
Chapter 8
Phase transitions in physiologically-based
multiscale mean-field brain models

P.A. Robinson, C.J. Rennie, A.J.K. Phillips, J.W. Kim, and J.A. Roberts

8.1 Introduction

Brain dynamics involves interactions across many scales—spatially from micro-
scopic to whole-brain, and temporally from the sub-millisecond range to seconds,
or even years. Except under artificial conditions that isolate a single scale, these
multiscale aspects of the underlying physiology and anatomy must be included to
model the behavior adequately at any scale. In particular, microscale behavior must
be included to understand large-scale phase transitions, because the theory of critical
phenomena implies that their properties are strongly constrained by the symmetries
and conservation properties of the system’s microscopic constituents [2].

In condensed matter physics, where they are most familiar, phase transitions arise
at the macroscale in systems of atoms, molecules, nuclear spins, or other micro-
scopic constituents. Phase transitions are intrinsically collective properties that are
typically analyzed in the thermodynamic limit of infinitely many constituents. They
become apparent through discontinuous changes in large-scale order parameters or
their derivatives. Examples include the sudden change in density at vaporization or
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freezing, with an associated nonzero specific heat, or the divergent magnetic suscep-
tibility (derivative of magnetization) at the transition of iron from its nonmagnetic
state to a ferromagnetic one with falling temperature, where there is no associated
specific heat. Such transitions are termed first-order and second-order, respectively,
and occur at critical points at which thermodynamic variables such as temperature,
pressure, etc., take on highly specific values [2].

Other systems with phase transitions have been identified. Notable are self-
organized critical (SOC) systems which self-organize to the critical point, rather
than requiring external tuning parameters to be set independently as in thermody-
namic transitions. One example is an idealized sandpile growing by the continuous
addition of grain, whose slope (the tuning parameter) adjusts itself automatically
to very near the critical value at which avalanches commence. The critical slope is
then maintained by balance between addition of grains and their loss via avalanches.
Criticality in plasma systems has also been shown to be closely associated with mi-
croinstabilities of the system that lead to macroscopic changes in the system state
[10, 11]. Phase transitions are accompanied by divergent correlation lengths of fluc-
tuations, 1/ f power-law spectra, and power-law probability distributions of fluctua-
tion amplitudes, the latter two effects implying that critical states inherently involve
a wide range of scales in their dynamics.

Mean-field theories provide a natural basis for modeling and analyzing phase
transitions in neural systems. Moreover, links to measurements become easy to
include—an essential point because most measurement processes aggregate over
many neurons and all modify signals in some way. Mean-field theories that incor-
porate the measurement function are a natural bridge between theoretical and exper-
imental results.

In the class of models described here, averages are taken over microscopic neural
structure to obtain mean-field descriptions on scales from tenths of a millimeter up
to the whole brain, incorporating representations of the anatomy and physiology of
separate excitatory and inhibitory neural populations, nonlinear neural responses,
multiscale interconnections, synaptic, dendritic, cell-body, and axonal dynamics,
and corticothalamic feedback [4, 7, 12, 14, 16, 17, 24–27, 30–38, 42, 48, 50]. These
models readily include measurement effects such as the volume conduction that acts
to spatially smooth EEG signals, and the hemodynamic response that temporally
filters the BOLD signal that underlies functional MRI.

Essential features of any realistic neurodynamic model are that it: (i) be based
on physiology and anatomy, including the salient features at many spatial and tem-
poral scales; (ii) be quantitative with predictions that can be calculated analytically
or numerically, including measurement effects; (iii) have parameters that directly
relate to physiology and anatomy, and that can be measured, or at least constrained
in value, via independent experiments (this does not exclude the theory itself en-
abling improved estimates of parameters); (iv) be applicable to multiple phenomena
and data types, rather than being a theory of a single phenomenon or experimental
modality; and (v) be invertible, if possible, allowing parameters to be deduced by
fitting model predictions to data (the parameters obtained must be consistent with
independent measurements). These criteria rule out (among others) highly idealized
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models of abstract neurons, as are sometimes used in computer science, theories
of single phenomena, or models with parameters highly tailored to single phenom-
ena, models with completely free parameters, and models that take no account of
measurement effects.

We have developed a physiologically based mean-field model of brain dynam-
ics that satisfies the above criteria. When applied to the corticothalamic system, it
reproduces and unifies many features of EEGs, including background spectra and
the spectral peaks seen in waking and sleeping states [32, 34, 37], evoked response
potentials [25], measures of coherence and spatiotemporal structure [19, 20, 26, 27],
and generalized epilepsies and low-dimensional seizure dynamics [4, 31]. Our ap-
proach averages over microstructure to yield mean-field equations in a way that
complements cellular-level and neural-network analyses.

In Sect. 8.2 we outline our model, including its physiological and anatomical
foundations, basic predictions, and its connection to measurements. In Sects 8.3
and 8.4 we then discuss a range of predictions that relate to neural phase transitions
in several regimes, and compare them with experimental data on normal arousal
states, epilepsies, and sleep dynamics. Section 8.5 summarizes and discusses the
material. We also take the opportunity (in Sects 8.2.1 and 8.3.1) to address a number
of fallacies surrounding mean-field theory and its applications, and to highlight open
questions (in Sect. 8.5).

8.2 Mean-field theory

In this section we briefly review our model and its connections with measurable
quantities. More detailed discussion and further generalizations can be found else-
where [24, 25, 28, 29, 37].

8.2.1 Mean-field modeling

The brain contains multiple populations of neurons, which we distinguish by a sub-
script a that designates both the structure in which a given population lies (e.g., a
particular nucleus) and the type of neuron (e.g., interneuron, pyramidal cell). We
average their properties over scales of ∼0.1 mm and seek equations for the resulting
mean-field quantities.

The perturbation Va(r, t) to the mean soma potential is approximated as the sum
of contributions Vab(r, t) arriving as a result of activity at each type of (mainly)
dendritic synapse b, where b denotes both the population and neurotransmitter type,
r denotes the spatial location, and t the time. This gives

Va(r, t) =∑
b

Vab(r, t). (8.1)
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The potential Vab is generated when synaptic inputs from afferent neurons are tem-
porally low-pass filtered and smeared out in time as a result of receptor dynamics
and passage through the dendritic tree (i.e., by dynamics of ion channels, mem-
branes, etc.). It approximately obeys a differential equation [28, 32, 34, 37]

DabVab(r, t) = Nabsabφb(r, t − τab), (8.2)

Dab =
1

αabβab

d2

dt2 +
(

1
αab

+
1
βab

)
d
dt

+1, (8.3)

where 1/βab and 1/αab are the rise and decay times of the cell-body potential pro-
duced by impulse at a dendritic synapse. The right of Eq. (8.2) describes the influ-
ence of the firing rates φb from neuronal populations b, in general delayed by a time
τab due to discrete anatomical separations between different structures. The quantity
Nab is the mean number of synapses from neurons of type b to type a, and sab is the
time-integrated strength of the response in neurons of type a to a unit signal from
neurons of type b, implicitly weighted by the neurotransmitter release probability.
Note that we ignore the dynamics of sab, which can be driven by neuromodulators,
firing rate, and other effects; however, such dynamics can be incorporated straight-
forwardly [5]. An alternative representation of the dynamics in Eq. (8.2) is as a
convolution in which

Vab(r, t) =
∫ t

−∞
Lab(t − t ′)Nabsab φb(r, t − t ′ − τab)dt ′, (8.4)

Lab(u) =
αabβab

βab −αab
(e−αabu − e−βabu). (8.5)

Equation (8.4) is a good approximation to the soma response to a spike input at the
dendrites.

In cells with voltage-gated ion channels, action potentials are produced at the
axonal hillock when the soma potential exceeds a threshold. In effect, Va acts as
a control variable for the fast spike dynamics, taking the place of the applied cur-
rent (apart from a capacitive proportionality) characteristic of single-neuron exper-
iments. Spikes in most cortical cells arise via a saddle–node bifurcation in a set
of Hodgkin–Huxley-like equations for ionic currents [49]. As such, spikes are pro-
duced only for Va above an individual threshold θ̃a, at a mean rate

Qa ∝ (Va − θ̃a)1/2, (8.6)

for low Qa [47], leveling off due to saturation effects at higher Va [49]. Individual
cells differ slightly from the mean in the number and strength of ion channels and,
hence, in θ̃a. Moreover, fluctuations in Va affect the difference in (8.6). Hence, the
dependence (8.6) must be both modified to include saturation and convolved with an
approximately normal distribution of individual deviations to obtain the population-
average response function

Qa(r, t) = S[Va(r, t)], (8.7)
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where S is a sigmoidal function that increases from 0 to Qmax as Va increases from
−∞ to +∞ [7, 28, 37]. We use the form

S[Va(r, t)] =
Qmax

1+ exp{−[Va(r, t)−θa]/σ ′} , (8.8)

where we assume a common mean neural firing threshold θ relative to resting, with
σ ′π/

√
3 being its standard deviation (these quantities and Qmax are assumed to be

the same for all populations for simplicity). When in the linear regime, we make the
approximation

Qa(r, t) = ρaVa(r, t), (8.9)

where ρa is the derivative of the sigmoid at an assumed steady state of the system in
the absence of perturbations (we discuss the existence and stability of such states in
later sections).

Each neuronal population a within the corticothalamic system produces a field φa

of pulses, that travels to other neuronal populations at a velocity va through axons
with a characteristic range ra. These pulses spread out and dissipate if not regen-
erated. To a good approximation, this type of propagation obeys a damped wave
equation [12, 17, 37]:

Daφa(r, t) = S[Va(r, t)], (8.10)

Da =
(

1
γ2

a

∂ 2

∂ t2 +
2
γa

∂
∂ t

+1− r2
a∇

2
)
φa(r, t), (8.11)

where the damping coefficient is γa = va/ra. Equations (8.10) and (8.11) yield prop-
agation ranges in good agreement with anatomical results [3], and with other phe-
nomena. It is sometimes erroneously claimed that this propagation is only an ap-
proximation to propagation with delta-function delays of the form δ (t − |r|/va),
and Eq. (8.11) has even been “derived” from the latter under certain assumptions;
however, in reality, both are approximations to the true physical situation in the
brain.

Equations (8.1)–(8.3), (8.7), (8.8), (8.10), and (8.11) form a closed nonlinear set,
which can be solved numerically, or examined analytically in various limits (see
Sect. 8.3).

Once a set of specific neural populations has been chosen, and physiologically
realistic values have been assigned to their parameters, these equations can be used
to make predictions of neural activity. It should be noted that these equations govern
spatiotemporal dynamics of firing rates, not of the individual spike dynamics. The
two are tightly correlated, but the nonlinearities of our equations are weaker than
those that produce the spikes themselves, at least in the sense that they only produce
effects on much longer timescales than those of spikes. We stress that the oscilla-
tions predicted from our equations are collective oscillations of the rate of spiking,
whose frequencies do not directly relate to the frequency of spiking itself—a com-
mon misunderstanding of mean-field models by those more familiar with spiking
neurons.
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8.2.2 Measurements

Once neural activity has been predicted from stimuli, one must relate it to mea-
surements to interpret experimental results. The limited spatiotemporal resolution
of such measurements often provides an additional justification for the use of mean-
field modeling, since finer-scale structure is not resolvable.

In the case of EEG measurements, the effects of volume conduction on the prop-
agation of neural potential changes to the scalp have been incorporated into our
model, via attenuation and spatial filtering parameters [20, 32, 34, 38]. These are in-
cluded in the bulk of the results reviewed here; space limitations preclude a detailed
discussion, but their effects on spectral shape, for example, are slight at frequencies
below about 20 Hz, since these correspond to the longest wavelengths. We have also
shown how to include the effects of reference electrode and multielectrode deriva-
tions [8, 27]. It should also be noted that scalp potentials are primarily generated
by excitatory (mainly pyramidal) neurons owing to their greater size and degree of
alignment compared to other types [17–19, 25]. For any given geometry, in the lin-
ear regime at least, the scalp potential is proportional to the cortical potential, which
is itself proportional to the mean cellular membrane currents, which are in turn pro-
portional to φe. Hence, apart from a (dimensional) constant of proportionality, and
the spatial low-pass filtering effects of volume conduction, scalp EEG signals cor-
respond to φe to a good approximation in the linear domain [36].

8.3 Corticothalamic mean-field modeling and phase transitions

Much work has been done on applications of mean field theory to cortical and cor-
ticothalamic systems. Here we consider the latter system since, as discussed below,
inclusion of the thalamus is essential if phenomena at typical EEG frequencies are
to be successfully modeled.

8.3.1 Corticothalamic connectivities

Figure 8.1 shows the large-scale structures and connectivities incorporated in the
model, including the thalamic reticular nucleus r, which inhibits relay (or specific)
nuclei s, and is lumped here with the perigeniculate nucleus, which has an analo-
gous role [40, 43]. Relay nuclei convey external stimuli φn to the cortex, as well as
passing on corticothalamic feedback. In this section we consider long-range excita-
tory cortical neurons (a = e), short-range mainly inhibitory cortical neurons (a = i),
neurons in the reticular nucleus of the thalamus (a = r), neurons of thalamic relay
nuclei (a = s), and external inputs (a = n) from non-corticothalamic neurons. These
populations are discussed further below. Application of these methods to brainstem
and hypothalamic structures is discussed in Sect. 8.4.
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Fig. 8.1 Schematic of cor-
ticothalamic interactions,
showing the locations at
which the νab of Eq. (8.12)
and linear gains Gab act,
where c,c′ = e, i denote corti-
cal quantities.
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A point that is sometimes overlooked or mistaken in the literature is that mean-
field models do not need to divide the cortex into discrete pieces. In particular, there
is no need to divide the cortex into hypercolumns, and this is actually likely to be a
poor approximation. Indeed, this procedure as it is often implemented is highly mis-
leading, since it imposes sharp hypercolumn boundaries where no such boundaries
exist in nature [9]. This is because an anatomical hypercolumn qualitatively corre-
sponds to the region around any given cortical neuron to which that neuron is most
strongly connected. A neuron near the boundary of this hypercolumn (which is not
sharp in any case) will be strongly connected to neurons on both sides of the bound-
ary (i.e., each neuron lies at the center of its own hypercolumn). So hypercolumn
boundaries are not like the walls of a honeycomb, with a fixed physical location,
and theoretical approaches that discretize by laying down fixed boundaries must be
viewed with some suspicion.

A related misunderstanding in the literature is the idea that short-range and long-
range interactions must be treated by different means. This is often encapsulated in a
division into short-range connections within hypercolumns and long-range cortico-
cortical connections between hypercolumns, often treated by different mathematical
methods. In fact, all connections can be handled using the same formalism, with dif-
ferent ranges simply incorporated via separate neural populations with different ax-
onal range parameters (which does not preclude approximations being made when
these ranges are very small) [28].

8.3.2 Corticothalamic parameters

If intracortical connectivities are proportional to the numbers of neurons involved—
the random connectivity approximation—and sib = seb, Lib = Leb for each b, then
Vi =Ve and Qi = Qe [37, 50], which lets us concentrate on excitatory quantities, with
inhibitory ones derivable from them. The short range of i neurons and the small size
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of the thalamic nuclei enables us to assume ra ≈ 0 and, hence, γa ≈ ∞ for a = i,r,s
for many purposes. The only nonzero discrete delays are τes = τse = τre = t0/2,
where t0 is the time for signals to pass from cortex to thalamus and back again. We
also assume that all the synaptodendritic time constants are equal, for simplicity,
and set αab = α and βab = β for all a and b in what follows; this allows us to drop
the subscripts ab in Eqs (8.2), (8.3), and (8.5) and write Dα in place of Dab.

Including only the connections shown in Fig. 8.1 and making the approximations
mentioned above, we find that our nonlinear model has 16 parameters (and not all
of these appear separately in the linear limit). By defining

νab = Nabsab, (8.12)

these are Qmax, θ , σ ′, α , β , γe, re, t0, νee, νei, νes, νse, νsr, νsn, νre, and νrs. These are
sufficient in number to allow adequate representation of the most important anatomy
and physiology, but few enough to yield useful interpretations and to enable reliable
determination of values by fitting theoretical predictions to data. The parameters are
approximately known from experiment [28, 29, 32, 34, 38] leading to the indicative
values in Table 8.1. We use only values compatible with physiology. Sensitivities
of the model to parameter variations have been explored in general [34] and in
connection with variations between sleep, wake, and other states [31]. In the present
work we concentrate on results for which the model parameters are assumed to be
spatially uniform, but where the activity is free to be nonuniform; generalization to
include spatial nonuniformities is straightforward [36].

Table 8.1 Indicative param-
eters for the alert, eyes-open
state in normal adults [32].
Parameters used in some fig-
ures in this chapter are similar,
but not identical.

Quantity Nominal Unit

Qmax 340 s−1

ve 10 m s−1

re 86 mm
θ 13 mV
σ ′ 3.8 mV
γe 116 s−1

α 80 s−1

β 500 s−1

t0 85 ms
νee 1.6 mV s

−νei 1.9 mV s
νes 0.4 mV s
νse 0.6 mV s

−νsr 0.45 mV s
νsn 0.2 mV s
νre 0.15 mV s
νrs 0.03 mV s

φ (0)
n 16 s−1
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An important implication of the parameters above is that the corticothalamic
loop delay t0 places any oscillations that involve this loop at frequencies of order
10 Hz. This means that inclusion of the thalamus and the dynamics of these loops is
essential to understand phenomena at frequencies below ∼20 Hz. At very low fre-
quencies (� 10 Hz) it is sufficient to include a static corticothalamic feedback
strength to the cortex, and at very high frequencies (� 10 Hz) the corticothala-
mic feedback is too slow to affect the dynamics strongly. As we will see in the next
section, thalamic effects dominate much of the dynamics at intermediate frequen-
cies.

8.3.3 Specific equations

The above connectivities and parameters imply, using Eqs (8.1)–(8.3),

DαVe(t) = νeeφe(t)+νeiφi(t)+νesφs(t − t0/2), (8.13)

DαVi(t) = νeeφe(t)+νeiφi(t)+νesφs(t − t0/2), (8.14)

DαVr(t) = νreφe(t − t0/2)+νrsφs(t), (8.15)

DαVs(t) = νseφe(t − t0/2)+νsrφr(t)+νsnφn(t), (8.16)

whence Vi = Ve and Qi = Qe, as asserted above. The right-hand sides of Eqs (8.13)–
(8.16) describe, for each population, the spatial summation of all afferent activity
(including via self-connections), and Dα on the left describes temporal dynamics.
The short ranges of the axons i, r, and s imply that the corresponding damping rates
are large and that Dα ≈ 1 for these populations, further implying

φa = Qa = S(Va), (8.17)

for a = i,r,s. For the remaining e population, Eqs (8.10) and (8.11) yield

(
1
γ2

e

∂ 2

∂ t2 +
2
γe

∂
∂ t

+1− r2
e∇

2
)
φe(r, t) = S[Ve(r, t)], (8.18)

with γe = ve/re. Collectively, Eqs (8.13)–(8.18) describe our corticothalamic model.

8.3.4 Steady states

We can find spatially uniform steady states of our system by setting all the spatial
and temporal derivatives to zero in Eqs (8.13)–(8.18). The resulting equations can
be rearranged to yield a single equation for the steady state value of φe [32]:
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0 = S−1
(
φ (0)

e

)
− (νee +νei)φ

(0)
e −νesS

(
νseφ

(0)
e +νsnφ

(0)
n

+ νsrS

[
νreφ

(0)
e +

νrs

νes

{
S−1

(
φ (0)

e

)
− (νee +νei)φ

(0)
e

}])
, (8.19)

where S−1 denotes the inverse of the sigmoid function S. The function on the

right of Eq. (8.19) is continuous and asymptotes to −∞ as φ (0)
e → 0 and to +∞

as φ (0)
e → Qmax. Hence, it has an odd number of zeros, and thus at least one zero

[32, 37]. Typically, there is either a single zero or there are three zeros, two stable
separated by one unstable in the latter case. For very restricted parameter sets, five
zeros (three stable and two unstable at ω = 0, in alternation) are possible, and the
addition of neuromodulatory feedbacks on synaptic strengths sab in Eq. (8.12) can
also increase the number of zeros and broaden this parameter range [5]. We men-
tion these generalizations further later, but restrict attention to the main case of three
zeros for now.

When there are three zeros, one stable zero occurs at low φ (0)
e , and we identify

this as the baseline activity level of normal brain function. The other stable zero

is at high φ (0)
e with all neurons firing near to their physiological maximum. This

would thus represent some kind of seizure state, but would require further physiol-
ogy (e.g., of hemodynamics and hypoxia at these high activity levels) to be treated
adequately. The states are shown in Fig. 8.2, where they are linked by the unstable
fixed point to form a “fold”. It should be noted that other authors have identified
the pair of stable states as representing anesthesia/sleep, sleep/wake, or non-REM

sleep/REM sleep, often using parameters that lower φ (0)
e in the upper state to accept-

able levels [44–46]. However, they do not seem to have made an overall identifica-
tion of cases with branches to unify all these possibilities. As we show in Sect. 8.4,
brainstem states must be taken into account in this context, so any final identifica-
tion is probably premature and the above possibilities are not necessarily mutually
exclusive.

Fig. 8.2 Qe vs φn, showing
the stable states with low
firing rates (< 15 Hz−1) and
with firing rates near satu-
ration (> 85 Hz−1). These
two branches are linked by
an unstable branch to form a
“fold”. Note that the negative
steady state values of φn in the
figure are physical, provided
this variable is considered
to embody inhibitory neuro-
modulation, as well as tonic
sensory activity. –100 –50 0 50 100 150 200
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8.3.5 Transfer functions and linear waves

Small perturbations relative to steady states can be treated using linear analysis. A
stimulus φn(k,ω) of angular frequency ω (= 2π f , where f is the usual frequency
in Hz) and wave vector k (= 2π/λ in magnitude, where λ is the wavelength) has
the transfer function to φe(k,ω)

φe(k,ω)
φn(k,ω)

=
GesL

1−GeiL
GsnLeiωt0/2

1−GsrsL2

1
q2(ω)r2

e + k2r2
e
, (8.20)

q2(ω)r2
e = (1− iω/γe)

2

− L
1−GeiL

[
Gee +

(Gese +GesreL)L
1−GsrsL2 eiωt0

]
, (8.21)

Gab =
φ (0)

a

σ ′

(
1− φ (0)

a

Qmax

)
νab, (8.22)

where L = (1− iω/α)−1(1− iω/β )−1 embodies the lowpass filter characteristics of

synaptodendritic dynamics and φ (0)
a is the steady-state value of φa. The ratio (8.20)

is the cortical excitatory response per unit external stimulus, and encapsulates the
relative phase via its complex value [25, 28, 34]; it is the key to linear properties
of the system. The gain Gab is the differential output produced by neurons a per
unit change in input from neurons b, and the static gains for loops in Fig. 8.1 are
Gese = GesGse for feedback via relay nuclei only, Gesre = GesGsrGre for the loop
through reticular and relay nuclei, and Gsrs = GsrGrs for the intrathalamic loop.

Waves obey the dispersion relation [37]

q2(ω)+ k2 = 0, (8.23)

which corresponds to singularity of the transfer function (8.20). Solutions of this
equation satisfy ω = kve − iγe at high frequencies [37]. At lower frequencies, their
dispersion has been investigated in detail previously [19, 24, 37].

8.3.6 Spectra

The EEG frequency spectrum is obtained by squaring the modulus of φe(k,ω) and
integrating over k. It can be written in terms of the transfer function (8.20) as

Pe(ω) =
∫ ∣∣∣∣φe(k,ω)

φn(k,ω)

∣∣∣∣
2

|φn(k,ω)|2 d2k. (8.24)

If we make the assumption that under conditions of spontaneous EEG the field of
external stimuli φn(k,ω) is so complex that it can be approximated by spatiotempo-
ral white noise, this gives |φn(k,ω)|2 = const. In the white noise case
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Pe(ω) =

〈
φ 2

n

〉
4πr4

e

∣∣∣∣ GesnL2

(1−GeiL)(1−GsrsL2)

∣∣∣∣
2

Arg q2

Im q2 , (8.25)

where
〈
φ 2

n

〉
is the mean-square noise level. Figure 8.3 shows shows excellent agree-

ment of Eq. (8.25) with an observed spectrum over several decades. The features
reproduced include the alpha and beta peaks at frequencies f ≈ 1/t0,2/t0, and the
asymptotic low- and high-frequency behaviors; key differences between waking and
sleep spectra can also be reproduced, including the strong increase in low-frequency
activity in sleep, where our model predicts a steepening of the spectrum from 1/ f
to 1/ f 3 [34]. Notably, each of the features can be related to underlying anatomy and
physiology. The low-frequency 1/ f behavior is a signature of marginally stable,
near-critical dynamics, which allow complex behavior [31, 34, 37], while the steep
high-frequency fall-off results from low-pass filtering by synaptodendritic dynam-
ics. Corticothalamic loop resonances account for the alpha and beta peaks, their rel-
ative frequencies, the correlated changes in spectral peaks between sleep and wak-
ing, and splitting of the alpha peak, for example [31, 34, 36]. Suggested alternative
mechanisms, including pacemakers and purely cortical resonances, can account for
some features of the data, but the trend in mode frequency predicted for purely cor-
tical eigenmodes tends to be in the opposite direction to that observed, although this
is not unequivocal. Likewise, the pacemaker hypothesis is ad hoc, with a new pace-
maker proposed for every spectral peak [17, 30, 36]. Overall, the evidence is now
strong that the thalamus must be included to account for most salient EEG features
at frequencies below about 20 Hz. The advantage of its inclusion is underlined by
the ability of the resulting theory to simultaneously account for the wide range of
phenomena mentioned in Sect. 8.1.

Fig. 8.3 Example spectrum
(solid) and model fit (dashed)
from a typical adult subject in
the eyes-closed state.
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One key aspect of phase transitions is the divergent correlation length near the
critical point, mentioned above. Correlations and coherence can be computed using
our theory. Specifically, the Wiener–Khintchine theorem implies that the correlation
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function is the Fourier transform of the power spectrum, which yields long-range
correlations at sharp spectral peaks, with the correlation length increasing in pro-
portion to the quality factor of the peak [27]. This accords with these waves being
weakly damped (and thus close to instability) and so able to propagate large dis-
tances at high amplitudes.

The cross spectrum Pe(r,r′,ω) is the phase average of φe(r,ω)φ ∗e (r′,ω), which
can be computed via the spatial Fourier transform of φe(k,ω). The coherence func-
tion is then

γ2(r,r′,ω) =
[Pe(r,r′,ω)]2

Pe(r,r,ω)Pe(r′,r′,ω)
. (8.26)

This result has been shown to give good agreement with observations of γ2 as a
function of frequency at fixed separation for model parameters close to those used
in obtaining the other plots in this work [27, 41]. Particular features are that co-
herence peaks correspond to spectral peaks, reflecting the fact that weakly damped
waves can reach high amplitudes (hence a spectral peak) and propagate far before
dissipating (hence high coherence).

8.3.7 Stability zone, instabilities, seizures, and phase
transitions

Linear waves obey the dispersion relation (8.23), with instability boundaries occur-
ring where this equation is satisfied for real ω [31, 34, 37]. In most circumstances,
waves with k = 0 (i.e., spatially uniform) are the most unstable [37], and it is found
that only the first few (i.e., lowest frequency) spectral resonances can become unsta-
ble. Analysis of stability of perturbations relative to the steady state that represents
normal activity for realistic parameter ranges finds just four k = 0 instabilities, lead-
ing to global nonlinear dynamics [4, 31, 33]: (a) Slow-wave instability ( f ≈ 0) via
a saddle–node bifurcation that leads to a low frequency spike-wave limit cycle; (b)
theta instability, via a supercritical Hopf bifurcation that saturates in a nonlinear
limit cycle near 3 Hz, with a spike-wave form unless its parameters are close to the
instability boundary; (c) alpha instability, via a subcritical Hopf bifurcation, giving a
limit cycle near 10 Hz; and (d) spindle instability at ω ≈ (αβ )1/2, leading to a limit
cycle at 10–15 Hz (the nature of this bifurcation has not yet been investigated). The
boundaries defined by these instabilities are interpreted as corresponding to onsets
of generalized seizures, as discussed in more detail below [4, 31, 33].

The occurrence of only a few instabilities, at low frequencies, enables the state
and physical stability of the brain to be represented in a 3-D space with axes

x = Gee/(1−Gei), (8.27)

y = (Gese +Gesre)/[(1−Gsrs)(1−Gei)], (8.28)

z = −Gsrsαβ/(α+β )2, (8.29)
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which parameterize cortical, corticothalamic, and thalamic stability, respectively
[4, 31]. In terms of these quantities, parameters corresponding to linearly stable
brain states lie in a stability zone illustrated in Fig. 8.4. The back is at x = 0 and
the base at z = 0. A pure spindle instability occurs at z = 1, which couples to the al-
pha instability, with spindle dominating at top and left, and alpha at right. At small
z, the left surface is defined by a theta instability [4, 31]. The front right surface
corresponds to slow-wave instability at x+ y = 1.

EO

EC

S2

S4

z

1.0

y
1.0–1.0

x

1.0

theta

spindle alpha

slow wave

Fig. 8.4 [Color plate] Brain stability zone. The surface is shaded according to instability, as labeled
(blue = spindle, green = alpha, red = theta), with the front right-hand face left transparent as it
corresponds to a slow-wave instability. Approximate locations are shown of alert eyes-open (EO),
relaxed, eyes-closed (EC), sleep stage 2 (S2), and sleep stage 4 (S4) states, with each state located
at the top of its bar, whose (x,y) coordinates can be read from the grid.

Non-seizure states lie within the stability zone in Fig. 8.4. Detailed arguments
regarding the sign of feedback via the thalamus, proximity between neighboring
behavioral states, and the results of explicit fitting to data (which is enabled by
using the present model), place the arousal sequence, from alert eyes-open (EO)
to deep sleep, including relaxed eyes-closed (EC) and sleep stages 1–4 (S1–S4), as
shown in Fig. 8.4 [31]. In future, it is expected that known differences between EEG
spectra for subjects with differing disorders will also enable classification of these
conditions into different parts of the stability zone.

Two of the most common generalized epilepsies are absence and tonic-clonic
seizures. In absence epilepsy, seizures last 5–20 s, cause loss of consciousness,
show a spike-wave cycle which starts and stops abruptly across the whole scalp,
and the subject reaches a post-seizure state similar to the pre-seizure one. Tonic-
clonic seizures display a tonic phase of roughly 10 Hz oscillations lasting about
10 s, followed by a clonic phase of similar duration dominated by polyspike-wave
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complexes, with an unresponsive post-seizure state very different from the pre-
seizure one [4, 15, 41]. Figures 8.5(a) and (b) show results from our model under
conditions for theta and alpha instability, respectively. In Fig. 8.5(a) the onset of an
approximately 3-Hz spike-wave cycle is seen as the system is forced across the in-
stability boundary by ramping one of its parameters, in this case νse. This closely re-
sembles observed absence time series [4, 6, 31, 33]. If the destabilizing parameter is
ramped back, the system returns smoothly to very nearly its initial state, consistent
with clinical observations. Figure 8.5(b) shows good agreement with generalized
tonic-clonic seizure dynamics near 10 Hz. However, in this case, the limit cycle sets
in with nonzero amplitude. Moreover, when the control parameter is ramped back,
hysteresis is observed, with the limit cycle terminating to yield a different final state,
with a quiescent time series, consistent with clinical observations [4, 15].
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Fig. 8.5 Sample time series from the model in regimes corresponding to onset of (a) an absence
seizure, and (b) a tonic-clonic seizure.

Each of the above instabilities can be seen as a phase transition. The saddle–node
bifurcation is marked by a spectral divergence at f = 0, a 1/ f spectrum at low f , and
long-range correlations and coherence. There is also a divergence of the variance of
φe, which can be approximated by integrating Pe(ω) over ω to yield the scaling

〈[
φe −φ (0)

e

]2
〉
∝
[
VSN −V (0)

n

]−1/2
, (8.30)

where the angle brackets denote an average, the mean external input V (0)
n is the

control parameter for the transition, and VSN is its value at the bifurcation. This
result accords with numerical results for such a transition [44] and related analysis
of single neurons [45] (see also Sect. 8.4).

One recently explored feature of the nonzero- f limit cycles is that these can be
initiated in localized regions of the system, and then spread to other areas, qualita-
tively consistent with clinical observations of secondary seizure generalization from
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a focus [13]. In this case, the boundary between seizing and normal zones propa-
gates in a manner akin to a domain boundary between solid and liquid in a spatially
nonuniform melting/freezing transition. An example is shown in Fig. 8.6 [13].
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Fig. 8.6 Spreading of seizure activity from an initial focus. The figure shows (a) a snapshot of
φ(r, t), and (b) the linear spread of the wave following a stimulus at t = 1 s.

8.4 Mean-field modeling of the brainstem and hypothalamus,
and sleep transitions

Wake-sleep transitions are primarily governed by the nuclei of the ascending arousal
system of the brainstem and hypothalamus, that project diffusely to the corticotha-
lamic system. As we will see shortly, these nuclei are also capable of undergoing
instabilities and phase transitions in their dynamics. Hence, a full description of
sleep–wake transitions and their EEG correlates requires an integrated model of
both the ascending arousal system and the corticothalamic system (at least), includ-
ing their mutual interactions. This section briefly describes how the nuclei of the
Ascending Arousal System (AAS) are modeled using the same methods as above,
and outlines the direction of integration of the two models, currently under way. In
this section, observables consist of arousal states (sleep vs. wake), so other measure-
ment effects need not be taken into account.

8.4.1 Ascending Arousal System model

The most important nuclei to model in the AAS are well established from de-
tailed physiological investigations, and are shown in Fig. 8.7. These include the
monoaminergic (MA) group and the ventrolateral preoptic nucleus (VLPO), which
mutually inhibit one another, resulting in flip-flop dynamics if the interaction is
sufficiently strong—only one can be active at a time, and it suppresses the other
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(a) (b)
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Fig. 8.7 Parts (a) and (b) show schematics of the actual AAS populations, and our sleep model,
respectively. Excitatory inputs are represented by solid arrow heads, and inhibitory by open ones.
In each case, the top left box is the MA group, and the top right box is the ACh group. In (a), the
MA group consists of the LC, DR (dorsal raphe) and TMN (tuberomamillary nucleus); and the
ACh group consists of cholinergic LDT/PPT, and glutamergic BRF. The VLPO/eVLPO GABAer-
gically inhibits other AAS nuclei. In (b) the drive D is shown, which consists of circadian (C) and
homeostatic (H) components. In our model the thick-lined interactions in (b) are used.

[39]. During wake, the MA group is dominant, while the VLPO is dominant in sleep.
Transitions between states are driven by inputs to the VLPO, which include the cir-
cadian drive C (mainly from light exposure), and the homeostatic sleep drive H
arising from net buildup of metabolic byproducts (mostly adenosine) during wake,
and their net clearance during sleep. There is also an input to the MA group from
cholinergic and orexinergic nuclei, as shown [21, 39].

Until recently, models of AAS dynamics have been either nonmathematical (e.g.,
based on sleep diaries or qualitative considerations) or abstract (mathematical, but
not derived directly from physiology). The widely known two-process model is of
the latter form, and includes circadian and homeostatic influences [1]. In this sec-
tion, which summarizes our recent model of the AAS [22], we use the same meth-
ods as in Sects 8.2–8.3 to model the dynamics of the AAS nuclei, viewing them
as the assemblies of neurons they are. Several simplifications and approximations
are appropriate: the nuclei are small, so ra ≈ 0 and γa → ∞ in Eq. (8.11), imply-
ing that Eq. (8.17) applies for these nuclei. Also, since the transitions take place on
timescales of many seconds to minutes, first-order in time versions of Eq. (8.3) can
be used. We also assume that, since the system spends little time in transitions, the
generation rate of H has just two values—one for wake and one for sleep—and that
its clearance rate is proportional to H, while the variation of C is approximated as
sinusoidal. These approximations yield

τ
dVv

dt
+Vv = νvmQm +D, (8.31)

τ
dVm

dt
+Vm = νmvQv +A, (8.32)
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χ
dH
dt

+H = μQm, (8.33)

Qa = S(Va), (8.34)

C = c0 + cos(Ω t), (8.35)

D = νvcC +νvhH, (8.36)

where the time constants τ of the nuclear responses have been assumed equal [these
replace 1/α in (8.3), with β → ∞ formally], χ is the adenosine clearance time, v
denotes VLPO, m denotes monoaminergic nuclei, the νab, Va, and Qa have the same
meanings as in previous sections, μ gives the proportionality between monoamin-
ergic activity and adenosine generation rate, CA is the amplitude of the C cycle, and
Ω = 2π/(1day).

In the above form the model has 12 physiological parameters: τ , χ , νvm, νmv,
A, μ , c0, νvc, νvh, Qmax, θ , and σ ′, whose nominal values are given in Table 8.2.
These values were determined by a combination of physiological constraints from
the literature, and comparison of the dynamics with behavior in a restricted set of
sleep experiments on normal sleep and sleep deprivation [22, 23]. The theory then
predicts other phenomena in regimes outside those of the calibration experiments.

In the context of the present chapter, the key result is that the steady states of
Eqs (8.31)–(8.36) display a “fold” as a function of the total drive D. The upper
and lower branches represent wake and sleep, respectively, with an unstable branch
in between. Cyclic variations in D cause the system to move around the hystere-
sis loop shown in Fig. 8.8, with saddle–node bifurcations from wake to sleep and
back again. In the presence of noise added to D on the right of Eq. (8.31), Fig. 8.9
shows that these are preceded by divergences in Vm fluctuations that satisfy the same
power-law scaling as Eq. (8.30) for subtheshold noise, and lead to what appear to
be microsleeps and microwakes in the vicinity of the transition for larger amplitude
noise. Narcolepsy, with its lack of stability of wake and sleep is then interpreted as
resulting from a reduction or disappearance of the hysteresis loop [22].

Table 8.2 Nominal parameter
values for the ascending
arousal system model.

Quantity Nominal Unit

−νvc 2.9 mV
νvh 1.0 mV nM−1

χ 45 h
μ 4.4 nM s
c0 4.5 –
Qmax 100 s−1

θ 10 mV
σ ′ 3 mV
A 1.3 mV

−νvm 2.1 mV s
−νmv 1.8 mV s
τ 10 s
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Vm cycles around a hysteresis loop between wake and sleep states.
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Fig. 8.9 (a) Log-log plot of the variance of Vm in the presence of low amplitude noise (solid),
versus ε = D − D0, where D0 is the value of D for which the wake state loses stability. D is
increased linearly at a rate of 7×10−5 h−1, and variance is calculated in moving windows of length
17 h. The asymptotic gradient of −0.5 is shown as a dashed line. (b) Transitions between high Vm

(wake) and low Vm (sleep) in the presence of high amplitude noise.
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This set of outcomes implies that inclusion of the dynamics of the AAS is essen-
tial to understand sleep–wake cycles, although work is still under way to incorporate
the ascending projections to the corticothalamic system quantitatively, feedback in
the reverse direction, and quantitative models of the circadian pathway, involving
the suprachiasmatic nucleus (SCN).

8.5 Summary and discussion

Physiologically based mean-field theories of the brain are able to incorporate es-
sential physiology and anatomy across the many scales necessary to treat phase
transitions and other phenomena involving neural activity. They can achieve this
for physiologically realistic parameters, and yield numerous predictions that accord
with observations using a variety of experimental methods in both the linear and
nonlinear regimes (see Sect. 8.1). Moreover, they do this in a way that unifies what
have hitherto been disparate subfields and measurement modalities within a single
framework, and which permits parameter determination via fits of model predic-
tions to experimental data. In addition to these specific results, major qualitative
conclusions that are reached using such models include the necessity of incorporat-
ing the thalamus to understand EEG phenomena at frequencies below about 20 Hz,
and the need to include the ascending arousal system to understand sleep–wake
dynamics.

In the area of phase transitions, mean-field modeling successfully predicts the
connections between transitions, instabilities, long-range correlations and coherence,
spectral peaks, and divergences of variance in a number of regimes. However, much
remains to be done in directions such as the fuller integration of multiple brain
subsystems into unified models, exploration of the dynamics of neuromodulators
and behavioral feedbacks, and application to other putative phase transitions in ar-
eas such as visual rivalry and perception, parkinsonian tremor onset, and possibly
bipolar disorder. One could also investigate whether some Hopf bifurcations (e.g.,
supercritical ones) correspond to second-order phase transitions, as opposed to the
first-order ones investigated here, and whether the variance divergences seen near
criticality have a role in control or prevention of phase transitions.

Acknowledgments The Australian Research Council supported this work.

References
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