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   Cerebrovascular Disease and O-15 PET 

   Measurement of Hemodynamic 
Parameters Using O-15 PET 

 Positron emission tomography (PET) and O-15 
tracers have been used for greater than 30 years 
to evaluate human cerebral hemodynamics in 
patients with cerebral vascular disease (CVD). 
Quantitative measurement of cerebral blood  fl ow 
(CBF) and metabolism is important because criti-
cal impairment of cerebral circulation induces 
irreversible damage to the cerebral cortex, caus-
ing neuronal de fi cits or functional damage. The 
cerebral regions of impaired hemodynamics, 
“misery perfusion” are visualized by mismatch 
between oxygen metabolism and CBF  [  1,   2  ] , 
which is usually delineated by the elevation of 
oxygen extraction fraction (OEF) in O-15 gas 
PET  [  2–  6  ] . Because patients with misery perfu-
sion show a signi fi cantly higher incidence rate 
of stroke or recurrent stroke  [  7–  9  ] , evaluation of 

hemodynamic status in CVD patients is very 
important to determine indication of neurosur-
gical treatment. To quantitatively evaluate cere-
bral hemodynamic status, methods for precise 
measurement were developed and its accuracy 
has also been improved with the progression of 
PET scanner resolution. 

 The historic development of PET measure-
ment of cerebral hemodynamic parameters is 
shown in Table  14.1   [  10–  25  ] . The impaired 
hemodynamic status of misery perfusion was at 
 fi rst determined using a count-based semiquanti-
tative method  [  1,   2  ] . Quantitative methods for 
cerebral circulation and oxygen metabolism 
were proposed in the early 1980s, and the two 
common methods based on a single compart-
ment model are known as the steady-state 
method and the bolus inhalation method (so- 
called ‘autoradiographic’ or ‘three-step’ method)  
(Fig.  14.1a ). A quantitative steady-state method 
with continuous inhalation of O-15 labeled gases 
such as  15 O 

2
 , C 15 O 

2
  and C 15 O was proposed 

 [  15,   16  ] . Lammertsma et al. corrected the effect 
of cerebral blood volume (CBV) on OEF in 
the O-15 gas steady-state method  [  17  ] . OEF is 
usually overestimated when CBV    correction is 
not applied. Although this method is simple and 
easier than the bolus tracer administration 
method, speci fi c equipment must be installed to 
keep radioactive gas at a constant rate of concen-
tration during PET scans, and patients cannot 
avoid high exposure to radioactive gas. The auto-
radiographic method developed for measurement 
of CBF using O-15 water was applied  [  18,   19  ]  to 
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the measurement of  oxygen metabolism with 
bolus administration of O-15 tracers (three-step 
method)  [  20  ] . This method does not require the 
speci fi c equipment to maintain a constant con-
centration rate of radioactive gas.   

 Because various quantitative methods for 
measurement of CBF using O-15 water PET 
were proposed, the method for quantitative 
measurement was improved, as well as several 
methods for image calculation and correction of 
parameters to improve the image quality and 
calculation time  [  25–  35  ] . A two-compartment (one-
tissue compartment) model analysis increased 
the accuracy of CBF values by separating the 
vascular component from the blood  fl ow value 
as shown in the following equation (Fig.  14.1b ) 
 [  24,   25  ] :

      ( ) ( ) ( )−= ⊗ +2t
b 1 a 0 aC t ·C t e V ·C t .kK   

where C 
b
 (t) and C 

a
 (t) are the concentrations of 

tracer in the brain and arteries,  K  
 1 
  and  k  

 2 
  are 

rate constants, V 
0
  is arterial-to-capillary blood 

volume, and ⊗ denotes operation of convolu-
tion. A single-compartment model analysis can 
be described with elimination of the second 

term in this equation  [  18,   19  ] . Rate constant of 
 K  

 1 
  linearly correlates with blood  fl ow, which 

can be corrected by extraction of the tracer 
( K  

 1 
  =  E · F ;  E  = extraction,  F  = blood  fl ow). If 

this method is applied to the bolus 15O 
2 
 inha-

lation method, the cerebral metabolic rate of 
oxygen    (CMRO 

2
 ) can be calculated without 

measuring CBF and CBV by the equation of 
CMRO 

2
  = tO 

2
 c· K  

 1 
 , where tO 

2
 c is total arterial 

O 
2
  content (one-step method)  [  24  ] . This method 

includes an assumption that the metabolized 
and recirculating radioactivity of O-15 water is 
negligible during the scanning time. The 
CMRO 

2
  values tend to be overestimated 

because of this assumption as well as the fact 
that venous radioactivity cannot be eliminated 
completely despite separation of V 

0
   [  24,   36  ] . 

This simple method, however, can evaluate 
changes in oxygen metabolism during neural 
stimulation by repeated measurement of 
CMRO 

2
  in activation studies  [  37  ] . Recently, a 

report from 11 PET centers in Japan, in which 
several representative methods for O-15 PET 
were used, showed no signi fi cant differences in 
quantitative values of hemodynamic parame-
ters among the methods  [  38  ] . In this study, 
overall mean ± SD (standard deviation) values in 

   Table 14.1    Measurements of CBF and oxygen metabolism using O-15 tracers   

 Authors  Tracers  Method  Parameters  Year  References 
 Ter-Pogossian et al., 
Raichle et al. 

 H  
2
  15  O,  15 O 

2
   Bolus (No. image)  CBF, CMRO 

2
   1969–1976   [  10–  13  ]  

 Jones et al.   15 O 
2
 , C 15 O 

2
   Steady-state  Qualitative  1976   [  14  ]  

 Frackowiak et al., 
Lammertsma et al. 

  15 O 
2
 , C 15 O 

2
   Steady-state  CBF, OEF, 

CMRO 
2
  

 1980, 1981   [  15,   16  ]  

 Lammertsma et al.   15 O 
2
 , C 15 O  Steady-state(OEF-CBV 

correction) 
 OEF, CMRO 

2
   1983   [  17  ]  

 Herscovitch et al., 
Raichle et al. 

 H  
2
  15  O  Bolus, (ARG)  CBF  1983   [  18,   19  ]  

 Mintun et al.  H  
2
  15  O,  15 O 

2
 , C 15 O  Bolus, (3-step)  CBF, CBV, 

OEF, CMRO 
2
  

 1984   [  20  ]  

 Lammertsma et al.   11 CO,  11 C-HSA  Equilibrium  CBV, Htc ratio  1984   [  21  ]  
 Gambhir et al.  H  

2
  15  O  Bolus, (2-CM)  CBF, V 

d
   1987   [  22  ]  

 Lammertsma et al.  C 15 O 
2
   Build-up  CBF  1989   [  23  ]  

 Ohta et al.   15 O 
2
 , H  

2
  15  O  Bolus, (1-step, 2-CM)  CMRO 

2
 , OEF, 

CBF, V 
0
  

 1992, 1996   [  24,   25  ]  

   CBF  cerebral blood  fl ow,  CMRO  
 2 
  cerebral metabolic rate of oxygen,  OEF  oxygen extraction fraction,  CBV  cerebral 

blood volume,  V  
 d 
  distribution volume,  Htc ratio  cerebral-to-large vessel hematocrit ratio,  V  

 0 
  arterial-to-capillary 

volume,  ARG  autoradiographic method,  CM  compartment model  
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cerebral cortical regions for healthy human 
 subjects were CBF = 44.4 ± 6.5 mL/100 g/min, 
CBV = 3.8 ± 0.7 mL/100 g, CMRO 

2
  = 3.3 ± 

0.5 mL/100 g/min, and OEF = 0.44 ± 0.06. 
 Contrary to the development of precise 

quanti fi cation methods, one long-term prospec-
tive study reported that the diagnostic accuracy 
for misery perfusion was similar to, or rather, bet-
ter with the count-based method compared with 
the quantitative evaluation  [  39,   40  ] . Recent 
reports on the application of count-based semi-
quantitative methods have been controversial. A 
normalized method using cerebellar counts 
showed poor agreement with quantitative OEF 
elevation  [  41  ] . However, another study employ-
ing a simpli fi ed ipsilateral-to-contralateral asym-
metry index (AI) comparison method using 
count-based ratio images showed good accor-
dance with the AI of quantitative OEF in CVD 
patients  [  42,   43  ] . The advantage of these 

simpli fi ed methods is that the scanning protocol 
is simple and the procedure is noninvasive with-
out arterial blood sampling. For precise evalua-
tion of hemodynamic changes in the brain, 
quantitative methods with arterial blood sampling 
are required; however, in clinical studies, the 
simpli fi ed method is preferable for assessment of 
the hemodynamic status.   

   Chronic Cerebrovascular Disease 

 CBF autoregulation is the mechanism by which 
CBF is maintained during changes in systemic 
blood pressure. This physiologic function also 
can be applied to the relationship between 
changes in cerebral perfusion pressure (CPP) and 
CBF. CBF is maintained by autoregulatory vaso-
constriction and vasodilatation of arterioles when 
CPP is changed; however, CBF decreases when 
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15O

Brain tissue

Arterial 15O2
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  Fig. 14.1    Schematic of one-compartment ( a ) and two-
compartment (one-tissue compartment) ( b ) models for 
calculation of CBF and oxygen metabolism. In model ( a) , 
CBF calculation using H  

2
  15  O or C 15 O 

2
  can be explained by 

neglecting  15 O 
2
  elements. C 

a
  and C 

b
  are the concentrations 

of arterial and brain tissue radioactivity,  K  
 1 
  and  k  

 2 
  are rate 

constants of tracers, and V 
0
  is the arterial-to-capillary 

blood volume       
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CPP decreases below the lower limit of autoregu-
lation (Fig.  14.2 ). Experiments on cerebrovascu-
lar autoregulation have shown an increase in the 
diameter of resistance arteries as a function of the 
decrease in systemic blood pressure  [  44,   45  ] . 
Although this vasodilatory change caused by a 
reduction in blood pressure is a well-known 
physiologic reaction in the acute phase, it is not 
clear whether the cerebral circulation in patients 
with chronic CVD shows similar vasodilatory 
compensation in the resistance arteries. To 
explain the cerebral hemodynamic changes in 
CVD patients, Powers et al. originally presumed 
that the dilatory change in resistance vessels con-
tinues even after the vasodilatation can no longer 
compensate for CBF autoregulation as described 
in animal experiments (Fig.  14.2a )  [  3,   5,   6  ] . They 
later modi fi ed this model with respect to hemo-

dynamics in chronic CVD patients (Fig.  14.2b ) 
 [  39,   46  ]  and reported the importance of neurosur-
gical treatment for stage II ischemia. Recently, 
Nemoto et al. slightly corrected this hemody-
namic assumption based on their analysis using a 
two-compartment model (Fig.  14.2c )  [  47  ] . 
However, most patients with misery perfusion 
usually show a slight decrease in CMRO 

2
  

(Fig.  14.2d ) as described by Powers et al. in their 
reports  [  3–  5  ] .  

 Several researchers and neurosurgeons 
reported that the extracranial-to-intracranial (EC/
IC) bypass surgery is ef fi cient for patients with 
misery perfusion caused by cerebral arterial 
occlusive lesions  [  3–  6,   48  ] . However, the multi-
center cohort study conducted in the mid-1980s 
for evaluation of prognosis of CVD patients con-
tradicted the effectiveness of the EC/IC bypass 

a b c

Stages III II I III II I III II I

CPP

CBV

CBF

OEF

CMRO2

d

CBV

CBF

OEF

CMRO2

  Fig. 14.2    Graph explaining changes in hemodynamic 
parameters induced by decreases in perfusion pressure 
(CPP). Powers et al. initially proposed the basic concept 
of hypothesis ( a ), and later revised the model with a 
minor change in CBV ( b )  [  3–  6,   40,   46  ] . Nemoto et al. 
modi fi ed this model based on their two-compartment 

analysis ( c )  [  47  ] .  Dotted  area in the graph shows stage II 
impairment. Representative PET images for patients 
with misery perfusion (stage II) are presented in the 
right column ( d ). Misery perfusion shows a slight 
decrease in CMRO 

2
  at the region of CBF decrease and 

OEF elevation       
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surgery  [  49,   50  ] . The problem with the cohort 
study performed by the EC/IC bypass surgery 
group was that patient entry criteria were inappro-
priate. All patients with stenotic lesions in the 
internal carotid arteries were involved in the 
study, and there was no signi fi cant difference in 
outcome between the surgical treatment and simple 
medication groups. However, as many recent 
studies have suggested, if the patients do not show 
neurologic symptoms, stenoocclusive lesions do 
not necessarily cause hemodynamic impairment 
that may induce strokes in the brain  [  51–  53  ] . 
Several long-term prospective studies have shown 
that patients without hemodynamic de fi ciency did 
not have a high incidence of subsequent infarction 
compared with those with misery perfusion. In 
their 5-year follow-up study ( n  = 40), Yamauchi 
et al. (Kyoto University group) showed that the 
recurrence rate of stroke was signi fi cantly higher 
in patients with misery perfusion (57.1%) com-
pared with those without OEF elevation (18.2%) 
 [  7,   8  ] . Grubb et al. (Washington University group) 
also showed a similar result with a larger patient 
sample ( n  = 81) and 3-year follow-up period  [  9  ] . 
Their results suggest that a patient with stenooc-
clusive lesions in major cerebral arteries may not 
show neurologic de fi cits or hemodynamic impair-
ment if the lesion advances slowly enough to 
generate suf fi cient collateral circulation. 

 This evidence shows the importance of evalu-
ation of the cerebral circulation and oxygen 
metabolism; however, the degree of hemody-
namic impairment can be evaluated by a reduc-
tion of cerebral vasoreactivity (CVR) after 
acetazolamide (ACZ) or CO 

2
  loading  [  54–  56  ] . 

The vasodilatory effect of ACZ or CO 
2
  without 

changes in systemic blood pressure causes 
increases in CBF in normal circulation  [  54,   57, 
  58  ] . Recently, several long-term prospective stud-
ies were conducted using the quantitative mea-
surement of baseline CBF and CVR to con fi rm 
the risk of developing cerebral infarction in hemo-
dynamic impairment  [  59–  67  ] . The studies were 
performed to contradict the prospective cohort 
study that denied the effectiveness and bene fi ts of 
EC/IC bypass surgery for patients with cerebral 
arterial occlusion. The aim of the studies was to 
prove that symptomatic patients with CVD who 

have hemodynamic impairment should be treated 
by surgical or interventional methods to avoid 
recurrent strokes. The studies with alternative 
methods reported a bene fi t of measuring CVR to 
evaluate the hemodynamic condition and to pre-
dict the risk of subsequent strokes  [  59–  64  ] . On 
the other hand, nonquantitative evaluation of 
CVR failed to predict any signi fi cant difference 
in recurrent stroke risk between normal and 
impaired CVR groups  [  65–  67  ] . A recent study 
reported that diagnostic accuracy for detecting 
misery perfusion by using quantitative measure-
ment of CBF and CVR after ACZ administration 
had a sensitivity of 56.3%, speci fi city of 88.2%, 
and accuracy of 78.0%  [  68  ] . 

 Figures  14.3  and  14.4  show representative 
cases of stage I and stage II hemodynamic impair-
ment. A patient with stage I showed a decrease in 
CVR without elevation of OEF (Fig.  14.3 ), while 
a patient with misery perfusion (stage II impair-
ment) showed elevation of OEF as well as a 
decrease in CVR in the affected hemisphere.    

   Evaluation of Cerebral Glucose 
Metabolism Following Stroke 

 Stroke is caused by a variety of pathologic 
changes that produce a focal reduction of blood 
 fl ow or multifocal regions of compromised per-
fusion. In most of these cases, the end result of 
reduced CBF and inadequate delivery of oxygen 
and glucose to the brain is cerebral infarction 
 [  69  ] . In stabilized infarction, [ 18 F]2- fl uoro-2-
deoxy-D-glucose (FDG) PET shows a focal area 
of hypometabolism in a location consistent with 
focal cerebral infarction  [  70  ] . However, the meta-
bolic impairment in stroke patients is not limited 
to the area of infarction. PET and single-photon 
emission computed tomography studies have 
demonstrated remote effects in regional CBF and 
metabolism consequent to focal infarction  [  71  ] . 
From the early period after an acute brain lesion, 
diaschisis can develop because of reduced cere-
bral function resulting from the interruption of 
normal input to a region not directly involved in 
the stroke.    Distinguishing between regional isch-
emia and depressed neurometabolic activity is 
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aided by the calculation of OEF with CMRO 
2
  and 

cerebral metabolism  [  48,   72,   73  ] . In the regions 
of diaschisis, the metabolic rate as measured by 
local glucose consumption was decreased, while 
OEF and CMRO 

2
  are preserved. Although there 

are reports of ischemic penumbra and luxury per-
fusion persisting after stroke  [  74,   75  ] , normal 
oxygen extraction surrounding stroke suggests 
diaschisis  [  76  ] . 

 It is likely that diaschisis is associated with 
functional impairment can determine the severity 
of the clinical images in the acute stage and its 
recovery     [  77  ] . Diaschisis can occur in the areas 
surrounding the “infarcted” lesion, in the outside 
of the lesion in the affected hemisphere as well as 
in the other    hemisphere (e.g., “cross hemispheric” 
or “cross callosal” diaschisis). A regression of 
diaschisis is usually, although not invariably, 
found in the following months and may be related 
to the clinical recovery  [  78  ] . Immediately fol-
lowing stroke, extensive functional depression 
measured by glucose consumption and associ-
ated functional impairment can develop in the 

bilateral hemisphere  [  71,   79,   80  ] . In many 
reports, the improvement in function after left 
middle  cerebral artery    (MCA) stroke, e.g., pro-
gression from hand and leg weakness with apha-
sia to only hand weakness has been observed and 
seems linked to the anatomy adjacent to the cere-
bral infarction. Cortical diaschisis is particularly 
prominent with thalamic infarcts which often 
lead to pronounced thalamocortical diaschisis 
with correspon   ding cognitive de fi cits  [  81,   82  ] . In 
patients with cortical or subcortical infarction 
involved in the language area, regression of 
intrahemispheric and transhemispheric diaschisis 
may be associated with the recovery of a func-
tion that is subserved by an extensive network of 
interconnected regions in both hemispheres, at 
least in the  fi rst 6 months following stroke  [  78  ] . 
However, in cases of crossed (contralateral) cer-
ebellar diaschisis (CCD) which can occur early 
after supratentorial ischemic lesions, particularly 
in the basal ganglia or frontal or parietal corticex, 
CCD can persist over a long period of time with 
   eventual cerebellar atrophy, but usually lacks 

  Fig. 14.3    A representative case of a stage I patient with 
stenosis in the left MCA. CBF and CMRO 

2
  did not show 

a signi fi cant decrease in the affected hemisphere, but CVR 

after ACZ administration showed the lack of vascular 
reactivity. Numbers are quantitative values for each 
hemisphere MRA: MR angiography       
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major correlates in neurologic functional impair-
ment. The regional glucose metabolism in 
diaschisis in the early period following stroke 
may be associated with functional improvement 
during the recovery phase  [  83,   84  ] . Cerebral glu-
cose metabolism in the left hemisphere outside 
the infarcted region, particularly temporoparietal 
metabolism, in the acute stage following stroke 
in the left hemisphere is thought to be the best 
predictor of recovery of auditory comprehension 
 [  85  ] , and suggests an important role for intra-
hemispheric diaschisis in determining the sever-
ity of the clinical picture in the acute stage and its 
recovery     [  86  ] . 

 Bilateral temporoparietal glucose metabolism 
shows a positive correlation with auditory com-
prehensive function in patients with aphasia fol-
lowing stroke. 

 Besides of the resolution of diaschisis, reorga-
nization in the brain plays an important role in 
poststroke functional recovery. Changes in 
regional glucose metabolism in the contralateral 

hemisphere associated with poststroke reorgani-
zation have been detected by FDG PET  [  83  ] . The 
parallel change in glucose metabolism and high-
energy phosphate metabolism associated with 
poststroke functional recovery is possibly 
explained by cerebral reorganization in the con-
tralateral premotor cortex. The resulting cerebral 
reorganization may account for improved patient 
functional recovery from stroke. Similar  fi ndings 
can be observed in patients with aphasia follow-
ing stroke. The changes in neuronal activities 
measured by glucose metabolism in the surround-
ing area of the “infarcted” region, in the contralat-
eral mirror area and left Broca’s area during 
activation were highly predictive of the recovery 
of auditory comprehension, indicating that the 
possibility to activate an extensive, bihemispheric 
neural network was crucial for recovery     [  84  ] . 
Hypermetabolism, measured by increased FDG 
uptake in the contralateral homologous area, indi-
cates that there is increased energy being used, 
possibly because of increased neuronal plasticity.      

  Fig. 14.4    A representative case of chronic CVD with 
misery perfusion (stage II) in the right cerebral hemi-
sphere as a result of right MCA occlusion (see MRA   ). 

This patient did not show decrease in CMRO 
2
  in the 

impaired region ( right  frontal lobe). Numbers are quanti-
tative values for each hemisphere       
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