
Chapter 7
Inducing transitions in mesoscopic brain
dynamics

Hans Liljenström

7.1 Introduction

Brain structures are characterized by their complexity in terms of organization and
dynamics. This complexity appears at many different spatial and temporal scales
which, in relative terms, can be considered micro, meso, and macro scales. The
corresponding dynamics may range from ion-channel kinetics, to spike trains of
single neurons, to the neurodynamics of cortical networks and areas [6, 10]. The
high complexity of neural systems is partly a result of the web of nonlinear interre-
lations between levels and parts with positive and negative feedback loops. This in
turn introduces thresholds, lags and discontinuities in the dynamics, often leading
to unpredictable and nonintuitive system behaviors [68].

Typical for complex systems in general, and for the nervous system in particu-
lar, is that different phenomena appear at different levels of spatial (and temporal)
aggregation. New and unpredictable qualities emerge at every level, qualities that
cannot be reduced to the properties of the components at the underlying level. In
some cases, there is a hierarchical structure of a simple kind, where higher macro
levels “control” lower ones (c.f., the so-called enslaving principle of Haken [43]).
However, there could also be a more “bottom-up” interpretation of systems, where
indeed the micro phenomena, through various mechanisms, set the frame for phe-
nomena at higher structural levels. This interplay between micro and macro levels
is part of what frames the dynamics of systems. Of special interest is the meso level,
i.e., the level in between the micro and the macro, as this is where bottom-up meets
top-down [30, 31, 68].

The activity of neural systems often seems to depend on nonlinear threshold phe-
nomena: e.g., microscopic fluctuations may cause rapid and large macroscopic ef-
fects. There is a dynamical region between order and pure randomness that involves
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a high degree of complexity, and which seems characteristic for neural processes.
This dynamics is very unstable and shifts from one state to another within a few
hundred milliseconds or less, typical of chaotic systems. (It may actually be more
appropriate to refer to this behavior as “pseudo-chaotic”, since “true chaos”, as de-
fined mathematically, requires “infinite” time for its development).

Despite at least a century of study, the functional significance of the neural
dynamics at different levels is still not clear, nor is much known about the re-
lation between activities at the different levels. However, it is reasonable to as-
sume that different dynamical states correlate with different functional or mental
states. This principle guides our research, and will be discussed further in the final
section.

By studying transitions in brain dynamics, we may reveal fundamental properties
of the brain and its constituents that relate to mental processes and transitions. Such
transitions could, for example, involve various cognitive levels and conscious states
that would be of interest not only to neuroscience, but also to psychology, psychiatry,
and medicine.

In this chapter I present a range of computational models in which we investigate
relations between structure, dynamics, and function of neural systems. My focus
is on phase transitions in mesoscopic brain dynamics, since this type of dynamics
constitutes a well-studied bridge between neural and mental processes [31]. These
transitions can be induced by internal causes (noise and neuromodulation), but also
by external causes (electric shocks and anesthetics). The functional significance of
the model results are discussed in the concluding section.

7.1.1 Mesoscopic brain dynamics

In our description, mesoscopic brain dynamics refers to the neural activity or dy-
namics at intermediate scales of the nervous system, at levels between neurons and
the entire brain. It relates to the dynamics of cortical neural networks, typically on
the spatial order of a few millimetres to centimetres, and temporally on the order of
milliseconds to seconds. This type of dynamics can be measured by methods such
as ECoG (electrocorticography), EEG (electroencephalography), or MEG (magne-
toencephalography).

We consider processes and structures studied with a microscope or microelec-
trodes as defining a microscopic scale of the nervous system; thus the micro scale
could, for example, refer to ion channels or single neurons. The macroscopic scale,
in this picture, corresponds to the largest measurable extent of brain activity. Typ-
ically, this could concern the dynamics of maps and areas, usually measured with
PET or fMRI, or other brain-imaging techniques.

Mesoscopic brain dynamics, with its transitions, is partly a result of thresholds
and the summed activity of a large number of elements interconnected with positive
and negative feedback. It is also a result of the dynamic balance between opposing
processes, influx and efflux of ions, inhibition and excitation, etc. Such interplay
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between opposing processes often results in (transient or continuous) oscillatory
and chaotic-like behaviour [6, 32, 44, 78].

The mesoscopic neurodynamics is naturally influenced and shaped by the activ-
ity at other scales. For example, it is often mixed with noise that is generated at a
microscopic level by spontaneous activity of neurons and ion channels. It is also af-
fected by macroscopic activity, such as slow rhythms generated by cortico-thalamic
circuits or neuromodulatory influx from different brain regions. Transitions at these
other levels could also be of relevance to the mesoscopic level. For example, at the
microscopic level of ion channels, the kinetics assumes stochastic transitions be-
tween a limited number of static states. In spite of this, the kinetics can be given a
deterministic, dynamic interpretation at a population level. Similarly, at the cellular
level, there is regular or irregular spiking, or bursts of spikes, which form the ba-
sis for most mesoscopic and macroscopic descriptions of nerve activity. While the
causal relations may be difficult to establish, transitions between different states of
arousal, attention, or mood, could be seen as a top-down interaction from macro-
scopic activity to mesoscopic neurodynamics.

7.1.2 Computational methods

Computational approaches complement experimental methods in understanding the
complexity of neural systems and processes. Computational methods have long
been used in neuroscience, perhaps most successfully for the description of ac-
tion potentials [49]. When investigating interactions between different neural lev-
els, computational models are essential, and in some cases, may be the only
method we have. (For an overview, see Refs. [3, 4, 30, 73]). In recent years,
there has also been a growing interest in applying computational methods to prob-
lems in clinical neuroscience, with implications for psychology and psychiatry
[29, 30, 36, 39, 42, 52, 53, 64, 74, 79, 80, 87, 88].

In our research, we use a computational approach to address questions regarding
relations between structure, dynamics, and function of neural systems. Here, the fo-
cus is on understanding how transitions between different dynamical states can be
implemented and interpreted. For this purpose, we present different kinds of compu-
tational models, at different scales and levels of detail, depending on the particular
issues addressed.

In almost all cases, the emphasis is on network connectivity and hence there is, in
general, a greater level of realism and detail for the network structures than for node
characteristics. However, when microscopic details are important, or when model
simulations are to be compared with data at molecular and cellular scales, such
details need to be incorporated in the model, sometimes at the expense of details
at the network level. Our aim is to use a level of description appropriate for the
problem we address.

The first examples consider phase transitions in network dynamics arising from
noise and neuromodulation. In this case, we use a three-layered paleocortical model
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with simple network nodes of Hopfield type [50, 51]. Simulation results with this
model are compared with LFP (local field potential) and EEG data from the olfac-
tory cortex. For transitions due to attention, we want to compare our results with
experimental data on spike trains, so we use a neocortical model with spiking neu-
rons of Hodgkin–Huxley type [49].

In the case of electrical stimulation, we first use our paleocortical model, since
we again compare with EEG data from experiments on animal olfactory cortex. The
measured response is the summed activity of a very large number of neurons which
will drown out single spikes, so there is no need for spiking neurons here.

When modeling and analyzing EEG related to electroconvulsive therapy, we use
a neocortical network model with spiking neurons of FitzHugh–Nagumo type [25]
(a simplification of the Hodgkin–Huxley description) to enable comparison against
previous simulations with such model neurons [35].

In our final example, we investigate the mechanisms of anesthetics that block
certain ion channels. We employ a network of Frankenhaeuser–Huxley neurons [54]
because of their accurate description of ion-channel currents in cortical neurons.
This microscopically detailed model allows us to compare our network results with
those from single-neuron simulations for varying ion-channel composition [8].

7.2 Internally-induced phase transitions

The complex neurodynamics of the brain can be regulated by various neuromodula-
tors, and presumably also by intrinsic noise levels, governed by thresholds for spon-
taneous activity. In addition, the state of arousal or attention may also change the
cortical neurodynamics considerably, and even induce phase transitions that could
affect the functional efficiency of cognitive processes. Such transitions may also be
related to noncognitive mental processes and disorders, but that is beyond the scope
of this discussion. In the following three sections, we will look at different possi-
bilities for how intrinsic noise, neuromodulation, and attention may induce phase
transitions in cortical structures.

7.2.1 Noise-induced transitions

Spontaneous activity, or neuronal noise, is normally seen as a naturally occurring
side phenomenon without any functional role. However, it becomes increasingly
clear that stochastic processes play a fundamental role in the nervous system, at least
for keeping a baseline activity, but presumably also for increasing the efficiency in
system performance (see e.g., Ref. [5], and Sect. 7.4 Discussion).

Noise appears primarily at the microscopic (subcellular and cellular) levels, but
it is uncertain to what degree this noise normally is affecting meso- and macro-
scopic levels (networks and systems). Under certain circumstances, microscopic
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noise can induce effects on mesoscopic and macroscopic levels, but the role of
these effects is still unclear. Evidence suggests that even single channel openings
can cause intrinsic spontaneous impulse generation in a subset of small hippocampal
neurons [54].

In addition to the microscopic noise, irregular chaotic-like behavior, which may
be indistinguishable from noise, could be generated by the interplay of neural exci-
tatory and inhibitory activity at the network level. However, in contrast to a chaotic
dynamics, where the dynamics can be controlled and easily shifted into an oscilla-
tory or other state, stochastic noise is not equally controllable, and cannot shift into
a completely different dynamics (even though its amplitude and frequency might
vary as a result of neuromodulatory control).

7.2.1.1 A paleocortical network model

When studying how the neurodynamics of a cortical structure depends on various
internal factors, including neuromodulation and intrinsic noise from spontaneously
firing neurons, we use our previously constructed model of the olfactory cortex [60].
(With a few modifications, this model can also be used for the hippocampus, which
has a similar structure). Paleocortex, primarily consisting of the olfactory cortex and
hippocampus, is more primitive and simpler than neocortical structures, such as the
visual cortex. It has a three-layered structure and a distributed connectivity pattern
with extensive short- and long-range connections within a layer. Due to its simpler
structure and well-studied neurodynamics, the olfactory cortex can be regarded as a
suitable model system for the study of mesoscopic brain dynamics.

Our paleocortical model has network nodes with a continuous input–output re-
lation, the output corresponding to the average firing frequency of neural popula-
tions [50, 51]. Three different types of nodes (neural populations) are organized in
three layers, as seen in Fig. 7.1. The top layer consists of inhibitory feedforward
interneurons, which receive inputs from the olfactory bulb, via the lateral olfactory
tract (LOT), and from the excitatory pyramidal cells in the middle layer. The bot-
tom layer consists of inhibitory feedback interneurons, receiving inputs only from
the pyramidal cells and projecting back to those. The two sets of inhibitory cells
are characterized by their different time-constants. In addition to the feedback from
inhibitory cells, the pyramidal cells receive extensive inputs from each other and
from the olfactory bulb, via the LOT. All connections are modeled with distance-
dependent time-delays for signal propagation, corresponding to the geometry and
fiber characteristics of the real cortex.

The time-evolution for a network of N network nodes (neural populations) is
given by a set of coupled nonlinear first-order differential-delay equations for all
the N internal states, ui (corresponding to mean membrane potential of a population
i). With external input, I(t), characteristic time constant, τi, and connection weight
wi j between nodes i and j, separated with a time-delay δi j, we have for each node
activity, ui,
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Fig. 7.1 Schematic of our model neural network that mimics the structure of the olfactory cortex.
One layer of excitatory nodes, corresponding to populations of pyramidal cells (large circles in
middle layer), is sandwiched between two layers of inhibitory nodes, corresponding to two dif-
ferent types of interneurons (smaller circles, top and bottom layers). External input (from “the
olfactory bulb”) projects onto the two top layers in a fan-like fashion.

dui

dt
= −ui

τi
+

N

∑
j �=i

wi jg j [u j(t −δi j)] + Ii(t) + ξ (t) . (7.1)

The input–output function, gi(ui), is a continuous sigmoid function, experimentally
determined by Freeman [28]:

gi = CQi

{
1− exp

[
−exp(ui)

Qi

]}
. (7.2)

The gain parameter Qi determines the slope, threshold and amplitude of the input-
output curve for node i. This gain parameter is associated with the level of arousal,
which in turn may be linked to the level of a neuromodulator, such as acetylcholine
(ACh). C is a normalisation constant.

The connection weights wi j are initially set and constrained by the general con-
nectivity principles for the olfactory cortex, but to allow for learning, the weights
can be incrementally changed according to a learning rule of Hebbian type [61].
However, learning is not explicitly considered here, although it may well relate to
the functional significance of phase transitions in cortical neurodynamics. (Our ol-
factory/hippocampal model has previously been used for studying the effects of neu-
romodulation and noise on the efficiency of information processing [61, 63, 69]).

Neuromodulatory effects are simulated by changing the Q-values for primar-
ily the excitatory nodes. When neuromodulatory effects on synaptic transmission
are included, we change separately a weight-constant that multiplies all connec-
tion strengths, wi j. (Another way to implement neuromodulatory effects is by
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multiplying the input–output function, g, with an exponential-decay function, rep-
resenting neuronal adaptation, as has been described elsewhere [67]).

Noise, or spontaneous neural activity, is added in the last term of Eqn. (7.1) via a
Gaussian noise function, ξ (t), such that 〈ξ (t)〉= 0, and 〈ξ (t)ξ (s)〉= 2Aδ (t−s). We
have studied noise effects by increasing the level A. In some of the simulations, the
noise level is changed equally for all network nodes, whereas in other simulations,
the change takes place in only some of the network nodes.

7.2.1.2 Simulating noise-induced phase transitions

Simulations with our three-layered paleocortical model display a range of dynamic
properties found in olfactory cortex and hippocampus. For example, the model ac-
curately reproduces response patterns associated with a continuous random input
signal, and with shock pulses applied to the cortex; see Figs. 7.2 and 7.7 [60].

For a constant, low-amplitude random input (noise), the network is able to oscil-
late with two separate frequencies simultaneously, around 5 Hz (theta rhythm) and
40 Hz (gamma rhythm). Under certain conditions, such as for high Q-values, the
system can also display chaotic-like behaviour, similar to that seen in EEG traces
(see Fig. 7.2). In associative memory tasks, the network may initially display a
chaotic-like dynamics, which then converges to a near limit-cycle attractor when
storing or retrieving a memory (activity pattern) [61, 69].
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Fig. 7.2 (a) Real and (b) simulated EEG, showing the complex dynamics of cortical structures.
Upper trace is from rat olfactory cortex (data courtesy of Leslie Kay); lower trace is from a simu-
lation with the current model.

Simulations with various noise levels show that spontaneously active neurons
can induce global, synchronized oscillations with a frequency in the gamma range
(30–70 Hz) [62]. Even if only a few network nodes are noisy (i.e., have an increased
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intrinsic random activity), and the rest are quiescent, coherent oscillatory activity
can be induced in the entire network if connection weights are large enough [7, 62,
65]. The onset of global oscillatory activity depends on, for example, connectivity,
noise level, number of noisy nodes, and duration of the noise activity [15]. The
location and spatial distribution of these nodes in the network is also important
for the onset and character of the global activity. For example, as the number or
activity of noisy nodes is increased, or if the distance between them increases, the
oscillations tend to change into irregular patterns. In Fig. 7.3, we show that global
network activity can be induced if only five out of 1024 network nodes are noisy,
and the rest are silent. After a short transient period of collective irregular activity,
the entire network begins to oscillate, and collective activity waves move across the
network. Even if there is only a short burst of noisy activity, this may be enough to
induce global oscillations [15].

50 ms 100 ms 150 ms 200 ms 250 ms

300 ms 350 ms 400 ms 450 ms 500 ms

550 ms 600 ms 650 ms 700 ms 750 ms
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−11.91

     0

 11.84

Fig. 7.3 [Color plate] Spatiotemporal activity of the excitatory layer of a three-layered paleocor-
tical model, presented as snapshots of network activity (as mean membrane potential of neural
populations) at 50-ms intervals. Five centrally-located noisy network nodes can induce collective
waves of activity across the entire network. Simulations were made with a 32×32 grid of net-
work nodes in each network layer, corresponding to a 10- × 10-mm square of rat olfactory cortex.
Activity is color-coded on a scale ranging from negative = blue to positive = red.

We have also studied the effects of spontaneously active feedforward inhibitory
interneurons in the top layer, motivated by the experimental finding that single in-
hibitory neurons can synchronize the activity of up to 1000 pyramidal cells [21].
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Our simulations demonstrated that even a single noisy network node in the feedfor-
ward layer could induce periods of synchronous oscillations in the excitatory layer
with a frequency in the gamma range, interrupted by periods of irregular activity
[15].

From the simulations, it is apparent that internal noise can cause various phase
transitions in the network dynamics. An increased noise level in just a few net-
work nodes can result in a transition from a stationary to an oscillatory state, or
from an oscillatory to a chaotic state, or alternatively, a shift between two different
oscillatory states [56, 69]. (A more thorough investigation—in which we studied
the effects of varying the density of noisy nodes, the noise duration, and the noise
level—is reported in [15].)

All of these phenomena depend critically on network structure, in particular on
the feedforward and feedback inhibitory loops, and the long-range excitatory con-
nections, modeled with distance-dependent time delays. In this model, details con-
cerning neuron structure or spiking activity are not necessary for the neurodynamics
under study. Instead, a balance between inhibition and excitation, in terms of con-
nection strength and timing of events, is essential for coherent frequency and phase
of the oscillating neural nodes.

7.2.2 Neuromodulatory-induced phase transitions

Brain activity is constantly changing due to sensory input, internal fluctuations,
and neuromodulation. Neuromodulators, such as acetylcholine (ACh) and serotonin
(5-HT), can change the excitability of a large number of neurons simultaneously,
or the synaptic transmission between them [18], thus dramatically influencing brain
dynamics. ACh can increase excitability by suppressing neuronal adaptation, an ef-
fect similar to that of increasing the gain in general. The concentration of these
neuromodulators seems to be directly related to the level of arousal or motiva-
tion of the individual, and can have profound effects on the neural dynamics (e.g.,
an increased oscillatory activity), and on cognitive functions, such as associative
memory [30].

We use the paleocortical model described in Sect. 7.2.1.1 to investigate how net-
work dynamics can be regulated by neuromodulators, implemented in the model
as a varied excitability of the network nodes, and modified connection strengths
[67]. The frequencies of the network oscillations depend primarily on intrinsic time-
constants and delays, whereas the amplitudes depend predominantly on connection
weights and gains, which are under neuromodulatory control. Implementation of
these neuromodulatory effects in the model cause dynamical changes analogous to
those seen in physiological experiments.

In particular, a “cholinergic” increase in excitability together with suppression
of synaptic transmission could induce theta (and/or gamma) rhythm oscillations
within the model, even when starting from an initially quiescent state with no os-
cillatory activity. Fig. 7.4 shows how different oscillatory modes can be induced by
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Fig. 7.4 Different oscillatory modes can be induced by cholinergic neuromodulatory effects that
increase gain and decrease connection strengths. The activity evolution of one particular (arbitrarily
chosen) excitatory network node is shown for three different levels of “cholinergic” action: (a) low;
(b) intermediate; and (c) high.

neuromodulatory effects: increasing gain and decreasing connection weights. The
activity evolution of one arbitrarily chosen excitatory network node is shown for
three different levels of “ACh”. For example, if Q = 10.0 and wexc = winh = 1.0 (i.e.,
no suppression of synaptic transmission; wexc and winh are excitatory and inhibitory
connection-weight factors respectively), we can get an oscillatory mode with two
different frequencies (∼5 Hz and 40 Hz) present simultaneously. This is shown in
trace (a) of Fig. 7.4. If Q is kept constant (= 10) while wexc and winh are reduced
successively, the high-frequency component weakens and eventually can be totally
eliminated. In trace (b), the connection strengths were decreased by 40% for all ex-
citatory nodes (i.e., wexc = 0.6), and by 60% for all inhibitory nodes (winh = 0.4).
Trace (c) shows the result for wexc = 0.4 and winh = 0.2. In the latter case, only
the low-frequency component remains. If the excitatory connection strengths are
decreased further, i.e. if wexc ≤ 0.3, oscillations disappear.

7.2.3 Attention-induced transitions

Related to the level of arousal, and apparently also under neuromodulatory control,
is the phenomenon of attention, which plays a key role in perception, action se-
lection, object recognition, and memory [46]. The main effect of visual attentional
selection appears to be a modulation of the underlying competitive interaction be-
tween stimuli in the visual field. Studies of cortical areas V2 and V4 indicate that
attention modulates the suppressive interaction between two or more stimuli pre-
sented simultaneously within the receptive field [22]. Visual attention has several
effects on modulating cortical oscillations in terms of changes in firing rate [72],
and gamma and beta coherence [34].
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In selective-attention tasks, after the cue onset and before the stimulus onset,
there is a delay-period during which a monkey’s attention was directed to the place
where the stimulus would appear [34]. During the delay, the dynamics was domi-
nated by frequencies around 17 Hz, but with attention, this low-frequency synchro-
nization decreased. During the stimulus period, there were two distinct bands in
the power spectrum, one below 10 Hz and another at 35–60 Hz (gamma). With at-
tention, there was a reduction in low-frequency synchronization and an increase in
gamma-frequency synchronization.

At a meso-scale, each area of the visual cortex is conventionally divided into six
layers, some of which can be further divided into several sub-layers, based on their
detailed functional roles in visual information processing (such as orientation and
retinotopic position).

The inter-scale network interactions of various excitatory and inhibitory neurons
in the visual cortex generate oscillatory signals with complex patterns of frequencies
associated with particular states of the brain. Synchronous activity at an intermediate
and lower-frequency range (theta, delta, and alpha) between distant areas has been
observed during perception of stimuli with varying behavioral significance [76, 84].
Rhythms in the beta (12–30 Hz) and the gamma (30–80 Hz) ranges are also found
in the visual cortex, and are often associated with attention, perception, cognition
and conscious awareness [23, 24, 34, 37, 38]. Data suggest that gamma rhythms are
associated with relatively local computations, whereas beta rhythms are associated
with higher-level interactions. Generally, it is believed that lower-frequency bands
are generated by global circuits, while higher-frequency bands are derived from
local connections.

7.2.3.1 A neocortical network model

In order to investigate how attentional neuromodulation can affect cortical neuro-
dynamics, and cause the observed phase shifts discussed above, we use a neural
network model of the visual cortex, based on known anatomy and physiology [41].

Although neocortex consists of six layers—in contrast to paleocortex with its
three layers—for simplicity, we lump some of the neocortical layers together. Thus,
our model has three functional layers, including layer 2/3, layer 4 and layer 5/6 of
the visual cortex. Each layer contains 20×20 excitatory model neurons (pyrami-
dal neurons in layer 2/3 and layer 5/6, and spiny stellate neurons in layer 4) in a
quadratic lattice with lattice distance 0.2 mm. For each excitatory layer, there are
also 10×10 inhibitory neurons in a quadratic lattice with lattice distance 0.4 mm.
Thus, there are 20% inhibitory neurons, which roughly corresponds to the observed
cortical distribution.

Figure 7.5 shows the schematic diagram of the network topology. The inhibitory
neurons in each layer have interactions within their own layer only, while excitatory
neurons have interactions within their own layer as well as between layers and ar-
eas. The within-layer connections between excitatory and inhibitory neurons is of
“Mexican hat” shape, with an on-center and an off-surround lateral synaptic input
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Top-down input from higher area

Bottom-up input from lower area

Layer 2/3

Layer 4

Layer 5/6

Fig. 7.5 Schematic diagram of the model architecture. Small triangles in layers 2/3 and 5/6 repre-
sent pyramidal neurons; small open circles in layer 4 are spiny stellate neurons; small filled circles
in each layer are inhibitory neurons. Arrows show connection patterns between different layers and
signal flows from other areas. Large solid open circles represent lateral excitatory connection ra-
dius; large dashed open circles represent inhibitory connection radius; dotted open circles in layers
2/3 and 5/6 denote the top–down attention modulation radius Rmodu.

for each neuron, i.e., excitatory at short distance, and inhibitory at a long distance
(see Ref. [41] for details).

Since we wish to compare model results against observed data from visual
cortex—in particular, spike-triggered averages of local field potentials—we need
to use spiking model neurons; this is in contrast to the paleocortical model, which
uses network nodes corresponding to populations of neurons, resulting in a contin-
uous non-spiking output. For the present case, all excitatory model neurons satisfy
Hodgkin–Huxley equations of the form,

C
dV
dt

= −gL(V +67)−gNam3h(V −50)−gKn4(V +100)

−gAHPw(V +100)− Isyn + Iappl , (7.3)
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where V is the membrane potential in mV; C = 1 μF is the membrane capaci-
tance; gL is the leak conductance; gNa = 20 mS and gK = 10 mS are the maximal
sodium and potassium conductances, respectively; gAHP is the maximal slow potas-
sium conductance of the after-hyperpolarization (AHP) current—this varies from 0
to 1.0 mS, depending on the attentional state: in an idle state, gAHP = 1.0 mS; with
attention, gAHP ≤ 1.0 mS. The variables m, h, n and w are calculated in a conven-
tional way, and described more thoroughly in Ref. [41].

The inhibitory neurons have identical equations as above, except that there is
no AHP current. The synaptic input current, Isyn of the pyramidal, stellate, and in-
hibitory neurons is described below.

In each layer j (where j =2/3, 4, and 5/6) of the local-area network, there are four
types of interactions: (i) lateral excitatory–excitatory, (ii) excitatory–inhibitory, (iii)
inhibitory–excitatory, and (iv) inhibitory–inhibitory, with corresponding connection
strengths, Cee

j,kl , Cie
j,kl , Cei

j,kl , and Cii
j,kl , which vary with distance between neurons k

and l.
The synaptic input current, Isyn

4s,k(t), of the kth stellate neuron in layer 4 at time
t is composed of the ascending input from the pyramidal neurons in layer 5/6, de-
scending input from the pyramidal neurons in layer 2/3, and lateral excitatory inputs
from the on-centre neighboring stellate neurons in layer 4. It also includes lateral
inhibitory inputs from the off-surround neighboring inhibitory neurons in the same
layer, resulting in,

Isyn
4s,k(t) =

(
V4s,k(t)−VE

)(
∑

l

Cee
4(5/6),kl se

5/6,l(t)+∑
l

Cee
4(2/3),kl se

2/3,l(t)+∑
l

Cee
4,kl se

4,l(t)
)

+
(
V4s,k(t)−VI

)
∑

l

Cei
4,kl si

4,l(t) . (7.4)

The synaptic input current, Isyn
4i,k(t), of the kth inhibitory neuron in layer 4 is com-

posed of the lateral excitatory inputs from neighboring stellate neurons and lateral
inhibitory inputs from neighboring inhibitory neurons,

Isyn
4i,k(t) =

(
V4i,k(t)−VE

)
∑

l

Cie
4,kl se

4,l(t)+
(
V4i,k(t)−VI

)
∑

l

Cii
4,kl si

4,l(t) . (7.5)

The synaptic input currents for the other layers 2/3 and 5/6 are calculated in
a similar way (see Ref. [41] for details). In addition, each neuron of the network
receives an internal background noise current.

The excitatory and inhibitory presynaptic outputs in Eqs. (7.4) and (7.5) satisfy
first-order differential equations (7.6) and (7.7), respectively:

d
dt

se
j,l = 5(1+ tanh(Vj,l/4))(1− se

j,l)− se
j,l/2 , (7.6)

d
dt

si
j,l = 2(1+ tanh(Vj,l/4))(1− si

j,l)− si
j,l/15 , (7.7)
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where j refers to the layer, and l to the presynaptic neuron. Vj,l corresponds to the
membrane potential of presynaptic neuron l in layer j.

7.2.3.2 Simulating neurodynamical effects of visual attention

Our simulations are based on the visual attention experiment by Fries et al. [34].
Thus, in each of the three layers, we have groups of “attended-in” neurons, Ain

(where attention is directed to a stimulus location inside the receptive field (RF)
of these neurons), and groups of “attended-out” neurons, Aout (where attention is
directed to a stimulus location outside the RF these neurons). During a stimulus
period, two identical stimuli are presented: one appears at a location inside the RF
of the Ain neurons and the other appears at a location inside the RF of the Aout

neurons. The top-down modulation radius Rmodu is taken as 0.6 mm, which is larger
than the lateral excitatory connection radius of 0.5 mm, in each layer. In addition,
each neuron of the network receives an internal background-noise input current.

When analyzing the simulated spike trains, we calculate power spectra of spike
triggered averages (STAs) of the local field potential (LFP), representing the oscil-
latory synchronization between spikes and LFP. We investigate the dynamics and
the effects of attention (cholinergic modulation) in an idle state, during stimulation,
and during a delay period, as described in more detail below.

When attention is directed to a certain place, the prefrontal lobe sends cholinergic
input signals via top-down pathways to layers 2/3 and 5/6 of the visual cortex, as
shown in Fig. 7.5. To test various hypotheses about the mechanisms of attention
modulation, we assume that the top-down signals may have three different effects
on the pyramidal neurons, and on the local and global network connections in our
simulations: (i) facilitation of extracortical top-down excitatory synaptic inputs to
the pyramidal neurons (global connections); (ii) inhibition of certain intracortical
excitatory and inhibitory synaptic conductances (local connections) [58, 59]; and
(iii) modulation of the slow AHP current by decreasing the K-conductance, gAHP,
thus increasing excitability [19].

We simulated the attentional modulation effect of inhibition of intracortical ex-
citatory and inhibitory synaptic inputs by decreasing the lateral excitatory and in-
hibitory conductances to zero (i.e., gee

j = gei
j = 0 mS) for the pyramidal neurons in

the Ain neurons within Rmodu in layers 2/3 and 5/6.
To simulate the dynamics during a stimulus period, we applied a pair of bottom-

up sensory stimulation currents: a stronger current of 25 μA, and one weaker current
of 5 μA. The stronger current was directly applied to layer-4 stellate neurons in both
the Ain and the Aout groups. The weaker current was applied to layer-5/6 pyramidal
neurons in both groups. In addition, top-down attention modulation was applied to
the system.

Figure 7.6 shows the effects of attentional modulation on neuronal spikes, LFP,
STA, and STA-power in a delay period (Fig. 7.6(a)), and in a stimulation period
(Fig. 7.6(b)). The top traces show the LFP of Ain and Aout neurons, respectively.
Below the LFP traces are the spike trains of a pyramidal cell in each of the Ain and
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Fig. 7.6 Attentional modulation effects during (a) a delay period, and (b) a stimulus period. LFP
(local field potential), spikes, STA (spike-triggered averages) and STA power of attended-in and
attended-out groups, calculated for the superficial layer, when the excitatory connections and in-
hibitory connections to each pyramidal neuron in the attended-in group within Rmodu in layers 2/3
and 5/6 are reduced to zero.

Aout groups. The computed STA and STA-power of the corresponding neurons in
layer 2/3 are shown in the middle and bottom of the figure.

The simulation results show reduced beta synchronization with attention during
a delay period (under certain modulation situations, see Fig. 7.6(a)), and enhanced
gamma synchronization due to attention during a stimulation period (Fig. 7.6(b)). In
comparison with an idle state for which the dominant frequencies are around 17 Hz,
the bottom panel of Fig. 7.6(a) shows that the dominant frequency of the oscillatory
synchronization and its STA power in the Ain group is decreased by inhibition of the
intracortical synaptic inputs. This result agrees qualitatively with experimental find-
ings that low-frequency synchronization is reduced during attention. In comparison
with Fig. 7.6(a), the dominant frequency of the STA power spectrum of both Ain and
Aout groups in Fig. 7.6(b) is shifted towards the gamma band due to the stimulation
inputs. The STA power of the dominant frequency of the Ain group is higher than
that of the Aout group.

It is apparent that many factors play important roles in the network neurodynam-
ics. These include (i) the interplay of ion channel dynamics and neuromodulation
at a micro-scale; (ii) the lateral connection patterns within each layer; (iii) the feed-
forward and feedback connections between different layers at a meso-scale; and
(iv) the top-down and bottom-up circuitries at a macro-scale. The interaction be-
tween the top-down attention modulation, and the lateral short-distance excitatory
and long-range inhibitory interactions, all contribute to the beta synchronization
decrease during the delay period, and to the gamma synchronization enhancement
during the stimulation period in the Ain group. The top-down cholinergic modula-
tion tends to enhance the excitability of the Ain group neurons. The Mexican-hat
lateral interactions mediate the competition between Ain and Aout groups.



162 Liljenström

Other simulation results (not shown) demonstrate that the top-down attentional or
cholinergic effects on individual neurons, and on local and global network connec-
tions, are quite different. The effect of facilitating global extracortical connections
results in a slight shift of the dominant frequency in the STA power spectrum to
higher beta in both the Ain and the Aout groups. In particular, the higher beta syn-
chronization of the Ain group is much stronger than that of the Aout group.

7.3 Externally-induced phase transitions

In addition to various internal (natural) causes of phase transitions, there is a number
of ways to induce neural phase transitions externally (artificially). Here, we will
exemplify this by electrical stimulation and by application of anesthetics. Applying
such external inputs may give a further clue to the dynamical features of the neural
system under study, in much the same way as the response of any system to an
external signal may reveal important system properties.

7.3.1 Electrical stimulation

By the 18th century, when the Italian physicists Galvani and Volta examined electri-
cal properties of living tissues of frogs, it had become clear that nerves and muscles
could respond to electrical stimulation. Since then, electricity has been used both
to stimulate and to measure nerve activity in the body, and also in the brain itself.
The possibility of measuring the electrical component of brain activity with external
electrodes was discovered by Berger in the early 20th century [16], and it was not
difficult to see that direct electrical stimulation also could affect brain activity. A
variety of electric stimulations have been used not only for investigating brain re-
sponse, but also to treat mental disorders such as depression [17, 42], schizophrenia
[83], and neurological disorders such as Parkinson’s disease [82]. In the following,
we will give an example of how electrical stimulation can be used to study the re-
lation between structure, dynamics, and function in a mammalian brain. A second
example will illustrate how electrical stimulation is used in psychiatry.

7.3.1.1 Electrical pulses to olfactory cortex

When studying the dynamical properties of the olfactory cortex, Freeman and co-
workers stimulated the lateral olfactory tract (LOT) of cats and rodents with electric
shock pulses of varying amplitude and duration, then recorded the neural response
via EEG [26, 27]. A strong pulse gives a biphasic response with a single fast wave
moving across the surface, whereas a weak pulse results in an oscillatory response,
showing up as a series of waves with diminishing amplitude. When a short pulse
is applied to the LOT input corner of the network model, waves of activity move
across the model cortex, consistent with corresponding global dynamic behavior
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Fig. 7.7 Comparison of experimental data (a, b) from rodent olfactory cortex (courtesy of W.J.
Freeman) with simulated data (c, d) from our paleocortical network model. Left traces show re-
sponse to a strong shock pulse; right traces are response to a weak pulse.

of the functioning cortex. In Fig. 7.7, the experimentally measured responses are
shown in the upper traces, and the model simulations are shown in the lower traces.

7.3.1.2 Electroconvulsive therapy

A more dramatic example of electrical stimulation comes from psychiatry, where
electroconvulsive therapy (ECT) is one of the most successful treatments for de-
pression and other mental disorders [17]. Despite its widespread use and successful
results, it is still not known how ECT affects the brain neurologically. It has been
suggested that it causes changes in the connectivity of cortical networks, either neg-
atively, by destroying cells and/or synapses, or positively, by stimulating nerve-cell
growth and sprouting [1, 86].

Clinical data show that the EEG of patients treated with ECT changes qualita-
tively over the treatment session, and displays some characteristic behaviors [42].
Due to the complexity of these time-series, analytical work has been difficult and
scarce, and the anatomical and physiological basis for the dynamical patterns of
post-ECT EEG remain to be elucidated.

In general, the EEG after ECT stimulation exhibits a specific pattern of seizures
(see Fig. 7.8), but there are individual differences depending on seizure threshold,
stimulus doses, and sub-diagnosis [39, 40, 42, 85]. Apparently, ECT stimulation can
induce synchronous oscillations of neuronal populations over large parts of the brain
where the oscillatory patterns depend on intrinsic properties, the external input and
the treatment procedure. The dynamics of a recorded post-ECT, ictal, EEG time-
series shifts between several phases [85]. Generally, in the clinical data one can find
a sequence of phases such as preictal, polyspike (tonic), polyspike and slow-wave
(clonic), termination, and postictal, respectively [17].

We apply computational methods to address the problem of how ECT might af-
fect cortical structures and their dynamics. We have developed models of



164 Liljenström

0
−1000

−500

0

500

1000

Time (s)

E
E

G
 (

m
V

)

4 8 12 16 20 24 28 32 36 40 44

Fig. 7.8 EEG trace immediately after ECT stimulus in a patient with recurrent major depression.

neocortical structures to investigate and suggest possible mechanisms underlying
the EEG signal, and in particular, how ECT-like input might influence the dynam-
ics of the system. We are able to simulate qualitatively certain ECT EEG patterns
[39, 40]. Considering the characteristics of the dynamical shifts between several
phases of ECT EEG, we assume that the phase shifts are related to intrinsic local
and global network properties, physiological parameters of the cortex, and external
ECT stimulus.

We use various versions of a neocortical model similar to that of Sect. 7.2.3.1, but
with differently modeled neurons, since we want to compare our results with previ-
ous simulations of ECT EEG by Giannakopoulos et al [35]. Network connectivity
is varied in terms of cell types, number of neurons, and short- and long-distance
connections. In particular, we investigate how a variation in the balance between
excitation and inhibition affects the network dynamics. The guiding idea is that
ECT primarily acts on network connectivity in stimulating nerve cell growth and
sprouting [1, 86].

The model uses, as far as possible, physiological parameter values, and the same
equations for describing the dynamics in all of the model variants. The network dy-
namics is described by Eq. (7.8), and the neurons are modeled as continuous output
units of Fitzhugh–Nagumo type, as described by Eqs (7.9) and (7.10). The equa-
tions and parameter values are essentially the same as in Ref. [35], but in Eq. (7.8),
we also include inputs from inhibitory neurons to other inhibitory and excitatory
neurons.

τex(in) d
dt

uex(in)
i (t) = −uex(in)

i (t)+ p+
n

∑
k=1

cex(in)/ex
ik g(vex

k (t −T ex(in)/ex
ik ))

+ p−
n

∑
k=1

cex(in)/in
ik g(vin

k (t −T ex(in)/in
ik ))+ eex(in)

i (t −Tσ ) , (7.8)

d
dt

vi(t) = c(wi(t)+ vi(t)− 1
3 vi(t)3)+ γi ui(t) , (7.9)

d
dt

wi(t) = (a− vi(t)−bwi(t))/c , (7.10)

g(v) =
Mg −mg

1+ exp(−αv)
. (7.11)
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Here, ui is the postsynaptic potential of neuron i; vi is the membrane potential at the
axon initial segment; wi is an auxiliary variable; a, b, and c are appropriate positive
constants which guarantee the existence of the oscillation interval; and eex(in)

i is the
external signal. The nonlinear function g(v) describes the relation between the pre-
and postsynaptic potential of the neurons, and is monotonically increasing (α > 0)
and nonnegative (0 ≤ mg < Mg). The elements of the connection matrix, cik, de-
scribe the topology of the network, and p+ and p− are the excitatory and inhibitory
connection strengths, respectively. The neurons have time-constants τex and τ in. The
total time-delay, Tik, consists of a synaptic delay, Tσ , and the dendritic and axonal
propagation time from neuron k to neuron i. The synaptic membrane conductance
of neuron i is denoted by γi. The EEG signal is calculated as the mean membrane
potential over all (excitatory) neurons.

The network connectivity mimics that of the six-layered neocortex, with columns
connected via long-range lateral connections, and with a circuitry inspired by Szen-
tagothai and others [75, 77, 81]. In our simulations, we use 100 neurons, of which
80 are excitatory of two types (pyramidal and spiny stellate neurons), and 20 are
inhibitory of two types (large basket neurons and short-distance inhibitory interneu-
rons). Each layer consists of 4×4 excitatory neurons in a quadratic lattice with lat-
tice spacing 0.2 mm, and four randomly distributed inhibitory neurons. The distance
between layers is 0.4 mm. The “regional” network connects four columns by long-
distance excitatory connections in layers 2 and 3, with a distance between columns
of 4 mm. (A more thorough description of the model is given in Ref. [39].)

In Fig. 7.9, the mean activity of simulated excitatory neurons in layers 2 to 6 is
shown, going from top to bottom (layer 1 is considered to consist of fibers only).
The duration of the ECT-like input is 200 ms. As seen from the figure, the neurons
in each layer begin to oscillate synchronously during the ECT stimulation, but the
collective oscillatory patterns vary from layer to layer, depending on the difference
in connectivity.

In the left-hand traces of Fig. 7.9, the simulation shows the neural dynamics
resulting from long-range inhibitory connections between basket cells in layer 3
of the four columns. In these traces, the mean membrane potential shows rather
strong phase shifts in layers 2 and 3 due to the long-distance inhibitory connections
in layer 3. In layer 4, mean membrane potential decreased abruptly, long before
the ECT stimulus had ended. After the ECT input had ended, oscillations died out
immediately in this layer, due to the lack of lateral excitatory connections here. The
synchronous oscillations are comparatively strong in layers 5 and 6 due to a reduced
neuronal density in these layers.

In the right-hand side of Fig. 7.9, we have replaced the long-range inhibitory con-
nections by long-range excitatory lateral connections between the four pyramidal
neurons in the centers of each column within layers 2 and 3. After the ECT stimula-
tion, the synchronous oscillations in layers 2 and 3 show fewer phase shifts between
high and low amplitude due to the long-distance excitatory connections. The activ-
ity in layer 4 is almost the same as for the case of long-range inhibition. In layers
5 and 6, the mean membrane potential shows more prominent phase shifts between
synchronous and desynchronous oscillation after the ECT stimulus has ended.
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Fig. 7.9 Network response to simulated 200-ms ECT stimulus. From top to bottom, panels show
mean membrane potential of excitatory neurons in layers 2–6 respectively. (a) Effect of density
and long-distance inhibitory connections; (b) effect of long-distance excitatory lateral connections.
Scale for y-axis is arbitrary.

When we decrease the excitatory connection strength of the network, the syn-
chronous oscillations decrease in each layer. (The network dynamics can also
change dramatically if, for example, the time-constants of excitatory and/or in-
hibitory neurons are changed slightly).

These studies demonstrate that the collective network dynamics varies with con-
nection topology, neuron density in different layers, the balance between excitatory
and inhibitory strength, neuronal intrinsic oscillatory properties, and external input.

Clinical EEG data from a series of six consecutive treatments [17] shows a transi-
tion from large amplitude oscillatory activity with apparent phase shifts, to low am-
plitude oscillations with fewer phase shifts. Comparing the model results of Fig. 7.9
with these findings, we may assume that the ECT stimuli could form new long-
distance excitatory connections, as these lead to fewer phase shifts, while long-
distance inhibitory connections induce more phase shifts. These results support the
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notion that ECT stimuli can induce regeneration of neurons and the formation of
new connections.

7.3.2 Anesthetic-induced phase transitions

Another way of artificially inducing phase transitions in cortical neurodynamics is
by using neuroactive drugs, such as certain kinds of anesthetics and anti-epileptics,
which clearly can induce transitions between mental states. An important principle
in the action of these drugs is the selective blocking or activation of ion channels,
which will have differing effects on the neurodynamics depending on the relative
selectivity and intrinsic network activity [9, 48, 80]. Likewise, up-regulation of Na
and K channels will induce different activity patterns, depending on their relative
densities in the cell membrane.

The permeability constants, P∗
Na and P∗

K (defined as the permeability values for
fully open ion channels), depend on the density of ion channels in the cell mem-
brane, so they will be referred to as channel densities here. It has been shown that
different combinations of these densities cause different oscillatory behaviors in
single-cell dynamics at constant stimulation [8]. There are also combinations of Na
and K channel density (P∗

Na/P∗
K) for which there are no oscillations at all.

If the stimulus applied to a given neuron is too strong, the potential cannot drop
to the resting potential, and the neuron is not able to maintain an oscillatory activity;
whereas if the stimulus is too weak, the neuron cannot be driven above the oscilla-
tion threshold. Both the upper and lower limit of the stimulus interval for which a
neuron oscillates depend on the P∗

Na/P∗
K ratio.

By constructing computational network models of neurons with different P∗
Na/P∗

K
values, we investigate how the network dynamics depend on the density of ion chan-
nels at the single-neuron level, thus relating microscopic properties of single neu-
rons to mesoscopic brain dynamics. This is based on the notion that general anes-
thetics function by blocking specific K channels, thus shifting the affected neurons
towards a larger Na:K permeability ratio [9, 33, 47].

7.3.2.1 Neural network model with spiking neurons

In this study, we use a neural network model with spiking neurons described by
Frankenhaeuser-Huxley (FH) equations [8]; these deviate slightly from the classical
Hodgkin-Huxley formalism, but are more accurate for cortical neurons and better
for our purpose here. In our simulations, the only free parameters for the neuronal
model are the permeability values (channel densities) P∗

Na and P∗
K. Using this model,

we may study the effects of changes in ion-channel composition on the network
dynamics as an assumed effect of certain anesthetics.

As a global activity measure (comparable to EEG), we use the arithmetic-mean
field potential. Our network model here consists of 6×6 neurons, arranged in a
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square lattice and connected in an all-to-all manner. We use a distance-dependent
connectivity, with the connection strength decreasing with distance as w ∼ 1/r.

Six (out of 36) homogenously distributed network neurons are inhibitory (with
periodic boundary conditions), motivated by the fact that about 20% of the neo-
cortical neurons in the mammalian brain are inhibitory (as in the previous models
described above).

The synaptic input enters the single neuron model [8] as an additional input cur-
rent, Ii(t):

Ii(t) = ∑
j

wi j∑
( f )

(1/τs) exp[(t − tsyn − t( f )
j )/τs] , (t − tsyn − t( f )

j ) > 0 , (7.12)

where wi j is the synaptic weight between the neurons i and j, tsyn (1 ms) is the
synaptic delay, and τs is the synaptic (membrane) time-constant (30 ms). The time
t( f ) refers to the arrival of an action potential.

Thus, in a network, the state equation for a neuron, with membrane potential v
and capitance CM , becomes a sum of various currents:

CM
dvi

dt
= IS(t)+ IG(t)+ Ii(t)− INa(vi,mi,hi)− IK(vi,ni)− IL(vi) . (7.13)

IS is the stimulation current, IG is Gaussian noise, INa is the initial transient current
through Na channels, IK is the delayed sustained current through K channels, and IL

is the leak current. P∗
Na and P∗

K enter in the expressions for INa and IK, respectively.
(For more details of the model, see Ref. [45].)

7.3.2.2 Variation of network dynamics with channel-density composition

The network dynamics depends on the subcellular densities of Na and K channels
(P∗

Na and P∗
K), and on the synaptic weight factor (w) at the network level; these are the

only free parameters in our analysis. All neurons have the same initial conditions,
but the spatial homogeneity is broken by the random component in the input. (The
stimulus IS is for every run given a value close to the oscillation threshold in each
particular case).

The network consists of inhibitory and excitatory neurons with different P∗
Na/P∗

K
ratios. Keeping the excitatory neurons fixed at the channel density values, P∗

Na/P∗
K =

15/7.5, we vary the K-channel density in the inhibitory neurons. We model the
effect of anesthetic by assuming that it blocks specific K channels, primarily in the
inhibitory neurons. The arithmetic mean of the transmembrane potential, taken over
all neurons, is used as a measure of the collective network dynamics (the “EEG”).

The strength of the stimulus required to make a single neuron oscillate varies
depending on the P∗

Na and P∗
K values for that neuron. There is a general trend that

oscillation frequency increases with stimulus, and that neurons with low P∗
K val-

ues have a low oscillation threshold, but are also more sensitive to over-stimulation
than neurons with high P∗

K values. (Here, we want to study the effect that these



7 Mesoscopic brain dynamics 169

findings have at a network level, where the stimulus varies over time due to synaptic
interactions).

Since K channels are important regulators of firing patterns, and since K channels
have been suggested to be the main targets for general anesthetics and anti-epileptics
[33, 47], we explored the neurodynamical effects of reducing the K-channel density,
in particular for the inhibitory neurons. In order to limit the number of simulations,
we keep P∗

Na constant (at 15), varying only P∗
K. Fig. 7.10 shows a time series for

a network, where the excitatory neurons have a low K-channel density (P∗
K = 3.0).

The inhibitory neurons initially have a high density of K channels (P∗
K = 12.5), but

the K channels were blocked in steps every 1000 ms, by decreasing P∗
K and shifting

the inhibitory neurons from P∗
K = 12.5, to P∗

K = 7.5, and finally to P∗
K = 3.0. When

the inhibitory neurons (middle trace) reach P∗
K = 3.0, both inhibitory and excita-

tory neurons alternate between periods of high amplitude activity, and periods with
over-stimulation and potential drop. The mean network dynamics (bottom trace) is
shifted towards a qualitatively different dynamical pattern. In this case, it is clear
that the blocking of K channels in inhibitory neurons transforms unsynchronized,
high-frequency oscillatory activity to an enveloped and steady slow-wave oscilla-
tion, qualitatively mimicking the transformation of EEG-patterns when applying
general anesthetics [55].

500 ms

(c)

(b)

(a)

PK
*(inh)=12.5 PK(inh)=7.5 PK(inh)=3.0

10 mV

40 mV

40 mV

Fig. 7.10 [Color plate] Model response to stepped reductions in K-channel density in inhibitory
neurons. For excitatory neurons, the densities of Na and K channels is kept fixed at the constant
ratio P∗

Na/P∗
K = 15/3, while for inhibitory neurons the ratio is stepped consecutively from P∗

Na/P∗
K =

15/12.5, to 15/7.5, and finally to 15/3, by decreasing P∗
K every 1000 ms. The two upper time-series

show the activity of (a) an excitatory neuron (red trace), and (b) an inhibitory neuron (blue trace);
(c) lower trace (black) shows the network mean.

These simulations show that the mesoscopic network dynamics can be shifted
into, or out of, different oscillatory states by small changes in the ion-channel
densities, even for single neurons. Similar effects can also be obtained by chang-
ing connection strengths in the network model, which we have shown elsewhere
[45]. Both of these phenomena are of pharmacological interest, since some drugs
can affect the permeability of ion channels also in the synapses [48]. Our simu-
lations demonstrate that the blocking of specific K channels, as a possible effect
of some anesthetics, can change the global activity from high-frequency (awake)
states to low-frequency (anesthetized) states, as apparent in recorded and simulated
EEG.
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7.4 Discussion

In this chapter, I have given a few examples of how computational models can be
used to study phase transitions in mesoscopic brain dynamics. As examples of in-
ternally/naturally induced phase transitions, I have presented some models with in-
trinsic noise, neuromodulation, and attention, which in fact, may all be related. In
particular, neuromodulation seems to be closely linked to the level of arousal and
attention. It may also affect the internal noise level, e.g., by varying the threshold
for firing. As examples of externally/artificially induced phase transitions, I have
discussed electrical stimulation—both as electric shocks applied directly onto the
olfactory bulb and cortex in an experimental setting with animals, and as electrocon-
vulsive therapy applied in a clinical situation in treatment of psychiatric disorders.
The final example was a network model testing how certain anesthetics may act on
the brain dynamics through selective blocking of ion channels.

In all cases, the mesoscopic scale of cortical networks has been in focus, with
an emphasis on network connectivity. The objective has been to investigate how
structure is related to dynamics, and how the dynamics at one scale is related to that
at another. Other than in passing, we have not discussed how structure and dynamics
are related to function, since this is beyond the scope of this chapter, but the general
notion is that mesoscopic brain dynamics reflects mental states and processes.

Our model systems have been paleocortical structures, the olfactory cortex and
hippocampus, as well as neocortical structures, exemplified by the visual cortex.
These structures display a complex dynamics with prominent oscillations in certain
frequency bands, often interrupted by irregular, chaotic-like activity. In many cases,
it seems that the collective cortical dynamics after external stimulation results from
some kind of “resonance” between network connectivity (with negative and positive
feedback loops), neuronal oscillators, and external input.

While our models are often aimed at mimicking specific cortical structures and
network circuitry at a mesoscopic level, in some cases there is less realism in the
connectivity than in the microscopic level of single neurons. The reason for this
is that the objective in those cases has been to link the neuronal spiking activity
with the collective activity of inter-connected neurons, irrespective of the detailed
network structure. Model simulations then need to be compared with spike trains
of single neurons, as captured with microelectrodes or patch-clamp techniques. In
cases where the network connectivity is in focus, the network nodes may represent
large populations of neurons, and their spiking activity is represented by a collective
continuous output, more related to LFP or EEG activity.

Models should always be adapted to the problem they are supposed to address,
with an appropriate level of detail at the spatial and temporal scales considered. In
general, it could be wise to apply Occam’s razor in the modeling process, aiming at
a model as simple as possible, and with few (unspecified) parameters. For the brain,
due to its great complexity and our still rather fragmented knowledge, it is partic-
ularly hard to find an appropriate level of description and to decide which details
to include. For example, different models may address the problem of neural com-
putation at different levels, from the single-neuron level [57] to cortical networks
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and areas [30, 74, 79, 89]. Even though the emphasis may be put at different levels,
the different models can often be regarded as complementary descriptions, rather
than mutually exclusive. At this stage, it is in general not possible to say which
models give the best description, for example when trying to link neural and mental
processes, in particular with regard to the significance of phase transitions.

Even though attempts have been made, it is a struggle to include several levels
of descriptions in a single model, relating the activity at the different levels to each
other [4, 10, 30, 31, 74, 88, 89]. In fact, relating different spatial and temporal scales
in the nervous system, and linking them to mental processes, can be seen as the
greatest challenges to modern neuroscience.

In the present work, I have focused on how to model phase transitions in meso-
scopic brain dynamics, relating the presentation to anatomical and physiological
properties, and I have not so much discussed the functional significance of such
transitions, which has been done more thoroughly elsewhere [41, 45, 60, 63, 64].
Below, I will just briefly discuss some of these ideas.

The main question concerns the functional significance of the complex cortical
neurodynamics described and simulated above, and in particular, the significance of
the phase transitions between various oscillatory states and chaotic or noisy states.
The electrical activity of the brain, as captured with EEG, is considered by many to
be an epiphenomenon, without any information content or functional significance,
but this view is challenged by the bulk of research presented, referenced, and dis-
cussed here.

Our computer simulations support the view that the complex dynamics makes the
neural information processing more efficient, providing a fast and accurate response
to external situations. For example, with an initial chaotic-like state, sensitive to
small variations in the input signal, the system can rapidly converge to a limit-cycle
attractor memory state [61, 62, 90]. Perhaps the most direct effect of cortical os-
cillations could be to enhance weak signals and speed up information processing,
but it may also reflect collective, synchronous activity associated with various cog-
nitive functions, including segmentation of sensory input, learning, perception, and
attention.

In addition, a “recruitment” of neurons in oscillatory activity can eliminate the
negative effects of noise in the input, by cancelling out the fluctuations of individual
neurons. However, noise can also have a positive effect on system performance, as
will be discussed briefly below. Finally, from an energy point of view, oscillations in
the neuronal activity should be more efficient than if a static neuronal output (from
large populations of neurons) was required.

The intrinsic noise found in all neural systems seems inevitable, but it may also
have a functional role, being advantageous to the system. What, then, could be the
functional role of the microscopic noise on the meso- and macroscopic dynamics?
What, if any, could be the role of spontaneous activity in the brain? A traditional
answer is that it generates baseline activity necessary for neural survival, and that it
perhaps also brings the system closer to threshold for transitions between different
neurodynamical states. It has also been suggested that spontaneous activity shapes
synaptic plasticity during ontogeny (see references in Ref. [54]), and it has even
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been argued that spontaneous activity plays a role for conscious processes [7, 11,
12, 70].

Internal system-generated fluctuations can apparently create state transitions,
break down one kind of order to make place for and replacing it with a new
kind of order. Externally-generated fluctuations can cause increased sensitivity
in certain (receptor) cells through the phenomenon of stochastic resonance (SR)
[2, 10, 20, 66, 69, 71]. The typical example of this is when a signal with the addi-
tion of noise overcomes a threshold, which results in an increased signal-to-noise
relation.

The computer simulations we have described above demonstrate that “micro-
scopic” noise can indeed induce global synchronous oscillations in cortical networks
and shift the system dynamics from one dynamical state to another. This in turn can
change the efficiency in the information processing of the system. Thus, in addition
to the (pseudo-)chaotic network dynamics, the noise produced by a few (or many)
neurons, could make the system more flexible, increasing the responsiveness of the
system and avoiding getting stuck in any undesired oscillatory mode. In particu-
lar, we have shown that spontaneous activity can facilitate learning and associative
memory. Indeed, simulations with our paleocortical model demonstrated that an in-
creased neuronal noise level can reduce recall time in associative memory tasks,
i.e., the time it takes for the system to recognize a distorted input pattern as any of
the stored patterns. Consonant with SR theory [2, 20, 71], we found optimal noise
values for which the recall-time reached a minimum [61, 62, 69].

In addition, our simulations also show that neuromodulatory control can be used
in regulating the accuracy or rate of the recognition process, depending on current
demands. Apparently, the complex dynamics of the brain can be regulated by neu-
romodulators, and perhaps also by noise. By such control, the neural system could
be put into an appropriate state for the right response-action dependent on the en-
vironmental demand. Operating with a complex neurodynamics, shifting between
various oscillatory and (pseudo-)chaotic states, the brain seems to balance between
stability and flexibility, increasing performance efficiency and survival probability
for the individual.

The kind of phase transitions discussed in this work may reflect transitions be-
tween different cognitive and mental levels or states, for example corresponding to
various stages of sleep, anesthesia, or wake states with different levels of arousal,
which in turn may affect the efficiency and rate of information processing. In some
of our previous work, we have also added gap junctions to the ordinary synaptic con-
nections in our paleocortical model, causing rapid synchronization of the network
dynamics, and thus further improving neural information processing in associative
memory tasks [13, 14].

Even though we are still at an early stage, I believe a combination of computa-
tional analysis and modeling methods of the kind discussed here can serve as an
essential complement to experimental and clinical methods in furthering our un-
derstanding of neural and mental processes. In particular, when concerned with the
inter-relation between structure, dynamics and function of the brain and its cognitive
functions, this method may be the best way to make progress. The study of phase
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transitions in the brain dynamics seems to be one of the most fruitful approaches in
this respect.
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7. Århem, P., Johansson, S.: Spontaneous signalling in small central neurons: Mechanisms and
roles of spike-amplitude and spike-interval fluctuations. Int. J. Neural Syst. 7, 369–376 (1996),
doi:10.1142/s0129065796000336
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11. Århem, P., Liljenström, H.: Beyond cognition - on consciousness transitions. In: H. Liljen-
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65. Liljenström, H., Århem, P.: Investigating amplifying and controlling mechanisms for random
events in neural systems. In: J.M. Bower (ed.), Computational Neuroscience, pp. 711–716,
Plenum Press, New York (1997)

66. Liljenström, H., Halnes, G.: Noise in neural networks– in terms of relations. Fluct. Noise Lett.
4(1), L97–L106 (2004), doi:10.1142/S0219477504001707

67. Liljenström, H., Hasselmo, M.E.: Cholinergic modulation of cortical oscillatory dynamics. J.
Neurophysiol. 74, 288–297 (1995)

68. Liljenström, H., Svedin, U. (eds.): Micro-Meso-Macro: Addressing Complex Systems Cou-
plings. World Scientific, London (2005)

69. Liljenström, H., Wu, X.: Noise-enhanced performance in a cortical associative memory model.
Int. J. Neural Systems 6, 19–29 (1995), doi:10.1142/S0129065795000032
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