 3155

On fish ponds 0.236 0.186 2417 2417
Simple toilet/pit

latrine
−0.482 0.016 896 896

On river, canal −0.505 −0.122 847 847
Not having owned

toilet
−0.905 −0.187 0 0

Hld with
electricity

Hld with
electricity

0.284 −0.03 4333 4333

Hld without
electricity

−1.761 0.185 0 0

Number of sick
days male per
cap.

No sick days 0.053 0.445 4086 4086
Less than 5 days −0.046 −1.255 117 117
More than 5 days −0.216 −1.305 0 0

Number of sick
days female
per cap.

No sick days 0.045 0.528 3853 3853
Less than 5 days −0.121 −0.956 388 388
More than 5 days −0.076 −1.122 0 0

eigenvalue 0.22 0.18
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