
Chapter 2
Generalized state-space models for modeling
nonstationary EEG time-series

A. Galka, K.K.F. Wong, and T. Ozaki

2.1 Introduction

Contemporary neuroscientific research has access to various techniques for record-
ing time-resolved data relating to human brain activity: electroencephalography
(EEG) and magnetoencephalography (MEG) record the electromagnetic fields gen-
erated by the brain, while other techniques, such as near-infrared spectroscopy
(NIRS) and functional magnetic resonance imaging (fMRI) are sensitive to the local
metabolic activity of brain tissue.

Time-resolved data contain valuable information on the dynamical processes tak-
ing place in brain. EEG and MEG time-series are especially promising, since the
electromagnetic fields of the brain are directly reflecting the activation of neural
populations; furthermore these time-series can be recorded with high temporal res-
olution. Extraction of the dynamic changes captured by EEG/MEG recordings is an
ideal application for time-series analysis [10].

From the multiplicity of concepts and methods for time-series analysis that have
been applied to neuroscientific time-series, we focus here on predictive modeling,
i.e., finding a predictor for future time-series values, based on present and past val-
ues. More precisely, we will discuss a particular class of predictive modeling that is
attracting considerable attention due to its wide applicability: the state-space model
[2, 3, 6, 12, 13].

Because nonstationary phenomena—such as sudden phase transitions relating to
qualitative changes in dynamical behavior—cannot be modeled well using standard
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state-space approaches, in this chapter we present a generalization of state-space
modeling appropriate for this purpose. This generalized algorithm may also serve
as a detector for phase transitions.

2.2 Innovation approach to time-series modeling

Let the data be denoted by y(t) , t = 1, . . . ,T , where T denotes the length of the
time-series, i.e., the number of time points at which the data were sampled. In this
chapter we will assume the case of univariate (scalar) data, although the modeling
algorithms to be presented can also be applied to multivariate (vector) data; tech-
niques like EEG and MEG usually provide multivariate time-series, resulting from
a set of up to a few hundred sensors. By confining the analysis to a single channel,
we confine our attention to the local brain area for which the chosen sensor is most
sensitive.

At a given time point t − 1 we intend to predict y(t), employing the data
y(τ) , τ = t −1 , t −2 , t −3 , . . . The optimal predictor is given by the conditional
expectation E

(
y(t)

∣∣ y(t −1), y(t −2), . . .
)
, such that the data model is given by

y(t) = E
(
y(t)

∣∣ y(t −1), y(t −2), . . .
)
+ν(t) , (2.1)

where ν(t) denotes the prediction error or innovation. The art of time-series mod-
eling then lies in finding a good approximation to E

(
y(t)

∣∣ y(t − 1),y(t − 2), . . .
)
.

For an optimal predictor, any correlation structure in the data y(t) is employed for
the purpose of prediction, such that, in the time-series of innovations, no correlation
of any kind remains, i.e., the innovations are a white-noise series. The concept of
mapping given data to white innovations represents the core idea of the innovation
approach to time-series modeling [11].

The theory of innovation approach modeling of Markov processes has been elab-
orated mainly by Levy [14] and Kailath [12]; one of the main results states that
under mild conditions, including continuity of the dynamics, a predictor exists such
that the innovations time-series will have a multivariate normal (Gaussian) distri-
bution. We refrain from giving details here; instead the reader is referred to [18].

2.3 Maximum-likelihood estimation of parameters

A parametric function of present and past data, y(t −1),y(t −2), . . ., may be chosen
as an approximation to E

(
y(t)

∣∣ y(t − 1),y(t − 2), . . .
)
, i.e., as a predictor; it will

typically depend on a set of model parameters, collected in a vector ϑ . Following
the concept of maximum-likelihood estimation of statistical parameters, we need to
maximize the likelihood defined by the conditional probability distribution
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L
(
ϑ ;y(1), . . . ,y(T )

)
= p

(
y(1), . . . ,y(T )

∣∣ ϑ) ; (2.2)

equivalently, the logarithm of the likelihood, logL
(
ϑ ;y(1), . . . ,y(T )

)
, may be max-

imized. We will now derive an expression for logL
(
ϑ ;y(1), . . . ,y(T )

)
, to be used

in the innovation approach. The joint probability distribution of the data can be
expanded as a product

p
(
y(1), . . . ,y(T )

∣∣ ϑ) =

p
(
y(1)

∣∣ ϑ) p
(
y(2)

∣∣ y(1),ϑ
) · · · p

(
y(T )

∣∣ y(T −1), . . . ,y(1),ϑ
)
, (2.3)

where we have used the fact that the data must obey causality. The joint probability
distribution of the innovations has a simpler shape, due to the white-noise property
which removes any conditioning on previous values:1

p
(
ν(1), . . . ,ν(T )

∣∣ ϑ) = p
(
ν(1)

∣∣ ϑ) p
(
ν(2)

∣∣ ϑ) · · · p
(
ν(T )

∣∣ ϑ) . (2.4)

We can employ this simpler expression for deriving the likelihood of the data.
The relationship between p

(
y(1), . . . ,y(T )

∣∣ ϑ) and p
(
ν(1), . . . ,ν(T )

∣∣ ϑ) can be
found from the function linking these two sets of variables; it is given by Eq. (2.1).
According to the standard rules for transforming probability distributions, the
Jacobi determinant of this function then arises as a correction to be multiplied with
p
(
ν(1), . . . ,ν(T )

∣∣ ϑ); however, note that from Eq. (2.1) we have

∂ν(t)
∂y(τ)

=

{
1 for t = τ
0 for τ > t ,

(2.5)

where we have used the fact that also the predictor must obey causality. Conse-
quently, the Jacobi determinant is unity, and the joint probability of the given data
must be equal to the joint probability of the corresponding innovations,

p
(
ν(1), . . . ,ν(T )

∣∣ ϑ) = p
(
y(1), . . . ,y(T )

∣∣ ϑ) (2.6)

although the functional form of these two distributions may differ very much.
Finally this gives us for the logarithmic likelihood, employing a normal (Gaussian)
distribution for the innovations, as argued above,

logL
(
ϑ ;y(1), . . . ,y(T )

)
= −1

2

(
T logσ2

ν (t)+
T

∑
t=1

ν2(t)
σ2
ν (t)

+T log(2π)
)

, (2.7)

where σ2
ν (t) denotes the variance of the innovations.

1 Here the problem arises that, for the first data value y(1), no previous values exist which could be
employed by a predictor. But for sufficiently long time-series, the contribution of the first, or the
first few, data values to the likelihood can be neglected.
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2.4 State-space modeling

In state-space modeling [2, 3, 6, 12, 13], the data y(t) are modeled by a system of
two equations,

x(t) = Ax(t −1)+η(t) (2.8)

y(t) = Cx(t)+ ε(t) , (2.9)

where x(t) denotes the M-dimensional state vector, η(t) the dynamical noise term
and ε(t) the observation noise term; the model parameters are given by the state
transition matrix A and the observation matrix C. Furthermore, there are the co-
variance matrices Sη and σ2

ε of the noise terms (where for univariate data σ2
ε is a

single variance parameter instead of an actual covariance matrix). Alternatively, the
dynamical model, Eq. (2.8), could be chosen as a continuous-time model, i.e., as a
stochastic differential equation.

When interpreted as an input–output model, the state-space model of Eqs (2.8,
2.9) produces one output signal y(t) from two input signals η(t) and ε(t). This map-
ping is not invertible, i.e., the original inputs η(t) and ε(t) cannot be reconstructed
from the output y(t). However, it is possible to define a transformed model, such
that instead of two input signals just one is present, appearing both in the positions
of the dynamical noise and the observation noise; it turns out that this input signal
is given by the innovations ν(t) [11]. While the innovations can directly replace
observation noise, they need to be multiplied by a problem-specific gain matrix (the
Kalman gain matrix), before they can replace dynamical noise; in the case of uni-
variate data, this matrix will be an (M×1)-dimensional vector.

This transformed model is known as the innovation representation or Kalman
filter representation of the state-space model. It can be shown that the mapping be-
tween y(t) and ν(t) is invertible [11]. The existence of this representation provides
the justification for practical state-space modeling of time-series.

For given model parameters, the famous Kalman filter algorithm can be applied
for the purpose of generating estimates of the state vector [13]; improved estimates
can be obtained by additional application of a smoother algorithm [19]. While the
Kalman filter performs a pass through the time-series data in forward direction of
time, the smoother proceeds in backward direction. Since predictions are only pos-
sible in forward direction, it is only the Kalman filter which maps the data to inno-
vations and thereby provides a corresponding value for the likelihood of the data.

2.4.1 State-space representation of ARMA models

A well-established class of predictive models for time-series is given by autoregres-
sive moving-average (ARMA) models [5]. As a simple example for univariate data
y(t), we consider the following ARMA(2,1) model:
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y(t) = a1y(t −1)+a2y(t −2)+η(t)+b1η(t −1) , (2.10)

where η(t) denotes again a dynamical noise term, with variance σ2
η . This model

consists of an autoregressive (AR) term of second order, with parameters a1,a2, and
a moving-average (MA) term of first order, with parameter b1, therefore it is denoted
by ARMA(2,1). We can rewrite Eq. (2.10) as

y(t) =a1y(t −1)+ζ (t −1)+η(t)
ζ (t) =a2y(t −1)+b1η(t)

(2.11)

which is equivalent to
(

y(t)
ζ (t)

)
=

(
a1 1
a2 0

)(
y(t −1)
ζ (t −1)

)
+
(

1
b1

)
η(t) , (2.12)

where ζ (t) denotes an auxiliary state variable which can be interpreted as a slightly

odd predictor of y(t +1) [2]. We define a state vector as x(t) =
(
y(t),ζ (t)

)†
(where

† denotes matrix transpose) and obtain the state-space model

x(t) =
(

a1 1
a2 0

)
x(t −1)+

(
1
b1

)
η(t) (2.13)

y(t) = (1,0)x(t) . (2.14)

The dynamical noise term of this model is given by (1,b1)†η(t); the corresponding
covariance matrix follows as

Sη =
(

1 b1

b1 b2
1

)
σ2
η . (2.15)

In Eq. (2.14) observation noise is absent, σ2
ε = 0; however, as a generalization we

may (and will) allow for nonzero σ2
ε .

The specific form of the state transition matrix
( a1 1

a2 0

)
is known as left companion

form, or (in the language of control theory) observer canonical form [12]; it is a
characteristic property of the state-space model corresponding to this form that the
MA parameter b1 is accommodated in the covariance matrix of the dynamical noise,
while the observation matrix C = (1,0) keeps a very simple form.

Note that the scaling of the components of the state vector in Eq. (2.13) is directly
controlled by the variance σ2

η ; since the model is linear, this degree of freedom can
be shifted to the observation matrix which then becomes C = (c1,0) while the dy-
namical noise variance can be normalized to σ2

η = 1. While in the case of univariate
data this is a possible, but not necessary choice, it provides the appropriate general-
ization for the case of multivariate data; for this reason, we will adopt this choice in
this chapter.

The construction leading to the model of Eqs (2.13, 2.14) is easily extended to
ARMA(p, p−1) models with higher order p > 2, yielding a state-space model
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x(t) =

⎛
⎜⎜⎜⎜⎜⎝

a1 1 0 . . . 0
a2 0 1 . . . 0
...

...
...

. . .
...

ap−1 0 0 . . . 1
ap 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

x(t −1)+

⎛
⎜⎜⎜⎜⎜⎝

1
b1
...

bp−2

bp−1

⎞
⎟⎟⎟⎟⎟⎠
η(t) (2.16)

y(t) = (1, 0, . . . , 0, 0) x(t) . (2.17)

The covariance matrix of the dynamical noise term of this model follows as

Sη =

⎛
⎜⎜⎜⎜⎜⎝

1 b1 b2 . . . bp−1

b1 b2
1 b1b2 . . . b1bp−1

b2 b1b2 b2
2 . . . b2bp−1

...
...

...
. . .

...
bp−1 b1bp−1 b2bp−1 . . . b2

p−1

⎞
⎟⎟⎟⎟⎟⎠
σ2
η . (2.18)

2.4.2 Modal representation of state-space models

The dynamics of any linear state-space model can be characterized by the set of
eigenvalues of its state transition matrix A; the eigenvalues are found by transform-
ing A into a diagonal matrix. If M denotes the dimension of the state-space, there
will be M eigenvalues; a certain subset of these eigenvalues will be real, denoted
by a(1), . . . ,a(m1) (where m1 denotes the number of real eigenvalues), while the re-
maining eigenvalues will form pairs of complex-conjugated eigenvalues (assuming
that all elements of A are real), denoted by (ψ(1),ψ∗

(1), . . . ,ψ(m2),ψ∗
(m2)) (where m2

denotes the number of pairs of complex-conjugated eigenvalues). Then we will have
M = m1 +2m2.

Real eigenvalues a(k) of A correspond to autoregressive models of first order,
AR(1):

y(t) = a(k)y(t −1)+η(t) . (2.19)

Each complex-conjugated pair of eigenvalues ψ(k),ψ∗
(k) can be interpreted as an

oscillatory eigen-mode of the dynamics, with a resonance frequency φ(k) (corre-
sponding to the phase of the complex eigenvalues) and an accompanying damping
coefficient ρ(k) (corresponding to the modulus of the complex eigenvalues):

ψ(k) = ρ(k) exp iφ(k) , (2.20)

where i =
√−1.

Consider a complex-conjugated pair of eigenvalues ψ,ψ∗ within the diagonal-
ized state transition matrix; it corresponds to a (2× 2)-block

(ψ 0
0 ψ∗

)
on the diago-

nal. It is always possible to transform such a block to left companion form
( a1 1

a2 0

)
by a linear transform; therefore each complex-conjugated pair of eigenvalues can be
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represented by an ARMA(2,1) model, according to Eq. (2.13). The autoregressive
parameters follow from phase and modulus of the complex eigenvalues by

a(k)
1 = 2ρ(k) cosφ(k) , a(k)

2 = −ρ2
(k) . (2.21)

This transformation has the benefit of removing the complex numbers from the di-
agonalized state transition matrix.

Finally, the modal representation [23, 24] of the state-space model is given by
the transformed state transition matrix:

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1) 0 . . . 0 0 0 0 0 . . . 0 0
0 a(2) . . . 0 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . a(m1) 0 0 0 0 . . . 0 0

0 0 . . . 0 a(1)
1 1 0 0 . . . 0 0

0 0 . . . 0 a(1)
2 0 0 0 . . . 0 0

0 0 . . . 0 0 0 a(2)
1 1 . . . 0 0

0 0 . . . 0 0 0 a(2)
2 0 . . . 0 0

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 . . . 0 0 0 0 0 . . . a(m2)
1 1

0 0 . . . 0 0 0 0 0 . . . a(m2)
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.22)

where we have ordered the dimensions of the transformed state-space, such that
dimensions corresponding to real eigenvalues come first, followed by dimensions
corresponding to complex eigenvalues.2

Note that this matrix is block-diagonal, such that no dynamical interactions be-
tween blocks, and therefore between the corresponding AR(1) and ARMA(2,1)
components, will occur; however, it has to be kept in mind that in general the dynam-
ical noise covariance matrix Sη of the state-space model will not be block-diagonal,
thereby creating instantaneous correlations between components.

2.4.3 The dynamics of AR(1) and ARMA(2,1) processes

We shall briefly discuss some dynamical properties of the components defined in the
previous section. For an ARMA(2,1) process, as defined by Eq. (2.10) or in state-
space representation by Eq. (2.13), the corresponding pair of eigenvalues should
lie inside the unit circle of the complex plane, otherwise the dynamics would be
unstable, i.e., there is a stability condition for the modulus of the eigenvalues,

2 In the case of repeated eigenvalues, the transformation to the modal representation will not be
possible, but this case is unlikely to arise for real-world data.
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0.0 < ρ < 1.0. The closer ρ approaches the unit circle, the sharper the resonance
will become; a sine wave corresponds to the limit case of ρ = 1.0.

The frequency-domain transfer function of an ARMA(2,1) process with AR pa-
rameters a1,a2 and MA parameter b1 is given by

h( f ) =
1+b1 exp(−2πi f )

1−a1 exp(−2πi f )−a2 exp(−4πi f )
, (2.23)

where i =
√−1 and 0 ≤ f ≤ 0.5. The behavior of the real part of this function is

shown in Fig. 2.1 for a fixed value of φ and a set of values for ρ . It can be seen that
only for values of ρ close to 1.0 a sharp resonance peak appear. The first-order mov-
ing average term b1η(t−1) produces a distortion of the curves; for the case b1 = 1.0
this distortion is most pronounced, since the numerator of Eq. (2.23) becomes zero
at f = 0.5. We remark that for ARMA(p,q) models with MA model order q > 1
the MA component may impose more complicated changes on the transfer function,
since then zeros of the numerator may occur at any frequency.
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Fig. 2.1 Real part of the transfer function of an ARMA(2,1) process for resonant frequency
φ = 0.25, damping coefficients ρ = 0.0, 0.5, 0.75, 0.9, 0.95, 0.995 (curves from bottom to top at
frequency 0.25) and moving average parameters b1 = 0.0 (left figure) and b1 = 1.0 (right figure).
Note the logarithmic scale of the vertical axis.

For AR(1) processes, according to Eq. (2.19), there is only a single real eigen-
value of the transition matrix, which is equal to the first-order autoregressive pa-
rameter itself; here we denote this parameter simply by a, for ease of notation. It is
obvious that also a real eigenvalue should lie inside of the unit circle, i.e., it should
fulfill the stability condition |a| < 1.0. The case a = 1.0 corresponds to a random
walk. AR(1) components cannot have resonant frequencies,3 but they can serve the

3 A somewhat pathological exception is the case a < 0.0 which corresponds to an oscillation with
precisely the Nyquist frequency; however, this oscillation will not produce an actual resonance
peak.
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purpose of describing random-walk-like behavior, such as slow drifts and trends in
the data, especially if a is close to 1.0.

2.4.4 State-space models with component structure

The modal representation of state-space models corresponds to a model that is orga-
nized into sets of AR(1) and ARMA(2,1) components; we can generalize this struc-
ture by allowing for higher-order components, i.e., ARMA(p, p− 1) components
with p > 2, as given by Eqs (2.16), (2.17) and (2.18). For each p, up to some maxi-
mum model order, we may choose a set of np ARMA(p, p−1) components and ar-
range their individual (p× p)-dimensional state transition matrices on the diagonal
of the state transition matrix of the state-space model with component structure. The
new state dimension will then result as M = ∑np p, and the state transition matrix
will again have a block-diagonal structure, with all remaining elements vanishing.4

ARMA(p, p− 1) components with p > 2 can be regarded as summarizing a sub-
set of the eigenvalues of the state transition matrix within one (p× p)-dimensional
block in left companion form.

If we intend to design a state-space model consisting of mutually independent
components, we should choose for the covariance matrix of the dynamical noise Sη
the same block-diagonal structure as for the state transition matrix. The correspond-
ing blocks are then given simply by nonzero values for the variances of the AR(1)
components, and by (p× p)-dimensional block matrices, as shown in Eq. (2.18), for
the ARMA(p, p−1) components, while again all elements outside of these blocks
vanish. For this model structure, there exist no ways by which correlations, instan-
taneous or delayed, could arise between components, except for coincidental corre-
lations due to limited data-set size.

Finally, the (1 × M)-dimensional observation matrix of the state-space model
with component structure is given by

C =
(

c(1)
1 ,c(1)

2 , . . . ,c(1)
n1 , c(2)

1 ,0, c(2)
2 ,0, . . . , c(2)

n2 ,0,

c(3)
1 ,0,0, c(3)

2 ,0,0, . . . , c(3)
n3 ,0,0, . . .

)
, (2.24)

where the c(p)
i are model parameters, if the corresponding dynamical noise variances

σ2
η have been normalized to unity.

4 As a generalization, it would be possible to use some of the elements outside the blocks for
introducing coupling between components.
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2.5 State-space GARCH modeling

The state-space model, as presented above, is sufficient for modeling a given time-
series under the assumption of stationarity. In the case of nonstationarity,5 the dy-
namical properties of the time-series data change with time; in this case, some of
the model parameters would have to change their values as well, in order to adapt
to these changing properties. This additional freedom may either be given to the
deterministic part of the model (the first term on the rhs of Eq. (2.13), i.e., the AR
term) or to the stochastic part (the second term, i.e., the MA term).

Here we choose the second option, i.e., we allow the dynamical noise covariance
to change with time. By this step we approach the concept of stochastic volatility
modeling [21], which consists of defining the dynamical noise (co)variance itself
as a set of new state variables, obeying a separate stochastic dynamical model. For
this additional dynamical model a new dynamical noise term is required, which
renders this model estimation problem considerably more complicated; however,
there exists a famous approximation to full stochastic volatility modeling, known as
generalized autoregressive conditional heteroscedastic6 (GARCH) modeling [4, 7].
GARCH modeling was introduced in the field of financial data analysis.

Originally, GARCH modeling was developed only for the direct modeling of data
through AR/ARMA models; its core idea is to use the innovation at the previous
time point, ν(t − 1), as an estimate of the noise input to the additional volatility
model. Recently, the method has been generalized to the situation of state-space
modeling [8, 25]. The main problem in this generalization is given by the fact that,
in the case of state-space models, we would need to employ state prediction errors
as an estimate of the noise input, but all that is available is the set of data prediction
errors, i.e., innovations.

2.5.1 State prediction error estimate

In order to derive a state-space version of GARCH modeling, it is necessary to de-
rive a suitable estimator ν̂x(t) of the state prediction error. The first choice for a
simple estimator is given by ν̂x(t) = K(t)ν(t), where K(t) denotes the (M × 1)-
dimensional Kalman gain matrix of a Kalman filter, used for estimating states from
given time-series data; K(t) can be regarded as a regularized pseudo-inverse of the
observation matrix C. However, in practical applications this simple estimator dis-
plays poor performance, whence we will use a refined estimator, derived in [25]:

ν̂2
x(t) = Sη(t)−Sη(t)C†σ−2

ν (t)CSη(t)+K(t)ν2(t)K†(t) (2.25)

5 We note that, within the framework of linear modeling, nonlinearity may be indistinguishable
from nonstationarity.
6 The term heteroscedasticity refers to the situation in which, within a set of stochastic variables,
different variables have different variances. Here, the term scedasticity, from Greek skedasis for
“dispersion”, is yet another word for “variance”.
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which is, strictly speaking, an estimator of the square of the state prediction
error; the square is inherited from the square in the definition of (co)variances. In
Eq. (2.25), σ2

ν (t) denotes the innovation variance, provided by the Kalman filter.
From Eq. (2.25), ν̂2

x(t) is a square matrix; in order to obtain the noise estimates for
the individual state components, we pick out the diagonal values from this matrix.
While this uniquely defines the noise terms for AR(1) components, ARMA(p, p−1)
components pose the problem that there are p diagonal elements; here we have cho-
sen to simply average over these elements, but other choices would be possible. The
resulting average is denoted by ν̂2

x (k, t) for the kth component of a state-space model
with component structure.

2.5.2 State-space GARCH dynamical equation

The design of a state-space GARCH model contains various details of implemen-
tation which need to be chosen, and in several cases it is not obvious which choice
would be best; instead, practical experience is employed.7 We found useful the par-
ticular implementation which we now describe.

In our implementation, the new time-dependent GARCH state variables corre-
spond roughly to standard deviations, rather than variances; however, in contrast
to standard deviations, these variables may also become negative. The state-space
GARCH model itself is given by another ARMA(r,s) model,

σ(k, t) = σ(k,0)+
r

∑
τ=1

α(k,τ)σ(k, t − τ)+
s

∑
τ=1

β (k,τ)ν̂2
x (k, t − τ) , (2.26)

such that for each component there is an additional set of state-space GARCH pa-
rameters σ(k,0),α(k,1), . . . ,α(k,r),β (k,1), . . . ,β (k,s); these parameters become
an additional part of the vector of model parameters ϑ . However, in practice we do
not need a state-space GARCH model for each component of a given state-space
model, but only for the particular component which actually contains the nonsta-
tionary phenomena to be modeled. For the other components we set

σ(k,0) = 1,α(k,1) = . . . = α(k,r) = 0,β (k,1) = . . . = β (k,s) = 0.

The choice of the GARCH model orders r,s forms again part of the model design.
In the application examples to be presented in this chapter, we have decided to use
r = 1,s = 10; experience has shown that sometimes it is advantageous to include a
longer history of previous noise estimates into the model. However, in other cases
also the choice r = 1,s = 1 has yielded good results [25]. In order to simplify the
parameter estimation step, we define a constraint β (k,1) = β (k,2) = . . . = β (k,10),

7 This situation is not unusual in statistical modeling of data, since it will rarely be possible to set
up a model which faithfully reproduces the structure of the underlying natural processes; rather,
models have always to be regarded as approximations. At least, this is the situation we are facing
in the study of systems of enormous complexity, such as the human brain.
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such that in effect we are using an average of the last 10 noise estimates and just
one MA parameter. In Refs. [8] and [25], state-space GARCH models were intro-
duced in which the logarithm of the variance, 2 logσ(k, t), was used as GARCH
state variable, but in this chapter we have decided to formulate the model directly in
the standard deviations σ(k, t).

2.5.3 Interface to Kalman filtering

At each time point t, the current value of the GARCH state variable, σ(k, t), is
passed through a “nonlinear” observation function by taking the square, thereby
becoming a genuine non-negative variance σ2(k, t); this variance then replaces, for
component k, the term σ2

η which appears in Eqs (2.15, 2.18) of the stationary state-
space model. The corresponding dynamical noise covariance matrix of component
k then enters the block-diagonal covariance matrix of the state-space model at the
appropriate block position of component k, such that this matrix itself becomes time-
dependent.

This step represents a major modification of the usual Kalman filter iteration,
since the continuous changes of one of the main matrices of the model prevent the
filter from reaching its steady state.

2.5.4 Some remarks on practical model fitting

The generalized state-space models discussed in this chapter are parametric models,
consisting of a model structure and a parameter vector ϑ . The following table lists
the parameter sets contained in ϑ , also giving the dimension of each set:

Description Symbol Dimension8

state transition matrix parameters9 a(k),φ (k),ρ(k) m1 +2m2

moving-average parameters bi m2

observation matrix parameters ci m1 +m2

observation noise variance σ2
ε 1

GARCH parameters σ(k,0),α(k,τ),β (k,τ) r + s+1 or10r +2
initial state vector x(0) m1 +2m2

8 In the table, m1 and m2 denote the number of real eigenvalues and of pairs of complex eigen-
values, respectively, regardless of how these eigenvalues are distributed over the ARMA(p, p−1)
components of the state-space model.
9 Optimizing φ (k),ρ(k) instead of the corresponding AR parameters a(k)

1 ,a(k)
2 has the advantage that

the stability constraint ρ(k) < 1.0 can be directly imposed; furthermore, prior knowledge about the
frequencies φ (k) can be conveniently incorporated into the model, or particular frequencies can be
excluded from the optimization process.
10 if the constraint β (k,1) = β (k,2) = . . . = β (k,s) is applied
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For a given choice of ϑ , the Kalman filter provides the corresponding value of
the likelihood. Model fitting consists of maximizing the likelihood, or, more con-
veniently, the logarithmic likelihood, with respect to ϑ by numerical optimiza-
tion [9]. For this purpose, we are employing standard optimization algorithms,
namely the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm
and the Nelder-Mead simplex algorithm. Sometimes the simplex algorithm can be
employed in situations where the quasi-Newton algorithm fails due to numerical
problems.

Several optimization steps should be iterated, such that in some steps the op-
timization is limited to subsets of parameters. With the sole exception of σ2

ε , all
parameters can be uniquely assigned to one of the components; we recommend
performing a series of optimization steps such that each step is confined to one
component. Some optimization steps may also be confined to state transition matrix
parameters, or to observation matrix parameters, etc.

A good initial model is of crucial importance for successful modeling. We rec-
ommend fitting an autoregressive model, AR(p), of sufficiently high model order,
say p = 30, to the given data; fitting of pure AR models, without MA terms, can
be done very efficiently by standard least-squares regression [5]. This model is then
converted into a state-space model, as discussed above, and the resulting state-space
model is transformed into its modal representation; thereby a model consisting of a
set of AR(1) and ARMA(2,1) components is obtained. Later, higher-order ARMA
components can be created by merging pairs of these AR(1) and/or ARMA(2,1)
components. The dynamical noise covariance matrix is constrained to the same
block-diagonal structure as the state transition matrix by setting all other elements
to zero.

At this point there is a need for subjective interference with the modeling process:
usually a subset of the initial components will capture the most important features
of the data and of the underlying dynamics, such as frequencies known to play an
important role, or prominent time-domain patterns, while other components will
describe rather unspecific activity. Only this subset of important components should
be selected as initial model, while the remaining components should be discarded.
Also, the decision as to which components, if any, are to be merged later to form
higher-order ARMA components depends on subjective assessment of the dynamics
represented by the components.

Keeping all components from the modal representation would also be possible,
but it would result in a very large model with many redundant components; such a
model could be employed as an alternative initial model, and later the model could
gradually be “pruned” during the optimization process, but this procedure would be
very demanding in terms of computational time consumption.

For the observation noise variance σ2
ε and the state-space GARCH parameters,

no initial values can be obtained by this approach. For σ2
ε , a small initial value

should be chosen, maybe about 10−3 times smaller than the variance of the data, un-
less we have reason to assume that there was considerably more observation noise
in the data. Larger initial values for σ2

ε may create the risk that the Kalman fil-
ter would incorrectly allocate a large fraction of the variance of the data to the
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observation noise term. The procedure for the state-space GARCH parameters is
described below.

For the application examples which will be discussed below, the dimension of
ϑ is about 35; about 10 of these parameters form the initial state vector x(0). We
recommended to keep x(0) initially at zero and to optimize only the remaining pa-
rameters, except for the state-space GARCH parameters, while omitting the con-
tributions of the first (approximately) 20 data points to the likelihood, in order to
allow a transient of the Kalman filter to die out. Once a first set of optimization
steps has been applied, such that approximate estimates of the main parameter sets
of the model have been obtained, the full likelihood is evaluated and the initial state
vector is included into the remaining optimization steps.

During the first part of the model fitting procedure, there should not yet be any
state-space GARCH models, i.e., the state-space GARCH parameters should be
fixed as σ(k,0) = 1, α(k,1) = 0, β (k,1) = 0, β (k,2) = 0, . . .. After the estimates
of the other parameter sets have converged to stable values, it can be decided which
component should be given a state-space GARCH model. Usually, the nonstation-
ary behavior to be modeled is represented only by one or possibly two components,
and only these components should be given state-space GARCH models. Experi-
ence has shown that if state-space GARCH models are given to all components of
a state-space model, components tend to become blurry and featureless, since too
much freedom is available to each component. After estimates of the state-space
GARCH parameters have been obtained, also all other model parameters need to
be refitted, since the introduction of state-space GARCH models may considerably
change the dynamics of the complete model.

In many cases, we probably cannot expect to reliably find global maxima in a
25-dimensional, highly heterogeneous parameter space. After the optimization pro-
cedure, the Hessian matrix at the obtained solution should routinely be computed,
in order to check for the possibility of saddle points; nevertheless we may find only
local maxima. Refined studies of the geometry of these parameter spaces would be
needed, in order to obtain additional insight into this problem. However, we expect
that for practical purposes a good solution will be almost as useful as the perfect so-
lution. In the end, the properties of the innovations will always allow an assessment
of the quality of the obtained model; major problems during the optimization step
will usually also be reflected in the innovations.

2.6 Application examples

In the remaining part of this chapter we will discuss the application of state-space
modeling, with component structure and state-space GARCH components, to three
examples of EEG time-series; all contain nonstationary phenomena: in the first ex-
ample, due to the transition from the conscious state to anesthesia; in the second,
due to the transition from one sleep stage into another; and in the third, due to the
occurrence of an epileptic seizure.
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2.6.1 Transition to anesthesia

As the first example we choose an EEG time-series recorded from a patient being
anesthesized (with propofol) prior to surgery. Sampling rate was fs = 100 Hz. From
the full clinical data set we select the time-series recorded at the T4 electrode ver-
sus average reference; we select T = 2000 sample points, starting with the moment
when induction of anesthesia was begun. The data are shown in Fig. 2.2A; the same
data were also analyzed in [25]. It can be seen that the qualitative appearance of the
trace changes within the 20 seconds covered by this time-series, i.e., the data con-
tain pronounced nonstationarity: high-amplitude oscillations in the delta frequency
range gradually become stronger, corresponding to the loss of consciousness. The
transition from the conscious state to anesthesia may be regarded as a phase transi-
tion in brain dynamics [22].

We model the data by a state-space model consisting of m2 = 5 mutually indepen-
dent ARMA(2,1) components; the model is fitted by maximizing the log-likelihood
until convergence. It is found that one of the components represents the gradually
increasing delta range oscillation; in a second modeling step, a state-space GARCH
model is added to this component, but not to the remaining four components. The
state-space GARCH model orders are r = 1, s = 10, but we apply to the MA param-
eters the constraint introduced above, β (k,1) = β (k,2) = . . . = β (k,10). The three
additional parameters of the state-space GARCH model are also fitted by maximiz-
ing the log-likelihood; then the other sets of model parameters are refitted, start-
ing at their previous non-GARCH values, in order to allow the model to adapt to
the presence of the state-space GARCH model. Joint and alternate optimization
of state-space GARCH model parameters and other parameters are iterated a few
times, again until convergence.

The resulting five components are shown in Fig. 2.2B; together they represent a
decomposition of the data of Fig. 2.2A. The figure shows smoothed state estimates,
as obtained by a standard Rauch-Tung-Striebel smoother [19] which performs a
backward pass through the time-series; during optimization only the forward pass
of the Kalman filter is performed, since it is this pass which transforms the data into
innovations and thereby produces a value for the likelihood.

Note that in Fig. 2.2B all components are displayed with the same variance, such
that their dynamical properties can be compared; their actual variances in state-
space will differ considerably, since we have chosen to normalize the variances of
the dynamical noises to 1, instead of the variances of the estimated states11.

In Fig. 2.2B components are ordered according to increasing frequency; this is
possible since all components are modeled by ARMA(2,1) processes, such that there
is a single resonance frequency for each component. At the top we find the nonsta-
tionary delta range component (labeled c1), with frequency12 f = 0.422 Hz and

11 The effective variances of the time-series of estimated state components do not represent model
parameters, therefore they would be inaccessible for the purpose of normalization.
12 The physical frequency f is related to the phase φ of the corresponding pair of complex eigen-
values, as defined by Eq. (2.20), by φ = 2π f / fs, where fs denotes the sampling frequency of the
data.
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Fig. 2.2 EEG time-series with transition to anesthesia: Data (A); state-space decomposition (B);
innovations (C); and state-space GARCH variance of component c1 (D). Vertical axes for all graphs
in subfigures A, B and C have been rescaled individually for convenience of graphical display.
Resonance frequencies f and damping coefficients ρ of components: c1: f = 0.422 Hz, ρ = 0.690;
c2: f = 10.495 Hz, ρ = 0.946; c3: f = 17.463 Hz, ρ = 0.772; c4: f = 45.34 Hz, ρ = 0.910; c5:
f = 48.649 Hz, ρ = 0.292.
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damping coefficient ρ = 0.690; the gradual increase of delta amplitude is clearly
visible. The next two components (c2 and c3) represent alpha and beta range com-
ponents, with f = 10.495 Hz, ρ = 0.946 for c2; and f = 17.463 Hz, ρ = 0.772
for c3. The remaining two components (c4 and c5) represent high-frequency noise
components, with f = 45.34 Hz, ρ = 0.910 for c4; and f = 48.649 Hz, ρ = 0.292
for c5. Note that for this data set the Nyquist frequency lies at fs/2 = 50 Hz.

In Fig. 2.2C the weighted innovations are shown, confirming that little, if any,
structure has remained in the innovations. The raw innovations (prediction errors)
of the state-space model have been weighted by being divided at each time point by
the square root of the corresponding innovation variance, as provided by the Kalman
filter; remember that in presence of a state-space GARCH model the Kalman filter
will not reach its steady state, such that also the innovation variance (or, more gen-
erally, covariance) will not converge to a constant value.

Finally, in Fig. 2.2D the time-dependent variance of the delta range component
is shown, as described by the state-space GARCH model. Note that the vertical
axis of this figure is logarithmic. This graph should be studied together with the
delta range component itself, the top graph in Fig. 2.2B. It can be seen that the
variance increases from values around 20 in the first few seconds to values around
200–300 at the end of the time-series; this increase may be interpreted as a data-
derived quantitative representation of the phase transition process.

At the beginning of the time-series, the dynamics of the variance of the delta
range component was initialized at an arbitrary value of 1.0, from which it has to rise
to more realistic values during a short transient which is not explicitly resolved in the
figure. The maximum-likelihood estimates of the state-space GARCH parameters
are σ(k,0) = 0.0837,α(k,1) = 0.975,β (k,1 . . .10) = 4.111×10−5.

2.6.2 Sleep stage transition

The second example is given by an EEG time-series recorded from the surface of a
fetal sheep brain (144 days gestation age). The original sampling rate was 250 Hz,
but we decide to subsample the data to fs = 125 Hz. A single electrode is selected.
Out of a longer data set, a subset of T = 50000 sample points (at 125 Hz) is selected,
covering a transition between slow-wave sleep (SWS) to REM sleep. The data are
shown in Fig. 2.3A. The transition is discernible by a decrease of signal amplitude
with concomitant fading of the characteristic slow-wave activity.

For modeling the sleep data we choose the same model structure as used for the
anesthesia study, i.e., we choose a state-space model consisting of m2 = 5 mutu-
ally independent ARMA(2,1) components; the model is fitted by maximizing the
log-likelihood until convergence. Again it is found that only one of the components
captures the nonstationary behavior representing the sleep stage transition; in a sec-
ond modeling step, a state-space GARCH model is added to this component, but not
to the remaining four components. State-space GARCH model orders are the same
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Fig. 2.3 EEG time-series from fetal sheep brain with transition from slow-wave sleep to REM
sleep: Data (A); state-space decomposition (B); innovations (C); and state-space GARCH variance
of component c1 (D). Vertical axes for all graphs in subfigures A, B and C have been rescaled indi-
vidually for convenience of graphical display. Resonance frequencies f and damping coefficients
ρ of components: c1: f = 3.811 Hz, ρ = 0.910; c2: f = 11.465 Hz, ρ = 0.882; c3: f = 18.796 Hz,
ρ = 0.926; f = 24.896 Hz, ρ = 0.951; c5: f = 30.801 Hz, ρ = 0.945. Insets show enlarged parts
of data, state-space components and innovations: 100–104 s (left) and 400–404 s (right).
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as for the anesthesia example: r = 1, s = 10, and the same constraint for the MA
parameters is employed. Model parameters are optimized until convergence.

The resulting five components are shown in Fig. 2.3B, ordered according to in-
creasing frequency; again, smoothed state estimates are shown, rescaled to the same
variance. The first component, labeled c1, is the nonstationary component; its fre-
quency and damping coefficient is f = 3.811 Hz, ρ = 0.910. For the remaining
components, frequencies and damping coefficients are f = 11.465 Hz, ρ = 0.882
for c2; f = 18.796 Hz, ρ = 0.926 for c3; f = 24.896 Hz, ρ = 0.951 for c4; and
f = 30.801 Hz, ρ = 0.945 for c5. The Nyquist frequency lies at fs/2 = 62.5 Hz.
Note that damping coefficients for all components are fairly close to 1.0, indicating
pronounced oscillatory behavior.

The weighted innovations and the time-dependent variance of the nonstationary
component are shown if in Figs. 2.3C and 2.3D, respectively. It can be seen that the
variance decreases from values around 5000 in the first part of the time-series (repre-
senting slow-wave sleep) to values around 200 in the latter part (representing REM
sleep). If the variance is used as a quantitative measure for the transition between
the two sleep stages, the time point at which the transition occurs can be identified
to within a time-interval of no more than 5 s; however, note that also within each
of the two sleep stages there are slow changes of the variance which may reflect
changes of the underlying physiological state.

Also for this model, the dynamics of the variance of the nonstationary component
was initialized at a value of 1.0, from which it rises to appropriate values around
5000 during a short transient. The maximum-likelihood estimates of the state-
space GARCH parameters are σ(k,0) = 0.176,α(k,1) = 0.985,β (k,1 . . .10) =
2.68×10−6.

In this time-series, we have the example of a nonstationarity where a state with
large variance passes to a state with smaller variance; we remark that we were also
able to model data displaying the opposite situation, i.e., the transition from REM
sleep to slow-wave sleep, from the same experiment (the same fetus) with the same
model class.

2.6.3 Temporal-lobe epilepsy
As the third example we choose an EEG time-series recorded from a patient suffer-
ing from temporal-lobe epilepsy, during awake resting state with open eyes. Sam-
pling rate was fs = 200 Hz. From the full clinical data set we select the time-series
recorded at the Fz electrode versus linked earlobes; out of a longer data set, we
select T = 2048 sample points, covering one short generalized epileptic seizure of
a type characteristic for temporal-lobe epilepsy. The data are shown in Fig. 2.4A.
In the figure, it can be seen that at time near 7 s the qualitative appearance of the
trace changes abruptly, with a series of periodic high-amplitude spike-wave patterns
emerging; these patterns are typical of the ictal regime (containing the seizure),
while the earlier part of the trace represents the preictal regime. The transition from
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Fig. 2.4 EEG time-series with epileptic seizure: Data (A); state space decomposition (B); innova-
tions (C); and state-space GARCH variance of component c5 (D). Vertical axes for all graphs
in subfigures A–C have been rescaled individually for convenience of graphical display. AR-
parameter of component c1 is a1 = 0.985. Resonance frequencies f and damping coefficients ρ of
other components: c2: f = 7.978Hz, ρ = 0.876; c3: f = 17.288Hz, ρ = 0.976; c4: f = 50.025Hz,
ρ = 1.0; component c5 has frequencies f = 3.274Hz, f = 18.171Hz and corresponding damping
coefficients ρ = 0.870, ρ = 0.883.



2 Generalized state-space models 47

the preictal to the ictal regime has recently been discussed by Milton et al. [15] in
analogy with phase transitions in physics.

We model the data by a state-space model consisting of one AR(1), three
ARMA(2,1) and one ARMA(4,3) components (corresponding to m1 = 1 real eigen-
values and m2 = 5 complex-conjugated pairs of eigenvalues); this structure is cho-
sen according to the transformation of an initial AR model into modal representa-
tion which reveals at least two components representing the epileptic seizure; these
two components are merged into a single fourth-order component. Again, the initial
state-space model is fitted by maximizing the log-likelihood until convergence. The
ARMA(4,3) component, representing the seizure activity, is then provided with a
state-space GARCH model, while the remaining four components are not. Again,
the state-space GARCH model orders are r = 1, s = 10, and the same constraint for
the MA parameter as before is employed. Fitting of the three additional parameters
and refitting of the other sets of model parameters proceeds in the same way as for
the earlier anesthesia and fetal sleep examples.

The resulting five components are shown in Fig. 2.4B, ordered according to in-
creasing frequency, with the ARMA(4,3) component at the bottom of the figure;
together these components represent a decomposition of the data of Fig. 2.4A. Also
this figure shows smoothed state estimates; again, for convenience of graphical dis-
play, variances of components have been normalized to the same value.

At the top of the figure, the single AR(1) component is shown, labeled c1; its state
transition parameter a1 is 0.985, and thereby well suited for describing slow drifts
and trends in the data. In this time-series, there seems to be a slow shift of potential
during the seizure; we see that the AR(1) component captures this shift well, thereby
facilitating the modeling of the oscillatory pattern during the seizure by another
component. In the preictal regime, the first-order component also captures some
unspecific low-frequency activity.

Below the AR(1) component, we see in Fig. 2.4B the three ARMA(2,1) com-
ponents, with frequencies and damping coefficients f = 7.978 Hz, ρ = 0.876 for
c2, f = 17.288 Hz, ρ = 0.976 for c3, and f = 50.025 Hz, ρ = 1.0 for c4; the
Nyquist frequency lies at fs/2 = 100 Hz. Components c2 and c3 represent alpha-
and beta-range components, respectively; the beta activity is clearly visible in the
data. Component c4 represents the frequency of the electrical power supply, i.e., an
artifact of technical origin; the damping coefficient of ρ = 1.0 clearly reveals an
undamped oscillation.

At the bottom of Fig. 2.4B, the ARMA(4,3) component representing the epileptic
seizure is shown; it can be seen that this component displays only weak activity until
the seizure commences. The seizure itself is well extracted, without leakage into
the other components. The two frequencies of this component are f = 3.274 Hz
and f = 18.171 Hz; the corresponding damping coefficients are ρ = 0.870 and ρ =
0.883. It is obvious that the first of these frequencies describes the main periodicity
of the ictal spike–wave patterns.

In Fig. 2.4C the weighted innovations are shown; again they are weighted by
being divided at each time point by the square root of the corresponding innovation
variance. While it can be seen that most of the structure has been removed, there are
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still some remains of seizure-related structure in the innovations. This can be seen
most clearly from the series of sharp spikes in the innovations which correspond
well with the epileptic spikes in the data. The last 40 samples of the innovations are
probably dominated by muscle artifact effects.

Finally, in Fig. 2.4D the time-dependent variance of the epileptic seizure com-
ponent is shown, as described by the state space GARCH model. Note that again
the vertical axis of this figure is logarithmic. This graph should be studied together
with the epileptic seizure component itself, the bottom graph in Fig. 2.4B. Again,
at the beginning of the time-series, the dynamics of the variance was initialized
at an arbitrary value of 1.0; the variance then drops to a somewhat smaller value
and mostly stays close to this value for several seconds, until the seizure com-
mences. The maximum-likelihood estimates of the state space GARCH parame-
ters are σ(k,0) = 0.465,α(k,1) = 5.044×10−3,β (k,1 . . .10) = 3.941×10−3; from
these values it is not surprising that the variance stays close to the constant term
σ(k,0) = 0.465, as long as the innovations remain small.

However, as soon as the seizure starts, the variance rises to values of almost
103; then, the variance oscillates roughly between 10 and 103, thereby following
the spike–wave oscillation of the seizure. We thus have two regimes of different
behavior of variance, preictal and ictal; if the transition between these two regimes
is regarded as a phase transition, the concurrent rise of the variance may again be
interpreted as a data-derived quantitative representation of this phase transition pro-
cess. We emphasize that no prior information—relating to either the components in
the data or the timing of seizure onset—was given to the algorithm.

Also in the preictal regime, the time-dependent variance shows some structure,
such as a transient increase of variance between 1.0 and 3.5 s into the time-series;
whether this structure actually reveals relevant information on the epileptic seizure
component cannot be decided on the basis of the analysis of just a single seizure.

2.7 Discussion and summary

For centuries, the ability to make quantitative predictions has been regarded as one
of the ultimate goals of science. Our present work, which aims to construct predic-
tive models for particular brain phenomena that are accessible to direct observation,
is motivated by the same goal.

Much is now known about the elementary constituents of the human brain: the
neurons, synapses, neurotransmitters and ion channels. In principle, it should be
possible to use this knowledge to set up a detailed model of the dynamics of brain;
such a model would allow reliable predictions of the observable phenomena gener-
ated by the brain. However, due to the enormous numbers of these constituents and
the complexity of their interconnections, this is not (yet) a practicable task.

Alternatively, a predictive model may be set up predominantly or exclusively
based on the available data, and this is the path we have followed in this chap-
ter. More specifically, we have studied how such a model can be set up for the
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purpose of efficient description of transitions between qualitatively different dynam-
ical states, i.e., of nonstationary behavior. The resulting models summarize various
useful statistics about the data, mainly encoded in the properties of the state-space
components, into which the data are decomposed. Each component is character-
ized by one or several resonant frequencies, but also by the corresponding damping
coefficients; furthermore the total power in the data is distributed over the compo-
nents in a specific way. Nonstationary components are modeled by additional state-
space GARCH models, and the time-dependent variance information provided by
such models offers additional information on the processes underlying the data; it
may be used also for purposes of automatic classification and event detection. In
particular, phase transitions represent an example of nonstationary processes; thus
the time-dependent variance may serve as a data-derived quantitative representation
of the underlying phase transition processes.

In this chapter, we have sketched a systematic approach to building state-space
models for univariate time-series data; the generalization to multivariate data is
straightforward. State-space models are predictive models, mapping the time-series
data to a time-series of prediction errors, denoted as innovations. The innovation ap-
proach to data modeling aims at whitening the data, i.e., at removing all correlations
from the innovations; this is the condition for the validity of the expression for the
logarithmic likelihood of the data given by Eq. (2.7).

The innovations are also a source of information for further improvement of
models; a good example is given by the third application example of this chapter.
Epileptic spike-wave patterns are known to be difficult to model by autoregressive
models [16]; the strongly anharmonic waveforms, in combination with poor stabil-
ity of the main frequency, pose considerable challenges. An improved model for the
epileptic seizure component, possibly incorporating also nonlinear elements, should
be able to reduce the amount of seizure-related residual structure in the innovations
which is visible in Fig. 2.4C; alternatively, or additionally, the design of the state-
space GARCH model may be further improved.

The choice of the model order of certain components represents a question of
model design, i.e., the choice of model structure; a related problem is that of model
comparison. This is a much more difficult problem than estimating model parame-
ters within a fixed model structure, and a full discussion would go beyond the scope
of this chapter. For the purpose of time-series decomposition and characterization of
nonstationarities, we have found the approach of fitting a set of mutually indepen-
dent ARMA(p, p−1) components useful; the choice of the number of components
and their model orders will, to some extent, remain a subjective decision. However,
such subjective decisions may be partly based on prior knowledge about the prop-
erties of physiologically meaningful components, or of well-known artifacts.

Fitting larger models with larger numbers of model parameters will usually im-
prove the likelihood, when compared with smaller models. It is well known that
this effect invites the risk of overfitting, against which the maximum-likelihood
method itself has no protection. Information criteria like the Akaike Information
Criterion (AIC) [1] or the Bayesian Information Criterion (BIC) [20] have been
introduced, for replacing the likelihood L

(
ϑ ;y(1), . . . ,y(T )

)
, or, more precisely,
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replacing −2logL
(
ϑ ;y(1), . . . ,y(T )

)
; these criteria contain a penalty term for the

number of model parameters, such that it can be decided whether the improvement
of likelihood resulting from extending a model is worth the price of additional model
complexity. Recently, logarithmic evidence has been proposed as an alternative for
AIC and BIC [17].

For the application examples presented in this chapter we have not reported de-
tailed values of log-likelihood, AIC or BIC; but we remark that the comparison of
both AIC and BIC for the best non-GARCH models with the final models including
state-space GARCH modeling has consistently favored the latter models.

Information criteria like AIC or BIC are best known as tools for estimating opti-
mal model orders for model classes like AR(p) models; but in fact these measures
permit the comparison of the performance of models in a much wider setting, such
as non-nested models, or even, with respect to their structure, mutually unrelated
models. Then, in principle, the process of model design could be based completely
on comparison of such criteria, instead on subjective decisions; the problem here
is that, for each competing model, a time-consuming numerical optimization pro-
cedure would have to take place before the values of the criteria would become
available; this would make such an approach very time-consuming. But the power
of information criteria for quantitative model comparison should be kept in mind.

Also, other design choices of the modeling algorithm discussed in this chapter
could be investigated in the light of information criteria. As an example, we again
mention details of the implementation of state-space GARCH modeling, such as
model orders, or the choice of the estimator for the state prediction errors, Eq. (2.25);
the quadratic estimator which we have employed, following [25], draws its main
justification from its superior performance in practical applications, also in terms of
information criteria, as compared to other estimators.

Use of state-space GARCH modeling to describe nonstationary structure in time-
series—in the absence of prior information on the timing of the nonstationary
changes—represents a comparatively new approach that will require more study,
both in simulations and applications, in order to become an established tool for
time-series analysis. In this chapter we have demonstrated its rich potential for mod-
eling phase transitions and other nonstationary behavior in electroencephalographic
time-series data.
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