
Chapter 12
Cortical patterns and gamma genesis
are modulated by reversal potentials
and gap-junction diffusion

M.L. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson, and J.W. Sleigh

12.1 Introduction

Continuum models of the cortex aim to describe those interactions of neural popu-
lations that generate the electrical fluctuations and rhythms able to be detected di-
rectly, with scalp and cortical EEG (electroencephalogram) electrodes, or remotely,
using their magnetic counterpart, via MEG (magnetoencephalogram) sensors. Be-
cause the numbers of neurons involved in these cooperative behaviors is so vast,
the continuum, or mean-field, approach makes no attempt to model the detailed
biophysics of individual neurons, nor does it attempt to track the birth and axonal
propagation of individual spike events. Instead, neuronal properties are represented
as spatial averages, averaged, say, over the population of neurons sampled by a small
EEG electrode, with spiking activity being represented as an average firing rate for
the population-average neuron.

When constructing a theoretical model for the cerebral cortex, there is an un-
avoidable tension between the competing requirements of biophysical accuracy
(leading to increased complexity) versus mathematical tractability (arguing for sim-
plicity). In the end, we must make a pragmatic assessment of model quality by
asking: Is the model fit for purpose—i.e., Is the model able to make predictions that
can be tested against biological reality? And: Does the model provide fresh insight?

In this chapter we will argue that incorporation of two biophysical features—
namely, cell-reversal potentials, and direct diffusive coupling between inhibitory
neurons—has important implications for emergent nonlinear behavior with respect
to oscillatory rhythms and pattern formation in the cortex. Specifically, we show that
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the manner in which reversal potentials enter the model determines whether cortical
oscillations appear in the delta (∼2-Hz) or in the gamma (∼30-Hz) frequency range.
Further, we will demonstrate that inclusion of gap-junction diffusive connections
modifies the strength and spatial extent of the Turing and standing-wave firing-rate
patterns that can form in the cortical sheet.

12.1.1 Continuum modeling of the cortex

While continuum models of the cortex have evolved considerably since the founda-
tion work of Wilson and Cowan [31], Nunez [18], and Freeman [9], present mean-
field models continue to share three simplifying assumptions: (i) neural properties
can be represented as spatial averages, (ii) neural inter-connectedness decays with
distance, (iii) neural firing rates can vary between zero and some maximum value,
with a sigmoidal mapping from membrane voltage to firing rate.

Continuum models are expressed either as coupled partial differential equations
(PDEs), or as integro-differential equations (IDEs), or as purely integral equations,
with the choice of representation being determined by the type and dimensionality
(1-D or 2-D) of the connectivity kernel. The PDE forms have the advantage of speed
and ease of analysis, but have access to a restricted range of connectivity kernels,
e.g., exponential decay in 1-D [11, 31], modified Bessel (Macdonald)-function de-
cay in 2-D [21]. The integral forms are slower to compute numerically, and require
a large amount of storage, but have the advantage that the kernel can be chosen at
will; Wright and Liley [35] use a Gaussian to represent the decreasing synaptic den-
sity with distance. For the integro-differential forms, “Mexican hat” connectivity
kernels are frequently used [4–6, 14, 15].

In the PDE-based cortical model we present here, flux activity generated by ex-
citatory and inhibitory neural populations is received at a dendritic synapse whose
transmission efficiency is modulated by the difference between the membrane volt-
age and its reversal potential [16, 20]. Following Robinson et al. [21], axonal flux
transmission is assumed to obey a 2-D wave equation with Macdonald-function con-
nectivity. The net neuron voltage is determined not only by axono-dendritic activity
at chemical synapses, but also by diffusive currents from adjacent neurons that are
directly coupled to the target neuron via gap junctions. Our parameter values for
the chemical-synaptic component of the model largely match those of Rennie et al.
[20], but we have chosen to retain the symbols and labeling conventions used in
our earlier sleep [23] and anesthesia modeling [24], which drew on work by Liley
et al. [16]. For the gap-junction component of the model, we adopt the values and
notation we introduced in Ref. [26].

12.1.2 Reversal potentials

The size and direction of the postsynaptic potential evoked at a chemical synapse
by incoming spike activity depends on the voltage state of the receiving neuron,
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and, in particular, on (V rev −V ), the voltage of the receiving dendrite relative to
its reversal potential. If this difference is large, spike events will be more effective
at transferring charge across, and eliciting a voltage response in, the post-synaptic
membrane; this efficiency diminishes to zero as V approaches V rev, the reversal
potential being ∼0 mV for excitatory events (mediated by AMPA receptors) and
∼−70 mV for inhibitory events (mediated by GABA receptors).

Although a standard feature in all Hodgkin–Huxley [13] conductance-based neu-
ron models, surprisingly few mean-field cortical models include excitatory and in-
hibitory reversal potentials [16, 20, 25, 36]. The neglect of these biophysical con-
straints might be justifiable if the voltage fluctuations about resting equilibrium
(V rest ≈ −60 mV) remain sufficiently small that the reversal potentials are effec-
tively infinite. But if the fluctuations grow sufficiently large—as can happen when
the equilibrium state destabilizes in favor of a Hopf, Turing, or wave instability—
then the existence of finite reversal potentials could have a significant impact on
neural behavior. In fact, we will show that a subtle change in the way in which re-
versal potentials are incorporated into the model leads to qualitative change in its
stability properties.

12.1.3 Gap-junction diffusion

The traditional picture of neural communication requires active propagation of ac-
tion potentials from the axon of the transmitting neuron to the dendrite of the re-
ceiving neuron via release of neurotransmitters at the chemical-synaptic interface.

There is accumulating evidence, however, that subthreshold voltage fluctuations
can be passively communicated from neuron to neuron via electrical synapses
formed from gap-junction proteins that make direct resistive connections between
neighboring cells at their points of dendritic contact. This is particularly so for in-
hibitory neurons in the cat visual cortex where the measured density of connexin-36
(Cx36) gap-junctions is so high that Fukuda et al. [10] described the result as es-
tablishing a dense and widespread network of interneurons able to be traced in a
boundless chain. In addition, researchers have detected copious gap-junction cou-
plings between interneurons and their supporting glial cells (via Cx32 connexin),
and between pairs of glial cells (via Cx43) [1, 17], suggesting that diffusive neuronal
coupling may be augmented by glial-cell “bridges”. To date, there are no reports
of dense gap-junction connectivity between pairs of excitatory neurons, suggesting
that, for reasons unknown, neural tissue has evolved to strongly favor inhibitory-to-
inhibitory diffusion over excitatory-to-excitatory diffusion.

In Ref. [26], we used the Fukuda measurements to estimate an upper bound for
D2, the inhibitory coupling strength, D2 ≈ 0.6 cm2, then investigated the impact
of incorporating inhibitory diffusion into a mean-field model of the cortex based
on chemical synapses. We found that, provided that the D2 inhibitory diffusion is
sufficiently large, a homogeneous cortical sheet will spontaneously destabilize in
favor of cm-scale stationary Turing patterns of intermixed regions of high- and low-
firing activity.
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In this chapter we extend this work by demonstrating that gap-junction diffusion
D2∇2V can interact with the (V rev−V ) reversal-potential terms to generate two dis-
tinct types of spatiotemporal instability: either (a) stationary Turing structures when
the feedback from soma to dendrite is delayed (“slow-soma” model); or (b) stand-
ing waves of gamma-band cortical activity when the soma-to-dendrite feedback is
prompt (“fast-soma” model). We develop the background theory for the slow- and
fast-soma models in Sect. 12.2; analyze their respective linearized stability charac-
teristics in Sect. 12.3, then verify these predictions with a series of 2-D grid simu-
lations of the full nonlinear equations. We follow this with a comparison against an
earlier model due to Rennie and colleagues [20] in Sect. 12.4, then comment on the
possible biological significance of the slow- and fast-soma forms.

12.2 Theory

We present the equations of motion for a continuum model of the cortex that con-
sists of mutually interacting populations of excitatory and inhibitory neurons, each
population receiving flux inputs from spiking events arriving at excitatory and in-
hibitory chemical synapses. The transmission efficiency of an excitatory (inhibitory)
synapse is modulated by the voltage state of the post-synaptic dendrite relative to the
AMPA (GABA) reversal potential. We consider two alternative schemes for incor-
porating the dendritic reversal potentials, leading to the slow-soma (Sect. 12.2.1.1)
and fast-soma (Sect. 12.2.1.2) variants of the model. In both cases we assume that
axonal flux propagation obeys damped 2-D wave equations (Sect. 12.2.1.3), with
slower local (unmyelinated gray-matter) connections and faster long-range (myeli-
nated white-matter) connections. The cortex is stimulated by nonspecific tonic ac-
tivity generated by the subcortex (Sect. 12.2.1.4). Finally, in Sect. 12.2.2 we com-
plete the model with the addition of diffusive voltage perturbations transmitted via
electrical (gap-junction) synapses.

12.2.1 Input from chemical synapses

In deriving the equations of motion for Ve and Vi, the soma voltages for the exci-
tatory and inhibitory neural populations, we assume that a pre-synaptic spike event
will induce a post-synaptic potential (PSP), a momentary voltage change in the re-
ceiving dendrite, whose shape can be modeled either as a biexponential (first line of
Eq. (12.1)) or as an alpha-function (second line),

H(t) =

⎧⎨
⎩

αβ
β−α (e−αt − e−β t), α �= β

α2te−αt , α = β
(12.1)

for t > 0, where α and β are positive constants.
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If the incoming presynaptic spike rate is M [spikes/s], then the net voltage dis-
turbance [in mV] at the dendrite will be given by ρU , where ρ is the synaptic
strength [mV·s]; and U is the post-synaptic response rate [s−1] given by the tem-
poral convolution-integral of the input flux M with the dendrite filter response H,
scaled by a dimensionless synaptic reversal-potential factor ψ ,

U(t) = ψ(t) [H(t) ⊗ M(t)] . (12.2)

We follow the earlier work of Wright et al. [36], Liley et al. [16], and Rennie et al.
[20] in defining theψ scaling factor to be unity when the neuron is at rest (V =V rest),
and zero when the membrane voltage matches the relevant synaptic reversal poten-
tial (V rev

e = 0 mV for excitatory (AMPA) receptors; V rev
i = −70 mV for inhibitory

(GABA) receptors),

ψab(t) =
V rev

a −Vb(t)
V rev

a −V rest
b

, a,b ∈ {e, i} . (12.3)

Here we have introduced subscript labels a, b, each of which stands for either e
(excitatory) or i (inhibitory), indicating that there are four reversal-potential func-
tions: ψee, ψei, ψie, ψii, where, for example, ψei is the scaling function for excitatory
flux entering an inhibitory neuron. Corresponding double-subscripts are also to be
attached to the H, M, and U appearing in Eq. (12.2).

The excitatory and inhibitory voltage disturbances at the dendrite are then inte-
grated at the soma by convolving with the exponential soma impulse-response L,

Lb(t) =
1
τb

e−t/τb , t > 0 , (12.4)

where τb is the soma time-constant for neurons of type b (e or i). This second in-
tegration results in a pair of integral equations of motion for Ve and Vi, the soma
voltages for the excitatory and inhibitory neuron populations,

Ve(t) = V rest
e + Le(t)⊗ [ρeUee(t) + ρi Uie(t)] , (12.5)

Vi(t) = V rest
i + Li(t)⊗ [ρeUei(t) + ρi Uii(t)] . (12.6)

The ρe,i synaptic strengths are signed quantities, with ρe > 0 for excitatory post-
synaptic potential (EPSP) events, and ρi < 0 for inhibitory postsynaptic potentials
(IPSPs).

We wish to draw attention to the assumption, implicit in Eq. (12.2) regarding
the construction of the post-synaptic rate U , by asking the question: Should the
ψ-scaling by the reversal-potential weight be performed after the H⊗ dendrite in-
tegration of input flux M—as written in Eq. (12.2)—

Uab(t) = ψab(t) · [Hab(t)⊗Mab(t)]

= ψab(t)
∫ t

0
Hab(t − t ′)Mab(t ′)dt ′ , (“slow soma”) , (12.7)
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or, should theψ-scaling be applied directly to the input flux, so that it is the weighted
product ψ ·M that is integrated at the dendrite? This alternative ordering leads to a
revised post-synaptic rate U ,

Uab(t) = Hab(t)⊗ [ψab(t) ·Mab(t)]

=
∫ t

0
Hab(t − t ′)ψab(t ′)Mab(t ′)dt ′ , (“fast soma”) . (12.8)

We refer to the Eq. (12.7) form for the U post-synaptic rate as the “slow soma”
case, since the somata voltage of the neuron is presumed to vary on a time-scale that
is much slower than that of the synaptic input events. This limit should be valid when
the synaptic inputs are sparse or weak, so that theψ reversal-potential feedback from
soma to dendrite is slow to arrive. On the other hand, if synaptic activity is strong, or
if the soma voltage changes on a time-scale similar to that of dendritic integration,
then the reversal-potential feedback onto the dendrite will be prompt. In this case,
the M flux input at time t should be scaled by the ψ reversal-potential weight at time
t, then integrated at the dendrite; this limit gives the Eq. (12.8) “fast-soma” form for
the U post-synaptic rate. These slow- and fast-soma variants are block-diagrammed
in the flow-charts of Fig. 12.1.

We find that swapping the order of the ψ· and H⊗ operations has surprising
implications for cortical stability that may have biological significance. If the ψ·
weighting occurs after the H⊗ dendrite integration (i.e., Eq. (12.7): slow-soma),
then, as reported in [26], the homogeneous 2-D cortex can destabilize in the pres-
ence of inhibitory diffusion to form Turing patterns—stationary spatial patterns of
activated and inactivated patches of cortical tissue.1 But if the ψ· weighting is ap-
plied prior to the H⊗ convolution (i.e., Eq. (12.8): fast-soma), we will see that the
stationary Turing patterns are replaced by standing-wave patterns of similar spatial
frequency but whose temporal frequency lies within the gamma band (∼30–80 Hz)
of EEG oscillations.

12.2.1.1 Slow-soma limit

In the limit of a slowly varying membrane potential, the soma-voltage equations
(12.5) and (12.6) become,

Vb(t) = V rest
b + Lb(t)⊗ [ρe Ueb(t) + ρi Uib(t)]

= V rest
b + Lb(t)⊗ [ρeψeb(t) ·Φeb(t) + ρiψib(t) ·Φib(t)] , (12.9)

where the Φeb, Φib (b = e, i) represent the four slow-soma flux convolutions of flux
input M against dendrite filter H,

1 Our prior modeling of anesthetic induction [24, 25, 32] and state transitions in natural sleep
[23, 33, 34] assumed a slow-soma limit; gap-junction effects were not included.
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Fig. 12.1 Dendrite-to-soma flow diagrams for (a) slow-soma and (b) fast-soma cortical models.
M is the average spike-rate input arriving at the dendrite via chemical synapses; V is the resulting
voltage perturbation at the soma (for simplicity, we ignore the constant V rest offset here); ρ is the
synaptic strength; H and L are respectively the dendrite and soma impulse-response functions.
The ψ reversal-potential weighting function provides immediate feedback from soma to dendrite.
Symbols ⊗ and � represent convolution and product operations respectively. (a) For slow-soma,
the input flux is modulated by the reversal-weighting after integration at the dendrite filter, while
for fast-soma, the reversal modulation occurs prior to dendrite integration.

Φab(t) = Hab(t)⊗Mab(t) , (12.10)

and where

Mab(t) = Nα
ab φ

α
ab(t) + Nβ

ab φ
β
ab(t) + Nsc

eb φ
sc
eb , (12.11)

with subcortical inputs

φ sc
eb = s ·Qmax

e , φ sc
ib = 0 . (12.12)

Equation (12.11) defines M, the total input flux of type a (e or i) entering neurons
of type b (e or i). The superscript labels α , β , sc indicate long-range, short-range,
and subcortical chemical-synaptic inputs respectively. The Nα,β ,sc are the number
of synaptic connections; the φα,β ,sc are per-synapse flux rates. The φα,β fluxes obey
wave equations detailed below in Eqs (12.18, 12.20). The long-range and subcortical
inputs are excitatory only, so Nα

ie = Nα
ii = Nsc

ie = Nsc
ii = 0, and φ sc

ie = φ sc
ii = 0. Here

s is a subcortical scaling parameter whose value can range between 0 and 1. Since
Qmax

e = 100 s−1 (see Table 12.4 in the Appendix), choosing s = 0.1 will ensure



278 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

compatibility with the earlier modeling work by Rennie et al. [20] in which the
default level for per-synapse subcortical drive was set at φ sc = 10 s−1.

The slow-soma integral equations of Eq. (12.9) are equivalent to a pair of first-
order differential equations of motion for soma voltage,

τb
dVb(t)

dt
= V rest

b − Vb(t) + ρeψeb(t)Φeb(t) + ρiψib(t)Φib(t) . (12.13)

Taking the biexponential form of the Eq. (12.1) postsynaptic potential, the four
dendrite convolutions of Eq. (12.10) can be rewritten as four second-order ODEs in
Φ(t),

(
d
dt

+αab

)(
d
dt

+βab

)
Φab(t) = αabβab Mab(t) . (12.14)

12.2.1.2 Fast-soma limit

For the fast-soma version of the cortical model, we use the revised form of the post-
synaptic rate given in Eq. (12.8),

Uab(t) = Hab(t)⊗ [ψab(t) ·Mab(t)] , (12.15)

leading to two fast-soma differential equations for the Vb (b = e, i) neuron voltage
(cf. Eq. (12.13)),

τb
dVb(t)

dt
= V rest

b − Vb(t) + ρe Ueb(t) + ρi Uib(t) , (12.16)

with dendrite ODEs (cf. Eq. (12.14)),
(

d
dt

+αab

)(
d
dt

+βab

)
Uab(t) = αabβabψab(t) ·Mab(t) . (12.17)

Comparing Eqs (12.16, 12.17) with (12.13, 12.14), we see that, in the fast-soma
limit, the ψab reversal-potential weights are applied directly to the incoming Mab

synaptic flux, with the product being integrated at the dendrite to give the (weighted)
dendritic flux Uab; whereas in the slow-soma model, the ψab weights are applied
after the Mab input flux has been integrated at the dendrite.

12.2.1.3 Wave equations

The axonal wave equations described here apply equally to both the slow- and fast-
soma cortical models. Following Robinson et al. [21], we assume that the φα long-
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range excitatory fluxes obey a pair of 2-D damped wave equations generated by
excitatory sources Qe(r, t),
[(

∂
∂ t

+ vαΛαeb

)2

− (vα)2∇2

]
φαeb(r, t) = (vα Λαeb)

2 Qe(r, t) , b ∈ {e, i} (12.18)

where Λα is the inverse-length scale for axonal connections [cm−1], and vα is the
axonal conduction speed [cm/s]. Q is the sigmoidal mapping from soma voltage to
neuronal firing rate,

Qa(r, t) =
Qmax

a

1+ exp [−C (Va(r, t)−θa)/σa]
, a ∈ {e, i} (12.19)

with C = π/
√

3. Here, θa is the population-average threshold for firing, σa is its
standard deviation, and Qmax

a is the maximum firing rate.
In previous work [23–25, 32–34], we have assumed that the short-range axonal

signals propagate instantaneously, allowing local spike-rate fluxes φβab to be replaced
by their sources Qa. In this chapter we allow for finite propagation speeds by writing
four wave equations for the short-range fluxes φβab traveling on unmyelinated axons,

[(
∂
∂ t

+ vβΛβab

)2

− (vβ )2∇2

]
φβab(r, t) = (vβ Λβab)

2 Qa(r, t) . (12.20)

12.2.1.4 Subcortical inputs

Equation (12.12) is applicable when the subcortical drive is a fixed constant. To
allow noise to enter the cortex, we replace (12.12) with the stochastic form

φ sc
eb(r, t) = sQmax

e + γ
√

sQmax
e ξm(r, t) , m = 1,2 (12.21)

where γ is a constant noise scale-factor, and the ξm are a pair of Gaussian-distributed,
zero-mean, spatiotemporal white-noise sources that are delta-correlated in time and
space,

〈ξm(r, t)〉 = 0 , (12.22)

〈ξm(r, t)ξn(r′, t ′)〉 = δmn δ (t − t ′)δ (r− r′) . (12.23)

In the grid simulations presented in Sect. 12.3, we specify s, the subcortical
drive (e.g., s = 0.1), and initialize the 2-D sheet of cortical tissue at the homoge-
neous steady-state corresponding to this level of subcortical stimulation. Then, using
Eq. (12.21), we distribute spatially-independent small-amplitude random perturba-
tions across the cortical grid to allow the model to explore its proximal state space. If
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the homogeneous equilibrium is unstable, these small-scale deviations from homo-
geneity can organize and grow into large-scale Turing structures, Hopf oscillations,
and gamma-band standing-wave patterns.

12.2.2 Input from electrical synapses

The existence of gap junctions in the mammalian brain has been known for decades,
but only recently has their electrophysiological significance with respect to neuron
coupling and rhythm synchronization become apparent. According to the review ar-
ticle by Bennett and Zukin [2], electrical transmission (via gap junctions) between
neurons is “likely to be found wherever it is useful,” with its selective advantage
being the communication of subthreshold potentials that facilitate synchronization.
The reported abundances of gap-junction connections in brain tissue are increasing
as detection methods become more sensitive and discriminating. These connections
are found between pairs of inhibitory interneurons (via connexin Cx36 channels
[10]), between interneurons and their supporting glial cells (via Cx32), and between
the glial cells themselves (via Cx42). The neuron-to-glia and glia-to-glia connec-
tions have been detected in all layers of the rat cerebral cortex [17]. These findings
support the notion of a diffusively-intercoupled continuous scaffolding that links
networks of active (neuronal) and passive (glial) cells.

Fukuda et al. [10] reported that, on average, each L-type inhibitory interneuron
in the cat visual cortex was coupled to Ngap

ii = 60± 12 other L-type interneurons
via Cx36 connexin channels, that the connections were randomly and uniformly
distributed over a disk of radius ∼200 μm centered on a given neuron, and that
L-type abundance was ∼400 mm−2, implying a connection density of ∼24 000
gap-junctions per mm2. The Fukuda measurements were specific to Cx36 connex-
ins only, so total interneuron gap-junction interconnectivity could be considerably
higher. In [26], we used the Fukuda measurements to construct a theoretical 2-D
lattice of square “Fukuda cells”, with each lattice cell representing the effective area
u of diffusive influence for a single L-type interneuron; see Fig. 12.2.

We assume that the neuron at the lattice center has resting voltage V rest, capaci-
tance C, membrane resistance Rm, and receives diffusive current along four resistive
arms, each of resistance R = Rgap/ 1

4 Ngap
ii = Rgap/15, where Rgap is the resistance

of a single Cx36 gap junction. The total current to “ground” (i.e., to the extracel-
lular space) is the sum of membrane current (V −V rest)/Rm plus capacitive current
C dV/dt, and this must match the addition of chemical synaptic currents Isyn (not
shown) plus gap-junction diffusive currents Igap,

(V −V rest)/Rm + C
∂V
∂ t

= Isyn + Igap , (12.24)

where

Igap =
u
R
∇2V . (12.25)
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Fig. 12.2 Equivalent electrical circuit for nearest-neigbor gap-junction connections between neu-
rons in a 2-D cortex. Diffusion currents IN, IS, IE, IW enter the neuron at the central node from the
four neighboring nodes via gap-junction resistances R shown in bold. For clarity, chemical-synaptic
currents are not shown. (Figure reproduced from [26].)

The effective area u of the Fukuda cell depends on the underlying connectivity as-
sumption. If the connectivity is uniform across the 200-μm radius disk, we cir-
cumscribe the circle with a square of side 0.4 mm, giving an upper bound of
u ≈ 0.16 mm2. More realistically, we can fit a Gaussian distribution to the Fukuda
data (see Appendix A of [26] for details), leading to u ≈ 0.03 mm2, a factor of five
smaller. We note that these estimates for u will increase if subsequent determina-
tions of gap-junction dendritic extent and distal abundance are found to be larger
than those reported by Fukuda et al..

Rearranging Eq. (12.24), we obtain the differential equation for soma voltage,

τ
∂V
∂ t

= (V rest −V ) + IsynRm + Dii∇2V, (12.26)

where τ = RmC is the membrane time-constant, IsynRm is the voltage contribution at
the soma arising from chemical-synaptic currents, and Dii is the diffusive coupling
strength for inhibitory-to-inhibitory gap-junction currents,

Dii = u
Rm

R
=

uNgap
ii

4
Rm

Rgap . (12.27)

In [26] we estimated Rm ≈ 7100 MΩ, Rgap ≈ 290 MΩ (corresponding to a gap-
junction in its fully-open configuration). Setting u = 0.16 mm2 gives Dii ≈ 0.6 cm2,
but we emphasize that all four components (u,Nii,Rm,Rgap) in the Dii expression
are uncertain, and are likely to vary with time, neuromodulatory state, and stage of
development: it is not implausible that the “true” value for Dii might lie within an
uncertainty band that extends from +1 to −2 orders-of-magnitude above and below
the nominal value quoted here.



282 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

12.2.2.1 Slow-soma limit with gap junctions

We incorporate the effect of gap-junction diffusion currents entering a slow-soma
neuron by combining Eq. (12.26) with the slow-soma membrane Eqs (12.14) to give

τb
∂Vb(r, t)
∂ t

= V rest
b − Vb(r, t) +

[
ρeψeb(r, t)Φeb(r, t) + ρiψib(r, t)Φib(r, t)

]
+ Dbb∇2Vb(r, t) , (12.28)

where the terms in square brackets [. . .] are the contributions from chemical-synaptic
flux entering the slow-soma model. Here, Dbb = Dee for excitatory-to-excitatory
diffusion, and Dbb = Dii for inhibitory-to-inhibitory diffusion.2 We note that di-
rect electrical connections between pairs of same-family inhibitory interneurons are
common, but apparently gap junctions between pairs of excitatory neurons are rare,
so in the work below we set Dee to be a small (but non-zero) fraction of Dii, with
Dee = Dii/100.

12.2.2.2 Fast-soma limit with gap junctions

Combining Eq. (12.26) with the fast-soma membrane Eqs (12.17) give the pair (b =
e, i) of partial differential equations for the diffusion-enhanced fast-soma model,

τb
∂Vb(r, t)
∂ t

= V rest
b − Vb(r, t) +

[
ρe Ueb(r, t) + ρi Uib(r, t)

]
+ Dbb∇2Vb(r, t) ,

(12.29)

12.3 Results

12.3.1 Stability predictions

The stability characteristics of the slow- and fast-soma cortical models are refer-
enced to a homogeneous steady-state corresponding to a given value of subcorti-
cal drive s. This reference state is determined by zeroing the ξm noise terms in
Eq. (12.21), and removing all time- and space-dependence by setting d/dt =∇2 = 0
in either the slow-soma differential equations (12.28, 12.14, 12.18, 12.20), or the
fast-soma equations (12.29, 12.17, 12.18, 12.20). Either procedure gives a set of
nonlinear simultaneous equations that we solve numerically to locate the steady-
state soma voltage (V 0

e ,V 0
i ) and firing rate (Q0

e ,Q
0
i ). Note that, at steady state, the

distinction between the slow-soma U = ψ · [H ⊗ M] (Eq. (12.7)) and fast-soma
U = H ⊗ [ψ .M] (Eq. (12.8)) convolution forms vanishes, and therefore the equi-
librium states for the slow-soma and fast-soma cortical models are identical. Yet
despite their shared equilibria, we will show that the dynamical properties of the

2 Later we simplify the subscripting notation for diffusion so that (Dee,Dii) ≡ (D1,D2).
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Table 12.1 State variables for slow- and fast-soma models

Variable Symbol Unit Equations

Soma voltage Ve, Vi mV (12.13, 12.28) a ; (12.16, 12.29) b

Dendritic flux response Uee, Uei, Uie, Uii s−1 (12.14) a; (12.17) b

Long-range flux input φαee, φαei s−1 (12.18)

Short-range flux input φβee, φβei , φ
β
ie , φβii s−1 (12.20)

a Slow soma: Uab = ψab ·Φab = ψab · [Hab ⊗Mab]
b Fast soma: Uab = Hab ⊗ [ψab ·Mab]

two models—as predicted by linear eigenvalue analysis, and confirmed by nonlin-
ear grid simulations—are very different.

The 12 state variables for the slow-soma and fast-soma models are listed in
Table 12.1; related system variables appear in Table 12.2. The 12 state variables
are governed by two first-order (Ve, Vi) and 10 second-order (Uab, φαeb, φβab) differen-
tial equations, so are equivalent to 22 coupled first-order DEs, and therefore, after
linearization about homogeneous steady state, own 22 eigenvalues.

The linearization proceeds by expressing each of the 22 first-order variables (12
state variables plus 10 auxiliaries) as its homogeneous equilibrium value plus a fluc-
tuating component. For example, the excitatory soma voltage is written

Ve(r, t) = V 0
e + δVe(r, t) , (12.30)

where r is the 2-D position vector, and δVe, the fluctuation about equilibrium V 0
e ,

has spatial Fourier transform

δ̃Ve(q, t) =
∫ ∞

−∞
δVe(r, t)e−iq·r dr (12.31)

with q being the 2-D wave vector. This is equivalent to assuming that the voltage
perturbation can be expressed as a spatiotemporal mode of the form,

δVe(r, t) = δVe(r,0)eΛ t eiq·r (12.32)

where Λ is its (complex) eigenvalue. If Λ has a positive real part, the perturbation
will grow, indicating that the equilibrium state is unstable.

After linearizing the 22 first-order DEs about homogeneous equilibrium, then
Fourier transforming in space, we compute numerically the 22 eigenvalues of the
Jacobian matrix for a range of finely-spaced wavenumbers, q = |q|. Arguing that the
stability behavior of the cortical model will be dominated by the eigenvalueΛ whose
real part is least negative (or most positive), we plot the distribution of dominant
eigenvalues as a function of wavenumber, looking for regions for which Re[Λ(q)] >
0, indicating the presence of spatial modes that can destabilize the homogeneous rest
state.
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Table 12.2 Other system variables for cortical
model

Variable Symbol Unit Equation

Total flux input Mab s−1 (12.11)

Firing rate Qa s−1 (12.19)

Dendrite filter impulse Hab s−1 (12.1)

Soma filter impulse Lb s−1 (12.4)

Reversal-potential weight ψab — (12.3)

Subcortical flux φ sc
eb s−1 (12.21)

12.3.2 Slow-soma stability

Figure 12.3 shows that, in the slow-soma limit, the homogeneous steady state can
be destabilized either by increasing the inhibitory diffusion D2 (Fig. 12.3(a)), or
by decreasing the level of subcortical drive s (Fig. 12.3(b)). Instability at a given
wavenumber q is predicted when its dominant eigenvalue crosses the zero-axis,
changing sign from negative (decaying mode) to positive (exponentially-growing
mode). For the case D2 = 4 cm2, s = 0.1 (top curve of Fig. 12.3(a)), all wavenum-
bers in the range 0.24 � q/2π � 0.7 cm−1 support growing modes, with strongest
growth predicted at q/2π ≈ 0.4 cm−1 (i.e., wavelength ≈ 2.5 cm), at the peak of the
dispersion curve. At this wavenumber, the eigenvalue has a zero imaginary part, so
the final pattern is expected to be a stationary periodic pattern in space—a Turing
structure of intermixed regions of high- and low-firing cortical activity. This spon-
taneous Turing emergence is similar to that reported in [26] for an earlier version
of the slow-soma model that had access to three homogeneous steady states (two
stable, one unstable).

12.3.3 Fast-soma stability

Figure 12.4(a) shows the set of dispersion curves obtained for the fast-soma ver-
sion of the model operating at the same s = 0.1 level of subcortical excitation used
in Fig. 12.3(a). In marked contrast to the slow-soma case, maximum instability is
obtained in the limit of zero inhibitory diffusion (D2 = 0), with the instability be-
ing promptly damped out as the diffusion increases. We see that small increases in
diffusion serve to narrow the range of spatial frequencies able to destabilize the equi-
librium state. Thus, when D2 = 0, the instability is distributed across the broad range
0.35 < q/2π < 3.48 cm−1 (this upper value is not shown on the Fig. 12.4 graph),
shrinking to 0.40–0.67 cm−1 when D2 = 0.04 cm2, and vanishing completely for
D2 ≥ 0.06 cm2.
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The fact that the dominant eigenvalue has a nonzero imaginary part indicates
that these fast-soma spatial instabilities will tend to oscillate in time: for spatial
frequency q/2π = 0.5 cm−1, the predicted temporal frequency is ∼29 Hz, at the
lower end of the gamma band. Writing ω = Im[Λ ], the slope of the ω-vs-q graph
is nearly flat (thin curves of Fig. 12.4(a)), implying that these wave instabilities
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Fig. 12.3 Slow-soma dispersion curves for (a) increasing inhibitory diffusion D2 and (b) increas-
ing subcortical drive s. (a) Imaginary (upper thin traces) and real (lower thick traces) parts of
dominant eigenvalue plotted as a function of scaled wavenumber q/2π for three values of dif-
fusion strength, D2 = [2.0, 2.5, 4.0] cm2; excitatory diffusion strength is set at 1% of inhibitory
strength: D1 = D2/100. Subcortical drive is fixed at s = 0.1 (i.e., φ sc = 10 s−1), corresponding to
homogeneous steady state (V 0

e ,V 0
i ) = (−59.41,−59.41) mV; (Q0

e ,Q
0
i ) = (6.37,12.74) s−1. (See

Table 12.4 for parameter values.) The homogeneous state is predicted to be unstable at all spatial
frequencies for which the real part of the dispersion curve is positive. Stationary Turing patterns are
predicted at q/2π ≈ 0.45 cm−1 for D2 � 2.5 cm2, and are enhanced by increases in D2 coupling
strength. (b) Eigenvalue distribution for three values of subcortical drive, s = [0.1, 0.3, 0.5]; exci-
tatory and inhibitory diffusion strength are fixed at (D1,D2) = (0.025, 2.5) cm2. The slow-soma
Turing instability at q/2π = 0.45 cm−1 is damped out by increases in subcortical tone, restoring
stability to the homogenous steady-state. (Figure reproduced from Ref. [27].)
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will propagate but slowly. For example, with D2 = 0.04 cm2, the group velocity at
q/2π = 0.5 cm−1 is dω/dq = 3.8 cm/s, so that, over the timescale a single gamma
oscillation (∼0.034 s), the wave will travel only 1.3 mm. This suggests that the
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Fig. 12.4 Fast-soma dispersion curves for (a) increasing inhibitory diffusion D2 and (b) in-
creasing subcortical tone s. (a) The three pairs of eigenvalue curves correspond to three values
for inhibitory diffusion, D2 = [0.0, 0.04, 0.10] cm2, with subcortical drive kept fixed at s = 0.1.
Wave instabilities of temporal frequency ∼29-Hz and spatial frequency 0.5 waves/cm are ex-
pected when D2 � 0.04 cm2. (b) Eigenvalue distribution for three values of subcortical drive,
s = [0.1, 0.3, 0.5], corresponding to subcortical flux rates of φ sc = [10, 30, 50] s−1, giving homo-
geneous steady-state firing rates Q0

e = [6.37, 7.28, 8.10] s−1; excitatory and inhibitory diffusion is
fixed at (D1,D2) = (0.0005,0.05) cm2. For s = 0.1 (lower-thick and upper-thin solid curves),
homogeneous steady-state destabilizes in favor of 29-Hz traveling waves of spatial frequency
0.49 cm−1. Increasing subcortical tone to 0.3 and 0.5 strengthens the wave instability, and raises
its frequency slightly to 31 and 32.5 Hz respectively. For s = 0.5, the peak at q/2π = 0 indicates
that the wave pattern will be modulated by a whole-cortex Hopf instability of frequency 35 Hz.
(Figure reproduced from Ref. [27].)
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instability will manifest as a slowly-drifting standing-wave pattern of 29-Hz gamma
oscillations, with wavelength ∼2 cm.

Another surprising difference in the behavior of the slow- and fast-soma mod-
els is their contrasting stability response to alterations in the level of subcortical
drive s. If the subcortical tone is stepped, say, from s = 0.1 to 0.3 to 0.5, the ho-
mogeneous excitatory firing rate for both models increases slightly, from Q0

e = 6.4
to 7.3 to 8.1 spikes/s (not shown here). In Fig. 12.4(b) we observe that this boost
in subcortical tone tends to destabilize the fast-soma cortex, increasing both the
strength and the frequency of the gamma wave instability—but for the slow-soma
cortex (Fig. 12.3(b)) the effect is precisely opposite, acting to damp out Turing in-
stabilities, encouraging restoration of the homogeneous equilibrium state. We will
argue in Sect. 12.4 that these interesting divergences in the slow- and fast-cortical
responses are consistent with the notion that the slow-soma could describe the
idling or default background state of the conscious brain, while the fast-soma could
describe the genesis of gamma resonances that characterize the active, cognitive
state.

12.3.4 Grid simulations

To test the linear-stability predictions of Turing and traveling-wave activity in the
cortical model, we ran a series of numerical simulations of the full nonlinear slow-
soma (12.28, 12.14, 12.18, 12.20) and fast-soma (12.29, 12.17, 12.18, 12.20) corti-
cal equations. The substrate was a 240×240 square grid, of side-length 6 cm, joined
at the edges to provide toroidal boundaries. We used a forward-time, centered-
space Euler algorithm custom-written in MATLAB 7.6, with the diffusion and wave-
equation∇2 Laplacians implemented as wrap-around (toroidal) convolutions3 of the
3×3 second-difference mask against the grid variables holding Ve,i(r, t), the excita-
tory and inhibitory membrane voltages. The grid was initialized at the homogeneous
steady state corresponding to a specified value of subcortical drive s, then driven
continuously by two independent sources of small-amplitude unfiltered spatiotem-
poral white noise representing unstructured subcortical tone φ sc

ee,ei (see Eq. (12.21)).
The timestep was set sufficiently small to ensure numerical stability, ranging from
Δ t = 100 μs for the fast-soma (weak diffusion) runs, down to 1 μs for the slow-
soma runs with strongest inhibitory diffusion (i.e., D2 = 6 cm2).

The upper bound for the slow-soma timestep was obtained by recognizing that
D2/τi, the ratio of diffusive strength to membrane relaxation time, defines a diffu-
sion coefficient [units: cm/s] forinhibitory voltage change, so in time Δ t, a voltage

3 The 2-D circular convolution algorithm was written by David Young, Department of Informatics,
University of Sussex, UK. His convolve2() MATLAB function can be downloaded from The
MathWorks File Exchange, www.mathworks.com/matlabcentral/fileexchange.
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perturbation is expected to diffuse through an rms distance drms =
√

4D2Δ t/τi. Set-
ting drms = Δx = Δy, the lattice spacing, and solving for Δ t, gives

Δ t = 1
4 (Δx)2τi/D2 , (12.33)

which we replaced with the more conservative

(Δ t)max = 1
5 (Δx)2τi/D2 , (12.34)

to ensure that, on average, the diffusive front would have propagated by less than
one lattice spacing between consecutive timesteps.

For the fast-soma case, diffusion values are very weak, so it is the long-distance
wave equations (12.18) that set the upper bound for the timestep. The Courant sta-
bility condition for the 2-D explicit-difference method requires vαΔ t/Δx ≤ 1/

√
2.

Setting Δx = Lx/240 = 0.025 cm, and vα = 140 cm/s (see Table 12.4) gives
Δ t ≤ 126 μs, so the fast-soma choice of Δ t = 100 μs is safely conservative.

12.3.5 Slow-soma simulations

Figure 12.5 shows a sequence of snapshots of the firing-rate patterns that evolve
spontaneously in the slow-soma model when the inhibitory diffusion is sufficiently
strong, here set at D2 = 4 cm2. Starting from the homogeneous steady-state

(a) 0.1 s (b) 0.3 s (c) 1.3 s (d) 1.7 s (e) 2.0 s

Fig. 12.5 [Color plate] Grid simulation for slow-soma cortical model with subcortical drive
s = 0.1 (i.e., φ sc = 10 s−1), inhibitory diffusion D2 = 4.0 cm2. Cortex is a 240×240 square grid
of side-length 6 cm, with toroidal boundaries, initialized at its homogeneous steady-state firing-
rate (Q0

e ,Q
0
i ) = (6.37,12.74) s−1, driven continuously with small-amplitude spatiotemporal white

noise. Snapshots show the spatial and temporal evolution of Qe as bird’s-eye (top row) and mesh
(bottom row) perspectives. Consistent with Fig. 12.3(a), cortical sheet spontaneously organizes
into stationary Turing patterns of wavelength ∼2.5 cm. Turing structures grow strongly with time;
see Fig. 12.6. Grid resolution Δx = Δy = 0.25 mm; timestep Δ t = 1.5 μs. (Reproduced from
Ref. [27].)
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Fig. 12.6 Time-series showing formation of Fig. 12.5 Turing patterns. (a) Qe vs time for 10
sample points distributed down the middle of the cortical sheet. Inset: Zoomed view of the first
0.7 s of evolution from the homogeneous equilibrium firing rate Q0

e = 6.3677 s−1; scale bar =
0.005 s−1. Spatial patterns are fully developed after about 2 s. (b) Growth of fluctuations (devia-
tions from equilibrium firing-rate) plotted on a log-scale. Dashed line shows that, for the first 1.5 s,
fluctuations grow exponentially; the slope is 7.7 s−1, consistent with the Fig. 12.3(a) slow-soma
prediction.

corresponding to a subcortical stimulation rate of φ sc = 10 s−1 (i.e., s = 0.1),
small-amplitude white-noise perturbations (with zero mean) destabilize the uniform
equilibrium in favor of a spatially-organized stationary state consisting of inter-
mixed regions of high-firing and low-firing cortical activity. The pattern wavelength
of ∼2.5 cm is consistent with the Fig. 12.3(a) prediction of maximum instabil-
ity at wavenumber q/2π ≈ 0.4 cm−1. As is evident from Fig. 12.6, the patterns
evolve promptly, with fluctuations obeying an exponential growth law ∼ eαt with
α ≈ 7.7 s−1, matching the Fig. 12.3(a) prediction for the dominant eigenvalue. The
Turing structures are fully formed after ∼2 s, evolving on much slower time-scales
thereafter.

The Fig.-12.9 gallery of 24 snapshot images explores the sensitivity of the slow-
soma cortex to changes in subcortical stimulus intensity (s increasing from left-
to-right across the page), and to inhibitory diffusion (D2 increasing from top-to-
bottom). In Sect. 12.3.7 we compare and contrast these slow-soma patterns with the
corresponding Fig.-12.10 gallery of images for the fast-soma case.
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12.3.6 Fast-soma simulations

Figure 12.7 illustrates the response of the unstable fast-soma cortex to the impo-
sition of continuous low-level spatiotemporal white noise. With excitatory and in-
hibitory diffusion strengths set at (D1,D2) = (0.0005,0.05) cm2, and background
subcortical flux at φ sc = 30 s−1, the cortical sheet organizes itself into a dynamic
pattern of standing oscillations of temporal frequency ∼31 Hz and wavelength
∼2 cm, consistent with the peak in the (s = 0.3,D2 = 0.05 cm2) dispersion curve
of Fig. 12.4(b). The dominant spatial mode grows at the expense of higher- and
lower-frequency spatial modes that either decay with time (have dominant eigenval-
ues whose real part is negative) or that grow more slowly than the favored mode.

The semilog plot of fluctuation amplitude vs time in Fig. 12.8(b) reveals an expo-
nential growth law ∼ eαt with α ≈ 3.9 s−1 that persists until the onset of saturation
effects at t ≈ 2.2 s. We note that the growth rate for the standing-wave instabil-
ity is about a factor of two slower than the eigenvalue prediction of Fig. 12.4(b); the
reason for this anomalous slowing has not been investigated. Nevertheless, the quan-
titative confirmation, via nonlinear simulation, of gamma-frequency wave activity
emerging at the expected spatial and temporal frequencies, is most encouraging.

12.3.7 Response to inhibitory diffusion and subcortical excitation

The bold arrows labeled “D2 increasing” and “s increasing” in Figs 12.3 and 12.4
highlight the fact that increases in inhibitory diffusion and in subcortical driving are
predicted to act in contrary directions with respect to breaking or maintaining spatial
symmetry across the cortical sheet. For the slow-soma cortex, increased ii diffusion
D2 encourages formation of Turing patterns, while increased subcortical stimula-
tion s acts to restore stability to the uniform, unstructured state. These counteracting
slow-soma tendencies—predicted by Fig. 12.3—are illustrated in Fig. 12.9. This
figure presents a 6×4 gallery of excitatory firing-rate images captured after 2 s of
continuous white-noise stimulation. A vertical top-to-bottom traverse shows that for
constant subcortical drive (e.g., s = 0.01, left-most column), Turing formation is en-
hanced as D2 diffusion is strengthened. In contrast, if diffusion is held constant (e.g.,
at D2 = 2.5 cm2, second row), a horizontal scan from left-to-right shows the Turing
structures losing contrast, tending to wash out as subcortical drive is increased.

For the fast-soma cortex, Fig. 12.4 indicates that these counteracting tendencies
are reversed: gamma-wave instability should be enhanced as subcortical drive is
boosted, but suppressed when inhibitory diffusion is increased. These theoretical
claims are verified in the Fig. 12.10 gallery of fast-soma snapshots of the gamma-
band standing-wave patterns. The patterns have maximum contrast in the top-right
corner where subcortical drive is strong and inhibitory diffusion is minimal. A ver-
tical downwards traverse shows the patterns broadening and weakening as diffusion
is increased, eventually disappearing altogether when diffusion is set to moderate
levels. It is evident that the fast-soma gamma instabilities are vastly more sensitive
to small changes in inhibitory diffusion than are the slow-soma Turing instabilities.
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(a) 0.6 s (b) 1.0 s (c) 1.4 s (d) 1.8 s (e) 2.2 s

Fig. 12.7 [Color plate] Grid simulation for fast-soma cortical model with subcortical drive s = 0.3
(i.e., φ sc = 30 s−1), inhibitory diffusion D2 = 0.05 cm2. Cortex was initialized at homogeneous
steady-state (Q0

e ,Q
0
i ) = (7.28,14.55) s−1, and driven continuously with small-amplitude spa-

tiotemporal white noise. Snapshots show the spatial and temporal evolution of Qe at 0.4-s inter-
vals. Consistent with Fig. 12.4(b), grid evolves into a 31-Hz standing-wave pattern of wavelength
∼2.0 cm. Red = high-firing; blue = low-firing. The fluctuations grow strongly with time, with
successive panels displaying amplitude excursions, in s−1, of (a) ±0.005; (b) ±0.01; (c) ±0.05;
(d) ±0.2; (e) ±1.3 about the 7.28-s−1 steady-state. Timestep Δ t = 100 μs; other settings as for
Fig. 12.5. (Figure reproduced from Ref. [27].)
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Fig. 12.8 Time-series showing formation of gamma-band standing-waves of Fig. 12.7. (a) Qe vs
time for three sample points in the cortical sheet. Inset: Zoomed view of the first 1 s of evolution
from homogeneous equilibrium firing rate Q0

e = 7.2762 s−1; scale bar = 0.01 s−1. Spatial patterns
are fully developed after about 2.5 s. (b) Fluctuation growth plotted on a log-scale. Dashed line
shows that, for the first 2 s, fluctuation amplitudes increase with an exponential growth rate of
∼3.9 s−1.
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Fig. 12.9 [Color plate] Gallery of slow-soma Turing patterns for four values of subcortical drive
s (horizontal axis), six values of inhibitory diffusion D2 (vertical axis). Cortical sheet is initialized
at homogeneous equilibrium, driven continuously by low-level continuous spatiotemporal white
noise, and iterated for 2 s. Red = high-firing; blue = low-firing. Settings: Lx = Ly = 6.0 cm; Δx =
Δy = 0.25 mm. Larger D2 values required smaller timestepping: from top-to-bottom, timestep was
set at Δ t = [3,2,2,1.5,1,1] μs.
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Fig. 12.10 [Color plate] Gallery of fast-soma standing-wave patterns for four values of subcortical
drive s (horizontal axis), six values of inhibitory diffusion D2 (vertical axis). Wave instabilities can
emerge if diffusion is weak and subcortical stimulation is sufficiently strong. The wave patterns
oscillate in place at ∼30 Hz, with red and blue extrema exchanging position every half-cycle.
Timestep Δ t = 100 μs; other settings as for Fig. 12.9. (Figure reproduced from Ref. [27].)
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12.4 Discussion

The crucial distinction between the slow-soma and fast-soma models is the tempo-
ral ordering of reversal-potential weighting (the scaling by ψ) relative to Dendritic
integration (convolution with H): the slow-soma model assumes that the input flux
M is integrated at the dendrite, then modulated by the reversal function, while the
fast-soma model applies the reversal function directly to the input flux, then inte-
grates at the dendrite. In both cases, the dendrite-filtered output flux is integrated at
the soma, via convolution with the soma impulse response L, to give ΔV =V −V rest,
the voltage perturbation from rest.

Ignoring the contribution from gap-junction diffusion, the voltage perturbation
equations have the general forms,

V −V rest = L⊗ [ρψ · (H ⊗M)] , (slow soma), (12.35)

V −V rest = L⊗ [H ⊗ (ρψ ·M)] , (fast soma), (12.36)

where ρ is the (constant) synaptic strength at resting voltage. These general
forms are illustrated as flow-diagrams in Fig. 12.1, with the instantaneous voltage-
feedback—from soma to the dendritic reversal-weighting function—shown explic-
itly. As we have demonstrated in this chapter, swapping the order of dendrite
filtering and reversal-potential weighting makes qualitative changes to the dynami-
cal properties of the cortex.

For the slow-soma configuration (Fig. 12.1(a)), stationary Turing patterns can
form if inhibitory diffusion is sufficiently strong; in addition, a low-frequency (∼2-
Hz) whole-of-cortex Hopf oscillation emerges if the inhibitory PSP decay time-
constant is sufficiently prolonged (not shown here; refer to [28] for details). But
no evidence of higher-frequency rhythms—such as gamma oscillations—has been
predicted or observed in the slow-soma stability analysis or its numerical simulation.

In contrast, the fast-soma model (Fig. 12.1(b)) supports ∼30-Hz gamma rhythms
as cortical standing waves distributed across the 2-D cortex, with simulation be-
haviors being consistent with linear eigenvalue prediction. For this configuration,
gamma oscillations only arise when the inhibitory diffusion is weak or non-existent.
The contrary behaviors of the slow- and fast-soma mean-field models indicate that
a primary determinant of cortically-generated rhythms is the nature and timeliness
of the feedback from soma to dendrite.

Earlier mean-field work by Rennie et al. [20] also predicted gamma oscillations.
However, although we have chosen our model constants (and corresponding steady-
states) to be closely similar to theirs, the underlying convolution structures are very
different. Translating the Rennie et al. symbols to match those used here by way of
Table 12.3, their formulation for soma voltage reads,

V −V rest = H ⊗ [(ρψ⊗L) ·M)] , (Rennie et al.). (12.37)

In the Rennie form, the incoming flux M is multiplied by a composite filter formed
by convolving the reversal-potential weight ψ against the soma filter L; the soma
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Table 12.3 Correspondence between major symbols used here and those used by Rennie et al.
[20]. Note that in our work, double-subscripts are read left-to-right, thus ab implies a→b; in Rennie
et al., subscripts are read right-to-left.

Quantity Symbol used here Symbol used by Rennie et al.

Synaptic strength ρa sba

Reversal-potential weight ψab Rba

Dendritic response function Hab Sba

Soma response function Lab Hba

voltage is then obtained by integrating the product at the dendrite filter H. The flow-
diagram for this sequence of operations (not shown) is difficult to interpret.

What is the biological significance of these slow- and fast-soma modeling predic-
tions? In [26] we identified the slow-soma Turing patterns with the default noncog-
nitive background state of the cortex that manifests when there is little subcortical
stimulation, and in [28] we demonstrated that these patterns can be made to oscil-
late in place at ∼1 Hz with a reduction in γie, the rate-constant for the inhibitory
post-synaptic potential (equivalent to rate-constant βie in this chapter). We argue
that these slow patterned oscillations might relate to the even slower hemodynamic
oscillations observed in the BOLD (blood-oxygen-level dependent) signals detected
in fMRI (functional magnetic resonance imaging) measurements recorded from re-
laxed, non-engaged human subjects [7, 8].

Increases in the level of subcortical activation tend to wash out the slow-soma
Turing patterns. Therefore any spatial patterns of firing activity observed during
times of elevated subcortical stimulation—for example, during active cognition—
cannot be explained using a slow-soma (with its implicit slow soma-to-dendrite
feedback) limit. Instead, we replace the slow feedback assumption with the prompt
feedback interactions implicit in the ordering of the convolutions adopted for the
fast-soma case. In this limit, increases in subcortical drive favor emergence of
traveling-wave instabilities of temporal frequency ∼30 Hz, in the low-gamma band.
Our grid simulations show that these gamma oscillations are coherent over distances
of several centimeters, synchronized by an underlying standing-wave modulation
of neuronal firing rates that provides a basis for the “instantaneous” action-at-a-
distance observed in cognitive EEG experiments [22].

The contrasting sensitivity to inhibitory gap-junction diffusion predicted by the
slow- and fast-soma models finds clinical support in brain-activity measurements
from schizophrenic patients. The brains of schizophrenics carry excess concentra-
tion of the neuromodulator dopamine [30]. Dopamine is known to have a number
of physiological impacts, one of these being a tendency to block neuronal gap junc-
tions [12]. For the slow-soma model, the closure of gap junctions will reduce the
inhibitory diffusion D2, and therefore, for a given value of subcortical drive s, will
reduce the likelihood of forming Turing pattern spatial coherences during the de-
fault noncognitive state—e.g., consider a bottom-to-top traverse of the Fig. 12.9
slow-soma gallery. This degraded ability to form default-mode Turing structures
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leads to the prediction that schizophrenics should exhibit impairments in the func-
tion of their default networks, and this is confirmed in two recent clinical studies
[3, 19].

Applying excess dopamine to the fast-soma model, coherent gamma activity is
predicted to emerge in the cognitively-active schizophrenic brain (see upper-right
panel of Fig. 12.10), but these patterns will be “spindly” and less spatially general-
ized than those observed in a normal brain with lower dopamine levels and there-
fore stronger inhibitory diffusion (e.g., bottom-right panel of Fig. 12.10). This is
consonant with gamma-band EEG measurements captured during cognitive tasks:
compared with healthy controls, schizophrenics exhibited diminished levels of long-
range phase synchrony in their gamma activity [29].

We acknowledge that, although the slow- and fast-soma models share identical
steady states, the two models, as presently constructed, are not strictly comparable.
This mismatch is evident in two respects. First, we find that the fast-soma model
is about two orders of magnitude more sensitive to variations in inhibitory diffu-
sion D2 than is the slow-soma. Second, in order to bring the instability peaks in the
respective dispersion graphs (Figs 12.3 and 12.4) into rough alignment at similar
wavenumbers, we found it necessary to set the spatial decay-rate Λαeb for the slow-
soma wave-equation four times larger (i.e., axonal connectivity drops off four times
faster) than for the fast-soma case (see Table 12.4). Despite these somewhat arbi-
trary model adjustments, we consider that the qualitative findings presented in this
chapter are robust, namely that:

• delayed soma-to-dendrite feedback, via membrane reversal potentials, supports
stationary or slowly fluctuating spatial firing-rate patterns

• prompt feedback from soma to dendrite enhances spatially-coherent gamma os-
cillations

• gap-junction diffusion has a strong influence on the stability and spatial extent of
neural pattern coherence.
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Appendix

Table 12.4 Standard values for the neural model. Subscript label b means destination cell can be
either of type e (excitatory) or i (inhibitory). Most of these values are drawn from Rennie et al.
[20].

Symbol Description Value Unit

τe,i soma time constant 0.050, 0.050 s

V rev
e,i reversal potential for AMPA, GABA channels 0, −70 mV

V rest
e,i resting potential −60, −60 mV

ρe,i synaptic gain at resting potential (2.4, −5.9)×10−3 mV·s
βee,βie PSP rise-rate in excitatory neurons 500, 500 s−1

βei,βii PSP rise-rate in inhibitory neurons 500, 500 s−1

αee EPSP decay-rate in excitatory neurons 68 s−1

αei EPSP decay-rate in inhibitory neurons 176 s−1

αie IPSP decay-rate in excitatory neurons 47 s−1

αii IPSP decay-rate in inhibitory neurons 82 s−1

Nα
eb long-range e→b axonal connectivity 3710 –

Nβ
eb,N

β
ib local e→b, i→b axonal connectivity 410, 800 –

Nsc
eb,N

sc
ib subcortical e→b, i→b axonal connectivity 80, 0 –

s control parameter for subcortical synaptic flux 0.1 –

vαeb long-range e→b axonal speed 140 cm s−1

vβeb,v
β
ib local e→b, i→b axonal speed 20, 20 cm s−1

Λαeb inverse-length scale for long-range e→b axons (slow-soma) 4 cm−1

Λαeb inverse-length scale for long-range e→b axons (fast-soma) 1 cm−1

Λβeb,Λ
β
ib inverse-length scale for local e→b, i→b axons 50, 50 cm−1

Qmax
e,i maximum firing rate 100, 200 s−1

θe,i threshold voltage for firing −52, −52 mV

σe,i standard deviation for threshold 5, 5 mV

Lx,y length, width of cortical sheet 6, 6 cm
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