
Chapter 6
Bifurcations and state changes in the human
alpha rhythm: Theory and experiment

D.T.J. Liley, I. Bojak, M.P. Dafilis, L. van Veen, F. Frascoli,
and B.L. Foster

6.1 Introduction

The alpha rhythm is arguably the most ubiquitous rhythm seen in scalp-recorded
electroencephalogram (EEG). First discovered by Hans Berger in the 1920s [27] and
later confirmed by Adrian and Mathews in the early 1930s [1], it has played a central
role in phenomenological descriptions of brain electrical activity in cognition and
behavior ever since. While the definition of classical alpha is restricted to that 8–13-
Hz oscillatory activity recorded over the occiput, which is reactive to eyes opening
and closing, it is now widely acknowledged that activity in the same frequency
range can be recorded from multiple cortical areas. However, despite decades of
detailed empirical research involving the relationship of this rhythm to cognition,
we remain essentially ignorant regarding the mechanisms underlying its genesis and
its relevance to brain information processing and function [74].

Broadly speaking we are certain of only two essential facts: first, alpha activity
can be recorded from scalp; and second, it bears some relationship to brain function.
However a raft of recent modeling work suggests that alpha may be conceived as a
marginally stable rhythm in the Lyapunov sense, and hence represents a brain state
which can be sensitively perturbed by a range of factors predicted to also include
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afferent sensory stimuli. In this view, which we will elaborate on in some detail, the
alpha rhythm is best conceived as a readiness rhythm. It is not a resting or idling
rhythm, as originally suggested by Adrian and Mathews [1], but instead represents
a physiologically meaningful state from which transitions can be made from or to.
This perspective echos that of EEG pioneer Hans Berger [27]:

I also continue to believe that the alpha waves are a concomitant phenomenon of the con-
tinuous automatic physiological activity of the cortex.

This chapter is divided into three main sections: The first section gives a suc-
cinct overview of the alpha rhythm in terms of phenomenology, cerebral extent
and mechanisms postulated for its genesis. It concludes by arguing that its com-
plex features and patterns of activity, its unresolved status in cognition, and the
considerable uncertainty still surrounding its genesis, all necessitate developing a
more mathematical approach to its study. The second section provides an overview
of our mean-field approach to modeling alpha activity in the EEG. Here we out-
line the constitutive equations and discuss a number of important features of their
numerical solutions. In particular we illustrate how model dynamics can switch be-
tween different, but electroencephalographically meaningful, states. The third and
final section outlines some preliminary evidence that such switching dynamics can
be identified in scalp recordings using a range of nonlinear time-series analysis
methods.

6.2 An overview of alpha activity

Between 1926 and 1929 Hans Berger laid the empirical foundations for the devel-
opment of electroencephalography in humans. In the first of a number of identically
titled reports [27], Berger described the alpha rhythm, its occipital dominance, and
its attenuation with mental effort or opened eyes. This, and the subsequent reports,
evinced virtually no interest from the neurophysiological community until Edgar
Douglas Adrian (later Lord Adrian) and his colleague Bryan Mathews reproduced
these results in a public demonstration that in addition revealed how easy the alpha
rhythm was to record.

Following its demonstration by Adrian and Mathews [27], interest in the alpha
rhythm and electroencephalography in general accelerated, to the point that consid-
erable funding was devoted to its investigation. However, by the 1950s much of the
early promise—that EEG research would elucidate basic principles of higher brain
function—had dissipated. Instead, a much more pragmatic assessment of its utility
as a clinical tool for the diagnosis of epilepsy prevailed. By the 1970s, rhythmicity in
the EEG had been effectively labeled an epiphenomenon, assumed to only coarsely
relate to brain function. However, the temporal limitations of functional magnetic
resonance imaging and positron emission tomography have in the last decades re-
newed interest in its genesis and functional role.
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6.2.1 Basic phenomenology of alpha activity

Classically, the term “alpha rhythm” is restricted to EEG activity that fulfills a num-
ber of specific criteria proposed by the International Federation of Societies for
Electroencephalography and Clinical Neurophysiology (IFSECN) [32]. The most
important of these are: the EEG time-series reveal a clear 8–13-Hz oscillation; this
oscillation is principally located over posterior regions of the head, with higher volt-
ages over occipital areas; it is best observed in patients in a state of wakeful rest-
fulness with closed eyes; and it is blocked or attenuated by attentional activity that
is principally of a visual or mental nature. However, alpha-band activity is ubiqui-
tously recorded from the scalp with topographically variable patterns of reactivity.
A slew of studies have revealed that the complex distribution of oscillations at alpha
frequency have different sources and patterns of reactivity, suggesting that they sub-
serve a range of different functional roles. Indeed W. Grey Walter, the pioneering
British electroencephalographer, conjectured early on that “there are many alpha
rhythms”, see [70]. Because the original IFSECN definition of alpha rhythm does
not extend to these oscillations, they are typically referred to as alpha activity [15].

To date, two types of nonclassical alpha have been unequivocally identified. The
first is the Rolandic (central) mu rhythm, first described in detail by Gastaut [25].
It is reported as being restricted to the pre- and post-central cortical regions, based
on its pattern of blocking subsequent to contralateral limb movement and/or sen-
sory activity. Like alpha activity in general, the mu rhythm does not appear to be a
unitary phenomenon. For example, Pfurtscheller et al. [61] have observed that the
mu rhythm is comprised of a great variety of separate alpha activities. The other
well-known nonclassical alpha activity is the third rhythm (also independent tem-
poral alphoid rhythm or tau rhythm). It is hard to detect in scalp EEG unless there
is a bone defect [28], but is easily seen in magnetoencephalogram (MEG) record-
ings [77]. While no consensus exists regarding its reactivity or function, it appears
related to the auditory cortex, as auditory stimuli are most consistently reported
to block it [50, 70]. There have also been other demonstrations of topographically
distinct alpha activity, whose status is much less certain and controversial. These
include the alphoid kappa rhythm arising from the anterior temporal fossae, which
has been reported to be non-specifically associated with mentation [36], and a 7–9-
Hz MEG rhythm arising from second somatosensory cortex in response to median
nerve stimulation [49].

Because historically the most common method of assessing the existence of alpha
activity has been counting alpha waves on a chart, incorrect impressions regarding
the distribution and neuroanatomical substrates of the various alpha rhythms are
likely [55]. Thus the current nomenclature has to be viewed as somewhat provi-
sional. Nevertheless, the global ubiquity of alpha activity and its clear associations
with cognition suggest that understanding its physiological genesis will contribute
greatly to understanding the functional significance of the EEG. This possibility was
recognised by the Dutch EEG pioneer Willem Storm van Leeuwen who is cited in
[4] as commenting:
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If one understands the alpha rhythm, he will probably understand the other EEG
phenomena.

6.2.2 Genesis of alpha activity

To date, two broad approaches have emerged for explaining the origin of the alpha
rhythm and alpha activity. The first approach conceives of alpha as arising from cor-
tical neurons being paced or driven at alpha frequencies: either through the intrinsic
oscillatory properties of other cortical neurons [44, 71], or through the oscillatory
activity of a feed-forward subcortical structure such as the thalamus [30, 31]. In
contrast, the second approach assumes that alpha emerges through the reverber-
ant activity generated by reciprocal interactions of synaptically connected neuronal
populations in cortex, and/or through such reciprocal interactions between cortex
and thalamus.

While Berger was the first to implicate the role of the thalamus in the genera-
tion of the alpha rhythm [27], it was the work of Andersen and Andersson [2] that
popularised the notion that intrinsic thalamic oscillations, communicated to cortical
neurons, are the source of the scalp-recorded alpha rhythm. Their essential assump-
tion was that barbiturate-induced spindle oscillations recorded in the thalamus of
the cat were the equivalent of the alpha oscillations recorded in humans. However,
the notion that spindle oscillations are the source of alpha activity has not survived
subsequent experimental scrutiny [74]. Spindle oscillations only occur during anes-
thesia and the retreat into sleep, whereas alpha oscillations occur most prominently
during a state of wakeful restfulness. Further, while the frequency of spindle oscilla-
tions and alpha activity overlap, spindles occur as groups of rhythmic waves lasting
1–2 s recurring at a rate of 0.1–0.2 Hz, whereas alpha activity appears as long trains
of waves of randomly varying amplitude. A range of other thalamic local field oscil-
lations with frequencies of approximately 10 Hz have been recorded in cats and dogs
[13, 14, 30, 31], and have been considered as putative cellular substrates for human
alpha activity. Nevertheless, there remains considerable controversy regarding the
extent and mode of thalamic control of human alpha activity [70].

Indeed, there are good reasons to be suspicious of the idea that the thalamus
is the principal source of scalp-recorded alpha oscillations. First, thalamocortical
synapses are surprisingly sparse in cortex. Thalamocortical neurons project predom-
inantly to layer IV of cerebral cortex, where they are believed to synapse mainly on
the dendrites of excitatory spiny stellate cells. A range of studies [6, 12, 57, 58]
have revealed that only between 5–25% of all synapses terminating on spiny stellate
cells are of thalamic origin. Averaged over the whole of cortex, less than 2–3% of
all synapses can be attributed to thalamocortical projections [10]. Second, recent
experimental measurements reveal that the amplitude of the unitary thalamocortical
excitatory postsynaptic potential is relatively small, of the order of 0.5 mV, on its
own insufficient to cause a postsynaptic neuron to fire [12]. This raises the question
whether weak thalamocortical inputs can establish a regular cortical rhythm even
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in the spiny stellate cells, which would then require transmission to the pyramidal
cells, whose apical dendrites align to form the dipole layer dominating the macro-
scopic EEG signal. Third, coherent activity is typically stronger between cortical
areas than between cortical and thalamic areas [47, 48], suggesting cortical domi-
nance [74]. Fourth, isolated cerebral cortex is capable of generating bulk oscillatory
activity at alpha, beta and gamma frequencies [19, 37, 76]. Finally, pharmacologi-
cal modulation of alpha oscillatory activity yields different results in thalamus and
cortex. In particular, low doses of benzodiazepines diminish alpha-band activity but
promotes beta-band activity in EEG recorded from humans, but in cat thalamus in-
stead appear to promote lower frequency local-field potential activity by enhancing
total theta power [30, 31].

For these, and a variety of other reasons [55], it has been contended that alpha ac-
tivity in the EEG instead reflects the dynamics of activity in distributed reciprocally-
connected populations of cortical and thalamic neurons. Two principal lines of
evidence have arisen in support of this view. First, empirical evidence from mul-
tichannel MEG [16, 83] and high density EEG [55] has revealed that scalp-recorded
alpha activity arises from a large number or continuum of equivalent current dipoles
in cortex. Secondly, a raft of physiologically plausible computational [38] and the-
oretical models [40, 54, 66, 80], developed to varying levels of detail, reveal that
electroencephalographically realistic oscillatory activity can arise from the synaptic
interactions between distributed populations of excitatory and inhibitory neurons.

6.2.3 Modeling alpha activity

The staggering diversity of often contradictory empirical phenomena associated
with alpha activity speaks against the notion of finding a simple unifying biological
cause. This complexity necessitates the use of mathematical models and computer
simulations in order to understand the underlying processes. Such a quantitative ap-
proach may help address three essential, probably interrelated, questions regarding
the alpha rhythm and alpha activity. First, can a dynamical perspective shed light on
the functional roles of alpha and its attenuation (or blocking)? While over the years
a variety of theories and hypotheses have been advanced, all are independent of any
physiological mechanism accounting for its genesis. The most widespread belief
has been that the alpha rhythm has a clocking or co-ordinating role in the regulation
of cortical neuronal population dynamics, see for example Chapter 11 of [70]. This
simple hypothesis is probably the reason that the idea of a subcortical alpha pace-
maker has survived despite a great deal of contradictory empirical evidence. The
received view on alpha blocking and event-related desynchronisation (ERD), is that
they represent the electrophysiological correlates of an activated, and hence more
excitable, cortex [59]. However, this view must be regarded as, at best, speculative
due to the numerous reports of increased alpha activity [70] in tasks requiring levels
of attention and mental resource above a baseline that already exhibits strong alpha
activity.
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Second, what is the relationship between alpha and the other forms of scalp-
recordable electrical activity? Activity in the beta band (13–30 Hz) is consistently
linked to alpha-band activity. For instance, blocking of occipital alpha is almost
always associated with corollary reductions in the amplitude of beta activity [60].
Further, peak occipital beta activity is, on the basis of large cross-sectional stud-
ies involving healthy subjects, almost exactly twice the frequency of peak occipital
alpha, in addition to exhibiting significant phase coherence [52]. Significant phase
correlation between alpha and gamma (> 30 Hz) activity has also been reported in
EEG recorded from cats and monkeys [67]. Less is known about the connection to
the low-frequency delta and theta rhythms.

Finally, what is the link between activity at the single neuronal level and the
corresponding large-scale population dynamics? Can knowledge of the latter en-
able us to make inferences regarding the former, and can macroscopic predic-
tions be deduced from known microscopic or cellular level perturbations? This
becomes particularly pertinent for attempts to understand the mesoscopic link be-
tween cell (membrane) pharmacology and physiology, and co-existing large-scale
alpha activity [20].

6.3 Mean-field models of brain activity

Broadly speaking, models and theories of the electroencephalogram can be divided
into two complementary kinds. The first kind uses spatially discrete network models
of neurons with a range of voltage- and ligand-dependent ionic conductances. While
these models can be extremely valuable, and are capable of giving rise to alpha-
like activity [38], they are limited since the EEG is a bulk property of populations
of cortical neurons [45]. Further, while a successful application of this approach
may suggest physiological and anatomical prerequisites for electrorhythmogenesis,
it cannot provide explicit mechanistic insight due to its own essential complexity.
In particular, a failure to produce reasonable EEG/electrocorticogram (ECoG) does
not per se suggest which additional empirical detail must be incorporated. A more
preferable approach exists in the continuum or mean-field method [33, 40, 54, 66,
80]. Here it is the bulk or population activity of a region of cortex that is modeled,
more optimally matching the scale and uncertainties of the underlying physiology.
Typically the neural activity over roughly the extent of a cortical macrocolumn is
averaged.

However three general points need to be noted regarding the continuum mean-
field approach and its application to modeling the EEG. First, in general, all ap-
proaches dynamically model the mean states of cortical neuronal populations, but
only in an effective sense. Implicitly modeled are the intrinsic effects of non-
neuronal parts of cortex upon neuronal behavior, e.g., glia activity or the extracellu-
lar diffusion of neurotransmitters. In order to treat the resulting equations as closed,
non-neuronal contributions must either project statically into neuronal ones (e.g.,
by changing the value of some neuronal parameter) or be negligible in the chosen
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observables (e.g., because their time-scale is slower than the neuronal dynamics of
interest). Where this cannot be assumed, one must “open” the model equations by
modifying the neuronal parameters dynamically.

Second, intrinsic parts or features of the brain that are not modeled (e.g., the
thalamus or the laminarity of cortex) or extrinsic influences (e.g., drugs or sensory
driving) likewise must be mapped onto the neuronal parameters. One may well ques-
tion whether any modeling success achieved by freely changing parameters merely
indicates that a complicated enough function can fit anything. There is no general
answer to this criticism, but the following Ockhamian guidelines prove useful: the
changes should be limited to few parameters, there should be some reason other
than numerical expediency for choosing which parameters to modify, the introduced
variations should either be well understood or of small size relative to the standard
values, and the observed effect of the chosen parameter changes should show some
stability against modifications of other parameters. If systematic tuning of the neu-
ronal parameters cannot accommodate intrinsic or extrinsic contributions, then the
neuronal model itself needs to be changed.

Third, the neuronal mean-fields modeled generally match the limited spatial reso-
lution of functional neuroimaging, since they average over a region C surrounding a
point xcort on cortex1: f ≡ f (xcort, t) = 1/C×∫

C dx′ f (x′, t). In the foreseeable future
images of brain activity will not have spatial resolutions better than 1–2 mm2, about
the size of a cortical macrocolumn containing T = 106 neurons. Temporal coherence
dominates quickly for signals from that many neurons. A signal from N coherent
neurons is enhanced linearly ∼ N = p×T over that of a single neuron, whereas for
M incoherent neurons enhancement is stochastic ∼ √

M =
√

(1− p)×T . p = 1%
coherent neurons thus produce a 10 times stronger signal than the 99% incoher-
ent neurons. If p is too low, then the coherent signal will be masked by inco-
herent noise. In the analysis of experimental data, such time-series are typically
discarded.

A mean-field prediction hence need not match all neuronal activity. It is suffi-
cient if it effectively describes the coherent neurons actually causing the observed
signal. Neurons in strong temporal coherence are likely of similar kind and in a
similar state, thus approximating them by equations for a single “effective” neu-
ron makes sense. Other neurons or cortical matter influence the coherent dynamics
only incoherently, making it more likely that disturbances on average only result in
static parameter changes. A crucial modeling choice is hence the number of coher-
ent groups within C, since coherent groups will not “average out” in like manner.
Every coherent neural group is modeled by equations describing its separate char-
acteristic dynamics, which are then coupled to the equations of other such groups
according to the assumed connectivity. For example, the Liley model in Fig. 6.1
shows two different C as two columns drawn side by side. We hence see that, per C,
it requires equations for one excitatory group and one inhibitory group, respectively,
which will then be coupled in six ways (four of which are local).

1 Underlined symbols denote functions spatially averaged in the following manner.
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The construction of a mean-field model requires the specification of three es-
sential structural determinants: (i) the number of coherent neuronal populations
modeled; (ii) the degree of physiological complexity modeled for each population;
and (iii) the connectivity between these populations. While the majority of mean-
field theories of EEG model the dynamics of at least two cortical neuronal popu-
lations (excitatory and inhibitory), details of the topology of connectivity can vary
substantially. Figure 6.1 illustrates the connectivity of a number of competing mod-
eling approaches.
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Fig. 6.1 Schematic outline of the connection topologies of a number of mean-field approaches.
“E” stands for excitatory, “I” for inhibitory neuronal populations. Open circles represent excitatory
connections, filled circles inhibitory ones.

6.3.1 Outline of the extended Liley model

The theory of Liley et al [18, 40, 43] is a relatively comprehensive model of the
alpha rhythm, in that it is capable of reproducing the main spectral features of spon-
taneous EEG in addition to being able to account for a number of qualitative and
quantitative EEG effects induced by a range of pharmacological agents, such as
benzodiazepines and a range of general anesthetic agents [7, 39, 42, 75].

Like many other models, the Liley model considers two (coherent) neuronal pop-
ulations within C, an excitatory one and an inhibitory one. These two populations
are always indicated below by setting the subscript k = e and k = i, respectively.
In the absence of postsynaptic potential (PSP) inputs I, the mean soma membrane
potentials h are assumed to decay exponentially to their resting value hr with a time
constant τ:

τk
∂
∂ t

hk = hr
k −hk +

heq
ek −hk∣∣heq
ek −hr

k

∣∣ × Iek +
heq

ik −hk∣∣heq
ik −hr

k

∣∣ × Iik . (6.1)

Double subscripts indicate first source and then target, thus for example Iei indi-
cates PSP inputs from an excitatory to an inhibitory population. Note that PSP in-
puts, which correspond to transmitter activated postsynaptic channel conductance,
are weighted by the respective ionic driving forces heq

jk − hk, where heq
ek,ik are the
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respective reversal potentials. All these weights are normed to one at the relevant
soma membrane resting potentials.

Next consider four types (k = e, i) of PSP inputs:
(
∂
∂ t

+ γek

)(
∂
∂ t

+ γ̃ek

)
Iek = Γek γek exp(γ̃ekδek)︸ ︷︷ ︸

=γ̃ek exp(γekδek)

×
[
Nβ

ekSe + pek +Φek

]
, (6.2)

(
∂
∂ t

+ γik

)(
∂
∂ t

+ γ̃ik

)
Iik = Γik γik exp(γ̃ikδik)︸ ︷︷ ︸

=γ̃ik exp(γikδik)

×
[
Nβ

ikSi + pik

]
. (6.3)

The terms in the square brackets correspond to different classes of sources for
incoming action potentials: local S, extra-cortical p, and cortico-cortical Φ . Only
excitatory neurons project over long distances, thus there is no Φik in Eq. (6.3).
However, long-range inhibition can still occur, namely by an excitation of an in-
hibitory populations via Φei.

For a single incoming Dirac impulse δ (t), the above equations respond with

R(t) = Γ γ exp(γ̃δ )× exp(−γt)− exp(−γ̃t)
γ̃− γ Θ(t) , (6.4)

where Θ is the Heaviside function. Here, δ is the rise-time to the maximal PSP
response:

δ =
ln γ̃− lnγ
γ̃− γ =⇒ R(t = δ ) = Γ . (6.5)

R(t) describes PSPs from the “fast” neurotransmitters AMPA/kainate and GABAA,
respectively. Sometimes instead the simpler “alpha form”2 is used:

R0(t) = Γ γ exp(1)× t exp(−γt)Θ(t) =⇒ R0(t = δ0 = 1/γ) = Γ . (6.6)

Note that as γ̃ → γ: R → R0. Equation (6.4) must be invariant against exchanging
γ̃ ↔ γ , see Eqs (6.2) and (6.3), since the change induced by γ̃ �= γ cannot depend
on naming the decay constant values. In the “alpha form”, the time at which the

response decays again to Γ /e is coupled to the rise-time: ζ0 =−W−1

(
− 1

e2

)
×δ0 �

3.1462/γ , with the Lambert W function. Anaesthetic agents can change the decay
time of PSPs independently and hence require the biexponential form [7]:

γ̃ � γ : ζ = −W−1

(
− 1

e2

)
×δ +O

(
|γ̃− γ|2

)
, γ̃ � γ : ζ � γ̃/γ

γ̃− γ . (6.7)

In [7] further results were derived for the specific parametrisation γ̃ = exp(ε)γ .

2 In this context, “alpha” refers to a particular single-parameter function, the so-called alpha func-
tion, often used in dendritic cable theory to model the time-course of a single postsynaptic poten-
tial.
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If time delays for local connections are negligible, then the number of incoming
action potentials will be the number of local connections Nβ times the current local
firing rate S, see Eqs (6.2) and (6.3). Assume that threshold potentials in the neural
mass are normally distributed with mean μ and standard deviation σ . Then the
fraction of neurons reaching their firing threshold hth is

∫ h

−∞
dhth 1√

2πσ
exp

(
− (hth −μ)2

2σ2

)
=

1
2

[
1+ erf

(
h−μ√

2σ

)]
. (6.8)

We approximate (1+erfx)/2 � [1+exp(−2x)]−1 and associate the theoretical limit
of infinite h not with excitation block but with the maximal mean firing rate Smax:

Sk = Smax
k

[
1+ exp

(
−
√

2
hk −μk

σk

)]−1

. (6.9)

By construction, this is a good approximation for regular h but will fail for unusually
high mean potentials. Note that Eq. (6.9) reduces to Sk = Smax

k Θ(h−μ) for σ → 0.
Next we consider extra-cortical sources p. Unless some of these inputs are

strongly coherent (e.g., for sensory input), their average over a region will be noise-
like even if the inputs themselves are not. Our ansatz is hence

pek = L
[
randn (p̄ek,Δ pek)

]
+ pcoh

ek , (6.10)

pik = L
[
randn (p̄ik,Δ pik)

]
+ pcoh

ik , (6.11)

with spatiotemporal “background noise” potentially overlayed by coherent signals.
The noise is normally distributed with mean p̄ and standard deviation Δ p, and
shaped by some filter function L . Since neurons cannot produce arbitrarily high
firing frequencies, L should include a lowpass filter. In practice, we often set
pik ≡ 0, since likely extracortical projections are predominantly excitatory. Further,
for stochastic driving noise in pee alone is sufficient. We take pcoh ≡ 0 unless known
otherwise. In particular we do not assume coherent thalamic pacemaking. However,
the pcoh provide natural ports for future extensions, e.g., an explicit model of the
thalamus could be interfaced here.

An “ideal” ansatz for cortico-cortical transmission is given by

Gek(r, t) =
Nα

ek

2π
Λ̃ 2

ek × exp
(−Λ̃ekr

)×δ
(

t − r
ṽek

)
, (6.12)

where r measures distances along cortex. With this Green’s function, impulses
would propagate distortion-free and isotropically at velocity ṽ. The metrics of con-
nectivity are seen to be

nαek(r) =
∫ ∞

0
dt Gek(r, t) =

Nα
ek

2π
Λ̃ 2

ek × exp
(−Λ̃ekr

)
,

∫ ∞

0
dr 2πr nαek(r) = Nα

ek ,

(6.13)



6 Bifurcations and state changes in the human alpha rhythm 127

and thus the Nα
ek long-range connections per cortical neuron are distributed expo-

nentially with a characteristic distance Λ̃ek. One can Fourier transform Eq. (6.12)

Gek(k,ω) =
Nα

ekṽ2
ekΛ̃

2
ek

(
iω+ ṽekΛ̃ek

)
[(

iω+ ṽekΛ̃ek
)2 + ṽ2

ekk2
]3/2

≡ N (k,ω)
D(k,ω)

, (6.14)

and write N φ = DS with iω → ∂/∂ t and k2 →−∇2 to obtain an equivalent PDE.
Unfortunately this D is non-local (i.e., evaluating this operator with a finite differ-
ence scheme at one discretization point would require values from all points over
the domain of integration). By expanding for large wavelengths 2π/k: D(k,ω) �
(iω+ ṽekΛ̃ek)[(iω+ ṽekΛ̃ek)2 + 3

2 ṽ2
ekk2], and with v ≡√

3/2ṽ, Λ ≡√
2/3Λ̃ , we ob-

tain an inhomogeneous two-dimensional telegraph (or: transmission line) equation
[40, 66]: [

1

v2
ek

∂ 2

∂ t2 +
2Λek

vek

∂
∂ t

−∇2 +Λ 2
ek

]
Φek = Nα

ekΛ
2
ekSe , (6.15)

where the forcing term is simply the firing S of the sources.
Note that Eq. (6.15) is a special case. If we substitute

Φek = e−Λvtϕek =⇒
[

1

v2
ek

∂ 2

∂ t2 −∇2
]
ϕek = eΛvtNα

ekΛ
2
ekSe , (6.16)

then ϕ obeys an inhomogeneous wave equation. (Equation (6.16) corrects a sign
error in Eq. (61) of Ref. [66], which is likely to have influenced their numerical
results.) The impulse response is hence that of the 2-D wave equation multiplied by
an exponential decay:

Gek(r, t) =
Nα

ek

2π
Λ 2

ek × exp(−Λekvekt)× Θ (t − r/vek)√
t2 − r2/v2

ek

. (6.17)

We can compare with (6.12) to see the effects of the approximation: Impulse propa-
gation is now faster v =

√
3/2ṽ and distorted by a brief “afterglow” ∼ 1/

√
t − r/v.

Connectivity nαek(r) = Nα
ekΛ

2
ek/(2π)×K0(Λekr) follows now a zeroth-order modi-

fied Bessel function of the second kind. Compared to Eq. (6.13), it is now radially
weaker for 1.0 � rΛ̃ � 4.9, and stronger otherwise.

This completes our description of the extended Liley model: Eqs (6.1), (6.2),
(6.3), and (6.15) determine its spatiotemporal dynamics, (6.9) computes local fir-
ing rates, whereas (6.10) and (6.11) define the external inputs. An important feature
of this model is that there are no “toy parameters” in the constitutive equations,
i.e., every parameter has a biological meaning and its range can be constrained by
physiological and anatomical data. All model parameters could depend on the po-
sition on cortex or even become additional state variables, e.g., μ → μ(xcort) → μ .
The only exceptions are the parameters of Eq. (6.15), since the equation is derived
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assuming globally constant parameters. However, this mathematical restriction can
be loosened somewhat [17, 65].

6.3.2 Linearization and numerical solutions

Linearization investigates small disturbances around fixed points of the system, i.e.,
around state variables Z = Z∗ which are spatiotemporally constant solutions of the
PDEs. For hyperbolic fixed points (i.e., all eigenvalues have nonzero real part), the
Hartman–Grobman theorem states that a linear expansion in z with Z = Z∗ + z will
capture the essential local dynamics. Thus we define a state vector

Z ≡ (
he,hi, Iee, Iei, Iie, Iii,Φee,Φei

)T
, (6.18)

and rewrite Eqs (6.10) and (6.11) with p ≡ p̄ + P, setting P ≡ 0 for now. Then the
fixed points are determined by

h∗k = hr
k +

heq
ek −h∗k∣∣heq
ek −hr

k

∣∣ I∗ek +
heq

ik −h∗k∣∣heq
ik −hr

k

∣∣ I∗ik , Φ∗
ek = Nα

ekS∗k =
Nα

ekSmax
k

1+ exp
(
−√

2
h∗k−μk
σk

) ,

I∗ek = Γek
eγ̃ekδek

γ̃ek

[
Nβ

ekS∗e + p̄ek +Φ∗
ek

]
, I∗ik = Γik

eγ̃ikδik

γ̃ik

[
Nβ

ikS∗i + p̄ik

]
, (6.19)

which immediately reduces to just two equations in h∗e and h∗i . If multiple solutions
exist, we define a “default” fixed point Z∗,r by choosing the h∗e closest to rest hr

e.
We use the following ansatz for the perturbations

z ≡ a× exp(λ t)× exp(ik ·xcort) , (6.20)

and expand linearly in components [a]m. For example, the equation forΦee becomes

(
1

v2
ee
λ 2 +

2Λee

vee
λ + k2 +Λ 2

ee

)
[a]7 = Nα

eeΛ 2
ee

Smax
e

√
2υ

σe(1+υ)2 [a]1 , (6.21)

with υ ≡ exp[−√
2(h∗e −μe)/σe]. Treating all PDEs in a similar fashion, we end up

with an equation set

∑
j

Bi j(λ ,k)[a] j = 0, with i, j = 1, . . . ,8 . (6.22)

In matrix notation B(λ ,k)a = 0. Nontrivial solutions exist only for

E (λ ,k) ≡ detB(λ ,k) = 0 . (6.23)

However, searching for roots λ (k) of Eq. (6.23) is efficient only in special cases.
Instead, introduce auxiliary variables Z 9,...,14 = ∂Z 3,...,8/∂ t, with Z∗

9,...,14 = 0, to
eliminate second-order time derivatives. Our example (6.21) becomes
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[a]15 = λ [a]7 ,

(
1

v2
ee
λ +

2Λee

vee

)
[a]15 +

(
k2 +Λ 2

ee

)
[a]7 = Nα

eeΛ 2
ee

Smax
e

√
2υ

σe(1+υ)2 [a]1 .

(6.24)
Treating all PDEs likewise, we can write a new but equivalent form

∑
j

Bi j(λ ,k)[a] j =∑
j

[Ai j(k)−λδi j] [a] j = 0, with i, j = 1, . . . ,14 , (6.25)

with the Kronecker δi j. In matrix notation A(k)a = λa, hence λ (k) solutions are
eigenvalues. Powerful algorithms are readily available to solve (6.25) as

∑
l

AilRl j = λ jRi j , ∑
l

LilAl j = λiLi j , λ j∑
l

LilRl j = λi∑
l

LilRl j, (6.26)

with i, j, l = 1, . . . ,14, and all quantities are functions of k. The λ j denote 14 eigen-
values with corresponding right [r j]i = Ri j (columns of R) and left [l j]i = L ji

(rows of L) eigenvectors. The third equation in (6.26) implies orthogonality for
non-degenerate eigenvalues ∑l LilRl j = δi jn j. In this case one can orthonormalize
LR = RL = 1. For spatial distributions of perturbations, different k-modes will gen-
erally mix quickly with time.

For numerical simulations one can model the cortical sheet as square, connected
at the edges to form a torus, and discretize it N ×N with sample length ds [7, 9].
Time then is also discretized t = nts with n = 0,1, . . . We substitute Euler forward-
time derivatives and five-point Laplacian formulae, and solve the resulting algebraic
equations for the next time-step. The five-point Laplacian is particularly convenient
for parallelization [7], since only one-point-deep edges of the parcellated torus need
to be communicated between nodes. The Euler-forward formulae will converge
slowly O(t2

s ,d2
s ) but robustly, which is important since the system dynamics can

change drastically for different parameter sets. The Courant–Friedrichs–Lewy con-
dition for a wave equation, cf Eq. (6.16), is simply ts < ds/(

√
2v). If we consider a

maximum speed of v = 10 m/s, and a spatial spacing of ds =1 mm for Eq. (6.15),
then ts < 7.1×10−5 s. In practice, we choose ts = 5×10−5 s. We initialize the en-
tire cortex to its (default) fixed point value Z(xcort) = Z∗ at t = 0. For parameter
sets that have no fixed point in physiological range, we instead set he(xcort) = hr

e
and hi(xcort) = hr

i , and other state variables to zero. Sometimes it is advantageous
to have no external inputs: then any observed dynamics must be self-sustained.
In this case some added spatial variation in he(xcort) helps to excite k �= 0 modes
quickly.

6.3.3 Obtaining physiologically plausible dynamics

For “physiological” parameters, a wide range of model dynamics can be encoun-
tered. However, proper parameterisations should produce electroencephalographi-
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cally plausible dynamics. In general, two approaches can be employed to generate
such parameter sets. The first is to fit the model to real electroencephalographic
data. However, there is still considerable uncertainty regarding the reliability, ap-
plicability and significance of using experimentally obtained data for fitting or esti-
mating sets of ordinary differential equations [79]. Alternatively one can explore the
physiologically admissible multi-dimensional parameter space in order to identify
parameter sets that give rise to “suitable” dynamics, e.g., those showing a dominant
alpha rhythm.

With regard to the extended Liley model outlined in the previous section, one
could stochastically or heuristically explore the parameter space by solving the full
set of spatiotemporal equations. However, the computational costs of this approach
are forbidding at this point in time. Alternatively, the parameter space of a simpli-
fied model, e.g., spatially homogeneous without the Laplacian in Eq. (6.15), can
be searched. This can provide sufficient simulation speed gains to allow iterative
parameter optimization. Finally, if the defining system can be approximated by lin-
earization, then one can estimate the spatiotemporal dynamics merely from the re-
sulting eigensystem. Such an analysis is exceedingly rapid compared with the direct
solution of the equations. One can then simply test parameter sets randomly sampled
from the physiologically admissible parameter space. Thus, for example [7] shows
how one can model plausible EEG recorded from a single electrode: the power spec-
trum, S(ω), can be estimated for subcortical noise input p̂ by

S(ω) =
1

2π

∫
dk k

∣∣∣∣Ψ(k)
{

R ·diag

[
1

iω−λn(k)

]
·L · p̂

}
1

∣∣∣∣
2

, (6.27)

and then evaluated for physiological veracity. The left and right eigen-matrices, L
and R, are defined in Eq. (6.26), here LR = 1 andΨ(k) is the electrode point-spread
function. The obvious drawback is that nonlinear solutions of potential physiolog-
ical relevance will be missed. However, as will be illustrated in the next section,
“linear” parameter sets can be continued in one- and two-dimensions to reveal a
plethora of electroencephalographically plausible nonlinear dynamical behavior.

6.3.4 Characteristics of the model dynamics

Numerical solutions to Eqs (6.1–6.15) for a range of physiologically admissible pa-
rameter values reveal a large array of deterministic and noise-driven dynamics, as
well as bifurcations, at alpha-band frequencies [8, 18, 40, 43]. In particular, alpha-
band activity appears in three distinct dynamical scenarios: as linear noise-driven,
limit-cycle, or chaotic oscillations. Thus this model offers the possibility of charac-
terizing the complex changes in dynamics that have been inferred to occur during
cognition [79] and in a range of central nervous system diseases, such as epilepsy
[46]. Further, our theory predicts that reverberant activity between inhibitory neu-
ronal populations is causally central to the alpha rhythm, and hence the strength
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and form of inhibitory→ inhibitory synaptic interactions will be the most sensitive
determinants of the frequency and damping of emergent alpha-band activity. If rest-
ing eyes-closed alpha is indistinguishable from a filtered random linear process, as
some time-series analyses seem to suggest [72, 73], then our model implies that
electroencephalographically plausible “high quality” alpha (Q > 5) can be obtained
only in a system with a conjugate pair of weakly damped (marginally stable) poles
at alpha frequency [40].

Numerical analysis has revealed regions of parameter space where abrupt changes
in alpha dynamics occur. Mathematically these abrupt changes correspond to bifur-
cations, whereas physically they resemble phase transition phenomena in ordinary
matter. Figure 6.2 displays such a region of parameter space for the 10-dimensional
local reduction of our model (Φek = 0). Variations in 〈pee〉 (excitatory input to ex-
citatory neurons) and 〈pei〉 (excitatory to inhibitory) result in the system producing
a range of dynamically differentiated alpha activities. If 〈pei〉 is much larger than
〈pee〉, a stable equilibrium is the unique state of the EEG model. Driving the model
in this state with white noise typically produces sharp alpha resonances [40]. If one
increases 〈pee〉, this equilibrium loses stability in a Hopf bifurcation and periodic
motion sets in with a frequency of about 11 Hz. For still larger 〈pee〉 the fluctua-
tions can become irregular and the limiting behavior of the model is governed by
a chaotic attractor. The different dynamical states can be distinguished by comput-
ing the largest Lyapunov exponent (LLE), which is negative for equilibria, zero for
(quasi)-periodic fluctuations, and positive for chaos. Bifurcation analysis [81] indi-
cates that the boundary of the chaotic parameter set is formed by infinitely many
saddle–node and period-doubling bifurcations, as shown in Fig. 6.2(a). All these
bifurcations converge to a narrow wedge for negative, and hence unphysiological,
values of 〈pee〉 and 〈pei〉, literally pointing to the crucial part of the diagram where
a Shilnikov saddle–node homoclinic bifurcation takes place.

Figure 6.2(b) shows a sketch of the bifurcation diagram at the tip of the wedge:
the blue line with the cusp point c separates regions with one and three equilibria,
and the line of Hopf bifurcations terminates on this line at the Bogdanov–Takens
point bt. The point gh is a generalised Hopf point, where the Hopf bifurcation
changes from sub- to super-critical. The green line which emanates from bt rep-
resents a homoclinic bifurcation, which coincides with the blue line of saddle–node
bifurcations on an open interval, where it denotes an orbit homoclinic to a saddle
node. In the normal form, this interval is bounded by the points n1 and n2, at which
points the homoclinic orbit does not lie in the local center manifold. While the nor-
mal form is two-dimensional and only allows for a single orbit homoclinic to the
saddle–node equilibrium, the high dimension of the macrocolumnar EEG model
(Φek = 0) allows for several orbits homoclinic to the saddle–node. If we consider
the numerical continuation of the homoclinic along the saddle–node curve, start-
ing from n1 as shown in Figure 6.2(b), it actually overshoots n2 and folds back at t1,
where the center-stable and center-unstable manifolds of the saddle node have a tan-
gency. In fact, the curve of homoclinic orbits folds several times before it terminates
at n2. This creates an interval, bounded by t1 and t2, in which up to four homoclinic
orbits coexist—signaling the existence of infinitely many periodic orbits, which is
the hallmark of chaos.
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Fig. 6.2 [Color plate] (a) The largest Lyapunov exponent (LLE) of the dynamics of a simplified
local model (Φek = 0) for a physiologically plausible parameter set exhibiting robust (fat-fractal)
chaos [18]. Superimposed is a two parameter continuation of saddle–node and period-doubling
bifurcations. The leftmost wedge of chaos terminates for negative values of the exterior forc-
ings, 〈pee〉 and 〈pei〉. (b) Schematic bifurcation diagram at the tip of the chaotic wedge. bt =
Bogdanov–Takens bifurcation, gh = generalized Hopf bifurcation, and SN = saddle node. Be-
tween t1 and t2 multiple homoclinic orbits coexist and Shilnikov’s saddle–node bifurcation takes
place. (c) Schematic illustration of the continuation of the homoclinic orbit between points n1 and
t1. (Figure adapted from [81] and [18].)
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It is important to understand that in contrast to the homoclinic bifurcation of a
saddle focus, commonly referred to as the Shilnikov bifurcation, this route to chaos
has not been reported before in the analysis of any mathematical model of a physical
system. While the Shilnikov saddle node bifurcation occurs at negative, and thus
unphysiological, values of 〈pee〉 and 〈pei〉, it nevertheless organizes the qualitative
behavior of the EEG model in the biologically meaningful parameter space. Further,
it is important to remark that this type of organization persists in a large part of the
parameter space: if a third parameter is varied, the codimension-two points c, bt and
gh collapse onto a degenerate Bogdanov–Takens point of codimension three, which
represents an organizing center controling the qualitative dynamics of an even larger
part of the parameter space.

Parameter sets that have been chosen to give rise to physiologically realistic be-
havior in one domain, can produce a range of unexpected, but physiologically plau-
sible, activity in another. For example, parameters were chosen to accurately model
eyes-closed alpha and the surge in total EEG power during anesthetic induction [7].
Among other conditions, parameter sets were required to have a sharp alpha res-
onance (Q > 5) and moderate mean excitatory and inhibitory neuronal firing rates
< 20/s. Surprisingly, a large fraction of these sets also produced limit cycle (non-
linear) gamma band activity under mild parameter perturbations [8]. Gamma band
(> 30 Hz) oscillations are thought to be the sine qua non of cognitive functioning.
This suggests that the existence of weakly damped, noise-driven, linear alpha ac-
tivity can be associated with limit cycle 40-Hz activity, and that transitions between
these two dynamical states can occur. Figure 6.3 illustrates a bifurcation diagram for
one such set (column 11 of Table V in [7], see also Table 1 in [8]) for the spatially
homogeneous reduction ∇2 → 0 of Eq. (6.15). The choice of bifurcation parameters
is motivated by two observations: (i) differential increases in Γii,ie have been shown
to reproduce a shift from alpha to beta band activity, similar to what is seen in the
presence of low levels of GABAA agonists such as benzodiazepines [42]; and (ii)
the dynamics of linearized solutions for the case when ∇2 �= 0 are particularly sensi-
tive to variations of parameters affecting inhibitory→inhibitory neurotransmission
[40], such as Nβ

ii and 〈pii〉.
Specifically, Fig. 6.3 illustrates the results of a two-parameter bifurcation analy-

sis for changes in the inhibitory PSP amplitudes via Γie,ii → rΓie,ii and changes in the

total number of inhibitory→inhibitory connections via Nβ
ii → kNβ

ii . The parameter
space has physiological meaning only for positive values of r and k. The saddle–
node bifurcations of equilibria have the same structure as for the 10-dimensional
homogeneous reduction discussed previously, in that there are two branches joined
at a cusp point. Furthermore, we have two branches of Hopf bifurcations, the one
at the top being associated with the birth of alpha limit cycles and the other with
gamma limit cycles. This former line of Hopf points enters the wedge-shaped curve
of saddle–nodes of equilibria close to the cusp point and has two successive tangen-
cies in fold-Hopf points (fh). The fold-Hopf points are connected by a line of tori.
The same curve of Hopf points ends in a Bogdanov–Takens (bt) point, from which
a line of homoclinics emanate. Contrary to the previous example, this line of ho-
moclinics does not give rise to a Shilnikov saddle–node bifurcation. Instead it gives
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Fig. 6.3 Partial bifurcation diagram for the spatially homogeneous model, ∇2 → 0 in Eq. (6.15),

as a function of scaling parameters k and r, defined by Γie,ii → rΓie,ii and Nβ
ii → kNβ

ii , respectively.
Codimension-two points have been labeled fh for fold-Hopf, gh for generalized Hopf, and bt for
Bogdanov–Takens. The right-most branch of Hopf points corresponds to emergence of gamma
frequency (≈ 37 Hz) limit-cycle activity via subcritical Hopf bifurcation above the point labeled
gh. A homoclinic doubling cascade takes place along the line of homoclinics emanating from bt.
Insets on the left show schematic blowups of the fh and bt points. Additional insets show time-
series of deterministic (limit-cycle and chaos) and noise-driven dynamics for a range of indicated
parameter values.

rise to a different scenario leading to complex behavior (including chaos), called the
homoclinic doubling cascade.

In this scenario, a cascade of period-doubling bifurcations collides with a line
of homoclinics. As a consequence, not only are infinitely many periodic orbits
created, but so are infinitely many homoclinic connections [56]. All these periodic
and homoclinic orbits coexist with a stable equilibrium. The second line of Hopf
bifurcations in the gamma frequency range (> 30 Hz) does not interact with the
lines of saddle nodes in the relevant portion of the parameter space. Both branches
of Hopf points change from super- to subcritical at gh around r∗ = 0.27, so that
bifurcations are “hard” for r > r∗ in either case. These points are also the end points
of folds for the periodic orbits, and the gamma frequency ones form a cusp (cpo)
inside the wedge of saddle–nodes of equilibria.
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Because the partial bifurcation diagram of Fig. 6.3 has necessarily been deter-
mined for the spatially homogeneous model equations, it will not accurately reflect
the stability properties of particular spatial modes (nonzero wavenumbers) in the
full set of model 2-D PDEs. For example, at the spot marked “Fig 4” in Fig. 6.3,
for wavenumbers around 0.6325/cm the eigenvalues of the corresponding alpha-
rhythm are already unstable, implying that these modes have undergone transition
to the subcritical gamma-rhythm limit cycle. If one starts a corresponding numeri-
cal simulation with random initial he, but without noise driving, one finds that there
is, at first, a transient organization into alpha-rhythm regions of a size correspond-
ing to the unstable wavenumber (graph labeled “0 ms” in Fig. 6.4). The ampli-
tude of these alpha-oscillations grows, and is then rapidly replaced by “gamma
hotspots”, which are phase synchronous with each other (graphs up to “480 ms”
in Fig. 6.4). It may be speculated from a physiological perspective that the normal
organization of the brain consists of regions capable of producing stable weakly-

Fig. 6.4 Numerical solutions of 2-D model equations (Sect. 3.1) for a human-sized cortical torus
with k = 1 and r = 0.875 (see Fig. 6.3). Here, he is mapped every 60 ms (grayscale: −76.9 mV
black to −21.2 mV white). For r = 0.875, linearization becomes unstable for a range of wavenum-
bers around 0.6325/cm. Starting from random he, one initially sees transient spatially-organized
alpha oscillations (t = 0, starting transient removed) from which synchronized gamma activity
emerges. Gamma-frequency spatial patterns, with a high degree of phase correlation (“gamma
hotspots”) form with a frequency consistent with the predicted subcritical Hopf bifurcations of the
spatially homogeneous equations, compare Fig. 6.3. (Figure reproduced from [8].)
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damped alpha-oscillations for all wavenumbers, but, due to variations in one or
more bifurcation parameters, is able to become critical at a particular wavenum-
ber, thereby determining, in some fashion, the spatial organization of the subse-
quently generated coherent gamma-oscillations. However, the influences of noisy
inputs (and environments), inhomogeneous neuronal populations, and anisotropic
connectivity, are likely to be significant for actual transitions, and require further
study.

6.4 Determination of state transitions in experimental EEG

Our theoretical analysis so far suggests that cortex may be conceived as being in a
state of marginal linear stability with respect to alpha activity, which can be lost by a
range of perturbations and replaced by a rapidly emerging (≈ 150 ms) spatially syn-
chronized, nonlinear, oscillatory state. It is therefore necessary to examine real EEG
for evidence of transitions between noise-driven linear and nonlinear states. While
the theory of nonlinear, deterministic dynamical systems has provided a number of
powerful methods to characterize the dynamical properties of time-series, they have
to be applied carefully to the dynamical characterization of EEG, where any deter-
ministic dynamics are expected to be partly obscured by the effects of noise, non-
stationarity and finite sampling. For such weakly nonlinear systems, the preferred
approach to characterizing the existence of any underlying deterministic dynamics
has been the surrogate data method [34].

In this approach a statistic, λ , which assigns a real number to a time-series and
is sensitive to deterministic structure, is computed for the original time-series, λ0,
and compared to the distribution of values, {λi}, obtained for a number of suitably
constructed “linear” surrogate data sets. Then one estimates how likely it is to draw
λ0 from the distribution of values obtained for the surrogates {λi}. For example, if
we have reason to believe that λ is normally distributed, we estimate its mean λ
and variance σ2

λ . Then if |λ0 − λ | < 2σλ , we would not be able to reject the null
hypothesis H0 that λ0 was drawn from {λi} at the p = 0.05 level for a two-tailed
test. Typically though, there is no a priori information regarding the distribution of
{λi}, and hence a rank-based test is generally used.

However, rejection of the null hypothesis in itself does not provide unequivocal
statistical evidence for the existence of deterministic dynamics. In particular, non-
stationarity is a well-known source of false rejections of the linear stochastic null
hypothesis. To deal with this, two general strategies are employed. First, the null hy-
pothesis is evaluated on time-series segments short enough to be assumed stationary,
but long enough to allow the meaningful evaluation of the nonlinear statistic. Sec-
ond, if some measure of stationarity can be shown to be equivalent in the original
and surrogate data time-series, then it may be assumed that nonstationarity is an
insignificant source of false positives.
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6.4.1 Surrogate data generation and nonlinear statistics

The features that the “linear” surrogate data sets must have depend on the null hy-
pothesis that is to be tested. The most common null hypothesis is that the data comes
from a stationary, linear, stochastic process with Gaussian inputs. Therefore almost
all surrogate data generation schemes aim to conserve linear properties of the orig-
inal signal, such as the auto- and cross-spectra. The simplest method of achieving
this is by phase randomisation of the Fourier components of the original time-series.
However, such a simple approach results in an unacceptably high level of false posi-
tives, because the spectrum and amplitude distribution of the surrogates has not been
adequately preserved. For this reason a range of improvements to the basic phase-
randomised surrogate have been developed [69]. Of these, the iterated amplitude-
adjusted FFT surrogate (IAFFT) seems to provide the best protection against spuri-
ous false rejections of the linear stochastic null hypothesis [34].

A large number of nonlinear test statistics are available to evaluate time-series for
evidence of deterministic/nonlinear structure using the surrogate data methodology.
The majority of these quantify the predictability of the time-series in some way.
While there is no systematic way to choose one statistic over another, at least in
the analysis of EEG the zeroth-order nonlinear prediction error (0-NLPE) seems to
be favored. Indeed, Schrieber and Schmitz [68], by determining the performance
of a number of commonly used nonlinear test statistics, concluded that the one-
step-ahead 0-NLPE gave consistently good discrimination power even against weak
nonlinearities. The idea behind the NLPE is relatively simple: delay-embed a time-
series xn to obtain the vectors xn = (xn−(m−1)τ ,xn−(m−2)τ , . . . ,xn−τ ,xn) in R

m, and
use the points closer than ε to each xN , i.e., xm ∈ Uε(xN), to predict xN+1 as the
average of the {xm+1}. Formally [34]

x̂N+1 =
1

|Uε(xN)| ∑
xm∈Uε (xN)

xm+1 , (6.28)

where |Uε(xN)| is the number of elements in the neighborhood Uε(xN). The one-
step-ahead 0-NLPE is then defined as the root-mean-square prediction error over all
points in the time-series, i.e, λNLPE =

√
〈(x̂N+1 − xN+1)2〉.

Other nonlinear statistics include the correlation sum, the maximum likelihood
estimator of the Grassberger–Procaccia correlation dimension D2, and a variety of
higher-order autocorrelations and autocovariances. Of the latter, two are of partic-
ular note due to their computational simplicity and their applicability to short time
series. These are the third-order autocovariance, λC3(τ) = 〈xnxn−τxn−2τ〉, and time-
reversal asymmetry, λTREV(τ) = 〈(xn − xn−τ)3〉/〈(xn − xn−τ)2〉.

6.4.2 Nonlinear time-series analysis of real EEG

The surrogate data method has produced uncertain and equivocal results for EEG
[72]. An early report, using a modified nonlinear prediction error [73], suggested
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that resting EEG contained infrequent episodes of deterministic activity. However,
a later report [26], using third-order autocovariance and time-reversal asymmetry,
revealed that in a significant fraction (up to 19.2%) of examined EEG segments, the
null hypothesis of linearity could not be rejected. Therefore, depending on the non-
linear statistic used, a quite different picture regarding the existence of dynamics
of deterministic origin in the EEG may emerge. Thus attempts to identify transi-
tions between putatively identified linear and nonlinear states using surrogate data
methods will need to use a range of nonlinear discriminators.

Figure 6.5 shows a subset of the results obtained from a multivariate surrogate
data based test of nonlinearity for eyes-closed resting EEG recorded from a healthy
male subject. The important points to note are: (i) the fraction of epochs tentatively
identified as nonlinear is small for all nonlinear statistics; (ii) temporal patterns of
putatively identified nonlinear segments differ depending on the nonlinear statistic
used; and (iii) the power spectra of nonlinear segments are associated with a visible
sharpening of the alpha resonance for all nonlinear statistical discriminators. It is
this latter feature that is of particular interest to us. It suggests, in the context of
our theory, that the linear stochastic system underlying the generation of the alpha
activity has become more weakly damped and is thus more prone to being “excited”
into a nonlinear or deterministic state.

Because we theoretically envision a system intermittently switching between lin-
ear and deterministic (nonlinear) states there is a reduced need to identify the extent
to which nonstationarity acts as a source of false positives in our surrogate data non-
linear time-series analysis. For if our system switches between linear and nonlinear
states on a time-scale less than the length of the interval over which nonlinearity is
characterized, deterministic dynamics and nonstationarity necessarily co-exist.

Thus this preliminary experimental evidence, involving the detection of weak
nonlinearity in resting EEG using an extension of the well-known surrogate data
method, suggests that nonlinear (deterministic) dynamics are more likely to be as-
sociated with weakly damped alpha activity and that either a dynamical bifurcation
has occurred or is more likely to occur.

6.5 Discussion

We have outlined a biologically plausible mean-field approximation of the dynamics
of cortical neural activity which is able to capture the chief properties of mammalian
EEG. Central to this endeavor has been the modeling of human alpha activity, which
is conceived as the central organizing rhythm of spontaneous EEG.

A great deal of modern thinking regarding alpha activity in general, and the alpha
rhythm in particular, has focused on its variation during task performance and/or
stimulus presentation, and therefore attempts to describe its function in the context
of behavioral action or perception. These attempts to characterize alpha activity
in terms of its psychological correlates, together with its inevitable appearance in
scalp-recorded EEG has meant that specific research aimed at understanding this
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Fig. 6.5 Nonlinear surrogate data time-series analysis of parieto-occipitally recorded EEG from a
healthy male subject. Left-hand panels show the temporal sequence of putatively identified nonlin-
ear 2-s EEG segments for channel P4 for three nonlinear discriminators: λNLPE, λC3 and λTREV.
Right-hand panels show the corresponding averaged power spectra for segments identified as non-
linear, compared with the remaining segments. Three-hundred seconds of artifact-free 64-channel
(modified-expanded 10–20 system of electrode placement; linked mastoids) resting eyes-closed
EEG was recorded, bandpass filtered between 1 and 40 Hz and sampled at 500 Hz. EEG was
then segmented into contiguous multichannel epochs of 2-s length from which multivariate sur-
rogates were created. H0 (data results from a Gaussian linear stochastic process) was then tested
for each channel at the p = 0.05 level using a nonparametric rank-order method together with a
step-down procedure to control for familywise type-I error rates. Power spectra were calculated
using Hamming-windowed segments of length 1000.

oscillatory phenomenon is more the exception than the rule. In a prescient review
regarding electrical activity in the brain, W. Grey Walter in 1949 [82], whilst talking
about spontaneous activity, remarked:

The prototype in this category, the alpha rhythm, has been seen by every electroencephalo-
grapher but studied specifically by surprisingly few.

While we have proposed a theory for the dynamical genesis of alpha activity, and
via large-scale parameter searches established plausible physiological domains that
can produce alpha activity, we do not understand the basis for the parameterizations
so found. Our theory suggests that the reason human alpha activity shows complex
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and sensitive transient behavior is because it is readily perturbed from a dynamical
state of marginal linear stability. It is therefore not inconceivable that the system
producing alpha activity has, through as yet unknown mechanisms, a tendency to
organize itself into a state of marginal stability. This line of thinking relates in a
general form to the ideas of self-organized criticality [5], especially in the context
of the near 1/ f distribution of low-frequency power reported in EEG [62] ECoG
[22] and MEG recordings [53].

Our view of electrorhythmogenesis and brain functioning emphasizes the self-
organized structure of spontaneous neural dynamics as active (or ready) and chiefly
determined by the bulk physiological properties of cortical tissue, which is per-
turbed or modulated by a variety of afferent influences arising from external sources
and/or generated by other parts of the brain. Alpha activity is hypothesised to be the
source of this self-organizing process, providing the background dynamical state
from which transitions to emergent, and thus information creating, nonlinear states
are made. In a general sense then, alpha activity provides ongoing dynamical pred-
icates for subsequently evoked activity. Such an approach is not uncommon among
neurophysiologists who have emphasized the importance of ongoing neural dynam-
ics in the production of evoked responses, see for example [3]. Indeed, this point
was highlighted early on by Donald O. Hebb [29]:

Electrophysiology of the central nervous system indicates in brief that the brain is continu-
ously active, in all its parts, and an afferent excitation must be superimposed on an already
existent excitation. It is therefore impossible that the consequence of a sensory event should
often be uninfluenced by the pre-existent activity.

6.5.1 Metastability and brain dynamics

Although early attempts to dynamically describe brain function sought to prescribe
explicit attractor dynamics to neural activity, more recent thinking focuses on transi-
tory nonequilibrium behavior [63]. In the context of the mesoscopic theory of alpha
activity presented here, it is suggested that these transient states correspond to co-
herent mesoscopic gamma oscillations arising from the bifurcation of noise-driven
marginally stable alpha activity.

From a Hebbian perspective, such a bifurcation may represent the regenerative
activation of a cell assembly through the mutual excitation of its component neu-
rons. However, Hebb’s original notion of a cell assembly did not incorporate any
clear mechanism for the initiation or termination of activity in cell assemblies. As
originally formulated, Hebbian cell assemblies could only generate run-away exci-
tation due to the purely excitatory connections among the assembly neurons. In the
theory presented here, the possibility arises that the initiation and termination of cell
assembly activity (assuming it corresponds to synchronized gamma band activity)
might occur as a consequence of modulating local reverberant inhibitory neuronal
activity through either disinhibition (variations in 〈pii〉) or transient modifications in

inhibitory→inhibitory synaptic efficacy (Nβ
ii , Γii) [8]. Because local inhibition has
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been shown to be a sensitive determinant of the dynamics of emergent model alpha
activity [40], it may be hypothesized that it is readily influenced by the relatively
sparse thalamocortical projections.

Given that neuronal population dynamics have been conceived as evolving tran-
siently, rarely reaching stability, a number of authors have opted to describe this
type of dynamical regime as metastability [11, 21, 23, 35, 64]. Common to many of
these descriptions is an ongoing occurrence of transitory neural events, or state tran-
sitions, which define the flexibility of cognitive and sensori-motor function. Some
dynamical examples include the chaotic itinerancy of Tsuda [78], in which neu-
ral dynamics transit in a chaotic motion through unique attractors (Milnor), or the
liquid-state machine of Rabinovich et al [63], where a more global stable hetero-
clinic channel is comprised of successive local saddle states. More specific neuro-
dynamical approaches include the work of Kelso [35], Freeman [21] and Friston
[24].

In developing mathematical descriptions of metastable neural dynamics, many
of the models are often sufficiently general to allow for a standard dynamical anal-
ysis and treatment. For this reason, much of the dynamical analysis of EEG has fo-
cused on the identification of explicit dynamical states. However attempts to explore
the attractor dynamics of EEG have produced at best equivocal results, suggesting
that such simplistic dynamical metaphors have no real neurophysiological currency.
Modern surrogate data methods have revealed that normal spontaneous EEG is only
weakly nonlinear [72], and thus more subtle dynamical methods and interpretations,
motivated by physiologically meaningful theories of electrorhythmogenesis, need to
be developed.
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