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Foreword

Early in the 19th century debates on Darwinian theory of evolution, William James
asked the question whether consciousness had biological survival value, such that
it might be subject to natural selection. The alternatives he considered were widely
held notions that consciousness was either an epiphenomenon or a celestial gift of
the capacity to conceive and know a Creator. He answered in fluid Victorian prose:

A priori analysis of both brain and conscious action shows us that if the latter were effica-
cious it would, by its selective emphasis, make amends for the indeterminacy of the former;
whilst the study à posteriori of the distribution of consciousness shows it to be exactly such
as we might expect in an organ added for the sake of steering a nervous system grown too
complex to regulate itself.1

In raising and answering the question this way, James penetrated to the essential
role of the brain in behavior. The brain simplifies. We and other animals cannot
fully know the world, Kant’s Ding an sich, as it is in its infinite complexity. Instead,
we make finite educated guesses about the world that Kant called “categories” and
that we now call “representations” or “world models”. We test these hypotheses by
taking action into the world and refining our guesses into formal theories. We learn
to know our world by accommodating and adapting to the sensory consequences of
our own and others’ actions through trial-and-error reinforcement learning [Freeman
(2001)].2 Thereby we achieve the simplicity that makes it possible for each of us,
immersed in a sea of uncertainty, to take effective action lit by flashes of insight.

Neurodynamicists model this self-organized, self-educating process by con-
structing mathematical descriptions of the motor systems that thrust the body into
and through the world. They postulate that the sensory systems maintain attractor
landscapes that are constructed by Hebbian and other forms of synaptic modification
in cortical networks, which are the structural repository of experience. Each act of
observation is a test of the world, and the multiple attractors are predictions of pos-
sible outcomes of the test, giving evidence for sustenance, companionship, danger,

1 See p. 18 of James, W: Are we automata? Mind 4, 1–21 (1879)
2 Freeman, W.J.: How Brains Make Up Their Minds. Columbia University Press, New York (2001)
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vi Foreword

nothing new, or something novel. The basins of attraction are generalization gradi-
ents from prior receptions of stimuli. A stimulus places cortical dynamics in one of
the basins of attraction. Convergence to an attractor is an inductive generalization by
which the stimulus is categorized. The attractor manifests a spatiotemporal pattern
of neural activity to which the cortical trajectory converges [see Chaps 1, 2, 7 of this
book; also Freeman (2001)], and which the sensory cortex transmits to its targets by
well-known networks and pathways [Chap. 5 of this book].

Here is the crux of perception. The sensory input is a representation of the stim-
ulus; the cortical output is not. Based on the memories of the stimulus, the output
is the mobilized knowledge about the meaning of the stimulus [Freeman (2001)].
The experience is familiar to everyone; a whiff of perfume, a few notes of a tune,
or a glimpse of a face can trigger a cascade of recollection and emotion. Whereas
the pattern of the sensory-driven cortical activity is defined by the parameters of
the physical world, and by the neural operations of the sensory systems, the self-
organized pattern of cortical activity is defined by the modified synapses that store
the accumulated experience of the perceiver [Chap. 11]. Hence the critical event
in each act of perception is the reorganization of a stimulus-driven activity pattern
in cortex, which embodies the unique and unknowable impact from the world into
an endogenous pattern of self-organized activity. The neurons are the same; their
anatomical connections are the same; even their level of energy may be the same;
what differs is the spatiotemporal organization of their interactions.

The process of sudden reorganization of neural masses in the brain is the subject
matter of this book. It is the phase transition [Freeman (1999)]3 that is modeled
by use of differential equations [Chap. 8; Freeman and Vitiello (2006)]4 or random
graph theory [Chap. 5; neuropercolation, Kozma et al. (2005)].5 In its simplest form
it is the succinct, localized transition in the state of a sensory cortex from a receiving
state to a transmitting state. Cortex transforms a recept into a percept by constructing
knowledge from information. That is the first step in the transition by the brain from
an expectant state to a knowing state, the elusive “Aha!” experience. It is also the
transition from body into mind, from a pattern determined by the physics of matter
in the world to a self-organized pattern that exists only in the perceiver as a mental
state. Abrupt global reorganizations by phase transitions in larger brain systems
implement a wide variety of intellectual and intentional brain functions, ranging
from simple go/no-go choices, switching from rest to action and back [Chap. 4],
from prodrome to epilepsy [Chaps 2, 5], from sleep to wake or REM [Chap. 9], and,
far beyond our current reach, from Heidegger’s thrownness in childhood through

3 Freeman, W.J.: Noise-induced first-order phase transitions in chaotic brain activity. Internat. J.
Bifur. Chaos 9(11), 2215–2218 (1999)
4 Freeman, W.J., Vitiello, G.: Nonlinear brain dynamics as macroscopic manifestation of underly-
ing many-body field dynamics. Physics of Life Reviews 3, 93–118 (2006),
doi:10.1016/j.plrev.2006.02.001, http://repositories.cdlib.org/postprints/1515
5 Kozma, R., Puljic, M., Balister, P., Bollabás, B., Freeman, W.J.: Phase transitions in the neurop-
ercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern.
92, 367–379 (2005), http://repositories.cdlib.org/postprints/999
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adolescence to mid-life crises, military, religious or political conversions, and all
other forms of social bonding.

Physicists and engineers are familiar with state changes, charting them as dis-
continuities in trajectories of state variables through state space. Neurologists and
psychiatrists well understand states of mind and altered states of consciousness.
What is to be gained by calling brain states “phases”, which gives the title of this
book?

On its face the usage appears to be no more than a treacherous analogy. On the
one hand the classical thermodynamic definition holds for closed systems at equi-
librium, whereas brains are open, dissipative systems operating far from equilib-
rium. The classical phases and their boundaries are unequivocally defined in terms
of temperature and pressure, whereas brains homeostatically regulate temperature,
pressure, volume, and mass. Conventional phase transitions involve latent heat, so
that the Ehrenfest classification by discontinuities of derivatives has been largely
discarded by physicists, but as yet no comparable transition energies have been seen
or postulated in cortical phase transitions, so discontinuities must suffice for neuro-
dynamicists.

On the other hand, the several fields of condensed-matter physics have evolved
in diverse directions such as nonequilibrium thermodynamics, ferromagnetics, op-
tics, and computational fluid dynamics, but with commonality in important aspects
[Schroeder (1991)].6 Phase now is defined as a state of aggregation of particles
[Schwabl (2006)],7 whether they are atoms, molecules or neurons. In each complex
system there are multiple types of state. In the brain, families of attractor landscapes
in sensory cortical dynamics define the phase space [Freeman and Vitiello (2006)].
In each aggregate there are certain conditions that specify a critical point in the phase
space at which the system is particularly susceptible to transit from one phase to an-
other phase [Chap. 1]. The transition involves a change in the degree of order, as
when the neurons in sensory cortex transit from a disorganized state of expectancy
to an organized state of categorization, from noise to signal, from the symmetry of
uniformity of the background activity at rest to the asymmetry of spatiotemporal
structure in action. This is symmetry breaking, which is described using bifurcation
theory [Chaps 1, 10, 11].

Most importantly, the order emerges by spontaneous symmetry breaking within
and among populations of cortical neurons. Order in the form of gamma synchrony
[Chaps 7, 8, 11, 12] is not imposed by sensory receptors or pacemaker neurons. It
is constructed by broadly distributed synaptic interactions by which neurons con-
strain or “enslave” themselves and each other in circular causality [Haken (1983)].8

Modeling symmetry breaking requires the introduction of an extra variable, an order
parameter [Chap. 3], which serves to evaluate the strength of interaction by which

6 Schroeder, M.R.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman,
New York (1991)
7 Schwabl, F.: Statistical Mechanics, 2nd ed. Ch. 7. Phase transitions, scale invariance, renormal-
ization group theory, and percolation. 331–333, Springer (2006)
8 Haken, H.: Synergetics: An Introduction. Springer, Berlin (1983)
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the order is achieved [Sethna (2009)].9 The variable must be evaluated by measur-
ing the summed activity of the aggregate, minimally from practical experience on
the order of 10,000 neurons [Freeman, (2001)]. The mesoscopic order [Chap. 7]
is undefined in microscopic activity, in much the way that molecules do not have
pressure and temperature. Furthermore, it is undetectable in microelectrode record-
ings of action potentials except by prolonged time-averaging in histograms, which
precludes measuring rapid changes in the degrees of freedom or patterns of order.
Herein lies the value of the dendritic potentials recorded from cortex extracellu-
larly and referentially in various forms of electroencephalogram (EEG) and local
field potentials [Chaps 1, 6, 8, 11], which are averages of potential fields from lo-
cal neighborhoods of neural populations. The EEG order parameter (derived from
field potential measurements) is not the order, nor is it the agency of the order; it is
an index of the distributed, self-organized and self-organizing interaction strength
among the neurons.

The perceptual phase transition is many-to-one by convergence to an attractor,
so it is irreversible, non-Abelian and non-commutative with no inverse. Unlike the
holographic transformation, which is information-preserving and non-categorizing,
the phase transition destroys information in categorizing as the prelude to decision-
making. To these properties are added the characteristic amplification and slowing
of fluctuations as criticality is approached [Chaps 1, 8]; the emergence of power-
law distributions of spectral energy and functional connectivity [Chaps 1, 3, 4, 8];
long correlation lengths reflecting emergence of truly immense domains [Freeman
(2003)]10 of coherent gamma oscillations; and reorganization/resynchronization of
phase and amplitude modulations of the transmission frequencies at rates in the theta
and alpha ranges [Freeman (2009)].11

Perhaps the most compelling reason to model the dynamics of perception as a
phase transition is the reduction in degrees of freedom owing to augmented inter-
action [Freeman and Vitiello (2006)],12 which resembles the increase in density as
gas condenses to liquid. The condensation of neural activity is manifested in the
long-range spatiotemporal coherence of gamma oscillations (Chaps 1, 4, 12), and
the conic phase gradients resembling vortices that accompany the EEG amplitude
patterns that are correlated with behavior [Freeman (2001)]. The phase transition
begins at a singularity (Chaps 1, 8), which in cortex is demarcated spatially by the

9 Sethna, J.P.: Statistical Mechanics. Entropy, Order Parameters, and Complexity. Clarendon Press,
Oxford (2009),
http://pages.physics.cornell.edu/sethna/StatMech/EntropyOrderParametersComplexity.pdf
10 Freeman, W.J., Burke, B.C., Holmes, M.D.: Aperiodic phase re-setting in scalp EEG of beta-
gamma oscillations by state transitions at alpha–theta rates. Hum. Brain Mapp. 19(4), 248–272
(2003), http://repositories.cdlib.org/postprints/3347
11 Freeman, W.J.: Deep analysis of perception through dynamic structures that emerge in cortical
activity from self-regulated noise. Cognit. Neurodynamics 3(1), 105–116 (2009),
http://www.springerlink.com/content/v375t5l4t065m48q/
12 Freeman, W.J., Vitiello, G. Dissipative neurodynamics in perception forms cortical patterns that
are stabilized by vortices. J. Physics Conf. Series 174, 012011 (2009),
http://www.iop.org/EJ/toc/1742-6596/174/1, http://repositories.cdlib.org/postprints/3379
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apex of the cone. It is marked temporally by a downward spike in power in the pass
band of the transmission frequency [Freeman (2009)].

Given these properties in brain dynamics, the analogy is exceedingly attractive
and likely to persist and grow, because it provides matrices of educated guesses by
which further progress can be made in making sense of diverse data. The phase
transition establishes a link between energy and order. Brains are profligate in the
dissipation of metabolic energy, yet by their own feedback controls they keep con-
stant a vast reservoir of electrochemical energy in the ionic concentration gradients
that empower the neural activity of the brain. The major thermodynamic variables
are in steady state, owing to provision by arterial blood flow of free energy and the
disposal by the venous blood flow of waste heat, except one: there is a continual
decrease in entropy [Chap. 4], which is paid for by the throughput of energy. Ini-
tially the patterns are solely functional, the creation of chaotic dynamics. Owing to
the plasticity of cortical connectivity [Chaps 2, 4, 7, 9, 11] the functional patterns
guide the structural connectivity into more or less permanent brain patterns, which
constitute the neural foundation for long-term memory.

Despite these properties and the powerful tools used to derive and describe them,
the hypothesis that phase transitions underlie perception and other brain functions
remains unproven. Asserting it is like signing a promissory note. There are imme-
diate intellectual gains from access to the capital of others’ ideas, but they bring
unsolved problems, salient among them defining the relation between metabolic
brain energy and neural activity, in which both excitation and inhibition dissipate
energy. The debt will not be paid until a detailed theory of nonlinear neurodynamics
is constructed that can stand on its own, in company with other major branches of
physics devoted to the study of condensed matter. Considering the saliency of its
subject matter, a successful theory of neurodynamics is likely to outshine all others.

University of California at Berkeley Walter J. Freeman
August 2009
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Acronyms

ACh acetylcholine
ARMA autoregressive moving average
BOLD blood-oxygen-level dependent
ECoG electrocorticogram
ECT electroconvulsive therapy
EEG electroencephalogram
EPSP excitatory postsynaptic potential
fMRI functional magnetic resonance imaging
GABA gamma-aminobutyric acid
HH Hodgkin–Huxley
IDE integro-differential equation
IPSP inhibitory postsynaptic potential
IS intermediate sleep (pre-REM) in rats
LFP local field potential
LOC loss of consciousness
MEG magnetoencephalogram
NSF nonspecific flux
PCA principal components analysis
PDE partial differential equation
PET positron-emission tomography
PSP postsynaptic potential
REM rapid-eye-movement sleep
ROC recovery of consciousness
SN saddle–node
SR stochastic resonance
SWS slow-wave sleep
TCF transcortical flux
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Introduction

Historical context

The study of phase transitions—changes in the states of matter—was a leading area
of research in the 19th and 20th centuries. Physicists categorized these state changes
as being either first- or second-order. First-order or discontinuous transitions are
characterized by an abrupt change of phase when a control variable, such as temper-
ature, is smoothly and monotonically varied across the transition point, causing, for
example, ice to melt, and water to vaporize. Reversing the direction of the temper-
ature change reverses the transition, causing steam to abruptly condense into liquid
water, and water to freeze into a crystalline solid. But for first-order transitions the
particular state of matter can depend on the history of the control variable. Thus, in
the absence of nucleation centers, pure water can remain liquid when cooled below
its normal ice–water transition point, or when heated above its normal water–steam
point. This state dependence on history is called hysteresis.

In contrast, second-order or continuous phase transitions show a smooth change
of state with no evidence of hysteresis. For example, when a ferromagnet in a zero
magnetic field is heated so that its temperature crosses a critical temperature (the
Curie point), its magnetic state smoothly changes from aligned (ferromagnetic) to
random (paramagnetic).

Early studies focused on so-called equilibrium transitions in which the behavior
of state variables, such as gas pressure, temperature, and volume, is governed by a
thermodynamic equation of steady state whose mathematical form is determined by
the locations of the local minima attractors within a free-energy potential landscape.

Experiments indicated that phase transitions exhibit a set of universal properties—
notably power-law divergence of bulk parameters such as heat capacity, susceptibil-
ity, compressibility—as the critical point is approached. The quest to understand the
origin of these unifying principles led to advances such as such the Kadanoff and
Fisher scaling laws, and culminated in the development of renormalisation group
theory. These theoretical advances also introduced the notion of an order parame-
ter, assigned a non-zero value in the more ordered (e.g., ferromagnetic) phase.

In the 1960s, the pioneering work of the Brussels group led by Nicolis and Pri-
gogine revealed another type of transition—the pattern-forming phase transitions
exhibited by particular types of chemical reaction in fluids. Another fundamental
advance at this time was Haken’s treatment of the laser as a self-organizing tran-
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sition from uncorrelated light fields into directed photon emissions that are coher-
ent in time and space. The fluid and laser transitions both belong to the family of
nonequilibrium phase transitions, so called because the underlying reactions require
a continuous flux of reactants and energy, so are far from thermodynamic equilib-
rium and cannot be described in terms of a free-energy potential function. Such
phase transitions are of a spatiotemporal kind, characterized by spontaneous spatial
pattern formation (the original homogeneous steady-state becomes destabilized by a
Turing instability) and temporal oscillations (destabilization via a Hopf instability).
The identification of an order parameter for such transitions remains unclear, with
the amplitude of the critical, slow mode that emerges at the transition point being a
promising candidate.

Book overview

In this book, we put forward the perhaps controversial idea that phase transitions can
and do occur in the brain. Like all “living” biological components, the brain never
operates in closed thermodynamic equilibrium, and yet we find that on approach to
a neural change of state (e.g., moving from wake to anesthetic sleep, or from slow-
sleep into REM sleep), its bulk electrical signals can display divergent correlated
fluctuations that are tantalizingly similar to first- and second-order thermodynamic
phase transitions. Further, we argue that the emergence of spatiotemporal patterns in
the brain (e.g., epileptic seizure, alpha and gamma oscillations, the ultraslow oscil-
lations of BOLD fMRI patterns) provides strong evidence of nonequilibrium transi-
tions in brain state.

This idea for this book arose from discussions at the CNS*2007 Computational
Neuroscience Meeting held in Toronto, Ontario in July 2007. Joseph Burns, then
Senior Editor for Life Sciences, Springer, suggested to ASR and MSR that they
construct a book proposal for a contributed volume of chapters written by senior
researchers in computational brain modeling. Phase Transitions in the Brain was
chosen as the unifying foundation for the book, and this proved to be an attractive
theme that was enthusiastically adopted by the coterie of invited authors.

Brain activity can be modeled either by a discrete network of active nodes, or
by a mean-field continuum—both approaches are illustrated in this book. In the
network approach, each node could be a conductance-based spiking neuron, or an
idealized neuron, or could represent a cluster of neurons, with the biological fi-
delity (and mathematical complexity) of each node being determined by the pur-
pose and scale of the model. The topology of the connections between nodes is
another modeling choice, and can be, for example, all-to-all, random, small-world,
or distance-dependent. Chapters 4, 5, and 7 illustrate the network-based approach to
brain modeling.

In the continuum approach, the brain is described in terms of populations of exci-
tatory and inhibitory neurons that interact via chemical synapses over both short and
long ranges. Differential (or integro-differential) forms are derived to give the equa-
tions of motion for spatially-averaged (i.e., mean-field) activity subject to external
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(subcortical drive) and internal (neurotransmitter) influences. Although the authors
of chapters 3, 6, and 8–12 all use a mean-field philosophy, their model details can
and often do differ in subtle but important ways. Some of these distinctions will be
outlined below.

We now give a brief summary of each of the 12 chapters. With the exception of
Chaps 1 and 12 (by the editors), the chapters are organized alphabetically by author.

In Chap. 1, Alistair Steyn-Ross and colleagues examine theoretical and exper-
imental evidence for phase transitions in single neurons (onset of spiking), and in
neural populations (induction of anesthesia, SWS–REM sleep cycling, transition
from wake to sleep). The type-I and II spiking-neuron models due to H.R. Wilson
are biophysical simplifications of the conductance-based Hodgkin–Huxley “gold
standard”. A spiking instability can be induced by increasing the dc stimulus cur-
rent entering the neuron. By adding a subtle white-noise “tickle” to the dc bias, the
nearness to spiking transition can be quantified by allowing the neuron to explore
its near-equilibrium state space, exercising what Jirsa and Ghosh (Chap. 4) call its
dynamic repertoire. The subthreshold fluctuations grow in amplitude while becom-
ing critically slowed (type I) or critically resonant (type II) as the bifurcation point
is approached. Similar critical changes in fluctuation statistics are seen in the EEG
activity recorded from patients undergoing, then recovering from, anesthesia; and in
the brain activity of mammals (cat, fetal sheep, human) transiting from slow-wave
to REM sleep. Near the point of falling asleep, the phase transition conjecture pre-
dicts a nonlinear increase in neural “irritability” (susceptibility to small stimulus);
this critical effect may explain the puzzling, yet commonly experienced whole-body
hypnic jerk at sleep onset.

We argue that there appears to be ample evidence of phase transition-like behav-
ior in the brain. But can we quantify these qualitative state changes by extracting
the critical exponents underlying the power-law growth of the fluctuations in corti-
cal activity? Given the inherently nonstationary nature of the signal at the point of
transition, this would be a highly challenging ambition. In Chap. 2, Andreas Galka
and colleagues present a possible way forward. These authors describes a state-of-
the art generalized autoregressive conditional heteroscedastic (GARCH) method,
first used in financial modeling, which allows the dynamical noise covariance to
change with time. They apply this GARCH technique to three distinct dynamical
state transitions captured by EEG recordings: induction of general anesthesia in a
human patient, emergence of epileptic seizure in a human, and transition from slow-
wave to REM sleep in a fetal sheep. They demonstrate that the GARCH variance
can accurately locate the point of phase transition without any prior information on
the timing of the nonstationary event.

In Chap. 3, Axel Hutt investigates a 1-D continuum model of the cortex that is
expressed in terms of a single neural population whose effective membrane voltage
V is written as the signed summation of the excitatory and inhibitory postsynaptic
potentials that combine at the soma: V = V e −V i. Using Mexican-hat axonal dis-
tribution functions, he is able to establish analytic conditions for the existence of
stationary (Turing) and oscillatory (Hopf and traveling wave) instabilities. The sta-
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bility of the Turing bifurcation in the presence of noise is investigated. Close to the
instability point, a linear analysis predicts critical fluctuations, that is, the emergence
of long-lived zero-wavenumber fluctuations of large variance. When the system be-
comes unstable, a nonlinear stability analysis shows that the presence of global noise
can restore stability to the homogeneous state by suppressing the stochastic Tur-
ing instability. The fact that noise can both stimulate and suppress formation of
spatiotemporal activity patterns in the cortex may have significant implications for
information processing in the brain.

In Chap. 4, Viktor Jirsa and Anandamohan Ghosh emphasize the fundamental
importance of random noise in allowing an excitable system to explore and exercise
the repertoire of dynamic behaviors that can be accessed from its resting, equilib-
rium state. This idea is illustrated first in simple bifurcation (saddle–node and Hopf)
models, and then applied to a network simulation of a brain at background rest. The
simulation utilizes a biologically realistic primate (macaque) connectivity matrix
with 38 nodes, and includes time delays via signal propagation between brain areas,
and intrinsic noise. The authors argue that the working point of the brain during
wakeful rest is often close to the critical boundary between stable and unstable re-
gions. From the network simulation results they are able to identify the correlated
and anticorrelated subnetworks that are active during the ultra-slow BOLD signal
oscillations, and demonstrate excellent agreement with experimental observations.
The authors offer some insights into the rich default-mode dynamics of the idling
brain, suggesting that undirected, spontaneous thoughts can only arise because of
the presence of noise (else the rest-state would be truly at rest), but that the response
to this random stimulus is tuned by the brain’s deterministic “skeleton” (anatomical
connectivity, time-delay structure, internal dynamics) delicately poised close to an
instability.

In Chap. 5, Marcus Kaiser and Jennifer Simonotto picture the cortex as a com-
plex neural network whose overall level of activity is delicately balanced between
the unhealthy extremes of quenched silence, and runaway excitation of the entire
network—as seen in the transition to the epileptic state. How is the desired state
of persistent, yet contained, network activation sustained, and what prevents uncon-
trolled spreading of activity to ignite the entire network? The authors argue that,
in addition to neuronal inhibition via inhibitory interneurons, network architecture
plays a crucial role. In particular, their simulations demonstrate that a network com-
posed of hierarchical clusters—with denser connectivity within clusters than be-
tween clusters—provides a form of topological inhibition that tends to suppress
runaway spreading, even in the absence of inhibitory units. This topological pro-
tection against transition into epilepsy arises because of the sparser connectivity
between clusters, while the higher density of connections within clusters allows
sustained levels of activity. Non-hierarchical topologies, such as small-world and
random networks, are shown to be not only less protective against global spreading,
but also more susceptible to quenching. Since the anatomy of the brain displays a
modular, hierarchical architecture (from microcircuits at the lowest level, to cortical
areas then brain areas at the global level), these network insights are likely to have
biological significance.
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In Chap. 6, David Liley and colleagues focus attention on the alpha rhythm (8–
13 Hz activity) ubiquitous in human brain EEG. They present the constitutive partial
differential equations for a 2-D continuum model of a cortex driven by noisy extra-
cortical sources. With appropriate changes to the cortical parameters, the model can
exhibit linear noise-driven dynamics, and nonlinear deterministic (chaotic and limit-
cycle) oscillations. The authors demonstrate that the cortical model can undergo
Hopf and wave bifurcations in both the alpha and gamma (∼40 Hz) bands, and
that the transition from subthreshold alpha to limit-cycle gamma can be achieved
by reducing the strength of the inhibitory postsynaptic potential. They argue that
a marginally stable alpha rhythm could provide a “readiness” substrate for neural
activity, enabling rapid transitions to the higher frequency cortical oscillations re-
quired for information processing.

In Chap. 7, Hans Liljenström presents a range of network models, of varying
complexity, designed to investigate phase transitions in mesoscale brain dynamics,
arguing that this intermediate scale, lying somewhere between micro (ion channels
and single neurons) and macro (whole brain), provides a bridge between neural
and mental processes. His network models include a three-layer paleocortex (olfac-
tory cortex and hippocampus) of nonspiking nodes; a five-layer neocortex of either
conductance-based or simplified spiking neurons; and a monolayer grid of spiking
neurons. By modulating an appropriate control parameter, each network model ex-
hibits a characteristic phase transition behavior; thus an increase in intrinsic noise
can cause the paleocortex to form spatiotemporal patterns of activity; an electrical
stimulus applied to the neocortex can generate seizure-like oscillations; and a re-
duction in ion-channel conductance can cause a dramatic slowing in EEG dynamics
similar to that seen during the induction of general anesthesia.

In Chap. 8, Peter Robinson and colleagues outline a philosophy for the con-
struction of continuum models for the brain, and correct some misconceptions
about mean-field theory and its applications. The authors present two biophysically-
motivated mean-field models. The first model describes the EEG signals generated
by the neuronal interactions between the cortex and thalamus, and the second is
focused on the slow interactions between brainstem and hypothalamic structures
that control the wake–sleep diurnal cycle. Loop resonances in the corticothalamic
model produces EEG spectral peaks at the alpha and beta frequencies. By varying
loop gains and synaptic strengths, four distinct saddle–node and Hopf bifurcations
to limit-cycle oscillations (slow spike–wave, 3-Hz theta, 10-Hz alpha, 10–15-Hz
spindle) are identified. These neurodynamic phase transitions may correspond to
the genesis of seizure activity. Their sleep–wake model is based on mutual inhibi-
tion between wake-active (MA) and sleep-active (VLPO) brainstem nuclei, resulting
in a flip-flop dynamics that is controlled by the circadian (C) and homeostatic (H)
drives. The model predicts first-order phase transitions between sleep and wake,
with state stability enhanced by a hysteresis separation between transition points.

In Chap. 9, Jamie Sleigh and colleagues investigate the phase transition between
slow-wave and REM sleep, comparing continuum-modeling predictions against
ECoG activity recorded from sleep-cycling rats. They argue that the primary ef-
fector of the cortical change into the REM state is a progressive linear increase in
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cholinergic excitation of the cortex which they model in terms of an increase of neu-
ron resting voltage V rest

e , coupled with a simultaneous decrease in λ , the strength of
the excitatory postsynaptic potential (EPSP). The distribution of equilibrium soma
voltages, plotted as a function of resting voltage and EPSP gain, defines a sleep man-
ifold featuring multiple steady states and a region of instability that extends beyond
the fold, into the upper (active) and lower (quiescent) cortical states. The upper-
branch displays a Hopf bifurcation to ∼8-Hz limit-cycle oscillations; this dynamic
instability may explain the theta-band oscillations observed in ECoG recordings of
rats transiting from SWS into REM sleep. The authors are able to demonstrate good
agreement between modeled and measured spectrograms across the transition event.

In Chap. 10, Marcus Wilson and colleagues present a thorough investigation
of the dynamical properties of the mean-field sleep model alluded to in Chap. 1.4,
and tuned for rat sleep-cycling in Chap. 9. A linear stability analysis predicts that
the homogeneous steady-state cortex will be destabilized by a sufficient reduction
in γi, the rate-constant for the inhibitory postsynaptic potential (IPSP). This pre-
diction is verified by numerical simulations on a 2-D grid for a range of (λ ,V rest

e )
sleep-manifold coordinates; these simulations show a range of supercritical and sub-
cortical Hopf bifurcations to slow (∼1-Hz), spatially-symmetric, whole-of-cortex
limit-cycle oscillations which the authors identify with seizure. If the homoge-
neous cortex is stimulated with a brief, spatially-localized impulse, traveling-wave
instabilities—reminiscent of K-complexes and delta-waves of slow-wave sleep—
can also be evoked.

In Chap. 11, Jim Wright describes a closely detailed continuum model of the
cortex that attempts to capture, via a hierarchy of nested integral convolutions, the
contributions from multiple scales of neural activity, integrating up from the mi-
croscale (ion channels and receptors), to the mesoscale (cortical macrocolumns),
and the centimetric macroscale sensed by EEG electrodes. His model includes
the effects of ion-channel conformation, receptor adaptation, reversal potentials,
and back-propagation of action potentials. Numerical simulations of a 2-D cortex
demonstrate that, at a critical level of input flux, the homogeneous cortex undergoes
a phase transition into autonomous gamma oscillations. The nature and strength
of this bifurcation is controlled by both local (excitatory–inhibitory balance) and
global (excitatory tone) flux sources. The author discusses possible implications of
gamma synchrony and traveling waves on the recall and processing of information
by the brain.

Although the Chap. 12 continuum model of Moira Steyn-Ross and colleagues
shares features with the models of Wright (Chap. 11), Robinson et al. (Chap. 8), and
Liley et al. (Chap. 4), it differentiates itself with the inclusion of electrical synapses
or gap junctions. Inhibitory gap-junction diffusion is found to modulate the onset of
Turing and Hopf instabilities, leading to the appearance of spatiotemporal patterns
and waves. The authors show that the nature of the feedback between soma and
dendrite strongly influences the dynamics of the cortex. If the soma responds slowly
to dendritic input, Turing and low-frequency Hopf bifurcations are predicted, but if
the soma response is fast, a gamma-band wave instability emerges. These mutually
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exclusive extremes may correspond respectively to the awake brain states of idling
rest (discussed in Chap. 4) and active cognition (Chap. 11).

Final comments

The brain can sustain an extremely rich diversity of brain states, some of which
are unhealthy and pathological. Of the universe of states available to the brain,
these chapters have focused attention on just a small subset—anesthetized, slow-
wave sleeping, REM sleeping, awake, idle daydreaming, active thinking, epileptic
seizing. Transitions between these gross states can be driven by a range of “con-
trol” parameters such as altered neurotransmitter and neuromodulator concentra-
tions, gap-junction diffusion, synaptic efficiency, electrical stimulus. Phase transi-
tions in matter arise because of changes in the nature of the bonding between atomic
constituents. Perhaps for the brain, one analog of “atomic bonding” might be the
strength of coupling between different neural populations, with stronger coupling
leading to enhanced synchrony and qualitatively distinct neural states.

The phase transition approach to brain modeling seems to provide natural expla-
nations for some of the counterintuitive fluctuation divergences seen on approach to
state change, such as the EEG power surge seen during induction of general anes-
thesia, and during the natural progression from slow-wave sleep into REM sleep.
But as yet, there is no general theory of neural phase transitions. The noise-evoked
fluctuation statistics from single-neuron models might provide some guidance, with
critical slowing at a saddle–node annihilation, and critical ringing at a Hopf bifur-
cation, corresponding to increased correlation times and correlation lengths.

Left open and unanswered are many challenging and intriguing questions: How
do single-neuron transitions scale up to influence the behavior and response of
neural populations and brain areas? Are critical fluctuations “biologically useful”?
Might they have a role in the facilitation—or suppression—of phase transitions?
What are the general principles that underlie neural changes of state? Can we find
universal scaling laws for brain phase transitions?
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Chapter 1
Phase transitions in single neurons and neural
populations: Critical slowing, anesthesia,
and sleep cycles

D.A. Steyn-Ross, M.L. Steyn-Ross, M.T. Wilson, and J.W. Sleigh

1.1 Introduction

It is a matter of common experience that the brain can move between many different
major states of vigilance: wakefulness; sleep; trauma- and anesthetic-induced quiet
unconsciousness; disease- and drug-induced delirium; epileptic and electrically-
induced seizure. By monitoring cortical brain activity with EEG (electroencephalo-
gram) electrodes, it becomes possible to detect more subtle alterations within these
major states; for example, we find that natural sleep consists of periodic cyclings
between inactive, quiet slow-wave sleep (SWS) and a paradoxically active phase—
characterized by rapid eye movements and reduced muscle tone—named REM
(rapid-eye-movement) or paradoxical sleep.

The existence of these contrasting brain states motivates us to ask: How does the
brain move between states? Is the changing of states a smooth, graduated motion
along a trajectory of similar states? Or is the transition more like an abrupt switching
choice between two (or more) mutually-exclusive cortical destinations? If the state-
change can be thought of as a switching choice, then we might envision a hills-and-
valleys cortical landscape in which the crest of a hill represents a decision point, and
the two valleys falling away to either side are the alternative destination states. In
this picture, we could expect a cortex, delicately poised at a decision point, to exhibit
signature behaviors in the statistical properties of its fluctuations as it “ponders” its
choices. This notion—that decision points can be identified from critical changes in
fluctuation statistics—is a unifying theme that we will return to several times in this
chapter.
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The chapter is structured as follows. We examine first a simplified single-neuron
model due to Hugh R. Wilson [29, 30] that is able to produce either the arbitrarily
slow firing rates (so-called type-I behavior) observed in cortical neurons in the mam-
malian cortex, or, with a minor change in parameter values, exhibits the sudden-
onset firing rates (type-II behavior) that characterize both the squid giant-axon ex-
citable membrane, and the neurons in the mammalian auditory cortex. Our interest
here is not the above-threshold behaviors such as the shape and time-course of the
action potential, nor the functional form of spike-rate on stimulus current; instead,
we focus on the sensitivity of the non-firing, but near-threshold, resting membrane
to small noisy perturbations about its equilibrium resting state as the neuron makes
a stochastic exploration of its nearby state-space, exercising what Jirsa and Ghosh1

describe as its dynamic repertoire.
Gross changes in states of brain vigilence, such as from awake to asleep, and

from anethetized to aware, reflect alterations in the coordinated, emergent activity
of entire populations of neurons, rather than a simple “scaling up” of single-neuron
properties. In Sect. 1.3 we examine historical support for the notion that induction
of anesthesia can be viewed as a first-order “anesthetodynamic” neural phase transi-
tion, comparing biological response to an “obsolete” drug (ether) with a very com-
monly used modern drug (propofol). We describe EEG response predictions using a
noise-driven mean-field cortical model, and identify an explanation for the paradox-
ical observation that inhibitory agents (such as anesthetics) can have an excitatory
effect at low concentrations.

Section 1.4 investigates the SWS–REM sleep cycle, finding similarities in the
EEG sleep patterns of the human, the cat, and the fetal sheep. We suggest that the
species-independent surge in correlated low-frequency brain activity prior to transi-
tion into REM sleep can be explained in terms of a first-order jump from a hyper-
polarized quiescent state (SWS) to a depolarized active state (REM).

In Sect. 1.5 we examine the recently published Fulcher–Phillips–Robinson model
[18, 19] for the wake–sleep cycle, demonstrating a divergent increase in brain sen-
sitivity at the transition point: the occurrence of a peak in neural susceptibility may
provide a natural explanation for the so-called “hypnagogic jerk”—the falling or
jolting sensation frequently experienced at the point of falling asleep.

We summarize the common threads running through these neuron and neural
population models in Sect. 1.6.

1.2 Phase transitions in single neurons

In the absence of noise, a single neuron is bistable: it is either at rest or generating
an action potential. As noted by Freeman [6], the approach to firing threshold is
heralded by an increasing sensitivity to stimulus:

1 See Chap. 4 of this volume.
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When a depolarizing current is applied in very small steps far from threshold, the neural
dynamics is linear; responses to current steps are additive and proportional to the input [. . . ]
As threshold is approached, a nonlinear domain is encountered in which local responses
occur that are greater than expected by proportionality.

The fact that a biological neuron is constantly buffeted by a background wash of
low-level noisy currents allows the neuron to explore its local state space. These
stochastic explorations can be tracked by monitoring the voltage fluctuations at the
soma. We will show that the statistics of these fluctuations change—in characteristic
ways—as the critical point for transition to firing is approached.

1.2.1 H.R. Wilson spiking neuron model

The H.R. Wilson equations [29, 30] describe neuron spiking dynamics in terms of a
pair of first-order coupled differential equations,

C
dV
dt

= INa(t) + IK(t) + Idc + Inoise(t) , (1.1)

τ
dR
dt

= −R(t) + R∞(V ) + Rnoise(t) . (1.2)

The neuron is pictured as a “leaky” capacitance C whose interior voltage V is deter-
mined by sum of ionic (INa, IK) and injected (Idc) currents entering the lipid mem-
brane. Here we have supplemented the original Wilson form by adding white-noise
perturbations (Inoise, Rnoise) to the current (1.1) and recovery-variable (1.2) equa-
tions.

The sodium (Na) and potassium (K) ionic currents are determined by their re-
spective conductances (gNa, gK) and reversal potentials (ENa, EK),

INa(t) = −gNa(V )(V −ENa) , IK(t) = −gKR · (V −EK) , (1.3)

where R is the recovery variable that approximates the combined effects of potas-
sium activation and sodium inactivation that dominate the slower neuron dynamics
for the return to rest following the fast up-stroke of an action potential. Definitions
and constants for the H.R. Wilson model are listed in Table 1.1.

Comparing Eqs (1.1–1.3) against Hodgkin and Huxley’s (HH) classic four-
variable model for the excitable membrane of the squid giant-axon [11], we see the
significant simplifications Wilson has made to the complicated HH forms for the
time- and voltage-dependence of sodium and potassium conductances: the sodium
conductance gNa is now a quadratic function of membrane voltage; the potassium
conductance gK becomes a constant; and the steady-state for the combined potas-
sium activation/sodium inactivation is either a quadratic (for type-I spiking behav-
ior), or linear (type-II spiking), function of voltage. These simplifications reduce the
dimensionality of the neuron from four dynamic variables to two—while preserving
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Table 1.1 Definitions and constants for stochastic implementation of the H. R. Wilson [30] model
for type-I (mammalian) and type-II (squid) excitable membrane. Icrit

dc is the threshold input current
for spike generation.

Description Symbol Type-I Type-II Unit
(mammal) (squid)

Capacitance C 1.0 0.8 μF cm−2

Time-constant τ 5.6 1.9 ms
Reversal potentials ENa, EK +48, −95 +55, −92 mV
K+ conductance gK 26.0 26.0 mS cm−2

Noise-scale (current) σI 1.0 0.1 μA cm−2 (ms)1/2

Noise-scale (recovery) σR 1.0 0.1 (ms)1/2

Threshold current Icrit
dc ∼21.4752886 ∼7.77327142 μA cm−2

Na+ conductance, gNa(V ) = a2V 2 +a1V +a0

a2 33.80×10−4 32.63×10−4 mS cm−2 mV−2

a1 47.58×10−2 47.71×10−2 mS cm−2 mV−1

a0 17.81 17.81 mS cm−2

Recovery steady-state, R∞(V ) = b2V 2 +b1V +b0

b2 3.30 0 mV−2

b1 3.798 1.35 mV−1

b0 1.26652 1.03 –

some essential biophysics2—making the model much more amenable to mathemat-
ical analysis and insight.

The additive noises appearing on the right of Eqs (1.1) and (1.2) are two inde-
pendent time-series of white-noise perturbations that are supposed to represent the
continuous random buffeting of the soma and recovery processes within a living,
biological neuron. The noises are defined as,

Inoise(t) = σI ξI(t) , Rnoise(t) = σR ξR(t) , (1.4)

where σI , σR are the rms noise scale-factors for current and recovery respectively,
and ξI , ξR are zero-mean, Gaussian-distributed delta-correlated white-noise sources
with statistics,

〈ξ (t)〉 = 0 , 〈ξi(t)ξ j(t ′)〉 = δi j δ (t − t ′) . (1.5)

Here, δi j is the dimensionless Kronecker delta and δ (t) is the Dirac delta function
carrying dimensions of inverse time. The ξ (t) are approximated in simulation by
the construction

ξ (t) = N (0,1)/
√

Δ t , (1.6)

2 Notably: ionic reversal potentials, and the implicit Ohm’s-law dependence of ionic current on the
signed displacement of the membrane voltage from the reversal values.
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where Δ t is the size of the time-step, and N (0,1) denotes a normally-distributed
random-number sequence of mean zero, variance unity. In the numerical experi-
ments described below, the noise amplitudes are set at a sufficiently small value
to ensure that the neuron is allowed to explore its near steady-state subthreshold
(i.e., non-firing) state space; in this regime we will find that, as firing threshold is
approached from below, the subthreshold fluctuations become critically slowed, ex-
actly as predicted by small-noise linear stochastic theory.

1.2.2 Type-I and type-II subthreshold fluctuations

Excitable membranes are classified according to the nature of their spiking onset.
For the squid axon and for auditory nerve cells, action potential oscillations emerge
at a non-zero frequency when an injected dc stimulus current exceeds threshold;
such membranes are classified as being type-II or resonator [12]. In contrast, for
type-I or integrator membranes (e.g., human cortical neurons), spike oscillations
emerge at zero frequency as the current stimulus crosses threshold—that is, the fir-
ing frequency in a type-I neuron can be arbitrarily slow. By altering the voltage
dependence of R∞ (the steady-state value for the recovery variable in Eq. (1.2))
from linear to quadratic, the H.R. Wilson model neuron can be transformed from a
resonator into an integrator (see Table 1.1 for polynomial coefficients).

Figure 1.1 compares the near-threshold behavior of the Wilson resonator neuron
(Fig. 1.1(a)) with that of the integrator neuron (Fig. 1.1(b)) for white-noise pertur-
bations superimposed on five different levels of constant stimulus current Idc. For
the squid-axon type-II resonator, the voltage fluctuations show an increasing ten-
dency to “ring” at a characteristic frequency, with the ringing events becoming more
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Fig. 1.1 Stochastic simulations for the H.R. Wilson models for (a) squid axon (type-II) and (b)
human cortical (type-I) neuron. Framed insets show detail of the subthreshold voltage fluctuations
prior to spike onset. (a) Numbered from bottom to top, the five squid stimulation currents are
Idc = 0, 2, 4, 6, 7.7 μA/cm2. (To improve visibility, the squid traces have been displaced vertically
by (4m−20) mV where m = 1 . . .5 is the curve number.) (b) Cortical neuron stimulation currents
are (bottom to top) Idc = −100, −40, 0, +16, +21.4752 μA/cm2. Integration algorithm is semi-
implicit Euler-trapezium with timestep Δ t = 0.005 ms. All runs within a given figure used the
same sequence of 40 000 Gaussian-distributed random-number pairs to generate the white-noise
perturbations. (Reproduced from [22].)
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prolonged and pronounced as the critical level of drive current Icrit
dc ≈ 7.7732 μA/cm2

is approached from below.
In contrast, the mammalian type-I integrator shows voltage fluctuations that be-

come simultaneously larger and slower as the drive current approaches the critical
value Icrit

dc ≈ 21.4752 μA/cm2. One is reminded of Carmichael’s eloquent descrip-
tion of a state change in quantum optics in which the process [1],

. . . amplifies the initial fluctuations up to the macroscopic scale, making it impossible to
disentangle a mean motion from the fluctuations.

Prior to spike onset, is the slowly varying trend a fluctuation about the mean, or the
mean motion itself? At the critical point leading to the birth of an action potential in
an integrator neuron, the mean motion is the fluctuation.

In order to better appreciate the underlying statistical trends in fluctuation vari-
ability as the critical stimulus current is approached, we repeat the 200-ms nu-
merical simulations of the stochastic Wilson equations (1.1)–(1.2) a total of 2000
times, each run using a different constant value of Idc. These Idc stimulus values,
in μA/cm2, are evenly distributed over the range −10 to +7.77 for the resonator
experiments (see Fig. 1.2(a)), and −10 to +21.475 for the integrator experiments
(Fig. 1.3(a)). Despite the fact that the variances (σ2

I ,σ2
R) of the white-noise per-

turbations remained unchanged throughout these series of experiments, it is very
clear that—for both classes of excitable membrane—the variance of the resulting
fluctuations increases strongly and nonlinearly as the critical value of dc control
current is approached, confirming Freeman’s earlier observation of growing non-
proportionality of response for a neuron near spiking theshold.
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Fig. 1.2 H.R. Wilson type-II (resonator) response to white-noise perturbation as a function of
subthreshold stimulus current Idc. (a) Each vertical gray stripe shows maximum voltage excursions
recorded in a 200-ms stochastic simulation of Eqs (1.1), (1.2) at each of 2000 settings for stimulus
current ranging from −10.0 to +7.77 μA/cm2. Solid black curves show theoretical ±3σ limits for
voltage excursions away from equilibrium. (b) Theoretical spectral response to white-noise driving
for the squid-axon model. The double-sided spectrum develops a pronounced and increasingly
narrow resonance at ∼±360 Hz as the critical current is approached from below. (Reproduced
from [22].)
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Fig. 1.3 H.R. Wilson type-I (integrator) response to white-noise perturbation as a function of sub-
threshold stimulus current Idc. (a) Caption as for Fig. 1.2(a), but here stimulus current ranges from
−10.0 to +21.475 μA/cm2. Black curves are ±3σ predictions; gray background verticals indicate
fluctuation extrema recorded from 2000 independent numerical experiments. (b) Theoretical spec-
trum for subthreshold cortical neuron shows a strong resonance developing at zero frequency as
threshold current for spiking is approached from below. (Reproduced from [22].)

1.2.3 Theoretical fluctuation statistics for approach to criticality

Provided the white-noise perturbations are kept sufficiently small, it is possible to
compute exact expressions for the variance, power spectrum, and correlation func-
tion of the voltage and recovery-variable fluctuations. By “sufficiently small”, we
mean that the neuron remains subthreshold (i.e., does not generate an action poten-
tial spike), so can be accurately described using linear Ornstein–Uhlenbeck (Brow-
nian motion) stochastic theory.

The analysis was detailed in Ref. [22], but in outline, proceeds as follows. For a
given (subthreshold) value of stimulus current Idc, compute the steady-state coordi-
nate (V o,Ro). For the H.R. Wilson resonator, V o is a monotonic increasing function
of Idc (see Fig. 1.4(a)), whereas for the Wilson integrator the graph of V o vs Idc maps
out an S-shaped curve (Fig. 1.4(b)), so there can be up to three steady states for a
given value of stimulus current [30]—in which case, select the steady state with the
lowest voltage.

We rewrite the Wilson equations (1.1), (1.2) in their deterministic (noise-free)
form,

F1(V,R) ≡ (INa + IK + Idc)/C , (1.7)

F2(V,R) ≡ (−R(t) + R∞(V ))/τ , (1.8)

and linearize these by expressing the fluctuations (v,r) as small deviations away
from steady state (V o,Ro),

v(t) = V (t)−V o , r(t) = R(t)−Ro , (1.9)
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Fig. 1.4 Distribution of steady-state membrane voltages as a function of dc stimulus current Idc
for (a) Wilson type-II resonator model; and (b) Wilson type-I integrator neuron. The critical cur-
rent Icrit

dc is determined by the point at which the (real part of the) dominant eigenvalue becomes
positive, heralding emergence of instability (generation of action potentials). Transition occurs (a)
via subcritical Hopf bifurcation at H for the resonantor [30]; and (b) via saddle–node annihilation
at SN for the integrator. (Modified from [22].)

Reinstating the additive noise terms, the linearized Wilson equations become cou-
pled Brownian motions of the form,

d
dt

[
v
r

]
= J

[
v
r

]
+

√
D
[

ξI

ξR

]
, (1.10)

with Jacobian and diffusion matrices defined respectively by,

J =

[ ∂F1
∂V

∂F1
∂R

∂F2
∂V

∂F2
∂R

]∣∣∣∣∣
(V o,Ro)

, D =

[(σI
C

)2
0

0
(σR

τ
)2

]
, (1.11)

where J is evaluated at the selected equilibrium point.
In the vicinity of an equilibrium point, the deterministic behavior of the two-

variable Ornstein–Uhlenbeck system is completely defined by the two eigenvalues,
λ1 and λ2, belonging to the Jacobian matrix.

For the subthreshold Wilson resonator, the eigenvalues are complex,
λ1,2 = −α ± iωo, with the damping α = −Re(λ ) being positive for a decaying
impulse response and a stable equilibrium. If the damping becomes negative (i.e.,
Re(λ ) > 0), a minor disturbance will grow exponentially, signaling onset of nonlin-
ear super-threshold behavior (generation of a spike). But if the drive current matches
the critical value Icrit

dc exactly, the damping will be precisely zero, thus a small dis-
turbance will provoke a resonant response at frequency ωo whose oscillations will
neither decay nor grow over time, but will persist “forever”.

For the Wilson integrator neuron, both eigenvalues are purely real, with λ2 <
λ1 < 0 for a stable equilibrium. Exponential growth leading to spike onset is pre-
dicted if the dominant eigenvalue λ1 becomes positive. At the critical current for
the integrator (lower-right turning point in Fig. 1.4(b) labeled SN), the unstable
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mid-branch saddle equilibrium meets the stable lower-branch node at a saddle–
node bifurcation. At this bifurcation point the dominant eigenvalue is precisely zero,
leading to a delicate point of balance in which small perturbations are sustained in-
definitely, neither decaying back to steady state nor growing inexorably into nonlin-
earity and thence to a spike. At this point, the neuron response will become critically
slowed.

1.2.3.1 Fluctuation variance

Following Gardiner’s analysis of the multivariate Ornstein–Uhlenbeck process [8],
we can write theoretical expressions of the white-noise evoked fluctuation variance
and spectrum, and deduce scaling laws for the divergences that manifest at the crit-
ical point.

The steady-state variances of the fluctuations developed in the Wilson excitable
membrane depend explicitly on the elements of the diffusion matrix and the Jaco-
bian matrix, and on the Jacobian eigenvalues. For the H.R. Wilson type-I integrator,
the variance of the voltage fluctuations reads [22],

var{v} =
(λ1λ2 + J2

22)D11 + J2
12D22

−2(λ1 +λ2)λ1λ2

λ1↑0−−→ ∼ 1
−λ1

∼ 1√
ε

. (1.12)

Here, λ1 is the dominant (i.e., least negative) eigenvalue, and both eigenvalues are
real. As the dc stimulus current approaches its critical value, λ1 approaches zero
from below. Thus, at the threshold for spiking, the integrator neuron becomes in-
finitely responsive to white-noise perturbation with the fluctuation power diverg-
ing to infinity. The scaling for this divergence follows an ε−1/2 power-law, where
ε = (Icrit

dc − Idc)/Icrit
dc is a dimensionless measure of distance from criticality. This is

the case because in the vicinity of the saddle–node bifurcation point, the dominant
eigenvalue scales as

√
ε in a locally parabolic relationship. Since the inverse of the

dominant eigenvalue defines the dominant time-scale T for system response, it fol-
lows that the characteristic times (correlation time, passage time) will obey the same
scaling law: T ∼ ε−1/2. We note that this inverse square-root scaling law is a very
general feature of systems that are close to a saddle–node bifurcation [26].

For the case of the Wilson type-II resonator, the eigenvalues form a complex con-
jugate pair, λ1,2 = −α ± iωo, so the expression for voltage variance
becomes [22],

var{v} =
(α2 +ω2

o + J2
22)D11 + J2

12D22

4α (α2 +ω2
o )

α↓0+
−→ ∼ 1

α
∼ 1

ε
. (1.13)

As the critical point is approached, the damping α = −Re(λ ) goes to zero from
above, leading to a prediction of a divergent power increase that scales as ε−1 (for
the Wilson resonator close to threshold, α scales linearly with ε).
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Equations (1.12) and (1.13) were used to compute the theoretical ±3σ voltage
fluctuation limits plotted in Figs 1.3(a) and 1.2(a) respectively; we note excellent
agreement between simulation (gray stripes) and small-noise linear theory (black
curves).

1.2.3.2 Fluctuation spectrum

The stationary spectrum for the membrane-voltage fluctuations in the stochastic
H.R. Wilson neuron is given by the S11 entry of the 2×2 spectrum matrix of the
two-variable Ornstein–Uhlenbeck process [8, 22]. For the Wilson integrator neuron,

S11(ω) =
1

2π
J2

22D11 + J2
12D22 +D11ω2

(λ1λ2 −ω2)2 +(λ1 +λ2)2 ω2
λ1=0−→
ω→0

∼ 1
ω2 . (1.14)

The spectral character of the fluctuations changes as the Idc stimulus current in-
creases towards the critical value Icrit

dc , and the corresponding lower-branch steady
state moves closer to the saddle–node critical point (marked SN in Fig. 1.4(b)): the
dominant eigenvalue λ1 tends to zero from below, causing the power spectral den-
sity to diverge at zero frequency, obeying an asymptotic power-law ∼ 1/ω2. Thus,
at the critical saddle–node annihilation point, the Wilson integrator is predicted to
become “resonant at dc”. This spectral tuning of fluctuation energy towards zero
frequency is illustrated in the plots of Eq. (1.14) graphed in Fig. 1.3(b).

The noise-driven time-series for the squid-axon model illustrated in Fig. 1.1(a)
shows a strongly increasing tendency for the voltage trace to “ring” at a characteris-
tic frequency as the drive current is increased towards the threshold for spiking. This
ringing behavior is precisely consistent with the spectrum predicted from Ornstein–
Uhlenbeck theory for the Wilson resonator neuron [22],

S11(ω) =
1

2π
J2

22D11 + J2
12D22 +D11ω2

(α2 +ω2
o −ω2)2 +4α2ω2

α=0−→
ω→ω0

∼ 1
(ω −ωo)2 , (1.15)

implying perfect resonant behavior at frequency ω = ωo, with the approach to res-
onance following an asymptotic scaling-law ∼ 1/δ 2 where δ = (ω −ωo) is the
spectral distance from resonance. The resonator spectrum of Eq. (1.15) is plotted in
Fig. 1.2(b).

We now move from consideration of single neurons to the gross behaviors of
large populations of neurons. Just as a single neuron displays telltale nonlinear in-
creases in responsiveness as it approaches the transition point separating stochas-
tic quiescence from dynamic spiking, we find that the collective behaviors of
cooperating neuron populations also exhibit characteristic critical responses as the
neural population approaches a change of state. We consider three gross changes of
cortical state that are easily detected with a single pair of EEG electrodes: induction
of anesthesia; natural sleep cycling from slow-wave sleep into REM sleep; and the
nightly transition between wake and sleep.
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1.3 The anesthesia state

The ability to render a patient safely and reversibly unconscious via administration
of an anesthetic drug is an essential component of modern surgical medicine. Al-
though anesthetic agents have been in use for over 160 years, their mode of action
remains poorly understood, and is the focus of ongoing and intensive research.

The state of general anesthesia is a controlled and reversible unconsciousness
characterized by a lack of pain sensation (analgesia), lack of memory (amnesia),
muscle relaxation, and depressed reflex responses. In his classic 1937 textbook for
anesthetists [9], Arthur Guedel identified four distinct stages in the induction of
general anesthesia using the volatile agent diethyl ether:

1. Analgesia and amnesia Patient experiences pain relief and dreamy disorienta-
tion, but remains conscious.

2. Delirium Patient has lost consciousness, blood pressure rises, breathing can be-
come irregular, pupils dilate. Sometimes there is breath-holding, swallowing,
uncontrolled violent movement, vomiting, and uninhibited response to stimuli.

3. Surgical anesthesia Return of regular breathing, relaxation of skeletal muscles,
eye movements slow, then stop. This is the level at which surgery is safe.

4. Respiratory paralysis Anesthetic crisis—respiratory and other vital control cen-
tres cease to function, death from circulatory collapse will follow without as-
sisted ventilation and circulatory support.

One might anticipate a roughly linear dose–response in which increasing drug con-
centration leads to proportionate reductions in brain activity—however, this simple
intuition is immediately contradicted by the anomalous patient response reported by
Guedel at the stage-2 (delirium) level of anesthesia. A general anesthetic is admin-
istered with the aim of quieting or inhibiting brain response to noxious stimuli, and
yet, on route to the stage-3 fully-inhibited state, the patient transits through a “wild”
uncontrolled state of delirium and uninhibited response to stimuli. This is a most
interesting paradox: the end-state of inhibition is preceded by an intermediate stage
of excitation.

1.3.1 Effect of anesthetics on bioluminescence

In the 1970s, researchers reported that the volatile anesthetics ether, halothane, chlo-
roform, and cyclopropane all reversibly reduce the intensity of light emissions from
luminescent bacteria [10, 28]. This followed earlier work by Ueda [27] showing
that the light emission from the firefly lantern-extract luciferase was reversibly sup-
pressed by both ether and halothane. The anesthetic concentration required to de-
press bioluminescent intensity by 50% was found to be very similar to the con-
centrations required for clinical induction in humans. Because of this remarkable
scale-invariance (i.e., the light-emitting complex in photo-bacteria and in fireflies,
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and the central nervous system in humans, are responsive to similar concentrations
of a given anesthetic), and because light intensity can be be easily and accurately
measured, bioluminescence provided a useful early means for quantifying and com-
paring anesthetic potency.

Figure 1.5 shows the bioluminescence dose–response for ether reported by
Halsey and Smith [10]. At partial pressure P = 0.026 atm, the luminous intensity has
reduced to 50% of its original value. This partial pressure is similar to the 0.032 atm
value quoted in the paper for the abolition of the righting instinct in 50% of mice
exposed to ether.3 Of particular interest is their observation that luminescence is
stimulated by low doses of ether (P ∼ 0.009 atm), confirming an earlier report by
White and Dundas [28]. Halsey and Smith [10] stated that stimulation also occurred
at low levels of chloroform, halothane, and nitrous oxide (though for the latter two
agents the increase was “not statistically significant”, presumably because the un-
certainty bars became very large during this transition phase).
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Fig. 1.5 Dose–response curve showing the effect of the volatile anesthetic ether on the luminous
intensity of the bacteria Photobacterium phosphoreum. Note the anomalous surge, and increased
variability, in light output at low ether concentration. (Graph reconstructed from [10].)

Although neither research group offered an explanation for this paradoxical exci-
tation by an inhibitory agent, it seems rather likely that the dilute-ether boost in lumi-
nous intensity and variability seen in bacteria could be mapped directly to Guedel’s
delirium (stage-2) for ether-induced anesthesia in human patients—though it might
be difficult to test this idea quantitatively now, since diethyl-ether is no longer used
as an anesthetic agent in hospitals.

3 Prior to the bioluminescence studies, small mammals had been used to calibrate anesthetic
potency.
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1.3.2 Effect of propofol anesthetic on EEG

Unlike diethyl-ether and the other volatile anesthetic agents (such as those tested in
the bioluminescence experiments) that are delivered to the patient by inhalational
mask, propofol, a modern and commonly-used general anesthetic, is injected intra-
venously as a liquid emulsion, so is likely to have a different mode of action. Despite
this difference, the onset of propofol anesthesia is also heralded by a surge in brain
activity that is readily detected as a sudden increase in low-frequency EEG power
[14, 15]; this excitation subsides as the patient moves deeper into unconsciousness.
Thus propofol, like ether, is “biphasic”, being excitatory at low concentrations, then
inhibitory at higher concentrations.

The measurements of Kuizenga et al. [15] shown in Fig. 1.6(a) show that a
second surge in activity occurs as the propofol concentration dissipates, allowing
the patient to re-emerge into consciousness. Thus there are two biphasic peaks per
induction–emergence cycle: the first at or near loss-of-consciousness (LOC), and the
second at recovery-of-consciousness (ROC). The onset of the first EEG surge lags
∼2 min behind the rise in propofol concentration; this delay arises because of the
unavoidable mismatch between the site of drug effect (the brain) and the site of drug
measurement (the blood)—it takes about 2 min for the drug to diffuse across the
blood–brain barrier. Even after compensating for this delay, there seems to remain
a hysteretic separation between that the LOC and ROC biphasic peaks, meaning
that the patient awakens at a lower drug concentration than that required to put the
patient to sleep.

At the individual neuron level, the major effect of propofol is to prolong the
duration of inhibitory postsynaptic potential (IPSP) events, thereby increasing the
inward flux of chloride ions and thus increasing the hyperpolarizing effectiveness of
inhibitory firings by GABAergic interneurons [4, 13].

We developed a model for propofol anesthesia by modifying a set of cortical
equations by Liley [16] to include a control parameter λ that lengthens the IPSP
decay-contant (by reducing the IPSP rate-constant γi) in proportion to drug con-
centration: γ−1

i → λγ−1
i ; see Refs [23–25] for full details. For a physiologically

plausible set of cortical parameters, we found that, for a given value of anesthetic
effect λ , the model cortex could support up to three homogeneous steady-states; see
Fig. 1.6(b). The upper (active) and lower (quiescent) stable nodes are separated by
a saddle-branch that is unstable to small perturbations, suggesting the possibility of
a propofol-mediated phase transition between the active (conscious) and quiescent
(unconscious) states. A transition from active branch A1-A2-A3 to quiescent branch
Q1-Q2-Q3 becomes increasingly likely as the node-saddle annihilation point A3 is
approached from the left. The abrupt downward transition represents induction of
anesthesia (i.e., LOC).

Once unconscious, reductions in λ allow the cortex to move to the left along
the bottom branch of Fig. 1.6(b), with the probability of an upward transition (i.e.,
ROC) rising as the quiescent node–saddle point Q1 is approached. Thus the model
provides a natural explanation for the observed LOC–ROC drug hysteresis.
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Fig. 1.6 Measured (a) and modeled (b–d) effect of propofol anesthetic agent on EEG activity
during induction of, and emergence from, general anesthesia. (a) Time-series showing biphasic
surges in 11–15-Hz EEG activity (black curve) in response to increasing and decreasing levels
of propofol blood concentration (gray curve) for a patient undergoing a full induction–emergence
cycle. [Data provided courtesy of K. Kuizenga.] (b) Trajectory of steady states predicted by a
cortical model that assumes propofol acts to prolong IPSP duration by factor λ . Approaches to the
saddle-node points A3 (for induction), and Q1 (for emergence), are predicted to show pronounced
EEG power surges displayed in (c) and (d) respectively. (Modifed from Figs. 3–5 of [23].)

Proximity to either of the node–saddle turning points can be detected by the di-
vergent sensitivity of the cortical model to small disturbances. This increasing sus-
ceptibility or “irritability” can be quantified by driving the model with low-level
white noise, simulating the biological reality of a continuous background wash
of unstructured, nonspecific stimulus entering the cortex from the subcortex. Pro-
vided the intensity of the white-noise stimulus is sufficiently small, we can com-
pute exact expressions for the stationary spectrum and correlation properties of the
noise-induced fluctuations by applying stochastic theory [8] to the distribution of
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eigenvalues obtained from linear stability analysis [23]. The predicted alterations in
spectral densities for EEG fluctuation power during anesthetic induction, and during
emergence from anesthesia, are plotted in Fig. 1.6(c) and (d) respectively. In both
cases, the fluctuation power at zero frequency surges as the node–saddle critical
point is approached, providing advance warning of an impending jump in membrane
voltage.

According to this model, we can interpret Kuizenga’s observations—of hystereti-
cally separated biphasic surges in EEG activity—as biological evidence supporting
the notion that the cortical states of awareness and anesthesia are distinct “phases”
of the brain. One could argue that the drug-induced transition into unconsciousness
has similarities with physical phase transitions, such as water freezing to ice, with
the effect of increasing drug concentration in the brain being analogous to lowering
the temperature in the thermodynamic system [25].

1.4 SWS–REM sleep transition

Monitoring the EEG activity of the sleeping human shows natural sleep to consist of
two opposed phases: quiet slow-wave sleep (SWS) and active rapid-eye-movement
(REM) sleep. During quiet sleep, the EEG voltage fluctuations are larger, slower—
and more coherent across the scalp—than those observed during alert wakefulness.
In constrast, during active sleep, the EEG closely resembles wake with its high-
frequency, low-amplitude desynchronized patterns. A sleeping adult human cycles
between SWS and REM-sleep states at approximately 90-min intervals, for a total
of four to six SWS–REM alternations per night.

Figure 1.7 illustrates the cyclic nature of the adult sleep patterns we reported in
Ref. [21]. We see four slow surges in EEG power during the six-hour recording,
with each surge being terminated by an abrupt decline, signaling the transit from
SWS to REM sleep. The increase in fluctuation power is matched by an increase in
correlation time4 that peaks at the end of each SWS episode, with abruptly lower
values in REM sleep. This is consistent with the antiphased changes in low- and
high-frequency power fractions of Fig. 1.7(c): SWS is associated with increasing
low-frequency activity; REM sleep is associated with diminished low-frequency and
enhanced high-frequency EEG fluctuations.

The Fig. 1.8 analysis by Destexhe et al. [2] for the sleeping cat shows similar
patterns of SWS–REM alternation, albeit with a faster cycling time of ∼20 min.
As was the case for the human sleeper, Fig. 1.8 shows that the sleeping cat exhibits
a pronounced increase in low-frequency power prior to transition from SWS into
REM. The concomitant increase in “space constant” (correlation length for EEG
fluctuations) observed for the cat is consistent with an increase in correlation time
we reported for the human sleeper.

4 Correlation time T is the time-lag required for the autocorrelation function for EEG voltage to
decay to 1/e of its zero-lag peak.
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Fig. 1.7 [Color plate] Analysis of an EEG trace recorded from a human sleeper resting overnight
in a sleep laboratory. (a) Fluctuation power; (b) correlation time; (c) low- and high-band power
fractions; (d) sleep staging as per rulebook of Rechtschaffen and Kale [20]. Key: +1 = REM; 0 =
wake; (−1,−2) = light sleep; (−3,−4) = deep sleep (SWS). (Graph reprinted from [21].)

Very similar changes are seen in the ECoG (electrocorticogram) brain activity
for a mature fetal sheep. Figure 1.9 shows a 500-s voltage trace, recorded from
the cortex of a late-term fetal sheep, that captures the transition between the so-
called “high-voltage slow” (i.e., SWS) and “low-voltage fast” (REM sleep) states.
As is the case for the human and cat sleepers, the slow-wave state is characterized
low-frequency correlated fluctuations that increase in intensity and low-frequency
content as the point of transition to active sleep is approached.
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Fig. 1.8 Cortical activity for a cat transitioning from wake to SWS to REM sleep as reported by
Destexhe et al. [2]. LFP = local field potential (on-cortex EEG); EOG = electrooculogram (eye
movement); EMG = electromyogram (muscle tone). REM is identified by reappearance of eye
movements (EOG activity) and lack of muscle tone (loss of EMG activity). (Graph reprinted from
[2] with permission.)

1.4.1 Modeling the SWS–REM sleep transition

In Ref. [21] we described the construction of a physiologically-based model for
the SWS–REM sleep transition that incorporated the two major neuromodulatory
influences that are thought to be responsible for the cycles of natural sleep: (a) slow
changes in synaptic efficiency ρe and resting voltage V rest

e of the population of exci-
tatory neurons caused by the 90-min cycling in acetylcholine (ACh) concentration;
and (b) slower changes in resting voltage caused by the gradual elimination dur-
ing sleep of fatigue agents such as adenosine. The full set of cortical equations are
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Fig. 1.9 Cortical activity for a full-term fetal sheep (gestational age = 144 days) transitioning from
slow sleep (SWS) to active sleep (REM) about 230 s into the recording. (a) ECoG voltage signal
(arbitrary units) sampled at 250 s−1. Inserts show 3 s of ECoG signal for the intervals 50–53 s
(left), and 450–453 s (right). (b) ECoG power (arbitrary units) computed for 3-s epochs with 25%
overlap (gray trace), and smoothed with a Whittaker filter [3] (black trace). (c) ECoG correlation
time computed for 3-s epochs with 25% overlap (gray trace), and smoothed with a Whittaker filter
(black trace). Note the coincident surge in power and correlation-time prior to transition into REM.
(Data provided courtesy of J.J. Wright; analysis by Yanyang Xu.)

described in the chapters by Sleigh et al and Wilson et al.5 The model consists of
eight differential equations for macrocolumn-averaged soma potentials and synaptic
fluxes. Here, we simplify the equations considerably by taking the “slow soma” adi-
abatic limit in which, relative to the ∼50-ms time-scale of the neuron soma, synaptic
input events are assumed to be fast and rapidly equilibrating. This simplification re-
duces the number of state variables from eight to two: Ve and Vi, the average soma
potential for the excitatory and inhibitory neural populations. The acetylcholine and
adenosine effects are modeled in terms of λ , a multiplicative factor applied to the
ρe excitatory synaptic efficiency, and ΔV rest

e , an additive adjustment that tends to
depolarize (hyperpolarize) the excitatory membrane potential for positive (negative)
values of ΔV rest

e .
The λ and ΔV rest

e parameters define a two-dimensional sleep domain for our
cortical model. We located the homogeneous equilibrium states (V o

e ,V o
i ) as a func-

tion of variations in λ and ΔV rest
e , paying particular attention to those regions of

5 See chapters 9 and 10 respectively in the present volume.
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the domain that support multiple (up to three) steady states. When plotted in 3-D,
the region of multiple steady states appears as a reentrant fold in the sleep-domain
manifold of Fig. 1.10. For our reduced adiabatic cortical model, the top and bottom
surfaces of the fold contain stable solutions, and only the middle surface (within the
overhang outlined in green) contains unstable solutions.6

Fig. 1.10 [Color plate] Manifold of homogeneous equilibrium states for SWS–REM sleep-cycling
model. Steady-state soma voltage V o

e is plotted as a function of sleep-domain parameters ΔV rest
e

and synaptic efficiency λ . The imposed sleep cycle commences in SWS at (+), encounters the
saddle–node critical point SN (•), and jumps vertically into REM sleep (◦). (Modified from [21].)

We impose a cyclic tour of the manifold that is proposed to represent a single
90-min SWS-to-REM-to-SWS sleep cycle. This tour, commencing in the quiescent
slow-wave sleep state (marked “+” in Fig. 1.10), proceeds clockwise until it en-
counters the saddle–node annihilation point SN at the lower overhang boundary,
whereupon the soma voltage spontaneously makes an upwards jump transition to
the activated upper state that we identify as REM sleep.

To visualize the dynamic repertoire available to the sleep-cycling cortex, we per-
form a numerical simulation of the reduced cortical equations. Voltage fluctuations
in soma potential are induced via small-amplitude white-noise stimulations enter-
ing the model via the subcortical terms (see [21] for details). The noise-stimulated
voltage fluctuations have an amplitude and spectral character that are strongly de-
pendent on the cortical steady-state coordinate. In Fig. 1.11 we have started the
numerical simulation very close to the saddle–node critical point SN on the bottom
branch of Fig. 1.10. Proximity to the critical point causes the fluctuations to be large
and slow; after about 2 s, the fluctuation carries the cortex beyond the basin of at-
traction of the bottom-branch equilibrium point, and the cortex is promptly drawn
to the upper state. Fig. 1.11 shows an abrupt loss of low-frequency activity once
the model cortex has transited from SWS into the REM (upper) state, similar to the

6 Analysis of the full nonadiabatic cortical model shows that, for particular choices of synaptic
parameters, the regions of instability can extend beyond the overhang, leading to Hopf and wave
instabilities. See chapters 9 (Sleigh et al) and 10 (Wilson et al) for details.
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Fig. 1.11 Stochastic simulation of the slow-soma cortical model for SWS–REM sleep cycling.
The cortical model is started close to the saddle–node critical point SN on the bottom branch of
Fig. 1.10. (a) Soma voltage Ve, and (b) noise-induced fluctuations δVe versus time. Fluctuations in
(b) are measured relative to the bottom (top) steady state for times t < 2.1 (t > 2.1) s. (Modified
from [21].)

spectral changes observed in the EEG for human, cat, and fetal-sheep sleep records
(Figs 1.7–1.9 respectively).

1.5 The hypnic jerk and the wake–sleep transition

The daily cycling of brain state between wake and sleep is a natural phase transi-
tion that is synchronized by the diurnal light cycle and regulated by waxing and
waning concentrations of neuromodulators such as acetylcholine (ACh) and adeno-
sine. Fulcher, Phillips, and Robinson (FPR) [7, 18] have developed a model for the
wake–sleep transition7 that we examine briefly here, focusing on the possibility that
critical slowing of noise-evoked fluctuations in the wake–sleep control center might
provide a natural explanation for the puzzling but common observation of a bodily
jerk at the onset of sleep.

The FPR wake–sleep model is expressed in terms of the mutual inhibition
between two brainstem neural populations: the sleep-active ventrolateral preop-
tic area (VLPO), and the wake-active monoaminergic group (MA). The mutual
competition between these populations produces bistable flip-flop behavior that
causes the brain state to alternate between wake and sleep states. In the simplest
form of the model (Fig. 1.12), the external ACh drive promoting arousal of the MA
(and of the cortex) is replaced by a constant excitation voltage Dm = A = const.,

7 And see Chap. 8 of this volume.
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Fig. 1.12 Schematic for sim-
plified Fulcher–Phillips–
Robinson model of the sleep–
wake switch. Excitatory (+)
and inhibitory (–) interactions
are shown with solid and
outline arrowheads. Mutual
inhibition between VLPO
and MA neuron populations
results in flip-flop bistabil-
ity between wake and sleep
states.

MA

VLPO

Arousal drive

Sleep drive

–

–

+

+

and the external somnogenic and circadian sleep-promoting drives that activate the
VLPO are replaced by a slowly-varying control parameter Dv. For this reduced case,
the respective equations of motion for Vv and Vm, the VLPO and MA population
voltages (relative to resting voltage) become,

dVv

dt
=

1
τ

(−Vv +νvmQm +Dv) , (1.16)

dVm

dt
=

1
τ

(−Vm +νmvQv +A) , (1.17)

where τ is a time-constant, ν jk is the coupling strength from population k to j (with
j,k = v or m), and Qk is the sigmoidal mapping from soma voltage Vk to average
firing rate [5],

Qk = S(Vk) = Qmax/
[
1+ exp(−{Vk −θ}/σ ′)

]
, (1.18)

with Qmax being the maximum firing rate, θ the threshold voltage (relative to
rest) for firing, and σ ′ a measure of its spread. (Refer to Table 8.2 for parameter
values.)

Setting the time-derivatives in Eqs (1.16–1.17) to zero and solving numerically
for the steady states as a function of sleep drive Dv reveals a three-branch locus
of equilibria (Fig. 1.13); linear stability analysis indicates that the middle branch is
unstable. The top branch has higher Vm values, so is identified with the wake state,
while the bottom branch, with lower Vm values, corresponds to sleep. Because the
top branch terminates in a saddle–node critical point (SN1), any noise present in
the VLPO–MA flip-flop will produce exaggeratedly enlarged and slowed voltage
fluctuations as the awake brain moves to the right along the top branch under the
influence of increasing sleep pressure Dv. If D0

v is the value of sleep pressure at
which the wake state loses stability (i.e., at SN1), then Eq. (1.12) predicts that the
variance of the voltage fluctuations will diverge according to the scaling law

var(Vm) ∼ 1√
ε

, (1.19)
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Fig. 1.13 Locus of equilib-
rium states, saddle–nodes,
and ghosts for FPR sleep
model as a function of VLPO
sleep-drive Dv. White curve
shows distribution of sta-
ble (solid line) and unstable
(dashed line) steady states.
Saddle–node bifurcation
points SN1, SN2 are marked
with open circles (◦). Re-
gions of slow dynamics are
shaded from V̇ = 0 (black)
to V̇ > 0.05 mV/ms (white).
Saddle–node ghosts form
in the “shadow zone” that
projects beyond the turning
points. (Figure modeled on,
and modified from, Fulcher
et al [7].)
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where ε = |Dv −D0
v | measures the distance to the saddle–node bifurcation point.

This theoretical prediction has been verified by numerical simulation—see Fig. 8.9(a)
in the chapter by Robinson et al (present volume).

It is likely that the brainstem VLPO–MA wake–sleep system projects to other
brain areas such as the cerebral cortex and motor cortex. At the point of falling
asleep, the VLPO–MA system is close to an instability point, so is highly sensitive
to stimulus, thus a sudden impulsive stimulus—either internal (e.g., a spontaneous
neural firing) or external (e.g., a sudden noise)—could produce an extravagantly
large response. If this disproportionate response were to be transmitted to higher
brain areas such as the motor cortex, then we might expect to observe a violent
whole-body twitch at or near the transition into sleep. This is a common point-of-
sleep experience for many individuals [17], and is known as the hypnagogic my-
oclonic twitch or hypnic jerk, but until now has lacked a satisfactory explanation.

The lower-branch turning point SN2 on Fig. 1.13 marks the position where the
sleep state loses stability during the awakening phase as the sleep drive Dv reduces in
intensity at the end of the diurnal sleep cycle. The fact that this second critical point
(for emergence from sleep) occurs at a lower value of sleep drive than that required
for transition into sleep provides a protective hysteresis that enhances the stability
of both states [7, 18]: once asleep, one will tend to remain asleep, and vice versa.
Further, if the flip-flop sleep bistability model is correct, we should expect a second
nonlinear increase in stimulus sensitivity as the sleep-emerging brain approaches
the lower-branch saddle–node critical point. Thus the model predicts that a minor
stimulus presented to an almost-awake brain could evoke a disproportionately large
response, causing the individual to be startled into wakefulness with a fright. This
exaggerated startle response (hyperekplexia) can be a common experience at the end
of an overnight sleep.
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Following Fulcher et al [7], we highlight the regions of slow dynamical evolu-
tion in the Fig. 1.13 Vm-vs-Dv graph by using a grayscale representation of V̇ , the
magnitude of the velocity field in Vv–Vm space,

V̇ =
[
(dVv/dt)2 +(dVm/dt)2]1/2

(1.20)

where dVv/dt and dVm/dt are defined respectively by the VLPO and MA equa-
tions of motion Eqs (1.16, 1.17). The grayscale shading shows that the regions
of slow evolution form a penumbra that brackets the reverse-S locus of fixed
points. The low-V̇ penumbral region is particularly accentuated in the vicinity of
the saddle–node turning points, defining saddle–node remnants or ghosts [26]. The
wake-ghost (to the right of SN1) and the sleep-ghost (to the left of SN2) act as
low-velocity bottlenecks, so any trajectory entering a ghostly region will tend to
linger there, exhibiting low-frequency enhancement of noise-induced voltage fluc-
tuations as it traverses the bottleneck. This suggests that the region of sleep-onset
hypersensitivity to impulsive stimuli could persist beyond the immediate proxim-
ity of the wake-branch critical point to include the shadow zone defined by the
wake-ghost.

1.6 Discussion

In this chapter we have examined several mathematical models for state transitions
in single neurons and in neural populations. The change of state occurs when a
control parameter (such as stimulus current, anesthetic concentration, neuromodu-
lator concentration) crosses a critical threshold, causing the initial equilibrium state
to lose stability, typically via a saddle–node or a Hopf bifurcation. We can detect
proximity to criticality by adding a small white-noise perturbation to induce fluctu-
ations in the observed variable, such as the membrane voltage, allowing the system
to explore its nearby state-space. As the system approaches the instability point, the
fluctuations grow in amplitude and in spectral coloration with a power-law diver-
gence that depends on the nature of the instability.

For a Hopf bifurcation, the fluctuation power diverges as 1/ε (where ε is the
displacement of the control parameter from threshold), and the spectral content be-
comes “critically tuned” at a nonzero resonance frequency ωo with the power spec-
tral density scaling as 1/(ω −ωo)2. This is the behavior seen in the subthreshold
oscillations of the H.R. Wilson type-II resonator membrane.

For a saddle–node bifurcation, the fluctuation power scales as 1/
√

ε , and the
spectral power scales as 1/ω2, implying infinite power at zero frequency. The di-
vergence at dc is the source of the critical slowing seen in the noise-induced fluctua-
tions as a saddle–node annihilation point is approached. This behavior was demon-
strated in the type-I integrator neuron, and in the mean-field models for anesthetic
induction, SWS-to-REM sleep cycling, and in the FPR model for the wake-to-sleep
transition.
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We argue that the presence of a neural instability provides a natural demarca-
tion point separating two distinct states, and that a transit across this boundary
can be viewed as a phase transition between states. Guedel’s observation [9] of
an ether-induced delirium phase—separating relaxed consciousness from anesthetic
unconsciousness—provided the first historical hint that induction of anesthesia is a
brain phase transition. The suppression of bacterial luminescence by volatile agents
(ether, chloroform, halothane, nitrous oxide) at clinically relevant concentrations
[10, 28] lead to the paradoxical finding of large fluctuations in light intensity at
low drug concentrations, consistent with a Guedel-like excited “delirium” phase in
bacterial activity. Recent measurements of patient response to the injectable agent
propofol show similar “biphasic” (surge followed by decay) brain EEG activity dur-
ing induction of anesthesia [14, 15], with a second biphasic surge occurring as the
patient recovers consciousness. The observation of a hysteresis separation between
the induction and emergence biphasic peaks (the recovery biphasic peak occurs at a
lower drug concentration) suggests that induction of anesthesia can be pictured as a
first-order phase transition.

Examination of EEG traces for sleeping mammals (human, cat, fetal sheep)
shows broad similarities in sleep patterns, with periodic alternations between a
slow, large-amplitude phase (SWS), and a desynchronized lower-amplitude phase
(REM sleep). The growth in low-frequency power prior to transition into REM
sleep is consistent with the SWS-to-REM sleep phase transition being first-order;
the absence of a power surge for REM-to-SWS suggests that this latter transition is
continuous.

The FPR phase transition model for the diurnal transition between wake and
sleep is based on mutual inhibition of the VLPO and MA brainstem nuclei, resulting
in hysteretic flip-flop bistability between wake and sleep states. Each state loses
stability via a saddle–node annihilation, so critically-slowed voltage fluctuations,
with attendant nonlinear increases in stimulus susceptibility, are predicted in the
vicinity of state change. This hypersensitivity to stimulus might provide a natural
explanation for the disconcerting hypnic jerk events that are commonly experienced
at the moment of sleep onset.
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Chapter 2
Generalized state-space models for modeling
nonstationary EEG time-series

A. Galka, K.K.F. Wong, and T. Ozaki

2.1 Introduction

Contemporary neuroscientific research has access to various techniques for record-
ing time-resolved data relating to human brain activity: electroencephalography
(EEG) and magnetoencephalography (MEG) record the electromagnetic fields gen-
erated by the brain, while other techniques, such as near-infrared spectroscopy
(NIRS) and functional magnetic resonance imaging (fMRI) are sensitive to the local
metabolic activity of brain tissue.

Time-resolved data contain valuable information on the dynamical processes tak-
ing place in brain. EEG and MEG time-series are especially promising, since the
electromagnetic fields of the brain are directly reflecting the activation of neural
populations; furthermore these time-series can be recorded with high temporal res-
olution. Extraction of the dynamic changes captured by EEG/MEG recordings is an
ideal application for time-series analysis [10].

From the multiplicity of concepts and methods for time-series analysis that have
been applied to neuroscientific time-series, we focus here on predictive modeling,
i.e., finding a predictor for future time-series values, based on present and past val-
ues. More precisely, we will discuss a particular class of predictive modeling that is
attracting considerable attention due to its wide applicability: the state-space model
[2, 3, 6, 12, 13].

Because nonstationary phenomena—such as sudden phase transitions relating to
qualitative changes in dynamical behavior—cannot be modeled well using standard

Andreas Galka
Department of Neurology, University of Kiel, Schittenhelmstrasse 10, 24105 Kiel, Germany.
e-mail: a.galka@neurologie.uni-kiel.de

Kevin Kin Foon Wong
Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

Tohru Ozaki
Tohoku University, 28 Kawauchi, Aoba-ku, Sendai 980-8576, Japan.

D.A. Steyn-Ross, M. Steyn-Ross (eds.), Modeling Phase Transitions in the Brain, 27
Springer Series in Computational Neuroscience 4, DOI 10.1007/978-1-4419-0796-7 2,
c© Springer Science+Business Media, LLC 2010



28 Galka, Wong, and Ozaki

state-space approaches, in this chapter we present a generalization of state-space
modeling appropriate for this purpose. This generalized algorithm may also serve
as a detector for phase transitions.

2.2 Innovation approach to time-series modeling

Let the data be denoted by y(t) , t = 1, . . . ,T , where T denotes the length of the
time-series, i.e., the number of time points at which the data were sampled. In this
chapter we will assume the case of univariate (scalar) data, although the modeling
algorithms to be presented can also be applied to multivariate (vector) data; tech-
niques like EEG and MEG usually provide multivariate time-series, resulting from
a set of up to a few hundred sensors. By confining the analysis to a single channel,
we confine our attention to the local brain area for which the chosen sensor is most
sensitive.

At a given time point t − 1 we intend to predict y(t), employing the data
y(τ) , τ = t −1 , t −2 , t −3 , . . . The optimal predictor is given by the conditional
expectation E

(
y(t)

∣∣ y(t −1), y(t −2), . . .
)
, such that the data model is given by

y(t) = E
(
y(t)

∣∣ y(t −1), y(t −2), . . .
)
+ν(t) , (2.1)

where ν(t) denotes the prediction error or innovation. The art of time-series mod-
eling then lies in finding a good approximation to E

(
y(t)

∣∣ y(t − 1),y(t − 2), . . .
)
.

For an optimal predictor, any correlation structure in the data y(t) is employed for
the purpose of prediction, such that, in the time-series of innovations, no correlation
of any kind remains, i.e., the innovations are a white-noise series. The concept of
mapping given data to white innovations represents the core idea of the innovation
approach to time-series modeling [11].

The theory of innovation approach modeling of Markov processes has been elab-
orated mainly by Levy [14] and Kailath [12]; one of the main results states that
under mild conditions, including continuity of the dynamics, a predictor exists such
that the innovations time-series will have a multivariate normal (Gaussian) distri-
bution. We refrain from giving details here; instead the reader is referred to [18].

2.3 Maximum-likelihood estimation of parameters

A parametric function of present and past data, y(t −1),y(t −2), . . ., may be chosen
as an approximation to E

(
y(t)

∣∣ y(t − 1),y(t − 2), . . .
)
, i.e., as a predictor; it will

typically depend on a set of model parameters, collected in a vector ϑ . Following
the concept of maximum-likelihood estimation of statistical parameters, we need to
maximize the likelihood defined by the conditional probability distribution
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L
(
ϑ ;y(1), . . . ,y(T )

)
= p

(
y(1), . . . ,y(T )

∣∣ ϑ
)

; (2.2)

equivalently, the logarithm of the likelihood, logL
(
ϑ ;y(1), . . . ,y(T )

)
, may be max-

imized. We will now derive an expression for logL
(
ϑ ;y(1), . . . ,y(T )

)
, to be used

in the innovation approach. The joint probability distribution of the data can be
expanded as a product

p
(
y(1), . . . ,y(T )

∣∣ ϑ
)

=

p
(
y(1)

∣∣ ϑ
)

p
(
y(2)

∣∣ y(1),ϑ
) · · · p

(
y(T )

∣∣ y(T −1), . . . ,y(1),ϑ
)
, (2.3)

where we have used the fact that the data must obey causality. The joint probability
distribution of the innovations has a simpler shape, due to the white-noise property
which removes any conditioning on previous values:1

p
(
ν(1), . . . ,ν(T )

∣∣ ϑ
)

= p
(
ν(1)

∣∣ ϑ
)

p
(
ν(2)

∣∣ ϑ
) · · · p

(
ν(T )

∣∣ ϑ
)
. (2.4)

We can employ this simpler expression for deriving the likelihood of the data.
The relationship between p

(
y(1), . . . ,y(T )

∣∣ ϑ
)

and p
(
ν(1), . . . ,ν(T )

∣∣ ϑ
)

can be
found from the function linking these two sets of variables; it is given by Eq. (2.1).
According to the standard rules for transforming probability distributions, the
Jacobi determinant of this function then arises as a correction to be multiplied with
p
(
ν(1), . . . ,ν(T )

∣∣ ϑ
)
; however, note that from Eq. (2.1) we have

∂ν(t)
∂y(τ)

=

{
1 for t = τ
0 for τ > t ,

(2.5)

where we have used the fact that also the predictor must obey causality. Conse-
quently, the Jacobi determinant is unity, and the joint probability of the given data
must be equal to the joint probability of the corresponding innovations,

p
(
ν(1), . . . ,ν(T )

∣∣ ϑ
)

= p
(
y(1), . . . ,y(T )

∣∣ ϑ
)

(2.6)

although the functional form of these two distributions may differ very much.
Finally this gives us for the logarithmic likelihood, employing a normal (Gaussian)
distribution for the innovations, as argued above,

logL
(
ϑ ;y(1), . . . ,y(T )

)
= −1

2

(
T logσ2

ν (t)+
T

∑
t=1

ν2(t)
σ2

ν (t)
+T log(2π)

)
, (2.7)

where σ2
ν (t) denotes the variance of the innovations.

1 Here the problem arises that, for the first data value y(1), no previous values exist which could be
employed by a predictor. But for sufficiently long time-series, the contribution of the first, or the
first few, data values to the likelihood can be neglected.
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2.4 State-space modeling

In state-space modeling [2, 3, 6, 12, 13], the data y(t) are modeled by a system of
two equations,

x(t) = Ax(t −1)+η(t) (2.8)

y(t) = Cx(t)+ ε(t) , (2.9)

where x(t) denotes the M-dimensional state vector, η(t) the dynamical noise term
and ε(t) the observation noise term; the model parameters are given by the state
transition matrix A and the observation matrix C. Furthermore, there are the co-
variance matrices Sη and σ2

ε of the noise terms (where for univariate data σ2
ε is a

single variance parameter instead of an actual covariance matrix). Alternatively, the
dynamical model, Eq. (2.8), could be chosen as a continuous-time model, i.e., as a
stochastic differential equation.

When interpreted as an input–output model, the state-space model of Eqs (2.8,
2.9) produces one output signal y(t) from two input signals η(t) and ε(t). This map-
ping is not invertible, i.e., the original inputs η(t) and ε(t) cannot be reconstructed
from the output y(t). However, it is possible to define a transformed model, such
that instead of two input signals just one is present, appearing both in the positions
of the dynamical noise and the observation noise; it turns out that this input signal
is given by the innovations ν(t) [11]. While the innovations can directly replace
observation noise, they need to be multiplied by a problem-specific gain matrix (the
Kalman gain matrix), before they can replace dynamical noise; in the case of uni-
variate data, this matrix will be an (M×1)-dimensional vector.

This transformed model is known as the innovation representation or Kalman
filter representation of the state-space model. It can be shown that the mapping be-
tween y(t) and ν(t) is invertible [11]. The existence of this representation provides
the justification for practical state-space modeling of time-series.

For given model parameters, the famous Kalman filter algorithm can be applied
for the purpose of generating estimates of the state vector [13]; improved estimates
can be obtained by additional application of a smoother algorithm [19]. While the
Kalman filter performs a pass through the time-series data in forward direction of
time, the smoother proceeds in backward direction. Since predictions are only pos-
sible in forward direction, it is only the Kalman filter which maps the data to inno-
vations and thereby provides a corresponding value for the likelihood of the data.

2.4.1 State-space representation of ARMA models

A well-established class of predictive models for time-series is given by autoregres-
sive moving-average (ARMA) models [5]. As a simple example for univariate data
y(t), we consider the following ARMA(2,1) model:
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y(t) = a1y(t −1)+a2y(t −2)+η(t)+b1η(t −1) , (2.10)

where η(t) denotes again a dynamical noise term, with variance σ2
η . This model

consists of an autoregressive (AR) term of second order, with parameters a1,a2, and
a moving-average (MA) term of first order, with parameter b1, therefore it is denoted
by ARMA(2,1). We can rewrite Eq. (2.10) as

y(t) =a1y(t −1)+ζ (t −1)+η(t)
ζ (t) =a2y(t −1)+b1η(t)

(2.11)

which is equivalent to(
y(t)
ζ (t)

)
=

(
a1 1
a2 0

)(
y(t −1)
ζ (t −1)

)
+
(

1
b1

)
η(t) , (2.12)

where ζ (t) denotes an auxiliary state variable which can be interpreted as a slightly

odd predictor of y(t +1) [2]. We define a state vector as x(t) =
(
y(t),ζ (t)

)†
(where

† denotes matrix transpose) and obtain the state-space model

x(t) =
(

a1 1
a2 0

)
x(t −1)+

(
1
b1

)
η(t) (2.13)

y(t) = (1,0)x(t) . (2.14)

The dynamical noise term of this model is given by (1,b1)†η(t); the corresponding
covariance matrix follows as

Sη =
(

1 b1

b1 b2
1

)
σ2

η . (2.15)

In Eq. (2.14) observation noise is absent, σ2
ε = 0; however, as a generalization we

may (and will) allow for nonzero σ2
ε .

The specific form of the state transition matrix
( a1 1

a2 0

)
is known as left companion

form, or (in the language of control theory) observer canonical form [12]; it is a
characteristic property of the state-space model corresponding to this form that the
MA parameter b1 is accommodated in the covariance matrix of the dynamical noise,
while the observation matrix C = (1,0) keeps a very simple form.

Note that the scaling of the components of the state vector in Eq. (2.13) is directly
controlled by the variance σ2

η ; since the model is linear, this degree of freedom can
be shifted to the observation matrix which then becomes C = (c1,0) while the dy-
namical noise variance can be normalized to σ2

η = 1. While in the case of univariate
data this is a possible, but not necessary choice, it provides the appropriate general-
ization for the case of multivariate data; for this reason, we will adopt this choice in
this chapter.

The construction leading to the model of Eqs (2.13, 2.14) is easily extended to
ARMA(p, p−1) models with higher order p > 2, yielding a state-space model
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x(t) =

⎛⎜⎜⎜⎜⎜⎝
a1 1 0 . . . 0
a2 0 1 . . . 0
...

...
...

. . .
...

ap−1 0 0 . . . 1
ap 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠x(t −1)+

⎛⎜⎜⎜⎜⎜⎝
1
b1
...

bp−2

bp−1

⎞⎟⎟⎟⎟⎟⎠η(t) (2.16)

y(t) = (1, 0, . . . , 0, 0) x(t) . (2.17)

The covariance matrix of the dynamical noise term of this model follows as

Sη =

⎛⎜⎜⎜⎜⎜⎝
1 b1 b2 . . . bp−1

b1 b2
1 b1b2 . . . b1bp−1

b2 b1b2 b2
2 . . . b2bp−1

...
...

...
. . .

...
bp−1 b1bp−1 b2bp−1 . . . b2

p−1

⎞⎟⎟⎟⎟⎟⎠σ2
η . (2.18)

2.4.2 Modal representation of state-space models

The dynamics of any linear state-space model can be characterized by the set of
eigenvalues of its state transition matrix A; the eigenvalues are found by transform-
ing A into a diagonal matrix. If M denotes the dimension of the state-space, there
will be M eigenvalues; a certain subset of these eigenvalues will be real, denoted
by a(1), . . . ,a(m1) (where m1 denotes the number of real eigenvalues), while the re-
maining eigenvalues will form pairs of complex-conjugated eigenvalues (assuming
that all elements of A are real), denoted by (ψ(1),ψ∗

(1), . . . ,ψ(m2),ψ∗
(m2)) (where m2

denotes the number of pairs of complex-conjugated eigenvalues). Then we will have
M = m1 +2m2.

Real eigenvalues a(k) of A correspond to autoregressive models of first order,
AR(1):

y(t) = a(k)y(t −1)+η(t) . (2.19)

Each complex-conjugated pair of eigenvalues ψ(k),ψ∗
(k) can be interpreted as an

oscillatory eigen-mode of the dynamics, with a resonance frequency φ(k) (corre-
sponding to the phase of the complex eigenvalues) and an accompanying damping
coefficient ρ(k) (corresponding to the modulus of the complex eigenvalues):

ψ(k) = ρ(k) exp iφ(k) , (2.20)

where i =
√−1.

Consider a complex-conjugated pair of eigenvalues ψ,ψ∗ within the diagonal-
ized state transition matrix; it corresponds to a (2× 2)-block

(ψ 0
0 ψ∗

)
on the diago-

nal. It is always possible to transform such a block to left companion form
( a1 1

a2 0

)
by a linear transform; therefore each complex-conjugated pair of eigenvalues can be
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represented by an ARMA(2,1) model, according to Eq. (2.13). The autoregressive
parameters follow from phase and modulus of the complex eigenvalues by

a(k)
1 = 2ρ(k) cosφ(k) , a(k)

2 = −ρ2
(k) . (2.21)

This transformation has the benefit of removing the complex numbers from the di-
agonalized state transition matrix.

Finally, the modal representation [23, 24] of the state-space model is given by
the transformed state transition matrix:

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1) 0 . . . 0 0 0 0 0 . . . 0 0
0 a(2) . . . 0 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 . . . a(m1) 0 0 0 0 . . . 0 0

0 0 . . . 0 a(1)
1 1 0 0 . . . 0 0

0 0 . . . 0 a(1)
2 0 0 0 . . . 0 0

0 0 . . . 0 0 0 a(2)
1 1 . . . 0 0

0 0 . . . 0 0 0 a(2)
2 0 . . . 0 0

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 . . . 0 0 0 0 0 . . . a(m2)
1 1

0 0 . . . 0 0 0 0 0 . . . a(m2)
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.22)

where we have ordered the dimensions of the transformed state-space, such that
dimensions corresponding to real eigenvalues come first, followed by dimensions
corresponding to complex eigenvalues.2

Note that this matrix is block-diagonal, such that no dynamical interactions be-
tween blocks, and therefore between the corresponding AR(1) and ARMA(2,1)
components, will occur; however, it has to be kept in mind that in general the dynam-
ical noise covariance matrix Sη of the state-space model will not be block-diagonal,
thereby creating instantaneous correlations between components.

2.4.3 The dynamics of AR(1) and ARMA(2,1) processes

We shall briefly discuss some dynamical properties of the components defined in the
previous section. For an ARMA(2,1) process, as defined by Eq. (2.10) or in state-
space representation by Eq. (2.13), the corresponding pair of eigenvalues should
lie inside the unit circle of the complex plane, otherwise the dynamics would be
unstable, i.e., there is a stability condition for the modulus of the eigenvalues,

2 In the case of repeated eigenvalues, the transformation to the modal representation will not be
possible, but this case is unlikely to arise for real-world data.
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0.0 < ρ < 1.0. The closer ρ approaches the unit circle, the sharper the resonance
will become; a sine wave corresponds to the limit case of ρ = 1.0.

The frequency-domain transfer function of an ARMA(2,1) process with AR pa-
rameters a1,a2 and MA parameter b1 is given by

h( f ) =
1+b1 exp(−2πi f )

1−a1 exp(−2πi f )−a2 exp(−4πi f )
, (2.23)

where i =
√−1 and 0 ≤ f ≤ 0.5. The behavior of the real part of this function is

shown in Fig. 2.1 for a fixed value of φ and a set of values for ρ . It can be seen that
only for values of ρ close to 1.0 a sharp resonance peak appear. The first-order mov-
ing average term b1η(t−1) produces a distortion of the curves; for the case b1 = 1.0
this distortion is most pronounced, since the numerator of Eq. (2.23) becomes zero
at f = 0.5. We remark that for ARMA(p,q) models with MA model order q > 1
the MA component may impose more complicated changes on the transfer function,
since then zeros of the numerator may occur at any frequency.
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Fig. 2.1 Real part of the transfer function of an ARMA(2,1) process for resonant frequency
φ = 0.25, damping coefficients ρ = 0.0, 0.5, 0.75, 0.9, 0.95, 0.995 (curves from bottom to top at
frequency 0.25) and moving average parameters b1 = 0.0 (left figure) and b1 = 1.0 (right figure).
Note the logarithmic scale of the vertical axis.

For AR(1) processes, according to Eq. (2.19), there is only a single real eigen-
value of the transition matrix, which is equal to the first-order autoregressive pa-
rameter itself; here we denote this parameter simply by a, for ease of notation. It is
obvious that also a real eigenvalue should lie inside of the unit circle, i.e., it should
fulfill the stability condition |a| < 1.0. The case a = 1.0 corresponds to a random
walk. AR(1) components cannot have resonant frequencies,3 but they can serve the

3 A somewhat pathological exception is the case a < 0.0 which corresponds to an oscillation with
precisely the Nyquist frequency; however, this oscillation will not produce an actual resonance
peak.
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purpose of describing random-walk-like behavior, such as slow drifts and trends in
the data, especially if a is close to 1.0.

2.4.4 State-space models with component structure

The modal representation of state-space models corresponds to a model that is orga-
nized into sets of AR(1) and ARMA(2,1) components; we can generalize this struc-
ture by allowing for higher-order components, i.e., ARMA(p, p− 1) components
with p > 2, as given by Eqs (2.16), (2.17) and (2.18). For each p, up to some maxi-
mum model order, we may choose a set of np ARMA(p, p−1) components and ar-
range their individual (p× p)-dimensional state transition matrices on the diagonal
of the state transition matrix of the state-space model with component structure. The
new state dimension will then result as M = ∑np p, and the state transition matrix
will again have a block-diagonal structure, with all remaining elements vanishing.4

ARMA(p, p− 1) components with p > 2 can be regarded as summarizing a sub-
set of the eigenvalues of the state transition matrix within one (p× p)-dimensional
block in left companion form.

If we intend to design a state-space model consisting of mutually independent
components, we should choose for the covariance matrix of the dynamical noise Sη
the same block-diagonal structure as for the state transition matrix. The correspond-
ing blocks are then given simply by nonzero values for the variances of the AR(1)
components, and by (p× p)-dimensional block matrices, as shown in Eq. (2.18), for
the ARMA(p, p−1) components, while again all elements outside of these blocks
vanish. For this model structure, there exist no ways by which correlations, instan-
taneous or delayed, could arise between components, except for coincidental corre-
lations due to limited data-set size.

Finally, the (1 × M)-dimensional observation matrix of the state-space model
with component structure is given by

C =
(

c(1)
1 ,c(1)

2 , . . . ,c(1)
n1 , c(2)

1 ,0, c(2)
2 ,0, . . . , c(2)

n2 ,0,

c(3)
1 ,0,0, c(3)

2 ,0,0, . . . , c(3)
n3 ,0,0, . . .

)
, (2.24)

where the c(p)
i are model parameters, if the corresponding dynamical noise variances

σ2
η have been normalized to unity.

4 As a generalization, it would be possible to use some of the elements outside the blocks for
introducing coupling between components.
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2.5 State-space GARCH modeling

The state-space model, as presented above, is sufficient for modeling a given time-
series under the assumption of stationarity. In the case of nonstationarity,5 the dy-
namical properties of the time-series data change with time; in this case, some of
the model parameters would have to change their values as well, in order to adapt
to these changing properties. This additional freedom may either be given to the
deterministic part of the model (the first term on the rhs of Eq. (2.13), i.e., the AR
term) or to the stochastic part (the second term, i.e., the MA term).

Here we choose the second option, i.e., we allow the dynamical noise covariance
to change with time. By this step we approach the concept of stochastic volatility
modeling [21], which consists of defining the dynamical noise (co)variance itself
as a set of new state variables, obeying a separate stochastic dynamical model. For
this additional dynamical model a new dynamical noise term is required, which
renders this model estimation problem considerably more complicated; however,
there exists a famous approximation to full stochastic volatility modeling, known as
generalized autoregressive conditional heteroscedastic6 (GARCH) modeling [4, 7].
GARCH modeling was introduced in the field of financial data analysis.

Originally, GARCH modeling was developed only for the direct modeling of data
through AR/ARMA models; its core idea is to use the innovation at the previous
time point, ν(t − 1), as an estimate of the noise input to the additional volatility
model. Recently, the method has been generalized to the situation of state-space
modeling [8, 25]. The main problem in this generalization is given by the fact that,
in the case of state-space models, we would need to employ state prediction errors
as an estimate of the noise input, but all that is available is the set of data prediction
errors, i.e., innovations.

2.5.1 State prediction error estimate

In order to derive a state-space version of GARCH modeling, it is necessary to de-
rive a suitable estimator ν̂x(t) of the state prediction error. The first choice for a
simple estimator is given by ν̂x(t) = K(t)ν(t), where K(t) denotes the (M × 1)-
dimensional Kalman gain matrix of a Kalman filter, used for estimating states from
given time-series data; K(t) can be regarded as a regularized pseudo-inverse of the
observation matrix C. However, in practical applications this simple estimator dis-
plays poor performance, whence we will use a refined estimator, derived in [25]:

ν̂2
x(t) = Sη(t)−Sη(t)C†σ−2

ν (t)CSη(t)+K(t)ν2(t)K†(t) (2.25)

5 We note that, within the framework of linear modeling, nonlinearity may be indistinguishable
from nonstationarity.
6 The term heteroscedasticity refers to the situation in which, within a set of stochastic variables,
different variables have different variances. Here, the term scedasticity, from Greek skedasis for
“dispersion”, is yet another word for “variance”.
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which is, strictly speaking, an estimator of the square of the state prediction
error; the square is inherited from the square in the definition of (co)variances. In
Eq. (2.25), σ2

ν (t) denotes the innovation variance, provided by the Kalman filter.
From Eq. (2.25), ν̂2

x(t) is a square matrix; in order to obtain the noise estimates for
the individual state components, we pick out the diagonal values from this matrix.
While this uniquely defines the noise terms for AR(1) components, ARMA(p, p−1)
components pose the problem that there are p diagonal elements; here we have cho-
sen to simply average over these elements, but other choices would be possible. The
resulting average is denoted by ν̂2

x (k, t) for the kth component of a state-space model
with component structure.

2.5.2 State-space GARCH dynamical equation

The design of a state-space GARCH model contains various details of implemen-
tation which need to be chosen, and in several cases it is not obvious which choice
would be best; instead, practical experience is employed.7 We found useful the par-
ticular implementation which we now describe.

In our implementation, the new time-dependent GARCH state variables corre-
spond roughly to standard deviations, rather than variances; however, in contrast
to standard deviations, these variables may also become negative. The state-space
GARCH model itself is given by another ARMA(r,s) model,

σ(k, t) = σ(k,0)+
r

∑
τ=1

α(k,τ)σ(k, t − τ)+
s

∑
τ=1

β (k,τ)ν̂2
x (k, t − τ) , (2.26)

such that for each component there is an additional set of state-space GARCH pa-
rameters σ(k,0),α(k,1), . . . ,α(k,r),β (k,1), . . . ,β (k,s); these parameters become
an additional part of the vector of model parameters ϑ . However, in practice we do
not need a state-space GARCH model for each component of a given state-space
model, but only for the particular component which actually contains the nonsta-
tionary phenomena to be modeled. For the other components we set

σ(k,0) = 1,α(k,1) = . . . = α(k,r) = 0,β (k,1) = . . . = β (k,s) = 0.

The choice of the GARCH model orders r,s forms again part of the model design.
In the application examples to be presented in this chapter, we have decided to use
r = 1,s = 10; experience has shown that sometimes it is advantageous to include a
longer history of previous noise estimates into the model. However, in other cases
also the choice r = 1,s = 1 has yielded good results [25]. In order to simplify the
parameter estimation step, we define a constraint β (k,1) = β (k,2) = . . . = β (k,10),

7 This situation is not unusual in statistical modeling of data, since it will rarely be possible to set
up a model which faithfully reproduces the structure of the underlying natural processes; rather,
models have always to be regarded as approximations. At least, this is the situation we are facing
in the study of systems of enormous complexity, such as the human brain.
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such that in effect we are using an average of the last 10 noise estimates and just
one MA parameter. In Refs. [8] and [25], state-space GARCH models were intro-
duced in which the logarithm of the variance, 2 logσ(k, t), was used as GARCH
state variable, but in this chapter we have decided to formulate the model directly in
the standard deviations σ(k, t).

2.5.3 Interface to Kalman filtering

At each time point t, the current value of the GARCH state variable, σ(k, t), is
passed through a “nonlinear” observation function by taking the square, thereby
becoming a genuine non-negative variance σ2(k, t); this variance then replaces, for
component k, the term σ2

η which appears in Eqs (2.15, 2.18) of the stationary state-
space model. The corresponding dynamical noise covariance matrix of component
k then enters the block-diagonal covariance matrix of the state-space model at the
appropriate block position of component k, such that this matrix itself becomes time-
dependent.

This step represents a major modification of the usual Kalman filter iteration,
since the continuous changes of one of the main matrices of the model prevent the
filter from reaching its steady state.

2.5.4 Some remarks on practical model fitting

The generalized state-space models discussed in this chapter are parametric models,
consisting of a model structure and a parameter vector ϑ . The following table lists
the parameter sets contained in ϑ , also giving the dimension of each set:

Description Symbol Dimension8

state transition matrix parameters9 a(k),φ (k),ρ(k) m1 +2m2

moving-average parameters bi m2

observation matrix parameters ci m1 +m2

observation noise variance σ2
ε 1

GARCH parameters σ(k,0),α(k,τ),β (k,τ) r + s+1 or10r +2
initial state vector x(0) m1 +2m2

8 In the table, m1 and m2 denote the number of real eigenvalues and of pairs of complex eigen-
values, respectively, regardless of how these eigenvalues are distributed over the ARMA(p, p−1)
components of the state-space model.
9 Optimizing φ (k),ρ(k) instead of the corresponding AR parameters a(k)

1 ,a(k)
2 has the advantage that

the stability constraint ρ(k) < 1.0 can be directly imposed; furthermore, prior knowledge about the
frequencies φ (k) can be conveniently incorporated into the model, or particular frequencies can be
excluded from the optimization process.
10 if the constraint β (k,1) = β (k,2) = . . . = β (k,s) is applied
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For a given choice of ϑ , the Kalman filter provides the corresponding value of
the likelihood. Model fitting consists of maximizing the likelihood, or, more con-
veniently, the logarithmic likelihood, with respect to ϑ by numerical optimiza-
tion [9]. For this purpose, we are employing standard optimization algorithms,
namely the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm
and the Nelder-Mead simplex algorithm. Sometimes the simplex algorithm can be
employed in situations where the quasi-Newton algorithm fails due to numerical
problems.

Several optimization steps should be iterated, such that in some steps the op-
timization is limited to subsets of parameters. With the sole exception of σ2

ε , all
parameters can be uniquely assigned to one of the components; we recommend
performing a series of optimization steps such that each step is confined to one
component. Some optimization steps may also be confined to state transition matrix
parameters, or to observation matrix parameters, etc.

A good initial model is of crucial importance for successful modeling. We rec-
ommend fitting an autoregressive model, AR(p), of sufficiently high model order,
say p = 30, to the given data; fitting of pure AR models, without MA terms, can
be done very efficiently by standard least-squares regression [5]. This model is then
converted into a state-space model, as discussed above, and the resulting state-space
model is transformed into its modal representation; thereby a model consisting of a
set of AR(1) and ARMA(2,1) components is obtained. Later, higher-order ARMA
components can be created by merging pairs of these AR(1) and/or ARMA(2,1)
components. The dynamical noise covariance matrix is constrained to the same
block-diagonal structure as the state transition matrix by setting all other elements
to zero.

At this point there is a need for subjective interference with the modeling process:
usually a subset of the initial components will capture the most important features
of the data and of the underlying dynamics, such as frequencies known to play an
important role, or prominent time-domain patterns, while other components will
describe rather unspecific activity. Only this subset of important components should
be selected as initial model, while the remaining components should be discarded.
Also, the decision as to which components, if any, are to be merged later to form
higher-order ARMA components depends on subjective assessment of the dynamics
represented by the components.

Keeping all components from the modal representation would also be possible,
but it would result in a very large model with many redundant components; such a
model could be employed as an alternative initial model, and later the model could
gradually be “pruned” during the optimization process, but this procedure would be
very demanding in terms of computational time consumption.

For the observation noise variance σ2
ε and the state-space GARCH parameters,

no initial values can be obtained by this approach. For σ2
ε , a small initial value

should be chosen, maybe about 10−3 times smaller than the variance of the data, un-
less we have reason to assume that there was considerably more observation noise
in the data. Larger initial values for σ2

ε may create the risk that the Kalman fil-
ter would incorrectly allocate a large fraction of the variance of the data to the
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observation noise term. The procedure for the state-space GARCH parameters is
described below.

For the application examples which will be discussed below, the dimension of
ϑ is about 35; about 10 of these parameters form the initial state vector x(0). We
recommended to keep x(0) initially at zero and to optimize only the remaining pa-
rameters, except for the state-space GARCH parameters, while omitting the con-
tributions of the first (approximately) 20 data points to the likelihood, in order to
allow a transient of the Kalman filter to die out. Once a first set of optimization
steps has been applied, such that approximate estimates of the main parameter sets
of the model have been obtained, the full likelihood is evaluated and the initial state
vector is included into the remaining optimization steps.

During the first part of the model fitting procedure, there should not yet be any
state-space GARCH models, i.e., the state-space GARCH parameters should be
fixed as σ(k,0) = 1, α(k,1) = 0, β (k,1) = 0, β (k,2) = 0, . . .. After the estimates
of the other parameter sets have converged to stable values, it can be decided which
component should be given a state-space GARCH model. Usually, the nonstation-
ary behavior to be modeled is represented only by one or possibly two components,
and only these components should be given state-space GARCH models. Experi-
ence has shown that if state-space GARCH models are given to all components of
a state-space model, components tend to become blurry and featureless, since too
much freedom is available to each component. After estimates of the state-space
GARCH parameters have been obtained, also all other model parameters need to
be refitted, since the introduction of state-space GARCH models may considerably
change the dynamics of the complete model.

In many cases, we probably cannot expect to reliably find global maxima in a
25-dimensional, highly heterogeneous parameter space. After the optimization pro-
cedure, the Hessian matrix at the obtained solution should routinely be computed,
in order to check for the possibility of saddle points; nevertheless we may find only
local maxima. Refined studies of the geometry of these parameter spaces would be
needed, in order to obtain additional insight into this problem. However, we expect
that for practical purposes a good solution will be almost as useful as the perfect so-
lution. In the end, the properties of the innovations will always allow an assessment
of the quality of the obtained model; major problems during the optimization step
will usually also be reflected in the innovations.

2.6 Application examples

In the remaining part of this chapter we will discuss the application of state-space
modeling, with component structure and state-space GARCH components, to three
examples of EEG time-series; all contain nonstationary phenomena: in the first ex-
ample, due to the transition from the conscious state to anesthesia; in the second,
due to the transition from one sleep stage into another; and in the third, due to the
occurrence of an epileptic seizure.
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2.6.1 Transition to anesthesia

As the first example we choose an EEG time-series recorded from a patient being
anesthesized (with propofol) prior to surgery. Sampling rate was fs = 100 Hz. From
the full clinical data set we select the time-series recorded at the T4 electrode ver-
sus average reference; we select T = 2000 sample points, starting with the moment
when induction of anesthesia was begun. The data are shown in Fig. 2.2A; the same
data were also analyzed in [25]. It can be seen that the qualitative appearance of the
trace changes within the 20 seconds covered by this time-series, i.e., the data con-
tain pronounced nonstationarity: high-amplitude oscillations in the delta frequency
range gradually become stronger, corresponding to the loss of consciousness. The
transition from the conscious state to anesthesia may be regarded as a phase transi-
tion in brain dynamics [22].

We model the data by a state-space model consisting of m2 = 5 mutually indepen-
dent ARMA(2,1) components; the model is fitted by maximizing the log-likelihood
until convergence. It is found that one of the components represents the gradually
increasing delta range oscillation; in a second modeling step, a state-space GARCH
model is added to this component, but not to the remaining four components. The
state-space GARCH model orders are r = 1, s = 10, but we apply to the MA param-
eters the constraint introduced above, β (k,1) = β (k,2) = . . . = β (k,10). The three
additional parameters of the state-space GARCH model are also fitted by maximiz-
ing the log-likelihood; then the other sets of model parameters are refitted, start-
ing at their previous non-GARCH values, in order to allow the model to adapt to
the presence of the state-space GARCH model. Joint and alternate optimization
of state-space GARCH model parameters and other parameters are iterated a few
times, again until convergence.

The resulting five components are shown in Fig. 2.2B; together they represent a
decomposition of the data of Fig. 2.2A. The figure shows smoothed state estimates,
as obtained by a standard Rauch-Tung-Striebel smoother [19] which performs a
backward pass through the time-series; during optimization only the forward pass
of the Kalman filter is performed, since it is this pass which transforms the data into
innovations and thereby produces a value for the likelihood.

Note that in Fig. 2.2B all components are displayed with the same variance, such
that their dynamical properties can be compared; their actual variances in state-
space will differ considerably, since we have chosen to normalize the variances of
the dynamical noises to 1, instead of the variances of the estimated states11.

In Fig. 2.2B components are ordered according to increasing frequency; this is
possible since all components are modeled by ARMA(2,1) processes, such that there
is a single resonance frequency for each component. At the top we find the nonsta-
tionary delta range component (labeled c1), with frequency12 f = 0.422 Hz and

11 The effective variances of the time-series of estimated state components do not represent model
parameters, therefore they would be inaccessible for the purpose of normalization.
12 The physical frequency f is related to the phase φ of the corresponding pair of complex eigen-
values, as defined by Eq. (2.20), by φ = 2π f / fs, where fs denotes the sampling frequency of the
data.
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Fig. 2.2 EEG time-series with transition to anesthesia: Data (A); state-space decomposition (B);
innovations (C); and state-space GARCH variance of component c1 (D). Vertical axes for all graphs
in subfigures A, B and C have been rescaled individually for convenience of graphical display.
Resonance frequencies f and damping coefficients ρ of components: c1: f = 0.422 Hz, ρ = 0.690;
c2: f = 10.495 Hz, ρ = 0.946; c3: f = 17.463 Hz, ρ = 0.772; c4: f = 45.34 Hz, ρ = 0.910; c5:
f = 48.649 Hz, ρ = 0.292.
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damping coefficient ρ = 0.690; the gradual increase of delta amplitude is clearly
visible. The next two components (c2 and c3) represent alpha and beta range com-
ponents, with f = 10.495 Hz, ρ = 0.946 for c2; and f = 17.463 Hz, ρ = 0.772
for c3. The remaining two components (c4 and c5) represent high-frequency noise
components, with f = 45.34 Hz, ρ = 0.910 for c4; and f = 48.649 Hz, ρ = 0.292
for c5. Note that for this data set the Nyquist frequency lies at fs/2 = 50 Hz.

In Fig. 2.2C the weighted innovations are shown, confirming that little, if any,
structure has remained in the innovations. The raw innovations (prediction errors)
of the state-space model have been weighted by being divided at each time point by
the square root of the corresponding innovation variance, as provided by the Kalman
filter; remember that in presence of a state-space GARCH model the Kalman filter
will not reach its steady state, such that also the innovation variance (or, more gen-
erally, covariance) will not converge to a constant value.

Finally, in Fig. 2.2D the time-dependent variance of the delta range component
is shown, as described by the state-space GARCH model. Note that the vertical
axis of this figure is logarithmic. This graph should be studied together with the
delta range component itself, the top graph in Fig. 2.2B. It can be seen that the
variance increases from values around 20 in the first few seconds to values around
200–300 at the end of the time-series; this increase may be interpreted as a data-
derived quantitative representation of the phase transition process.

At the beginning of the time-series, the dynamics of the variance of the delta
range component was initialized at an arbitrary value of 1.0, from which it has to rise
to more realistic values during a short transient which is not explicitly resolved in the
figure. The maximum-likelihood estimates of the state-space GARCH parameters
are σ(k,0) = 0.0837,α(k,1) = 0.975,β (k,1 . . .10) = 4.111×10−5.

2.6.2 Sleep stage transition

The second example is given by an EEG time-series recorded from the surface of a
fetal sheep brain (144 days gestation age). The original sampling rate was 250 Hz,
but we decide to subsample the data to fs = 125 Hz. A single electrode is selected.
Out of a longer data set, a subset of T = 50000 sample points (at 125 Hz) is selected,
covering a transition between slow-wave sleep (SWS) to REM sleep. The data are
shown in Fig. 2.3A. The transition is discernible by a decrease of signal amplitude
with concomitant fading of the characteristic slow-wave activity.

For modeling the sleep data we choose the same model structure as used for the
anesthesia study, i.e., we choose a state-space model consisting of m2 = 5 mutu-
ally independent ARMA(2,1) components; the model is fitted by maximizing the
log-likelihood until convergence. Again it is found that only one of the components
captures the nonstationary behavior representing the sleep stage transition; in a sec-
ond modeling step, a state-space GARCH model is added to this component, but not
to the remaining four components. State-space GARCH model orders are the same
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Fig. 2.3 EEG time-series from fetal sheep brain with transition from slow-wave sleep to REM
sleep: Data (A); state-space decomposition (B); innovations (C); and state-space GARCH variance
of component c1 (D). Vertical axes for all graphs in subfigures A, B and C have been rescaled indi-
vidually for convenience of graphical display. Resonance frequencies f and damping coefficients
ρ of components: c1: f = 3.811 Hz, ρ = 0.910; c2: f = 11.465 Hz, ρ = 0.882; c3: f = 18.796 Hz,
ρ = 0.926; f = 24.896 Hz, ρ = 0.951; c5: f = 30.801 Hz, ρ = 0.945. Insets show enlarged parts
of data, state-space components and innovations: 100–104 s (left) and 400–404 s (right).
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as for the anesthesia example: r = 1, s = 10, and the same constraint for the MA
parameters is employed. Model parameters are optimized until convergence.

The resulting five components are shown in Fig. 2.3B, ordered according to in-
creasing frequency; again, smoothed state estimates are shown, rescaled to the same
variance. The first component, labeled c1, is the nonstationary component; its fre-
quency and damping coefficient is f = 3.811 Hz, ρ = 0.910. For the remaining
components, frequencies and damping coefficients are f = 11.465 Hz, ρ = 0.882
for c2; f = 18.796 Hz, ρ = 0.926 for c3; f = 24.896 Hz, ρ = 0.951 for c4; and
f = 30.801 Hz, ρ = 0.945 for c5. The Nyquist frequency lies at fs/2 = 62.5 Hz.
Note that damping coefficients for all components are fairly close to 1.0, indicating
pronounced oscillatory behavior.

The weighted innovations and the time-dependent variance of the nonstationary
component are shown if in Figs. 2.3C and 2.3D, respectively. It can be seen that the
variance decreases from values around 5000 in the first part of the time-series (repre-
senting slow-wave sleep) to values around 200 in the latter part (representing REM
sleep). If the variance is used as a quantitative measure for the transition between
the two sleep stages, the time point at which the transition occurs can be identified
to within a time-interval of no more than 5 s; however, note that also within each
of the two sleep stages there are slow changes of the variance which may reflect
changes of the underlying physiological state.

Also for this model, the dynamics of the variance of the nonstationary component
was initialized at a value of 1.0, from which it rises to appropriate values around
5000 during a short transient. The maximum-likelihood estimates of the state-
space GARCH parameters are σ(k,0) = 0.176,α(k,1) = 0.985,β (k,1 . . .10) =
2.68×10−6.

In this time-series, we have the example of a nonstationarity where a state with
large variance passes to a state with smaller variance; we remark that we were also
able to model data displaying the opposite situation, i.e., the transition from REM
sleep to slow-wave sleep, from the same experiment (the same fetus) with the same
model class.

2.6.3 Temporal-lobe epilepsy
As the third example we choose an EEG time-series recorded from a patient suffer-
ing from temporal-lobe epilepsy, during awake resting state with open eyes. Sam-
pling rate was fs = 200 Hz. From the full clinical data set we select the time-series
recorded at the Fz electrode versus linked earlobes; out of a longer data set, we
select T = 2048 sample points, covering one short generalized epileptic seizure of
a type characteristic for temporal-lobe epilepsy. The data are shown in Fig. 2.4A.
In the figure, it can be seen that at time near 7 s the qualitative appearance of the
trace changes abruptly, with a series of periodic high-amplitude spike-wave patterns
emerging; these patterns are typical of the ictal regime (containing the seizure),
while the earlier part of the trace represents the preictal regime. The transition from
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Fig. 2.4 EEG time-series with epileptic seizure: Data (A); state space decomposition (B); innova-
tions (C); and state-space GARCH variance of component c5 (D). Vertical axes for all graphs
in subfigures A–C have been rescaled individually for convenience of graphical display. AR-
parameter of component c1 is a1 = 0.985. Resonance frequencies f and damping coefficients ρ of
other components: c2: f = 7.978Hz, ρ = 0.876; c3: f = 17.288Hz, ρ = 0.976; c4: f = 50.025Hz,
ρ = 1.0; component c5 has frequencies f = 3.274Hz, f = 18.171Hz and corresponding damping
coefficients ρ = 0.870, ρ = 0.883.
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the preictal to the ictal regime has recently been discussed by Milton et al. [15] in
analogy with phase transitions in physics.

We model the data by a state-space model consisting of one AR(1), three
ARMA(2,1) and one ARMA(4,3) components (corresponding to m1 = 1 real eigen-
values and m2 = 5 complex-conjugated pairs of eigenvalues); this structure is cho-
sen according to the transformation of an initial AR model into modal representa-
tion which reveals at least two components representing the epileptic seizure; these
two components are merged into a single fourth-order component. Again, the initial
state-space model is fitted by maximizing the log-likelihood until convergence. The
ARMA(4,3) component, representing the seizure activity, is then provided with a
state-space GARCH model, while the remaining four components are not. Again,
the state-space GARCH model orders are r = 1, s = 10, and the same constraint for
the MA parameter as before is employed. Fitting of the three additional parameters
and refitting of the other sets of model parameters proceeds in the same way as for
the earlier anesthesia and fetal sleep examples.

The resulting five components are shown in Fig. 2.4B, ordered according to in-
creasing frequency, with the ARMA(4,3) component at the bottom of the figure;
together these components represent a decomposition of the data of Fig. 2.4A. Also
this figure shows smoothed state estimates; again, for convenience of graphical dis-
play, variances of components have been normalized to the same value.

At the top of the figure, the single AR(1) component is shown, labeled c1; its state
transition parameter a1 is 0.985, and thereby well suited for describing slow drifts
and trends in the data. In this time-series, there seems to be a slow shift of potential
during the seizure; we see that the AR(1) component captures this shift well, thereby
facilitating the modeling of the oscillatory pattern during the seizure by another
component. In the preictal regime, the first-order component also captures some
unspecific low-frequency activity.

Below the AR(1) component, we see in Fig. 2.4B the three ARMA(2,1) com-
ponents, with frequencies and damping coefficients f = 7.978 Hz, ρ = 0.876 for
c2, f = 17.288 Hz, ρ = 0.976 for c3, and f = 50.025 Hz, ρ = 1.0 for c4; the
Nyquist frequency lies at fs/2 = 100 Hz. Components c2 and c3 represent alpha-
and beta-range components, respectively; the beta activity is clearly visible in the
data. Component c4 represents the frequency of the electrical power supply, i.e., an
artifact of technical origin; the damping coefficient of ρ = 1.0 clearly reveals an
undamped oscillation.

At the bottom of Fig. 2.4B, the ARMA(4,3) component representing the epileptic
seizure is shown; it can be seen that this component displays only weak activity until
the seizure commences. The seizure itself is well extracted, without leakage into
the other components. The two frequencies of this component are f = 3.274 Hz
and f = 18.171 Hz; the corresponding damping coefficients are ρ = 0.870 and ρ =
0.883. It is obvious that the first of these frequencies describes the main periodicity
of the ictal spike–wave patterns.

In Fig. 2.4C the weighted innovations are shown; again they are weighted by
being divided at each time point by the square root of the corresponding innovation
variance. While it can be seen that most of the structure has been removed, there are



48 Galka, Wong, and Ozaki

still some remains of seizure-related structure in the innovations. This can be seen
most clearly from the series of sharp spikes in the innovations which correspond
well with the epileptic spikes in the data. The last 40 samples of the innovations are
probably dominated by muscle artifact effects.

Finally, in Fig. 2.4D the time-dependent variance of the epileptic seizure com-
ponent is shown, as described by the state space GARCH model. Note that again
the vertical axis of this figure is logarithmic. This graph should be studied together
with the epileptic seizure component itself, the bottom graph in Fig. 2.4B. Again,
at the beginning of the time-series, the dynamics of the variance was initialized
at an arbitrary value of 1.0; the variance then drops to a somewhat smaller value
and mostly stays close to this value for several seconds, until the seizure com-
mences. The maximum-likelihood estimates of the state space GARCH parame-
ters are σ(k,0) = 0.465,α(k,1) = 5.044×10−3,β (k,1 . . .10) = 3.941×10−3; from
these values it is not surprising that the variance stays close to the constant term
σ(k,0) = 0.465, as long as the innovations remain small.

However, as soon as the seizure starts, the variance rises to values of almost
103; then, the variance oscillates roughly between 10 and 103, thereby following
the spike–wave oscillation of the seizure. We thus have two regimes of different
behavior of variance, preictal and ictal; if the transition between these two regimes
is regarded as a phase transition, the concurrent rise of the variance may again be
interpreted as a data-derived quantitative representation of this phase transition pro-
cess. We emphasize that no prior information—relating to either the components in
the data or the timing of seizure onset—was given to the algorithm.

Also in the preictal regime, the time-dependent variance shows some structure,
such as a transient increase of variance between 1.0 and 3.5 s into the time-series;
whether this structure actually reveals relevant information on the epileptic seizure
component cannot be decided on the basis of the analysis of just a single seizure.

2.7 Discussion and summary

For centuries, the ability to make quantitative predictions has been regarded as one
of the ultimate goals of science. Our present work, which aims to construct predic-
tive models for particular brain phenomena that are accessible to direct observation,
is motivated by the same goal.

Much is now known about the elementary constituents of the human brain: the
neurons, synapses, neurotransmitters and ion channels. In principle, it should be
possible to use this knowledge to set up a detailed model of the dynamics of brain;
such a model would allow reliable predictions of the observable phenomena gener-
ated by the brain. However, due to the enormous numbers of these constituents and
the complexity of their interconnections, this is not (yet) a practicable task.

Alternatively, a predictive model may be set up predominantly or exclusively
based on the available data, and this is the path we have followed in this chap-
ter. More specifically, we have studied how such a model can be set up for the
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purpose of efficient description of transitions between qualitatively different dynam-
ical states, i.e., of nonstationary behavior. The resulting models summarize various
useful statistics about the data, mainly encoded in the properties of the state-space
components, into which the data are decomposed. Each component is character-
ized by one or several resonant frequencies, but also by the corresponding damping
coefficients; furthermore the total power in the data is distributed over the compo-
nents in a specific way. Nonstationary components are modeled by additional state-
space GARCH models, and the time-dependent variance information provided by
such models offers additional information on the processes underlying the data; it
may be used also for purposes of automatic classification and event detection. In
particular, phase transitions represent an example of nonstationary processes; thus
the time-dependent variance may serve as a data-derived quantitative representation
of the underlying phase transition processes.

In this chapter, we have sketched a systematic approach to building state-space
models for univariate time-series data; the generalization to multivariate data is
straightforward. State-space models are predictive models, mapping the time-series
data to a time-series of prediction errors, denoted as innovations. The innovation ap-
proach to data modeling aims at whitening the data, i.e., at removing all correlations
from the innovations; this is the condition for the validity of the expression for the
logarithmic likelihood of the data given by Eq. (2.7).

The innovations are also a source of information for further improvement of
models; a good example is given by the third application example of this chapter.
Epileptic spike-wave patterns are known to be difficult to model by autoregressive
models [16]; the strongly anharmonic waveforms, in combination with poor stabil-
ity of the main frequency, pose considerable challenges. An improved model for the
epileptic seizure component, possibly incorporating also nonlinear elements, should
be able to reduce the amount of seizure-related residual structure in the innovations
which is visible in Fig. 2.4C; alternatively, or additionally, the design of the state-
space GARCH model may be further improved.

The choice of the model order of certain components represents a question of
model design, i.e., the choice of model structure; a related problem is that of model
comparison. This is a much more difficult problem than estimating model parame-
ters within a fixed model structure, and a full discussion would go beyond the scope
of this chapter. For the purpose of time-series decomposition and characterization of
nonstationarities, we have found the approach of fitting a set of mutually indepen-
dent ARMA(p, p−1) components useful; the choice of the number of components
and their model orders will, to some extent, remain a subjective decision. However,
such subjective decisions may be partly based on prior knowledge about the prop-
erties of physiologically meaningful components, or of well-known artifacts.

Fitting larger models with larger numbers of model parameters will usually im-
prove the likelihood, when compared with smaller models. It is well known that
this effect invites the risk of overfitting, against which the maximum-likelihood
method itself has no protection. Information criteria like the Akaike Information
Criterion (AIC) [1] or the Bayesian Information Criterion (BIC) [20] have been
introduced, for replacing the likelihood L

(
ϑ ;y(1), . . . ,y(T )

)
, or, more precisely,



50 Galka, Wong, and Ozaki

replacing −2logL
(
ϑ ;y(1), . . . ,y(T )

)
; these criteria contain a penalty term for the

number of model parameters, such that it can be decided whether the improvement
of likelihood resulting from extending a model is worth the price of additional model
complexity. Recently, logarithmic evidence has been proposed as an alternative for
AIC and BIC [17].

For the application examples presented in this chapter we have not reported de-
tailed values of log-likelihood, AIC or BIC; but we remark that the comparison of
both AIC and BIC for the best non-GARCH models with the final models including
state-space GARCH modeling has consistently favored the latter models.

Information criteria like AIC or BIC are best known as tools for estimating opti-
mal model orders for model classes like AR(p) models; but in fact these measures
permit the comparison of the performance of models in a much wider setting, such
as non-nested models, or even, with respect to their structure, mutually unrelated
models. Then, in principle, the process of model design could be based completely
on comparison of such criteria, instead on subjective decisions; the problem here
is that, for each competing model, a time-consuming numerical optimization pro-
cedure would have to take place before the values of the criteria would become
available; this would make such an approach very time-consuming. But the power
of information criteria for quantitative model comparison should be kept in mind.

Also, other design choices of the modeling algorithm discussed in this chapter
could be investigated in the light of information criteria. As an example, we again
mention details of the implementation of state-space GARCH modeling, such as
model orders, or the choice of the estimator for the state prediction errors, Eq. (2.25);
the quadratic estimator which we have employed, following [25], draws its main
justification from its superior performance in practical applications, also in terms of
information criteria, as compared to other estimators.

Use of state-space GARCH modeling to describe nonstationary structure in time-
series—in the absence of prior information on the timing of the nonstationary
changes—represents a comparatively new approach that will require more study,
both in simulations and applications, in order to become an established tool for
time-series analysis. In this chapter we have demonstrated its rich potential for mod-
eling phase transitions and other nonstationary behavior in electroencephalographic
time-series data.
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Chapter 3
Spatiotemporal instabilities in neural fields
and the effects of additive noise

Axel Hutt

3.1 Introduction

The spatiotemporal activity of neural populations may be measured by various ex-
perimental techniques, such as optical sensitive-dye imaging [2], multi-unit local
field potentials [20] or electroencephalography [41]. Most of this experimentally
observed activity results from the interaction of a large number of neurons [56].
Consequently, to describe theoretically such experimental data, the best model
choice is a mesoscopic description of populations with a typical spatial scale of few
millimeters [55]. Moreover, to understand the underlying dynamics of observed
activity, it is important to investigate neural population models that are extended
in space. A well-studied mesoscopic population model is the neural field, which
assumes a continuous space and may involve various spatial axonal interactions, ax-
onal temporal and spatiotemporal delays, various synaptic time-scales and external
inputs. This chapter presents an analysis of such a neural-field model, with the aim
of allowing deeper insight into the activity of neural populations.

The chapter derives a basic neural population model (Sect. 3.1.1) and subse-
quently introduces an extended model involving local and nonlocal spatial inter-
actions subject to different axonal transmission delays. Since the understanding of
spatiotemporal activity in neural populations necessitates the knowledge of its basic
dynamical properties, such as the linear response to external stimuli, the following
sections study the linear stability of the system at the absence of noise (Sect. 3.2). In
this context, time-independent and time-dependent phase transitions subject to ax-
onal conduction delays are discussed analytically and numerically. In a subsequent
analysis step, the stability and the linear response theory in the presence of noisy
inputs is discussed (Sect. 3.3). Finally, Sect. 3.4 considers the nonlinear behavior
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of the system close to an instability, both in the absence of and in the presence of
noise.

3.1.1 The basic model

The neural model under discussion may be seen as a recurrent network consist-
ing of several functional building elements and assuming a population of densely
packed neurons. A recurrent network is one which allows connections from each
node to every other node. This topology contrasts to feed-forward networks show-
ing sequential information transmission from one sub-network to another, which we
do not consider here.

One important element of the model under study is the branching system of ax-
onal fibers which connect neurons to each other. The connection elements between
neurons are chemical synapses located on dendritic branches. The postsynaptic po-
tentials generated by the synapses propagate to the neuron body (which is an addi-
tional model element), where they are summed to produce the effective membrane
potential. When the effective membrane potential exceeds a threshold value, the
neuron fires, and action potentials propagate along the axonal branches to down-
stream chemical synapses adjoining other neurons, and the model circle is closed.

In more detail, chemical synapses bind to dendrites which exhibit passive spread
of current. According to this approach, Freeman [24] was one of the first to show
experimentally that the action potentials arriving at the synapses convolve mathe-
matically with an impulse response function he(t) and hi(t) at excitatory and in-
hibitory synapses, respectively, to generate excitatory and inhibitory postsynaptic
potentials (PSP), V e(t) and V i(t), respectively. Since a dendritic branch of a single
neuron typically contacts many synapses (∼8000 [50]), many PSPs occur in a short
time on the dendritic branch and sum up to generate an effective current. If the in-
coming action potentials are uncorrelated, it is reasonable to interpret the incoming
action potentials as an effective population firing activity of high rate. Consequently,
considering a short time window Δ t, the single action potentials in this time window
can be replaced by the mean presynaptic firing rate [34], and the PSPs obey

V̄ e,i(t) =
∫ t

−∞
he,i(t − τ) P̄e,i(τ) dτ , (3.1)

with he,i(t) = ḡe,ih(t). Here, V̄ e,i is the time-averaged PSP and ḡe and ḡi represent the
average synaptic gain of excitatory and inhibitory synapses, respectively. Further,
P̄e(x, t) and P̄i(x, t) represent the corresponding presynaptic population pulse rate,
which terminates at excitatory and inhibitory synapses, respectively. We point out
that the time window Δ t is longer than the duration of a single action potential but
shorter than the typical decay time of chemical synapses, i.e., Δ t ≈ 2–5 ms.

The synaptic response behavior is defined by the corresponding synaptic re-
sponse functions h(t). In general mathematical terms, h(t) is the Green’s function
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for the temporal operator T̂ = T̂ (∂/∂ t) with T̂ h(t) = δ (t), and δ (t) being the Dirac
delta-distribution. Here, T̂ (∂/∂ t) denotes the operator T̂ being a function of the
operator ∂/∂ t, e.g., T̂ = (∂/∂ t)2 +(∂/∂ t)+1. Subsequently, the integral equation
(3.1) may be formulated as the ordinary differential equation

T̂V̄ e,i(t) = ḡe,iP̄e,i(t) . (3.2)

We point out that the PSPs are temporal averages over a short time-scale of few
milliseconds and thus the model is coarse-grained in time. Moreover, the model
assumes spatial averaging over small patches at the millimeter scale, which cor-
respond to the macrocolumns found experimentally in cortical [30, 54] and sub-
cortical [62] areas. Such macrocolumns represent ensembles of interacting neu-
rons, which evolve coherently. They are also called neuronal ensembles or neuronal
pools [21, 26].

Further, the model considers variations of synaptic properties in the neuronal
population [43] and thus PSPs V e,i(t) at single neurons are random variables with
the corresponding probability distributions pe

s(V
e−V̄ e) and pi

s(V
i−V̄ i). Since exci-

tatory and inhibitory PSPs sum up at the soma [25], the probability density function
pS(V −V̄ ) of the effective membrane potential V =V e−V i is a function of the prob-
ability density functions of excitatory and inhibitory PSPs. Here, V̄ represents the
average effective membrane potential in the population.

When the effective membrane potential exceeds a threshold Vth at time t, the
neuron generates an action potential. Thus, the probability of a single neuron firing
is Θ(V (t)−Vth(t)), where Θ denotes the Heaviside function. For an ensemble of
neurons, there is a distribution of firing thresholds D(Vth − V̄th, t) at time t. Here V̄th

denotes the mean firing threshold and D(Vth − V̄th, t)dVth is the number of neurons
at time t in the interval [Vth,Vth +dVth], which are not in a refractory period and thus
can fire. Consequently D may change in time. Hence the expected number of firing
neurons is

n(t) =
∫ Vmax

Vmin

dV pS(V −V̄ (t))
∫ Vh

V�

dVth Θ(V −Vth)D(Vth −V̄th, t)

=
∫ Vmax−V̄

Vmin−V̄
dw

∫ Vh−V̄th

V�−V̄th

du Θ(w+V̄ (t)−V̄th) pS(w)D(u, t) ,

where Vmin and Vmax are the minimum and maximum values of the membrane po-
tentials, respectively, and V� and Vh denote the lowest and highest firing thresholds,
respectively. Subsequently, the time-averaged pulse activity in the time window Δ t
at time t reads

f (t) =
1

Δ t

∫ t+Δ t

t
n(τ)dτ

≈
∫ Vmax−V̄

Vmin−V̄
dw pS(w)

∫ Vh−V̄th

V�−V̄th

du Θ(w+V̄ (t)−V̄th −u) D̄(u, t) (3.3)
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with the distribution of firing thresholds D̄(u, t) per unit time Δ t at time t. Here,
f (t) represents the average number of firing neurons per unit time. In other words,
f (t) is the population firing rate at time t, and thus Eq. (3.3) is the general def-
inition of the so-called transfer function [1, 34]. Moreover, it can be shown that
time-independent Gaussian distributions pS = N (0,σ2

S ), D̄ = SmN (0,σ2) and the
conditions Vmax,Vh →∞ and Vmin,V� →−∞ lead to the well-known transfer function

f (t) = Sm
1
2

(
1+ erf

(
V̄ (x, t)−V̄th√

2ηk

))
︸ ︷︷ ︸

S(V (x,t))

. (3.4)

Here, η2 = σ2
S + σ2, erf(x) represents the Gaussian error function, and Sm denotes

the maximum firing rate. By virtue of the unimodality of the distribution functions
pS and D̄, f (t) has a sigmoidal shape and the maximum steepness is Sm/(

√
2πη).

We abbreviate the sigmoidal function by S(V ) to indicate its shape. Equation (3.4)
shows accordance to the results of previous studies [1].

Typically, the sigmoid function is formulated as S(V ) = S0/(1 + exp(−C(V −
V0))). This formulation and Eq. (3.4) share their maximum and the locations at the
1/e height for the choice S0 = −4Sm/

√
π ln(a), V0 = V̄th and C = − ln(a)/

√
2η

with a = 2e−1±
√

(2e−1)2 −1. Hence, the more similar the firing thresholds in
the neural populations (i.e., the smaller σ and η), the larger C and thus the steeper
the sigmoidal function.

To close the circle of model elements, we consider the axonal connections be-
tween neurons which link the somata to dendritic structures of terminal neurons
distant in space. By virtue of these spatial connections, the corresponding spatial
interactions are nonlocal and yield temporal propagation delays due to the finite
axonal propagation speed c. To consider such spatial interactions, we conceive a
field of densely packed spatial patches, which are connected according to probabil-
ity distributions. Hence, the presynaptic pulse activities at excitatory and inhibitory
synapses taken from Eq. (3.1) read

P̄e(x, t) =
∫

Ω
dy Ke(x,y) f (y, t − |x− y|

c
) (3.5)

P̄i(x, t) =
∫

Ω
dy Ki(x,y) f (y, t − |x− y|

c
) , (3.6)

in which Ω denotes the spatial domain of the field. Here we assume a single neuron
type; the kernels Ke,i denote the probability densities of synaptic connections from
neurons to synapses of type e or i.

After inserting Eqs (3.5), (3.6) into Eq. (3.2), the effective membrane potential
V̄ = V̄ e −V̄ i obeys

T̂V (x, t) =
∫ ∞

−∞
dy [aeKe(x− y)−aiKi(x− y)]S

(
V (y, t − |x− y|

vi
)
)

+ I(x, t) (3.7)
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with ae,i = ḡe,iSmax. Moreover, the kernels are chosen symmetric and homogeneous,
i.e., Ke,i(x,y) = Ke,i(x− y) = Ke,i(|x− y|), and we choose the spatial domain Ω to
be the real line if not stated otherwise. Equation (3.7) also considers an external
input I(x, t) which may originate from other neural populations or from external
stimulation.

3.1.2 Model properties and the extended model

In previous studies, different variations and extensions of the basic model (3.7) have
been investigated [4, 10, 12, 36, 68, 70]. The average membrane potential in our
model obeys an integral-differential equation (IDE), while other neural population
models are formulated as partial differential equations (PDE) [8, 59, 65, 72, 73].
In recent years several studies have shown the relationship between the two model
types, concluding that the IDE-model generalizes the PDE-models [13, 31, 33, 34].

To illustrate this relation, assume a one-dimensional spatial field u(x) with spatial
kernel function K(x). Then the relation∫ ∞

−∞
K(x− y)u(y)dy =

∫ ∞

−∞
K̃(k) ũ(k)eikx dk (3.8)

holds with the Fourier transforms K̃ and ũ of K and u, respectively. Specifying
K(x) = exp(−|x|/√D)/2

√
D, one finds K̃(k) = 1/(1+Dk2) = 1−Dk2 +D2k4 + · · ·

and Eq. (3.8) reads∫ ∞

−∞
K(x− y)u(y)dy ≈ u(x, t)+DΔu(x, t)+D2Δ 2u(x, t)+ · · ·

with Δ = ∂ 2/∂x2. This means that fast-decaying integral kernels K(x) with
√

D� 1
represent a local diffusion process with diffusion constant D, while slowly-decaying
integral kernels represent higher orders of spatial derivatives, and thus reflect nonlo-
cal interactions of a long range. Following this approach, extended types of integral-
differential equations generalize four types of PDE-models, namely wave equa-
tions [49], reaction-diffusion models [13, 31], the Swift–Hohenberg equation and
the Kuramoto–Sivashinsky equation [31]. These well-studied PDE-models describe
pattern propagation in physical and chemical systems [14].

To capture several aspects of spatially extended neural populations in one model,
we consider an extended scalar IDE-model which allows various types of spatial
interactions and two propagation speeds:

T̂V (x, t) = g[V (x, t)]+ I(x, t)+
∫

ℜ
aKK(x− y)S

[
V (y, t − |x− y|

cK
)
]

+ aLL(x− y)S
[
V (y, t − |x− y|

cL
)
]

dy . (3.9)
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Here the functional g[V (x, t)] defines the local dynamics at spatial location x, and
the kernel functions K, L represent the probability density functions of spatial con-
nections in two networks, i.e., K(x) and L(x) are normalized to unity in the spatial
domain. Moreover, aK and aL are the total amount of activity in the corresponding
networks. The functional S[V ] represents the firing-rate function derived in Sect. 1.1.
Further, the model considers propagation delays between spatial locations x and y at
distance |x− y| due to the finite transmission speed cK and cL corresponding to the
two networks.

This model allows the study of a wide range of combined spatial interaction.
For instance, spatial systems involving both mean-field and local interactions may
be modeled by K(x) = const. and L(x) = δ (x), respectively, while the case aK >
0, aL < 0 represents excitatory and inhibitory interactions.

In a recent work, Venkov and Coombes introduced an even more general spa-
tiotemporal scalar model which captures several different integral-differential mod-
els [68]. Moreover, other previous studies investigated scalar models in two dimen-
sions [47, 57] and models involving two IDEs [7, 29, 40, 48].

The following sections aim to illustrate the analysis of IDEs, and thus focus on
the more specific model Eq. (3.9). Further, we study the interaction of excitation and
inhibition, i.e., aK > 0 and aL →−aL, aL > 0.

3.2 Linear stability in the deterministic system

First let us determine the stationary state of Eq. (3.9) constant in space and time.
Applying a constant external input I(x, t) = I0, we find the implicit equation V0 =
g(V0)+(aK −aL)S(V0)+ I0. Then small deviations u(x, t) about the stationary state
obey a linear evolution equation and evolve in time according to u(x, t) ∼ exp(λ t)
with the complex Lyapunov exponent λ ∈ C . If the exponent’s real part is negative,
i.e., Re(λ ) < 0, then the small deviations relax to the stationary state, while Re(λ ) >
0 yields divergent activity for large times.

The subsequent decomposition of u(x, t) into the continuous Fourier basis {eikz}
yields the implicit condition

T (λ ) = g0 +S′
∫

ℜ

(
aKK(y)e−λ |y|/cK −aLL(y)e−λ |y|/cL

)
eiky dy , (3.10)

with g0 = ∂g/∂V , S′ = ∂S/∂V computed at V = V0. Here, the function T (λ ) is
gained by replacing in T̂ the operators ∂/∂ t by λ . Since g0 and S′ depend on the
stationary state, which in turn depends on the external stimulus, the Lyapunov expo-
nents depend strongly on the external stimulus and consequently I0 is a reasonable
control parameter.

Equation (3.10) is difficult to solve exactly for λ due to the finite propagation
speeds. To gain some insights into the stability of the system, we consider large but
finite propagation speeds [3] and find exp(−λ |z|/c) ≈ 1−λ |z|/c for λ |z|/c � 1.
Since exp(−λ |z|/c) occurs in the integral in Eq. (3.10), τ = |z|/c is interpreted as
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the relation of the characteristic spatial scale of the kernel and the maximum speed
of activity, i.e., the characteristic propagation delay. Hence this approximation is
valid if 1/λ � τ , i.e., the time-scale of the evolving system is much larger than the
propagation delay. To get more insight to this approximation, we recall that most
sensory and cognitive processes evolve in the frequency band 5–80 Hz, i.e., on time
scales 12.5–200 ms. Since 1/λ represents the time-scale of the system, we find
12.5 < 1/λ < 200 ms. Moreover, assuming the lateral interactions between macro-
columns have a spatial range of 2 mm with typical intracortical axonal propagation
speed of 0.5 m/s, the characteristic propagation delay is τ = (2/0.5) ms = 4 ms,
much shorter than the system time-scale, so the approximation condition is valid.

Considering the latter approximation, Eq. (3.10) reads

T (λ )+λS′M̃1(k) ≈ g0 +S′M̃0(k) (3.11)

with

M̃0(k) = aKK̃(0)(k)−aLL̃(0)(k) , M̃1(k) =
aK

cK
K̃(1)(k)− aL

cL
L̃(1)(k)

and the kernel Fourier moments M̃(n)(k) =
∫ ∞
−∞ M(z)|z|n exp(−ikz)dz [3]. The term

M̃0(k) represents the Fourier transform and M̃1(k) is the first kernel Fourier moment
of the effective kernel function M(x) = aKK(x)−aLL(x).

Now let us specify the temporal operator T̂ . Typically the synaptic response func-
tion h(t) has two time scales, namely the fast rise-time τ2 and the slower decay-time
τ1. We choose h(t) = (exp(−t/τ1)− exp(−t/τ2))/(τ1 − τ2), and scale the time by
t →√

τ1τ2 to gain

T̂ =
∂ 2

∂ t2 + γ
∂
∂ t

+1

with γ =
√

τ2/τ1 +
√

τ1/τ2, and we find γ ≥ 2.
Now let us discuss the occurrence of instabilities. For vanishing input I0 = 0, we

assume that the system is stable, i.e., Re(λ ) < 0. Then, increasing I0, the Lyapunov
exponent may change its sign at Re(λ ) = 0 and thus the stationary state becomes
unstable and the system approaches a new state. In this section we describe the
different types of stability loss, but do not compute the new state approached by the
system in case of an instability. This is discussed in Sect. 3.4.

Consequently, it is sufficient to study two cases: λ = 0, which is the stabil-
ity threshold for static (or Turing) instabilities; and λ = iω , defining the stability
threshold for nonstationary instabilities oscillating with frequency ω . Specifically,
the corresponding conditions are obtained from Eq. (3.11) to be

1−g0,c

S′c
= M̃0(kc) (stationary instability) , (3.12)

γ
S′c

= −M̃1(kc) (nonstationary instability) . (3.13)
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In other words, the global maximum of M̃0(kc) and −M̃1(kc) define the critical
wavenumber kc and the critical control parameter via S′c and g0,c of stationary and
nonstationary instabilities, respectively. Figure 3.1 illustrates this result for nonsta-
tionary instabilities. Consequently, Eqs (3.12) and (3.13) give the rule for the emer-
gence of instabilities: increasing the control parameter from low values (where the
system is stable), the left-hand sides of Eqs (3.12), (3.13) change, and the condition
that holds first determines the resulting instability.

−kc +kc x

γ/S’

γ/S’

γ/S’

c

Fig. 3.1 Sketch to illustrate the mechanism of nonstationary instabilities. The plot shows the right-
hand side of Eq. (3.13) (solid line) and its left-hand side (dot-dashed line). If the stability threshold
is not reached, i.e., S′ < S′c, the system is stable, while S′ = S′c (S′ > S′c) reflects a marginally stable
(unstable) system.

3.2.1 Specific model

To gain more insight, we neglect local interactions, i.e., g = 0, and the spatial con-
nection kernels are chosen to be,

K(x− y) =
1

2rp
e Γ (p)

|x− y|p−1e−|x−y|/re , L(x,y) =
1

2ri
e−|x−y|/ri , (3.14)

where p > 0 is a parameter, Γ (p) denotes the gamma function and re,ri are the
spatial ranges of excitatory and inhibitory connections, respectively. This choice
of kernels allows for studies of manifold interactions. For instance, p = 1 repre-
sents axonal connections which are maximal at zero distance and monotonically
decreasing for increasing distance. This combination of excitatory and inhibitory
axonal interaction may yield four different spatial interactions, namely pure exci-
tation, pure inhibition, local excitation–lateral inhibition (Mexican hat) and local
inhibition–lateral excitation (inverse Mexican hat). Moreover, p > 1 represents the
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case of zero local excitation but strong lateral excitation which has been found in
theoretical [50] and experimental studies [56]. The decreasing spatial connectiv-
ity of inhibitory connections is motivated by successful theoretical studies [64, 69]
and the strong anatomical evidence for inhibitory self-connections in cat visual cor-
tex [66]. In the case of p < 1, the probability of local excitations is infinite. Though
infinite probability densities exist in some statistical systems [22], this type of inter-
action has not been found yet in experiments. However its study yields interesting
theoretical effects as discussed in Sect. 3.2.3.

After scaling the space by x → x/re, we obtain the kernel functions

K(x) =
1

2Γ (p)
|x|p−1e−|x| , L(x) =

1
2ξ

e|x|/ξ (3.15)

with ξ = ri/re. Hence the spatial interaction is governed by ξ which represents the
relation of inhibitory and excitatory spatial range, and by p reflecting the degree
of excitatory self-interaction. Figure 3.2 shows the kernel functions and four major
resulting types of spatial interaction.

3.2.2 Stationary (Turing) instability

For the specific choice of kernels (3.15), the condition for the Turing instability
(3.12) is S′c = 1/M̃0(kc). Since M̃0(k) → 0 as k → ∞, M̃0(kc) exhibits a positive
local maximum for finite kc [34]. Figure 3.3(a) shows the parameter space of the
condition for a local maximum, and Fig. 3.3(b) presents some example kernel func-
tions and the corresponding Fourier transforms. We observe that p = 1 yields local
excitation–lateral inhibition interaction for ξ > 1, i.e., for ri > re (open triangles
in Fig. 3.3(b)), and local inhibition–lateral excitation for ξ < 1, i.e., ri < re (filled
triangles in Fig. 3.3(b)). In addition, ξ > 1 yields a maximum of the Fourier trans-
form M̃0(k) at kc �= 0 which allows for a Turing instability. This finding is consistent
with the well-known idea that small excitation ranges yield an enhancement of the
local activity, while the larger range of inhibition diminishes the lateral spread of ac-
tivity. Consequently one observes local bumps. However, this idea no longer holds
for p = 2. Figure 3.3(b) shows that both values of ξ > 1 (open and filled diamonds)
represent local inhibition–lateral excitation interaction, which however are expected
to reflect local excitation–lateral inhibition according to the standard idea of spa-
tial interactions. Further, the Fourier transform M̃0(k) exhibits a local maximum at
kc �= 0 for the larger value of ξ but not for the lower value though both parame-
ters reflect similar spatial interaction. In other words, we find Turing patterns for
local inhibition–lateral excitation interaction [34]. Hence the value of p and thus
the shape of the excitatory interaction plays an important role here.

Fig. 3.4 presents the simulated Turing instability in the neural population for both
p = 1 and p = 2.
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Fig. 3.2 Illustration of spatial interaction types for different parameters p and ξ = ri/re. Panel (a)
shows the kernel functions K(x) and L(x) from Eq. (3.15) while (b) presents four major interaction
types with the effective kernel function M(x) = K(x)−L(x). More specific types are discussed in
Sect. 3.2.3.

Eventually the question arises whether Turing bifurcations are possible in the
brain. To this end, we recall experiments which indicate intracortical inhibitory con-
nections of a spatial range ri ≈ 1 mm and cortico-cortical connections of a range of
re = 20 mm, i.e., ξ = 0.05, p = 3 and aK > aL [56]. Consequently Turing patterns
do not occur for such cortico-cortical interactions according to Fig. 3.3. However
different spatial scales and connectivity distribution functions may yield Turing pat-
tern formation in the brain and we mention previous studies which argue that Turing
phase transitions may be responsible for the pattern formation in populations with
intra-cortical connectivity, such as the periodic anatomical structure of the visual
cortex [42, 67, 71].
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Fig. 3.3 Turing bifurcations for various parameter sets. Panel (a) shows the sufficient parameter
regimes of Turing patterns; (b) presents the effective kernel function M(x) for the four parameter
sets given in (a) and shows the corresponding Fourier transforms M̃0(k). The values of the four
parameter sets are p = 1.0, ξ = 1.1 (open triangle), p = 1.0, ξ = 0.9 (filled triangle), p = 2.0, ξ =
1.96 (open diamond) and p = 2.0, ξ = 1.66 (filled triangle). Further parameters are aK = aL = 5.
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Fig. 3.4 Space-time plots of Turing instabilities. Panel (a) shows the case of local excitation–
lateral inhibition interaction, and (b) for local inhibition–lateral excitation interaction. Parameters
are (a) p = 1.0, ξ = 2.0, aK = 6.0, aL = 5.0, cK = cL = 10.0, I0 = 2.36; (b) p = 2.0, ξ =
1.92, aK = 131.0, aL = 130.0, cK = cL = 10.0, I0 = 2.2. The grayscale encodes the deviation
from the stationary state, and the theoretical values kc show good accordance with the kc observed.

3.2.3 Oscillatory instability

Now we focus on time-dependent instabilities which occur if Eq. (3.13) holds. In
order to obtain the critical control parameter and the critical wavenumber and oscil-
latory frequency, we compute the first kernel Fourier moment in Eq. (3.13). Since
M̃1(k) → 0 for |k| → ∞, there is a maximum of −M̃1(k) at some |k| = |kc| with
−M̃1(kc) > 0 if −M̃1(0) > 0, − d2M̃1(0)/dk2 > 0 [33]. This estimation yields
necessary conditions for wave instabilities shown in Fig. 3.5.
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For p = 1, according to the standard idea of spatial interactions we expect trav-
eling waves for local inhibition–lateral excitation interaction, i.e., ξ = ri/re < 1,
and global oscillatory activity for local excitation and lateral inhibition, i.e., ξ > 1.
Figure 3.6 shows the corresponding spatiotemporal activity and thus confirms this
idea.
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Fig. 3.6 Space-time plots of (a) global oscillations, and (b) traveling waves for p = 1. The panels
show the deviations from the stationary state for (a) ξ = 5, (b) ξ = 0.33. Modified from [3].

We have seen in the previous section that the sign of the kernel function itself
does not reflect all properties of the system. Though we have found that the Fourier
transform determines the occurrence of Turing instabilities, we may still ask which
feature of the kernel function might indicate the corresponding instability. To inves-
tigate this question for the case of oscillatory instabilities, we consider the number
of roots of the kernel function as a possible criterion. To illustrate the relation of the
spatial interaction type and the resulting nonstationary instability, Fig. 3.7 plots the
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Fig. 3.7 The kernel functions M(x) and the negative first kernel Fourier moment −M̃1(k) for dif-
ferent values of ξ and p = 0.5. (a) ξ = 0.8, (b) ξ = 0.75, (c) ξ = 0.7 and (d) ξ = 0.55. The
insets in the left coloumn represent foci of the corresponding plot to illustrate the additional lateral
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kernel functions M(z) and the corresponding negative first kernel Fourier moments
−M̃1(k) for four different cases of spatial interactions with p = 0.5. We find local
excitation–lateral inhibition for ξ = 0.8 yielding global oscillations with kc = 0.
For ξ = 0.75, the kernel function exhibits two roots, i.e., local and long-range ex-
citation and mid-range inhibition, which still leads to global oscillations. In case of
ξ = 0.70, the sufficient condition for wave instabilities is fulfilled, as −K̃1(k) reveals
a critical wavenumber kc �= 0 (Fig. 3.7(c)). For ξ = 0.55 there is also a wave instabil-
ity showing local excitation, mid-range inhibition and lateral excitation. Figure 3.8
shows the spatiotemporal evolution of the oscillatory instability for the parameters
of Fig. 3.7(c).

Concluding, the number of roots and the sign of the spatial interaction function
between the roots do not indicate the type of oscillatory instability, i.e., constant
oscillation of traveling wave, as assumed in many previous studies. In contrast, first
kernel Fourier moment contains all necessary information, and its study elucidates
the system phase transitions.

Now the question arises whether one could understand the previous result in
physical terms. Following the idea of the interplay between excitation and inhibi-
tion, the spatial kernel for ξ = 0.8 enhances strongly local activity and diminishes
the activity at distant spatial locations, see Fig. 3.7. Hence we might expect sta-
tionary activity. Now decreasing ξ , the lateral inhibition increases while the local
excitation decreases and a long-range excitation occurs. Consequently, the major
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out for large times. Here parameters are p = 0.5, ξ = 0.7. Modified from [33].

spatial interactions in the system are the mid-range inhibition and the long-range
excitation while the local excitation is negligible. This interplay of excitation and
inhibition yields traveling waves. However, this interpretation may fail if the propa-
gation speed is large enough and condition (3.13) does not hold anymore. In addition
we point out that the spatial scale of the instability is given by the maximum of −K̃1

and thus depends on the specific shape of the interaction kernels in a non-trivial
way.

3.3 External noise

Now we discuss the effect of random fluctuations on the dynamics of neural popu-
lations. Several previous studies showed that randomness may be beneficial to the
information processing in the brain [11, 15–17, 51–53]. The origin of spontaneous
fluctuations in the living brain, i.e., fluctuations unrelated to external stimuli, is
poorly understood though there is evidence for stochastic ion channel dynamics in
the cell membrane and spontaneous activity failure in synapses [45]. The latter two
examples of fluctuations represent random changes of neuron properties over space
and time. Since most of these properties are formulated mathematically as variables
multiplied to the activity variable in the model, the spontaneous random fluctuations
yield so-called multiplicative noise.

Besides these spontaneous, or internal, fluctuations one may consider external
fluctuations, which may originate from other neural populations or from external
stimuli [16, 17, 53]. In the following we study this type of fluctuation for stable
systems close to the deterministic instabilities discussed in the previous section. For
simplicity we neglect propagation delay effects, i.e., cK , cL → ∞ in Eq. (3.9), and
refer the reader to previous work [37] for the discussion of propagation delay.
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In this and in the following sections, we assume a finite spatial domain Ω with
periodic boundary conditions and a temporal operator T̂ = ∂/∂ t +1. Then the model
Eq. (3.9) reads

∂V (x, t)
∂ t

= H[V ](x, t)+ I(x, t) (3.16)

with

H[V ](x, t) = −V (x, t)+g[V (x, t)]+
∫

Ω
M(x− y)S [V (y, t)] dy

and with the spatial connectivity function M(x) = aKK(x)+ aLL(x). In contrast to
the previous section, now the external input I(x, t) is the sum of a constant input I0

and random Gaussian fluctuations ξ (x, t), i.e., I(x, t) = I0 +ξ (x, t) with 〈ξ (x, t)〉= 0
where 〈·〉 denotes the ensemble average.

Since the spatial domain is a finite circle, we introduce a discrete Fourier ex-
pansion with the basis {exp(−iknx)/

√|Ω |}, kn = n2π/|Ω | and the orthogonality
condition

1
|Ω |

∫
Ω

ei(km−kn)xdx = δnm .

Then V (x, t) may be written as

V (x, t) =
1√|Ω |

∞

∑
n=−∞

un(t)eiknx (3.17)

with the corresponding Fourier projections un(t) ∈ C , un = u−n.
Inserting the Fourier projection (3.17) into Eq. (3.16) yields the stochastic differ-

ential equations

dun(t) = H̃n[{u j}]dt +
1√|Ω |

∫
Ω

dxdΓ (x, t)e−iknx , −∞ < n < ∞ , (3.18)

where H̃n[·] denotes the Fourier transform of H[·] and dΓ (x, t) are the general ran-
dom fluctuations. Equation (3.18) represents a system of infinitely many stochastic
differential equations. Now the random fluctuations dΓ (x, t) are assumed to repre-
sent a superposition of independent fluctuating sources with

dΓ (x, t) =
∫

Ω
dyc(x,y)dW (y, t) , (3.19)

where c(x,y) is a weight kernel function [39]. The terms dW (y, t) represent the
differentials of independent Wiener processes satisfying

〈dW (y, t)〉 = 0 ,
〈
dW (x, t)dW (y, t ′)

〉
= 2δ (x− y)δ (t − t ′)dtdt ′ .
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In Sects. 3.3.2 and onwards, we shall specify c(x,y) = η ′δ (y) leading to dΓ (x, t) =
η ′ dW (0, t) = dW (t). In other words, at time t the random fluctuations are the
same at each spatial location and we refer to this fluctuation type as global fluc-
tuations [32, 38]. Consequently Eq. (3.18) reads

dun(t) = H̃n[{u j}]dt , ∀n �= 0 (3.20)

du0(t) = H̃0[{u j}]dt +ηdW (t) (3.21)

with η = η ′√|Ω |. Hence all spatial modes un �=0(t) obey the deterministic ordinary
differential equation (3.20) and the dynamics of u0(t) is governed by the stochastic
differential equation (3.21) subjected to the Wiener process dW (t). The correspond-
ing Fokker–Planck equation of the system (3.20), (3.21) reads

∂P({un}, t)
∂ t

= −∑
j

∂
∂u j

f̃ [{un}]P({un}, t)+η2 ∂ 2

∂u2
0

P({un}, t) . (3.22)

3.3.1 Stochastic stability

In Sect. 3.2, we determined the stationary state constant in space and time and stud-
ied the Lyapunov exponent of the linearized problem about the stationary state. At a
first glance this approach does not apply here since the system is time-dependent for
all times due to the external random fluctuations. Hence the question arises: How
can one define a stationary state in this case? At first let us recall the definition of
stability. Several definitions of stability exist [46, 61], such as asymptotic stabil-
ity considered in the previous section, or the mean-square stability: if the deviation
about a system state is u(x, t) and 〈|u(x, t)|2〉 < δ holds for δ > 0, then this sys-
tem state is called mean-square stable. If in addition limt→∞〈|u(x, t)|2〉 → 0, then
the state is called asymptotically mean-square stable. In other words, a system state
may be called stable if the system evolves in a small neighborhood of this state.
Hence we argue that the stable system state might be equivalent to the deterministic
stable stationary state V0 and the system evolves in a small neighborhood about it
due to the external random fluctuations. To quantify this, we obtain the (presumed)
stationary state for I(x, t) = I0 and gain from Eq. (3.16)

V0 = g[V0]+ (ak +aL)S(V0)+ I0 .

Up to this point, the stability of V0 has yet to be confirmed. The subsequent para-
graphs study the dependence of the system dynamics about this state on Gaussian-
distributed random fluctuations

〈ξ (x, t)ξ (x′, t ′)〉 = Qδ (x− x′)δ (t − t ′) (3.23)

and answer the question of stability. From Eq. (3.23) the random fluctuations have
variance Q and are uncorrelated in space and time.
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Further presuming the fluctuation variance Q being small may yield small devi-
ations from the stationary state u(x, t) = V (x, t)−V0 �V0 and we obtain

T̂ (∂/∂ t)u(x, t) = g0u(x, t)+S′
∫

Ω
M(x− y)u(y, t)dy+ξ (x, t) (3.24)

with g0 = δg/δV , S′ = δS/δV computed at V = V0. In the following paragraphs,
we shall use S′ as the control parameter. Now let us study Eq. (3.24) in the Fourier
space similar to the deterministic case. With the Fourier transformation Eq. (3.17)
we find for each spatial mode the stochastic diffential equation

T̂ ũ(k, t) =
(

g0 +
√

ΩS′M̃(k)
)

ũ(k, t)+ ξ̃ (k, t) . (3.25)

The random fluctuations ξ̃ (k, t) of the spatial mode with wave number k obey a
Gaussian distribution with

〈ξ̃ (k, t)〉 = 0 , 〈ξ̃ ∗(k, t)ξ̃ (k′, t ′)〉 = Qδ (k− k′)δ (t − t ′), (3.26)

i.e., the ξ̃ (k, t) are uncorrelated in k-space and in time.
Now interpreting ξ̃ (k, t) as an external perturbation, linear response theory gives

the general solution of Eq. (3.25) by

ũ(k, t) = ũh(k, t)+
∫ ∞

−∞
dt ′ G(k, t − t ′)ξ (k, t ′) . (3.27)

Here, ũh(k, t) represents the homogeneous solution of Eq. (3.25), i.e., for ξ̃ (k, t)=
0, and G(k, t − t ′) is the Green’s function of the spatial mode with wave number k.
Applying standard techniques in linear response theory, the Green’s function reads

G(k, t) =
1

2π

∫ ∞

−∞
dω

e−iωt

T (−iω)−
(

g0 +
√

ΩS′M̃(k)
) . (3.28)

After applying the residue theorem, we obtain essentially

u(x, t) = ũh(x, t)

+
1√
Ω

m

∑
l=1

∫ t

0

∫ ∞

−∞
eλl(k)(t−t ′) s̃(k, t ′)rl(k)eikx dk dt ′ , (3.29)

assuming the initial time t = 0 and rl(k) are constants. In addition, we introduce

λl = iΩl with Ωl as the roots of T (−iΩ)−
(

g0 +
√

ΩS′M̃(k)
)

= 0 in Eq. (3.28)

and m is the number of roots. Further, we point out the important fact that λl are the
Lyapunov exponents of the homogeneous system and thus define its (deterministic)
stability.

Recalling the definition of mean-square stability and utilizing Eq. (3.26), we
find
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〈|u2(x, t)|〉 < |ũh(x, t)|2 +
Q
2π ∑

l,n

∫ ∞

−∞
r∗l (k)r

∗
n(k)

1− e(λl(k)+λn(k))t

λl(k)+λn(k)
dk

< |ũh(x, t)|2 +
Qη
2π ∑

l,n

∫ ∞

−∞

∣∣∣1− e(λl(k)+λn(k))t
∣∣∣

|λl(k)+λn(k)| dk

< |ũh(x, t)|2 +
Qη
2π ∑

l,n

∫ ∞

−∞

1
|λl(k)+λn(k)| dk

for bounded values |r∗l (k)r∗n(k)| < η , η > 0 and Re(λl) < 0. Since Re(λl) < 0 im-
plies stability and thus the boundedness of the homogeneous solution, we find finally

〈|u2(x, t)|〉 < δ ,

i.e., mean-square stability and thus bounded areas of the stochastic system. We point
out that the system is not asymptotically mean-square stable.

We conclude that the mean-square stability of the (deterministic) stationary state
V0 in the presence of external additive fluctuations is given by the Lyapunov expo-
nents obtained from the deterministic case.

3.3.2 Noise-induced critical fluctuations

Now let us study the statistical properties of the activity about the stationary state V0

for global fluctuations. Equation (3.16) yields the implicit equation H[V0] = 0 and
small deviations z(x, t) = V (x, t)−V0 obey

dz(x, t) =
(

(−1+g0)z(x, t)+S′
∫

Ω
M(x− y)z(y, t)dy

)
dt +ηdW (t) . (3.30)

Applying the Fourier transformation to Eq. (3.30), we obtain

dun(t) = αn un(t)dt +ηδn,0dWn(t) (3.31)

with αn =−1+g0 +S′
√

ΩM̃(k), αn = α−n and the Fourier transform un(t) of z(x, t).
To study the stability of Eq. (3.31), we use the results gained in the previous section
and find the Lyapunov exponent λ = αn. Since the kernel functions and the func-
tional g[V ] take real values, λ is real-valued and no oscillatory activity is present.
Further the system is mean-square stable if αn < 0.

The system stability is lost if some spatial modes with wavenumber kn satisfy
αn = 0. In this case, the system becomes unstable and exhibits a non-oscillatory
instability (or phase transition in physical terms) with the critical wavenumber
kc = argmaxkn(−1 + g0 + S′

√
ΩM̃(kn)), see Eq. (3.12). To gain further informa-

tion on the stationary stochastic process near the stability threshold, we examine the
joint probability density Ps({u j}) of Eq. (3.31) by the corresponding Fokker–Planck
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equation

∂P({un})
∂ t

= −∑
j

∂
∂un

αn P({un})+η2 ∂ 2

∂u2
0

P({un}) .

Since the spatial modes un(t) are independent from each other, we find P({un}, t) =
∏N

n P(un, t) with the probability density function P(un, t) of the spatial mode n. For
αn < 0, the stationary distribution Ps(un) is [60]

Ps({u j}) =

√|α0|
(
√

2πη)
e−|α0|u2

0/2η2
N−1

∏
n=1

δ (un)δ (u−n) . (3.32)

In the absence of random fluctuations, i.e., η → 0, we have Ps → ∏n δ (un), while Ps

exhibits the variance σ = η2/
√|α0| for η > 0. In addition, just below the stability

threshold some spatial modes uc exhibit αc ≈ 0. If uc = u0 then the variance σ
is very large. This phenomena has been observed experimentally in many spatial
systems, see e.g., [27, 28], and the system exhibits so-called critical fluctuations.
In the case of αn > 0, no stationary probability density exists.

The latter analysis considered the stability criteria and the behavior close to in-
stabilities characterized in the linear regime. When the system becomes unstable,
the system’s activity may still be bounded for larger deviations from the stationary
state for suitable nonlinearities. The subsequent section considers this nonlinear sat-
uration in some detail for the deterministic system and for a system subjected to
global fluctuations.

3.4 Nonlinear analysis of the Turing instability

In order to illustrate the nonlinear behavior near the bifurcation point, this section fo-
cuses on the nonlinear amplitude equation of the Turing instability. First, we discuss
the deterministic case, which gives some insight into the method. Subsequently, we
consider the stochastic case showing the effect of global fluctuations on the system
stability.

3.4.1 Deterministic analysis

Expanding Eq. (3.16) to cubic nonlinear order in V about V0 for ξ (x, t) = 0, we
obtain

∂V (x, t)
∂ t

=
∫

Ω
dyK1(x− y) V (y, t)+K2(x− y) V 2(y, t)+K3(x− y) V 3(y, t) (3.33)

with
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K1(x) =
δS
δV

M(x)+
(

δg
δV

−1

)
δ (x) , K2(x) =

1
2

δS2

δV 2 M(x)+
1
2

δ 2g
δV 2 δ (x) ,

K3(x) =
1
6

δ 3S
δV 3 M(x)+

1
6

δ 3g
δV 3 δ (x) ,

where the functional derivatives are computed at the stationary state V = V0. Now
inserting the Fourier expansion (3.17) into Eq. (3.33), multiplying both sides by
exp(−iknx) and integrating over space, we obtain the infinite set of ODEs in the
Fourier picture

dun(t) = αnun(t)+βn ∑
l

ul(t)un−l(t)+ γn ∑
l,m

ul(t)um(t)un−l−m(t) (3.34)

with the constants

αn = K̃1(kn) , βn =
K̃2(kn)√|Ω | , γn =

K̃3(kn)
|Ω | , (3.35)

where αn = α−n, βn = β−n, γn = γ−n. Recall that un = u−n take real values accord-
ing to the previous sections, i.e., un = u−n ∈ R, which will be taken into account
in the following. Figure 3.9 illustrates the typical dependence of the parameters αn

on the discrete wavenumber kn and shows the critical wavenumber k±c with αc = 0.
Moreover, the illustration shows values α2 � α0,αc, i.e., a separation of values
αc, α0 and α2.

kc–kc k2c–k2c k0

α2c

α0

Fig. 3.9 Illustration of αn = α(kn). The stability threshold is given by αc = 0 at kc and k−c.

Taking a closer look at the system of modes (3.34), it splits into critical modes
uc and stable modes ui �=c

u̇c = αcuc +βc ∑
n

unuc−n +2γcu3
c + γc ∑

n,m
n+m �=±c

unumuc−n−m (3.36)

u̇i = αiui +2βi(ucui−c +u−cui+c)

+ βi ∑
n �=±c

unui−n + γi ∑
n,m

unumui−n−m , ∀i �= ±c . (3.37)

If the system evolves on the threshold, i.e., αc = 0 and αi < 0, i �= c, the deterministic
center manifold theorem applies [58] and the stable modes ui �=c depend on uc, i.e.,
ui = ui(uc). Hence inserting the polynomial ansatz
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ui = aiu
2
c +biu

3
c , i �= ±c (3.38)

into Eqs (3.36), (3.37) and comparing the coefficients of orders u2
c and u3

c yields

ai = −4βi(δi,0 +δi,2c)
αi

, bi = 0 → u0,u2c ∼ u2
c . (3.39)

Consequently there are different classes of modes defined corresponding to their
scaling behavior with respect to uc: the critical mode uc with wave number kc,
and the subset of stable modes un with {kn}, n = 0,2c,3c, . . . Since the distinc-
tion of stable and critical modes in Eqs (3.36), (3.37) implies small time-scales
1/|αk|, |k| ≥ 2c, the corresponding modes decrease rapidly in time, i.e., uk ≈ 0
for |k| ≥ 2c at large times. This assumption is valid if αn � α0,αc with |n| ≥ 2c,
cf. Fig. 3.9.

To examine the time-scales of the critical and stable modes, let us introduce the
scaling factor ε > 0 with

αc ∼ O(ε) , αi �=c, βi, γi ∼ O(1) .

In other words, we assume the system to be very close to the threshold and ε � 1
is proportional to the magnitude of αc and thus quantifies the distance from the
threshold αc = 0. Hence, the larger the distance from the stability threshold, i.e.,
the larger ε , the larger the deviations from the stationary state and thus the stronger
the nonlinear effects. Then according to Eq. (3.39), the mode amplitudes may be
written as uc = xεm, u0 = yε2m, u2c = zε2m for some constant m ∈ R and x,y,z
are independent of ε . Inserting these expressions into Eqs (3.36), (3.37) we find
m = 1/2,

uc ∼ O(ε1/2) , u0,2c ∼ O(ε) (3.40)

and dx/dt ∼ O(ε) and dy/dt, dz/dt ∼ O(1). Hence the critical mode evolves on
the time scale of order O(ε) which is slow compared to the stable mode time scale
of order O(1).

Summarizing the latter discussion, the stable modes obey the dynamics of the
critical modes on the center manifold just around the stability threshold, while they
evolve faster than the critical modes. In physical terms, the slow critical modes
enslave the fast stable modes, which in turn obey the dynamics of the critical modes.
This dependence is also called the slaving principle and the circular dependence is
known as circular causality [27].

Applying the previous result, considering the lowest order O(ε3/2) and taking
into account the modes u0, uc and u2c only, Eqs. (3.36), (3.37) read

u̇c = αcuc +2βcuc(u0 +u2c)+2γcu3
c , (3.41)

u̇0 = α0u0 +4β0u2
c . (3.42)



74 Hutt

Then the center manifolds (3.38) read

u0(uc, t) = −4β0

α0
u2

c . (3.43)

Inserting these results into the evolution equation of uc we obtain the final equation

u̇c = αcuc −au3
c (3.44)

with a = 8β0βc/α0 −2γc.
The latter reduction to a single variable can also be understood from a more

physical point of view. Since |α0| � |αc|, the mode u0 relaxes fast to its stationary
state determined by u̇0 = 0 for large times while choosing u̇0 = 0 yields directly
Eq. (3.43). This procedure is called adiabatic approximation [27].

A detailed analysis of Eq. (3.44) reveals a stable solution uc = 0 for αc < 0, a > 0
and a stable solution uc = ±√

αc/a for αc > 0, a > 0. In other words, the linearly
unstable solutions for αc > 0 remain bounded if a > 0. If a < 0 there does not exist
a stable state for αc > 0. This instability type is called a pitchfork bifurcation.

Summarizing, near the instability threshold the system evolves according to
Eq. (3.44) and thus may exhibit a Turing instability with wave number kc if
αc > 0,a > 0.

3.4.2 Stochastic analysis at order O(ε3/2)

Now we study the nonlinear behavior close to the stability threshold at the presence
of global fluctuations. At order O(ε3/2), then Eqs (3.41), (3.42) read

duc =
(
αcuc +2βcuc(u0 +u2c)+2γcu3

c

)
dt (3.45)

du0 =
(
α0u0 +4β0u2

c

)
dt +ηdW (t) (3.46)

Here we have neglected the mode u2c for simplicity, which however does not affect
the major result [39].

In recent years several methods have been developed to analyse the nonlinear
behavior of systems subject to additive random fluctuations [5, 6, 9, 19, 32, 38,
39, 44, 63]. In the following we apply the stochastic center-manifold analysis [9,
74]. Similar to its deterministic version, this analysis assumes the stochastic center
manifold of u0 and u2c is of the form

u0(uc, t) = h0(uc, t) =
∞

∑
n=2

h(n)
0 (uc, t) (3.47)

with h(n)
0 ,h(n)

2c ∼ O(εn/2). We point out that the manifold is dependent on time due to
the random fluctuations, which contrasts to the deterministic center manifold anal-
ysis. We obtain the evolution equations of the center manifolds to [39]
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∂
∂ t

dt −α0dt

)
h0 =

[
4β0u2

c −
∂h0

∂uc

(
αcuc +2βcuc(h0 +hc)+2γcu3

c

)]
dt

+ ηdW (t) .

Now the stochastic center manifold contributions h(n)
0 ,h(n)

2c are calculated at subse-
quent orders O(εn) and we find at order O(ε)

h(2)
0 (uc, t) = −4β0

α0
u2

c +ηZ(t) , Z(t) =
∫ t

−∞
eα0(t−τ)dW0(τ) , (3.48)

and at order O(ε3/2) we find h(3)
0 (uc, t) = 0. Inserting these expressions into

Eq. (3.45), the stochastic differential equation for the critical mode reads at order
O(ε3/2)

duc =
(
αcuc +au3

c +bηucZ(t)
)

dt (3.49)

with b = 2βc. From Eq. (3.49) we learn that the mode uc is subjected to multi-
plicative noise Z(t). Since Z(t) also represents an Ornstein–Uhlenbeck process,
Eq. (3.49) can be extended by the corresponding SDEs dZ(t) = α0Zdt + dW (t).
In this formulation, uc depends on the additional variable Z.

To obtain a single equation (the so-called order-parameter equation) similar to
the deterministic case a different approach is necessary, since the re-application of
the stochastic center-manifold approach yields the same two equations. The cho-
sen method involves an adiabatic elimination procedure based on the corresponding
Fokker–Planck equation to gain a single order-parameter equation [18, 19]. After
rescaling the variables ūc = uc/

√
ε, η̄ = η/ε, ᾱc = αc/ε with Z, α0, a, b ∼ O(1)

according to our previous results (3.40), the Fokker–Planck equation for uc(t) reads

∂P(ūc, t)
∂ t

= − ∂
∂ ūc

[(
ᾱcūc +aū3

c

)
+bη̄ ūc 〈Z|ūc〉

]
P(ūc, t) ε

with 〈Z|ūc〉 =
∫ ∞
−∞ ZP(Z|ūc, t)dZ and the conditional probability density P(Z|ūc, t).

We learn that the probability density P(ūc, t) evolves on the slow time-scale of order
O(ε) and depends on Z via 〈Z|ūc〉. Further computing the Fokker–Planck equation
of the joint probability density function P(Z, t), it turns out that P(Z, t) evolves on a
fast time-scale of order O(1) and is independent of uc. Then we obtain

∂P(Z|ūc, t)
∂ t

= − ∂
∂Z

(α0Z)P(Z|ūc, t)+
∂ 2

∂Z2 P(Z|ūc, t) . (3.50)

Here we have approximated P(ūc, t) by a constant on the time scale O(1) which
reflects the idea of an adiabatic behavior. In other words, the dynamics of P(ūc, t) is
much slower than the dynamics on the time-scale O(1) and thus may be treated as
stationary. Then the stationary solution of Eq. (3.50) on the time scale O(1) reads
Ps(Z|uc) =

√|α0|exp(−|α0|Z2/2)/
√

2π and we gain 〈Z|ūc〉 = 0. Hence the prob-
ability density function of the order parameter obeys
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∂P(uc, t)
∂ t

= − ∂
∂uc

(
αcuc +au3

c

)
P(uc, t), (3.51)

whose stationary solution is Ps(uc) = δ (x) for αc < 0 and Ps(uc) = δ (x− x0)/2 +
δ (x + xm)/2 for αc ≥ 0 with the roots x0 of αcx0 + ax3

0 = 0, i.e., we find again the
pitchfork bifurcation gained in section 3.4.1 [28]. Consequently, additive global
fluctuations do not affect the stability of the system at this order O(ε3/2).

3.4.3 Stochastic analysis at order O(ε5/2)

The stochastic analysis of the next higher order O(ε2) leads to the same result as
for O(ε3/2). Consequently we focus on the higher order O(ε5/2) with the evolution
equations

duc =
(
αc +bu0uc +2γcu3

c +3γcucu2
0

)
dt , (3.52)

du0 =
(
α0u0 +4β0u2

c +β0u2
0 +2γ0u0u2

c

)
dt +ηdW (t) . (3.53)

The subsequent application of the stochastic center manifold analysis retains the

lower order terms h(2)
0 and h(3)

0 and yields the additional term

h(4)
0 (uc) = β0η2Z5 −8

β0αc

α2
0

u2
c +4

B
b

ηZ4u2
c +Au4

c

h(5)
0 (uc, t) = 0

with the constants A, B and the colored random fluctuations

Z4(t) =
∫ t

−∞
eα0(t−τ)Z0(τ)dτ , Z5(t) =

∫ t

−∞
eα0(t−τ)Z2

0(t)dτ .

Applying some approximations to Z4(t) and Z5(t) [39], the final Fokker–Planck
equation for the order parameter reads at order O(ε2)

∂P(uc)
∂ t

= − ∂
∂uc

[
(αc −αth(η))uc +Cu3

c +Du5
c

]
P(uc) (3.54)

with

αth(η) = η2
(

β0b

α2
0

−3
γc

|α0|
)

(3.55)

and constants C,D.
We observe that the order parameter uc obeys the deterministic equation

u̇c = (αc −αc,th (η))uc +Cu3
c +Du5

c , (3.56)



3 Spatiotemporal instabilities in neural fields 77

where αth defines the new stability threshold, which now depends on the fluctuation
strength η and thus reflects noise-induced transitions. Hence for αth > 0 the noise
retards the emergence of the instability with increasing αc and thus stabilizes the
neural field [39]. From a physical point of view, the global fluctuations represent
an external stimulus which forces the system to obey the stimulus dynamics. The
stronger the stimulus is, i.e., the larger the fluctuation strength η , the stronger the
spatial mode k = 0 is and thus the smaller the contribution of the unstable mode
k = kc.

Figure 3.10 shows the space-time activity of a stochastic Turing instability in
the absence and presence of global fluctuations. We observe the onset of a spatial
pattern in the absence of random fluctuations (left panel), while global fluctuations
stabilize the system and no spatial pattern occurs (right panel).

Concluding, additive global fluctuations change the stability of the neural popu-
lation and thus affect the neural processing.

tim
e

space
4.83

space

50

100 100

50

9.66 4.83 9.66

no fluctuations global fluctuations

Fig. 3.10 Effects of global fluctuations on Turing instabilities. The spatiotemporal activity is
shown subtracted from its spatial average at each time for the fluctuation strengths η ′ = 0 (no
fluctuations) and η ′ = 0.03 (global fluctuations). Modified from [39].

3.5 Conclusion

The previous sections have shown the analytical treatment of nonlocally interacting
neural populations in the linear and nonlinear regime. We have found several types
of spatiotemporal instabilities and have studied briefly the statistical properties of
the system close to such instabilities. Further, the last section illustrates one way to
treat the nonlinear behavior of neural populations.

Such investigations are necessary in order to understand the information pro-
cessing in neural populations, as they reflect the linear response to incoming
stimuli. This response has been examined further in some detail in recent stud-
ies [23, 35, 37, 59] and promises deep insights to neural processing.
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Chapter 4
Spontaneous brain dynamics emerges at the
edge of instability

V.K. Jirsa and A. Ghosh

4.1 Introduction

Neuroscience has prominently attracted mathematicians and physicists to under-
stand complex dynamics of the brain. The mathematical framework has benefit-
ted neuroscience in explaining observed neuronal behavior in both quantitative and
qualitative manners. Mathematical models of neuronal communication and synap-
tic plasticity, nonlinear dynamical systems theory, and use of probability theory to
quantify anatomical observations, all serve to illustrate the extensive application of
mathematical tools and physical laws to explain the complexity of brain. On the
other hand, mathematics has also benefitted from the rich dynamical repertoire of
neurodynamics by motivating studies of bifurcation theory to explore various theo-
retical concepts.

The dynamics of individual neurons—often described by the Hodgkin–Huxley
model—is well studied. Simplified versions of that complex model are also well
studied and used in different contexts. However, the brain is a collection of billions
of such units, and collectively exhibits a range of dynamics like synchronization,
self-organization, etc.

A first question that can be asked is: How are these neurons spatially con-
nected? The anatomical connectivity can be links between individual neurons and
synapses, and also connections between neuronal populations and pathways. Unlike
lattice models frequently studied in physics, neural networks not only contain short-
range connections but also long-range connections. For large-scale cortical network
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studies, one can make use of the information on anatomical connectivity available
for the primate brain.

A second question that follows is: How do functions emerge, and how are they
interrelated? The functional connectivity of a neuronal system consists of statistical
temporal correlations due to the dynamics of different functional units. Two princi-
ples leading to organization of functional behavior are: segregation—neuronal units
are capable of performing specific functions and are segregated from each other; and
integration—coherent brain processes like perception and cognition emerge due to
functional integration. The competition between segregation and integration leads
to functional connectivity [15].

Questions that naturally follow are: How are anatomical and functional connec-
tivity related? And: How do we explain various states emerging from the complex
dynamics of the brain? The resting-state of the brain provides an ideal setup to
test hypotheses and to develop a comprehensive mathematical framework to explain
criticality in neuronal dynamics. We have developed a large-scale neuronal model,
and conjecture that brain dynamics evolves close to the edge of instability such that
intrinsic fluctuations allow the brain to explore its dynamic repertoire [6]. Our pro-
posed model successfully identifies the correlated and anticorrelated resting-state
network observed in experimental studies [3].

In this chapter we discuss the role of noise in exploring the neighborhood of in-
stability, leading to the emergence of spontaneous neural activity. In Sect. 2 we lay
the theoretical foundation; in Sect. 3 we will provide details of our previous model-
ing study and its validation with experimental findings; in Sect. 4 we illustrate how
dynamical features underlying these concepts can be extracted from experimental
EEG signals. This is followed by some concluding remarks.

4.2 Concept of instability, noise, and dynamic repertoire

The mechanism of neuronal firing due to synaptic currents can be well understood
within the framework of a dynamical systems perspective. Simple geometrical tools
can qualitatively and quantitatively explain the evolution of complex behavior of
neurons arising from competition between a stable and an unstable equilibrium in
phase space. However, the model of a single neuron is highly nonlinear [8], so math-
ematical simplifications are often useful to gain insight into the underlying mecha-
nism in a qualitative manner. This intrinsic nonlinearity leads to an abrupt behavior
due to a change of system parameters, and is often studied by bifurcation analysis.

Here we illustrate a bifurcation in a simple system given by the ordinary differ-
ential equation,

dx
dt

= a+bx2 , (4.1)
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due to a variation in the parameter a. For a < 0, the system has two equilibrium
points, one stable and the other unstable; it has a metastable equilibrium for a = 0;
and no equilibrium for a > 0. This scenario is known as a saddle–node bifurcation
where two fixed points collide and disappear (Fig. 4.1).

Fig. 4.1 Bifurcation diagram
for a saddle-node bifurcation.
The dashed curve shows the
distribution of equilibria as a
function of control parameter
a. The arrows on the vertical
lines indicate flow toward a
stable equilibrium, and away
from an unstable equilibrium.

x2 = −a/b

a0

x

Close to the bifurcation point, noisy input results in fluctuations around the equi-
librium point, which are irregularly occurring departures from, and returns to, the
equilibrium. These transient processes reflect the properties of the noise, as well as
the flow in the neighborhood of the equilibrium point. In conjunction, they define the
dynamic repertoire of the system. Figure 4.2 shows the time-series corresponding
to three different values of the Eq. (4.1) control parameter a < 0 close to its critical
value of zero; we observe that noise-induced fluctuations become more pronounced
as the distance to the critical point decreases.

Since neuronal dynamics is oscillatory in nature, it is interesting to look into sys-
tems that show oscillations due to parametric variations. One such bifurcation sce-
nario is captured by the Hopf bifurcation. In this mechanism, a limit cycle is born as
the equilibrium point changes stability giving rise to pair of purely imaginary eigen-
values. Depending on the stability property of the limit cycle, a Hopf bifurcation

(a)

(b)

(c)

Fig. 4.2 Time-series corresponding to three different values of a < 0 for the saddle-node bifur-
cation in Fig. 4.1: (a) a = −4; (b) a = −1.21; (c) a = −0.04. Traces show the increase in noise-
induced fluctuation activity about equilibrium as the control parameter a approaches its critical
value a = 0. With b = 1, the equilibrium values are (a) x∗ = −2; (b) x∗ = −1.1; (c) x∗ = −0.2
respectively. The noise-source used for each simulation run was identical.
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can be subcritical (unstable) or supercritical (stable). For a two-dimensional system,
such supercritical behavior can be observed in the system represented by,

dx1

dt
= ax1 − x2 − x1(x2

1 + x2
2) , (4.2a)

dx2

dt
= x1 +ax2 − x2(x2

1 + x2
2) . (4.2b)

It is easy to see that for a < 0 there is one stable equilibrium point at (0,0); but for
a > 0, a stable attracting limit cycle is born [12]. Characteristic trajectories in phase
space for various values of the control parameter a are shown in Fig. 4.3 with no
noise.

x2 x2 x2

a < 0 a = 0 a > 0

x1x1 x1

Fig. 4.3 Supercritical Hopf bifurcation. The trajectories are plotted in phase-space for a-values
below (a < 0), equal to (a = 0), and above (a > 0) the critical value.

Simple models undergoing a Hopf bifurcation can explain neuronal spiking and
are very common in the literature. A well-established model is the FitzHugh–
Nagumo model [2, 13]. The FitzHugh–Nagumo model is a simplification of the
more biologically realistic Hodgkin–Huxley model for a single neuron. Its trajecto-
ries below and above the Hopf bifurcation point are illustrated in Fig. 4.4, and its
dynamics is represented by

du
dt

= u− u3

3
+ v+ I , (4.3a)

dv
dt

= a−u−bv , (4.3b)

where u is voltage-like variable having a cubic nonlinearity, and v is a recovery-like
variable. By increasing input current I in Eq. (4.3a), or, equivalently, by reducing
parameter a in Eq. (4.3b), the neuronal dynamics can be made to undergo a bifurca-
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Fig. 4.4 Phase space tra-
jectories of the FitzHugh–
Nagumo neuron. Dashed line
identifies the cubic nullcline
for du/dt = 0; dotted lines
identify the nullclines for
dv/dt = 0 for two sets of pa-
rameter values: I = 0, b = 0.5,
and a = 0 or a = 0.5. Bold
lines trace out representa-
tive trajectories: a limit cycle
(a = 0), and a stable spiral
(a = 0.5). The intersection
of the two nullclines deter-
mines the fixed point. It is the
fixed point near u = 0.82 that
undergoes a stability change
through a Hopf bifurcation.
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tion from quiescent subthreshold behavior to periodic-spiking behavior. Figure 4.5
shows the response of a near-threshold Hopf oscillator when perturbed with noise
of increasing intensity.

Here we wish to postulate that the working point of the brain during rest is often
in the neighborhood of the critical boundary separating stable and unstable regions.
More specifically, the expression “working point” refers to all the values of a set
of parameters characterizing the brain—such as excitability, synaptic strength, etc.
We have studied in detail the resting-state of the brain [6], and show that, by using
a realistic primate connectivity matrix in the presence of noise and time-delay, it is
possible to explore the dynamic repertoire of the brain’s resting-state.
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Fig. 4.5 Hopf oscillator with noise. Spontaneous oscillations emerge when the intensity of the
noise is increased for the Hopf oscillator operating in the neighborhood of its critical value a = 0.
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4.3 Exploration of the brain’s instabilities during rest

When subjects are not actively engaged in goal-directed mental activity, sponta-
neous brain activity has been suggested not to represent simply “noise”, but rather
to implicate spontaneous and transient processes involved in task-unrelated im-
agery and thought. The resting-state networks that are not associated with sen-
sory or motor regions have been thought of as a “default-mode” network spe-
cific to the human, and include medial prefrontal, parietal, and posterior and an-
terior cingulate cortices. The dynamics of these spontaneous fluctuations evolves
on a slow time-scale of multiple seconds in the Blood Oxygen Level Depen-
dent (BOLD) signal. However, the computational models to explain the generat-
ing mechanisms are few, and do not satisfactorily explain how the default network
relates to the complex spatiotemporal dynamics.

To shed light on the emergence of the resting-state networks and their dynam-
ics on various temporal scales, we performed a network simulation study in which
the major ingredients were biologically realistic primate connectivity of brain ar-
eas, time-delays via signal propagation between areas, and noise. We initially con-
sider only the spatial aspect of the couplings. The connectivity matrix collated
from macaque tracing studies comprises 38 nodes with weights ranging from 0
to 3. The corresponding “regional map” gives the translation between macaque
and human neuroanatomy [10, 11]. It is to be noted that some connections be-
tween some areas are not known. When computing various graph-theoretical mea-
sures for the weighted graphs we do not observe any of the areas to have sig-
nificant features to emerge as a central hub. Thus anatomical connectivity of the
large scale network does not suffice to reliably identify the network constituents
during rest.

To study the rest-state dynamics, we place oscillatory neuronal populations at
each network node, and couple these via time-delayed interaction terms. Each pop-
ulation is characterized by a degree of excitability in which the increase of excitation
parameterizes the onset of oscillations emerging from a quiescent state. When the
populations are embedded in a network, the network’s dynamic repertoire will be
shaped by the space–time structure of the couplings. To quantify the total connec-
tivity strength, we introduce a parameter, c, which scales all connection strengths
without altering the connection topology of the weight distribution of the matrix,
nor affecting the associated time-delays Δ t = d/v. The network model is imple-
mented as,

dui

dt
= g(ui,vi)− c

N

∑
j=1

fi j u j(t −Δ ti j)+nu(t) , (4.4a)

dvi

dt
= h(ui,vi)+nv(t) . (4.4b)

where ui,vi are the state variables of the i-th neural population, and fi j is the con-
nectivity matrix. White Gaussian noises nu(t),nv(t) are introduced additively. The
functions g(·) and h(·) are based on FitzHugh–Nagumo systems with
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g(ui,vi) = τ
[

γui − u3
i

3
+ vi

]
, (4.5a)

h(ui,vi) =
1
τ

[α −ui −βvi] . (4.5b)

We apply a linear stability analysis to the system described by Eqs (4.4), and
identify the critical boundary which separates the stable, quiescent state from the
unstable regions in the parameter space of c and v (see Fig. 4.6(a)). In its immediate
proximity (but still in the stable region), the effect of noise driving the network
transiently out of its equilibrium state will be most prominent and hence easiest to
identify.

To perform a spatiotemporal analysis of the network dynamics, we identify the
dominating subnetworks involved in the ongoing transient oscillatory dynamics.
During the transition, we use a sliding temporal-window analysis, and perform
a PCA (principal components analysis) to identify the dominant network modes
shown in Fig. 4.6(b).

We find that prefrontal, parietal, and cingulate cortices rank highest in this order-
ing scheme, and hence contribute most to the two network patterns present during
the transient of the instability. We confirm our findings by performing a complete
computational network simulation with noise just below the critical boundary, and
verify that these subnetworks are most commonly present during the transient oscil-
lations of rest-state activity (see Fig. 4.7).

Another important aspect that we addressed in the present study is by generat-
ing the ultra-slow oscillating BOLD signals [5] and identifying the correlated and
anticorrelated networks [3]. Fox and colleagues chose six predefined seed regions,
and computed the correlations against all other regions. These seed regions included
three so-called “task-positive” regions, routinely exhibiting activity increases during
task performance; and three “task-negative” regions, routinely exhibiting activity
decreases during task performance.

Task-positive regions were centered in the intraparietal sulcus (IPS; in our nota-
tion: PCIP (intraparietal sulcus cortex)); the frontal eye field (FEF) region (same in
our notation); and the middle temporal region (MT; in our notation this area is part
of VACD (dorsal anterior visual cortex)).1

Task-negative regions were centered in the medial prefrontal cortex (MPF; in our
notation this area corresponds mostly to PFCM (medial prefrontal cortex) and to a
lesser extent to PFCPOL (prefrontal polar cortex)); posterior cingulate precuneus
(PCC; in our notation CCP (posterior cingulate cortex), but note that the precuneus
comprises also our medial parietal cortex PCM); and lateral parietal cortex (LP;
in our notation PCI (inferior parietal cortex)). We compute the cross-correlations
of the seed regions from our simulated data set, and find excellent agreement with
experimental observations. Fig. 4.8 shows a summary of our findings (obtained from
Ghosh et al. (2008) [6]).

1 Brain-region abbreviations are listed at the end of this chapter.
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Fig. 4.6 (a) The critical line separating unstable and stable regions is shown as a function of
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4 Spontaneous brain dynamics 89

1  1000 2000 3000 4000
Time (ms)

PFCORB

PFCVL

PCM

PCS

CCA

PFCDL

Fig. 4.7 Characteristic simulated time-series are shown for nodes of the resting-state network.

4.4 Dynamical invariants of the human resting-state EEG

Cortical dynamics of resting brain exhibits spontaneous neuronal activity. With
state-of-the-art experimental techniques (EEG), it is possible to record cortical activ-
ity simultaneously at multiple sensor locations. However, EEG recordings are often
corrupted by various artefacts (eye blinks, eye wanderings, etc) and make mean-
ingful analysis difficult. We systematically eliminate artefacts by a combination of
regression and wavelet transform, and subject the data to time-series analysis. We
demonstrate that it is possible to identify features of standing, traveling, and rotat-
ing waves from the EEG data. These features remain invariant for EEG recordings
performed on several subjects, and can be considered to be a signature of resting
brain.

The EEG recordings are performed on 16 healthy subjects under eyes-open con-
dition. Rest-state activity was recorded while the subjects altered between eyes-open
and eyes-closed in a block design. Blocks consist of periods of about 40 s duration
(to avoid eye-blink artefacts). EEG was recorded using a 128-channel Neuroscan
system (Compumedics USA, Inc., El Paso, TX) that provides high-density, full-head
coverage. The exact location of each EEG electrode was determined with respect to
standard fiducials (bilateral preauricular points and the nasion) using a Polhemus
Fastrack system.

The artefact-removed data reveal characteristic spindle structures, and its Fourier
transform in Fig. 4.9 shows a power spectrum with a slope of approximately −2 in
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Fig. 4.8 [Color plate] Analysis of BOLD signal activity. (A) Fourier power spectrum of the BOLD
signal corresponding to PFCORB node. (B) BOLD signal time-series shown for PFCORB, PFCM,
FEF. (C) 38×38 correlation matrix computed from the simulated BOLD signals. (D) BOLD signal
activity for the six regions corresponding to the report of Fox et al. (2005) [3]. (Reprinted with
permission from [6]).

the log-log plot, with a dominant frequency component around 10 Hz, correspond-
ing to the alpha band.

4.4.1 Time-series analysis

Previous attempts at demonstrating low-dimensional nonlinear structure in EEG
data have had only limited success [14, 17]. Here we will compute various mea-
sures typically used in analyzing complex time-series data.

The time-delayed mutual information takes into account nonlinear correlations,
and is a useful tool to determine the delay-time for embedding time-series data [4],
and is defined as

M(τ) = −∑
i j

pi j(τ) ln
pi j(τ)
pi p j

, (4.6)
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Fig. 4.9 Characteristic power spectrum of the resting-state EEG shows a 1/ f -like decay with an
approximate slope −2 and a peak at ∼10 Hz (alpha waves).

where pi j(τ) is the joint probability that an observation lies in ith interval, given
that observation after time τ lies in jth interval. The first minimum in M(τ) vs τ
plot is a good estimate of time-delay. Our estimated time-delay is τ = 40 ms (see
Fig. 4.10(a)). Using the delay information, we reconstruct the phase space by time-
delayed embedding of the time-series data. For low-dimensional chaotic signals,
the phase space is expected to show a strange attractor whose dimension can be
estimated by computing the correlation sum [7],

C(m,ε) =
1
N

N

∑
j=m

∑
k< j

Θ (ε −|x j − xk|) . (4.7)

For sufficiently small length-scale ε , and embedding dimension m exceeding the box
dimension of the attractor, the correlation sum scales as C(m,ε) = εD, where D is
the correlation dimension. In Fig. 4.10(b), we plot logC(m,ε) vs logε as a function
of embedding dimension, m, and do not observe convergence with increasing m.
Hence we conclude that the underlying attractor of the rest dynamics lies in a high-
dimensional space.

Moreover, it needs to be seen if the rest-state EEG has any characteristic chaotic
signature. Chaotic time-series are characterized by their spectrum of Lyapunov ex-
ponents that describe the exponential growth-rate of infinitesimal perturbations [9].
The maximal Lyapunov exponent is estimated from the linear slope of

S(ε,m, t) =

〈
ln

(
1
|U | ∑

xm∈U
|xn+t − xm+t |

)〉
n

(4.8)
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Fig. 4.10 (a) Mutual information indicates time-delay is τ = 40 ms; (b) logC(m,ε) vs logε plot,
does not show convergence as a function of embedding dimension, m; (c) S(ε,m, t) does not show
a significant linear regime for calculating Lyapunov exponents; (d) Distribution of Hurst exponents
shows significant peak at H > 0.

plotted as a function of t for all embedding dimension m for reasonable neighbor-
hood size ε . However, we observe in Fig. 4.10(c) that S(ε,m, t) does not show a
significant linear regime, reflecting lack of exponential divergence of nearby tra-
jectories. Our findings indicate that rest-state EEG dynamics does not conform to
low-dimensional chaos, but instead indicate high-dimensional complexity. At this
point one may also suspect that the rest-state EEG signal is predominantly noise.

The next measure that we propose to distinguish the rest-state activity from noise
is the Hurst exponent [1]. The Hurst exponent is a quantification of the degree of in-
dependence or the relative tendency of observables to cluster towards certain values,
and can be estimated from the structure function:

Sq = 〈|x(t + τ)− x(t)|q〉T ≈ τqH(q) , (4.9)

where q > 0, τ is the time-delay, and averaging is done over time-window T . For
Gaussian white noise H(q) = 0 indicating statistical independence, while for corre-
lated observations H(q) → 1. The distribution of Hurst exponents estimated for all
EEG channel recordings during rest-state dynamics has a nonzero mean, indicating
that the data have significant correlations and are not white noise (see Fig. 4.10(d)).
However, from time-series analysis we do not gain sufficient insight into the
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dynamics of the rest-state, so resort to spatiotemporal analysis to reveal the dy-
namical features.

4.4.2 Spatiotemporal analysis

An important feature of EEG is that the data are recorded at a number of electrode
locations simultaneously. Thus the aim of a spatiotemporal analysis is to reveal if
there are any inter-area correlations. A first measure in this direction is the degree
of phase synchronization. This can be characterized by quantifying phase-locking
in terms of a synchronization index,

σ = (Smax −S)/Smax , where S = −∑ pk ln pk (4.10)

is the entropy of the distribution

φnm = nφi −mφ j . (4.11)

The phase φi of electrode location i is computed by the Hilbert transform of
the corresponding EEG signal. The normalized index is in the range of 0 ≤ σ ≤ 1,
where σ = 0 indicates no synchronization, and σ = 1 shows complete synchroniza-
tion [16].

Here we observe that while time-series analyses of individual EEG channel
recordings exhibit no signature of low-dimensional chaos, their distribution of syn-
chronization indices (n:m = 1:1) computed for all channels and subjects exhibit
a high degree of synchronization (see Fig. 4.11). Mutual correlation of EEG data
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Fig. 4.11 Distribution of the synchronization index indicates a high degree of synchronization
across electrodes during the resting state.
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indicates that the data can be subjected to principal component analysis (PCA) to
identify the spatial structures.

Let the spatiotemporal data be decomposed by PCA as,

x(i, t) = ∑
k

ξk(i)ψk(t) , (4.12)

where ξk(i) are the spatial modes spanning the space of electrode locations, and
ψk(t) are the corresponding temporal coefficients. Now the spatiotemporal resting-
state data are subjected to PCA. The cumulative sum of the normalized PCA eigen-
values indicates that the first four principal modes are sufficient to capture ∼95%
of the data (see upper asterisked-curve in Fig. 4.12(a)). For comparison we also
show the cumulative sum of PCA normalized eigenvalues computed from random
variables. The spatial modes are plotted in interpolated scalp surface (viewed from
above; see Fig. 4.12(b)). The first four principal modes are similar to the first lowest-
order spherical harmonics.

The Fourier power spectrum of temporal coefficients, ψ(t), retains power-law
fluctuations and the dominant alpha oscillations (see Fig. 4.13(a)). Now we band-
pass the temporal coefficients and select the signal in the alpha-band, i.e., 8–13 Hz.
Convolution of bandpassed ψα

k (t) and ξk(i) exhibits alpha waves. Alpha waves
can be standing, traveling, or rotating in nature, and can be quantified in the fol-
lowing way: we compute the phase variables φ(t) from ψ(t) by Hilbert trans-
form, and the phase differences Φ between different PCA modes. The distribu-
tion of Φ12 = φ1 − φ2 (i.e., phase difference between the first two modes) shows
a peak around Φ12 ≈ π/2 (see Fig. 4.13(b)), implying the presence of longitudinal
waves traveling from anterior to posterior. Transverse traveling waves are less fre-
quent as the distribution of Φ13 = φ1 − φ3 has no significant peak. Moreover, the
Φ23 = φ2−φ3 distribution also shows a peak at around π/2, explaining occurrences
of mostly counterclockwise rotating waves.

4.5 Final remarks

When the brain is at rest, its resting activity is not zero—in fact, it displays a rich
dynamics. The concept of rest of the brain is difficult on various levels of consider-
ation. What does it actually mean when the brain “does nothing”? One of the most
often posed questions at conferences is, “How do you actually know that the brain
is at rest?” We do know. Why? By definition: when a human subject is properly
instructed to close the eyes and attempt to neither move nor think of anything, the
associated brain activity is the resting-state of the brain.

Another argument often raised is that it is impossible to think of nothing, since
thoughts will appear involuntarily, even though typically only for a brief time. These
occurrences of transient thoughts do not violate the constraint of “doing nothing”; in
fact, these transient explorations of the brain’s dynamic repertoire is what we seek
to understand. When the brain activates certain network configurations (but not in



4 Spontaneous brain dynamics 95

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

Λ
(n

)

Fig. 4.12 (a) Cumulative sum of PCA eigenvalues for resting state (∗–∗), and for random variables
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Fig. 4.13 (a) Fourier power spectrum of all four temporal modes of PCA shows that the alpha band
has the most significant contribution. (b) Distribution of phase differences Φi j with i, j = 1,2,3.

the sense of a “first mover”) during resting activity, such transient thoughts should
even be expected.

The characteristic resting-state networks include as a subset the default network
of the brain, which is ex negativo associated with cognitive processes. Philosophi-
cally, this imposes only mild constraints upon the reader’s favorite cognitive theory:
an identity of thought and brain activations is not required, a mild constructivism re-
garding the emergence of thought processes being fully sufficient. However, in this
chapter we have identified several of the key ingredients necessary for the emer-
gence of undirected thought, i.e., for the emergence of the resting-state of the brain.
Without the noise in physiological systems such as the brain, the resting-state would
be truly a state and truly at rest; in other words, the brain’s dynamics would relax
to its stable equilibrium point and remain there, until a new stimulation occurs or a
new action is required. No undirected thought, no transient emergence of thoughts
would be possible (within the framework developed in this chapter). It is the pres-
ence of noise that initiates these processes, but also determines their irregularity. It
is the deterministic skeleton of the brain, though, which prescribes the coherence
and consistency of these transient thought processes. This deterministic skeleton
consists of the anatomical connectivity, its time-delay structure, and the response
properties of individual brain areas (their intrinsic dynamics). In conjunction, these
elements define a deterministic set of behaviors (the brain’s dynamic repertoire)
open to exploration through the noise. However, some degree of tuning is required.
In order to allow the noise to perform such exploration, the brain’s deterministic
skeleton must be close to an instability (or bifurcation or phase transition), else the
effect of the noise will be negligible.

We have listed here only the architectural elements necessary to achieve a net-
work dynamics as observed in noninvasive brain imaging during rest. Such has been
the intention of this chapter. We have also discussed its dynamic implications and
consequences. What we have not commented upon, is any implicated function or
purpose of the resting-state.
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List of abbreviations

A1 primary auditory cortex
A2 secondary auditory cortex
CCA anterior cingulate cortex
CCP posterior cingulate cortex
CCR retrosplenial cingulate cortex
CCS subgenual cingulate cortex
FEF frontal eye field
IA anterior insula
IP posterior insula
M1 primary motor cortex
PCI inferior parietal cortex
PCIP intraparietal sulcus cortex
PCM medial parietal cortex
PCS superior parietal cortex
PFCCL centrolateral prefrontal cortex
PFCDL dorsolateral prefrontal cortex
PFCDM dorsomedial preforntal cortex
PFCM medial prefrontal cortex
PFCORB orbital prefrontal cortex
PFCPOL polar prefrontal cortex

PFCVL ventrolateral prefrontal cortex
PHC parahippocampal cortex
PMCDL dorsolateral premotor cortex
PMCM medial (supplementary) premotor

cortex
PMCVL ventrolateral premotor cortex
Pulvinar pulvinar thalamic nucleus
S1 primary somatosensory cortex
S2 secondary somatosensory cortex
TCC central temporal cortex
TCI inferior temporal cortex
TCPOL polar temporal cortex
TCS superior temporal cortex
TCV ventral temporal cortex
ThalAM thalamus
V1 primary visual cortex
V2 secondary visual cortex
VACD dorsal anterior visual cortex
VACV ventral anterior visual cortex
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Chapter 5
Limited spreading: How hierarchical networks
prevent the transition to the epileptic state

M. Kaiser and J. Simonotto

5.1 Introduction

An essential requirement for the representation of functional patterns in complex
neural networks, such as the mammalian cerebral cortex, is the existence of sta-
ble network activations within a limited critical range. In this range, the activity
of neural populations in the network persists between the extremes of quickly dy-
ing out, or activating the whole network. The latter case of large-scale activation
is visible in the transition to the epileptic state. It is known in neuroanatomy that
the neuronal network of the mammalian cerebral cortex possesses a modular or-
ganization across several levels of organization—from cortical clusters such as the
visual cortex at the highest level, to individual columns at the lowest level. Using
a basic spreading model of a network without inhibitory units, we investigate how
functional activations of nodes propagate through such a hierarchically clustered
network. Simulations demonstrate that persistent and scalable activation can be pro-
duced in clustered networks, but not in random networks of the same size. Moreover,
the parameter range yielding critical activations is substantially larger in hierarchi-
cal cluster networks than in same-sized small-world networks. These findings indi-
cate that a hierarchical cluster architecture may provide the structural backbone for
the stable and diverse functional patterns observed in cortical networks additional
to the known role of inhibitory neurons. Such topological inhibition might help to
maintain healthy levels of neural activity. For readers who are unfamiliar with the
emerging area of network science, we provide a glossary of key terms at the end of
the chapter.

Natural systems operate within a critical functional range, sustaining diverse dy-
namical states [5, 41]. For instance, in neural systems, such as the cerebral cortical
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networks of the mammalian brain, this critical range is indicated by the fact that
initial activations result in various neuronal activity patterns that are neither dying
out too quickly, nor spreading across the entire network too often as large-scale
activation is infrequent [7]. What are the essential structural and functional parame-
ters that allow complex neural networks to maintain such a dynamic balance? In par-
ticular, which factors limit the spreading of neural activity through the whole brain,
thus preventing a pathological state resembling epilepsy? Preventing the spreading
is important as there are few processing steps in the brain as indicated by the the
analysis of cortical connectivity [19, 28] and of cortical latencies [54].

Most current models of neural network dynamics focus on maintaining the
right balance of activation through functional interactions among populations of
inhibitory and excitatory nodes [7, 18]. However, the topology of the networks may
also make a significant contribution toward critical network dynamics, even in the
absence of inhibitory nodes. Earlier studies at a single level of neural organization
had shown that a small-world organization of a network of excitatory neurons was
related to patterns of synchrony [37] and epilepsy spreading [11, 40]. In our model,
we will observe how hierarchies, in addition to properties of small-world networks,
influence network dynamics.

5.1.1 Self-organized criticality and avalanches

Nonlinear dynamics and criticality arise in natural systems through the interplay of
many variables and degrees of freedom. In theoretical and computational models,
these systems can be represented by differential or difference equations, and typ-
ically have at least three variables, or degrees of freedom (the logistic map being
a notable exception). The nonlinear aspect of these interactions causes systems to
have varying responses to stimuli and input, based on the “state” of the system as
a whole. For example, some input at one point in time may have a certain output,
but an identical input at some later time can result in a very different output of the
system, due to different initial conditions. Taken’s theory of embedding [51] and
Sauer’s extension to time-delay embedding [47] allow one to recreate these state
spaces, allowing one to visualize attractors. Thus, one may understand both tempo-
rally local and temporally global dynamics: locally, a linear approximation to trans-
late output to input is possible; globally, if one watches the dynamics long enough,
one may reconstruct the entire attractor. However, prediction of intermediate-term
behavior is not currently possible.

Examination of how these attractors change when variables are changed allows
one to identify critical points within a system; these critical points are phase states
in which very different types of behavior result from mildly different initial condi-
tions. In some systems, critical points are the attractors of a system; in this case,
the variables themselves are less important and it is from the inputs that one sees
critical-point transitions in behavior. Such systems are referred to as self-organized
critical systems [4, 5]; earthquakes, sandpile avalanches, and large ensembles of
neurons are examples. Self-organized critical systems are typically slow-driven
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nonequilibrium systems, with a large degree of freedom and high nonlinearity, but
there is no set of characteristics that guarantees that a given system will display
self-organized criticality [52].

Another characteristic of self-organized critical systems is scale invariance, in
which fluctuations have no characteristic time or spatial scale. Spatially extended
critical systems which exhibit scale invariance [14] are of increasing interest in
many natural systems, including the brain. Variability also exists in the underlying
network topology of systems. For scale-free networks, connections between nodes
of a network are not uniformly randomly distributed, but follow a power-law of
distribution, with certain nodes acting as highly-connected hubs [6]. This type of
connectedness gives robustness of operation even with loss of random connections
(“damage”) between nodes, so long as the hubs are not completely disconnected
from the network [2]. A similar response to structural damage as for scale-free net-
works was observed for cortical networks [30].

5.1.2 Epilepsy as large-scale critical synchronized event

Epilepsy affects 3–5% of the population worldwide. Seizures are the clinical man-
ifestation of an abnormal and excessive excitation and synchronization of a popu-
lation of cortical neurons. These seizures can spread along network connections to
other parts of the brain (depending on the type and severity of the seizure), and can
be quite debilitating in terms of quality of life, cognitive function, and development.
In the vast majority of cases, seizures arise from medial temporal structures that
have been damaged (due to injury or illness) months to years before the onset of
seizures [12]. Over this “latent period”, cellular and network changes are thought to
occur which precipitate the onset of seizures.

It is not understood exactly how these seizures come about, but is thought to
be due to structural changes in the brain, as in the loss of inhibitory neurons,
the strengthening of excitatory networks, or the suppression of GABA receptors
[12, 31]. Cranstoun et al. (2002) reported self-organized criticality in EEG (elec-
troencephalogram) recordings from human epileptic hippocampus; thus applying
network analysis to this system may reveal useful information about the develop-
ment (and possible prevention) of seizures. As the networks that support the spread
of seizure activity are the very same networks that also support normal cognitive
activity, it is important to understand how this type of activity arises in networks
in general [16]. The question of how seizures are initiated (ictogenesis) is also of
great interest, as further elucidation of either epileptogenesis or ictogenesis may
have considerable impact on the treatment (and possible cure) of epilepsy [24].

5.1.3 Hierarchical cluster organization of neural systems

It is known from the anatomy of the brain that cortical architecture and connec-
tions are organized in a hierarchical and modular way, from cellular microcircuits in
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Fig. 5.1 Clustered organization of cat cortical connectivity. (a) Cluster count plot, indicating the
relative frequency with which any two areas appeared in the same cluster, computed by stochastic
optimization of a network clustering cost function [19]. Functional labels were assigned to the
clusters based on the predominant functional specialization of areas within them, as indicated by
the physiologic literature. (b) Cat cortical areas are arranged on a circle in such a way that areas
with similar incoming and outgoing connections are spatially close. The ordering by structural
similarity is related to the functional classification of the nodes, which was assigned as in (a).



5 Contained activation through hierarchical topology 103

cortical columns [8] at the lowest level, via cortical areas at the intermediate level,
to clusters of highly connected brain areas at the global systems level [19, 20, 50].
At each level, clusters arise, with denser connectivity within than between modules.
This means that neurons within a column, area, or area cluster are more frequently
linked with each other than with neurons in the rest of the network.

Cluster organization at the global level is, for example, visible in the pattern of
corticocortical connectivity between brain areas in the cat [48, 49]. Based on the
structural connectivity of anatomical fiber tracts it is possible to distinguish four
clusters which closely resemble different functional tasks (Fig. 5.1). Cluster orga-
nization is also visible at the level of cortical areas, for example, about 30–40%
of synapses within visual areas come from distant cortical areas or thalamic nuclei
[54], thus the majority of connections runs within an area. Within cortical columns
of area 17 of the cat, two-thirds of synapses within layers come from external neu-
rons in different layers [8]. Nonetheless, a neuron is more likely to connect to a
neuron in the same layer than to a neuron in a different layer. After discussing the
transition to the epileptic state in the next section, we will show how the cluster
organisation of neural systems can prevent this transition in the normal brain, and
we will identify which changes could lead to seizures in epileptic patients.

5.2 Phase transition to the epileptic state

The phase transition to the epileptic (“itctal”) state is abrupt from a behavioral point
of view (seizures start suddenly), but from an electrical/network point of view, there
are subtle connectivity and synchronization-related changes in network activity that
can indicate that a seizure will occur soon (with a prediction window ranging from
minutes to hours). The existence of this so-called “pre-ictal” period—in which one
is neither “inter-ictal” (between seizure states), nor currently having a seizure—has
been the subject of intense debate in the literature, but more and more evidence
points to its existence [24]. Epileptogenesis typically has a longer timescale of de-
velopment (months to years) than ictogenesis (weeks to days), but understanding
the changes of epileptogenesis and how seizures become more easily generated is
also of considerable interest, as characterization of network changes may allow one
to treat epilepsy in a more precise manner (i.e., with no systemic drug application
or removal of whole brain areas in order to eliminate malfunctioning pathways).

5.2.1 Information flow model for brain/hippocampus

The hippocampus is a well-studied part of the brain, and is an especially impor-
tant part of the limbic system, as it has to do with memory formation and in-
formation processing. Limbic epilepsy, in particular temporal lobe epilepsy, is a
particularly debilitating form as it can be difficult to treat surgically without adverse
quality-of-life effects [12]. Avoli et al. (2002) examined information flow within
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the hippocampus and reported changes of this structure in animal models of limbic
epilepsy. They reported a change within the information flow of the hippocampus,
involving the loss of connectivity from the CA3 area to the rest of the hippocampus,
as well as increased connectivity from the entorhinal cortex, an area normally made
quiescent by a 0.5–1-Hz signal from CA3. The time-course of these changes, and
the nature of the structure–function alterations as the animal behavior alters (from
normal to epileptogenic) are difficult to characterize. This is because these changes
occur over an extended period of time, so require large-scale storage and comput-
ing facilities in order to contain and analyze data of sufficiently high spatial and
temporal resolution, captured over the entire critical period.

5.2.2 Change during epileptogenesis

The Chronic Limbic Epilepsy [35, 36] model is a rodent model of limbic epilepsy in
which the animal is kindled into status epilepticus for one hour. Following a recov-
ery period of 12–24 hours, spontaneous seizures occur within 2–8 weeks, which are
recurrent and chronic.1 A total of 32 tungsten microwire electrodes were implanted
in the CA1 and dentate gyrus subfields of the hippocampus bilaterally, with ∼8
microwires implanted into each field. The electrodes were implanted in two rows
spaced 420 μm apart, with each electrode in the row spaced at 210-μm intervals.
Electrode voltages were digitized at 16 bits, and recorded continuously at 12 kHz
using custom-written acquisition software and a Tucker-Davis Pentusa DSP, which
employed a hardware bandpass filter set from 0.5 Hz to 6 kHz.

Two weeks of baseline data were recorded after the animal had had sufficient
time to recover from electrode implantation. The animal was then kindled in the
manner prescribed for the Chronic Limbic Epilepsy Animal model [35]. Continuous
recording began within a day of kindling, and continued until after the spontaneous
electrographic and behavioral seizures had ended. A control animal was recorded
using the same protocol. All animals were continuously video-recorded to monitor
for seizures.

Coherence, defined as

Cxy( f ) =
|Pxy( f )|2

Pxx( f )Pyy( f )
,

is a measure used to determine the degree of linear similarity between two signals
[23, 43]. Coherence has been applied to the human EEG in order to determine the
relationship between signals for determining seizure propagation delay [15, 17].
A significant increase (or decrease) in coherence would indicate whether two
time-series have quantifiably similar frequency properties (or have more dissimilar
frequency properties) over that time period. During the latent period before the on-
set of a seizure, one might predict that an increase in coherence might occur across

1 The work described here was undertaken at the University of Florida as part of the “Evolution
into Epilepsy” NIH/NHS joint research project (grant no. 1R01EB004752).
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the epileptic brain compared to normal animals, or that changes might occur prefer-
entially in different frequency bands.

Averaged coherence of inter-hemispherical activity in high gamma to ripple fre-
quencies (40 to 200 Hz, called “low band” in analysis and subsequent figures)
showed a significant suppression of coherence between hemispheres (p < 0.0015)
in stimulated animals compared to nonstimulated animals (see Fig. 5.2). Medvedev
reported findings that coherence decreased in the hippocampus at frequencies from
20–100 Hz, suggesting an “anti-binding” mechanism; our findings indicate that this
decrease in coherence is evident for spontaneous epilepsy [38].
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Fig. 5.2 [Color plate] Coherence comparisons of stimulated vs. nonstimulated animals. Mean and
standard deviation of coherence in the 40–200-Hz band for two stimulated animals (blue and
red bars), and one nonstimulated animal (black bar) are shown. Note that the inter-hemispherical
coherence is suppressed in the stimulated animals.

5.3 Spreading in hierarchical cluster networks

5.3.1 Model of hierarchical cluster networks

How can the topology of neuronal networks reduce or enhance the probability of
a transition to the epileptic state? We used a basic spreading model to explore the
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role played by different network topologies in producing persistent, yet contained,
activations. Spreading analysis has also been applied to cortical networks at the
global level [33], and to other complex networks with a nonrandom organization
[10, 21, 44].

The present model operates without inhibitory units such as cortical inhibitory
interneurons, as we were specifically interested in the contribution of network topol-
ogy. This lack of inhibition is also reflective of structural attributes of cortical net-
works [34], and other complex networks such as social networks [44].

In our model, individual network vertices represent cortical columns whose con-
nectivity follows the levels of hierarchical organization (Fig. 5.3(a)). Networks were
undirected graphs with N = 1000 vertices and E = 12000 edges. To create the hier-
archical cluster network, 1 000 vertices were divided up into 10 disjoint sets (“clus-
ters”), each consisting of 100 vertices. Each cluster was further split into 10 “sub-
clusters” containing 10 vertices each. The network was wired randomly, such that
4 000 edges (one third of the total 12 000 connections) connected vertices within
the same subclusters, 4 000 edges connected vertices within the same clusters, and
4 000 were randomly distributed over all nodes of the network (Fig. 5.3(b)). The
edge density in these networks was 0.025 whereas the clustering coefficient was
0.15. The characteristic path length (2.6), however, was similar to that of random
networks (2.5), indicating properties of small-world networks [53].

Sensory-
motor

Auditory

Fronto-
limbic 

Visual

V1

V3

(b)(a)

V2

Fig. 5.3 (a) The hierarchical network organization ranges from cluster (e.g., visual cortex), to
subcluster (e.g., V1), to individual nodes (cortical columns). (b) Schematic view of a hierarchical
cluster network with five clusters, each containing five subclusters.

We compared spreading (i.e., propagation of activation) in hierarchical net-
works with spreading in random and small-world benchmark networks with the
same number of vertices and edges [25]. The small-world networks with a rewiring
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probability of p = 0.5 had similar clustering coefficient values (0.11) and character-
istic path lengths (2.6) to that of the hierarchical networks, but lacked the charac-
teristic cluster architecture. We also generated Erdös-Rényi random networks [13].

5.3.2 Model of activity spreading

We used a simple threshold model for activity-spreading in which a number i of
randomly selected nodes were activated in the first step. An additional component
was the extent of localization of the initial activation i0. For initialization, i (i ≤ i0)
nodes among the nodes 1 to i0 were randomly selected and activated in the first time-
step. The network nodes were numbered consecutively. For example, by setting i0
to 10, 20 or 100, only nodes in the first subcluster, the first two subclusters, or the
first cluster, respectively, were activated during initialization. Thus, i determined
the number of initially activated nodes while i0 controlled the localization of initial
activations, with smaller values resulting in more localized initial activity. At each
time-step, inactive nodes become activated if at least k neighbors were activated
(neighbors of a node are nodes to which direct connections exist). Activated nodes
could become inactive with probability ν . As default we used k = 6 and ν = 0.3.
The state of the network was determined after 200 steps of the simulation as activity
was either dying out (zero activation), spreading through the whole network (more
than 50% of the nodes were active), or balanced for an intermediate activation level.

5.3.3 Spreading simulation outcomes

Across different simulation conditions, hierarchical cluster networks show a larger
variety of behaviors than do random or small-world networks, and produce persis-
tent yet balanced network activity for a wider range of initial conditions.

Examples exhibiting the behaviors of the different networks are shown in Fig. 5.4.
The figure shows the result of 20 simulations in the three network types when 10%
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Fig. 5.4 Examples for spread of activity in (a) random, (b) small-world and (c) hierarchical cluster
networks (i = 100, i0 = 150), based on 20 simulations for each network.
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of the nodes were randomly selected for initial activation. In the random network,
activity dies out in most cases. In the small-world network, spread of activity results
in almost complete activation (NB: 100% activation cannot be achieved due to the
deactivation probability for active nodes at each step). In contrast, the hierarchical
cluster network produces cases in which spreading is limited. Such persistent acti-
vation can be sustained with different patterns and varying extent of involved nodes
(see Fig. 5.5).

0                50             100             150             200   0               50              100             150             200

Time steps

N
od

es

(a)             (b)

Fig. 5.5 Examples for different sustained activity patterns in hierarchical cluster networks
(i = 90, i0 = 1000). Graded gray background shading indicates the 10 subclusters within each
of the 10 clusters. Black dots represent nodes active at the respective time-step. (a) One cluster
showing sustained activity. (b) One cluster remaining active with frequent co-activation of one
external subcluster.

5.3.3.1 Delay until large-scale activation

Does the “speed” with which the whole network can become activated depend on
the network topology? For those cases where large-scale activation was observed,
we looked at the number of time-steps required to reach this state. For the random
network, if activity spread at all, it did so rapidly, typically in less than 10 time-steps.
Even if the initial activity was in the borderline range for all-or-none network acti-
vation, not more than 15 time-steps were required in any of the cases. This was in
contrast to the small-world and hierarchically clustered networks, for which a wide
range of delay times was observed. For the small-world network, delayed spreading
depended on whether initial activity was strictly localized (i0 = i). Setting i0 = i = 90
typically resulted in about 40 time-steps for spreading, whereas for i0 = 190, i = 90,
spreading in the small-world network appeared similar to that in the random net-
work. By contrast, for the hierarchically clustered network, spreading to the global
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level did not arise when the initial activation was too strictly localized. A maximum
delay for spreading was achieved by localizing the initial activity within two or
three clusters (e.g., delay around 40 steps for i0 = 200, i = 90). Thus neighborhood
clustering in the small-world and hierarchical networks slows down the spreading
of activation. Note that the increase in delay compared to the random network is
larger than would be expected from the increase of the characteristic path length.
These results indicate that limiting the number of short-cuts or connections between
clusters acts as a bottleneck for the spreading of activation. We will come back to
this point later.

5.3.3.2 Robustness of sustained-activity cases

The higher likelihood of sustained activation in hierarchical networks is largely
independent of our choice of model parameters. We systematically explored the
network activation behaviors resulting from different settings of the initial node ac-
tivation and localization parameters. Both the number of initially activated nodes
and their localization had a critical influence on the resulting spreading patterns
[25]. Since at any given time only a fraction of neurons in a neural system will be
in the activated state, we limited the maximum number of initially active nodes to
250, that is, one-quarter of all network nodes. Persistent contained activity in hier-
archical networks was robust for a wide range of initial localization and activation
parameters (indicated by the gray parameter domain in Fig. 5.6). For small-world
networks, however, parameters needed to be finely tuned in order to yield sustained
activity. Thus, hierarchical networks showed sustained activity for a wider range of
initial activation conditions.

(a) (b)

Fig. 5.6 Parameter space exploration of the critical range for all combinations of initial activation
parameter i and localization parameter i0, based on 1000 test cases. Simulation outcomes are indi-
cated by gray level (black: activity died out; gray: limited spreading; white: complete spreading).
(a) Small-world network; (b) hierarchical cluster network.

The results were also robust in terms of the spreading parameters k and ν . Using
a Monte Carlo approach, for each pair of k and ν , we generated 20 small-world
and 20 hierarchical networks. For each network, the dynamics for 1000 randomly
chosen parameters i and i0 were tested (see Fig. 5.7). A trial was considered to show
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(a)

kk

ν
(b)

Fig. 5.7 Ratio of sustained activity cases depending on the spreading parameters k (activation
threshold) and ν (deactivation probability) for (a) small-world, and (b) hierarchical cluster net-
works.

sustained activity if at least one, but no more than 50%, of all nodes were activated
at the end of the simulation. For each pair of spreading parameters k and ν , the
average ratio of cases for which sustained activity occurred, related to the ratio of
the gray space in Fig. 5.6, was larger for hierarchical cluster networks than for small-
world networks. The maximum ratio was 67% of the cases for hierarchical cluster
networks compared to 30% for small-world networks.

Sustained spreading in hierarchical cluster networks still occurred for different
ratios of connectivity within and between clusters and subclusters. However, results
differed for large changes in the proportion of connections between modules (clus-
ters or subclusters; see [25] for details): Reducing the proportion of connections
between modules led to a higher proportion of cases with sustained activity. While
the total number of edges was kept constant, the number of connections between
cluster and subclusters was reduced. Now, three or more clusters could be persis-
tently activated without a subsequent spread through the whole network (Fig. 5.8a).
In these cases, the limited number of inter-cluster connections formed a bottleneck
for activation of the remaining clusters. Increasing the proportion of connections
between modules blurred the boundaries of local network modules and reduced
the proportion of cases with sustained activity, but the proportion was still larger
than that for small-world networks. However, for these networks, initially contained
activation was able to spread through the network at later stages of the simulation
(Fig. 5.8b). These results for spreading dynamics are in line with earlier studies on
the important role of inter-cluster connections for structural network integrity [26].

For the above model, activated nodes might stay active for a long time, poten-
tially until the end of the simulation. However, energy resources for sustaining
neural network activations are limited in real neural systems. For instance, exhaus-
tion occurs during epileptic seizures, reducing the duration of large-scale cortical
activation. Therefore, we also tested the effect of restricting the number of
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(a) (b)

Time steps

Fig. 5.8 (a) Sustained activity in three clusters, without subsequent spreading through the rest of
the network, was possible when the number of connections between clusters was reduced. These
few inter-cluster connections created a bottleneck for further activity spreading. (b) When the num-
ber of inter-cluster connections was increased, activity was more likely to spread through the entire
network. The figure shows an activation that is initially limited to two clusters and subsequently
spreads through the whole network.

time-steps that nodes could be consecutively active from seven steps to a single
step. Sustained network activation could still occur in the hierarchical cluster net-
work, despite different degrees of limiting node exhaustion: sustained activity was
largely independent of the exhaustion threshold parameter. The range of parame-
ters for which sustained activity occurred remained similar to that in the previous
analyses, with no clear correlation to the number of steps (average ratio of sustained-
activity cases over all pairs of the spreading parameters was 0.272 ± 0.068).

We also tested whether these findings were specific to the threshold activation
model described here. Simulations with integrate-and-fire (IF) neurons [32] as net-
work nodes led to similar results. In comparison to random networks, hierarchical
cluster network simulations showed easier activation, and exhibited intermediate
states of activation [T. Jucikas, private communication]. Thus, our results do not
appear to depend on the specific activation model, but are general properties of the
topology of the network.

5.4 Discussion

Our simulations demonstrate the strong influence of network topology on spread-
ing behavior. Clustered networks are more easily activated than random networks of
the same size. This is due to the higher density of connections within the clusters,
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facilitating local activation. At the same time, the sparser connectivity between clus-
ters prevents the spreading of activity across the whole network. The prevalence
of persistent yet contained activity in hierarchical cluster networks is robust over
a large range of model parameters and initial conditions. In contrast, small-world
networks without hierarchical modules frequently show a transition to the putative
epileptic state of large-scale activation.

The present hierarchical cluster model, which reflects the distributed multilevel
modularity found in biological neural networks, is different from previously stud-
ied “centralistic” hierarchical modular networks in which most nodes are linked to
network hubs [45]. While developmental algorithms have been suggested for the
latter type of network, there are currently no algorithms for producing the hierarchi-
cal cluster networks presented here. However, single-level clustered network archi-
tectures can be produced by models for developmental spatial growth [27, 29, 42]
or dynamic self-organization of neural networks [22]; such models may serve as
a starting point for exploring the biological mechanisms for developing multilevel
clustered neural architectures.

Present results provide a proof of concept for three points. First, persistent but
contained network activation can occur in the absence of inhibitory nodes. This
might explain why cortical activity does not normally spread to the whole brain,
even though top-level links between cortical areas are exclusively formed by ex-
citatory fibers [34]. While the involvement of inhibitory neurons and other dy-
namic control mechanisms may further extend the critical range, the present results
indicate that the hierarchical cluster architecture of complex neural networks, such
as the mammalian cortex, may provide the principal structural basis for their stable
and scalable functional patterns. Second, in hierarchical clustered networks, activity
can be sustained without the need for random input or noise as an external driving
force. Third, multiple clusters in a network influence activity spreading in two ways:
bottleneck connections between clusters limit global spreading, whereas a higher
connection density within clusters sustains recurrent local activity.

5.5 Outlook

It will be important to see how the topological inhibition based on the cluster archi-
tecture relates to neuronal inhibition from inhibitory interneurons. For topological
inhibition, an increase in the number of axons between clusters will enhance the
likelihood for activity spreading. At the cortical level, this could be visualized as
changes in white matter volume that could be detected by tract tracing or diffusion
tensor imaging. An alternative way to increase the probability of activity spread-
ing to other clusters would be a larger connection strength of existing inter-cluster
connections. For neuronal inhibition, the most effective way for inhibitory neurons
to limit large-scale activity spreading from its own cluster to another cluster would
be to reduce the activity in excitatory neurons that project to the other cluster. This
would be the network analogue to the frequent positioning of inhibitory synapses
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close to the axon hillock to prevent the spreading of activation at the individual
neuron level. If activity of another cluster—independent of the activity level of an
inhibitory neuron’s own cluster—is to be reduced, a direct long-range inhibitory
projection to that cluster is needed.

The model of topological inhibition may have practical implications and may
guide future research. For instance, it might be worthwhile to test whether epilep-
tic patients show a higher degree of connectivity between cortical network clusters
or other changes in structural connectivity which would facilitate spreading. Such
changes might be reflected in certain aspects of functional connectivity [1, 46], or
might be demonstrated more directly by observing structural changes in brain con-
nectivity (using, for example, diffusion tensor imaging).
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Glossary: Graph theory and network science

Adjacency (connection) matrix The adjacency matrix of a graph is an n×n
matrix with entries ai j = 1 if node j connects to node i, and ai j = 0 if there is
no connection from node j to node i.

Characteristic path length The characteristic path length L (also called
“path length” or “average shortest path”) is the global mean of the finite en-
tries of the distance matrix. In some cases, the median or the harmonic mean
may provide a better estimate.

Clustering coefficient The clustering coefficient Ci of node i is the number
of existing connections between the node’s neighbors divided by all their pos-
sible connections. The clustering coefficient ranges between 0 and 1 and is
typically averaged over all nodes of a graph to yield the graph’s clustering
coefficient C.

Cycle A path which links a node to itself.

Degree The degree of a node is the sum of its incoming (afferent) and outgo-
ing (efferent) connections. The number of afferent and efferent connections is
also called the in-degree and out-degree, respectively.

Distance The distance between a source node i and a target node j is equal
to the length of the shortest path.

Distance matrix The entries di j of the distance matrix correspond to the dis-
tance between node j and i. If no path exists, di j = ∞.

Graph Graphs are a set of n nodes (vertices, points, units) and k edges (con-
nections, arcs). Graphs may be undirected (all connections are symmetrical)
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or directed. Because of the polarized nature of most neural connections, we
focus on directed graphs, also called digraphs.

Path A path is an ordered sequence of distinct connections and nodes, linking
a source node i to a target node j. No connection or node is visited twice in a
given path. The length of a path is equal to the number of distinct connections.

Random graph A graph with uniform connection probabilities and a bino-
mial degree distribution. All node degrees are close to the average degree
(“single-scale”).

Scale-free graph Graph with a power-law degree distribution. “Scale-free”
means that degrees are not grouped around one characteristic average degree
(scale), but can spread over a very wide range of values, often spanning several
orders of magnitude.

Small-world graph A graph in which the clustering coefficient is much
higher than in a comparable random network, but the characteristic path
length remains about the same. The term “small-world” arose from the
observation that any two persons can be linked over few intermediate acquain-
tances [39].
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Chapter 6
Bifurcations and state changes in the human
alpha rhythm: Theory and experiment

D.T.J. Liley, I. Bojak, M.P. Dafilis, L. van Veen, F. Frascoli,
and B.L. Foster

6.1 Introduction

The alpha rhythm is arguably the most ubiquitous rhythm seen in scalp-recorded
electroencephalogram (EEG). First discovered by Hans Berger in the 1920s [27] and
later confirmed by Adrian and Mathews in the early 1930s [1], it has played a central
role in phenomenological descriptions of brain electrical activity in cognition and
behavior ever since. While the definition of classical alpha is restricted to that 8–13-
Hz oscillatory activity recorded over the occiput, which is reactive to eyes opening
and closing, it is now widely acknowledged that activity in the same frequency
range can be recorded from multiple cortical areas. However, despite decades of
detailed empirical research involving the relationship of this rhythm to cognition,
we remain essentially ignorant regarding the mechanisms underlying its genesis and
its relevance to brain information processing and function [74].

Broadly speaking we are certain of only two essential facts: first, alpha activity
can be recorded from scalp; and second, it bears some relationship to brain function.
However a raft of recent modeling work suggests that alpha may be conceived as a
marginally stable rhythm in the Lyapunov sense, and hence represents a brain state
which can be sensitively perturbed by a range of factors predicted to also include
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afferent sensory stimuli. In this view, which we will elaborate on in some detail, the
alpha rhythm is best conceived as a readiness rhythm. It is not a resting or idling
rhythm, as originally suggested by Adrian and Mathews [1], but instead represents
a physiologically meaningful state from which transitions can be made from or to.
This perspective echos that of EEG pioneer Hans Berger [27]:

I also continue to believe that the alpha waves are a concomitant phenomenon of the con-
tinuous automatic physiological activity of the cortex.

This chapter is divided into three main sections: The first section gives a suc-
cinct overview of the alpha rhythm in terms of phenomenology, cerebral extent
and mechanisms postulated for its genesis. It concludes by arguing that its com-
plex features and patterns of activity, its unresolved status in cognition, and the
considerable uncertainty still surrounding its genesis, all necessitate developing a
more mathematical approach to its study. The second section provides an overview
of our mean-field approach to modeling alpha activity in the EEG. Here we out-
line the constitutive equations and discuss a number of important features of their
numerical solutions. In particular we illustrate how model dynamics can switch be-
tween different, but electroencephalographically meaningful, states. The third and
final section outlines some preliminary evidence that such switching dynamics can
be identified in scalp recordings using a range of nonlinear time-series analysis
methods.

6.2 An overview of alpha activity

Between 1926 and 1929 Hans Berger laid the empirical foundations for the devel-
opment of electroencephalography in humans. In the first of a number of identically
titled reports [27], Berger described the alpha rhythm, its occipital dominance, and
its attenuation with mental effort or opened eyes. This, and the subsequent reports,
evinced virtually no interest from the neurophysiological community until Edgar
Douglas Adrian (later Lord Adrian) and his colleague Bryan Mathews reproduced
these results in a public demonstration that in addition revealed how easy the alpha
rhythm was to record.

Following its demonstration by Adrian and Mathews [27], interest in the alpha
rhythm and electroencephalography in general accelerated, to the point that consid-
erable funding was devoted to its investigation. However, by the 1950s much of the
early promise—that EEG research would elucidate basic principles of higher brain
function—had dissipated. Instead, a much more pragmatic assessment of its utility
as a clinical tool for the diagnosis of epilepsy prevailed. By the 1970s, rhythmicity in
the EEG had been effectively labeled an epiphenomenon, assumed to only coarsely
relate to brain function. However, the temporal limitations of functional magnetic
resonance imaging and positron emission tomography have in the last decades re-
newed interest in its genesis and functional role.
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6.2.1 Basic phenomenology of alpha activity

Classically, the term “alpha rhythm” is restricted to EEG activity that fulfills a num-
ber of specific criteria proposed by the International Federation of Societies for
Electroencephalography and Clinical Neurophysiology (IFSECN) [32]. The most
important of these are: the EEG time-series reveal a clear 8–13-Hz oscillation; this
oscillation is principally located over posterior regions of the head, with higher volt-
ages over occipital areas; it is best observed in patients in a state of wakeful rest-
fulness with closed eyes; and it is blocked or attenuated by attentional activity that
is principally of a visual or mental nature. However, alpha-band activity is ubiqui-
tously recorded from the scalp with topographically variable patterns of reactivity.
A slew of studies have revealed that the complex distribution of oscillations at alpha
frequency have different sources and patterns of reactivity, suggesting that they sub-
serve a range of different functional roles. Indeed W. Grey Walter, the pioneering
British electroencephalographer, conjectured early on that “there are many alpha
rhythms”, see [70]. Because the original IFSECN definition of alpha rhythm does
not extend to these oscillations, they are typically referred to as alpha activity [15].

To date, two types of nonclassical alpha have been unequivocally identified. The
first is the Rolandic (central) mu rhythm, first described in detail by Gastaut [25].
It is reported as being restricted to the pre- and post-central cortical regions, based
on its pattern of blocking subsequent to contralateral limb movement and/or sen-
sory activity. Like alpha activity in general, the mu rhythm does not appear to be a
unitary phenomenon. For example, Pfurtscheller et al. [61] have observed that the
mu rhythm is comprised of a great variety of separate alpha activities. The other
well-known nonclassical alpha activity is the third rhythm (also independent tem-
poral alphoid rhythm or tau rhythm). It is hard to detect in scalp EEG unless there
is a bone defect [28], but is easily seen in magnetoencephalogram (MEG) record-
ings [77]. While no consensus exists regarding its reactivity or function, it appears
related to the auditory cortex, as auditory stimuli are most consistently reported
to block it [50, 70]. There have also been other demonstrations of topographically
distinct alpha activity, whose status is much less certain and controversial. These
include the alphoid kappa rhythm arising from the anterior temporal fossae, which
has been reported to be non-specifically associated with mentation [36], and a 7–9-
Hz MEG rhythm arising from second somatosensory cortex in response to median
nerve stimulation [49].

Because historically the most common method of assessing the existence of alpha
activity has been counting alpha waves on a chart, incorrect impressions regarding
the distribution and neuroanatomical substrates of the various alpha rhythms are
likely [55]. Thus the current nomenclature has to be viewed as somewhat provi-
sional. Nevertheless, the global ubiquity of alpha activity and its clear associations
with cognition suggest that understanding its physiological genesis will contribute
greatly to understanding the functional significance of the EEG. This possibility was
recognised by the Dutch EEG pioneer Willem Storm van Leeuwen who is cited in
[4] as commenting:
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If one understands the alpha rhythm, he will probably understand the other EEG
phenomena.

6.2.2 Genesis of alpha activity

To date, two broad approaches have emerged for explaining the origin of the alpha
rhythm and alpha activity. The first approach conceives of alpha as arising from cor-
tical neurons being paced or driven at alpha frequencies: either through the intrinsic
oscillatory properties of other cortical neurons [44, 71], or through the oscillatory
activity of a feed-forward subcortical structure such as the thalamus [30, 31]. In
contrast, the second approach assumes that alpha emerges through the reverber-
ant activity generated by reciprocal interactions of synaptically connected neuronal
populations in cortex, and/or through such reciprocal interactions between cortex
and thalamus.

While Berger was the first to implicate the role of the thalamus in the genera-
tion of the alpha rhythm [27], it was the work of Andersen and Andersson [2] that
popularised the notion that intrinsic thalamic oscillations, communicated to cortical
neurons, are the source of the scalp-recorded alpha rhythm. Their essential assump-
tion was that barbiturate-induced spindle oscillations recorded in the thalamus of
the cat were the equivalent of the alpha oscillations recorded in humans. However,
the notion that spindle oscillations are the source of alpha activity has not survived
subsequent experimental scrutiny [74]. Spindle oscillations only occur during anes-
thesia and the retreat into sleep, whereas alpha oscillations occur most prominently
during a state of wakeful restfulness. Further, while the frequency of spindle oscilla-
tions and alpha activity overlap, spindles occur as groups of rhythmic waves lasting
1–2 s recurring at a rate of 0.1–0.2 Hz, whereas alpha activity appears as long trains
of waves of randomly varying amplitude. A range of other thalamic local field oscil-
lations with frequencies of approximately 10 Hz have been recorded in cats and dogs
[13, 14, 30, 31], and have been considered as putative cellular substrates for human
alpha activity. Nevertheless, there remains considerable controversy regarding the
extent and mode of thalamic control of human alpha activity [70].

Indeed, there are good reasons to be suspicious of the idea that the thalamus
is the principal source of scalp-recorded alpha oscillations. First, thalamocortical
synapses are surprisingly sparse in cortex. Thalamocortical neurons project predom-
inantly to layer IV of cerebral cortex, where they are believed to synapse mainly on
the dendrites of excitatory spiny stellate cells. A range of studies [6, 12, 57, 58]
have revealed that only between 5–25% of all synapses terminating on spiny stellate
cells are of thalamic origin. Averaged over the whole of cortex, less than 2–3% of
all synapses can be attributed to thalamocortical projections [10]. Second, recent
experimental measurements reveal that the amplitude of the unitary thalamocortical
excitatory postsynaptic potential is relatively small, of the order of 0.5 mV, on its
own insufficient to cause a postsynaptic neuron to fire [12]. This raises the question
whether weak thalamocortical inputs can establish a regular cortical rhythm even
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in the spiny stellate cells, which would then require transmission to the pyramidal
cells, whose apical dendrites align to form the dipole layer dominating the macro-
scopic EEG signal. Third, coherent activity is typically stronger between cortical
areas than between cortical and thalamic areas [47, 48], suggesting cortical domi-
nance [74]. Fourth, isolated cerebral cortex is capable of generating bulk oscillatory
activity at alpha, beta and gamma frequencies [19, 37, 76]. Finally, pharmacologi-
cal modulation of alpha oscillatory activity yields different results in thalamus and
cortex. In particular, low doses of benzodiazepines diminish alpha-band activity but
promotes beta-band activity in EEG recorded from humans, but in cat thalamus in-
stead appear to promote lower frequency local-field potential activity by enhancing
total theta power [30, 31].

For these, and a variety of other reasons [55], it has been contended that alpha ac-
tivity in the EEG instead reflects the dynamics of activity in distributed reciprocally-
connected populations of cortical and thalamic neurons. Two principal lines of
evidence have arisen in support of this view. First, empirical evidence from mul-
tichannel MEG [16, 83] and high density EEG [55] has revealed that scalp-recorded
alpha activity arises from a large number or continuum of equivalent current dipoles
in cortex. Secondly, a raft of physiologically plausible computational [38] and the-
oretical models [40, 54, 66, 80], developed to varying levels of detail, reveal that
electroencephalographically realistic oscillatory activity can arise from the synaptic
interactions between distributed populations of excitatory and inhibitory neurons.

6.2.3 Modeling alpha activity

The staggering diversity of often contradictory empirical phenomena associated
with alpha activity speaks against the notion of finding a simple unifying biological
cause. This complexity necessitates the use of mathematical models and computer
simulations in order to understand the underlying processes. Such a quantitative ap-
proach may help address three essential, probably interrelated, questions regarding
the alpha rhythm and alpha activity. First, can a dynamical perspective shed light on
the functional roles of alpha and its attenuation (or blocking)? While over the years
a variety of theories and hypotheses have been advanced, all are independent of any
physiological mechanism accounting for its genesis. The most widespread belief
has been that the alpha rhythm has a clocking or co-ordinating role in the regulation
of cortical neuronal population dynamics, see for example Chapter 11 of [70]. This
simple hypothesis is probably the reason that the idea of a subcortical alpha pace-
maker has survived despite a great deal of contradictory empirical evidence. The
received view on alpha blocking and event-related desynchronisation (ERD), is that
they represent the electrophysiological correlates of an activated, and hence more
excitable, cortex [59]. However, this view must be regarded as, at best, speculative
due to the numerous reports of increased alpha activity [70] in tasks requiring levels
of attention and mental resource above a baseline that already exhibits strong alpha
activity.
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Second, what is the relationship between alpha and the other forms of scalp-
recordable electrical activity? Activity in the beta band (13–30 Hz) is consistently
linked to alpha-band activity. For instance, blocking of occipital alpha is almost
always associated with corollary reductions in the amplitude of beta activity [60].
Further, peak occipital beta activity is, on the basis of large cross-sectional stud-
ies involving healthy subjects, almost exactly twice the frequency of peak occipital
alpha, in addition to exhibiting significant phase coherence [52]. Significant phase
correlation between alpha and gamma (> 30 Hz) activity has also been reported in
EEG recorded from cats and monkeys [67]. Less is known about the connection to
the low-frequency delta and theta rhythms.

Finally, what is the link between activity at the single neuronal level and the
corresponding large-scale population dynamics? Can knowledge of the latter en-
able us to make inferences regarding the former, and can macroscopic predic-
tions be deduced from known microscopic or cellular level perturbations? This
becomes particularly pertinent for attempts to understand the mesoscopic link be-
tween cell (membrane) pharmacology and physiology, and co-existing large-scale
alpha activity [20].

6.3 Mean-field models of brain activity

Broadly speaking, models and theories of the electroencephalogram can be divided
into two complementary kinds. The first kind uses spatially discrete network models
of neurons with a range of voltage- and ligand-dependent ionic conductances. While
these models can be extremely valuable, and are capable of giving rise to alpha-
like activity [38], they are limited since the EEG is a bulk property of populations
of cortical neurons [45]. Further, while a successful application of this approach
may suggest physiological and anatomical prerequisites for electrorhythmogenesis,
it cannot provide explicit mechanistic insight due to its own essential complexity.
In particular, a failure to produce reasonable EEG/electrocorticogram (ECoG) does
not per se suggest which additional empirical detail must be incorporated. A more
preferable approach exists in the continuum or mean-field method [33, 40, 54, 66,
80]. Here it is the bulk or population activity of a region of cortex that is modeled,
more optimally matching the scale and uncertainties of the underlying physiology.
Typically the neural activity over roughly the extent of a cortical macrocolumn is
averaged.

However three general points need to be noted regarding the continuum mean-
field approach and its application to modeling the EEG. First, in general, all ap-
proaches dynamically model the mean states of cortical neuronal populations, but
only in an effective sense. Implicitly modeled are the intrinsic effects of non-
neuronal parts of cortex upon neuronal behavior, e.g., glia activity or the extracellu-
lar diffusion of neurotransmitters. In order to treat the resulting equations as closed,
non-neuronal contributions must either project statically into neuronal ones (e.g.,
by changing the value of some neuronal parameter) or be negligible in the chosen
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observables (e.g., because their time-scale is slower than the neuronal dynamics of
interest). Where this cannot be assumed, one must “open” the model equations by
modifying the neuronal parameters dynamically.

Second, intrinsic parts or features of the brain that are not modeled (e.g., the
thalamus or the laminarity of cortex) or extrinsic influences (e.g., drugs or sensory
driving) likewise must be mapped onto the neuronal parameters. One may well ques-
tion whether any modeling success achieved by freely changing parameters merely
indicates that a complicated enough function can fit anything. There is no general
answer to this criticism, but the following Ockhamian guidelines prove useful: the
changes should be limited to few parameters, there should be some reason other
than numerical expediency for choosing which parameters to modify, the introduced
variations should either be well understood or of small size relative to the standard
values, and the observed effect of the chosen parameter changes should show some
stability against modifications of other parameters. If systematic tuning of the neu-
ronal parameters cannot accommodate intrinsic or extrinsic contributions, then the
neuronal model itself needs to be changed.

Third, the neuronal mean-fields modeled generally match the limited spatial reso-
lution of functional neuroimaging, since they average over a region C surrounding a
point xcort on cortex1: f ≡ f (xcort, t) = 1/C×∫

C dx′ f (x′, t). In the foreseeable future
images of brain activity will not have spatial resolutions better than 1–2 mm2, about
the size of a cortical macrocolumn containing T = 106 neurons. Temporal coherence
dominates quickly for signals from that many neurons. A signal from N coherent
neurons is enhanced linearly ∼ N = p×T over that of a single neuron, whereas for
M incoherent neurons enhancement is stochastic ∼ √

M =
√

(1− p)×T . p = 1%
coherent neurons thus produce a 10 times stronger signal than the 99% incoher-
ent neurons. If p is too low, then the coherent signal will be masked by inco-
herent noise. In the analysis of experimental data, such time-series are typically
discarded.

A mean-field prediction hence need not match all neuronal activity. It is suffi-
cient if it effectively describes the coherent neurons actually causing the observed
signal. Neurons in strong temporal coherence are likely of similar kind and in a
similar state, thus approximating them by equations for a single “effective” neu-
ron makes sense. Other neurons or cortical matter influence the coherent dynamics
only incoherently, making it more likely that disturbances on average only result in
static parameter changes. A crucial modeling choice is hence the number of coher-
ent groups within C, since coherent groups will not “average out” in like manner.
Every coherent neural group is modeled by equations describing its separate char-
acteristic dynamics, which are then coupled to the equations of other such groups
according to the assumed connectivity. For example, the Liley model in Fig. 6.1
shows two different C as two columns drawn side by side. We hence see that, per C,
it requires equations for one excitatory group and one inhibitory group, respectively,
which will then be coupled in six ways (four of which are local).

1 Underlined symbols denote functions spatially averaged in the following manner.
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The construction of a mean-field model requires the specification of three es-
sential structural determinants: (i) the number of coherent neuronal populations
modeled; (ii) the degree of physiological complexity modeled for each population;
and (iii) the connectivity between these populations. While the majority of mean-
field theories of EEG model the dynamics of at least two cortical neuronal popu-
lations (excitatory and inhibitory), details of the topology of connectivity can vary
substantially. Figure 6.1 illustrates the connectivity of a number of competing mod-
eling approaches.
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I
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reticular

thalamic
nuclei

Rotterdam et al (1982) Liley et al (1999,2002) )2002,1002( la te nosniboR)5791( nameerF

Fig. 6.1 Schematic outline of the connection topologies of a number of mean-field approaches.
“E” stands for excitatory, “I” for inhibitory neuronal populations. Open circles represent excitatory
connections, filled circles inhibitory ones.

6.3.1 Outline of the extended Liley model

The theory of Liley et al [18, 40, 43] is a relatively comprehensive model of the
alpha rhythm, in that it is capable of reproducing the main spectral features of spon-
taneous EEG in addition to being able to account for a number of qualitative and
quantitative EEG effects induced by a range of pharmacological agents, such as
benzodiazepines and a range of general anesthetic agents [7, 39, 42, 75].

Like many other models, the Liley model considers two (coherent) neuronal pop-
ulations within C, an excitatory one and an inhibitory one. These two populations
are always indicated below by setting the subscript k = e and k = i, respectively.
In the absence of postsynaptic potential (PSP) inputs I, the mean soma membrane
potentials h are assumed to decay exponentially to their resting value hr with a time
constant τ:

τk
∂
∂ t

hk = hr
k −hk +

heq
ek −hk∣∣heq
ek −hr

k

∣∣ × Iek +
heq

ik −hk∣∣heq
ik −hr

k

∣∣ × Iik . (6.1)

Double subscripts indicate first source and then target, thus for example Iei indi-
cates PSP inputs from an excitatory to an inhibitory population. Note that PSP in-
puts, which correspond to transmitter activated postsynaptic channel conductance,
are weighted by the respective ionic driving forces heq

jk − hk, where heq
ek,ik are the
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respective reversal potentials. All these weights are normed to one at the relevant
soma membrane resting potentials.

Next consider four types (k = e, i) of PSP inputs:(
∂
∂ t

+ γek

)(
∂
∂ t

+ γ̃ek

)
Iek = Γek γek exp(γ̃ekδek)︸ ︷︷ ︸

=γ̃ek exp(γekδek)

×
[
Nβ

ekSe + pek +Φek

]
, (6.2)

(
∂
∂ t

+ γik

)(
∂
∂ t

+ γ̃ik

)
Iik = Γik γik exp(γ̃ikδik)︸ ︷︷ ︸

=γ̃ik exp(γikδik)

×
[
Nβ

ikSi + pik

]
. (6.3)

The terms in the square brackets correspond to different classes of sources for
incoming action potentials: local S, extra-cortical p, and cortico-cortical Φ . Only
excitatory neurons project over long distances, thus there is no Φik in Eq. (6.3).
However, long-range inhibition can still occur, namely by an excitation of an in-
hibitory populations via Φei.

For a single incoming Dirac impulse δ (t), the above equations respond with

R(t) = Γ γ exp(γ̃δ )× exp(−γt)− exp(−γ̃t)
γ̃ − γ

Θ(t) , (6.4)

where Θ is the Heaviside function. Here, δ is the rise-time to the maximal PSP
response:

δ =
ln γ̃ − lnγ

γ̃ − γ
=⇒ R(t = δ ) = Γ . (6.5)

R(t) describes PSPs from the “fast” neurotransmitters AMPA/kainate and GABAA,
respectively. Sometimes instead the simpler “alpha form”2 is used:

R0(t) = Γ γ exp(1)× t exp(−γt)Θ(t) =⇒ R0(t = δ0 = 1/γ) = Γ . (6.6)

Note that as γ̃ → γ: R → R0. Equation (6.4) must be invariant against exchanging
γ̃ ↔ γ , see Eqs (6.2) and (6.3), since the change induced by γ̃ �= γ cannot depend
on naming the decay constant values. In the “alpha form”, the time at which the

response decays again to Γ /e is coupled to the rise-time: ζ0 =−W−1

(
− 1

e2

)
×δ0 �

3.1462/γ , with the Lambert W function. Anaesthetic agents can change the decay
time of PSPs independently and hence require the biexponential form [7]:

γ̃ � γ : ζ = −W−1

(
− 1

e2

)
×δ +O

(
|γ̃ − γ|2

)
, γ̃ � γ : ζ � γ̃/γ

γ̃ − γ
. (6.7)

In [7] further results were derived for the specific parametrisation γ̃ = exp(ε)γ .

2 In this context, “alpha” refers to a particular single-parameter function, the so-called alpha func-
tion, often used in dendritic cable theory to model the time-course of a single postsynaptic poten-
tial.
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If time delays for local connections are negligible, then the number of incoming
action potentials will be the number of local connections Nβ times the current local
firing rate S, see Eqs (6.2) and (6.3). Assume that threshold potentials in the neural
mass are normally distributed with mean μ and standard deviation σ . Then the
fraction of neurons reaching their firing threshold hth is

∫ h

−∞
dhth 1√

2πσ
exp

(
− (hth −μ)2

2σ2

)
=

1
2

[
1+ erf

(
h−μ√

2σ

)]
. (6.8)

We approximate (1+erfx)/2 � [1+exp(−2x)]−1 and associate the theoretical limit
of infinite h not with excitation block but with the maximal mean firing rate Smax:

Sk = Smax
k

[
1+ exp

(
−
√

2
hk −μk

σk

)]−1

. (6.9)

By construction, this is a good approximation for regular h but will fail for unusually
high mean potentials. Note that Eq. (6.9) reduces to Sk = Smax

k Θ(h−μ) for σ → 0.
Next we consider extra-cortical sources p. Unless some of these inputs are

strongly coherent (e.g., for sensory input), their average over a region will be noise-
like even if the inputs themselves are not. Our ansatz is hence

pek = L
[
randn (p̄ek,Δ pek)

]
+ pcoh

ek , (6.10)

pik = L
[
randn (p̄ik,Δ pik)

]
+ pcoh

ik , (6.11)

with spatiotemporal “background noise” potentially overlayed by coherent signals.
The noise is normally distributed with mean p̄ and standard deviation Δ p, and
shaped by some filter function L . Since neurons cannot produce arbitrarily high
firing frequencies, L should include a lowpass filter. In practice, we often set
pik ≡ 0, since likely extracortical projections are predominantly excitatory. Further,
for stochastic driving noise in pee alone is sufficient. We take pcoh ≡ 0 unless known
otherwise. In particular we do not assume coherent thalamic pacemaking. However,
the pcoh provide natural ports for future extensions, e.g., an explicit model of the
thalamus could be interfaced here.

An “ideal” ansatz for cortico-cortical transmission is given by

Gek(r, t) =
Nα

ek

2π
Λ̃ 2

ek × exp
(−Λ̃ekr

)×δ
(

t − r
ṽek

)
, (6.12)

where r measures distances along cortex. With this Green’s function, impulses
would propagate distortion-free and isotropically at velocity ṽ. The metrics of con-
nectivity are seen to be

nα
ek(r) =

∫ ∞

0
dt Gek(r, t) =

Nα
ek

2π
Λ̃ 2

ek × exp
(−Λ̃ekr

)
,

∫ ∞

0
dr 2πr nα

ek(r) = Nα
ek ,

(6.13)
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and thus the Nα
ek long-range connections per cortical neuron are distributed expo-

nentially with a characteristic distance Λ̃ek. One can Fourier transform Eq. (6.12)

Gek(k,ω) =
Nα

ekṽ2
ekΛ̃ 2

ek

(
iω + ṽekΛ̃ek

)[(
iω + ṽekΛ̃ek

)2 + ṽ2
ekk2

]3/2
≡ N (k,ω)

D(k,ω)
, (6.14)

and write N φ = DS with iω → ∂/∂ t and k2 →−∇2 to obtain an equivalent PDE.
Unfortunately this D is non-local (i.e., evaluating this operator with a finite differ-
ence scheme at one discretization point would require values from all points over
the domain of integration). By expanding for large wavelengths 2π/k: D(k,ω) �
(iω + ṽekΛ̃ek)[(iω + ṽekΛ̃ek)2 + 3

2 ṽ2
ekk2], and with v ≡√

3/2ṽ, Λ ≡√
2/3Λ̃ , we ob-

tain an inhomogeneous two-dimensional telegraph (or: transmission line) equation
[40, 66]: [

1

v2
ek

∂ 2

∂ t2 +
2Λek

vek

∂
∂ t

−∇2 +Λ 2
ek

]
Φek = Nα

ekΛ 2
ekSe , (6.15)

where the forcing term is simply the firing S of the sources.
Note that Eq. (6.15) is a special case. If we substitute

Φek = e−Λvtϕek =⇒
[

1

v2
ek

∂ 2

∂ t2 −∇2
]

ϕek = eΛvtNα
ekΛ 2

ekSe , (6.16)

then ϕ obeys an inhomogeneous wave equation. (Equation (6.16) corrects a sign
error in Eq. (61) of Ref. [66], which is likely to have influenced their numerical
results.) The impulse response is hence that of the 2-D wave equation multiplied by
an exponential decay:

Gek(r, t) =
Nα

ek

2π
Λ 2

ek × exp(−Λekvekt)× Θ (t − r/vek)√
t2 − r2/v2

ek

. (6.17)

We can compare with (6.12) to see the effects of the approximation: Impulse propa-
gation is now faster v =

√
3/2ṽ and distorted by a brief “afterglow” ∼ 1/

√
t − r/v.

Connectivity nα
ek(r) = Nα

ekΛ 2
ek/(2π)×K0(Λekr) follows now a zeroth-order modi-

fied Bessel function of the second kind. Compared to Eq. (6.13), it is now radially
weaker for 1.0 � rΛ̃ � 4.9, and stronger otherwise.

This completes our description of the extended Liley model: Eqs (6.1), (6.2),
(6.3), and (6.15) determine its spatiotemporal dynamics, (6.9) computes local fir-
ing rates, whereas (6.10) and (6.11) define the external inputs. An important feature
of this model is that there are no “toy parameters” in the constitutive equations,
i.e., every parameter has a biological meaning and its range can be constrained by
physiological and anatomical data. All model parameters could depend on the po-
sition on cortex or even become additional state variables, e.g., μ → μ(xcort) → μ .
The only exceptions are the parameters of Eq. (6.15), since the equation is derived
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assuming globally constant parameters. However, this mathematical restriction can
be loosened somewhat [17, 65].

6.3.2 Linearization and numerical solutions

Linearization investigates small disturbances around fixed points of the system, i.e.,
around state variables Z = Z∗ which are spatiotemporally constant solutions of the
PDEs. For hyperbolic fixed points (i.e., all eigenvalues have nonzero real part), the
Hartman–Grobman theorem states that a linear expansion in z with Z = Z∗ + z will
capture the essential local dynamics. Thus we define a state vector

Z ≡ (
he,hi, Iee, Iei, Iie, Iii,Φee,Φei

)T
, (6.18)

and rewrite Eqs (6.10) and (6.11) with p ≡ p̄ + P, setting P ≡ 0 for now. Then the
fixed points are determined by

h∗k = hr
k +

heq
ek −h∗k∣∣heq
ek −hr

k

∣∣ I∗ek +
heq

ik −h∗k∣∣heq
ik −hr

k

∣∣ I∗ik , Φ∗
ek = Nα

ekS∗k =
Nα

ekSmax
k

1+ exp
(
−√

2
h∗k−μk

σk

) ,

I∗ek = Γek
eγ̃ekδek

γ̃ek

[
Nβ

ekS∗e + p̄ek +Φ∗
ek

]
, I∗ik = Γik

eγ̃ikδik

γ̃ik

[
Nβ

ikS∗i + p̄ik

]
, (6.19)

which immediately reduces to just two equations in h∗e and h∗i . If multiple solutions
exist, we define a “default” fixed point Z∗,r by choosing the h∗e closest to rest hr

e.
We use the following ansatz for the perturbations

z ≡ a× exp(λ t)× exp(ik ·xcort) , (6.20)

and expand linearly in components [a]m. For example, the equation for Φee becomes(
1

v2
ee

λ 2 +
2Λee

vee
λ + k2 +Λ 2

ee

)
[a]7 = Nα

eeΛ 2
ee

Smax
e

√
2υ

σe(1+υ)2 [a]1 , (6.21)

with υ ≡ exp[−√
2(h∗e −μe)/σe]. Treating all PDEs in a similar fashion, we end up

with an equation set

∑
j

Bi j(λ ,k)[a] j = 0, with i, j = 1, . . . ,8 . (6.22)

In matrix notation B(λ ,k)a = 0. Nontrivial solutions exist only for

E (λ ,k) ≡ detB(λ ,k) = 0 . (6.23)

However, searching for roots λ (k) of Eq. (6.23) is efficient only in special cases.
Instead, introduce auxiliary variables Z 9,...,14 = ∂Z 3,...,8/∂ t, with Z∗

9,...,14 = 0, to
eliminate second-order time derivatives. Our example (6.21) becomes
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[a]15 = λ [a]7 ,

(
1

v2
ee

λ +
2Λee

vee

)
[a]15 +

(
k2 +Λ 2

ee

)
[a]7 = Nα

eeΛ 2
ee

Smax
e

√
2υ

σe(1+υ)2 [a]1 .

(6.24)
Treating all PDEs likewise, we can write a new but equivalent form

∑
j

Bi j(λ ,k)[a] j = ∑
j

[Ai j(k)−λδi j] [a] j = 0, with i, j = 1, . . . ,14 , (6.25)

with the Kronecker δi j. In matrix notation A(k)a = λa, hence λ (k) solutions are
eigenvalues. Powerful algorithms are readily available to solve (6.25) as

∑
l

AilRl j = λ jRi j , ∑
l

LilAl j = λiLi j , λ j ∑
l

LilRl j = λi ∑
l

LilRl j, (6.26)

with i, j, l = 1, . . . ,14, and all quantities are functions of k. The λ j denote 14 eigen-
values with corresponding right [r j]i = Ri j (columns of R) and left [l j]i = L ji

(rows of L) eigenvectors. The third equation in (6.26) implies orthogonality for
non-degenerate eigenvalues ∑l LilRl j = δi jn j. In this case one can orthonormalize
LR = RL = 1. For spatial distributions of perturbations, different k-modes will gen-
erally mix quickly with time.

For numerical simulations one can model the cortical sheet as square, connected
at the edges to form a torus, and discretize it N ×N with sample length ds [7, 9].
Time then is also discretized t = nts with n = 0,1, . . . We substitute Euler forward-
time derivatives and five-point Laplacian formulae, and solve the resulting algebraic
equations for the next time-step. The five-point Laplacian is particularly convenient
for parallelization [7], since only one-point-deep edges of the parcellated torus need
to be communicated between nodes. The Euler-forward formulae will converge
slowly O(t2

s ,d2
s ) but robustly, which is important since the system dynamics can

change drastically for different parameter sets. The Courant–Friedrichs–Lewy con-
dition for a wave equation, cf Eq. (6.16), is simply ts < ds/(

√
2v). If we consider a

maximum speed of v = 10 m/s, and a spatial spacing of ds =1 mm for Eq. (6.15),
then ts < 7.1×10−5 s. In practice, we choose ts = 5×10−5 s. We initialize the en-
tire cortex to its (default) fixed point value Z(xcort) = Z∗ at t = 0. For parameter
sets that have no fixed point in physiological range, we instead set he(xcort) = hr

e
and hi(xcort) = hr

i , and other state variables to zero. Sometimes it is advantageous
to have no external inputs: then any observed dynamics must be self-sustained.
In this case some added spatial variation in he(xcort) helps to excite k �= 0 modes
quickly.

6.3.3 Obtaining physiologically plausible dynamics

For “physiological” parameters, a wide range of model dynamics can be encoun-
tered. However, proper parameterisations should produce electroencephalographi-
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cally plausible dynamics. In general, two approaches can be employed to generate
such parameter sets. The first is to fit the model to real electroencephalographic
data. However, there is still considerable uncertainty regarding the reliability, ap-
plicability and significance of using experimentally obtained data for fitting or esti-
mating sets of ordinary differential equations [79]. Alternatively one can explore the
physiologically admissible multi-dimensional parameter space in order to identify
parameter sets that give rise to “suitable” dynamics, e.g., those showing a dominant
alpha rhythm.

With regard to the extended Liley model outlined in the previous section, one
could stochastically or heuristically explore the parameter space by solving the full
set of spatiotemporal equations. However, the computational costs of this approach
are forbidding at this point in time. Alternatively, the parameter space of a simpli-
fied model, e.g., spatially homogeneous without the Laplacian in Eq. (6.15), can
be searched. This can provide sufficient simulation speed gains to allow iterative
parameter optimization. Finally, if the defining system can be approximated by lin-
earization, then one can estimate the spatiotemporal dynamics merely from the re-
sulting eigensystem. Such an analysis is exceedingly rapid compared with the direct
solution of the equations. One can then simply test parameter sets randomly sampled
from the physiologically admissible parameter space. Thus, for example [7] shows
how one can model plausible EEG recorded from a single electrode: the power spec-
trum, S(ω), can be estimated for subcortical noise input p̂ by

S(ω) =
1

2π

∫
dk k

∣∣∣∣Ψ(k)
{

R ·diag

[
1

iω −λn(k)

]
·L · p̂

}
1

∣∣∣∣2 , (6.27)

and then evaluated for physiological veracity. The left and right eigen-matrices, L
and R, are defined in Eq. (6.26), here LR = 1 and Ψ(k) is the electrode point-spread
function. The obvious drawback is that nonlinear solutions of potential physiolog-
ical relevance will be missed. However, as will be illustrated in the next section,
“linear” parameter sets can be continued in one- and two-dimensions to reveal a
plethora of electroencephalographically plausible nonlinear dynamical behavior.

6.3.4 Characteristics of the model dynamics

Numerical solutions to Eqs (6.1–6.15) for a range of physiologically admissible pa-
rameter values reveal a large array of deterministic and noise-driven dynamics, as
well as bifurcations, at alpha-band frequencies [8, 18, 40, 43]. In particular, alpha-
band activity appears in three distinct dynamical scenarios: as linear noise-driven,
limit-cycle, or chaotic oscillations. Thus this model offers the possibility of charac-
terizing the complex changes in dynamics that have been inferred to occur during
cognition [79] and in a range of central nervous system diseases, such as epilepsy
[46]. Further, our theory predicts that reverberant activity between inhibitory neu-
ronal populations is causally central to the alpha rhythm, and hence the strength
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and form of inhibitory→ inhibitory synaptic interactions will be the most sensitive
determinants of the frequency and damping of emergent alpha-band activity. If rest-
ing eyes-closed alpha is indistinguishable from a filtered random linear process, as
some time-series analyses seem to suggest [72, 73], then our model implies that
electroencephalographically plausible “high quality” alpha (Q > 5) can be obtained
only in a system with a conjugate pair of weakly damped (marginally stable) poles
at alpha frequency [40].

Numerical analysis has revealed regions of parameter space where abrupt changes
in alpha dynamics occur. Mathematically these abrupt changes correspond to bifur-
cations, whereas physically they resemble phase transition phenomena in ordinary
matter. Figure 6.2 displays such a region of parameter space for the 10-dimensional
local reduction of our model (Φek = 0). Variations in 〈pee〉 (excitatory input to ex-
citatory neurons) and 〈pei〉 (excitatory to inhibitory) result in the system producing
a range of dynamically differentiated alpha activities. If 〈pei〉 is much larger than
〈pee〉, a stable equilibrium is the unique state of the EEG model. Driving the model
in this state with white noise typically produces sharp alpha resonances [40]. If one
increases 〈pee〉, this equilibrium loses stability in a Hopf bifurcation and periodic
motion sets in with a frequency of about 11 Hz. For still larger 〈pee〉 the fluctua-
tions can become irregular and the limiting behavior of the model is governed by
a chaotic attractor. The different dynamical states can be distinguished by comput-
ing the largest Lyapunov exponent (LLE), which is negative for equilibria, zero for
(quasi)-periodic fluctuations, and positive for chaos. Bifurcation analysis [81] indi-
cates that the boundary of the chaotic parameter set is formed by infinitely many
saddle–node and period-doubling bifurcations, as shown in Fig. 6.2(a). All these
bifurcations converge to a narrow wedge for negative, and hence unphysiological,
values of 〈pee〉 and 〈pei〉, literally pointing to the crucial part of the diagram where
a Shilnikov saddle–node homoclinic bifurcation takes place.

Figure 6.2(b) shows a sketch of the bifurcation diagram at the tip of the wedge:
the blue line with the cusp point c separates regions with one and three equilibria,
and the line of Hopf bifurcations terminates on this line at the Bogdanov–Takens
point bt. The point gh is a generalised Hopf point, where the Hopf bifurcation
changes from sub- to super-critical. The green line which emanates from bt rep-
resents a homoclinic bifurcation, which coincides with the blue line of saddle–node
bifurcations on an open interval, where it denotes an orbit homoclinic to a saddle
node. In the normal form, this interval is bounded by the points n1 and n2, at which
points the homoclinic orbit does not lie in the local center manifold. While the nor-
mal form is two-dimensional and only allows for a single orbit homoclinic to the
saddle–node equilibrium, the high dimension of the macrocolumnar EEG model
(Φek = 0) allows for several orbits homoclinic to the saddle–node. If we consider
the numerical continuation of the homoclinic along the saddle–node curve, start-
ing from n1 as shown in Figure 6.2(b), it actually overshoots n2 and folds back at t1,
where the center-stable and center-unstable manifolds of the saddle node have a tan-
gency. In fact, the curve of homoclinic orbits folds several times before it terminates
at n2. This creates an interval, bounded by t1 and t2, in which up to four homoclinic
orbits coexist—signaling the existence of infinitely many periodic orbits, which is
the hallmark of chaos.
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Fig. 6.2 [Color plate] (a) The largest Lyapunov exponent (LLE) of the dynamics of a simplified
local model (Φek = 0) for a physiologically plausible parameter set exhibiting robust (fat-fractal)
chaos [18]. Superimposed is a two parameter continuation of saddle–node and period-doubling
bifurcations. The leftmost wedge of chaos terminates for negative values of the exterior forc-
ings, 〈pee〉 and 〈pei〉. (b) Schematic bifurcation diagram at the tip of the chaotic wedge. bt =
Bogdanov–Takens bifurcation, gh = generalized Hopf bifurcation, and SN = saddle node. Be-
tween t1 and t2 multiple homoclinic orbits coexist and Shilnikov’s saddle–node bifurcation takes
place. (c) Schematic illustration of the continuation of the homoclinic orbit between points n1 and
t1. (Figure adapted from [81] and [18].)
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It is important to understand that in contrast to the homoclinic bifurcation of a
saddle focus, commonly referred to as the Shilnikov bifurcation, this route to chaos
has not been reported before in the analysis of any mathematical model of a physical
system. While the Shilnikov saddle node bifurcation occurs at negative, and thus
unphysiological, values of 〈pee〉 and 〈pei〉, it nevertheless organizes the qualitative
behavior of the EEG model in the biologically meaningful parameter space. Further,
it is important to remark that this type of organization persists in a large part of the
parameter space: if a third parameter is varied, the codimension-two points c, bt and
gh collapse onto a degenerate Bogdanov–Takens point of codimension three, which
represents an organizing center controling the qualitative dynamics of an even larger
part of the parameter space.

Parameter sets that have been chosen to give rise to physiologically realistic be-
havior in one domain, can produce a range of unexpected, but physiologically plau-
sible, activity in another. For example, parameters were chosen to accurately model
eyes-closed alpha and the surge in total EEG power during anesthetic induction [7].
Among other conditions, parameter sets were required to have a sharp alpha res-
onance (Q > 5) and moderate mean excitatory and inhibitory neuronal firing rates
< 20/s. Surprisingly, a large fraction of these sets also produced limit cycle (non-
linear) gamma band activity under mild parameter perturbations [8]. Gamma band
(> 30 Hz) oscillations are thought to be the sine qua non of cognitive functioning.
This suggests that the existence of weakly damped, noise-driven, linear alpha ac-
tivity can be associated with limit cycle 40-Hz activity, and that transitions between
these two dynamical states can occur. Figure 6.3 illustrates a bifurcation diagram for
one such set (column 11 of Table V in [7], see also Table 1 in [8]) for the spatially
homogeneous reduction ∇2 → 0 of Eq. (6.15). The choice of bifurcation parameters
is motivated by two observations: (i) differential increases in Γii,ie have been shown
to reproduce a shift from alpha to beta band activity, similar to what is seen in the
presence of low levels of GABAA agonists such as benzodiazepines [42]; and (ii)
the dynamics of linearized solutions for the case when ∇2 �= 0 are particularly sensi-
tive to variations of parameters affecting inhibitory→inhibitory neurotransmission
[40], such as Nβ

ii and 〈pii〉.
Specifically, Fig. 6.3 illustrates the results of a two-parameter bifurcation analy-

sis for changes in the inhibitory PSP amplitudes via Γie,ii → rΓie,ii and changes in the

total number of inhibitory→inhibitory connections via Nβ
ii → kNβ

ii . The parameter
space has physiological meaning only for positive values of r and k. The saddle–
node bifurcations of equilibria have the same structure as for the 10-dimensional
homogeneous reduction discussed previously, in that there are two branches joined
at a cusp point. Furthermore, we have two branches of Hopf bifurcations, the one
at the top being associated with the birth of alpha limit cycles and the other with
gamma limit cycles. This former line of Hopf points enters the wedge-shaped curve
of saddle–nodes of equilibria close to the cusp point and has two successive tangen-
cies in fold-Hopf points (fh). The fold-Hopf points are connected by a line of tori.
The same curve of Hopf points ends in a Bogdanov–Takens (bt) point, from which
a line of homoclinics emanate. Contrary to the previous example, this line of ho-
moclinics does not give rise to a Shilnikov saddle–node bifurcation. Instead it gives
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Fig. 6.3 Partial bifurcation diagram for the spatially homogeneous model, ∇2 → 0 in Eq. (6.15),

as a function of scaling parameters k and r, defined by Γie,ii → rΓie,ii and Nβ
ii → kNβ

ii , respectively.
Codimension-two points have been labeled fh for fold-Hopf, gh for generalized Hopf, and bt for
Bogdanov–Takens. The right-most branch of Hopf points corresponds to emergence of gamma
frequency (≈ 37 Hz) limit-cycle activity via subcritical Hopf bifurcation above the point labeled
gh. A homoclinic doubling cascade takes place along the line of homoclinics emanating from bt.
Insets on the left show schematic blowups of the fh and bt points. Additional insets show time-
series of deterministic (limit-cycle and chaos) and noise-driven dynamics for a range of indicated
parameter values.

rise to a different scenario leading to complex behavior (including chaos), called the
homoclinic doubling cascade.

In this scenario, a cascade of period-doubling bifurcations collides with a line
of homoclinics. As a consequence, not only are infinitely many periodic orbits
created, but so are infinitely many homoclinic connections [56]. All these periodic
and homoclinic orbits coexist with a stable equilibrium. The second line of Hopf
bifurcations in the gamma frequency range (> 30 Hz) does not interact with the
lines of saddle nodes in the relevant portion of the parameter space. Both branches
of Hopf points change from super- to subcritical at gh around r∗ = 0.27, so that
bifurcations are “hard” for r > r∗ in either case. These points are also the end points
of folds for the periodic orbits, and the gamma frequency ones form a cusp (cpo)
inside the wedge of saddle–nodes of equilibria.
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Because the partial bifurcation diagram of Fig. 6.3 has necessarily been deter-
mined for the spatially homogeneous model equations, it will not accurately reflect
the stability properties of particular spatial modes (nonzero wavenumbers) in the
full set of model 2-D PDEs. For example, at the spot marked “Fig 4” in Fig. 6.3,
for wavenumbers around 0.6325/cm the eigenvalues of the corresponding alpha-
rhythm are already unstable, implying that these modes have undergone transition
to the subcritical gamma-rhythm limit cycle. If one starts a corresponding numeri-
cal simulation with random initial he, but without noise driving, one finds that there
is, at first, a transient organization into alpha-rhythm regions of a size correspond-
ing to the unstable wavenumber (graph labeled “0 ms” in Fig. 6.4). The ampli-
tude of these alpha-oscillations grows, and is then rapidly replaced by “gamma
hotspots”, which are phase synchronous with each other (graphs up to “480 ms”
in Fig. 6.4). It may be speculated from a physiological perspective that the normal
organization of the brain consists of regions capable of producing stable weakly-

Fig. 6.4 Numerical solutions of 2-D model equations (Sect. 3.1) for a human-sized cortical torus
with k = 1 and r = 0.875 (see Fig. 6.3). Here, he is mapped every 60 ms (grayscale: −76.9 mV
black to −21.2 mV white). For r = 0.875, linearization becomes unstable for a range of wavenum-
bers around 0.6325/cm. Starting from random he, one initially sees transient spatially-organized
alpha oscillations (t = 0, starting transient removed) from which synchronized gamma activity
emerges. Gamma-frequency spatial patterns, with a high degree of phase correlation (“gamma
hotspots”) form with a frequency consistent with the predicted subcritical Hopf bifurcations of the
spatially homogeneous equations, compare Fig. 6.3. (Figure reproduced from [8].)
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damped alpha-oscillations for all wavenumbers, but, due to variations in one or
more bifurcation parameters, is able to become critical at a particular wavenum-
ber, thereby determining, in some fashion, the spatial organization of the subse-
quently generated coherent gamma-oscillations. However, the influences of noisy
inputs (and environments), inhomogeneous neuronal populations, and anisotropic
connectivity, are likely to be significant for actual transitions, and require further
study.

6.4 Determination of state transitions in experimental EEG

Our theoretical analysis so far suggests that cortex may be conceived as being in a
state of marginal linear stability with respect to alpha activity, which can be lost by a
range of perturbations and replaced by a rapidly emerging (≈ 150 ms) spatially syn-
chronized, nonlinear, oscillatory state. It is therefore necessary to examine real EEG
for evidence of transitions between noise-driven linear and nonlinear states. While
the theory of nonlinear, deterministic dynamical systems has provided a number of
powerful methods to characterize the dynamical properties of time-series, they have
to be applied carefully to the dynamical characterization of EEG, where any deter-
ministic dynamics are expected to be partly obscured by the effects of noise, non-
stationarity and finite sampling. For such weakly nonlinear systems, the preferred
approach to characterizing the existence of any underlying deterministic dynamics
has been the surrogate data method [34].

In this approach a statistic, λ , which assigns a real number to a time-series and
is sensitive to deterministic structure, is computed for the original time-series, λ0,
and compared to the distribution of values, {λi}, obtained for a number of suitably
constructed “linear” surrogate data sets. Then one estimates how likely it is to draw
λ0 from the distribution of values obtained for the surrogates {λi}. For example, if
we have reason to believe that λ is normally distributed, we estimate its mean λ
and variance σ2

λ . Then if |λ0 − λ | < 2σλ , we would not be able to reject the null
hypothesis H0 that λ0 was drawn from {λi} at the p = 0.05 level for a two-tailed
test. Typically though, there is no a priori information regarding the distribution of
{λi}, and hence a rank-based test is generally used.

However, rejection of the null hypothesis in itself does not provide unequivocal
statistical evidence for the existence of deterministic dynamics. In particular, non-
stationarity is a well-known source of false rejections of the linear stochastic null
hypothesis. To deal with this, two general strategies are employed. First, the null hy-
pothesis is evaluated on time-series segments short enough to be assumed stationary,
but long enough to allow the meaningful evaluation of the nonlinear statistic. Sec-
ond, if some measure of stationarity can be shown to be equivalent in the original
and surrogate data time-series, then it may be assumed that nonstationarity is an
insignificant source of false positives.
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6.4.1 Surrogate data generation and nonlinear statistics

The features that the “linear” surrogate data sets must have depend on the null hy-
pothesis that is to be tested. The most common null hypothesis is that the data comes
from a stationary, linear, stochastic process with Gaussian inputs. Therefore almost
all surrogate data generation schemes aim to conserve linear properties of the orig-
inal signal, such as the auto- and cross-spectra. The simplest method of achieving
this is by phase randomisation of the Fourier components of the original time-series.
However, such a simple approach results in an unacceptably high level of false posi-
tives, because the spectrum and amplitude distribution of the surrogates has not been
adequately preserved. For this reason a range of improvements to the basic phase-
randomised surrogate have been developed [69]. Of these, the iterated amplitude-
adjusted FFT surrogate (IAFFT) seems to provide the best protection against spuri-
ous false rejections of the linear stochastic null hypothesis [34].

A large number of nonlinear test statistics are available to evaluate time-series for
evidence of deterministic/nonlinear structure using the surrogate data methodology.
The majority of these quantify the predictability of the time-series in some way.
While there is no systematic way to choose one statistic over another, at least in
the analysis of EEG the zeroth-order nonlinear prediction error (0-NLPE) seems to
be favored. Indeed, Schrieber and Schmitz [68], by determining the performance
of a number of commonly used nonlinear test statistics, concluded that the one-
step-ahead 0-NLPE gave consistently good discrimination power even against weak
nonlinearities. The idea behind the NLPE is relatively simple: delay-embed a time-
series xn to obtain the vectors xn = (xn−(m−1)τ ,xn−(m−2)τ , . . . ,xn−τ ,xn) in R

m, and
use the points closer than ε to each xN , i.e., xm ∈ Uε(xN), to predict xN+1 as the
average of the {xm+1}. Formally [34]

x̂N+1 =
1

|Uε(xN)| ∑
xm∈Uε (xN)

xm+1 , (6.28)

where |Uε(xN)| is the number of elements in the neighborhood Uε(xN). The one-
step-ahead 0-NLPE is then defined as the root-mean-square prediction error over all
points in the time-series, i.e, λ NLPE =

√
〈(x̂N+1 − xN+1)2〉.

Other nonlinear statistics include the correlation sum, the maximum likelihood
estimator of the Grassberger–Procaccia correlation dimension D2, and a variety of
higher-order autocorrelations and autocovariances. Of the latter, two are of partic-
ular note due to their computational simplicity and their applicability to short time
series. These are the third-order autocovariance, λ C3(τ) = 〈xnxn−τ xn−2τ〉, and time-
reversal asymmetry, λ TREV(τ) = 〈(xn − xn−τ)3〉/〈(xn − xn−τ)2〉.

6.4.2 Nonlinear time-series analysis of real EEG

The surrogate data method has produced uncertain and equivocal results for EEG
[72]. An early report, using a modified nonlinear prediction error [73], suggested
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that resting EEG contained infrequent episodes of deterministic activity. However,
a later report [26], using third-order autocovariance and time-reversal asymmetry,
revealed that in a significant fraction (up to 19.2%) of examined EEG segments, the
null hypothesis of linearity could not be rejected. Therefore, depending on the non-
linear statistic used, a quite different picture regarding the existence of dynamics
of deterministic origin in the EEG may emerge. Thus attempts to identify transi-
tions between putatively identified linear and nonlinear states using surrogate data
methods will need to use a range of nonlinear discriminators.

Figure 6.5 shows a subset of the results obtained from a multivariate surrogate
data based test of nonlinearity for eyes-closed resting EEG recorded from a healthy
male subject. The important points to note are: (i) the fraction of epochs tentatively
identified as nonlinear is small for all nonlinear statistics; (ii) temporal patterns of
putatively identified nonlinear segments differ depending on the nonlinear statistic
used; and (iii) the power spectra of nonlinear segments are associated with a visible
sharpening of the alpha resonance for all nonlinear statistical discriminators. It is
this latter feature that is of particular interest to us. It suggests, in the context of
our theory, that the linear stochastic system underlying the generation of the alpha
activity has become more weakly damped and is thus more prone to being “excited”
into a nonlinear or deterministic state.

Because we theoretically envision a system intermittently switching between lin-
ear and deterministic (nonlinear) states there is a reduced need to identify the extent
to which nonstationarity acts as a source of false positives in our surrogate data non-
linear time-series analysis. For if our system switches between linear and nonlinear
states on a time-scale less than the length of the interval over which nonlinearity is
characterized, deterministic dynamics and nonstationarity necessarily co-exist.

Thus this preliminary experimental evidence, involving the detection of weak
nonlinearity in resting EEG using an extension of the well-known surrogate data
method, suggests that nonlinear (deterministic) dynamics are more likely to be as-
sociated with weakly damped alpha activity and that either a dynamical bifurcation
has occurred or is more likely to occur.

6.5 Discussion

We have outlined a biologically plausible mean-field approximation of the dynamics
of cortical neural activity which is able to capture the chief properties of mammalian
EEG. Central to this endeavor has been the modeling of human alpha activity, which
is conceived as the central organizing rhythm of spontaneous EEG.

A great deal of modern thinking regarding alpha activity in general, and the alpha
rhythm in particular, has focused on its variation during task performance and/or
stimulus presentation, and therefore attempts to describe its function in the context
of behavioral action or perception. These attempts to characterize alpha activity
in terms of its psychological correlates, together with its inevitable appearance in
scalp-recorded EEG has meant that specific research aimed at understanding this
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Fig. 6.5 Nonlinear surrogate data time-series analysis of parieto-occipitally recorded EEG from a
healthy male subject. Left-hand panels show the temporal sequence of putatively identified nonlin-
ear 2-s EEG segments for channel P4 for three nonlinear discriminators: λ NLPE, λ C3 and λ TREV.
Right-hand panels show the corresponding averaged power spectra for segments identified as non-
linear, compared with the remaining segments. Three-hundred seconds of artifact-free 64-channel
(modified-expanded 10–20 system of electrode placement; linked mastoids) resting eyes-closed
EEG was recorded, bandpass filtered between 1 and 40 Hz and sampled at 500 Hz. EEG was
then segmented into contiguous multichannel epochs of 2-s length from which multivariate sur-
rogates were created. H0 (data results from a Gaussian linear stochastic process) was then tested
for each channel at the p = 0.05 level using a nonparametric rank-order method together with a
step-down procedure to control for familywise type-I error rates. Power spectra were calculated
using Hamming-windowed segments of length 1000.

oscillatory phenomenon is more the exception than the rule. In a prescient review
regarding electrical activity in the brain, W. Grey Walter in 1949 [82], whilst talking
about spontaneous activity, remarked:

The prototype in this category, the alpha rhythm, has been seen by every electroencephalo-
grapher but studied specifically by surprisingly few.

While we have proposed a theory for the dynamical genesis of alpha activity, and
via large-scale parameter searches established plausible physiological domains that
can produce alpha activity, we do not understand the basis for the parameterizations
so found. Our theory suggests that the reason human alpha activity shows complex
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and sensitive transient behavior is because it is readily perturbed from a dynamical
state of marginal linear stability. It is therefore not inconceivable that the system
producing alpha activity has, through as yet unknown mechanisms, a tendency to
organize itself into a state of marginal stability. This line of thinking relates in a
general form to the ideas of self-organized criticality [5], especially in the context
of the near 1/ f distribution of low-frequency power reported in EEG [62] ECoG
[22] and MEG recordings [53].

Our view of electrorhythmogenesis and brain functioning emphasizes the self-
organized structure of spontaneous neural dynamics as active (or ready) and chiefly
determined by the bulk physiological properties of cortical tissue, which is per-
turbed or modulated by a variety of afferent influences arising from external sources
and/or generated by other parts of the brain. Alpha activity is hypothesised to be the
source of this self-organizing process, providing the background dynamical state
from which transitions to emergent, and thus information creating, nonlinear states
are made. In a general sense then, alpha activity provides ongoing dynamical pred-
icates for subsequently evoked activity. Such an approach is not uncommon among
neurophysiologists who have emphasized the importance of ongoing neural dynam-
ics in the production of evoked responses, see for example [3]. Indeed, this point
was highlighted early on by Donald O. Hebb [29]:

Electrophysiology of the central nervous system indicates in brief that the brain is continu-
ously active, in all its parts, and an afferent excitation must be superimposed on an already
existent excitation. It is therefore impossible that the consequence of a sensory event should
often be uninfluenced by the pre-existent activity.

6.5.1 Metastability and brain dynamics

Although early attempts to dynamically describe brain function sought to prescribe
explicit attractor dynamics to neural activity, more recent thinking focuses on transi-
tory nonequilibrium behavior [63]. In the context of the mesoscopic theory of alpha
activity presented here, it is suggested that these transient states correspond to co-
herent mesoscopic gamma oscillations arising from the bifurcation of noise-driven
marginally stable alpha activity.

From a Hebbian perspective, such a bifurcation may represent the regenerative
activation of a cell assembly through the mutual excitation of its component neu-
rons. However, Hebb’s original notion of a cell assembly did not incorporate any
clear mechanism for the initiation or termination of activity in cell assemblies. As
originally formulated, Hebbian cell assemblies could only generate run-away exci-
tation due to the purely excitatory connections among the assembly neurons. In the
theory presented here, the possibility arises that the initiation and termination of cell
assembly activity (assuming it corresponds to synchronized gamma band activity)
might occur as a consequence of modulating local reverberant inhibitory neuronal
activity through either disinhibition (variations in 〈pii〉) or transient modifications in

inhibitory→inhibitory synaptic efficacy (Nβ
ii , Γii) [8]. Because local inhibition has
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been shown to be a sensitive determinant of the dynamics of emergent model alpha
activity [40], it may be hypothesized that it is readily influenced by the relatively
sparse thalamocortical projections.

Given that neuronal population dynamics have been conceived as evolving tran-
siently, rarely reaching stability, a number of authors have opted to describe this
type of dynamical regime as metastability [11, 21, 23, 35, 64]. Common to many of
these descriptions is an ongoing occurrence of transitory neural events, or state tran-
sitions, which define the flexibility of cognitive and sensori-motor function. Some
dynamical examples include the chaotic itinerancy of Tsuda [78], in which neu-
ral dynamics transit in a chaotic motion through unique attractors (Milnor), or the
liquid-state machine of Rabinovich et al [63], where a more global stable hetero-
clinic channel is comprised of successive local saddle states. More specific neuro-
dynamical approaches include the work of Kelso [35], Freeman [21] and Friston
[24].

In developing mathematical descriptions of metastable neural dynamics, many
of the models are often sufficiently general to allow for a standard dynamical anal-
ysis and treatment. For this reason, much of the dynamical analysis of EEG has fo-
cused on the identification of explicit dynamical states. However attempts to explore
the attractor dynamics of EEG have produced at best equivocal results, suggesting
that such simplistic dynamical metaphors have no real neurophysiological currency.
Modern surrogate data methods have revealed that normal spontaneous EEG is only
weakly nonlinear [72], and thus more subtle dynamical methods and interpretations,
motivated by physiologically meaningful theories of electrorhythmogenesis, need to
be developed.
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10. Braitenberg, V., Schüz, A.: Cortex: Statistics and geometry of neuronal connectivity. Springer,
New York, 2nd edn. (1998)

11. Bressler, S.L., Kelso, J.A.S.: Cortical coordination dynamics and cognition. Trends Cogn. Sci.
5, 26–36 (2001), doi:10.1016/S1364-6613(00)01564-3

12. Bruno, R.M., Sakmann, B.: Cortex is driven by weak but synchronously active thalamocortical
synapses. Science 312, 1622–1627 (2006), doi:10.1126/science.1124593

13. Chatila, M., Milleret, C., Buser, P., Rougeul, A.: A 10 Hz “alpha-like” rhythm in the vi-
sual cortex of the waking cat. Electroencephalogr. Clin. Neurophysiol. 83, 217–222 (1992),
doi:10.1016/0013-4694(92)90147-A

14. Chatila, M., Milleret, C., Rougeul, A., Buser, P.: Alpha rhythm in the cat thalamus. C. R. Acad.
Sci. III, Sci. Vie 316, 51–58 (1993)

15. Chatrian, G.E., Bergamini, L., Dondey, M., Klass, D.W., Lennox-Buchthal, M.A., Petersén,
I.: A glossary of terms most commonly used by clinical electroencephalographers. In: Interna-
tional Federation of Societies for Electroencephalography and Clinical Neurophysiology (ed.),
Recommendations for the practice of clinical neurophysiology, Elsevier, Amsterdam (1983)

16. Ciulla, C., Takeda, T., Endo, H.: MEG characterization of spontaneous alpha rhythm in the
human brain. Brain Topogr. 11, 211–222 (1999), doi:10.1023/A:1022233828999

17. Coombes, S., Venkov, N.A., Shiau, L.J., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling elec-
trocortical activity through improved local approximations of integral neural field equations.
Phys. Rev. E 76, 051901 (2007), doi:10.1103/PhysRevE.76.051901

18. Dafilis, M.P., Liley, D.T.J., Cadusch, P.J.: Robust chaos in a model of the electroencephalo-
gram: Implications for brain dynamics. Chaos 11, 474–478 (2001), doi:10.1063/1.1394193

19. Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O.: Cholinergic induction of network oscillations
at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998), doi:10.1038/28179

20. Foster, B.L., Bojak, I., Liley, D.T.J.: Population based models of cortical drug response –
insights from anaesthesia. Cognitive Neurodyn. 2 (2008), doi:10.1007/s11571-008-9063-z

21. Freeman, W.J., Holmes, M.D.: Metastability, instability, and state transition in neocortex. Neu-
ral Netw. 18, 497–504 (2005), doi:10.1016/j.neunet.2005.06.014

22. Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L.: Spatial spectral analysis of hu-
man electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95,
111–121 (2000), doi:10.1016/S0165-0270(99)00160-0

23. Friston, K.J.: Transients, metastability, and neuronal dynamics. NeuroImage 5, 164–171
(1997)

24. Friston, K.J.: The labile brain. I. Neuronal transients and nonlinear coupling. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 355, 215–236 (2000), doi:10.1006/nimg.1997.0259
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Chapter 7
Inducing transitions in mesoscopic brain
dynamics

Hans Liljenström

7.1 Introduction

Brain structures are characterized by their complexity in terms of organization and
dynamics. This complexity appears at many different spatial and temporal scales
which, in relative terms, can be considered micro, meso, and macro scales. The
corresponding dynamics may range from ion-channel kinetics, to spike trains of
single neurons, to the neurodynamics of cortical networks and areas [6, 10]. The
high complexity of neural systems is partly a result of the web of nonlinear interre-
lations between levels and parts with positive and negative feedback loops. This in
turn introduces thresholds, lags and discontinuities in the dynamics, often leading
to unpredictable and nonintuitive system behaviors [68].

Typical for complex systems in general, and for the nervous system in particu-
lar, is that different phenomena appear at different levels of spatial (and temporal)
aggregation. New and unpredictable qualities emerge at every level, qualities that
cannot be reduced to the properties of the components at the underlying level. In
some cases, there is a hierarchical structure of a simple kind, where higher macro
levels “control” lower ones (c.f., the so-called enslaving principle of Haken [43]).
However, there could also be a more “bottom-up” interpretation of systems, where
indeed the micro phenomena, through various mechanisms, set the frame for phe-
nomena at higher structural levels. This interplay between micro and macro levels
is part of what frames the dynamics of systems. Of special interest is the meso level,
i.e., the level in between the micro and the macro, as this is where bottom-up meets
top-down [30, 31, 68].

The activity of neural systems often seems to depend on nonlinear threshold phe-
nomena: e.g., microscopic fluctuations may cause rapid and large macroscopic ef-
fects. There is a dynamical region between order and pure randomness that involves
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a high degree of complexity, and which seems characteristic for neural processes.
This dynamics is very unstable and shifts from one state to another within a few
hundred milliseconds or less, typical of chaotic systems. (It may actually be more
appropriate to refer to this behavior as “pseudo-chaotic”, since “true chaos”, as de-
fined mathematically, requires “infinite” time for its development).

Despite at least a century of study, the functional significance of the neural
dynamics at different levels is still not clear, nor is much known about the re-
lation between activities at the different levels. However, it is reasonable to as-
sume that different dynamical states correlate with different functional or mental
states. This principle guides our research, and will be discussed further in the final
section.

By studying transitions in brain dynamics, we may reveal fundamental properties
of the brain and its constituents that relate to mental processes and transitions. Such
transitions could, for example, involve various cognitive levels and conscious states
that would be of interest not only to neuroscience, but also to psychology, psychiatry,
and medicine.

In this chapter I present a range of computational models in which we investigate
relations between structure, dynamics, and function of neural systems. My focus
is on phase transitions in mesoscopic brain dynamics, since this type of dynamics
constitutes a well-studied bridge between neural and mental processes [31]. These
transitions can be induced by internal causes (noise and neuromodulation), but also
by external causes (electric shocks and anesthetics). The functional significance of
the model results are discussed in the concluding section.

7.1.1 Mesoscopic brain dynamics

In our description, mesoscopic brain dynamics refers to the neural activity or dy-
namics at intermediate scales of the nervous system, at levels between neurons and
the entire brain. It relates to the dynamics of cortical neural networks, typically on
the spatial order of a few millimetres to centimetres, and temporally on the order of
milliseconds to seconds. This type of dynamics can be measured by methods such
as ECoG (electrocorticography), EEG (electroencephalography), or MEG (magne-
toencephalography).

We consider processes and structures studied with a microscope or microelec-
trodes as defining a microscopic scale of the nervous system; thus the micro scale
could, for example, refer to ion channels or single neurons. The macroscopic scale,
in this picture, corresponds to the largest measurable extent of brain activity. Typ-
ically, this could concern the dynamics of maps and areas, usually measured with
PET or fMRI, or other brain-imaging techniques.

Mesoscopic brain dynamics, with its transitions, is partly a result of thresholds
and the summed activity of a large number of elements interconnected with positive
and negative feedback. It is also a result of the dynamic balance between opposing
processes, influx and efflux of ions, inhibition and excitation, etc. Such interplay
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between opposing processes often results in (transient or continuous) oscillatory
and chaotic-like behaviour [6, 32, 44, 78].

The mesoscopic neurodynamics is naturally influenced and shaped by the activ-
ity at other scales. For example, it is often mixed with noise that is generated at a
microscopic level by spontaneous activity of neurons and ion channels. It is also af-
fected by macroscopic activity, such as slow rhythms generated by cortico-thalamic
circuits or neuromodulatory influx from different brain regions. Transitions at these
other levels could also be of relevance to the mesoscopic level. For example, at the
microscopic level of ion channels, the kinetics assumes stochastic transitions be-
tween a limited number of static states. In spite of this, the kinetics can be given a
deterministic, dynamic interpretation at a population level. Similarly, at the cellular
level, there is regular or irregular spiking, or bursts of spikes, which form the ba-
sis for most mesoscopic and macroscopic descriptions of nerve activity. While the
causal relations may be difficult to establish, transitions between different states of
arousal, attention, or mood, could be seen as a top-down interaction from macro-
scopic activity to mesoscopic neurodynamics.

7.1.2 Computational methods

Computational approaches complement experimental methods in understanding the
complexity of neural systems and processes. Computational methods have long
been used in neuroscience, perhaps most successfully for the description of ac-
tion potentials [49]. When investigating interactions between different neural lev-
els, computational models are essential, and in some cases, may be the only
method we have. (For an overview, see Refs. [3, 4, 30, 73]). In recent years,
there has also been a growing interest in applying computational methods to prob-
lems in clinical neuroscience, with implications for psychology and psychiatry
[29, 30, 36, 39, 42, 52, 53, 64, 74, 79, 80, 87, 88].

In our research, we use a computational approach to address questions regarding
relations between structure, dynamics, and function of neural systems. Here, the fo-
cus is on understanding how transitions between different dynamical states can be
implemented and interpreted. For this purpose, we present different kinds of compu-
tational models, at different scales and levels of detail, depending on the particular
issues addressed.

In almost all cases, the emphasis is on network connectivity and hence there is, in
general, a greater level of realism and detail for the network structures than for node
characteristics. However, when microscopic details are important, or when model
simulations are to be compared with data at molecular and cellular scales, such
details need to be incorporated in the model, sometimes at the expense of details
at the network level. Our aim is to use a level of description appropriate for the
problem we address.

The first examples consider phase transitions in network dynamics arising from
noise and neuromodulation. In this case, we use a three-layered paleocortical model
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with simple network nodes of Hopfield type [50, 51]. Simulation results with this
model are compared with LFP (local field potential) and EEG data from the olfac-
tory cortex. For transitions due to attention, we want to compare our results with
experimental data on spike trains, so we use a neocortical model with spiking neu-
rons of Hodgkin–Huxley type [49].

In the case of electrical stimulation, we first use our paleocortical model, since
we again compare with EEG data from experiments on animal olfactory cortex. The
measured response is the summed activity of a very large number of neurons which
will drown out single spikes, so there is no need for spiking neurons here.

When modeling and analyzing EEG related to electroconvulsive therapy, we use
a neocortical network model with spiking neurons of FitzHugh–Nagumo type [25]
(a simplification of the Hodgkin–Huxley description) to enable comparison against
previous simulations with such model neurons [35].

In our final example, we investigate the mechanisms of anesthetics that block
certain ion channels. We employ a network of Frankenhaeuser–Huxley neurons [54]
because of their accurate description of ion-channel currents in cortical neurons.
This microscopically detailed model allows us to compare our network results with
those from single-neuron simulations for varying ion-channel composition [8].

7.2 Internally-induced phase transitions

The complex neurodynamics of the brain can be regulated by various neuromodula-
tors, and presumably also by intrinsic noise levels, governed by thresholds for spon-
taneous activity. In addition, the state of arousal or attention may also change the
cortical neurodynamics considerably, and even induce phase transitions that could
affect the functional efficiency of cognitive processes. Such transitions may also be
related to noncognitive mental processes and disorders, but that is beyond the scope
of this discussion. In the following three sections, we will look at different possi-
bilities for how intrinsic noise, neuromodulation, and attention may induce phase
transitions in cortical structures.

7.2.1 Noise-induced transitions

Spontaneous activity, or neuronal noise, is normally seen as a naturally occurring
side phenomenon without any functional role. However, it becomes increasingly
clear that stochastic processes play a fundamental role in the nervous system, at least
for keeping a baseline activity, but presumably also for increasing the efficiency in
system performance (see e.g., Ref. [5], and Sect. 7.4 Discussion).

Noise appears primarily at the microscopic (subcellular and cellular) levels, but
it is uncertain to what degree this noise normally is affecting meso- and macro-
scopic levels (networks and systems). Under certain circumstances, microscopic
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noise can induce effects on mesoscopic and macroscopic levels, but the role of
these effects is still unclear. Evidence suggests that even single channel openings
can cause intrinsic spontaneous impulse generation in a subset of small hippocampal
neurons [54].

In addition to the microscopic noise, irregular chaotic-like behavior, which may
be indistinguishable from noise, could be generated by the interplay of neural exci-
tatory and inhibitory activity at the network level. However, in contrast to a chaotic
dynamics, where the dynamics can be controlled and easily shifted into an oscilla-
tory or other state, stochastic noise is not equally controllable, and cannot shift into
a completely different dynamics (even though its amplitude and frequency might
vary as a result of neuromodulatory control).

7.2.1.1 A paleocortical network model

When studying how the neurodynamics of a cortical structure depends on various
internal factors, including neuromodulation and intrinsic noise from spontaneously
firing neurons, we use our previously constructed model of the olfactory cortex [60].
(With a few modifications, this model can also be used for the hippocampus, which
has a similar structure). Paleocortex, primarily consisting of the olfactory cortex and
hippocampus, is more primitive and simpler than neocortical structures, such as the
visual cortex. It has a three-layered structure and a distributed connectivity pattern
with extensive short- and long-range connections within a layer. Due to its simpler
structure and well-studied neurodynamics, the olfactory cortex can be regarded as a
suitable model system for the study of mesoscopic brain dynamics.

Our paleocortical model has network nodes with a continuous input–output re-
lation, the output corresponding to the average firing frequency of neural popula-
tions [50, 51]. Three different types of nodes (neural populations) are organized in
three layers, as seen in Fig. 7.1. The top layer consists of inhibitory feedforward
interneurons, which receive inputs from the olfactory bulb, via the lateral olfactory
tract (LOT), and from the excitatory pyramidal cells in the middle layer. The bot-
tom layer consists of inhibitory feedback interneurons, receiving inputs only from
the pyramidal cells and projecting back to those. The two sets of inhibitory cells
are characterized by their different time-constants. In addition to the feedback from
inhibitory cells, the pyramidal cells receive extensive inputs from each other and
from the olfactory bulb, via the LOT. All connections are modeled with distance-
dependent time-delays for signal propagation, corresponding to the geometry and
fiber characteristics of the real cortex.

The time-evolution for a network of N network nodes (neural populations) is
given by a set of coupled nonlinear first-order differential-delay equations for all
the N internal states, ui (corresponding to mean membrane potential of a population
i). With external input, I(t), characteristic time constant, τi, and connection weight
wi j between nodes i and j, separated with a time-delay δi j, we have for each node
activity, ui,
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Fig. 7.1 Schematic of our model neural network that mimics the structure of the olfactory cortex.
One layer of excitatory nodes, corresponding to populations of pyramidal cells (large circles in
middle layer), is sandwiched between two layers of inhibitory nodes, corresponding to two dif-
ferent types of interneurons (smaller circles, top and bottom layers). External input (from “the
olfactory bulb”) projects onto the two top layers in a fan-like fashion.

dui

dt
= −ui

τi
+

N

∑
j �=i

wi jg j [u j(t −δi j)] + Ii(t) + ξ (t) . (7.1)

The input–output function, gi(ui), is a continuous sigmoid function, experimentally
determined by Freeman [28]:

gi = CQi

{
1− exp

[
−exp(ui)

Qi

]}
. (7.2)

The gain parameter Qi determines the slope, threshold and amplitude of the input-
output curve for node i. This gain parameter is associated with the level of arousal,
which in turn may be linked to the level of a neuromodulator, such as acetylcholine
(ACh). C is a normalisation constant.

The connection weights wi j are initially set and constrained by the general con-
nectivity principles for the olfactory cortex, but to allow for learning, the weights
can be incrementally changed according to a learning rule of Hebbian type [61].
However, learning is not explicitly considered here, although it may well relate to
the functional significance of phase transitions in cortical neurodynamics. (Our ol-
factory/hippocampal model has previously been used for studying the effects of neu-
romodulation and noise on the efficiency of information processing [61, 63, 69]).

Neuromodulatory effects are simulated by changing the Q-values for primar-
ily the excitatory nodes. When neuromodulatory effects on synaptic transmission
are included, we change separately a weight-constant that multiplies all connec-
tion strengths, wi j. (Another way to implement neuromodulatory effects is by
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multiplying the input–output function, g, with an exponential-decay function, rep-
resenting neuronal adaptation, as has been described elsewhere [67]).

Noise, or spontaneous neural activity, is added in the last term of Eqn. (7.1) via a
Gaussian noise function, ξ (t), such that 〈ξ (t)〉= 0, and 〈ξ (t)ξ (s)〉= 2Aδ (t−s). We
have studied noise effects by increasing the level A. In some of the simulations, the
noise level is changed equally for all network nodes, whereas in other simulations,
the change takes place in only some of the network nodes.

7.2.1.2 Simulating noise-induced phase transitions

Simulations with our three-layered paleocortical model display a range of dynamic
properties found in olfactory cortex and hippocampus. For example, the model ac-
curately reproduces response patterns associated with a continuous random input
signal, and with shock pulses applied to the cortex; see Figs. 7.2 and 7.7 [60].

For a constant, low-amplitude random input (noise), the network is able to oscil-
late with two separate frequencies simultaneously, around 5 Hz (theta rhythm) and
40 Hz (gamma rhythm). Under certain conditions, such as for high Q-values, the
system can also display chaotic-like behaviour, similar to that seen in EEG traces
(see Fig. 7.2). In associative memory tasks, the network may initially display a
chaotic-like dynamics, which then converges to a near limit-cycle attractor when
storing or retrieving a memory (activity pattern) [61, 69].
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Fig. 7.2 (a) Real and (b) simulated EEG, showing the complex dynamics of cortical structures.
Upper trace is from rat olfactory cortex (data courtesy of Leslie Kay); lower trace is from a simu-
lation with the current model.

Simulations with various noise levels show that spontaneously active neurons
can induce global, synchronized oscillations with a frequency in the gamma range
(30–70 Hz) [62]. Even if only a few network nodes are noisy (i.e., have an increased
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intrinsic random activity), and the rest are quiescent, coherent oscillatory activity
can be induced in the entire network if connection weights are large enough [7, 62,
65]. The onset of global oscillatory activity depends on, for example, connectivity,
noise level, number of noisy nodes, and duration of the noise activity [15]. The
location and spatial distribution of these nodes in the network is also important
for the onset and character of the global activity. For example, as the number or
activity of noisy nodes is increased, or if the distance between them increases, the
oscillations tend to change into irregular patterns. In Fig. 7.3, we show that global
network activity can be induced if only five out of 1024 network nodes are noisy,
and the rest are silent. After a short transient period of collective irregular activity,
the entire network begins to oscillate, and collective activity waves move across the
network. Even if there is only a short burst of noisy activity, this may be enough to
induce global oscillations [15].

50 ms 100 ms 150 ms 200 ms 250 ms

300 ms 350 ms 400 ms 450 ms 500 ms

550 ms 600 ms 650 ms 700 ms 750 ms

800 ms 850 ms 900 ms 950 ms 1000 ms

−11.91

     0

 11.84

Fig. 7.3 [Color plate] Spatiotemporal activity of the excitatory layer of a three-layered paleocor-
tical model, presented as snapshots of network activity (as mean membrane potential of neural
populations) at 50-ms intervals. Five centrally-located noisy network nodes can induce collective
waves of activity across the entire network. Simulations were made with a 32×32 grid of net-
work nodes in each network layer, corresponding to a 10- × 10-mm square of rat olfactory cortex.
Activity is color-coded on a scale ranging from negative = blue to positive = red.

We have also studied the effects of spontaneously active feedforward inhibitory
interneurons in the top layer, motivated by the experimental finding that single in-
hibitory neurons can synchronize the activity of up to 1000 pyramidal cells [21].
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Our simulations demonstrated that even a single noisy network node in the feedfor-
ward layer could induce periods of synchronous oscillations in the excitatory layer
with a frequency in the gamma range, interrupted by periods of irregular activity
[15].

From the simulations, it is apparent that internal noise can cause various phase
transitions in the network dynamics. An increased noise level in just a few net-
work nodes can result in a transition from a stationary to an oscillatory state, or
from an oscillatory to a chaotic state, or alternatively, a shift between two different
oscillatory states [56, 69]. (A more thorough investigation—in which we studied
the effects of varying the density of noisy nodes, the noise duration, and the noise
level—is reported in [15].)

All of these phenomena depend critically on network structure, in particular on
the feedforward and feedback inhibitory loops, and the long-range excitatory con-
nections, modeled with distance-dependent time delays. In this model, details con-
cerning neuron structure or spiking activity are not necessary for the neurodynamics
under study. Instead, a balance between inhibition and excitation, in terms of con-
nection strength and timing of events, is essential for coherent frequency and phase
of the oscillating neural nodes.

7.2.2 Neuromodulatory-induced phase transitions

Brain activity is constantly changing due to sensory input, internal fluctuations,
and neuromodulation. Neuromodulators, such as acetylcholine (ACh) and serotonin
(5-HT), can change the excitability of a large number of neurons simultaneously,
or the synaptic transmission between them [18], thus dramatically influencing brain
dynamics. ACh can increase excitability by suppressing neuronal adaptation, an ef-
fect similar to that of increasing the gain in general. The concentration of these
neuromodulators seems to be directly related to the level of arousal or motiva-
tion of the individual, and can have profound effects on the neural dynamics (e.g.,
an increased oscillatory activity), and on cognitive functions, such as associative
memory [30].

We use the paleocortical model described in Sect. 7.2.1.1 to investigate how net-
work dynamics can be regulated by neuromodulators, implemented in the model
as a varied excitability of the network nodes, and modified connection strengths
[67]. The frequencies of the network oscillations depend primarily on intrinsic time-
constants and delays, whereas the amplitudes depend predominantly on connection
weights and gains, which are under neuromodulatory control. Implementation of
these neuromodulatory effects in the model cause dynamical changes analogous to
those seen in physiological experiments.

In particular, a “cholinergic” increase in excitability together with suppression
of synaptic transmission could induce theta (and/or gamma) rhythm oscillations
within the model, even when starting from an initially quiescent state with no os-
cillatory activity. Fig. 7.4 shows how different oscillatory modes can be induced by
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Fig. 7.4 Different oscillatory modes can be induced by cholinergic neuromodulatory effects that
increase gain and decrease connection strengths. The activity evolution of one particular (arbitrarily
chosen) excitatory network node is shown for three different levels of “cholinergic” action: (a) low;
(b) intermediate; and (c) high.

neuromodulatory effects: increasing gain and decreasing connection weights. The
activity evolution of one arbitrarily chosen excitatory network node is shown for
three different levels of “ACh”. For example, if Q = 10.0 and wexc = winh = 1.0 (i.e.,
no suppression of synaptic transmission; wexc and winh are excitatory and inhibitory
connection-weight factors respectively), we can get an oscillatory mode with two
different frequencies (∼5 Hz and 40 Hz) present simultaneously. This is shown in
trace (a) of Fig. 7.4. If Q is kept constant (= 10) while wexc and winh are reduced
successively, the high-frequency component weakens and eventually can be totally
eliminated. In trace (b), the connection strengths were decreased by 40% for all ex-
citatory nodes (i.e., wexc = 0.6), and by 60% for all inhibitory nodes (winh = 0.4).
Trace (c) shows the result for wexc = 0.4 and winh = 0.2. In the latter case, only
the low-frequency component remains. If the excitatory connection strengths are
decreased further, i.e. if wexc ≤ 0.3, oscillations disappear.

7.2.3 Attention-induced transitions

Related to the level of arousal, and apparently also under neuromodulatory control,
is the phenomenon of attention, which plays a key role in perception, action se-
lection, object recognition, and memory [46]. The main effect of visual attentional
selection appears to be a modulation of the underlying competitive interaction be-
tween stimuli in the visual field. Studies of cortical areas V2 and V4 indicate that
attention modulates the suppressive interaction between two or more stimuli pre-
sented simultaneously within the receptive field [22]. Visual attention has several
effects on modulating cortical oscillations in terms of changes in firing rate [72],
and gamma and beta coherence [34].
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In selective-attention tasks, after the cue onset and before the stimulus onset,
there is a delay-period during which a monkey’s attention was directed to the place
where the stimulus would appear [34]. During the delay, the dynamics was domi-
nated by frequencies around 17 Hz, but with attention, this low-frequency synchro-
nization decreased. During the stimulus period, there were two distinct bands in
the power spectrum, one below 10 Hz and another at 35–60 Hz (gamma). With at-
tention, there was a reduction in low-frequency synchronization and an increase in
gamma-frequency synchronization.

At a meso-scale, each area of the visual cortex is conventionally divided into six
layers, some of which can be further divided into several sub-layers, based on their
detailed functional roles in visual information processing (such as orientation and
retinotopic position).

The inter-scale network interactions of various excitatory and inhibitory neurons
in the visual cortex generate oscillatory signals with complex patterns of frequencies
associated with particular states of the brain. Synchronous activity at an intermediate
and lower-frequency range (theta, delta, and alpha) between distant areas has been
observed during perception of stimuli with varying behavioral significance [76, 84].
Rhythms in the beta (12–30 Hz) and the gamma (30–80 Hz) ranges are also found
in the visual cortex, and are often associated with attention, perception, cognition
and conscious awareness [23, 24, 34, 37, 38]. Data suggest that gamma rhythms are
associated with relatively local computations, whereas beta rhythms are associated
with higher-level interactions. Generally, it is believed that lower-frequency bands
are generated by global circuits, while higher-frequency bands are derived from
local connections.

7.2.3.1 A neocortical network model

In order to investigate how attentional neuromodulation can affect cortical neuro-
dynamics, and cause the observed phase shifts discussed above, we use a neural
network model of the visual cortex, based on known anatomy and physiology [41].

Although neocortex consists of six layers—in contrast to paleocortex with its
three layers—for simplicity, we lump some of the neocortical layers together. Thus,
our model has three functional layers, including layer 2/3, layer 4 and layer 5/6 of
the visual cortex. Each layer contains 20×20 excitatory model neurons (pyrami-
dal neurons in layer 2/3 and layer 5/6, and spiny stellate neurons in layer 4) in a
quadratic lattice with lattice distance 0.2 mm. For each excitatory layer, there are
also 10×10 inhibitory neurons in a quadratic lattice with lattice distance 0.4 mm.
Thus, there are 20% inhibitory neurons, which roughly corresponds to the observed
cortical distribution.

Figure 7.5 shows the schematic diagram of the network topology. The inhibitory
neurons in each layer have interactions within their own layer only, while excitatory
neurons have interactions within their own layer as well as between layers and ar-
eas. The within-layer connections between excitatory and inhibitory neurons is of
“Mexican hat” shape, with an on-center and an off-surround lateral synaptic input
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Top-down input from higher area

Bottom-up input from lower area

Layer 2/3

Layer 4

Layer 5/6

Fig. 7.5 Schematic diagram of the model architecture. Small triangles in layers 2/3 and 5/6 repre-
sent pyramidal neurons; small open circles in layer 4 are spiny stellate neurons; small filled circles
in each layer are inhibitory neurons. Arrows show connection patterns between different layers and
signal flows from other areas. Large solid open circles represent lateral excitatory connection ra-
dius; large dashed open circles represent inhibitory connection radius; dotted open circles in layers
2/3 and 5/6 denote the top–down attention modulation radius Rmodu.

for each neuron, i.e., excitatory at short distance, and inhibitory at a long distance
(see Ref. [41] for details).

Since we wish to compare model results against observed data from visual
cortex—in particular, spike-triggered averages of local field potentials—we need
to use spiking model neurons; this is in contrast to the paleocortical model, which
uses network nodes corresponding to populations of neurons, resulting in a contin-
uous non-spiking output. For the present case, all excitatory model neurons satisfy
Hodgkin–Huxley equations of the form,

C
dV
dt

= −gL(V +67)−gNam3h(V −50)−gKn4(V +100)

−gAHPw(V +100)− Isyn + Iappl , (7.3)
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where V is the membrane potential in mV; C = 1 μF is the membrane capaci-
tance; gL is the leak conductance; gNa = 20 mS and gK = 10 mS are the maximal
sodium and potassium conductances, respectively; gAHP is the maximal slow potas-
sium conductance of the after-hyperpolarization (AHP) current—this varies from 0
to 1.0 mS, depending on the attentional state: in an idle state, gAHP = 1.0 mS; with
attention, gAHP ≤ 1.0 mS. The variables m, h, n and w are calculated in a conven-
tional way, and described more thoroughly in Ref. [41].

The inhibitory neurons have identical equations as above, except that there is
no AHP current. The synaptic input current, Isyn of the pyramidal, stellate, and in-
hibitory neurons is described below.

In each layer j (where j =2/3, 4, and 5/6) of the local-area network, there are four
types of interactions: (i) lateral excitatory–excitatory, (ii) excitatory–inhibitory, (iii)
inhibitory–excitatory, and (iv) inhibitory–inhibitory, with corresponding connection
strengths, Cee

j,kl , Cie
j,kl , Cei

j,kl , and Cii
j,kl , which vary with distance between neurons k

and l.
The synaptic input current, Isyn

4s,k(t), of the kth stellate neuron in layer 4 at time
t is composed of the ascending input from the pyramidal neurons in layer 5/6, de-
scending input from the pyramidal neurons in layer 2/3, and lateral excitatory inputs
from the on-centre neighboring stellate neurons in layer 4. It also includes lateral
inhibitory inputs from the off-surround neighboring inhibitory neurons in the same
layer, resulting in,

Isyn
4s,k(t) =

(
V4s,k(t)−VE

)(
∑

l

Cee
4(5/6),kl se

5/6,l(t)+∑
l

Cee
4(2/3),kl se

2/3,l(t)+∑
l

Cee
4,kl se

4,l(t)
)

+
(
V4s,k(t)−VI

)
∑

l

Cei
4,kl si

4,l(t) . (7.4)

The synaptic input current, Isyn
4i,k(t), of the kth inhibitory neuron in layer 4 is com-

posed of the lateral excitatory inputs from neighboring stellate neurons and lateral
inhibitory inputs from neighboring inhibitory neurons,

Isyn
4i,k(t) =

(
V4i,k(t)−VE

)
∑

l

Cie
4,kl se

4,l(t)+
(
V4i,k(t)−VI

)
∑

l

Cii
4,kl si

4,l(t) . (7.5)

The synaptic input currents for the other layers 2/3 and 5/6 are calculated in
a similar way (see Ref. [41] for details). In addition, each neuron of the network
receives an internal background noise current.

The excitatory and inhibitory presynaptic outputs in Eqs. (7.4) and (7.5) satisfy
first-order differential equations (7.6) and (7.7), respectively:

d
dt

se
j,l = 5(1+ tanh(Vj,l/4))(1− se

j,l)− se
j,l/2 , (7.6)

d
dt

si
j,l = 2(1+ tanh(Vj,l/4))(1− si

j,l)− si
j,l/15 , (7.7)
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where j refers to the layer, and l to the presynaptic neuron. Vj,l corresponds to the
membrane potential of presynaptic neuron l in layer j.

7.2.3.2 Simulating neurodynamical effects of visual attention

Our simulations are based on the visual attention experiment by Fries et al. [34].
Thus, in each of the three layers, we have groups of “attended-in” neurons, Ain

(where attention is directed to a stimulus location inside the receptive field (RF)
of these neurons), and groups of “attended-out” neurons, Aout (where attention is
directed to a stimulus location outside the RF these neurons). During a stimulus
period, two identical stimuli are presented: one appears at a location inside the RF
of the Ain neurons and the other appears at a location inside the RF of the Aout

neurons. The top-down modulation radius Rmodu is taken as 0.6 mm, which is larger
than the lateral excitatory connection radius of 0.5 mm, in each layer. In addition,
each neuron of the network receives an internal background-noise input current.

When analyzing the simulated spike trains, we calculate power spectra of spike
triggered averages (STAs) of the local field potential (LFP), representing the oscil-
latory synchronization between spikes and LFP. We investigate the dynamics and
the effects of attention (cholinergic modulation) in an idle state, during stimulation,
and during a delay period, as described in more detail below.

When attention is directed to a certain place, the prefrontal lobe sends cholinergic
input signals via top-down pathways to layers 2/3 and 5/6 of the visual cortex, as
shown in Fig. 7.5. To test various hypotheses about the mechanisms of attention
modulation, we assume that the top-down signals may have three different effects
on the pyramidal neurons, and on the local and global network connections in our
simulations: (i) facilitation of extracortical top-down excitatory synaptic inputs to
the pyramidal neurons (global connections); (ii) inhibition of certain intracortical
excitatory and inhibitory synaptic conductances (local connections) [58, 59]; and
(iii) modulation of the slow AHP current by decreasing the K-conductance, gAHP,
thus increasing excitability [19].

We simulated the attentional modulation effect of inhibition of intracortical ex-
citatory and inhibitory synaptic inputs by decreasing the lateral excitatory and in-
hibitory conductances to zero (i.e., gee

j = gei
j = 0 mS) for the pyramidal neurons in

the Ain neurons within Rmodu in layers 2/3 and 5/6.
To simulate the dynamics during a stimulus period, we applied a pair of bottom-

up sensory stimulation currents: a stronger current of 25 μA, and one weaker current
of 5 μA. The stronger current was directly applied to layer-4 stellate neurons in both
the Ain and the Aout groups. The weaker current was applied to layer-5/6 pyramidal
neurons in both groups. In addition, top-down attention modulation was applied to
the system.

Figure 7.6 shows the effects of attentional modulation on neuronal spikes, LFP,
STA, and STA-power in a delay period (Fig. 7.6(a)), and in a stimulation period
(Fig. 7.6(b)). The top traces show the LFP of Ain and Aout neurons, respectively.
Below the LFP traces are the spike trains of a pyramidal cell in each of the Ain and
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Fig. 7.6 Attentional modulation effects during (a) a delay period, and (b) a stimulus period. LFP
(local field potential), spikes, STA (spike-triggered averages) and STA power of attended-in and
attended-out groups, calculated for the superficial layer, when the excitatory connections and in-
hibitory connections to each pyramidal neuron in the attended-in group within Rmodu in layers 2/3
and 5/6 are reduced to zero.

Aout groups. The computed STA and STA-power of the corresponding neurons in
layer 2/3 are shown in the middle and bottom of the figure.

The simulation results show reduced beta synchronization with attention during
a delay period (under certain modulation situations, see Fig. 7.6(a)), and enhanced
gamma synchronization due to attention during a stimulation period (Fig. 7.6(b)). In
comparison with an idle state for which the dominant frequencies are around 17 Hz,
the bottom panel of Fig. 7.6(a) shows that the dominant frequency of the oscillatory
synchronization and its STA power in the Ain group is decreased by inhibition of the
intracortical synaptic inputs. This result agrees qualitatively with experimental find-
ings that low-frequency synchronization is reduced during attention. In comparison
with Fig. 7.6(a), the dominant frequency of the STA power spectrum of both Ain and
Aout groups in Fig. 7.6(b) is shifted towards the gamma band due to the stimulation
inputs. The STA power of the dominant frequency of the Ain group is higher than
that of the Aout group.

It is apparent that many factors play important roles in the network neurodynam-
ics. These include (i) the interplay of ion channel dynamics and neuromodulation
at a micro-scale; (ii) the lateral connection patterns within each layer; (iii) the feed-
forward and feedback connections between different layers at a meso-scale; and
(iv) the top-down and bottom-up circuitries at a macro-scale. The interaction be-
tween the top-down attention modulation, and the lateral short-distance excitatory
and long-range inhibitory interactions, all contribute to the beta synchronization
decrease during the delay period, and to the gamma synchronization enhancement
during the stimulation period in the Ain group. The top-down cholinergic modula-
tion tends to enhance the excitability of the Ain group neurons. The Mexican-hat
lateral interactions mediate the competition between Ain and Aout groups.
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Other simulation results (not shown) demonstrate that the top-down attentional or
cholinergic effects on individual neurons, and on local and global network connec-
tions, are quite different. The effect of facilitating global extracortical connections
results in a slight shift of the dominant frequency in the STA power spectrum to
higher beta in both the Ain and the Aout groups. In particular, the higher beta syn-
chronization of the Ain group is much stronger than that of the Aout group.

7.3 Externally-induced phase transitions

In addition to various internal (natural) causes of phase transitions, there is a number
of ways to induce neural phase transitions externally (artificially). Here, we will
exemplify this by electrical stimulation and by application of anesthetics. Applying
such external inputs may give a further clue to the dynamical features of the neural
system under study, in much the same way as the response of any system to an
external signal may reveal important system properties.

7.3.1 Electrical stimulation

By the 18th century, when the Italian physicists Galvani and Volta examined electri-
cal properties of living tissues of frogs, it had become clear that nerves and muscles
could respond to electrical stimulation. Since then, electricity has been used both
to stimulate and to measure nerve activity in the body, and also in the brain itself.
The possibility of measuring the electrical component of brain activity with external
electrodes was discovered by Berger in the early 20th century [16], and it was not
difficult to see that direct electrical stimulation also could affect brain activity. A
variety of electric stimulations have been used not only for investigating brain re-
sponse, but also to treat mental disorders such as depression [17, 42], schizophrenia
[83], and neurological disorders such as Parkinson’s disease [82]. In the following,
we will give an example of how electrical stimulation can be used to study the re-
lation between structure, dynamics, and function in a mammalian brain. A second
example will illustrate how electrical stimulation is used in psychiatry.

7.3.1.1 Electrical pulses to olfactory cortex

When studying the dynamical properties of the olfactory cortex, Freeman and co-
workers stimulated the lateral olfactory tract (LOT) of cats and rodents with electric
shock pulses of varying amplitude and duration, then recorded the neural response
via EEG [26, 27]. A strong pulse gives a biphasic response with a single fast wave
moving across the surface, whereas a weak pulse results in an oscillatory response,
showing up as a series of waves with diminishing amplitude. When a short pulse
is applied to the LOT input corner of the network model, waves of activity move
across the model cortex, consistent with corresponding global dynamic behavior
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Fig. 7.7 Comparison of experimental data (a, b) from rodent olfactory cortex (courtesy of W.J.
Freeman) with simulated data (c, d) from our paleocortical network model. Left traces show re-
sponse to a strong shock pulse; right traces are response to a weak pulse.

of the functioning cortex. In Fig. 7.7, the experimentally measured responses are
shown in the upper traces, and the model simulations are shown in the lower traces.

7.3.1.2 Electroconvulsive therapy

A more dramatic example of electrical stimulation comes from psychiatry, where
electroconvulsive therapy (ECT) is one of the most successful treatments for de-
pression and other mental disorders [17]. Despite its widespread use and successful
results, it is still not known how ECT affects the brain neurologically. It has been
suggested that it causes changes in the connectivity of cortical networks, either neg-
atively, by destroying cells and/or synapses, or positively, by stimulating nerve-cell
growth and sprouting [1, 86].

Clinical data show that the EEG of patients treated with ECT changes qualita-
tively over the treatment session, and displays some characteristic behaviors [42].
Due to the complexity of these time-series, analytical work has been difficult and
scarce, and the anatomical and physiological basis for the dynamical patterns of
post-ECT EEG remain to be elucidated.

In general, the EEG after ECT stimulation exhibits a specific pattern of seizures
(see Fig. 7.8), but there are individual differences depending on seizure threshold,
stimulus doses, and sub-diagnosis [39, 40, 42, 85]. Apparently, ECT stimulation can
induce synchronous oscillations of neuronal populations over large parts of the brain
where the oscillatory patterns depend on intrinsic properties, the external input and
the treatment procedure. The dynamics of a recorded post-ECT, ictal, EEG time-
series shifts between several phases [85]. Generally, in the clinical data one can find
a sequence of phases such as preictal, polyspike (tonic), polyspike and slow-wave
(clonic), termination, and postictal, respectively [17].

We apply computational methods to address the problem of how ECT might af-
fect cortical structures and their dynamics. We have developed models of
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Fig. 7.8 EEG trace immediately after ECT stimulus in a patient with recurrent major depression.

neocortical structures to investigate and suggest possible mechanisms underlying
the EEG signal, and in particular, how ECT-like input might influence the dynam-
ics of the system. We are able to simulate qualitatively certain ECT EEG patterns
[39, 40]. Considering the characteristics of the dynamical shifts between several
phases of ECT EEG, we assume that the phase shifts are related to intrinsic local
and global network properties, physiological parameters of the cortex, and external
ECT stimulus.

We use various versions of a neocortical model similar to that of Sect. 7.2.3.1, but
with differently modeled neurons, since we want to compare our results with previ-
ous simulations of ECT EEG by Giannakopoulos et al [35]. Network connectivity
is varied in terms of cell types, number of neurons, and short- and long-distance
connections. In particular, we investigate how a variation in the balance between
excitation and inhibition affects the network dynamics. The guiding idea is that
ECT primarily acts on network connectivity in stimulating nerve cell growth and
sprouting [1, 86].

The model uses, as far as possible, physiological parameter values, and the same
equations for describing the dynamics in all of the model variants. The network dy-
namics is described by Eq. (7.8), and the neurons are modeled as continuous output
units of Fitzhugh–Nagumo type, as described by Eqs (7.9) and (7.10). The equa-
tions and parameter values are essentially the same as in Ref. [35], but in Eq. (7.8),
we also include inputs from inhibitory neurons to other inhibitory and excitatory
neurons.

τex(in) d
dt

uex(in)
i (t) = −uex(in)

i (t)+ p+
n

∑
k=1

cex(in)/ex
ik g(vex

k (t −T ex(in)/ex
ik ))

+ p−
n

∑
k=1

cex(in)/in
ik g(vin

k (t −T ex(in)/in
ik ))+ eex(in)

i (t −T σ ) , (7.8)

d
dt

vi(t) = c(wi(t)+ vi(t)− 1
3 vi(t)3)+ γi ui(t) , (7.9)

d
dt

wi(t) = (a− vi(t)−bwi(t))/c , (7.10)

g(v) =
Mg −mg

1+ exp(−αv)
. (7.11)
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Here, ui is the postsynaptic potential of neuron i; vi is the membrane potential at the
axon initial segment; wi is an auxiliary variable; a, b, and c are appropriate positive
constants which guarantee the existence of the oscillation interval; and eex(in)

i is the
external signal. The nonlinear function g(v) describes the relation between the pre-
and postsynaptic potential of the neurons, and is monotonically increasing (α > 0)
and nonnegative (0 ≤ mg < Mg). The elements of the connection matrix, cik, de-
scribe the topology of the network, and p+ and p− are the excitatory and inhibitory
connection strengths, respectively. The neurons have time-constants τex and τ in. The
total time-delay, Tik, consists of a synaptic delay, T σ , and the dendritic and axonal
propagation time from neuron k to neuron i. The synaptic membrane conductance
of neuron i is denoted by γi. The EEG signal is calculated as the mean membrane
potential over all (excitatory) neurons.

The network connectivity mimics that of the six-layered neocortex, with columns
connected via long-range lateral connections, and with a circuitry inspired by Szen-
tagothai and others [75, 77, 81]. In our simulations, we use 100 neurons, of which
80 are excitatory of two types (pyramidal and spiny stellate neurons), and 20 are
inhibitory of two types (large basket neurons and short-distance inhibitory interneu-
rons). Each layer consists of 4×4 excitatory neurons in a quadratic lattice with lat-
tice spacing 0.2 mm, and four randomly distributed inhibitory neurons. The distance
between layers is 0.4 mm. The “regional” network connects four columns by long-
distance excitatory connections in layers 2 and 3, with a distance between columns
of 4 mm. (A more thorough description of the model is given in Ref. [39].)

In Fig. 7.9, the mean activity of simulated excitatory neurons in layers 2 to 6 is
shown, going from top to bottom (layer 1 is considered to consist of fibers only).
The duration of the ECT-like input is 200 ms. As seen from the figure, the neurons
in each layer begin to oscillate synchronously during the ECT stimulation, but the
collective oscillatory patterns vary from layer to layer, depending on the difference
in connectivity.

In the left-hand traces of Fig. 7.9, the simulation shows the neural dynamics
resulting from long-range inhibitory connections between basket cells in layer 3
of the four columns. In these traces, the mean membrane potential shows rather
strong phase shifts in layers 2 and 3 due to the long-distance inhibitory connections
in layer 3. In layer 4, mean membrane potential decreased abruptly, long before
the ECT stimulus had ended. After the ECT input had ended, oscillations died out
immediately in this layer, due to the lack of lateral excitatory connections here. The
synchronous oscillations are comparatively strong in layers 5 and 6 due to a reduced
neuronal density in these layers.

In the right-hand side of Fig. 7.9, we have replaced the long-range inhibitory con-
nections by long-range excitatory lateral connections between the four pyramidal
neurons in the centers of each column within layers 2 and 3. After the ECT stimula-
tion, the synchronous oscillations in layers 2 and 3 show fewer phase shifts between
high and low amplitude due to the long-distance excitatory connections. The activ-
ity in layer 4 is almost the same as for the case of long-range inhibition. In layers
5 and 6, the mean membrane potential shows more prominent phase shifts between
synchronous and desynchronous oscillation after the ECT stimulus has ended.
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Fig. 7.9 Network response to simulated 200-ms ECT stimulus. From top to bottom, panels show
mean membrane potential of excitatory neurons in layers 2–6 respectively. (a) Effect of density
and long-distance inhibitory connections; (b) effect of long-distance excitatory lateral connections.
Scale for y-axis is arbitrary.

When we decrease the excitatory connection strength of the network, the syn-
chronous oscillations decrease in each layer. (The network dynamics can also
change dramatically if, for example, the time-constants of excitatory and/or in-
hibitory neurons are changed slightly).

These studies demonstrate that the collective network dynamics varies with con-
nection topology, neuron density in different layers, the balance between excitatory
and inhibitory strength, neuronal intrinsic oscillatory properties, and external input.

Clinical EEG data from a series of six consecutive treatments [17] shows a transi-
tion from large amplitude oscillatory activity with apparent phase shifts, to low am-
plitude oscillations with fewer phase shifts. Comparing the model results of Fig. 7.9
with these findings, we may assume that the ECT stimuli could form new long-
distance excitatory connections, as these lead to fewer phase shifts, while long-
distance inhibitory connections induce more phase shifts. These results support the
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notion that ECT stimuli can induce regeneration of neurons and the formation of
new connections.

7.3.2 Anesthetic-induced phase transitions

Another way of artificially inducing phase transitions in cortical neurodynamics is
by using neuroactive drugs, such as certain kinds of anesthetics and anti-epileptics,
which clearly can induce transitions between mental states. An important principle
in the action of these drugs is the selective blocking or activation of ion channels,
which will have differing effects on the neurodynamics depending on the relative
selectivity and intrinsic network activity [9, 48, 80]. Likewise, up-regulation of Na
and K channels will induce different activity patterns, depending on their relative
densities in the cell membrane.

The permeability constants, P∗
Na and P∗

K (defined as the permeability values for
fully open ion channels), depend on the density of ion channels in the cell mem-
brane, so they will be referred to as channel densities here. It has been shown that
different combinations of these densities cause different oscillatory behaviors in
single-cell dynamics at constant stimulation [8]. There are also combinations of Na
and K channel density (P∗

Na/P∗
K) for which there are no oscillations at all.

If the stimulus applied to a given neuron is too strong, the potential cannot drop
to the resting potential, and the neuron is not able to maintain an oscillatory activity;
whereas if the stimulus is too weak, the neuron cannot be driven above the oscilla-
tion threshold. Both the upper and lower limit of the stimulus interval for which a
neuron oscillates depend on the P∗

Na/P∗
K ratio.

By constructing computational network models of neurons with different P∗
Na/P∗

K
values, we investigate how the network dynamics depend on the density of ion chan-
nels at the single-neuron level, thus relating microscopic properties of single neu-
rons to mesoscopic brain dynamics. This is based on the notion that general anes-
thetics function by blocking specific K channels, thus shifting the affected neurons
towards a larger Na:K permeability ratio [9, 33, 47].

7.3.2.1 Neural network model with spiking neurons

In this study, we use a neural network model with spiking neurons described by
Frankenhaeuser-Huxley (FH) equations [8]; these deviate slightly from the classical
Hodgkin-Huxley formalism, but are more accurate for cortical neurons and better
for our purpose here. In our simulations, the only free parameters for the neuronal
model are the permeability values (channel densities) P∗

Na and P∗
K. Using this model,

we may study the effects of changes in ion-channel composition on the network
dynamics as an assumed effect of certain anesthetics.

As a global activity measure (comparable to EEG), we use the arithmetic-mean
field potential. Our network model here consists of 6×6 neurons, arranged in a
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square lattice and connected in an all-to-all manner. We use a distance-dependent
connectivity, with the connection strength decreasing with distance as w ∼ 1/r.

Six (out of 36) homogenously distributed network neurons are inhibitory (with
periodic boundary conditions), motivated by the fact that about 20% of the neo-
cortical neurons in the mammalian brain are inhibitory (as in the previous models
described above).

The synaptic input enters the single neuron model [8] as an additional input cur-
rent, Ii(t):

Ii(t) = ∑
j

wi j ∑
( f )

(1/τs) exp[(t − tsyn − t( f )
j )/τs] , (t − tsyn − t( f )

j ) > 0 , (7.12)

where wi j is the synaptic weight between the neurons i and j, tsyn (1 ms) is the
synaptic delay, and τs is the synaptic (membrane) time-constant (30 ms). The time
t( f ) refers to the arrival of an action potential.

Thus, in a network, the state equation for a neuron, with membrane potential v
and capitance CM , becomes a sum of various currents:

CM
dvi

dt
= IS(t)+ IG(t)+ Ii(t)− INa(vi,mi,hi)− IK(vi,ni)− IL(vi) . (7.13)

IS is the stimulation current, IG is Gaussian noise, INa is the initial transient current
through Na channels, IK is the delayed sustained current through K channels, and IL

is the leak current. P∗
Na and P∗

K enter in the expressions for INa and IK, respectively.
(For more details of the model, see Ref. [45].)

7.3.2.2 Variation of network dynamics with channel-density composition

The network dynamics depends on the subcellular densities of Na and K channels
(P∗

Na and P∗
K), and on the synaptic weight factor (w) at the network level; these are the

only free parameters in our analysis. All neurons have the same initial conditions,
but the spatial homogeneity is broken by the random component in the input. (The
stimulus IS is for every run given a value close to the oscillation threshold in each
particular case).

The network consists of inhibitory and excitatory neurons with different P∗
Na/P∗

K
ratios. Keeping the excitatory neurons fixed at the channel density values, P∗

Na/P∗
K =

15/7.5, we vary the K-channel density in the inhibitory neurons. We model the
effect of anesthetic by assuming that it blocks specific K channels, primarily in the
inhibitory neurons. The arithmetic mean of the transmembrane potential, taken over
all neurons, is used as a measure of the collective network dynamics (the “EEG”).

The strength of the stimulus required to make a single neuron oscillate varies
depending on the P∗

Na and P∗
K values for that neuron. There is a general trend that

oscillation frequency increases with stimulus, and that neurons with low P∗
K val-

ues have a low oscillation threshold, but are also more sensitive to over-stimulation
than neurons with high P∗

K values. (Here, we want to study the effect that these
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findings have at a network level, where the stimulus varies over time due to synaptic
interactions).

Since K channels are important regulators of firing patterns, and since K channels
have been suggested to be the main targets for general anesthetics and anti-epileptics
[33, 47], we explored the neurodynamical effects of reducing the K-channel density,
in particular for the inhibitory neurons. In order to limit the number of simulations,
we keep P∗

Na constant (at 15), varying only P∗
K. Fig. 7.10 shows a time series for

a network, where the excitatory neurons have a low K-channel density (P∗
K = 3.0).

The inhibitory neurons initially have a high density of K channels (P∗
K = 12.5), but

the K channels were blocked in steps every 1000 ms, by decreasing P∗
K and shifting

the inhibitory neurons from P∗
K = 12.5, to P∗

K = 7.5, and finally to P∗
K = 3.0. When

the inhibitory neurons (middle trace) reach P∗
K = 3.0, both inhibitory and excita-

tory neurons alternate between periods of high amplitude activity, and periods with
over-stimulation and potential drop. The mean network dynamics (bottom trace) is
shifted towards a qualitatively different dynamical pattern. In this case, it is clear
that the blocking of K channels in inhibitory neurons transforms unsynchronized,
high-frequency oscillatory activity to an enveloped and steady slow-wave oscilla-
tion, qualitatively mimicking the transformation of EEG-patterns when applying
general anesthetics [55].

500 ms

(c)

(b)

(a)

PK
*(inh)=12.5 PK(inh)=7.5 PK(inh)=3.0

10 mV

40 mV

40 mV

Fig. 7.10 [Color plate] Model response to stepped reductions in K-channel density in inhibitory
neurons. For excitatory neurons, the densities of Na and K channels is kept fixed at the constant
ratio P∗

Na/P∗
K = 15/3, while for inhibitory neurons the ratio is stepped consecutively from P∗

Na/P∗
K =

15/12.5, to 15/7.5, and finally to 15/3, by decreasing P∗
K every 1000 ms. The two upper time-series

show the activity of (a) an excitatory neuron (red trace), and (b) an inhibitory neuron (blue trace);
(c) lower trace (black) shows the network mean.

These simulations show that the mesoscopic network dynamics can be shifted
into, or out of, different oscillatory states by small changes in the ion-channel
densities, even for single neurons. Similar effects can also be obtained by chang-
ing connection strengths in the network model, which we have shown elsewhere
[45]. Both of these phenomena are of pharmacological interest, since some drugs
can affect the permeability of ion channels also in the synapses [48]. Our simu-
lations demonstrate that the blocking of specific K channels, as a possible effect
of some anesthetics, can change the global activity from high-frequency (awake)
states to low-frequency (anesthetized) states, as apparent in recorded and simulated
EEG.
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7.4 Discussion

In this chapter, I have given a few examples of how computational models can be
used to study phase transitions in mesoscopic brain dynamics. As examples of in-
ternally/naturally induced phase transitions, I have presented some models with in-
trinsic noise, neuromodulation, and attention, which in fact, may all be related. In
particular, neuromodulation seems to be closely linked to the level of arousal and
attention. It may also affect the internal noise level, e.g., by varying the threshold
for firing. As examples of externally/artificially induced phase transitions, I have
discussed electrical stimulation—both as electric shocks applied directly onto the
olfactory bulb and cortex in an experimental setting with animals, and as electrocon-
vulsive therapy applied in a clinical situation in treatment of psychiatric disorders.
The final example was a network model testing how certain anesthetics may act on
the brain dynamics through selective blocking of ion channels.

In all cases, the mesoscopic scale of cortical networks has been in focus, with
an emphasis on network connectivity. The objective has been to investigate how
structure is related to dynamics, and how the dynamics at one scale is related to that
at another. Other than in passing, we have not discussed how structure and dynamics
are related to function, since this is beyond the scope of this chapter, but the general
notion is that mesoscopic brain dynamics reflects mental states and processes.

Our model systems have been paleocortical structures, the olfactory cortex and
hippocampus, as well as neocortical structures, exemplified by the visual cortex.
These structures display a complex dynamics with prominent oscillations in certain
frequency bands, often interrupted by irregular, chaotic-like activity. In many cases,
it seems that the collective cortical dynamics after external stimulation results from
some kind of “resonance” between network connectivity (with negative and positive
feedback loops), neuronal oscillators, and external input.

While our models are often aimed at mimicking specific cortical structures and
network circuitry at a mesoscopic level, in some cases there is less realism in the
connectivity than in the microscopic level of single neurons. The reason for this
is that the objective in those cases has been to link the neuronal spiking activity
with the collective activity of inter-connected neurons, irrespective of the detailed
network structure. Model simulations then need to be compared with spike trains
of single neurons, as captured with microelectrodes or patch-clamp techniques. In
cases where the network connectivity is in focus, the network nodes may represent
large populations of neurons, and their spiking activity is represented by a collective
continuous output, more related to LFP or EEG activity.

Models should always be adapted to the problem they are supposed to address,
with an appropriate level of detail at the spatial and temporal scales considered. In
general, it could be wise to apply Occam’s razor in the modeling process, aiming at
a model as simple as possible, and with few (unspecified) parameters. For the brain,
due to its great complexity and our still rather fragmented knowledge, it is partic-
ularly hard to find an appropriate level of description and to decide which details
to include. For example, different models may address the problem of neural com-
putation at different levels, from the single-neuron level [57] to cortical networks
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and areas [30, 74, 79, 89]. Even though the emphasis may be put at different levels,
the different models can often be regarded as complementary descriptions, rather
than mutually exclusive. At this stage, it is in general not possible to say which
models give the best description, for example when trying to link neural and mental
processes, in particular with regard to the significance of phase transitions.

Even though attempts have been made, it is a struggle to include several levels
of descriptions in a single model, relating the activity at the different levels to each
other [4, 10, 30, 31, 74, 88, 89]. In fact, relating different spatial and temporal scales
in the nervous system, and linking them to mental processes, can be seen as the
greatest challenges to modern neuroscience.

In the present work, I have focused on how to model phase transitions in meso-
scopic brain dynamics, relating the presentation to anatomical and physiological
properties, and I have not so much discussed the functional significance of such
transitions, which has been done more thoroughly elsewhere [41, 45, 60, 63, 64].
Below, I will just briefly discuss some of these ideas.

The main question concerns the functional significance of the complex cortical
neurodynamics described and simulated above, and in particular, the significance of
the phase transitions between various oscillatory states and chaotic or noisy states.
The electrical activity of the brain, as captured with EEG, is considered by many to
be an epiphenomenon, without any information content or functional significance,
but this view is challenged by the bulk of research presented, referenced, and dis-
cussed here.

Our computer simulations support the view that the complex dynamics makes the
neural information processing more efficient, providing a fast and accurate response
to external situations. For example, with an initial chaotic-like state, sensitive to
small variations in the input signal, the system can rapidly converge to a limit-cycle
attractor memory state [61, 62, 90]. Perhaps the most direct effect of cortical os-
cillations could be to enhance weak signals and speed up information processing,
but it may also reflect collective, synchronous activity associated with various cog-
nitive functions, including segmentation of sensory input, learning, perception, and
attention.

In addition, a “recruitment” of neurons in oscillatory activity can eliminate the
negative effects of noise in the input, by cancelling out the fluctuations of individual
neurons. However, noise can also have a positive effect on system performance, as
will be discussed briefly below. Finally, from an energy point of view, oscillations in
the neuronal activity should be more efficient than if a static neuronal output (from
large populations of neurons) was required.

The intrinsic noise found in all neural systems seems inevitable, but it may also
have a functional role, being advantageous to the system. What, then, could be the
functional role of the microscopic noise on the meso- and macroscopic dynamics?
What, if any, could be the role of spontaneous activity in the brain? A traditional
answer is that it generates baseline activity necessary for neural survival, and that it
perhaps also brings the system closer to threshold for transitions between different
neurodynamical states. It has also been suggested that spontaneous activity shapes
synaptic plasticity during ontogeny (see references in Ref. [54]), and it has even
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been argued that spontaneous activity plays a role for conscious processes [7, 11,
12, 70].

Internal system-generated fluctuations can apparently create state transitions,
break down one kind of order to make place for and replacing it with a new
kind of order. Externally-generated fluctuations can cause increased sensitivity
in certain (receptor) cells through the phenomenon of stochastic resonance (SR)
[2, 10, 20, 66, 69, 71]. The typical example of this is when a signal with the addi-
tion of noise overcomes a threshold, which results in an increased signal-to-noise
relation.

The computer simulations we have described above demonstrate that “micro-
scopic” noise can indeed induce global synchronous oscillations in cortical networks
and shift the system dynamics from one dynamical state to another. This in turn can
change the efficiency in the information processing of the system. Thus, in addition
to the (pseudo-)chaotic network dynamics, the noise produced by a few (or many)
neurons, could make the system more flexible, increasing the responsiveness of the
system and avoiding getting stuck in any undesired oscillatory mode. In particu-
lar, we have shown that spontaneous activity can facilitate learning and associative
memory. Indeed, simulations with our paleocortical model demonstrated that an in-
creased neuronal noise level can reduce recall time in associative memory tasks,
i.e., the time it takes for the system to recognize a distorted input pattern as any of
the stored patterns. Consonant with SR theory [2, 20, 71], we found optimal noise
values for which the recall-time reached a minimum [61, 62, 69].

In addition, our simulations also show that neuromodulatory control can be used
in regulating the accuracy or rate of the recognition process, depending on current
demands. Apparently, the complex dynamics of the brain can be regulated by neu-
romodulators, and perhaps also by noise. By such control, the neural system could
be put into an appropriate state for the right response-action dependent on the en-
vironmental demand. Operating with a complex neurodynamics, shifting between
various oscillatory and (pseudo-)chaotic states, the brain seems to balance between
stability and flexibility, increasing performance efficiency and survival probability
for the individual.

The kind of phase transitions discussed in this work may reflect transitions be-
tween different cognitive and mental levels or states, for example corresponding to
various stages of sleep, anesthesia, or wake states with different levels of arousal,
which in turn may affect the efficiency and rate of information processing. In some
of our previous work, we have also added gap junctions to the ordinary synaptic con-
nections in our paleocortical model, causing rapid synchronization of the network
dynamics, and thus further improving neural information processing in associative
memory tasks [13, 14].

Even though we are still at an early stage, I believe a combination of computa-
tional analysis and modeling methods of the kind discussed here can serve as an
essential complement to experimental and clinical methods in furthering our un-
derstanding of neural and mental processes. In particular, when concerned with the
inter-relation between structure, dynamics and function of the brain and its cognitive
functions, this method may be the best way to make progress. The study of phase
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transitions in the brain dynamics seems to be one of the most fruitful approaches in
this respect.

Acknowledgments I would like to thank my co-workers, Peter Århem, Per Aronsson, Soumalee
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45. Halnes, G., Liljenström, H., Århem, P.: Density dependent neurodynamics. Biosystems 89,

126–134 (2007), doi:10.1016/j.biosystems.2006.06.010
46. Hamker, F.H.: A dynamic model of how feature cues guide spatial attention. Vision Res. 44,

501–521 (2004), doi:10.1016/j.visres.2003.09.033
47. Harris, T., Shahidullah, M., Ellingson, J., Covarrubias, M.: General anesthetic action at an

internal protein site involving the S4-S5 cytoplasmic loop of a neuronal K+ channel. J. Biol.
Chem. 275, 4928–4936 (2000)

48. Hille, B.: Ion Channels of Excitable Membranes. Sinauer, Sunderland, Mass., 3rd edn. (2001)
49. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its applica-

tion to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
50. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational

abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)
51. Hopfield, J.J.: Neurons with graded response have collective computational properties like

those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)
52. Huber, M.T., Braun, H.A., Krieg, J.C.: Consequences of deterministic and random dynamics

for the course of affective disorders. Biol. Psychiatr. 46, 256–262 (1999), doi:10.1016/s0006-
3223(98)00311-4

53. Huber, M.T., Braun, H.A., Krieg, J.C.: Effects of noise on different disease states of recurrent
affective disorders. Biol. Psychiatr. 47, 634–642 (2000), doi:10.1016/s0006-3223(99)00174-2
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Chapter 8
Phase transitions in physiologically-based
multiscale mean-field brain models

P.A. Robinson, C.J. Rennie, A.J.K. Phillips, J.W. Kim, and J.A. Roberts

8.1 Introduction

Brain dynamics involves interactions across many scales—spatially from micro-
scopic to whole-brain, and temporally from the sub-millisecond range to seconds,
or even years. Except under artificial conditions that isolate a single scale, these
multiscale aspects of the underlying physiology and anatomy must be included to
model the behavior adequately at any scale. In particular, microscale behavior must
be included to understand large-scale phase transitions, because the theory of critical
phenomena implies that their properties are strongly constrained by the symmetries
and conservation properties of the system’s microscopic constituents [2].

In condensed matter physics, where they are most familiar, phase transitions arise
at the macroscale in systems of atoms, molecules, nuclear spins, or other micro-
scopic constituents. Phase transitions are intrinsically collective properties that are
typically analyzed in the thermodynamic limit of infinitely many constituents. They
become apparent through discontinuous changes in large-scale order parameters or
their derivatives. Examples include the sudden change in density at vaporization or
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freezing, with an associated nonzero specific heat, or the divergent magnetic suscep-
tibility (derivative of magnetization) at the transition of iron from its nonmagnetic
state to a ferromagnetic one with falling temperature, where there is no associated
specific heat. Such transitions are termed first-order and second-order, respectively,
and occur at critical points at which thermodynamic variables such as temperature,
pressure, etc., take on highly specific values [2].

Other systems with phase transitions have been identified. Notable are self-
organized critical (SOC) systems which self-organize to the critical point, rather
than requiring external tuning parameters to be set independently as in thermody-
namic transitions. One example is an idealized sandpile growing by the continuous
addition of grain, whose slope (the tuning parameter) adjusts itself automatically
to very near the critical value at which avalanches commence. The critical slope is
then maintained by balance between addition of grains and their loss via avalanches.
Criticality in plasma systems has also been shown to be closely associated with mi-
croinstabilities of the system that lead to macroscopic changes in the system state
[10, 11]. Phase transitions are accompanied by divergent correlation lengths of fluc-
tuations, 1/ f power-law spectra, and power-law probability distributions of fluctua-
tion amplitudes, the latter two effects implying that critical states inherently involve
a wide range of scales in their dynamics.

Mean-field theories provide a natural basis for modeling and analyzing phase
transitions in neural systems. Moreover, links to measurements become easy to
include—an essential point because most measurement processes aggregate over
many neurons and all modify signals in some way. Mean-field theories that incor-
porate the measurement function are a natural bridge between theoretical and exper-
imental results.

In the class of models described here, averages are taken over microscopic neural
structure to obtain mean-field descriptions on scales from tenths of a millimeter up
to the whole brain, incorporating representations of the anatomy and physiology of
separate excitatory and inhibitory neural populations, nonlinear neural responses,
multiscale interconnections, synaptic, dendritic, cell-body, and axonal dynamics,
and corticothalamic feedback [4, 7, 12, 14, 16, 17, 24–27, 30–38, 42, 48, 50]. These
models readily include measurement effects such as the volume conduction that acts
to spatially smooth EEG signals, and the hemodynamic response that temporally
filters the BOLD signal that underlies functional MRI.

Essential features of any realistic neurodynamic model are that it: (i) be based
on physiology and anatomy, including the salient features at many spatial and tem-
poral scales; (ii) be quantitative with predictions that can be calculated analytically
or numerically, including measurement effects; (iii) have parameters that directly
relate to physiology and anatomy, and that can be measured, or at least constrained
in value, via independent experiments (this does not exclude the theory itself en-
abling improved estimates of parameters); (iv) be applicable to multiple phenomena
and data types, rather than being a theory of a single phenomenon or experimental
modality; and (v) be invertible, if possible, allowing parameters to be deduced by
fitting model predictions to data (the parameters obtained must be consistent with
independent measurements). These criteria rule out (among others) highly idealized
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models of abstract neurons, as are sometimes used in computer science, theories
of single phenomena, or models with parameters highly tailored to single phenom-
ena, models with completely free parameters, and models that take no account of
measurement effects.

We have developed a physiologically based mean-field model of brain dynam-
ics that satisfies the above criteria. When applied to the corticothalamic system, it
reproduces and unifies many features of EEGs, including background spectra and
the spectral peaks seen in waking and sleeping states [32, 34, 37], evoked response
potentials [25], measures of coherence and spatiotemporal structure [19, 20, 26, 27],
and generalized epilepsies and low-dimensional seizure dynamics [4, 31]. Our ap-
proach averages over microstructure to yield mean-field equations in a way that
complements cellular-level and neural-network analyses.

In Sect. 8.2 we outline our model, including its physiological and anatomical
foundations, basic predictions, and its connection to measurements. In Sects 8.3
and 8.4 we then discuss a range of predictions that relate to neural phase transitions
in several regimes, and compare them with experimental data on normal arousal
states, epilepsies, and sleep dynamics. Section 8.5 summarizes and discusses the
material. We also take the opportunity (in Sects 8.2.1 and 8.3.1) to address a number
of fallacies surrounding mean-field theory and its applications, and to highlight open
questions (in Sect. 8.5).

8.2 Mean-field theory

In this section we briefly review our model and its connections with measurable
quantities. More detailed discussion and further generalizations can be found else-
where [24, 25, 28, 29, 37].

8.2.1 Mean-field modeling

The brain contains multiple populations of neurons, which we distinguish by a sub-
script a that designates both the structure in which a given population lies (e.g., a
particular nucleus) and the type of neuron (e.g., interneuron, pyramidal cell). We
average their properties over scales of ∼0.1 mm and seek equations for the resulting
mean-field quantities.

The perturbation Va(r, t) to the mean soma potential is approximated as the sum
of contributions Vab(r, t) arriving as a result of activity at each type of (mainly)
dendritic synapse b, where b denotes both the population and neurotransmitter type,
r denotes the spatial location, and t the time. This gives

Va(r, t) = ∑
b

Vab(r, t). (8.1)



182 Robinson, Rennie, Phillips, Kim, and Roberts

The potential Vab is generated when synaptic inputs from afferent neurons are tem-
porally low-pass filtered and smeared out in time as a result of receptor dynamics
and passage through the dendritic tree (i.e., by dynamics of ion channels, mem-
branes, etc.). It approximately obeys a differential equation [28, 32, 34, 37]

DabVab(r, t) = Nabsabφb(r, t − τab), (8.2)

Dab =
1

αabβab

d2

dt2 +
(

1
αab

+
1

βab

)
d
dt

+1, (8.3)

where 1/βab and 1/αab are the rise and decay times of the cell-body potential pro-
duced by impulse at a dendritic synapse. The right of Eq. (8.2) describes the influ-
ence of the firing rates φb from neuronal populations b, in general delayed by a time
τab due to discrete anatomical separations between different structures. The quantity
Nab is the mean number of synapses from neurons of type b to type a, and sab is the
time-integrated strength of the response in neurons of type a to a unit signal from
neurons of type b, implicitly weighted by the neurotransmitter release probability.
Note that we ignore the dynamics of sab, which can be driven by neuromodulators,
firing rate, and other effects; however, such dynamics can be incorporated straight-
forwardly [5]. An alternative representation of the dynamics in Eq. (8.2) is as a
convolution in which

Vab(r, t) =
∫ t

−∞
Lab(t − t ′)Nabsab φb(r, t − t ′ − τab)dt ′, (8.4)

Lab(u) =
αabβab

βab −αab
(e−αabu − e−βabu). (8.5)

Equation (8.4) is a good approximation to the soma response to a spike input at the
dendrites.

In cells with voltage-gated ion channels, action potentials are produced at the
axonal hillock when the soma potential exceeds a threshold. In effect, Va acts as
a control variable for the fast spike dynamics, taking the place of the applied cur-
rent (apart from a capacitive proportionality) characteristic of single-neuron exper-
iments. Spikes in most cortical cells arise via a saddle–node bifurcation in a set
of Hodgkin–Huxley-like equations for ionic currents [49]. As such, spikes are pro-
duced only for Va above an individual threshold θ̃a, at a mean rate

Qa ∝ (Va − θ̃a)1/2, (8.6)

for low Qa [47], leveling off due to saturation effects at higher Va [49]. Individual
cells differ slightly from the mean in the number and strength of ion channels and,
hence, in θ̃a. Moreover, fluctuations in Va affect the difference in (8.6). Hence, the
dependence (8.6) must be both modified to include saturation and convolved with an
approximately normal distribution of individual deviations to obtain the population-
average response function

Qa(r, t) = S[Va(r, t)], (8.7)
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where S is a sigmoidal function that increases from 0 to Qmax as Va increases from
−∞ to +∞ [7, 28, 37]. We use the form

S[Va(r, t)] =
Qmax

1+ exp{−[Va(r, t)−θa]/σ ′} , (8.8)

where we assume a common mean neural firing threshold θ relative to resting, with
σ ′π/

√
3 being its standard deviation (these quantities and Qmax are assumed to be

the same for all populations for simplicity). When in the linear regime, we make the
approximation

Qa(r, t) = ρaVa(r, t), (8.9)

where ρa is the derivative of the sigmoid at an assumed steady state of the system in
the absence of perturbations (we discuss the existence and stability of such states in
later sections).

Each neuronal population a within the corticothalamic system produces a field φa

of pulses, that travels to other neuronal populations at a velocity va through axons
with a characteristic range ra. These pulses spread out and dissipate if not regen-
erated. To a good approximation, this type of propagation obeys a damped wave
equation [12, 17, 37]:

Daφa(r, t) = S[Va(r, t)], (8.10)

Da =
(

1
γ2

a

∂ 2

∂ t2 +
2
γa

∂
∂ t

+1− r2
a∇2

)
φa(r, t), (8.11)

where the damping coefficient is γa = va/ra. Equations (8.10) and (8.11) yield prop-
agation ranges in good agreement with anatomical results [3], and with other phe-
nomena. It is sometimes erroneously claimed that this propagation is only an ap-
proximation to propagation with delta-function delays of the form δ (t − |r|/va),
and Eq. (8.11) has even been “derived” from the latter under certain assumptions;
however, in reality, both are approximations to the true physical situation in the
brain.

Equations (8.1)–(8.3), (8.7), (8.8), (8.10), and (8.11) form a closed nonlinear set,
which can be solved numerically, or examined analytically in various limits (see
Sect. 8.3).

Once a set of specific neural populations has been chosen, and physiologically
realistic values have been assigned to their parameters, these equations can be used
to make predictions of neural activity. It should be noted that these equations govern
spatiotemporal dynamics of firing rates, not of the individual spike dynamics. The
two are tightly correlated, but the nonlinearities of our equations are weaker than
those that produce the spikes themselves, at least in the sense that they only produce
effects on much longer timescales than those of spikes. We stress that the oscilla-
tions predicted from our equations are collective oscillations of the rate of spiking,
whose frequencies do not directly relate to the frequency of spiking itself—a com-
mon misunderstanding of mean-field models by those more familiar with spiking
neurons.
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8.2.2 Measurements

Once neural activity has been predicted from stimuli, one must relate it to mea-
surements to interpret experimental results. The limited spatiotemporal resolution
of such measurements often provides an additional justification for the use of mean-
field modeling, since finer-scale structure is not resolvable.

In the case of EEG measurements, the effects of volume conduction on the prop-
agation of neural potential changes to the scalp have been incorporated into our
model, via attenuation and spatial filtering parameters [20, 32, 34, 38]. These are in-
cluded in the bulk of the results reviewed here; space limitations preclude a detailed
discussion, but their effects on spectral shape, for example, are slight at frequencies
below about 20 Hz, since these correspond to the longest wavelengths. We have also
shown how to include the effects of reference electrode and multielectrode deriva-
tions [8, 27]. It should also be noted that scalp potentials are primarily generated
by excitatory (mainly pyramidal) neurons owing to their greater size and degree of
alignment compared to other types [17–19, 25]. For any given geometry, in the lin-
ear regime at least, the scalp potential is proportional to the cortical potential, which
is itself proportional to the mean cellular membrane currents, which are in turn pro-
portional to φe. Hence, apart from a (dimensional) constant of proportionality, and
the spatial low-pass filtering effects of volume conduction, scalp EEG signals cor-
respond to φe to a good approximation in the linear domain [36].

8.3 Corticothalamic mean-field modeling and phase transitions

Much work has been done on applications of mean field theory to cortical and cor-
ticothalamic systems. Here we consider the latter system since, as discussed below,
inclusion of the thalamus is essential if phenomena at typical EEG frequencies are
to be successfully modeled.

8.3.1 Corticothalamic connectivities

Figure 8.1 shows the large-scale structures and connectivities incorporated in the
model, including the thalamic reticular nucleus r, which inhibits relay (or specific)
nuclei s, and is lumped here with the perigeniculate nucleus, which has an analo-
gous role [40, 43]. Relay nuclei convey external stimuli φn to the cortex, as well as
passing on corticothalamic feedback. In this section we consider long-range excita-
tory cortical neurons (a = e), short-range mainly inhibitory cortical neurons (a = i),
neurons in the reticular nucleus of the thalamus (a = r), neurons of thalamic relay
nuclei (a = s), and external inputs (a = n) from non-corticothalamic neurons. These
populations are discussed further below. Application of these methods to brainstem
and hypothalamic structures is discussed in Sect. 8.4.
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Fig. 8.1 Schematic of cor-
ticothalamic interactions,
showing the locations at
which the νab of Eq. (8.12)
and linear gains Gab act,
where c,c′ = e, i denote corti-
cal quantities.
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A point that is sometimes overlooked or mistaken in the literature is that mean-
field models do not need to divide the cortex into discrete pieces. In particular, there
is no need to divide the cortex into hypercolumns, and this is actually likely to be a
poor approximation. Indeed, this procedure as it is often implemented is highly mis-
leading, since it imposes sharp hypercolumn boundaries where no such boundaries
exist in nature [9]. This is because an anatomical hypercolumn qualitatively corre-
sponds to the region around any given cortical neuron to which that neuron is most
strongly connected. A neuron near the boundary of this hypercolumn (which is not
sharp in any case) will be strongly connected to neurons on both sides of the bound-
ary (i.e., each neuron lies at the center of its own hypercolumn). So hypercolumn
boundaries are not like the walls of a honeycomb, with a fixed physical location,
and theoretical approaches that discretize by laying down fixed boundaries must be
viewed with some suspicion.

A related misunderstanding in the literature is the idea that short-range and long-
range interactions must be treated by different means. This is often encapsulated in a
division into short-range connections within hypercolumns and long-range cortico-
cortical connections between hypercolumns, often treated by different mathematical
methods. In fact, all connections can be handled using the same formalism, with dif-
ferent ranges simply incorporated via separate neural populations with different ax-
onal range parameters (which does not preclude approximations being made when
these ranges are very small) [28].

8.3.2 Corticothalamic parameters

If intracortical connectivities are proportional to the numbers of neurons involved—
the random connectivity approximation—and sib = seb, Lib = Leb for each b, then
Vi =Ve and Qi = Qe [37, 50], which lets us concentrate on excitatory quantities, with
inhibitory ones derivable from them. The short range of i neurons and the small size
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of the thalamic nuclei enables us to assume ra ≈ 0 and, hence, γa ≈ ∞ for a = i,r,s
for many purposes. The only nonzero discrete delays are τes = τse = τre = t0/2,
where t0 is the time for signals to pass from cortex to thalamus and back again. We
also assume that all the synaptodendritic time constants are equal, for simplicity,
and set αab = α and βab = β for all a and b in what follows; this allows us to drop
the subscripts ab in Eqs (8.2), (8.3), and (8.5) and write Dα in place of Dab.

Including only the connections shown in Fig. 8.1 and making the approximations
mentioned above, we find that our nonlinear model has 16 parameters (and not all
of these appear separately in the linear limit). By defining

νab = Nabsab, (8.12)

these are Qmax, θ , σ ′, α , β , γe, re, t0, νee, νei, νes, νse, νsr, νsn, νre, and νrs. These are
sufficient in number to allow adequate representation of the most important anatomy
and physiology, but few enough to yield useful interpretations and to enable reliable
determination of values by fitting theoretical predictions to data. The parameters are
approximately known from experiment [28, 29, 32, 34, 38] leading to the indicative
values in Table 8.1. We use only values compatible with physiology. Sensitivities
of the model to parameter variations have been explored in general [34] and in
connection with variations between sleep, wake, and other states [31]. In the present
work we concentrate on results for which the model parameters are assumed to be
spatially uniform, but where the activity is free to be nonuniform; generalization to
include spatial nonuniformities is straightforward [36].

Table 8.1 Indicative param-
eters for the alert, eyes-open
state in normal adults [32].
Parameters used in some fig-
ures in this chapter are similar,
but not identical.

Quantity Nominal Unit

Qmax 340 s−1

ve 10 m s−1

re 86 mm
θ 13 mV
σ ′ 3.8 mV
γe 116 s−1

α 80 s−1

β 500 s−1

t0 85 ms
νee 1.6 mV s

−νei 1.9 mV s
νes 0.4 mV s
νse 0.6 mV s

−νsr 0.45 mV s
νsn 0.2 mV s
νre 0.15 mV s
νrs 0.03 mV s

φ (0)
n 16 s−1
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An important implication of the parameters above is that the corticothalamic
loop delay t0 places any oscillations that involve this loop at frequencies of order
10 Hz. This means that inclusion of the thalamus and the dynamics of these loops is
essential to understand phenomena at frequencies below ∼20 Hz. At very low fre-
quencies (� 10 Hz) it is sufficient to include a static corticothalamic feedback
strength to the cortex, and at very high frequencies (� 10 Hz) the corticothala-
mic feedback is too slow to affect the dynamics strongly. As we will see in the next
section, thalamic effects dominate much of the dynamics at intermediate frequen-
cies.

8.3.3 Specific equations

The above connectivities and parameters imply, using Eqs (8.1)–(8.3),

DαVe(t) = νeeφe(t)+νeiφi(t)+νesφs(t − t0/2), (8.13)

DαVi(t) = νeeφe(t)+νeiφi(t)+νesφs(t − t0/2), (8.14)

DαVr(t) = νreφe(t − t0/2)+νrsφs(t), (8.15)

DαVs(t) = νseφe(t − t0/2)+νsrφr(t)+νsnφn(t), (8.16)

whence Vi = Ve and Qi = Qe, as asserted above. The right-hand sides of Eqs (8.13)–
(8.16) describe, for each population, the spatial summation of all afferent activity
(including via self-connections), and Dα on the left describes temporal dynamics.
The short ranges of the axons i, r, and s imply that the corresponding damping rates
are large and that Dα ≈ 1 for these populations, further implying

φa = Qa = S(Va), (8.17)

for a = i,r,s. For the remaining e population, Eqs (8.10) and (8.11) yield(
1
γ2

e

∂ 2

∂ t2 +
2
γe

∂
∂ t

+1− r2
e ∇2

)
φe(r, t) = S[Ve(r, t)], (8.18)

with γe = ve/re. Collectively, Eqs (8.13)–(8.18) describe our corticothalamic model.

8.3.4 Steady states

We can find spatially uniform steady states of our system by setting all the spatial
and temporal derivatives to zero in Eqs (8.13)–(8.18). The resulting equations can
be rearranged to yield a single equation for the steady state value of φe [32]:



188 Robinson, Rennie, Phillips, Kim, and Roberts

0 = S−1
(

φ (0)
e

)
− (νee +νei)φ

(0)
e −νesS

(
νseφ (0)

e +νsnφ (0)
n

+ νsrS

[
νreφ (0)

e +
νrs

νes

{
S−1

(
φ (0)

e

)
− (νee +νei)φ

(0)
e

}])
, (8.19)

where S−1 denotes the inverse of the sigmoid function S. The function on the

right of Eq. (8.19) is continuous and asymptotes to −∞ as φ (0)
e → 0 and to +∞

as φ (0)
e → Qmax. Hence, it has an odd number of zeros, and thus at least one zero

[32, 37]. Typically, there is either a single zero or there are three zeros, two stable
separated by one unstable in the latter case. For very restricted parameter sets, five
zeros (three stable and two unstable at ω = 0, in alternation) are possible, and the
addition of neuromodulatory feedbacks on synaptic strengths sab in Eq. (8.12) can
also increase the number of zeros and broaden this parameter range [5]. We men-
tion these generalizations further later, but restrict attention to the main case of three
zeros for now.

When there are three zeros, one stable zero occurs at low φ (0)
e , and we identify

this as the baseline activity level of normal brain function. The other stable zero

is at high φ (0)
e with all neurons firing near to their physiological maximum. This

would thus represent some kind of seizure state, but would require further physiol-
ogy (e.g., of hemodynamics and hypoxia at these high activity levels) to be treated
adequately. The states are shown in Fig. 8.2, where they are linked by the unstable
fixed point to form a “fold”. It should be noted that other authors have identified
the pair of stable states as representing anesthesia/sleep, sleep/wake, or non-REM

sleep/REM sleep, often using parameters that lower φ (0)
e in the upper state to accept-

able levels [44–46]. However, they do not seem to have made an overall identifica-
tion of cases with branches to unify all these possibilities. As we show in Sect. 8.4,
brainstem states must be taken into account in this context, so any final identifica-
tion is probably premature and the above possibilities are not necessarily mutually
exclusive.

Fig. 8.2 Qe vs φn, showing
the stable states with low
firing rates (< 15 Hz−1) and
with firing rates near satu-
ration (> 85 Hz−1). These
two branches are linked by
an unstable branch to form a
“fold”. Note that the negative
steady state values of φn in the
figure are physical, provided
this variable is considered
to embody inhibitory neuro-
modulation, as well as tonic
sensory activity. –100 –50 0 50 100 150 200

φn (s–1)

0

20

40

60

80

100

Q
e 

(s
–1

)



8 Phase transitions in mean-field brain models 189

8.3.5 Transfer functions and linear waves

Small perturbations relative to steady states can be treated using linear analysis. A
stimulus φn(k,ω) of angular frequency ω (= 2π f , where f is the usual frequency
in Hz) and wave vector k (= 2π/λ in magnitude, where λ is the wavelength) has
the transfer function to φe(k,ω)

φe(k,ω)
φn(k,ω)

=
GesL

1−GeiL
GsnLeiωt0/2

1−GsrsL2

1
q2(ω)r2

e + k2r2
e
, (8.20)

q2(ω)r2
e = (1− iω/γe)

2

− L
1−GeiL

[
Gee +

(Gese +GesreL)L
1−GsrsL2 eiωt0

]
, (8.21)

Gab =
φ (0)

a

σ ′

(
1− φ (0)

a

Qmax

)
νab, (8.22)

where L = (1− iω/α)−1(1− iω/β )−1 embodies the lowpass filter characteristics of

synaptodendritic dynamics and φ (0)
a is the steady-state value of φa. The ratio (8.20)

is the cortical excitatory response per unit external stimulus, and encapsulates the
relative phase via its complex value [25, 28, 34]; it is the key to linear properties
of the system. The gain Gab is the differential output produced by neurons a per
unit change in input from neurons b, and the static gains for loops in Fig. 8.1 are
Gese = GesGse for feedback via relay nuclei only, Gesre = GesGsrGre for the loop
through reticular and relay nuclei, and Gsrs = GsrGrs for the intrathalamic loop.

Waves obey the dispersion relation [37]

q2(ω)+ k2 = 0, (8.23)

which corresponds to singularity of the transfer function (8.20). Solutions of this
equation satisfy ω = kve − iγe at high frequencies [37]. At lower frequencies, their
dispersion has been investigated in detail previously [19, 24, 37].

8.3.6 Spectra

The EEG frequency spectrum is obtained by squaring the modulus of φe(k,ω) and
integrating over k. It can be written in terms of the transfer function (8.20) as

Pe(ω) =
∫ ∣∣∣∣φe(k,ω)

φn(k,ω)

∣∣∣∣2 |φn(k,ω)|2 d2k. (8.24)

If we make the assumption that under conditions of spontaneous EEG the field of
external stimuli φn(k,ω) is so complex that it can be approximated by spatiotempo-
ral white noise, this gives |φn(k,ω)|2 = const. In the white noise case
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Pe(ω) =

〈
φ 2

n

〉
4πr4

e

∣∣∣∣ GesnL2

(1−GeiL)(1−GsrsL2)

∣∣∣∣2 Arg q2

Im q2 , (8.25)

where
〈
φ 2

n

〉
is the mean-square noise level. Figure 8.3 shows shows excellent agree-

ment of Eq. (8.25) with an observed spectrum over several decades. The features
reproduced include the alpha and beta peaks at frequencies f ≈ 1/t0,2/t0, and the
asymptotic low- and high-frequency behaviors; key differences between waking and
sleep spectra can also be reproduced, including the strong increase in low-frequency
activity in sleep, where our model predicts a steepening of the spectrum from 1/ f
to 1/ f 3 [34]. Notably, each of the features can be related to underlying anatomy and
physiology. The low-frequency 1/ f behavior is a signature of marginally stable,
near-critical dynamics, which allow complex behavior [31, 34, 37], while the steep
high-frequency fall-off results from low-pass filtering by synaptodendritic dynam-
ics. Corticothalamic loop resonances account for the alpha and beta peaks, their rel-
ative frequencies, the correlated changes in spectral peaks between sleep and wak-
ing, and splitting of the alpha peak, for example [31, 34, 36]. Suggested alternative
mechanisms, including pacemakers and purely cortical resonances, can account for
some features of the data, but the trend in mode frequency predicted for purely cor-
tical eigenmodes tends to be in the opposite direction to that observed, although this
is not unequivocal. Likewise, the pacemaker hypothesis is ad hoc, with a new pace-
maker proposed for every spectral peak [17, 30, 36]. Overall, the evidence is now
strong that the thalamus must be included to account for most salient EEG features
at frequencies below about 20 Hz. The advantage of its inclusion is underlined by
the ability of the resulting theory to simultaneously account for the wide range of
phenomena mentioned in Sect. 8.1.

Fig. 8.3 Example spectrum
(solid) and model fit (dashed)
from a typical adult subject in
the eyes-closed state.
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One key aspect of phase transitions is the divergent correlation length near the
critical point, mentioned above. Correlations and coherence can be computed using
our theory. Specifically, the Wiener–Khintchine theorem implies that the correlation
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function is the Fourier transform of the power spectrum, which yields long-range
correlations at sharp spectral peaks, with the correlation length increasing in pro-
portion to the quality factor of the peak [27]. This accords with these waves being
weakly damped (and thus close to instability) and so able to propagate large dis-
tances at high amplitudes.

The cross spectrum Pe(r,r′,ω) is the phase average of φe(r,ω)φ ∗
e (r′,ω), which

can be computed via the spatial Fourier transform of φe(k,ω). The coherence func-
tion is then

γ2(r,r′,ω) =
[Pe(r,r′,ω)]2

Pe(r,r,ω)Pe(r′,r′,ω)
. (8.26)

This result has been shown to give good agreement with observations of γ2 as a
function of frequency at fixed separation for model parameters close to those used
in obtaining the other plots in this work [27, 41]. Particular features are that co-
herence peaks correspond to spectral peaks, reflecting the fact that weakly damped
waves can reach high amplitudes (hence a spectral peak) and propagate far before
dissipating (hence high coherence).

8.3.7 Stability zone, instabilities, seizures, and phase
transitions

Linear waves obey the dispersion relation (8.23), with instability boundaries occur-
ring where this equation is satisfied for real ω [31, 34, 37]. In most circumstances,
waves with k = 0 (i.e., spatially uniform) are the most unstable [37], and it is found
that only the first few (i.e., lowest frequency) spectral resonances can become unsta-
ble. Analysis of stability of perturbations relative to the steady state that represents
normal activity for realistic parameter ranges finds just four k = 0 instabilities, lead-
ing to global nonlinear dynamics [4, 31, 33]: (a) Slow-wave instability ( f ≈ 0) via
a saddle–node bifurcation that leads to a low frequency spike-wave limit cycle; (b)
theta instability, via a supercritical Hopf bifurcation that saturates in a nonlinear
limit cycle near 3 Hz, with a spike-wave form unless its parameters are close to the
instability boundary; (c) alpha instability, via a subcritical Hopf bifurcation, giving a
limit cycle near 10 Hz; and (d) spindle instability at ω ≈ (αβ )1/2, leading to a limit
cycle at 10–15 Hz (the nature of this bifurcation has not yet been investigated). The
boundaries defined by these instabilities are interpreted as corresponding to onsets
of generalized seizures, as discussed in more detail below [4, 31, 33].

The occurrence of only a few instabilities, at low frequencies, enables the state
and physical stability of the brain to be represented in a 3-D space with axes

x = Gee/(1−Gei), (8.27)

y = (Gese +Gesre)/[(1−Gsrs)(1−Gei)], (8.28)

z = −Gsrsαβ/(α +β )2, (8.29)
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which parameterize cortical, corticothalamic, and thalamic stability, respectively
[4, 31]. In terms of these quantities, parameters corresponding to linearly stable
brain states lie in a stability zone illustrated in Fig. 8.4. The back is at x = 0 and
the base at z = 0. A pure spindle instability occurs at z = 1, which couples to the al-
pha instability, with spindle dominating at top and left, and alpha at right. At small
z, the left surface is defined by a theta instability [4, 31]. The front right surface
corresponds to slow-wave instability at x+ y = 1.

EO

EC

S2

S4

z

1.0

y
1.0–1.0

x

1.0

theta

spindle alpha

slow wave

Fig. 8.4 [Color plate] Brain stability zone. The surface is shaded according to instability, as labeled
(blue = spindle, green = alpha, red = theta), with the front right-hand face left transparent as it
corresponds to a slow-wave instability. Approximate locations are shown of alert eyes-open (EO),
relaxed, eyes-closed (EC), sleep stage 2 (S2), and sleep stage 4 (S4) states, with each state located
at the top of its bar, whose (x,y) coordinates can be read from the grid.

Non-seizure states lie within the stability zone in Fig. 8.4. Detailed arguments
regarding the sign of feedback via the thalamus, proximity between neighboring
behavioral states, and the results of explicit fitting to data (which is enabled by
using the present model), place the arousal sequence, from alert eyes-open (EO)
to deep sleep, including relaxed eyes-closed (EC) and sleep stages 1–4 (S1–S4), as
shown in Fig. 8.4 [31]. In future, it is expected that known differences between EEG
spectra for subjects with differing disorders will also enable classification of these
conditions into different parts of the stability zone.

Two of the most common generalized epilepsies are absence and tonic-clonic
seizures. In absence epilepsy, seizures last 5–20 s, cause loss of consciousness,
show a spike-wave cycle which starts and stops abruptly across the whole scalp,
and the subject reaches a post-seizure state similar to the pre-seizure one. Tonic-
clonic seizures display a tonic phase of roughly 10 Hz oscillations lasting about
10 s, followed by a clonic phase of similar duration dominated by polyspike-wave
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complexes, with an unresponsive post-seizure state very different from the pre-
seizure one [4, 15, 41]. Figures 8.5(a) and (b) show results from our model under
conditions for theta and alpha instability, respectively. In Fig. 8.5(a) the onset of an
approximately 3-Hz spike-wave cycle is seen as the system is forced across the in-
stability boundary by ramping one of its parameters, in this case νse. This closely re-
sembles observed absence time series [4, 6, 31, 33]. If the destabilizing parameter is
ramped back, the system returns smoothly to very nearly its initial state, consistent
with clinical observations. Figure 8.5(b) shows good agreement with generalized
tonic-clonic seizure dynamics near 10 Hz. However, in this case, the limit cycle sets
in with nonzero amplitude. Moreover, when the control parameter is ramped back,
hysteresis is observed, with the limit cycle terminating to yield a different final state,
with a quiescent time series, consistent with clinical observations [4, 15].
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Fig. 8.5 Sample time series from the model in regimes corresponding to onset of (a) an absence
seizure, and (b) a tonic-clonic seizure.

Each of the above instabilities can be seen as a phase transition. The saddle–node
bifurcation is marked by a spectral divergence at f = 0, a 1/ f spectrum at low f , and
long-range correlations and coherence. There is also a divergence of the variance of
φe, which can be approximated by integrating Pe(ω) over ω to yield the scaling〈[

φe −φ (0)
e

]2
〉

∝
[
VSN −V (0)

n

]−1/2
, (8.30)

where the angle brackets denote an average, the mean external input V (0)
n is the

control parameter for the transition, and VSN is its value at the bifurcation. This
result accords with numerical results for such a transition [44] and related analysis
of single neurons [45] (see also Sect. 8.4).

One recently explored feature of the nonzero- f limit cycles is that these can be
initiated in localized regions of the system, and then spread to other areas, qualita-
tively consistent with clinical observations of secondary seizure generalization from
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a focus [13]. In this case, the boundary between seizing and normal zones propa-
gates in a manner akin to a domain boundary between solid and liquid in a spatially
nonuniform melting/freezing transition. An example is shown in Fig. 8.6 [13].

0 1 5
0  

5

30

t (s)
r 

(c
m

)

(b)

L y
=

 6
0 

cm

Lx = 60 cm
−4

−2

0

2

4
Δφ(a)

r

Fig. 8.6 Spreading of seizure activity from an initial focus. The figure shows (a) a snapshot of
φ(r, t), and (b) the linear spread of the wave following a stimulus at t = 1 s.

8.4 Mean-field modeling of the brainstem and hypothalamus,
and sleep transitions

Wake-sleep transitions are primarily governed by the nuclei of the ascending arousal
system of the brainstem and hypothalamus, that project diffusely to the corticotha-
lamic system. As we will see shortly, these nuclei are also capable of undergoing
instabilities and phase transitions in their dynamics. Hence, a full description of
sleep–wake transitions and their EEG correlates requires an integrated model of
both the ascending arousal system and the corticothalamic system (at least), includ-
ing their mutual interactions. This section briefly describes how the nuclei of the
Ascending Arousal System (AAS) are modeled using the same methods as above,
and outlines the direction of integration of the two models, currently under way. In
this section, observables consist of arousal states (sleep vs. wake), so other measure-
ment effects need not be taken into account.

8.4.1 Ascending Arousal System model

The most important nuclei to model in the AAS are well established from de-
tailed physiological investigations, and are shown in Fig. 8.7. These include the
monoaminergic (MA) group and the ventrolateral preoptic nucleus (VLPO), which
mutually inhibit one another, resulting in flip-flop dynamics if the interaction is
sufficiently strong—only one can be active at a time, and it suppresses the other
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(a) (b)
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Fig. 8.7 Parts (a) and (b) show schematics of the actual AAS populations, and our sleep model,
respectively. Excitatory inputs are represented by solid arrow heads, and inhibitory by open ones.
In each case, the top left box is the MA group, and the top right box is the ACh group. In (a), the
MA group consists of the LC, DR (dorsal raphe) and TMN (tuberomamillary nucleus); and the
ACh group consists of cholinergic LDT/PPT, and glutamergic BRF. The VLPO/eVLPO GABAer-
gically inhibits other AAS nuclei. In (b) the drive D is shown, which consists of circadian (C) and
homeostatic (H) components. In our model the thick-lined interactions in (b) are used.

[39]. During wake, the MA group is dominant, while the VLPO is dominant in sleep.
Transitions between states are driven by inputs to the VLPO, which include the cir-
cadian drive C (mainly from light exposure), and the homeostatic sleep drive H
arising from net buildup of metabolic byproducts (mostly adenosine) during wake,
and their net clearance during sleep. There is also an input to the MA group from
cholinergic and orexinergic nuclei, as shown [21, 39].

Until recently, models of AAS dynamics have been either nonmathematical (e.g.,
based on sleep diaries or qualitative considerations) or abstract (mathematical, but
not derived directly from physiology). The widely known two-process model is of
the latter form, and includes circadian and homeostatic influences [1]. In this sec-
tion, which summarizes our recent model of the AAS [22], we use the same meth-
ods as in Sects 8.2–8.3 to model the dynamics of the AAS nuclei, viewing them
as the assemblies of neurons they are. Several simplifications and approximations
are appropriate: the nuclei are small, so ra ≈ 0 and γa → ∞ in Eq. (8.11), imply-
ing that Eq. (8.17) applies for these nuclei. Also, since the transitions take place on
timescales of many seconds to minutes, first-order in time versions of Eq. (8.3) can
be used. We also assume that, since the system spends little time in transitions, the
generation rate of H has just two values—one for wake and one for sleep—and that
its clearance rate is proportional to H, while the variation of C is approximated as
sinusoidal. These approximations yield

τ
dVv

dt
+Vv = νvmQm +D, (8.31)

τ
dVm

dt
+Vm = νmvQv +A, (8.32)
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χ
dH
dt

+H = μQm, (8.33)

Qa = S(Va), (8.34)

C = c0 + cos(Ω t), (8.35)

D = νvcC +νvhH, (8.36)

where the time constants τ of the nuclear responses have been assumed equal [these
replace 1/α in (8.3), with β → ∞ formally], χ is the adenosine clearance time, v
denotes VLPO, m denotes monoaminergic nuclei, the νab, Va, and Qa have the same
meanings as in previous sections, μ gives the proportionality between monoamin-
ergic activity and adenosine generation rate, CA is the amplitude of the C cycle, and
Ω = 2π/(1day).

In the above form the model has 12 physiological parameters: τ , χ , νvm, νmv,
A, μ , c0, νvc, νvh, Qmax, θ , and σ ′, whose nominal values are given in Table 8.2.
These values were determined by a combination of physiological constraints from
the literature, and comparison of the dynamics with behavior in a restricted set of
sleep experiments on normal sleep and sleep deprivation [22, 23]. The theory then
predicts other phenomena in regimes outside those of the calibration experiments.

In the context of the present chapter, the key result is that the steady states of
Eqs (8.31)–(8.36) display a “fold” as a function of the total drive D. The upper
and lower branches represent wake and sleep, respectively, with an unstable branch
in between. Cyclic variations in D cause the system to move around the hystere-
sis loop shown in Fig. 8.8, with saddle–node bifurcations from wake to sleep and
back again. In the presence of noise added to D on the right of Eq. (8.31), Fig. 8.9
shows that these are preceded by divergences in Vm fluctuations that satisfy the same
power-law scaling as Eq. (8.30) for subtheshold noise, and lead to what appear to
be microsleeps and microwakes in the vicinity of the transition for larger amplitude
noise. Narcolepsy, with its lack of stability of wake and sleep is then interpreted as
resulting from a reduction or disappearance of the hysteresis loop [22].

Table 8.2 Nominal parameter
values for the ascending
arousal system model.

Quantity Nominal Unit

−νvc 2.9 mV
νvh 1.0 mV nM−1

χ 45 h
μ 4.4 nM s
c0 4.5 –
Qmax 100 s−1

θ 10 mV
σ ′ 3 mV
A 1.3 mV

−νvm 2.1 mV s
−νmv 1.8 mV s

τ 10 s
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Fig. 8.9 (a) Log-log plot of the variance of Vm in the presence of low amplitude noise (solid),
versus ε = D − D0, where D0 is the value of D for which the wake state loses stability. D is
increased linearly at a rate of 7×10−5 h−1, and variance is calculated in moving windows of length
17 h. The asymptotic gradient of −0.5 is shown as a dashed line. (b) Transitions between high Vm

(wake) and low Vm (sleep) in the presence of high amplitude noise.
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This set of outcomes implies that inclusion of the dynamics of the AAS is essen-
tial to understand sleep–wake cycles, although work is still under way to incorporate
the ascending projections to the corticothalamic system quantitatively, feedback in
the reverse direction, and quantitative models of the circadian pathway, involving
the suprachiasmatic nucleus (SCN).

8.5 Summary and discussion

Physiologically based mean-field theories of the brain are able to incorporate es-
sential physiology and anatomy across the many scales necessary to treat phase
transitions and other phenomena involving neural activity. They can achieve this
for physiologically realistic parameters, and yield numerous predictions that accord
with observations using a variety of experimental methods in both the linear and
nonlinear regimes (see Sect. 8.1). Moreover, they do this in a way that unifies what
have hitherto been disparate subfields and measurement modalities within a single
framework, and which permits parameter determination via fits of model predic-
tions to experimental data. In addition to these specific results, major qualitative
conclusions that are reached using such models include the necessity of incorporat-
ing the thalamus to understand EEG phenomena at frequencies below about 20 Hz,
and the need to include the ascending arousal system to understand sleep–wake
dynamics.

In the area of phase transitions, mean-field modeling successfully predicts the
connections between transitions, instabilities, long-range correlations and coherence,
spectral peaks, and divergences of variance in a number of regimes. However, much
remains to be done in directions such as the fuller integration of multiple brain
subsystems into unified models, exploration of the dynamics of neuromodulators
and behavioral feedbacks, and application to other putative phase transitions in ar-
eas such as visual rivalry and perception, parkinsonian tremor onset, and possibly
bipolar disorder. One could also investigate whether some Hopf bifurcations (e.g.,
supercritical ones) correspond to second-order phase transitions, as opposed to the
first-order ones investigated here, and whether the variance divergences seen near
criticality have a role in control or prevention of phase transitions.

Acknowledgments The Australian Research Council supported this work.
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1. Achermann, P., Borbély, A.A.: Mathematical models of sleep regulation. Front. Biosci. 8,
s683–s693 (2003)

2. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena.
Clarendon Press, Oxford (1992)



8 Phase transitions in mean-field brain models 199
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Chapter 9
A continuum model for the dynamics of the
phase transition from slow-wave sleep to REM
sleep

J.W. Sleigh, M.T. Wilson, L.J. Voss, D.A. Steyn-Ross, M.L. Steyn-Ross, and X. Li

9.1 Introduction

The cortical transition from the slow-wave pattern of sleep (SWS) to the rapid-
eye-movement (REM) pattern is a dramatic feature of the somnogram. Indeed, the
change in the electrocorticogram (ECoG) is so abrupt that the moment of transi-
tion usually can be identified with a time-resolution of about one second [8, 37].
Although the neuromodulatory environment and electroencephalographic patterns
recorded during the steady states of SWS and REM have been well described
[16, 30], the dynamics of the transition itself has been described only in a quali-
tative observational fashion [12], and has not been the focus of detailed quantitative
modeling.

In SWS, the rat cortex shows predominant activity in the delta (∼1–4 Hz) band.
This pattern shifts to an intermediate sleep state (IS)—sometimes termed “pre-
REM”—where the cortical activity shows features of both SWS and REM, last-
ing 10–30 seconds [7, 12, 25, 28]. This is followed by an abrupt transition to the
REM state, characterized by strong theta (∼5–8 Hz) oscillation [2], and loss of
delta power. The main effector of the cortical transition from SWS to REM is be-
lieved to be a linear progressive increase in cholinergic input into the cortex from
the brainstem (mainly from the pedunculo-pontine tegmentum area), acting via the
thalamus or basal forebrain [18, 34].
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Several studies [8, 32, 37] have measured the activity of the cortically-projecting
pontine cholinergic REM-on neurons during the SWS–REM transition. These stud-
ies have shown a progressive, linear increase in firing rate, starting 10–60 s before
onset of REM sleep, and plateauxing about 60 s after transition. The predominant
effect of increasing cholinergic input is to raise cerebral cortical arousal by acting
on muscarinic (mainly M1) receptors to close potassium channels, causing a depo-
larizing shift in the cortical resting membrane potential. The increase in cholinergic
tone also results in a small decrease in the amplitude of the excitatory postsynaptic
potential (EPSP) [13, 23, 27].

A recent paper by Lu and others has highlighted the fact that the pontine cholin-
ergic nuclei are themselves under the influence of other orexinergic and gamma-
amino butyric acid (GABA)-ergic switching circuits [24]. They suggest that the
“flip-flop” arrangement of these brainstem and midbrain circuits could explain the
abrupt changes in state observed in the cortex.

In contrast, we suggest that the abrupt changes seen in ECoG during SWS-to-
REM transition could be explained in terms of an abrupt cortical response to a grad-
ual change in the underlying subcortical neuromodulator activity. As described be-
low, we enhance a previously-published continuum model of interactions between
excitatory and inhibitory populations of cortical neurons [39, 40, 47–49], and com-
pare its output with experimentally-derived data recorded from rats during the SWS-
to-REM transition.

9.2 Methods

9.2.1 Continuum model of cortical activity

We use a continuum model of the interactions between populations of inhibitory and
excitatory cortical neurons to describe the features of the SWS-to-REM transition.
The continuum (or mean-field) approach assumes that the important dynamics of
neuronal activity can be captured by the averages of small populations of (∼10 000–
100 000) neurons contained within a “macrocolumn” (defined by the spatial extent
of the typical pyramidal neuron’s dendritic arborization). Continuum modeling of
the cortex originated with Wilson and Cowan [46], and has been progressively re-
fined since then by the inclusion of more neurobiologically realistic terms and pa-
rameters [22, 39, 50].

Our version of the model has been described in detail by Wilson et al. [49].
It is cast in the form of a set of stochastic differential equations; these equa-
tions incorporate (i) spike-rate input from: neighboring cortical neurons (depen-
dent on local membrane potential), distant cortical neurons (dependent on distant
membrane potential), and subcortical structures (independent of cortical membrane
potential); (ii) dendritic time-evolution and magnitudes of fast inhibitory and excita-
tory synaptic potentials (including the effects of reversal potentials); (iii) a sigmoid
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relationship between soma potential and neuronal firing rate; and (iv) cortical con-
nectivity that drops off (approximately exponentially) with increasing spatial sep-
aration. The mathematical details of the theoretical model are outlined in the Ap-
pendix.

In general, parameter values are drawn from experimentally-derived measure-
ments reported in the literature, so are physiologically plausible. The actual values
used here are similar to those presented in an earlier paper modeling the seizuro-
genic effects of enflurane in humans [47], with some alterations to better represent
the smaller rat cortex (see Table 9.1).

Table 9.1 Parameters for rat cortex model

Symbol Description Value

τe,i Membrane time constant 20, 20 ms

Qe,i Maximum firing rates 60, 120 s−1

θe,i Sigmoid thresholds −58.5, −58.5 mV

σe,i Standard deviation of thresholds 4, 6 mV

ρe,i Gain per synapse at resting voltage 0.001, −0.000863 mV s

V rev
e,i Cell reversal potential 0, −70 mV

V rest
e,i Cell resting potential −64, −64 mV

Nα
eb Long-range e → e, i connectivity 3710

Nβ
eb Short-range e → e, i connectivity 410

Nβ
ib Short-range i → e, i connectivity 800

〈φ sc
eb〉 Mean e → e, i subcortical flux 50 s−1

〈φ sc
ib 〉 Mean i → e, i subcortical flux 50 s−1

γeb Excitatory synaptic rate constant 949 s−1

γib Inhibitory synaptic rate constant 100 s−1

Lx,y Spatial length of cortex 2 cm

Λeb Inverse-length connection scale 0.4 mm−1

v Mean axonal conduction speed 1400 mm s−1

ΔV rest
e Effect of altering extrasynaptic ion channels −5 → +5 mV

λ Scaling for EPSP amplitude see Eqs (9.2, 9.3)

The primary output from the model is the spatially-averaged soma potential. The
fluctuation of this voltage with time is assumed to be the source of the experimen-
tally observable ECoG signal [50]. In its present form, the model considers the cor-
tex to be a two-dimensional sheet; the model ignores within-cortex microanatomi-
cal layering, and does not include synaptic plasticity. (The dynamic implications of
these finer biological details may be the subject of future investigation.)
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The changes in interneuronal population activity during sleep can be represented
on a two-parameter domain (see Fig. 9.1), chosen to make explicit the effects of
selected neuromodulators on the cortex. It is assumed that these neuromodulations
are slow processes (∼seconds to minutes) compared to the much faster time-scale
of synaptic neurotransmission and conduction of action potentials (∼ones to tens of
milliseconds).

This separation of time-scales allows neuromodulator action to be incorporated
into the model as a pair of slowly-varying control parameters that represent ex-
cursions along the mutually-orthogonal horizontal directions in Fig. 9.1 labeled,
respectively, λ and ΔV rest

e . Here, λ represents EPSP synaptic strength, and ΔV rest
e

represents relative neuronal excitability (displacement of resting membrane poten-
tial of the pyramidal neurons relative to a default background value).

This arrangement allows the effects of neuromodulators on synaptic function (the
λ -axis) to be separated from their effects on extrasynaptic leak currents that will al-
ter resting voltage (ΔV rest

e -axis). We assume that SWS is associated with decreased
levels of aminergic and cholinergic arousal from the brainstem, together with ele-
vated concentrations of somnogens such as adenosine [31]; both effects will tend to
hyperpolarize the membrane voltage by increasing outward potassium leak current.

The gradual rise in neuromodulator-induced membrane polarization is incorpo-
rated into the model as a slowly-increasing ΔV rest

e parameter (see Eq. (9.1) below)
that can be visualized as a trajectory (thick gray arrow) superimposed on the Fig.-
9.1 manifold of stationary states. The mean excitatory soma potential Ve is depicted

Fig. 9.1 Manifold of equilibrium states for homogeneous model cortex for different stages of
sleep. Vertical axis is excitatory soma potential; horizontal axes are λ (dimensionless EPSP-
amplitude scalefactor), and ΔV rest (deviation of resting membrane potential above default value 0f
−64 mV). Shaded-gray area shows region of instability giving rise to theta-frequency limit-cycle
oscillations. The gray arrow shows a trajectory for transition from slow-wave (SW) to interme-
diate (IS) to REM sleep caused by a gradual increase in resting soma potential (see Eq. (9.1)).
Black arrows denote the details of the trajectory in response to the dynamic modulation in EPSP
(Eq. (9.3)).
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(c) REM-sleep pseudoECoG

(b) IS pseudoECoG

(a) SWS pseudoECoG

Fig. 9.1 (cont.) Model-generated ECoG time-series at the three labeled points on the sleep man-
ifold: (a) slow-wave sleep (SWS); (b) intermediate sleep (IS); (c) rapid-eye-movement (REM)
sleep. Duration of each time-series = 6 s; vertical-axis extent for each graph = 0.4 mV.

on the vertical axis of Fig. 9.1. Where there is a “fold” in the manifold, there can
exist up to three steady-state values for Ve at a given (λ ,ΔV rest

e ) coordinate: for these
cases we label the lower state (lying under the fold) as “quiescent”, and the upper
state (located on top of the fold) as “active”. We note that the upper and lower sta-
tionary states are not necessarily stable. In fact, it is the transition to instability that
gives rise to oscillatory behavior in the model.

9.2.2 Modeling the transition to REM sleep

The transition to REM sleep is characterized by a progressive increase in cholin-
ergic activity from the brainstem that occurs over a time-course of a few minutes.
This increase in cholinergic tone simultaneously depolarizes the cortex, and reduces
(slightly) the excitatory synaptic gain (via reduction in the area of the excitatory
postsynaptic potential (EPSP). We model the gradual rise in cortical depolarization
by imposing a linear increase in the excitatory resting-potential offset ΔV rest

e , from
−5 mV (i.e., resting voltage set 5 mV below nominal) to +5 mV (resting voltage
set 5 mV above nominal), over a period of 4 min (240 s),

ΔV rest
e (t) = −5 mV+10 mV(t/240 s) , (9.1)

where t is the elapsed time in seconds. The nominal resting voltage is −64 mV (see
Table 9.1). At the same time, the EPSP gain-factor λ1 (dimensionless) decreases
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linearly over 4 min to its nominal value (λ1 = 1.00) from a starting value set 5%
above nominal,

λ1(t) = 1.05−0.05(t/240 s) . (9.2)

Here, λ1 is modeling the synaptic effect of the steady increase of acetylcholine con-
centration as the cortex transits from SWS to REM sleep. This slow acetylcholine
change (λ1) will be combined with the synaptic-gain adaptations (λ2), described
below, brought about by the SWS cortical oscillations between “down” and “up”
states.

9.2.3 Modeling the slow oscillation of SWS

Because slow-wave sleep is characterized by low levels of cholinergic tone, the
excitatory synaptic gain in the cortex is influenced by the presynaptic firing-rate, re-
sulting in a form of slow spike-frequency adaptation: when the presynaptic neuron is
in a high-firing state, consecutive EPSP events decrease in magnitude exponentially
over the time-course of a few-hundred milliseconds as described by Tsodyks [43];
conversely, once the presynaptic neuron becomes quiescent, it becomes relatively
more sensitive to input. Under conditions of low-cholinergic effect, this fluctuation
in excitatory synaptic gain induces the cortex to undergo a slow oscillation between
the distinct “down” (quiescent) and “up” (activated) states that are observed in SWS
[26, 38]. This approach to understanding the cortical slow oscillation is broadly
equivalent to previous SWS models [1, 6, 14, 17, 33, 36, 41] which rely on time-
varying changes in the Na+ and K+ ion-channel conductances to cycle the cortex
between “up” and “down” states.

This up–down cycling is in addition to the slower modulation due to brainstem
changes (Eq. (9.2)), so we write the total synaptic-gain factor as λ = λ1 +λ2, where
λ1 corresponds to very slow brainstem effects, and λ2 to the slow-oscillation effects.
We drive parameter λ2 through a cycle between down- and up-states by raising λ2

(increasing EPSP) slightly in response to a low firing rate, and reducing it (lowering
EPSP) in response to a high firing rate,

dλ2

dt
= −k (λ2 −λaim) , (9.3)

where the shunting rate-constant k is 2 s−1, and the steady-state target value λaim is
determined by the firing rate,

λaim =

{
+0.2 , Qe < 10 s−1 ,

−0.2 , Qe ≥ 10 s−1 .
(9.4)
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The full set of cortical equations are listed in the Appendix on p.215. The total
synaptic gain λ = λ1 + λ2 from Eqs (9.2–9.3), and the ΔV rest

e depolarization from
Eq. (9.1), are applied as modulatory effects to the differential equation for excitatory
soma potential (Appendix, Eq. (9.5)). The model behavior resulting from the cycling
and modulation in λ , and the modulation of ΔV rest, is summarized by the arrowed
paths in Fig. 9.1.

9.2.4 Experimental Methods

9.2.4.1 Animals

Four male Sprague-Dawley rats, weighing 300–400 g at the time of surgery, served
as subjects. The rats were maintained on a 12:12-hr light–dark cycle, were individu-
ally housed following surgery, and had ad libitum access to food and water. Ethical
approval for this study was granted by the Ruakura and University of Auckland
Animal Ethics Committees.

9.2.4.2 Surgery

Animals were anesthetised with ketamine/xylazine (75/10 mg/kg, i.p.), and mounted
in a stereotaxic instrument with the skull held level. Four holes were drilled in the
exposed skull: three for stainless-steel skull screws (positioned over the cerebel-
lum and bilaterally over the parietal cortex), and one for implantation of a tungsten
stereotrode pair (Micro Probe Inc, Potomoc, USA) into the parietal cortex for two-
channel electrocorticogram (ECoG) recording. The stereotrode consisted of two in-
sulated microelectrodes (3-μm diameter) separated by 200 μm. The stereotrode was
lowered into the cortex to a depth of 0.5 mm and cemented to one of the anchor
screws with rapid-setting glue. The skull screws also served as reference and ground
electrodes for the cortical local-field-potential recordings. Insulated wires from the
screws, along with the stereotrode electrodes, were terminated in a plastic nine-pin
socket, the base of which was embedded in dental acrylic (GC Corporation, Tokyo,
Japan). The animals were allowed to recover for at least seven days prior to testing.

9.2.4.3 Data recording

There were two ECoG recording channels. The two parietal skull screws served
as the common reference for the two cortical electrodes, and the cerebellar screw
was used as the common ground. The leads were connected to two differential
amplifiers (A-M systems Inc, Carisborg, USA) via a tether and electrical swivel
(Stoelting Co, Illinois, USA), allowing free movement of the animal within the
recording enclosure. The two cortical field-potential channels were digitized at
10 000 samples/s (CED Power 1401, Cambridge, England), high- and lowpass
filtered at 1 and 2500 Hz, respectively, and 50-Hz notch-filtered. The data were
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displayed and recorded continuously on computer using Spike2 software (CED,
Cambridge, England). The animals were video-recorded during all sessions to aid
offline sleep-staging (described below). The video was synchronized with the elec-
trophysiological recordings. Data were collected for up to six hours while the ani-
mals slept naturally.

9.2.4.4 Sleep staging

Sleep-staging was performed offline using accepted electrophysiological and be-
havioral criteria [44]. Slow-wave sleep (SWS) was characterized by a large-voltage,
low-frequency ECoG waveform and regular respiratory pattern (observed on video).
During SWS, the rats typically lay on their abdomen in a reclined posture.

Rapid eye movement (REM) sleep was characterized by a low-voltage, high-
frequency ECoG waveform, and a respiratory pattern that was irregular, with fre-
quent short apneas. REM sleep was confirmed by the observation of phasic phe-
nomena such as eye movements and whisker twitches (observed on video) [44].
The rats often assumed a curled posture before entering REM sleep. Transitions
from SWS to REM sleep were identified offline; two minutes of ECoG spanning
each transition point were extracted for later analysis.

9.3 Results

The numerical model was implemented in MATLAB (Mathworks, Natick, MA,
USA), simulating a 2- × 2-cm square of cortex on a 16×16 grid with toroidal bound-
aries. We used a time-step of 50 μs, chosen sufficiently small to ensure numerical
stability. All grid points were driven by small-amplitude spatiotemporal white noise
to simulate nonspecific (unstructured) flux activity from the subcortex. The primary
output was the time-course of the mean-soma potential at selected grid points on the
cortical sheet.

The soma-voltage predictions for the effect of neuromodulator-induced changes
in excitability (ΔV rest

e ), and synaptic efficiency (λ ), are illustrated in the manifold of
equilibrium states in Fig. 9.1. Superimposed on the figure is a gray-arrowed hypo-
thetical trajectory that tracks the influence of increasing cholinergic tone occurring
during SWS-to-REM transition. The voltage-vs-time graphs show typical samples
of model-generated “pseudoECoG” time-series at three selected (λ ,ΔV rest

e ) coordi-
nates representing (a) slow-wave sleep (SWS); (b) intermediate sleep (IS); and (c)
REM sleep.

With no cholinergic input, the SWS pattern (a) is associated with a slow cycling
(∼0.5 to 2 Hz) between the “up” (activated, upper stable region of the manifold)
and “down” (quiescent, lower stable region) states (Fig. 9.1, area “SW”).

The effect of the increasing acetylcholine is modeled as a depolarizing drift of
the resting membrane potential V rest

e , a slight decrease in EPSP gain, and a loss of
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frequency adaptation [13]. With increasing cholinergic tone, the trajectory moves
to the right to a point where the up-states are close to the area in the phase space
where an ∼8-Hz oscillatory state exists (shaded region in Fig. 9.1). At the upper-
branch stability boundary, a subcritical Hopf bifurcation occurs [48]. Just beyond
this point, the up-state is no longer stable (the real part of the dominant eigenvalue
is positive), so cortical excursions to the upper-state lead to oscillations in the theta-
frequency band. PseudoECoG time-series generated in this unstable region show
spectral features characteristic of intermediate sleep: simultaneous delta and theta
oscillations (Fig. 9.1, area “IS”; time-series (b)). The delta oscillation arises from
the continuing presence of the up- and down-states, and the theta oscillation from
the instability of the upper branch.

As the effects of the cholinergic modulation increase further, the pseudocortex
eventually becomes so depolarized that only the up-state is available. The cortex
now acts as an ∼8-Hz narrow-band filter of the nonspecific white noise input; this is
our model’s representation of the REM theta-oscillation state (Fig. 9.1, area “REM”;
time-series (c)).

Because we were unable to locate descriptions in the research literature for ECoG
spectra at the SWS-to-REM transition, we elected to compare our model-generated
spectra with those obtained from our ECoG recordings of sleep-transitioning rats.
We computed time–frequency spectrograms for the model time-series (Fig. 9.2(a))
and for the rat ECoG recordings (Fig. 9.2(b)), and also calculated time–frequency
coscalograms showing the spectral coherence between a pair of adjacent grid posi-
tions on the pseudocortex (Fig. 9.3(a)), comparing this with the spectral coherence
between the pair of electrodes comprising the stereotrode that sensed rat ECoG ac-
tivity (Fig. 9.3(b)).1

The spectrograms (Fig. 9.2(a, b)) and coscalograms (Fig. 9.3(a, b)) both show
predominant delta activity in SWS, appearance of co-existing theta activity in IS,
and abrupt loss of delta activity marking the start of REM sleep.

The two-channel coherence scalograms of Fig. 9.3 exhibit distinct frequency
banding. The peak frequency of the theta oscillation in the model (Fig. 9.3(a)) starts
at ∼4.5 Hz in intermediate sleep, increasing to ∼6.5 Hz at the transition into REM,
while the rat data show a broader low-frequency spectrum with transient tongues of
coherent activity that extend almost into the theta range.

Table 9.2 compares the rat and model-generated ECoG data in terms of the mean
and standard deviation for two-point wavelet coherence in the delta and in the theta
wavebands. Coherences for both rat and simulated data exhibit similar trends across
the transition from slow-wave sleep to REM sleep: both show a more than fourfold
decrease in delta-band coherence, simultaneous with a fourfold increase in theta-
band coherence. Across the three sleep stages, the absolute difference in coherences
between rat and model data is better than 0.2 for delta-band, and better than 0.1 for
theta-band. These coherence trends are illustrated in Fig. 9.4.

1 See Appendix (Sects 9.5.2 and 9.5.3) for details of data processing, and calculation of coherence
estimates from the Morlet wavelet transform.
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Fig. 9.2 [Color plate] Time-series and spectrograms of the model pseudoECoG signal (left),
and of a typical example of rat ECoG (right) across the transition from slow-wave to REM sleep
(SW = slow wave sleep; IS = intermediate sleep; REM = REM sleep). In both spectrograms, theta-
band (5–8 Hz) activity first appears during early IS, while delta-band activity (1–4 Hz) is lost by
the end of IS.
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Fig. 9.3 [Color plate] Two-point temporal-coherence for two channels of pseudoECoG generated
by the mean-field cortical model (left), compared with two-point coherence for rat stereotrode
ECoG recording (right). Coherence is calculated using the Morlet continuous-wavelet transform
(see Eq. (9.17)). In both model and experiment, there are coherent oscillations in theta- and delta-
bands during the IS transition into REM sleep. (The nonlinear frequency axis is derived from the
inverse of the wavelet-scale axis, and is thus distorted by the reciprocal transformation.)

9.4 Discussion

Most current neurobiological modeling of changes in cortical state involves simula-
tion of various ion currents in assemblies of discrete Hodgkin–Huxley or
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Table 9.2 Comparison of changes in two-point wavelet coherence (mean (SD)) for measured rat
ECoG versus simulated pseudoECoG generated by the numerical model

Delta band (1–4 Hz) Theta band (5–8 Hz)

Sleep stage Rat Model Rat Model

Slow-wave sleep 0.60 (0.02) 0.49 (0.06) 0.07 (0.06) 0.09 (0.04)
Intermediate sleep 0.48 (0.03) 0.63 (0.10) 0.28 (0.05) 0.22 (0.07)
REM sleep 0.14 (0.01) 0.09 (0.04) 0.29 (0.05) 0.36 (0.04)

Slow-wave
Sleep

Intermediate
Sleep

REM
Sleep

0

0.4

0.8

C
oh

er
en
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    Rat: δ-band
Model: δ-band

    Rat: θ-band
Model: θ-band

Fig. 9.4 Changes in two-point wavelet coherence across the SW-to-REM sleep transition, com-
paring recorded rat ECoG with model-generated ECoG. See Table 9.2 for coherence values.

integrate-and-fire neurons—the “neuron-by-neuron” approach [1, 6]. In contrast, the
continuum philosophy assumes that, on average, neighboring neurons have very
similar activity, so neural behavior can be approximated by population means that
have been averaged over a small area of cortex. This assumption is in agreement
with measured anatomic and functional spatial correlations [35]. The continuum
method makes tractable the problem of quantifying global cortical phenomena, such
as states of sleep, general anesthesia, and generalized seizures. Since the averaged
electrical activity of populations of neurons is a commonly-measured experimental
signal (ECoG), the accuracy of continuum models can be verified directly from clin-
ical and laboratory observations, and many of the global phenomena of the cortex
can be explained simply using the continuum approach. For example, if the cortex
is envisaged as a network of single neurons, it is hard to explain the widespread
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zero-lag spatial synchrony detected in SWS oscillations by Volgushev and col-
leagues [45]. In that paper, Volgushev postulated gap-junction coupling as the origin
of the tight synchrony. In contrast, when the continuum formulation is used to model
SWS, the high spatial synchrony arises naturally from the present set of cortical
equations that do not contain diffusive couplings.

We have focused on a single question: “What is the basis for the abrupt changes
in cortical activity that occur during the SWS-to-REM sleep transition?” There are
two opposed explanations. One possibility is that there might be a massive, sudden
increase in subcortical excitatory input into the cortex. In this scenario, the underly-
ing cause of the change occurs subcortically, and the cortex is responding linearly to
that input—this is the picture that is implicit in most earlier qualitative descriptions
of the SWS-to-REM transition.

Our modeling supports the contrary view. We suggest that there is only a modest
change in subcortical input occurring over a time-course of a few minutes, but that
this modest change in stimulus triggers a secondary nonlinear change in cortical
self-interaction, causing an abrupt jump to a new mode of electrophysiological (and
cognitive) behavior. This cortical change of state is analogous to a phase-transition
in physics, and can be described as a bifurcation in dynamical systems theory.

The earliest semi-quantitative model for SWS–REM cycling was developed by
Hobson [15] who suggested that the changes in sleep state are driven by cycling
in the brainstem, alternating between monoaminergic and cholinergic states. This
theory did not address how the brainstem cycling determines the ECoG cortical re-
sponse. More recently, Lu and others [24] have postulated that a bistable (“flip-flop”)
system exists in the brainstem (the mesopontine tegmentum) to control SWS–REM
transitions. The flip-flop is driven by mutual negative-feedback between “REM-
on” and “REM-off” GABAergic areas. However, the primary effector pathways be-
tween the REM-on/REM-off flip-flop and the cortex were not well described. Part
of the REM-on area contains glutamatergic neurons that form a localized ascending
projection to the medial septum area of the basal forebrain, and hence to the hip-
pocampus; thus the widespread global cortical activation seen in REM sleep is not
explained. There is a weight of other evidence suggesting the pre-eminent role of
cholinergic activation as the final common pathway of REM-sleep cortical arousal
[5, 7].

The origin of the cortical theta-oscillation in the REM-state is the source of some
debate. It had been assumed that the neocortical theta arises from volume conduc-
tion of the strong theta-oscillation that is observed in the hippocampus during REM
sleep. However, there is evidence that the neocortical theta-rhythm may arise from
the neocortex, independent of the hippocampus [3, 5, 20]. Cantero et al. [4] showed
that cortical and hippocampal theta-rhythms often have different phases, and con-
cluded that there are many different generators of theta-rhythm in the brain; the hip-
pocampal theta is in turn dependent on the degree of activation of various brainstem
structures [29].

Our theoretical model demonstrates that it is possible for an 8-Hz rhythm in the
neocortex to emerge naturally from the internal dynamics of the equations. This os-
cillation derives from the lags introduced into the system by the inhibitory dendritic



9 Modeling the transition from slow-wave to REM sleep 215

input into the pyramidal neuronal population. Whether this is the source of all theta-
oscillations observed during REM sleep in rats remains an open question. One prob-
lem with our model is that the amplitude of the theta-oscillation is sometimes as
large as the slow oscillation, making the SWS-to-REM transition less clear on the
pseudoECoG timeseries—although the transition remains obvious in the spectral
views provided by the spectrogram and coscalogram.

As we have confirmed in the present study, one of the characteristics of the
SWS–REM transition is high temporal coherence—in particular frequency bands—
for spatially-separated electrodes. In rats, coherent oscillations have been observed
across widespread areas of the brain that include not only cortex, but also thala-
mus, hippocampus and striatum [10]. Interestingly, the pattern of spindle activity ob-
served during IS resembles that of forebrain preparations completely isolated from
the brainstem [12]. In addition, examination of the amplitudes of sensory evoked-
potentials shows that IS is associated with the lowest level of thalamocortical trans-
fer of any sleep state. Thus IS is the most “introspective” of all sleep states, consis-
tent with a role for IS in functional “in-house” coupling to support organzation and
integration of information between separated brain regions.

The continuum model provides a plausible theoretical basis for the phenomenon
of intermediate sleep in rats. However, the model requires further experimental val-
idation to test its predictions. We envisage a detailed and systematic experimental
exploration of the model parameter space, using in vitro cortical-slice methods to
manipulate the position of the cortical dynamics on the equilibrium manifold. Here
is an example of the approach: It is known that the addition of triazolam (a GABAer-
gic drug) markedly increases the duration of the IS stage, at the expense REM sleep
[11]. We tested this finding against our continuum model by running simulations
with enhanced GABAergic effect. We found that the duration of IS increases linearly
with IPSP (inhibitory postsynaptic potential) decay-time, and increases markedly
with even modest increases in the IPSP magnitude. Conversely, a drug which short-
ens IPSP decay-time will reduce the extent of the unstable “tongue” on the edge of
the upper branch of the manifold, and, with sufficient reduction, should eliminate
the IS stage entirely. This is an unambiguous and testable prediction.

9.5 Appendix

9.5.1 Mean-field cortical equations

The model describes interactions between cortical populations of excitatory pyra-
midal neurons (subscript e) and inhibitory interneurons (subscript i).2 We use a
left-to-right double-subscripting convention so that subscript ab (where a and b are
labels standing for either e or i) implies a→b, that is, the direction of transmission

2 Note that we have not included a representation of the thalamus in the model, because the slow
oscillation of sleep can be generated in the cortex alone—without thalamic input [33, 41, 45].
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in the synaptic connections is from the presynaptic nerve a to postsynaptic nerve b.
Superscript “sc” indicates subcortical input that is independent of the cortical mem-
brane potential.

The time-evolution of the population-mean membrane potential (Va) in each neu-
ronal population, in response to synaptic input ρaΨabΦa, is given by,

τe
∂Ve

∂ t
= V rest

e +ΔV rest
e −Ve +λρeΨeeΦee +ρiΨieΦie , (9.5)

τi
∂Vi

∂ t
= V rest

i −Vi +λρeΨeiΦei +ρiΨiiΦii , (9.6)

where τa are the time constants of the neurons, and ρa are the strengths of the

postsynaptic potentials (proportional to the total charge transferred per PSP event).
Here we modulate the resting-voltage offset ΔV rest

e and the synaptic-gain scalefactor
λ as set out in Eqs (9.1–9.3). The Ψab are weighting functions that allow for the
effects of AMPA and GABA reversal potentials V rev

a ,

Ψab =
V rev

a −Vb

V rev
a −V rest

a
. (9.7)

The Φab are synaptic-input spike-rate fluxes described by Eqs (9.8–9.9),

(
∂ 2

∂ t2 +2γeb
∂
∂ t

+ γ2
eb

)
Φeb = γ2

eb

(
Nα

ebφeb +Nβ
ebQe +φ sc

eb

)
, (9.8)

(
∂ 2

∂ t2 +2γib
∂
∂ t

+ γ2
ib

)
Φib = γ2

ib

(
Nβ

ibQi +φ sc
ib

)
, (9.9)

where γab are the synaptic rate-constants, Nα are the number of long-range connec-

tions, and Nβ the number of local, within-macrocolumn connections. The spatial
interactions between macrocolumns are described by damped wave equations,(

∂ 2

∂ t2 +2vΛeb
∂
∂ t

+ v2Λ 2
eb − v2∇2

)
φeb = v2Λ 2

ebQe , (9.10)

where v is the mean axonal velocity, and 1/Λeb is the characteristic length-scale for
axonal connections.

The population firing-rate of the neurons is related to the population-mean soma
potential by a sigmoidal mapping,

Qa(Va) =
Qmax

a

1+ exp
[−π(Va −θa)/

√
3σa

] (9.11)

where θa is the population-average threshold voltage, and σa is its standard devia-
tion. The parameters and ranges used in our simulations are listed in Table 9.1.
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9.5.2 Comparison of model mean-soma potential and
experimentally-measured local-field potential

In order to translate from a grid simulation of soma potential to a pseudoECoG,
we introduce three virtual electrodes that sample the fields from different sets of
neurons. The first virtual electrode serves as a “common reference” that samples
the local field Vj,k from all grid-points ( j,k) equally, giving a reference voltage
V ref(t) = 1

N2 ∑N
j=1 ∑N

k=1 Vj,k(t), where N = 16 in our simulations. This construction is
intended to be broadly equivalent to the common reference electrodes utilized in our
rat experiments—these were located bilaterally over the parietal cortex, responding
to the local field potential across a wide spatial extent of neurons.

The other two virtual electrodes, numbered (1) and (2), we assume to be much
more localized, sampling the field from a pair of adjacent grid-points ( j,k), ( j+1,k)
in the simulation, but each containing a small voltage contribution, say 1%, com-
ing from the spatial average over all 256 grid-points, leading to a pair of electrode
potentials, relative to ground, of

V (1)(t) = Vj,k(t)+0.01V ref(t) ,

V (2)(t) = Vj+1,k(t)+0.01V ref(t) .

The two pseudoECoG voltages are then formed as the respective differences be-
tween V (1),(2) and V ref,

pECoG(1)(t) = Vj,k(t)−0.99V ref(t) , (9.12)

pECoG(2)(t) = Vj+1,k(t)−0.99V ref(t) . (9.13)

We have found that this subtractive fraction of 99% of the spatial-average soma
potential produces physically reasonable pseudoECoG traces which have a strong
contribution from the local voltage fluctuations at the specified grid point, but retain
a weak contribution from the global activity that is common to the entire grid.

To reduce memory requirements, grid-simulation soma potentials were recorded
every 250 timesteps with Δ t = 50 μs, giving an effective sampling rate of 1/(250Δ t)
= 80 s−1. A Butterworth highpass filter was applied to remove fluctuation energy
below 0.5 Hz. ECoG voltages recorded from rat cortex were bandpass filtered by the
acquisition hardware to eliminate spectral content outside the range 1–2500 Hz. The
effective sampling rate was reduced from 10 000 s−1 to 80 s−1 using decimate to
lowpass filter the time-series to 32 Hz, then subsample by a factor of 125.

9.5.3 Spectrogram and coscalogram analysis

To track the spectral changes in ECoG voltage activity over the course of the SWS-
to-REM transition, we computed Hanning-windowed spectrograms with a 1-Hz
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resolution using the MATLAB pwelch function. This spectral analysis was applied
to the rat ECoG time-series (Fig. 9.2(b)), and also to the pseudoECoG time-series
generated by our mean-field numerical simulations (Fig. 9.2(a)).

The synchronous interactions between the two ECoG channels were quantified
using wavelet coherence [19, 21]. Because optimal time–frequency localization was
required, we devised a new coherence measure—based on the Morlet continuous
wavelet transform—to investigate the spatiotemporal relationships of the two ECoG
series during the rat transition into sleep.

Given a time-function x(t), its continuous wavelet transform (CWT) is
defined,

W (s,τ) =
1√
s

∫
x(t)Ψ ∗

(
t − τ

s

)
dt , (9.14)

where s and τ denote the temporal scale and translation respectively; W (s,τ) are
the wavelet coefficients; Ψ(t) is the wavelet function; and superscript (∗) denotes
complex conjugation. In this study, a Morlet wavelet function,

Ψ0(u) = π−1/4eiω0ue−
1
2 u2

, (9.15)

is applied. Here, ω0 is a nondimensional central angular frequency; a value of
ω0 = 8 is considered optimal for good time–frequency resolution [9]. Because
the Morlet wavelet retains amplitude and phase information, the degree of syn-
chronization between neural activity simultaneously recorded at two sites can be
measured.

Given a pair of ECoG time-series, X and Y , their Morlet wavelet transforms are
denoted by WX (s,n) and WY (s,n), respectively, where s is the scale and n the time-
index. Their coscalogram is defined

|WXY (s,n)| ≡ |WX (s,n)W ∗
Y (s,n)| . (9.16)

The coscalogram illustrates graphically the coincident events between two time-
series, at each scale s and at the each time index n. To quantify the degree of syn-
chronization between the two time-series, we compute the wavelet coherence,

[coh(s,n)]2 =

∣∣〈s−1WXY (s,n)〉∣∣2
〈s−1|WXX (s,n)|2〉〈s−1|WYY (s,n)|2〉 . (9.17)

The coherence ranges from 0 to 1, and provides an accurate representation for the
covariance between two EEG time-series. The angle-brackets 〈·〉 indicate smoothing
in time and scale; the internal factor s−1 is required to convert to an energy density.
The smoothing in time is achieved using a Gaussian function exp(− 1

2 (t/s)2); the
smoothing in scale is done using a boxcar filter of width 0.6 (see Ref. [42]). Because
of the smoothing, wavelet coherence effectively provides an ensemble averaging
localized in time, thereby reducing the variance from noise [19].
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Chapter 10
What can a mean-field model tell us about the
dynamics of the cortex?

M.T. Wilson, M.L. Steyn-Ross, D.A. Steyn-Ross, J.W. Sleigh, I.P. Gillies, and
D.J. Hailstone

10.1 Introduction

In this chapter we consider the dynamics of the cortex. We will show that mean-
field models can be applied to predict and explain large-scale features of the elec-
troencephalogram (EEG), such as seizures and K-complexes. The changes between
these states can be viewed as phase transitions. A cortical mean-field model is per-
haps well suited for investigating EEG behavior, given that the EEG is a result of
sampling large numbers of neurons. The model we consider follows the continuum
approach introduced by Nunez [12] and Freeman [2]. This style of model has been
developed by, amongst others, Wright and Liley [23], Robinson et al. [16], Liley
et al. [9], and Rennie et al. [14]. Here we implement a two-dimensional model in
the manner of Liley et al. [9], that specifically incorporates the dynamics of neuron
somas, synapses and axonal propagation.

Mean-field models have a history of being used to describe phase transitions—
for example, the Weiss model of ferromagnetism. Although it is known that mean-
field models are lacking in their description of correlations (and these can influence
the critical exponents of second-order phase transitions), such a basis is a natural
place to begin for describing phase transitions in the cortex. In the limit of spatially
symmetric perturbations, the model exhibits stable and unstable nodes, and under-
goes Hopf bifurcations into limit cycles. We identify these limit cycles as seizures.
If the symmetry is relaxed, traveling-wave solutions can be excited, reminiscent of
the slow-waves and K-complexes found in sleep. These solutions are related to the
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spatially symmetric limit cycles. Also, spiral-wave solutions have been found from
numerical simulation.

10.2 A mean-field model of the cortex

The cortex consists of a large number of macrocolumns, each containing around 105

neurons in a volume of ∼1 mm2 area by ∼1 mm thickness. We model the cortex
as a two-dimensional continuous area of macrocolumns. We follow the mean-field
continuum approach of Liley et al. [9] in using a set of coupled differential equa-
tions in time and space to describe the excitatory and inhibitory soma potentials Ve

and Vi within the cortex, and the time-evolution of postsynaptic potentials (PSPs).
This approach, in which the postsynaptic fluxes Φ jk (where j and k can correspond
to excitatory e or inhibitory i neuron populations) are described by differential equa-
tions, is equivalent to approaches that describe the build-up of potentials in terms of
time-integrated inputs, for example that of Jirsa and Haken [6]. We use a standard
wave-equation, in the manner of Robinson et al. [16], to describe the propagation of
presynaptic fluxes φ jk from one part of the cortex to another. We model the subcor-
tical input with white noise.

It is important to note that individual firing events are not modeled explicitly,
instead the effects of a firing of a population of neurons are considered.

The complete set of equations describing the macrocolumn averages of soma
potential and synaptic fluxes, as a function of space and time, are described in
Refs [18], [19], and [22], and are given below. Note that later, Eqs (10.1) and (10.2)
will be modified slightly by the introduction of neuromodulators into the model.

τe
dVe

dt
= V rest

e −Ve +ρeψeeΦee +ρiψieΦie , (10.1)

τi
dVi

dt
= V rest

i −Vi +ρeψeiΦei +ρiψiiΦii , (10.2)

(
d2

dt2 +2γee
d
dt

+ γ2
ee

)
Φee = γ2

ee

(
Nα

eeφee +Nβ
eeQe +φ sc

ee

)
, (10.3)

(
d2

dt2 +2γei
d
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+ γ2
ei

)
Φei = γ2

ei
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Nα

ei φei +Nβ
eiQe +φ sc

ei

)
, (10.4)
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dt2 +2γie
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ie
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Φie = γ2

ie

(
Nβ

ieQi +φ sc
ie

)
, (10.5)
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ii
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ii Qi +φ sc
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)
, (10.6)
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∂ 2

∂ t2 +2vΛee
∂
∂ t

+ v2Λ 2
ee − v2∇2

)
φee = v2Λ 2

eeQe , (10.7)

(
∂ 2

∂ t2 +2vΛei
∂
∂ t

+ v2Λ 2
ei − v2∇2

)
φei = v2Λ 2

eiQe . (10.8)

In these equations, V rest
e and V rest

i are the excitatory and inhibitory neuron resting
potentials, and ρe and ρi are the strengths of the EPSP and IPSP response func-
tions (i.e., the area of the plot of PSP response function against time). Note that the
inhibitory effect is modeled with a negative ρi. The variables ψee, ψei, ψie and ψii

are weighting functions dependent upon the soma potentials. They are given by:

ψab =
V rev

a −Vb

V rev
a −V rest

b
. (10.9)

Here, V rev
a is the reversal potential of the type a synapse, due to the concentrations

of the neurotransmitters AMPA and GABA. The suffices a and b can take on the
labels e and i.

The terms τe and τi describe the time-constants for the e and i neurons. The γab

terms are synaptic rate-constants; their reciprocals give the time-scales over which
the EPSPs and IPSPs occur. The mean axonal velocity for long-range interactions
is given by v, and the characteristic length for long-range interactions is given by
1/Λea. Short-range interactions are not modeled with axonal propagation but are

assumed to be instantaneous; the Nβ
jk terms couple directly with the population firing

rates Qk in equations (10.3)–(10.6).
The sigmoidal functions Qe and Qi, describing the population firing-rate of neu-

rons, are given by:

Qe(Ve) =
Qmax

e

1+ exp[−π(Ve −θe)/
√

3σe]
, (10.10)

Qi(Vi) =
Qmax

i

1+ exp[−π(Vi −θi)/
√

3σi]
. (10.11)

Here we have introduced further parameters Qmax
e and Qmax

i , the maximum firing
rates for the excitatory and inhibitory neurons respectively; θe and θi, the inflexion-
point voltage; and σe and σi, the standard deviation of the threshold potential.

Finally, the Nβ
ab represent numbers of local intra-macrocolumn connections from

type a neurons to type b (again a and b can take on the labels e and i), and the
Nα

ea represent the number of long-range connections from type e neurons to type
a (note that inhibitory neurons have no long-range projections). Noise enters the
model through the φ sc

ab terms.
The list of standard parameters used for a human cortex is given in Table 10.1.
We now modify the equations by introducing two parameters to describe the

effects of neuromodulators. Following Steyn-Ross et al. [18], we introduce a term
ΔV rest

e to the excitatory resting potential in Eq. (10.1) to model the archetypal
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Table 10.1 The standard parameters for a human cortex used throughout this chapter, except where
stated otherwise. In this table the suffix a can take on the labels e and i. The values are taken mostly
from the paper of Rennie et al. [14]. Although there is considerable uncertainty in these parameters,
they form a plausible set that is sufficient for the purposes of elucidating much of the physics of the
cortical model. It is quite possible that further physical effects can be produced by varying these
parameters sufficiently.

Parameter Description Standard value

τe,i membrane time constants 0.04, 0.04 s−1

Qe,i maximum firing rates 30, 60 s−1

θe,i sigmoid thresholds −58.5, −58.5 mV
σe,i standard deviation for threshold 4.0, 6.0 mV
ρe,i gain per synapse at resting voltage 0.001, −0.00105 mV · s
V rev

e,i reversal potentials at synapse 0, −70 mV
V rest

e,i cell resting potential −64, −64 mV
Nα

ea long-range e to e or i connectivity 3710

Nβ
ea short-range e to e or i connectivity 410

Nβ
ia short-range i to e or i connectivity 800

〈φ sc
ea〉 mean e to e or i subcortical flux 750 s−1

〈φ sc
ia 〉 mean i to e or i subcortical flux 1500 s−1

γea excitatory synaptic rate constant 300 s−1

γia inhibitory synaptic rate constant 65 s−1

Lx,y spatial length of cortex in model 500 mm
amc area of macrocolumn 1 mm2

Λea characteristic inverse length-scale for connections 0.2 mm−1

v mean axonal conduction speed 1400 mm s−1

somnogen adenosine, and a multiplier λ to the excitatory synaptic strength to
account for the effect of acetylcholine (abundant in rapid-eye-movement (REM)
sleep, but absent in slow-wave sleep). Equations (10.1) and (10.2) now become:

τe
dVe

dt
= V rest

e +ΔV rest
e −Ve +λρeψeeΦee +ρiψieΦie , (10.12)

τi
dVi

dt
= V rest

i −Vi +λρeψeiΦei +ρiψiiΦii . (10.13)

10.3 Stationary states

The full two-dimensional dynamics of the model will be explored by simulation;
however, it is instructive to calculate the stationary (equilibrium) states of the model
(i.e., solving for the state variables Vj, Φ jk, φe j, where j, k = e or i) such that their
time- and spatial-derivatives are zero. The solutions are computed numerically as a
function of the two parameters ΔV rest

e and λ . Figure 10.1 is a plot of the solution
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Fig. 10.1 Plot of Ve for stationary states in the sleep domain, using Table 10.1 parameter values.
Multiple stationary states exist in a region of the sleep domain at negative ΔV rest

e . The thick-green
curve marks turning points (where the gradient is infinite). (Modified from Ref. [18]).

for Ve against these two parameters (we could also construct associated plots for Vi,
Φee, etc). It is immediately clear that there exists a region where there are multiple
stationary states. This is suggestive of the presence of phase transitions—e.g., in
Ref. [18], Steyn-Ross et al. identified the lower (more negative Ve) branch as slow-
wave sleep (SWS) and the upper branch as REM sleep.

10.4 Hopf bifurcations

In this section we investigate the stability of the stationary solutions. Specifically, we
will show the presence of Hopf bifurcations that lead to instabilities in the stationary
states. Where there is no stable stationary state, a stable spatially-symmetric limit-
cycle oscillatory state exists. The dynamic solutions to the equations are presented
in the next section.

10.4.1 Stability analysis

To carry out a stability analysis, we decompose the six second-order equations
(Eqs. (10.3)–(10.8)) into pairs of first-order equations, which, along with Eqs. (10.12)
and (10.13), give a total of fourteen coupled first-order differential equations in
time. Then we perform a first-order series expansion in time about the stationary
state. We define uniquely any state of the system by its 14-dimensional state-vector
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y(r), which contains the variables Ve, Vi, Φee, dΦee/dt, Φei, dΦei/dt, Φie, dΦie/dt,
Φii, dΦii/dt, φee, dφee/dt, φei, and dφei/dt. These are all functions of space (r),
and Eqs. (10.3)–(10.8), (10.12) and (10.13) describe explicitly how these evolve
with time t. We then assume a small plane-wave perturbation of the system in two-
dimensional space of wave vector q, about the stationary point yeqm. That is,

y(r) = yeqm +Δyq exp(iq.r) , (10.14)

where the dynamics can be written as a simple matrix equation

d
dt

(Δyq) = A(q)Δyq . (10.15)

Here, A is a sparse 14×14 matrix which contains all the dynamics of the system; it
is dependent upon the modulus of the wave vector q = |q|. The vector Δyq denotes
the amplitude of the plane-wave perturbation.

In order for the system to be stable to small perturbations about a given stationary
point, we require the real parts of all the eigenvalues of A to be negative, for all q.
We do not present the matrix A here, but have described the method in more detail
in Ref. [22].

The choice of wave vector q is important, since some eigenvalues are particularly
sensitive to q. In all cases, we find that increasing q decreases the real part of the
eigenvalues (i.e., makes them less positive or more negative). The perturbations that
are most likely to lead to instabilities are therefore those with q = 0, corresponding
to spatially symmetric “breathing” modes. This observation agrees with that made
by Robinson et al. using a different model [15], and is confirmed by simulation.
In what follows, we assess the stability of the system by constructing the matrix
A(q = 0), then finding its eigenvalues. If one or more eigenvalues has a positive real
part, then Eq. (10.15) predicts an instability.

10.4.2 Stability of the stationary states

We begin by presenting a typical result for the stability of the sleep domain.
Figure 10.1 showed graphically the stationary values for Ve: across most of the

domain, there is just one stationary state; however, for a small region there are three
stationary states. Figure 10.2 shows the stability of these states. There is a small
lake-like region where the linearized system has a pair of eigenvalues with positive
real part, corresponding to an instability. The nature of this region is discussed in
Ref. [22]; notably the edge of the lake-like region corresponds to a supercritical
Hopf bifurcation. The real parts of these eigenvalues are most positive when q = 0,
and reduce monotonically as q increases.

Let us now comment on how the situation changes with a different parameter
set. We find that the size of the unstable “lake” of Fig. 10.2 is particularly depen-
dent on the choice of γi (we assume γie = γii, so we can use a single index without
ambiguity). This is to be expected since it is this term that governs the rate at which
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Fig. 10.2 Plot of the sleep domain showing a region of multiple stationary states (shaded area to
upper-left), and a region of single, unstable stationary states (shaded “lake” ), for the parameters of
Table 10.1. The system is stable in the unshaded regions (e.g., at the point marked �), and unstable
at the point marked ⊕. (Reprinted from [22] with permission.)

negative (stabilizing) feedback is applied to the system. A small γi corresponds to an
IPSP that is spread-out in time; this allows positive feedback from the excitatory–
excitatory route to build up before being quenched. Figure 10.3 shows the stability
of the domain when γi is reduced from 65 s−1 to 15 s−1. The stationary solutions re-
main unchanged; however, the unstable lake has now grown into the the area of three
stationary states. This means that either or both of the upper and lower branches, in
addition to the mid-branch, can become unstable. There is the possibility of the
system having multiple stationary states, with none of them being stable.

The limit cycles associated with these instabilities are found by simulation, and
are described in the next section.

10.5 Dynamic simulations

Numerical simulations of the equations on a two-dimensional grid allow the explo-
ration of a range of different dynamic behaviors. We first outline how this is done,
then consider spatially symmetric and asymmetric solutions. We tentatively suggest
how these solutions might correspond with gross features of the EEG. The param-
eter values used here are broadly representative of human cortex; parameters and
bifurcation structures more appropriate for rat cortex are discussed in the chapter by
Sleigh et al.1

1 See Ch. 9 of the present volume.
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Fig. 10.3 Stability of the sleep domain for a decrease in γi to 15 s−1. The unstable lake on the right
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figure corresponds to a single, stable state. (Reprinted from [22] with permission.)

In one dimension, a study of spatial and temporal structures such as traveling
waves in a similar model has been performed by Hutt et al. [5] using both a stability
analysis similar to that in Sect. 10.4.1, and numerical simulations.

We have performed grid simulations on the full set of equations in 2-D space.
We used a regular square grid to represent the cortex in space, and iterated the
full equations in time using an order-1 Euler predictor–corrector method [7], as
detailed in reference [22]. Noise is fed into the system through the subcortical
terms, but does not affect gross dynamic behaviors that dominate when there is no
stable stationary state available.

10.5.1 Breathing modes

We now look at the stability and dynamics of the system in more detail. We con-
sider vertical slices across the domains of Figs. 10.2 and 10.3: we fix ΔV rest

e , and
show the mean soma potential as a function of λ . The slice-plot for Fig. 10.2 (with
γi = 65 s−1) is shown in Fig. 10.4; and the slice-plot for Fig. 10.3 (γi = 15 s−1)
is shown in Fig. 10.5. Also indicated on these plots is the stability of the solution
(solid = stable, dashed = unstable), and the extent of “breathing mode” (spatially
symmetric) limit cycles. The breathing-mode cycle, corresponding to q = 0, is
always the most unstable perturbation, and is usually the cycle reached in the limit
of large times. The dominance of the q = 0 instability arises because the model
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Fig. 10.4 Stationary states, bifurcations (found by calculation), and breathing modes (found by
simulation) corresponding to six vertical slices through Fig. 10.2 with γi = 65 s−1. Graphs plot
excitatory soma potential Ve versus excitatory synaptic strength λ for six values of ΔV rest

e (dis-
played in the subtitles as ΔV ). Thin line indicates stationary states of Ve: solid = stable; dotted =
unstable. Supercritical Hopf bifurcations are marked with ×. Thick-solid line denotes maximum
and minimum extent of the associated limit cycle (only stable part of the limit cycle is shown).

used in this chapter has no spatial diffusion; when diffusive coupling in space is
introduced—for example, via gap-junctions—instabilities at nonzero q can domi-
nate, as discussed in the chapter by Steyn-Ross et al.2

The limit cycles were found by simulation, and are indicated by plotting thick-
solid lines in Figs 10.4 and 10.5 to show the maximum and minimum values of the
mean excitatory soma potential during the cycle; unstable limit cycles associated
with these Hopf bifurcations are not shown.

We start with Fig. 10.4 (γi = 65 s−1), and discuss the solutions with reference
to stepped decreases in the ΔV rest

e parameter. For ΔV rest
e larger than about +10 mV,

there is a single stationary state, and this is stable (e.g., see Fig. 10.4(a)). When
ΔV rest

e is reduced, a small unstable region appears, associated with a pair of Hopf
bifurcations (marked with “×” on Fig. 10.4(b, c, d)). If a simulation is performed

2 See Ch. 12 of the present volume.
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Fig. 10.5 Stationary states, bifurcations, and breathing modes corresponding to six vertical slices
through Fig. 10.3: γi has been reduced to 15 s−1. Graphs plot Ve versus λ for six values of ΔV rest

e
(displayed in the subtitles as ΔV ). Thin line indicates stationary states of Ve: solid = stable; dotted =
unstable. Subcritical Hopf bifurcations are marked with ×. Thick-solid line denotes maximum and
minimum extent of the associated stable limit cycle.

in the unstable region, a spatially-symmetric (breathing mode) limit cycle results,
with an amplitude extent as marked on the plot with thick-solid lines. Note the
supercritical nature of the Hopf bifurcations for this value of γi.

This region of instability disappears when ΔV rest
e is reduced to about 1 mV. At

the same time the slope of membrane potential against λ increases; and for ΔV rest
e

less than about 1 mV (see Fig. 10.4(e, f)), multiple stationary states can exist (i.e.,
there exists a saddle–node bifurcation for variations in λ .) The middle branch of the
three solutions is unstable. As ΔV rest

e decreases further, the extent of the multiple
solutions increases.

We now look at the case of a time-lengthened IPSP, where γi = 15 s−1.
Figure 10.3 shows that this delayed feedback leads to a large increase in instability;
the corresponding slice-plots are shown in Fig. 10.5. There are three key differences
from Fig. 10.4. First, we note that the extent of the unstable area (the region be-
tween Hopf bifurcation pairs) has increased. Second, the bifurcations have become
subcritical—i.e., the limit cycle extends beyond the region bracketed by the Hopf
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bifurcations. This means that the system can have both a stable node and a stable
limit cycle available to it simultaneously. Finally, we see that the unstable region
co-exists with the region of multiple stationary state solutions. This can result in a
rich variety of solutions; for example, at ΔV rest

e = −2.5 mV and λ = 1.25 there
are two stable stationary states and a stable limit cycle available (see Fig. 10.6). For
negative ΔV rest

e , an unstable “lip” remains on the top branch of the stationary states,
and a very small unstable lip remains on the bottom branch. (See also Fig. 3).

The Fig. 10.5 limit cycles arise as a result of small inhibitory synaptic rate-
constant (i.e., large synaptic time-constant), leading to an effective delay in appli-
cation of negative feedback. The formation of this instability has been linked with
seizures (e.g., Kramer et al. [8]), and in Ref. [20] we have suggested that the ten-
dency for the anesthetic enflurane to promote seizures is due to its lengthening of
the inhibitory postsynaptic potential, causing Hopf bifurcation to a limit cycle. It is
unlikely that a healthy brain would operate in such a region.
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Fig. 10.6 Stationary states for the excitatory membrane potential Ve for the case ΔV rest
e = −2.5 mV,

γi = 15 s−1. Stable stationary states are marked with a thin-solid line, unstable states with a dot-
dashed line. Subcritical Hopf bifurcations are marked with (×). The limit cycle is indicated by
thick-solid lines showing the upper and lower extents of the excitatory membrane potential. Note
that for λ ≈ 1.25, the system has access to two stable stationary states and a stable limit cycle.

10.5.2 Response to localized perturbations

To investigate the dynamic, spatially asymmetric response of this model, we look
specifically at the response to small “kicks” to the cortex, which physically could
be a result of thalamic pathways to the cortex, or spontaneous neurostransmitter
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release. As will be shown below, these kicks can produce traveling-wave structures
which we will identify with slow waves or K-complexes [21].

We have carried out simulations on a 64×64 spatial grid, for different values of
the control parameter λ for the case γi = 15 s−1 and ΔV rest

e =−2.5 mV. This choice
of parameters leads to the stationary-state structure of Fig. 10.6, and gives rich dy-
namic behavior. In these simulations we place the system initially in a stationary
state (where multiple stationary states exist we start on the lower-branch). The noise
input results in the soma potential Ve undergoing fluctuations about this stationary
state, as described by Wilson et al. [22]. Here, we examine the response of the sys-
tem to a sharp kick applied at a single point in space. This has been done by making
a momentary (0.1 s) increase in ΔV rest

e (by 10 mV) at a single point on the simula-
tion grid (e.g., ΔV rest

e becomes +7.5 mV for 0.1 s, before returning to −2.5 mV).
This corresponds to a large increase in cortical excitation at this point in space only.

With reference to the stationary states shown in Fig. 10.6, for γi = 15 s−1, we
will now present results for simulations at various points along the λ axis. We start
with λ small, where there is just one stationary state, and then raise λ to move
into the region of multiple stationary states, then into the region where the limit
cycle exists. Results are presented as grayscale plots (white = high, black = low)
of the excitatory soma potential Ve for a slice through the cortex (incorporating the
position of the kick) against time. We look first at λ = 0.8 where there is only a
single, stable stationary state available that is well away from the region of multiple
stationary states. Figure 10.7 shows that a kick of 10 mV for 0.1 s does not lead to
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Fig. 10.7 Excitatory soma potential as a function of time in response to a short, localized impulse
when only one stationary state is accessible to the system. Parameter values: ΔV rest

e = −2.5 mV,
γi = 15 s−1, with λ = 0.8. The effect of the kick does not propagate. (Reprinted from [21] with
permission.)



10 Cortical dynamics 235

any interesting dynamics—the soma potential rises at the location of the kick only,
and then decays quickly back to the stationary state.

However, the dynamics changes markedly as we approach the region of multiple
stationary states. We look at the response of the system to the same kick, but with
the control parameter increased to λ = 1.1; there are now three stationary states,
but only the lower-branch state is stable. The results are shown in Fig. 10.8. We
see that the response propagates as a wave of constant velocity over the whole
cortex. The system is pushed from its stable lower branch, beginning at the point
where the impulse is applied, and heads towards the unstable upper branch. How-
ever, since the upper branch is unstable, it cannot remain there, and instead returns
to the stable lower branch, where it finally comes to rest (the kick having been
removed). This process generates a single circular traveling wave that propagates
outwards from the point of the initial kick—every point in space leaves the lower
branch, heads towards the upper branch, overshoots, then falls down towards the
lower branch, overshoots this, and eventually settles back on the lower branch. The
shape of the plot of Fig. 10.8 is similar to that of the K-complex seen in EEGs.
Indeed, we will follow Massimini et al. [10] and identify this traveling wave with
a K-complex. Golomb and Amitai have shown that a disinhibited network model
can also give a similar result [3]—the significant difference between their work and

0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

Time (s)

S
pa

ce
 (

m
)

0 1 2 3 4
−70

−65

−60

−55

−50

−45

Time (s)

E
xc

ita
to

ry
 s

om
a 

vo
lta

ge
 (

m
V

)

Fig. 10.8 Excitatory soma potential as a function of time for a short kick at one point in space
when lower branch is stable, upper branch unstable. Parameter values: ΔV rest

e = −2.5 mV, γi =
15 s−1, with λ = 1.1. Left-hand graph shows Ve for two points on the cortex (the point of initial
kick, and 25 cm from this point) versus time. Right-hand image shows Ve as grayscale (white =
high, black = low) against space and time for a line through the position of the kick. The resulting
traveling wave is similar to a K-complex. (Reprinted from [21] with permission.)
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ours is that inhibitory neurons are included here, and multiple stationary states are
involved.

The cause of the K-complex in the EEG is uncertain—it can occur either as a
response to a specific stimulus (e.g. a sound), or sometimes spontaneously with no
obvious cause. In his summary paper, Colrain [1] describes the K-complex, with
reference to the earlier work of Numminen et al. [11] as,

—a nonspecific reaction of the cortex to various stimuli during sleep, via activation of pro-
jection pathways from the nonspecific thalamic nuclei.

We now raise λ further, to λ = 1.25. From Fig. 10.6 we note that, in addition
to the stable stationary state of the lower branch, there is now a stable limit cycle
available to the spatially-homogeneous system. When we apply a kick to the system
that is initially on the lower branch, the system is provoked into this limit cycle, as
illustrated in Fig. 10.9. The firing rate moves from near zero to near maximum, in a
similar way to spike–wave seizures [17]. Figure 10.9 also shows the limit cycle be-
coming progressively more synchronized in space as time increases, corresponding
to the q = 0 breathing mode.

To explore the possibilities further, we look at the crucial significance of the in-
hibitory synaptic rate-constant, γi, in determining the stability of the cortical model.
An increase in γi to 65 s−1 leads to a stabilization of the stationary states—i.e., the
Hopf bifurcations and limit cycles are removed from Fig. 10.6. In this case a kick
produces no traveling waves—i.e., the existence of the traveling wave (K-complex)
state depends upon having a sufficiently long inhibitory time-constant.
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Fig. 10.9 Excitatory soma potential as a function of time when there is a limit cycle available to
the system. Parameter settings: λ = 1.25, ΔV rest

e =−2.5 mV, γi = 15 s−1. Note how the limit cycle
begins to synchronize in space as time increases. (Reprinted from [21] with permission.)
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10.5.3 K-complex revisited

We return to the situation that produced the single traveling-wave solution which
we identify as a K-complex [21], and explore the response to impulsive kicks of
varying size. In Fig. 10.10 we have summarized the four possible dynamic outcomes
of a voltage kick of given size at a given value of the parameter λ . Where there are
multiple stationary states, we consider the system to be initially on the lower branch.
We set ΔV rest

e = −2.5 mV and γi = 15 s−1, i.e., the stability diagram of Fig. 10.6
applies.

At large λ (corresponding to λ > 1.27), a small kick results in the system moving
to the upper state where the stability is greater. Indeed, for λ > 1.35 (region (d) of
Fig. 10.10), there is no stable lower state, and the system moves spontaneously to
the upper state without any applied kick.

For 1.0 < λ < 1.27 (region (c)) a kick of sufficient size will result in a traveling
wave of the form of Fig. 10.8. Note that the size of the kick is important; if it is
not large enough, the disturbance will rapidly die away rather than propagating over
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Fig. 10.10 Summary of the effect of disturbing the cortical system at one point in space. Parameter
settings: ΔV rest

e = −2.5 mV, γi = 15 s−1. (a) For small kicks, except when the lower branch is un-
stable, the generated disturbance quickly dies away. (b) At low λ , a large kick can result in a large,
localized response (an orbit in phase space similar to Fig. 10.11) but with no propagation away
from the site of disturbance. (c) In the vicinity of the region where there are multiple stationary
states, with the top state being unstable, a sufficiently-sized kick can generate a large disturbance
that propagates as a wave. Note that this can occur even when there is only one stationary state
(e.g., λ=1.0); however the system has to be close to the saddle–node bifurcation. The boundary
between a (c) propagating and (b) nonpropagating disturbance is very distinct. (d) At high values
of λ , a small kick will displace the system onto the upper state, where it will remain. Again, a
distinct boundary separates regions (c) and (d).
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space, as in Fig. 10.7. The required size of the kick reduces as λ increases; the lower
stationary state has become less stable. Note that the boundary between regions (c)
and (d) is very distinct.

For λ < 1.0, no kick can generate a traveling wave. However, a large enough
kick (region (b) of Fig. 10.10) will result in initial local growth of the disturbance,
but one that fails to propagate entirely to other regions. At very low λ , the boundary
between the region of initial growth (b) and of initial decay (a) is quite indistinct;
it is marked on Fig. 10.10 by dashed lines. However, the boundary between regions
(b) and (c) is very sharp.

This abrupt triggering of a K-complex in region (c) can be explained with
reference to the orbits of the spatially-homogeneous system in phase-space. In
Fig. 10.11(a), for ΔV rest

e = −2.5 mV, λ = 1.15, we plot a projection of the trajec-
tories in phase-space of the spatially-homogeneous system. The top graph is for a
small inhibitory synaptic rate-constant, γi = 15 s−1; the bottom graph is for a larger
rate of 65 s−1. All state variables have been started at their equilibrium values except
for Φee and Φii. The equations (10.1–10.8), if written as a set of first-order differ-
ential equations, have fourteen dynamic variables; the two variables that illustrate
the situation most clearly are Φee, the e→e synaptic flux, and Φii, the i→i synaptic
flux. For this reason, these two variables have been plotted here. For the top case,
since there is only one stable solution, all of the trajectories eventually end on the
lower-branch solution (Os in lower left-hand corner). However, looking at the tra-
jectories starting in this vicinity, it is clear that two initial points very close together
can generate manifestly different trajectories in order to return to the single stable
solution. In one case, the trajectory returns quickly to the stable solution of the lower
branch; in the other, first the e→e synaptic flux grows, then the i→i flux, the e→e
flux diminishes, and finally the i→i flux diminishes, and the trajectory returns to the
stable lower branch (Os). This path takes the system around the unstable solution of
the upper branch (Δu in top-right corner). This divergence of trajectories explains
why a tiny increase in the size of the kick (e.g., from region (a) to region (c) of
Fig. 10.10) can result in a very different solution to the dynamical equations.

Why does the numerical simulation produce a traveling wave? Different points in
space are coupled through the ∇2-term of Eqs (10.7) and (10.8). If a single point in
space is kicked from its stable equilibrium onto the trajectory that travels around the
upper branch, as happens in Fig. 10.8, the ∇2 spatial-coupling will pull the neigh-
boring points from their position on the lower stable branch onto this trajectory too.
These in turn influence their neighbors, sending out a traveling disturbance. After
the wave has passed, all points return to the original, lower-branch stable steady
state (Os).

In Fig. 10.11(b) we see the effect of restoring the inhibitory rate-constant to γi =
65 s−1, thereby removing the instability from the upper branch of Fig. 10.6. A large
kick, large enough to take the system past the unstable mid-state (×), will cause the
system to move to the upper stationary state (Δs). This removes the possibility of
producing a K-complex, and instead, a sufficiently large kick, applied to the bottom
branch, results in the system moving directly to the top branch.
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Fig. 10.11 Phase-space trajectories for parameter settings ΔV rest
e = −2.5 mV, λ = 1.15, and (a)

γi = 15 s−1; (b) γi = 65 s−1. Panel (a): Lower, stable stationary state is in the bottom left-hand cor-
ner of the figure (marked “Os”); the unstable upper state in the top-right corner (Δu); the unstable
mid-branch solution is in the center (×). Two trajectories have been started on each of the upper-
and mid-branches—these eventually reach the lower, stable branch (Os). Other trajectories have
been started close to the lower state. Two of these return quickly to this state, but the third, ini-
tially displaced by a very small distance from the first two, exhibits a markedly different trajectory
that loops around the upper state (Δu). We identify this trajectory with a K-complex. The vicinity
of the lower state has been expanded in the subpanel for clarity (but the different starting points
are still indistinguishable). Panel (b): Trajectories have changed markedly with a reduced synaptic
response-time. The stationary states remain in the same positions, but the upper state is no longer
unstable (now marked “(Δs)”). There is no longer divergence of trajectories as in (a). The solid and
dotted lines denote different trajectories leaving the same unstable initial point. (Reprinted from
[21] with permission.)
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10.5.4 Spiral waves

Finally, we remark on another limit-cycle that is available to an oscillatory system,
namely that of spiral waves. These persistent features sometimes can be generated
when a simulation is run through an unstable region of the sleep domain. These
waves are spatially structured states consisting of pairs of counter-rotating spirals.
Figure 10.12 shows a gray-scale plot of Ve(r) at a given time. Specifically, this sim-
ulation involved starting on a stable, upper-branch solution and then, by reducing
λ , moving the system through an unstable region into the region where the lower
branch is stable. These limit-cycles are extremely persistent—to quench them, a
large reduction in λ or ΔV rest

e is required (i.e., a large reduction in excitatory com-
ponent). Experimentally, spirals have been observed in disinhibited cortical slices
[4], and demonstrated in neuron models with no inhibition [4, 13]. However, their
presence in the cortex, and their relationship with states such as epileptic seizures,
is unclear.
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Fig. 10.12 Snapshot of a spiral wave generated by the cortical model (white = high Ve; black =
low Ve). To trigger spiral formation, the system was started on the stable region of the upper branch
(ΔV rest

e = 0.5 mV, λ = 1.75, γi = 33 s−1), then λ was rapidly lowered (over ∼ 7 s) through the
unstable region and into the region where only a single stable state exists. Resulting spiral wave
is extremely persistent, and requires a considerable further reduction in λ to destroy it. (Reprinted
from [22] with permission.)
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10.6 Conclusions

In this chapter we have demonstrated some of the dynamic features associated with a
nonlinear mean-field cortical model. In particular, spatially symmetric limit cycles
are reminiscent of seizure-like states [8, 20], and arise as a result of a delay in
negative feedback through a lengthened inhibitory postsynaptic potential. This delay
may explain of the tendancy of some anesthetic drugs, such as enflurane, to promote
seizures.

For certain parameter sets, traveling waves of activity can be produced. These are
associated with the combination of saddle–node bifurcations and Hopf bifurcations,
and are reminiscent of the K-complexes and slow oscillations of slow-wave sleep.
Such waves can be activated by a point-like disturbance of sufficient magnitude—a
below-threshold disturbance will fail to propagate.

In some limited conditions, spiral waves are generated. These are extremely per-
sistent once established. The biological significance of such waves is not entirely
clear, although, in general, the ability of a 2-D nonlinear system to produce spiral
waves is not surprising.
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Chapter 11
Phase transitions, cortical gamma, and the
selection and read-out of information stored in
synapses

J.J. Wright

11.1 Introduction

This chapter attempts a unification of phenomena observable in electrocortical
waves, with mechanisms of synaptic modification, learning and recall. In this at-
tempt I draw upon concepts advanced by Freeman and colleagues, and on studies
of the mechanism of gamma oscillation in cortex, and of synaptic modification and
learning. I use a recently published system of state equations, and numerical simu-
lations, to illustrate the relevant properties.

In Walter Freeman’s early work [12, 21], he derived pulse-to-wave and wave-
to-pulse conversion equations, and described ensembles of neurons in “K-sets”. In
recent work [4, 13–20, 22], he has sought a widely embracing theory of perception
and cognition by integrating a body of intermediate results, revealing the occur-
rence of sequential, transiently synchronised and spatially organized electrocortical
fields, occurring in the beta and gamma bands, and associated with traveling waves
organized into “phase (in the Fourier sense) cones”. The origin of these phenom-
ena he and colleagues associate with “phase (in the thermodynamic sense) transi-
tions” in cortical neural activity, marked by signatures in Hilbert-transformed ECoG
(electrocorticogram)—termed “phase (in the Fourier sense) slip” and “null spikes”.

Freeman’s work has features in common with other theoretical approaches [2, 3,
5, 63] but has most in common with those described as mean-field, continuum, or
population approximation [26, 41, 66, 68, 75], and is thus in line with the simulation
results to be described below.

A large body of other work [7, 8, 11, 23–25, 37, 40, 53, 54] also indicates that
gamma oscillation and synchronous oscillation are of central importance. The per-
suasive link for physiologists, whose emphasis is onunit action potentials, is the
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finding that field potentials and pulse activity are strongly correlated in the gamma
frequency band [57]. Yet the mechanisms of origin and the control of gamma os-
cillation are not fully determined. During gamma oscillation an average lead-vs-lag
relation exists between local excitatory and inhibitory cells, as predicted by Freeman
[12] and subsequently experimentally observed [27]. Recent analyses of the cellu-
lar dynamics [38] conclude that recurrent inhibition from fast-spiking inhibitory
cells is largely responsible for maintaining the rhythmic drive—but the role played
by excitatory processes in modulating or driving the oscillations remains undeter-
mined. Since cortical networks form a dilute and massively interconnected network,
a satisfactory explanation for gamma activity and synchrony should not only con-
sider local dynamics, but also explain the onset and offset of gamma activity in
relation to events at more distant sites and at larger scale in the brain, including cor-
tical regulation mediated via subcortical mechanisms. Without clarification of these
mechanisms it remains difficult to define the link of gamma activity to information
storage, retrieval and transmission, and between thermodynamic and cognitive or
informational perspectives.

There are also theoretically important relations of synchrony to information stor-
age and retrieval [32, 33, 44, 67] including recent considerations of synaptic self-
organization [72, 73]. These models relate directly or indirectly to wave aspects of
cortical signal transmission [8, 9, 29, 37, 45–51, 56, 69, 75]. The present chapter
attempts to make these links more explicit, by drawing upon properties demon-
strated in a continuum cortical model. Properties of the simulations have been pre-
viously reported [70, 71]. A single parameter set obtained a priori is used to repro-
duce appropriate scale-dependent ECoG effects. Receptor dynamics of three ma-
jor neurotransmitter types and effects of action potential retrograde propagation
into the dendritic tree are included, although these features are inessential to the
minimalist goal of replication of the ECoG. However, their inclusion assists in link-
ing field properties to information storage and exchange, which is the principal mat-
ter to be further explored in the present chapter.

11.2 Basis of simulations

Figures 11.1 and 11.2 show the context of the simulation in relation to qualitative
physiological and anatomical features. Crucial anatomical aspects in Fig. 11.1(a)
are the local interaction of excitatory (pyramidal) and inhibitory cells in the cortical
mantle and extension of the pyramidal tree into the upper cortical layer, to receive
nonspecific afferents, while Fig. 11.1(b) sketches the interaction of the cortex with
subcortical systems, over recurrent polysynaptic pathways, to regulate the spatial
pattern of cortical activation, and hence attentional state [1].

Figure 11.2 indicates microscopic features, and a block diagram of connections,
captured in the state equations.

Figure 11.3 shows graphically the steady-state functions, and unit-impulse re-
sponse functions associated with the simulation parameters. For ease of presenta-
tion, the state equations themselves are given in the Appendix (Sect. 11.6.1).
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LFP
EEG

(a) (b)

Fig. 11.1 [Color plate] Anatomical aspects of the model. (a) Excitatory (red) and inhibitory (blue)
cells in the cerebral cortex. (b) Major cortical and subcortical interactions mediated by descending
(blue) and ascending (red) connections. (Reproduced from [71] with permission.)

11.3 Results

11.3.1 Nonspecific flux, transcortical flux, and control of gamma
activity

The simulation’s state equations and parameter set have the advantage that they can
be applied consistently in simulations at two scales—that of a unit macrocolumn
about 300 μm across [39]—or that of cortex at the scale of many centimeters, up to
the size of the human cortex. In this model, gamma oscillation is defined by anal-
ogy to properties of physiological gamma, and comparison of properties at the two
scales permits the local effects and the distant influences upon gamma oscillation
to be discerned. Effects of parameter variation show that the onset and offset of
gamma is subject to variation of all influences upon the excitatory and inhibitory
balance, but chief among those influences is the finding that nonspecific flux (NSF)
and transcortical flux (TCF) exert opposite effects upon the onset and offset of au-
tonomous gamma oscillation.

At centimetric scale, where longer physiological conduction delays are applied,
there is a persistence of stability to higher levels of NSF, in contrast to the macro-
columnar case, with its shorter axonal conduction delays. The two scales of simu-
lation yield a consistent result: increasing levels of uniform NSF over wide extents
of cortex suppress the onset of gamma activity. This action of NSF is mediated
secondarily by the spread of TCF, which acts upon both excitatory and inhibitory
compartments. In contrast, the action of focal NSF, as observed in the macrocolumnar-
scale simulations, is to trigger gamma activity, as is next described.
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Fig. 11.2 State equations capture the features indicated in descending rows of the figure. (a) Mass-
action interaction of neurotransmitters and receptors, thus regulating the opening and closing of ion
channels; (b) consequent ionic flux in postsynaptic dendritic membrane; (c) dynamic variation in
synaptic weights, consequent to changes in relative and absolute depolarisation of synapses in the
proximal and distal dendritic trees, induced by back-propagation of action potentials; (d) cortical
architecture, shown in one row of a square array of elements, as blocks of excitatory (e) and in-
hibitory (i) cell groups and axo-synaptic linkages. Site of action of the reticular activation system,
on e-components only, is indicated as NSF (nonspecific flux); the lateral spread of excitatory sig-
nals to both e- and i-components is indicated as TCF (transcortical flux). (Reproduced from [70]
with permission.)

11.3.2 Transition to autonomous gamma

Figure 11.4 quantifies the inverse actions of NSF and TCF on the transition to
gamma in a macrocolumnar element. It can be seen that the mean value of cell
firing increases with NSF, with little sensitivity to TCF. In contrast, over an operating
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(b)(a)

(d)(c)

(f)(e)

Fig. 11.3 Steady-state and unit-impulse response functions associated with the simulation pa-
rameters: (a) normalised receptor time responses; (b) receptor steady states; (c) normalised post-
synaptic membrane time responses; (d) postsynaptic membrane steady states at φp = 20 s−1; (e)
normalised dendritic tree delays; (f) action potential generation. (Reproduced from [70] with per-
mission.)

range of NSF, increasing TCF suppresses autonomous gamma, offering a mecha-
nism for negative feedback between concurrently active patches of cortical gamma
oscillation. From lag correlations between the pulse densities of the excitatory and
inhibitory compartments of a single element, a measure, Θ = 2π |�+|/(|�+|+ |�−|),
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(c)(b)(a)

NSF

NSF

Fig. 11.4 Gamma oscillation as a function of transcortical flux (TCF) and and nonspecific flux
(NSF) for macrocolumnar-scale simulations. (a) Mean value of pulse rate in excitatory cells; (b)
variance of pulse rate (oscillation power) in excitatory cells; (c) relative phase-lead, Θ , for excita-
tory vs inhibitory oscillations. (Modified from [70].)

where |�+| and |�−| are the respective lags from zero in the leading and lagging
direction to the first peaks in the lag correlation function, was calculated. This mea-
sure shows that as the threshold of gamma oscillation is approached, excitatory and
inhibitory compartments exhibit lagged correlation over a critical, threshold, range
of NSF and TCF. As threshold is exceeded, excitatory and inhibitory compartments
begin to fire in phase.

11.3.3 Power spectra

Macrocolumnar scale

Figures 11.5(a, c) show the impact of reciprocal variation of NSF and TCF on the
spectrum of gamma oscillation. In all conditions, the spectrum is strongly peaked
near the gamma range, with variation from the high-beta range to the high-gamma,
with both gamma and high-gamma (∼100 Hz) activity being seen above transition.
There is no evidence of a 1/ f 2 spectrum at this scale.

Centimetric scale

Figures 11.5(b, d) show that at centimetric scale and low NSF, a 1/ f 2 spectrum is
apparent, and this is greatly enhanced in amplitude when the system is driven by
low frequency modulations. As NSF is increased, resonance in the gamma band
increases.

11.3.4 Selective resonance near the threshold for gamma
oscillation

Figures 11.5 (a, c) show that the spectral form of simulated gamma varies system-
atically above and below the threshold of transition. To study spectra nearer the
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(a) Macrocol: Varying TCF (b) Centimetric: Varying NSF

(c) Macrocol: Varying NSF (d) Centimetric: Varying NSF
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Fig. 11.5 Log-log plots of power spectra at macrocolumnar and centimetric scales. (a) and (c):
Macrocolumnar scale; upper groups of lines indicate spectra associated with spontaneous oscil-
lation; lower groups of lines indicate spectra for damped resonance. (a) NSF set at 141 s−1; TCF
stepped through values 0, 5, 10, 15, 20, 25, 30 s−1, for spectra in order of decrementing power at
lowest frequencies. (c) TCF set at 15 s−1; NSF stepped through values 0, 28.2, 56.5, 85, 113, 141,
169 s−1, for spectra in order of incrementing power at lowest frequencies. (b) and (d): Centimetric
scale; NSF was set to 0, 8, 16 s−1 in order of decrementing power at lower frequencies. (b) Syn-
chronous white-noise input to all elements in the driven row. (d) Driving noise band-limited from
0.002 to 0.954 Hz. Dotted line shows least-squares linear best-fit, with slope −2.07. (Modified
from [70].)



250 Wright

transition, power spectra were computed as transition was approached, by applying
near-critical levels of NSF. Figure 11.6 shows a representative outcome at macro-
columnar scale, with TCF = 15 s−1 applied. (Similar results were found at all levels
of applied TCF.) It can be seen that as threshold is approached, a broad spectrum
centred in the gamma range becomes supplemented by a sharper peak, also in the
gamma range. Comparison against the upper curves of Figs. 11.5 (a) and (c) in-
dicates how the sharp gamma peak of sustained oscillation is supplemented by a
harmonic in the high gamma range.
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Fig. 11.6 Power spectral response as transition to autonomous gamma activity is approached
macrocolumnar scale). Spatiotemporal white noise delivered to all excitatory cell components.
ETF = excitatory transition fraction (the fraction of NSF input required to reach threshold for
spontaneous oscillation). Solid lines: excitatory compartment; dotted lines: inhibitory compart-
ment. (Reproduced from [71] with permission.)
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Figure 11.7 shows firing-rate covariance and phase differences, for centimet-
ric scale, between the excitatory and inhibitory cell continua, during the transi-
tion from damped gamma oscillation to autonomous gamma. It can again be seen
from the top graph how system sensitivity to small noise inputs increases markedly,
while a sharp change in excitatory/inhibitory phase relations characterises the tran-
sition, after a premonitory gradual increase in phase difference as transition is
approached.
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Fig. 11.7 Excitatory/inhibitory covariance and phase relations (centimetric scale) as transition
to gamma oscillation is approached and exceeded. Qns is the level of nonspecific flux (NSF).
(a) Zero-lag cross-power of excitatory and inhibitory firing rates at (row-10, col-10) on the cor-
tical sheet; (b) Qe vs Qi phase-difference calculated as in Sect. 3.2.

11.3.5 Synchronous oscillation and traveling waves

Two points on a simulated macrocolumn were driven with independent white-noise
inputs. Figure 11.8 shows lag covariance between excitatory compartments in two
reference elements, adjacent to each of the two driven elements. Amplitudes of the
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(a) Below threshold (1:4) (b) Below threshold (1:1) (c) Below threshold (4:1)
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Fig. 11.8 Pulse density covariance versus conduction delay in a macrocolumnar simulation with
TCF = 0 s−1. Asynchronous white-noise inputs are delivered to each of two elements, situated at
(row, col.) = (10, 16) and (10, 10); lag covariances are computed between elements adjacent to the
sites of input. RMS amplitudes of the input signals are in the ratios 1:4, 1:1, 4:1. Top row: Traveling
waves apparent below threshold of oscillation (NSF = 61 s−1). Bottom row: Synchronous fields
apparent above threshold of oscillation (NSF = 124 s−1). (Modified from [70].)

pair of inputs were adjusted in different runs so that the effect of reversing the ratio
of the input amplitudes could be determined.

Below threshold of oscillation, variation of the input amplitudes results in lead
and lag between the reference elements, consistent with the passage of traveling
waves outwards from the sites of input, while zero-lag synchrony is generated when
the input magnitudes are at parity. In the presence of strong oscillation, synchrony is
widespread and there is no detectable occurrence of traveling waves despite dispar-
ity of input magnitudes. Similar effects appear at centimetric scale except that the
lag times of maximum covariance are correspondingly greater, due to the greater
axonal conduction lags at the larger scale.

11.4 Comparisons to experimental results, and an overview of
cortical dynamics

The limited two-scale results, with their static restraints on NSF and TCF, taken
in combination with results from related simulations [9, 47, 48, 74, 76], are con-
sistent with a wide range of experimental findings. The simulation results do not
include peaked resonances at the theta, alpha and beta rhythms, the representation
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of which requires incorporation of a model of the thalamus [48, 50, 59]. A fuller
model would also require consideration of spatiotemporal variation of NSF and
TCF.

11.4.1 Comparability to classic experimental data

Simulation results show a good match to widely observed electro-cortical phenom-
ena, despite experimental uncertainties in the values of many parameters, and the
use of simplified cortical architecture. The 1/ f 2 background spectrum and the res-
onance peaks are in accord with EEG in a number of species [8, 18, 43]. The pre-
dominance of the 1/ f 2 background when very low frequency inputs are introduced
mimics the slow fluctuations in cortical activation associated with variation of the
field of attention [1]. There is good correspondence with gamma activity including
increasing covariance of pulses and waves as autonomous oscillation is approached
[57], and pulse rates accord with those found in awake cortex [55]. Simulation prop-
erties shared with related simulations [74], mimic the classic synchrony findings of
moving visual-bar experiments [11, 24].

11.4.2 Intracortical regulation of gamma synchrony

It appears that both local and global factors contribute to the control of gamma
activity. Locally, all influences on excitatory/inhibitory balance determine specific
patterns of firing, while globally the balance of excitatory tone to the excitatory
and inhibitory components appears crucial to triggering, and suppressing, gamma
activity. A principle aspect of this global control is apparent when it is recalled
that NSF was delivered to excitatory cells only, while TCF was delivered to both
excitatory and inhibitory components.

A general account of gamma activity and information transfer in the cortex can
be advanced by placing the simulation findings at the two scales in their anatomical
contexts, as shown in Fig. 11.1. Cortical/subcortical interactions produce a chang-
ing pattern of NSF inputs to the cortex, mirrored in the 1/ f 2 background, and facil-
itating specific spatially organized transitions into autonomous gamma. Patches of
autonomous gamma activity inject information into the wider cortical field, leading
to the generation of fresh synchronous interactions. Linkages between excitatory
cells—including voltage-dependent transmitters—link together patches of gamma
activity in synchronous fields, whereas long-range excitatory flux to both excita-
tory and inhibitory cells (TCF) acts to suppress gamma oscillation, as is shown by
the results in Fig. 11.4, (a) and (b), allowing the cortex to self-regulate the onset
and offset of gamma activity in complex patterns. The spatial patterning of corti-
cal activation, itself largely controlled by frontal and limbic connections [1], acts to
favor particular synchronous fields, thus permitting a large set of possible states of
attention. The inclusion of other, slower, cortical resonances in the theta and alpha
bands, imposed upon the continuous interaction of time-varying synchronous fields,
may be expected to lead to a shutter-like intermittency—as proposed in Freeman’s
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cinematographic mechanism of perception [17]. The results in Figs. 11.5 and 11.6
show that, near transition levels of NSF, spectral tuning of gamma resonance be-
low threshold, and the spectrum of autonomous gamma above threshold, are well
matched, favoring selective information transfer among patches of gamma activity,
even if widely separated.

Results in Fig. 11.4(c) are broadly in accord with Freeman’s hypothesis of the
origin of gamma [12], and help to explain experimental data on inhibitory/excitatory
phase relations in gamma [27, 38]. However, these results suggest that gamma oscil-
lation is not merely a simple pendulum-like to-and-fro exchange of excitatory and
inhibitory pulses. While phase-lagged activity occurs at intermediate states of exci-
tatory tone, both at low levels of excitation and in states of autonomous oscillation,
the excitatory and inhibitory components move into a stable phase relationship with
each other. Thus, in the alert state, cortex may be normally poised near transition
to oscillation, and sharp changes of excitatory/inhibitory relations may occur when
the cortex moves into a locally autonomous mode. Fig. 11.7 emphasises the sudden
change of phase at the transition—a change which is literally a “phase slip” (see
below). This is consistent with Freeman’s concepts of gamma activity as akin to
thermodynamic phase transitions—although it is problematic whether phase transi-
tion in the formal thermodynamic sense is wholly applicable to a process involving
alternation between a linear stochastic state and a nonlinear oscillating state.

11.4.3 Synchrony, traveling waves, and phase cones

The results shown in Figure 11.8 highlight the relationship between traveling waves
and synchronous fields by showing that the apparent direction of travel of the waves
depends on both the relative magnitude of signal inputs at any two cortical sites
and whether or not autonomous, co-operative, oscillations have developed. Directed
waves predominate at low levels of cortical excitation, but are no longer observ-
able when swamped by a large zero-lag field as autonomous oscillation supervenes.
These effects arise because intersecting cortical traveling waves exhibit annihila-
tion of their anti-phase (odd) components and superposition of their in-phase (even)
components [9], resulting in synchrony between equally co-active and reciprocally
linked points, generated in times nearly as short as the one-way axonal conduction
delay. Waves not intersecting with other co-active sites continue to propagate as
pure traveling waves. Figure 11.9 shows the basis of synchrony as a consequence of
superposition and cancelation of waves.

The roughly equal numbers of inwardly directed, and outwardly directed radi-
ating waves, identified as phase cones by Freeman and colleagues [13–16, 18, 19],
may be the two-dimensional equivalents of the unidirectional traveling waves shown
in Fig. 11.8. This interpretation arises from consideration of the self-similar tempo-
ral character of the 1/ f 2 background, along with the multicentric variations of NSF
supposed to arise from cortical/subcortical interactions. Experimentally and the-
oretically, electrocortical waves are approximately nondispersive and self-similar
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Fig. 11.9 [Color plate] Top row: First and second spatial eigenmodes of waves in a simulated
cortical field [33] driven by two independent white-noise time-series of equal variance, applied at
the points marked in (a) with red dots. Bottom row: A freeze-frame of motion associated with each
eigenmode, showing that the dominant mode (c) arises from summation of inputs of even char-
acter at all dendritic summing junctions, while the minor eigenmode (d) arises from reciprocally
canceling components.

[13, 43, 77], so there may be self-similarity, or at least considerable spatial com-
plexity, in the fields of autonomous gamma triggered by continuous variation in
perception and attention. Depending upon both their scale and position relative to
recording electrodes, the fields of synchrony and traveling waves being continually
generated and suppressed may be registered as phase cones with traveling wave
components radiating either inwards or outwards, as is shown in Fig. 11.10. As-
sociation of traveling waves with transient synchronous fields, cone generation at
frequencies corresponding to the cerebral rhythms, variation of cone size, origina-
tion at multiple foci, association with phase velocities less than, or of similar mag-
nitude to, the conduction velocities of cortical axons, all follow as consequences,
and accord with the experimental results. Synchrony, traveling waves, and phase
cones.

11.4.4 Phase transitions and null spikes

In recent works Freeman and colleagues [17, 19, 20, 22] have drawn attention to
the occurrence of behaviorally linked episodes in ECoG in which analytic power,
measured by computing the Hilbert transform, drops to zero, accompanied by a
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Fig. 11.10 Outwardly- and inwardly-radiating waves generating phase cones. Gray concentric
circles represent cortical fields of synchronous oscillation, generated at two scales in a self-similar
field of transitions to and from autonomous gamma. Contour lines of similar phase mark average
radiation of traveling waves (a) outward, or (b) inward, in surrounding subthreshold field. (Repro-
duced from [71] with permission.)

sharp step in the accompanying analytic phase. These events they term “null spike”,
and “phase slip”, respectively, and have considered these to be markers of phase
transition, in the thermodynamic sense. They also draw attention to the occurrence
of similar null spikes in brown noise as a purely random event [22], so it remains
uncertain why these apparently random events may be behaviorally linked, and what
the association with phase transition actually is.

Figure 11.11 indicates schematically how null spikes and phase slips may be
systematically linked to transitions into autonomous gamma activity. The peak of
the inverted “Mexican hat” represents a focus on the cortex, which is undergoing
a transition into autonomous gamma activity. The spreading transcortical flux sta-
bilizes the surrounding cortex, suppressing oscillation or excursion of the ECoG
without significant effect on the average firing rate, as shown in Figs 11.4(a) and
(b). This suppression will have the effects of lowering the amplitude, and of reduc-
ing the ECoG voltage towards its mean value over time—making zero-crossings
of the time-base more likely. At the same time, any ECoG signal recorded from
the burst of gamma oscillation occurring at the site of transition may exhibit brief
epochs in which the form of the signal is symmetrical about some point in time.
These signal characteristics, whether occurring concurrently or not, are each likely
to produce an analytic null spike, which therefore has a somewhat ambiguous char-
acter since similar events may occur at random. A similar ambiguity may pertain for
a phase slip, which might reflect merely the inaccurate calculation of phase near a
zero-crossing, or may indicate a sharp change of state like the change from damped
resonance to autonomous oscillation. A simple mathematical justification for these
deductions is given in the Appendix (Sect. 11.6.2).
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Fig. 11.11 Transition to autonomous gamma, and circumstances combining to favor the occur-
rence of null spikes and phase slips, measured from ECoG. (a) Schematic representation of the
impact of a focus of autonomous gamma, suppressing oscillation in the surrounding field via TCF.
(b) ECoG of the surrounding field. Zero-crossing in Gaussian noise favored by the spreading TCF.
Zero-mean stochastic background (1/ f 2 noise) favors H(u)(t) = 0 (subject to variation in the
time-series sampled). (c) ECoG close to the focus of transition to autonomous gamma. Transi-
tion to oscillation with recurrent, time-symmetric character favors H(u)(t) = 0, with or without
associated zero-crossing. (Reproduced from [71] with permission.)

11.5 Implications for cortical information processing

Preferential selection for input signals in the gamma range as patches of cortex
approach transition, and the spectral similarity of the (relatively nonlinear) oscil-
lations in the gamma range, offer a mechanism for tuned information exchange
in cortex. The shift to coherent phase relations between excitatory and inhibitory
cells, and facilitation of synapses in the far dendritic trees as autonomous gamma
is generated, which would permit the ordered readout of information stored in the
distal dendritic tree (see Fig. 11.12) while the specific set of inputs sensed in the
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Fig. 11.12 [Color plate] Selection and recall of stored information. (a) Average neuronal state in
stochastic background firing conditions. Pyramidal cells (red) are principally susceptible to inputs
in the proximal dendritic tree. Inhibitory surround cells (blue) fire with variable timing relative
to pyramidal cells. (b) Ordered neuronal state during gamma oscillation. Backpropagating action
potentials block proximal synapses. Inhibitory and excitatory cells fire in phase. Synapses of distal
dendritic trees mediate spatial and temporal patterns of synchronous oscillation.

proximal dendritic trees would select particular spatiotemporal patterns of syn-
chronous oscillation. These patterns could be very complicated and various, as
they draw on synaptic connections in the distal dendritic trees, which are effec-
tively silent until they are brought into play by proximal synapses, which were
themselves activated by distant fields of synchronously active cells. The transient
synchronous fields, and the traveling wave patterns, can therefore be treated as the
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signatures of changes of state in a finite state machine. This raises the important
question of whether these dynamic properties can be linked to processes modify-
ing individual synapses, to provide a general model of learning and memory, inte-
grating cognitive activity at both individual cellular and populations scales in the
brain.

Recent studies on synaptic modifications in hippocampal cells [31, 64, 65] have
led to a distinction between synapses in the proximal dendritic tree, and those in the
distal dendritic tree. Those of the proximal tree appear to follow a version of the
Hebb rule in which synaptic gain is increased if presynaptic activity precedes post-
synaptic, and is decreased if postsynaptic precedes presynaptic. This corresponds
to a strengthening of input patterns mediated by one-way transmission—i.e., travel-
ing waves. A second rule, termed the spatiotemporal learning rule (STLR) has been
found to apply to the distal dendritic tree, where synapses appear little affected by
the postsynaptic state, but mutually facilitate consolidation in neighboring, and co-
active, synapses thus favoring the establishment of synapses linking cells engaged
in synchronous activity.

The STLR and modified Hebb learning rules correspond in turn to distinctions
made in the Coherent Infomax theory advanced by Kay and Phillips and col-
leagues [32, 33, 44]. This theoretical model also distinguishes two types of synaptic
connection—CF connections which are assumed to mediate synchronous activity
in adjacent cells, and RF connections, originally named to correspond to recep-
tive field inputs in the visual cortex, but also applicable to any other feed-forward
connections. Thus, CF and RF might be equated with synapses on the distal and
proximal dendritic trees respectively. Kay and Phillips show that such a network
can maximize the storage of information of both individual features transmitted by
RF connections, and mutual information transmitted by CF connections, in multiple
RF streams. They then show the consolidation of learning requires a learning rule
similar to the Hebb rule (although not identical), but can proceed only under the
influence of an activation function. The activation function requires that CF activ-
ity alone is not sufficient for learning to take place to learn contextual information:
cells must be activated by RF connections as well as receiving CF input. Kay and
Phillips identify this effect—similar to a gain control—to voltage-sensitive chan-
nels of the NMDA type. The idea of activation of the distal dendritic tree by back-
propagating action potentials offers a more general mechanism for gain control.
Applying the Coherent Infomax concept to more realistic neuronal models, the Rel-
evant Infomax model advanced by Kording and Konig [34] also invokes the effect
of back-propagation in the dendritic tree, and distinguishes synapses which largely
determine firing from those that gate plasticity—a concept somewhat different from
that advanced here.

At present it has not been demonstrated that the physiologically appropriate
learning rules and the Coherent Infomax principle can be successfully transplanted
to the dynamical model described here. Although the analogies seem clear enough,
the information-theoretic ideas have as yet been applied only to small “toy” neuron
sets. However, if the concepts do hold for more complex dynamics and connection
systems, then a theoretical model of optimised contextual learning, the release of
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complex spatiotemporally organized and stored memory sequences, and their rela-
tion to electrocortical fields, may be practicable in future.

Acknowledgments The author thanks Nick Hawthorn, Paul Bourke, Alistair Steyn-Ross, and
Yanyang Xu for their help, and the Bioengineering Institute of the University of Auckland for
computing resources.

11.6 Appendix

11.6.1 Model equations

Conventions

State variables are average membrane potentials, Vp,q(r, t), pulse densities, Qp,q(r, t),
and afferent synaptic flux φp,q(r, t). To enable a compact representation, the sub-
scripts p,q = e, i indicate either excitatory (e) or inhibitory (i) neuron popula-
tions, while qp indicates synaptic connections from p to q. Superscripts [R] =
[NDMA], [AMPA], [GABAa] indicate neurotransmitter receptor types. State equations
are steady-state functions of state variables, and lag-response functions in τ = nδ t,
where δ t is the time-step, and n = 1,2, . . . Lag-response functions are normalised
so that

∫ ∞
0 f (τ)dτ = 1.

Parameter values and references to their derivations are given in Wright (2009)
[70, 71] and are based upon largely independent primary and secondary sources
[5, 6, 10, 28, 30, 35, 36, 39, 41, 42, 45–47, 52, 55, 58, 60–62].

Afferent synaptic flux

The distribution of the neuron cell bodies giving rise to afferents at a cortical point,
r, is f (r,r′), where {r′} are all other points in the field. Connection densities are
reciprocal for all {r,r′}. The afferent flux density, φp(r, t), the population average
input pulse rate per synapse, is given by

φp(r, t) =
∫ ∞

0
f (r,r′)Qp(r, t −|r− r′|/vp)d2r′ , (11.1)

where Qp(r, t) are mean pulse rates of neurons at r′, at t, also termed pulse density,
and vp is the velocity of axonal conduction. Here, f (r,r′) describes intracortical and
cortico-cortical connections, approximated as Gaussian [6]:

f (r,r′) =
1

2πγ2 exp
(−|r− r′|2 /2γ2) , (11.2)

where γ is the standard deviation axonal range. Equation (11.2) can be applied sep-
arately to the short intracortical excitatory and inhibitory fibers, and to the long
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range, wholly excitatory, cortico-cortical connections. Steps necessary to compute
depolarization as a function of afferent flux density (see Eqs. (11.10) and (11.11))
and the subsequent regeneration of pulses (Eq. (11.12)) are next described.

Transcortical flux (TCF) and nonspecific flux (NSF)

A major distinction is made between the afferent synatic flux transmitted by cortico-
cortical fibres, here termed the transcortical flux (TCF; see Fig. 11.2), and excita-
tory synaptic flux delivered wholly to the excitatory cortical cells, from the reticu-
lar activation system, and termed nonspecific afferent flux (NSF; see Fig. 11.2). In
the macrocolumnar-scale simulations, NSF is introduced by adding a given value
of synaptic flux, in spikes per second, weighted by Nee,ns/NTOT, the fraction of
synapses per excitatory cortical cell attributable to subcortical afferents, to Qe(r, t),
the pulse densities of the excitatory cells.

Synaptic receptor dynamics

The postsynaptic impact of φp(r, t) is modified by changes in the conformation of
ion channels. The open-channel steady state is

J[R](φp) = exp
(
−λ [R]φp

)
φp , (11.3)

and Φ [R](τ) describes the rise and fall of receptor adaptation to a brief afferent
stimulus

Φ [R](τ) =
[
∑
n

B[R]
n /β [R]

n −∑
m

A[R]
m /α [R]

m

]−1

×[
∑
n

B[R]
n exp

(
−β [R]

n τ
)
− ∑

m
A[R]

m exp
(
−α [R]

m τ
)]

, (11.4)

where {λ [R],B[R]
n ,A[R]

m ,β [R]
n ,α [R]

m } with m,n = 1,2,3 . . ., are derived from transmit-
ter/receptor models.

Postsynaptic membrane gain

Afferent synaptic flux, modified by synaptic adaptation, generates a change in aver-
age membrane potential, Vq, with a steady state solution

M[R](Vq,φp) = g[R]
p

(
V rev

p −Vq

V rev
p −V [0]

q

)
J[R] . (11.5)
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Here, g[R]
p is the synaptic gain at resting membrane potential, V rev

p is the excitatory

or inhibitory reversal potential, and V [0]
q is the resting membrane potential. Since Vq

and φp are serially-dependent state variables, Vq(t) must be substituted by Vq(t−δ t)
in computation.

Dendritic time- and space-response

The rise and fall of postsynaptic membrane potential at the sites of synaptic input is
given by,

Ψ [R](τ) =
aqpbqp

bqp −aqp
(exp[−aqpτ]− exp[−bqpτ]) , (11.6)

where {aqp,bqp} are constants. Postsynaptic depolarization, transferred by cable
effects, reaches the action potential trigger points after delays which are greater
from synapses in the distal dendritic trees that from proximal dendritic trees. The
relative magnitudes of depolarization reaching the trigger points over a spread of
arrival times is given by,

L j(τ) = A j exp[−A jτ] . (11.7)

The A j are constants, and j = n, f indicates relationship to the near or far dendritic
trees respectively.

Effects of action potential back-propagation

At the release of an action potential, anterograde and retrograde propagation takes
place, the latter depolarizing the membrane throughout the proximal dendritic tree
[58]. It is assumed that when the neuron is fully repolarized, the greatest weight
in the generation of a subsequent action potential can be ascribed to activity at the
near synapses, because of their weighting by proximity to the axon hillock. On the
release of an action potential, the near synapses become reduced in efficacy to zero
during the absolute refractory period, and the distal synaptic trees become partially
depolarized, so that determination of whether or not a subsequent action poten-
tial is generated at the conclusion of the relative refractory period is then relatively
weighted toward activity at the far synapses.

The fractions of neurons An,A f , having respective biases toward activation from
the near or far dendritic trees, are

A f (t) = Qq(t)/Qmax
q , (11.8)

An(t) = 1 − Qq(t)/Qmax
q , (11.9)

where Qmax
q is the maximum firing rate of neurons and reflects the refractory period.
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Fractional distributions, rn[R] + r f [R] = 1, of postsynaptic receptors of each type,
differ in near and far trees, so back-propagation also influences the efficacy of re-
ceptor types, and the voltage dependence on NMDA receptors requires that they be
considered as essentially components of the distal tree, with r f [NMDA] = 1.

Aggregate depolarization

The voltage at the trigger points for action potential generation, ψq, is obtained
by convolution and summation over the receptor types, excitatory/inhibitory cell
combinations, and fractions of quiescent and recently active cells, weighted by the
average number of synaptic connections between cell types, Nqp,

ψq(t) = ∑
p

∑
j
∑
[R]

NqpA jr j[R]
((

(M[R] ⊗ Φ [R]) ⊗Ψ [R]) ⊗L j
)

, (11.10)

where ⊗ indicates convolution in time. In the population average,

Vq(t) ≈ V [0]
q +ψq(t) . (11.11)

Equation (11.11) establishes Vq(t −δ t) for the next time-step in Eq. (11.5).

Action potential generation

From Eq. (11.11), the mean firing rate is calculated from

Qq(t) = Qmax
q /(1+ exp[−π(Vq −θq)/

√
3σq]) , (11.12)

yielding the pulse densities of neurons required in Eq. (11.1). Here, θq is the mean
value of of Vq at which 50% of neurons are above threshold for the emission of ac-
tion potentials; and σq approximates one standard deviation of probability of emis-
sion of an action potential in a single cell, as a function of Vq. For a comparison with
standard EEG and local field potential (LFP) data, we also assume LFP ≡Ve(t).

Application at mesoscopic (macrocolumnar) and macroscopic (centimetric)
spatial scales

The above equations are applied numerically in spatially discrete form, in a 20×20
grid of “elements”, with periodic boundary conditions. Each element of the grid is
situated at position r, surrounded by other elements at positions {r′}, coupled as in
Eq. (11.1) with delays, δp = |r−{r′}|/vp, and f (r,{r′}) chosen as the sum of two-
dimensional Gaussian distributions of connections, each Gaussian term appropriate
to intracortical and cortico-cortical connections, of excitatory and inhibitory types.
The grid can be used to represent the cortex at any chosen spatial scale, by applying
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a physiologically appropriate value for vp, and setting excitatory/inhibitory axonal
connection ranges appropriate to scale. Two configurations are used:

• a centimetric scale, which treats inhibitory and short intracortical connections as
local to each element, with cortico-cortical connections linking elements. Non-
specific afferent flux (NSF) is applied uniformly to all excitatory elements, and
thus provides a single control parameter;

• a macrocolumnar scale, which connects elements together by both intracortical
excitatory and inhibitory connections, forming a “Mexican hat” connection field
of approximately 300-μm diameter. At this scale, no cortico-cortical connec-
tions are represented explicitly. Instead, the transcortical flux is introduced as a
spatially uniform input to all elements of the simulation. Thus, at macrocolum-
nar scale, there are two control parameters—the nonspecific flux (NSF), and the
transcortical flux (TCF).

Numerical considerations

Simulation time-step was 0.1 ms. Individual simulation runs were considered to
have reached a statistically stationary state at t = 200 s after initialization with state
variables set to zero. The final 0.8192 s of each simulation run was used to determine
whether the final state was steady state (negligible power other than at DC) or one
of oscillation. Single runs were used for all estimates in which external noise was
not applied. With the application of noise-like driving signals, ensembles of ∼100
independently obtained 0.8192-s final epochs were analyzed for all spectral and
correlation analyses. Noise inputs were applied as zero-mean signals added to the
applied constant values of NSF, and unless otherwise stated, were applied to the
top row (row-0) of the simulated grid of units, while excitatory cell potentials were
recorded from the element at row-10, column-10.

Simulated gamma oscillation was defined as oscillation with a peak frequency in
the 30–60-Hz band, associated with a threshold reached with increasing NSF pro-
ducing transition from a static steady-state (in the absence of noise) or dampened
oscillation (in the presence of driving noise), to an autonomous oscillation, with the
transition occurring below a mean excitatory firing rate of 20 s−1, and not associ-
ated with excursions of membrane potential encountering reversal-potential bounds.
Normal firing patterns of cortical neurones other than gamma were equated with
stochastic background and identified with the simulation’s non-oscillating states.

11.6.2 Hilbert transform and null spikes

The Hilbert transform is given by

H(u)(t) = − 1
π

lim
ε ↓ 0

∫ ∞

ε

u(t + τ ′)−u(t − τ ′)
τ ′

dτ ′ , (11.13)
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where u(t) is a stationary, continuous, and infinite-duration signal, and τ ′ is the
temporal lag. In a discrete approximation for a time-limited epoch,

H(u)(t) =
1
π

m

∑
τ=1

u(t + τ)−u(t − τ)
τ

(11.14)

where t is now a dimensionless time-index, τ = τ ′/ε , ε is the time-step, and m is
the number of forward time-steps in the epoch. Let ū(t) be the mean value of the set
S ≡ {u(t + τ)−u(t − τ)}, and let

{ũ(t,τ)} ⊆ S be the subset whose members are equal to ū(t),
{û(t,τ)} ⊆ S be the subset whose members are each greater than ū(t),
{ŭ(t,τ)} ⊆ S be the subset whose members are each less than ū(t),

then let ∑ ũ(t,τ)/τ , ∑ û(t,τ)/τ , ∑ ŭ(t,τ)/τ be the sums of terms, each weighted
by τ , in the respective subsets. Thus,

H(u)(t) =
1
π

(
∑ ũ(t,τ)

τ
+∑ û(t,τ)

τ
+∑ ŭ(t,τ)

τ

)
. (11.15)

Special cases in which H(u)(t) = 0 are:

1. For all τ ≥ ε , u(t + τ) = u(t − τ), hence

∑ ũ(t,τ)/τ = ∑ û(t,τ)/τ = ∑ ŭ(t,τ)/τ = 0; (11.16)

2. When elements of S are randomly distributed about ū(t), with ū(t) = 0, hence

∑ û(t,τ)/τ = −∑ ŭ(t,τ)/τ , and ∑ ũ(t,τ)/τ = 0 . (11.17)

Therefore analytic power, H2(u)(t)+u2(t), can approach zero where:

1. u(t) is symmetric about some t, and u(t) → 0; (this includes the special case
where u(t) = 0 for all t);

2. u(t) is close to or identical with a zero-crossing in a sample of a zero-mean
Gaussian noise.

Analytic phase, tan−1[H(u)(t)/u(t)], is ill-defined where u(t) → 0, but a sharp
change in analytic phase might also be detected in association with physiological
equivalent of the step-like transition shown in Fig. 11.7.

References

1. Alexander, G.E., Crutcher, M.D., DeLong, M.R.: Basal ganglia-thalamocortical circuits: Par-
allel substrates for motor, oculomotor, prefrontalâ and limbic functions. In: H.B.M. Uylings
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Chapter 12
Cortical patterns and gamma genesis
are modulated by reversal potentials
and gap-junction diffusion

M.L. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson, and J.W. Sleigh

12.1 Introduction

Continuum models of the cortex aim to describe those interactions of neural popu-
lations that generate the electrical fluctuations and rhythms able to be detected di-
rectly, with scalp and cortical EEG (electroencephalogram) electrodes, or remotely,
using their magnetic counterpart, via MEG (magnetoencephalogram) sensors. Be-
cause the numbers of neurons involved in these cooperative behaviors is so vast,
the continuum, or mean-field, approach makes no attempt to model the detailed
biophysics of individual neurons, nor does it attempt to track the birth and axonal
propagation of individual spike events. Instead, neuronal properties are represented
as spatial averages, averaged, say, over the population of neurons sampled by a small
EEG electrode, with spiking activity being represented as an average firing rate for
the population-average neuron.

When constructing a theoretical model for the cerebral cortex, there is an un-
avoidable tension between the competing requirements of biophysical accuracy
(leading to increased complexity) versus mathematical tractability (arguing for sim-
plicity). In the end, we must make a pragmatic assessment of model quality by
asking: Is the model fit for purpose—i.e., Is the model able to make predictions that
can be tested against biological reality? And: Does the model provide fresh insight?

In this chapter we will argue that incorporation of two biophysical features—
namely, cell-reversal potentials, and direct diffusive coupling between inhibitory
neurons—has important implications for emergent nonlinear behavior with respect
to oscillatory rhythms and pattern formation in the cortex. Specifically, we show that
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the manner in which reversal potentials enter the model determines whether cortical
oscillations appear in the delta (∼2-Hz) or in the gamma (∼30-Hz) frequency range.
Further, we will demonstrate that inclusion of gap-junction diffusive connections
modifies the strength and spatial extent of the Turing and standing-wave firing-rate
patterns that can form in the cortical sheet.

12.1.1 Continuum modeling of the cortex

While continuum models of the cortex have evolved considerably since the founda-
tion work of Wilson and Cowan [31], Nunez [18], and Freeman [9], present mean-
field models continue to share three simplifying assumptions: (i) neural properties
can be represented as spatial averages, (ii) neural inter-connectedness decays with
distance, (iii) neural firing rates can vary between zero and some maximum value,
with a sigmoidal mapping from membrane voltage to firing rate.

Continuum models are expressed either as coupled partial differential equations
(PDEs), or as integro-differential equations (IDEs), or as purely integral equations,
with the choice of representation being determined by the type and dimensionality
(1-D or 2-D) of the connectivity kernel. The PDE forms have the advantage of speed
and ease of analysis, but have access to a restricted range of connectivity kernels,
e.g., exponential decay in 1-D [11, 31], modified Bessel (Macdonald)-function de-
cay in 2-D [21]. The integral forms are slower to compute numerically, and require
a large amount of storage, but have the advantage that the kernel can be chosen at
will; Wright and Liley [35] use a Gaussian to represent the decreasing synaptic den-
sity with distance. For the integro-differential forms, “Mexican hat” connectivity
kernels are frequently used [4–6, 14, 15].

In the PDE-based cortical model we present here, flux activity generated by ex-
citatory and inhibitory neural populations is received at a dendritic synapse whose
transmission efficiency is modulated by the difference between the membrane volt-
age and its reversal potential [16, 20]. Following Robinson et al. [21], axonal flux
transmission is assumed to obey a 2-D wave equation with Macdonald-function con-
nectivity. The net neuron voltage is determined not only by axono-dendritic activity
at chemical synapses, but also by diffusive currents from adjacent neurons that are
directly coupled to the target neuron via gap junctions. Our parameter values for
the chemical-synaptic component of the model largely match those of Rennie et al.
[20], but we have chosen to retain the symbols and labeling conventions used in
our earlier sleep [23] and anesthesia modeling [24], which drew on work by Liley
et al. [16]. For the gap-junction component of the model, we adopt the values and
notation we introduced in Ref. [26].

12.1.2 Reversal potentials

The size and direction of the postsynaptic potential evoked at a chemical synapse
by incoming spike activity depends on the voltage state of the receiving neuron,
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and, in particular, on (V rev −V ), the voltage of the receiving dendrite relative to
its reversal potential. If this difference is large, spike events will be more effective
at transferring charge across, and eliciting a voltage response in, the post-synaptic
membrane; this efficiency diminishes to zero as V approaches V rev, the reversal
potential being ∼0 mV for excitatory events (mediated by AMPA receptors) and
∼−70 mV for inhibitory events (mediated by GABA receptors).

Although a standard feature in all Hodgkin–Huxley [13] conductance-based neu-
ron models, surprisingly few mean-field cortical models include excitatory and in-
hibitory reversal potentials [16, 20, 25, 36]. The neglect of these biophysical con-
straints might be justifiable if the voltage fluctuations about resting equilibrium
(V rest ≈ −60 mV) remain sufficiently small that the reversal potentials are effec-
tively infinite. But if the fluctuations grow sufficiently large—as can happen when
the equilibrium state destabilizes in favor of a Hopf, Turing, or wave instability—
then the existence of finite reversal potentials could have a significant impact on
neural behavior. In fact, we will show that a subtle change in the way in which re-
versal potentials are incorporated into the model leads to qualitative change in its
stability properties.

12.1.3 Gap-junction diffusion

The traditional picture of neural communication requires active propagation of ac-
tion potentials from the axon of the transmitting neuron to the dendrite of the re-
ceiving neuron via release of neurotransmitters at the chemical-synaptic interface.

There is accumulating evidence, however, that subthreshold voltage fluctuations
can be passively communicated from neuron to neuron via electrical synapses
formed from gap-junction proteins that make direct resistive connections between
neighboring cells at their points of dendritic contact. This is particularly so for in-
hibitory neurons in the cat visual cortex where the measured density of connexin-36
(Cx36) gap-junctions is so high that Fukuda et al. [10] described the result as es-
tablishing a dense and widespread network of interneurons able to be traced in a
boundless chain. In addition, researchers have detected copious gap-junction cou-
plings between interneurons and their supporting glial cells (via Cx32 connexin),
and between pairs of glial cells (via Cx43) [1, 17], suggesting that diffusive neuronal
coupling may be augmented by glial-cell “bridges”. To date, there are no reports
of dense gap-junction connectivity between pairs of excitatory neurons, suggesting
that, for reasons unknown, neural tissue has evolved to strongly favor inhibitory-to-
inhibitory diffusion over excitatory-to-excitatory diffusion.

In Ref. [26], we used the Fukuda measurements to estimate an upper bound for
D2, the inhibitory coupling strength, D2 ≈ 0.6 cm2, then investigated the impact
of incorporating inhibitory diffusion into a mean-field model of the cortex based
on chemical synapses. We found that, provided that the D2 inhibitory diffusion is
sufficiently large, a homogeneous cortical sheet will spontaneously destabilize in
favor of cm-scale stationary Turing patterns of intermixed regions of high- and low-
firing activity.
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In this chapter we extend this work by demonstrating that gap-junction diffusion
D2∇2V can interact with the (V rev−V ) reversal-potential terms to generate two dis-
tinct types of spatiotemporal instability: either (a) stationary Turing structures when
the feedback from soma to dendrite is delayed (“slow-soma” model); or (b) stand-
ing waves of gamma-band cortical activity when the soma-to-dendrite feedback is
prompt (“fast-soma” model). We develop the background theory for the slow- and
fast-soma models in Sect. 12.2; analyze their respective linearized stability charac-
teristics in Sect. 12.3, then verify these predictions with a series of 2-D grid simu-
lations of the full nonlinear equations. We follow this with a comparison against an
earlier model due to Rennie and colleagues [20] in Sect. 12.4, then comment on the
possible biological significance of the slow- and fast-soma forms.

12.2 Theory

We present the equations of motion for a continuum model of the cortex that con-
sists of mutually interacting populations of excitatory and inhibitory neurons, each
population receiving flux inputs from spiking events arriving at excitatory and in-
hibitory chemical synapses. The transmission efficiency of an excitatory (inhibitory)
synapse is modulated by the voltage state of the post-synaptic dendrite relative to the
AMPA (GABA) reversal potential. We consider two alternative schemes for incor-
porating the dendritic reversal potentials, leading to the slow-soma (Sect. 12.2.1.1)
and fast-soma (Sect. 12.2.1.2) variants of the model. In both cases we assume that
axonal flux propagation obeys damped 2-D wave equations (Sect. 12.2.1.3), with
slower local (unmyelinated gray-matter) connections and faster long-range (myeli-
nated white-matter) connections. The cortex is stimulated by nonspecific tonic ac-
tivity generated by the subcortex (Sect. 12.2.1.4). Finally, in Sect. 12.2.2 we com-
plete the model with the addition of diffusive voltage perturbations transmitted via
electrical (gap-junction) synapses.

12.2.1 Input from chemical synapses

In deriving the equations of motion for Ve and Vi, the soma voltages for the exci-
tatory and inhibitory neural populations, we assume that a pre-synaptic spike event
will induce a post-synaptic potential (PSP), a momentary voltage change in the re-
ceiving dendrite, whose shape can be modeled either as a biexponential (first line of
Eq. (12.1)) or as an alpha-function (second line),

H(t) =

⎧⎨⎩
αβ

β−α (e−αt − e−β t), α �= β

α2te−αt , α = β
(12.1)

for t > 0, where α and β are positive constants.
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If the incoming presynaptic spike rate is M [spikes/s], then the net voltage dis-
turbance [in mV] at the dendrite will be given by ρU , where ρ is the synaptic
strength [mV·s]; and U is the post-synaptic response rate [s−1] given by the tem-
poral convolution-integral of the input flux M with the dendrite filter response H,
scaled by a dimensionless synaptic reversal-potential factor ψ ,

U(t) = ψ(t) [H(t) ⊗ M(t)] . (12.2)

We follow the earlier work of Wright et al. [36], Liley et al. [16], and Rennie et al.
[20] in defining the ψ scaling factor to be unity when the neuron is at rest (V =V rest),
and zero when the membrane voltage matches the relevant synaptic reversal poten-
tial (V rev

e = 0 mV for excitatory (AMPA) receptors; V rev
i = −70 mV for inhibitory

(GABA) receptors),

ψab(t) =
V rev

a −Vb(t)
V rev

a −V rest
b

, a,b ∈ {e, i} . (12.3)

Here we have introduced subscript labels a, b, each of which stands for either e
(excitatory) or i (inhibitory), indicating that there are four reversal-potential func-
tions: ψee, ψei, ψie, ψii, where, for example, ψei is the scaling function for excitatory
flux entering an inhibitory neuron. Corresponding double-subscripts are also to be
attached to the H, M, and U appearing in Eq. (12.2).

The excitatory and inhibitory voltage disturbances at the dendrite are then inte-
grated at the soma by convolving with the exponential soma impulse-response L,

Lb(t) =
1
τb

e−t/τb , t > 0 , (12.4)

where τb is the soma time-constant for neurons of type b (e or i). This second in-
tegration results in a pair of integral equations of motion for Ve and Vi, the soma
voltages for the excitatory and inhibitory neuron populations,

Ve(t) = V rest
e + Le(t)⊗ [ρeUee(t) + ρi Uie(t)] , (12.5)

Vi(t) = V rest
i + Li(t)⊗ [ρeUei(t) + ρi Uii(t)] . (12.6)

The ρe,i synaptic strengths are signed quantities, with ρe > 0 for excitatory post-
synaptic potential (EPSP) events, and ρi < 0 for inhibitory postsynaptic potentials
(IPSPs).

We wish to draw attention to the assumption, implicit in Eq. (12.2) regarding
the construction of the post-synaptic rate U , by asking the question: Should the
ψ-scaling by the reversal-potential weight be performed after the H⊗ dendrite in-
tegration of input flux M—as written in Eq. (12.2)—

Uab(t) = ψab(t) · [Hab(t)⊗Mab(t)]

= ψab(t)
∫ t

0
Hab(t − t ′)Mab(t ′)dt ′ , (“slow soma”) , (12.7)
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or, should the ψ-scaling be applied directly to the input flux, so that it is the weighted
product ψ ·M that is integrated at the dendrite? This alternative ordering leads to a
revised post-synaptic rate U ,

Uab(t) = Hab(t)⊗ [ψab(t) ·Mab(t)]

=
∫ t

0
Hab(t − t ′)ψab(t ′)Mab(t ′)dt ′ , (“fast soma”) . (12.8)

We refer to the Eq. (12.7) form for the U post-synaptic rate as the “slow soma”
case, since the somata voltage of the neuron is presumed to vary on a time-scale that
is much slower than that of the synaptic input events. This limit should be valid when
the synaptic inputs are sparse or weak, so that the ψ reversal-potential feedback from
soma to dendrite is slow to arrive. On the other hand, if synaptic activity is strong, or
if the soma voltage changes on a time-scale similar to that of dendritic integration,
then the reversal-potential feedback onto the dendrite will be prompt. In this case,
the M flux input at time t should be scaled by the ψ reversal-potential weight at time
t, then integrated at the dendrite; this limit gives the Eq. (12.8) “fast-soma” form for
the U post-synaptic rate. These slow- and fast-soma variants are block-diagrammed
in the flow-charts of Fig. 12.1.

We find that swapping the order of the ψ· and H⊗ operations has surprising
implications for cortical stability that may have biological significance. If the ψ·
weighting occurs after the H⊗ dendrite integration (i.e., Eq. (12.7): slow-soma),
then, as reported in [26], the homogeneous 2-D cortex can destabilize in the pres-
ence of inhibitory diffusion to form Turing patterns—stationary spatial patterns of
activated and inactivated patches of cortical tissue.1 But if the ψ· weighting is ap-
plied prior to the H⊗ convolution (i.e., Eq. (12.8): fast-soma), we will see that the
stationary Turing patterns are replaced by standing-wave patterns of similar spatial
frequency but whose temporal frequency lies within the gamma band (∼30–80 Hz)
of EEG oscillations.

12.2.1.1 Slow-soma limit

In the limit of a slowly varying membrane potential, the soma-voltage equations
(12.5) and (12.6) become,

Vb(t) = V rest
b + Lb(t)⊗ [ρe Ueb(t) + ρi Uib(t)]

= V rest
b + Lb(t)⊗ [ρe ψeb(t) ·Φeb(t) + ρi ψib(t) ·Φib(t)] , (12.9)

where the Φeb, Φib (b = e, i) represent the four slow-soma flux convolutions of flux
input M against dendrite filter H,

1 Our prior modeling of anesthetic induction [24, 25, 32] and state transitions in natural sleep
[23, 33, 34] assumed a slow-soma limit; gap-junction effects were not included.



12 Cortical patterns and gamma genesis 277

H(t)

H(t)

t

tt

t

ρψ(V )

ρψ(V )

L(t)

L(t)
V (t)M(t)

V (t)M(t)
−70 m 0 mV V

−70 m 0 mV V
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(a) Slow-soma

(b) Fast-soma

Fig. 12.1 Dendrite-to-soma flow diagrams for (a) slow-soma and (b) fast-soma cortical models.
M is the average spike-rate input arriving at the dendrite via chemical synapses; V is the resulting
voltage perturbation at the soma (for simplicity, we ignore the constant V rest offset here); ρ is the
synaptic strength; H and L are respectively the dendrite and soma impulse-response functions.
The ψ reversal-potential weighting function provides immediate feedback from soma to dendrite.
Symbols ⊗ and � represent convolution and product operations respectively. (a) For slow-soma,
the input flux is modulated by the reversal-weighting after integration at the dendrite filter, while
for fast-soma, the reversal modulation occurs prior to dendrite integration.

Φab(t) = Hab(t)⊗Mab(t) , (12.10)

and where

Mab(t) = Nα
ab φ α

ab(t) + Nβ
ab φ β

ab(t) + Nsc
eb φ sc

eb , (12.11)

with subcortical inputs

φ sc
eb = s ·Qmax

e , φ sc
ib = 0 . (12.12)

Equation (12.11) defines M, the total input flux of type a (e or i) entering neurons
of type b (e or i). The superscript labels α , β , sc indicate long-range, short-range,
and subcortical chemical-synaptic inputs respectively. The Nα,β ,sc are the number
of synaptic connections; the φ α,β ,sc are per-synapse flux rates. The φ α,β fluxes obey
wave equations detailed below in Eqs (12.18, 12.20). The long-range and subcortical
inputs are excitatory only, so Nα

ie = Nα
ii = Nsc

ie = Nsc
ii = 0, and φ sc

ie = φ sc
ii = 0. Here

s is a subcortical scaling parameter whose value can range between 0 and 1. Since
Qmax

e = 100 s−1 (see Table 12.4 in the Appendix), choosing s = 0.1 will ensure
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compatibility with the earlier modeling work by Rennie et al. [20] in which the
default level for per-synapse subcortical drive was set at φ sc = 10 s−1.

The slow-soma integral equations of Eq. (12.9) are equivalent to a pair of first-
order differential equations of motion for soma voltage,

τb
dVb(t)

dt
= V rest

b − Vb(t) + ρe ψeb(t)Φeb(t) + ρi ψib(t)Φib(t) . (12.13)

Taking the biexponential form of the Eq. (12.1) postsynaptic potential, the four
dendrite convolutions of Eq. (12.10) can be rewritten as four second-order ODEs in
Φ(t), (

d
dt

+αab

)(
d
dt

+βab

)
Φab(t) = αabβab Mab(t) . (12.14)

12.2.1.2 Fast-soma limit

For the fast-soma version of the cortical model, we use the revised form of the post-
synaptic rate given in Eq. (12.8),

Uab(t) = Hab(t)⊗ [ψab(t) ·Mab(t)] , (12.15)

leading to two fast-soma differential equations for the Vb (b = e, i) neuron voltage
(cf. Eq. (12.13)),

τb
dVb(t)

dt
= V rest

b − Vb(t) + ρe Ueb(t) + ρi Uib(t) , (12.16)

with dendrite ODEs (cf. Eq. (12.14)),(
d
dt

+αab

)(
d
dt

+βab

)
Uab(t) = αabβab ψab(t) ·Mab(t) . (12.17)

Comparing Eqs (12.16, 12.17) with (12.13, 12.14), we see that, in the fast-soma
limit, the ψab reversal-potential weights are applied directly to the incoming Mab

synaptic flux, with the product being integrated at the dendrite to give the (weighted)
dendritic flux Uab; whereas in the slow-soma model, the ψab weights are applied
after the Mab input flux has been integrated at the dendrite.

12.2.1.3 Wave equations

The axonal wave equations described here apply equally to both the slow- and fast-
soma cortical models. Following Robinson et al. [21], we assume that the φ α long-
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range excitatory fluxes obey a pair of 2-D damped wave equations generated by
excitatory sources Qe(r, t),[(

∂
∂ t

+ vαΛ α
eb

)2

− (vα)2∇2

]
φ α

eb(r, t) = (vα Λ α
eb)

2 Qe(r, t) , b ∈ {e, i} (12.18)

where Λ α is the inverse-length scale for axonal connections [cm−1], and vα is the
axonal conduction speed [cm/s]. Q is the sigmoidal mapping from soma voltage to
neuronal firing rate,

Qa(r, t) =
Qmax

a

1+ exp [−C (Va(r, t)−θa)/σa]
, a ∈ {e, i} (12.19)

with C = π/
√

3. Here, θa is the population-average threshold for firing, σa is its
standard deviation, and Qmax

a is the maximum firing rate.
In previous work [23–25, 32–34], we have assumed that the short-range axonal

signals propagate instantaneously, allowing local spike-rate fluxes φ β
ab to be replaced

by their sources Qa. In this chapter we allow for finite propagation speeds by writing
four wave equations for the short-range fluxes φ β

ab traveling on unmyelinated axons,[(
∂
∂ t

+ vβ Λ β
ab

)2

− (vβ )2∇2

]
φ β

ab(r, t) = (vβ Λ β
ab)

2 Qa(r, t) . (12.20)

12.2.1.4 Subcortical inputs

Equation (12.12) is applicable when the subcortical drive is a fixed constant. To
allow noise to enter the cortex, we replace (12.12) with the stochastic form

φ sc
eb(r, t) = sQmax

e + γ
√

sQmax
e ξm(r, t) , m = 1,2 (12.21)

where γ is a constant noise scale-factor, and the ξm are a pair of Gaussian-distributed,
zero-mean, spatiotemporal white-noise sources that are delta-correlated in time and
space,

〈ξm(r, t)〉 = 0 , (12.22)

〈ξm(r, t)ξn(r′, t ′)〉 = δmn δ (t − t ′)δ (r− r′) . (12.23)

In the grid simulations presented in Sect. 12.3, we specify s, the subcortical
drive (e.g., s = 0.1), and initialize the 2-D sheet of cortical tissue at the homoge-
neous steady-state corresponding to this level of subcortical stimulation. Then, using
Eq. (12.21), we distribute spatially-independent small-amplitude random perturba-
tions across the cortical grid to allow the model to explore its proximal state space. If
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the homogeneous equilibrium is unstable, these small-scale deviations from homo-
geneity can organize and grow into large-scale Turing structures, Hopf oscillations,
and gamma-band standing-wave patterns.

12.2.2 Input from electrical synapses

The existence of gap junctions in the mammalian brain has been known for decades,
but only recently has their electrophysiological significance with respect to neuron
coupling and rhythm synchronization become apparent. According to the review ar-
ticle by Bennett and Zukin [2], electrical transmission (via gap junctions) between
neurons is “likely to be found wherever it is useful,” with its selective advantage
being the communication of subthreshold potentials that facilitate synchronization.
The reported abundances of gap-junction connections in brain tissue are increasing
as detection methods become more sensitive and discriminating. These connections
are found between pairs of inhibitory interneurons (via connexin Cx36 channels
[10]), between interneurons and their supporting glial cells (via Cx32), and between
the glial cells themselves (via Cx42). The neuron-to-glia and glia-to-glia connec-
tions have been detected in all layers of the rat cerebral cortex [17]. These findings
support the notion of a diffusively-intercoupled continuous scaffolding that links
networks of active (neuronal) and passive (glial) cells.

Fukuda et al. [10] reported that, on average, each L-type inhibitory interneuron
in the cat visual cortex was coupled to Ngap

ii = 60± 12 other L-type interneurons
via Cx36 connexin channels, that the connections were randomly and uniformly
distributed over a disk of radius ∼200 μm centered on a given neuron, and that
L-type abundance was ∼400 mm−2, implying a connection density of ∼24 000
gap-junctions per mm2. The Fukuda measurements were specific to Cx36 connex-
ins only, so total interneuron gap-junction interconnectivity could be considerably
higher. In [26], we used the Fukuda measurements to construct a theoretical 2-D
lattice of square “Fukuda cells”, with each lattice cell representing the effective area
u of diffusive influence for a single L-type interneuron; see Fig. 12.2.

We assume that the neuron at the lattice center has resting voltage V rest, capaci-
tance C, membrane resistance Rm, and receives diffusive current along four resistive
arms, each of resistance R = Rgap/ 1

4 Ngap
ii = Rgap/15, where Rgap is the resistance

of a single Cx36 gap junction. The total current to “ground” (i.e., to the extracel-
lular space) is the sum of membrane current (V −V rest)/Rm plus capacitive current
C dV/dt, and this must match the addition of chemical synaptic currents Isyn (not
shown) plus gap-junction diffusive currents Igap,

(V −V rest)/Rm + C
∂V
∂ t

= Isyn + Igap , (12.24)

where

Igap =
u
R

∇2V . (12.25)
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Fig. 12.2 Equivalent electrical circuit for nearest-neigbor gap-junction connections between neu-
rons in a 2-D cortex. Diffusion currents IN, IS, IE, IW enter the neuron at the central node from the
four neighboring nodes via gap-junction resistances R shown in bold. For clarity, chemical-synaptic
currents are not shown. (Figure reproduced from [26].)

The effective area u of the Fukuda cell depends on the underlying connectivity as-
sumption. If the connectivity is uniform across the 200-μm radius disk, we cir-
cumscribe the circle with a square of side 0.4 mm, giving an upper bound of
u ≈ 0.16 mm2. More realistically, we can fit a Gaussian distribution to the Fukuda
data (see Appendix A of [26] for details), leading to u ≈ 0.03 mm2, a factor of five
smaller. We note that these estimates for u will increase if subsequent determina-
tions of gap-junction dendritic extent and distal abundance are found to be larger
than those reported by Fukuda et al..

Rearranging Eq. (12.24), we obtain the differential equation for soma voltage,

τ
∂V
∂ t

= (V rest −V ) + IsynRm + Dii ∇2V, (12.26)

where τ = RmC is the membrane time-constant, IsynRm is the voltage contribution at
the soma arising from chemical-synaptic currents, and Dii is the diffusive coupling
strength for inhibitory-to-inhibitory gap-junction currents,

Dii = u
Rm

R
=

uNgap
ii

4
Rm

Rgap . (12.27)

In [26] we estimated Rm ≈ 7100 MΩ, Rgap ≈ 290 MΩ (corresponding to a gap-
junction in its fully-open configuration). Setting u = 0.16 mm2 gives Dii ≈ 0.6 cm2,
but we emphasize that all four components (u,Nii,Rm,Rgap) in the Dii expression
are uncertain, and are likely to vary with time, neuromodulatory state, and stage of
development: it is not implausible that the “true” value for Dii might lie within an
uncertainty band that extends from +1 to −2 orders-of-magnitude above and below
the nominal value quoted here.
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12.2.2.1 Slow-soma limit with gap junctions

We incorporate the effect of gap-junction diffusion currents entering a slow-soma
neuron by combining Eq. (12.26) with the slow-soma membrane Eqs (12.14) to give

τb
∂Vb(r, t)

∂ t
= V rest

b − Vb(r, t) +
[
ρe ψeb(r, t)Φeb(r, t) + ρi ψib(r, t)Φib(r, t)

]
+ Dbb∇2Vb(r, t) , (12.28)

where the terms in square brackets [. . .] are the contributions from chemical-synaptic
flux entering the slow-soma model. Here, Dbb = Dee for excitatory-to-excitatory
diffusion, and Dbb = Dii for inhibitory-to-inhibitory diffusion.2 We note that di-
rect electrical connections between pairs of same-family inhibitory interneurons are
common, but apparently gap junctions between pairs of excitatory neurons are rare,
so in the work below we set Dee to be a small (but non-zero) fraction of Dii, with
Dee = Dii/100.

12.2.2.2 Fast-soma limit with gap junctions

Combining Eq. (12.26) with the fast-soma membrane Eqs (12.17) give the pair (b =
e, i) of partial differential equations for the diffusion-enhanced fast-soma model,

τb
∂Vb(r, t)

∂ t
= V rest

b − Vb(r, t) +
[
ρe Ueb(r, t) + ρi Uib(r, t)

]
+ Dbb∇2Vb(r, t) ,

(12.29)

12.3 Results

12.3.1 Stability predictions

The stability characteristics of the slow- and fast-soma cortical models are refer-
enced to a homogeneous steady-state corresponding to a given value of subcorti-
cal drive s. This reference state is determined by zeroing the ξm noise terms in
Eq. (12.21), and removing all time- and space-dependence by setting d/dt = ∇2 = 0
in either the slow-soma differential equations (12.28, 12.14, 12.18, 12.20), or the
fast-soma equations (12.29, 12.17, 12.18, 12.20). Either procedure gives a set of
nonlinear simultaneous equations that we solve numerically to locate the steady-
state soma voltage (V 0

e ,V 0
i ) and firing rate (Q0

e ,Q
0
i ). Note that, at steady state, the

distinction between the slow-soma U = ψ · [H ⊗ M] (Eq. (12.7)) and fast-soma
U = H ⊗ [ψ .M] (Eq. (12.8)) convolution forms vanishes, and therefore the equi-
librium states for the slow-soma and fast-soma cortical models are identical. Yet
despite their shared equilibria, we will show that the dynamical properties of the

2 Later we simplify the subscripting notation for diffusion so that (Dee,Dii) ≡ (D1,D2).
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Table 12.1 State variables for slow- and fast-soma models

Variable Symbol Unit Equations

Soma voltage Ve, Vi mV (12.13, 12.28) a ; (12.16, 12.29) b

Dendritic flux response Uee, Uei, Uie, Uii s−1 (12.14) a; (12.17) b

Long-range flux input φ α
ee, φ α

ei s−1 (12.18)

Short-range flux input φ β
ee, φ β

ei , φ β
ie , φ β

ii s−1 (12.20)

a Slow soma: Uab = ψab ·Φab = ψab · [Hab ⊗Mab]
b Fast soma: Uab = Hab ⊗ [ψab ·Mab]

two models—as predicted by linear eigenvalue analysis, and confirmed by nonlin-
ear grid simulations—are very different.

The 12 state variables for the slow-soma and fast-soma models are listed in
Table 12.1; related system variables appear in Table 12.2. The 12 state variables
are governed by two first-order (Ve, Vi) and 10 second-order (Uab, φ α

eb, φ β
ab) differen-

tial equations, so are equivalent to 22 coupled first-order DEs, and therefore, after
linearization about homogeneous steady state, own 22 eigenvalues.

The linearization proceeds by expressing each of the 22 first-order variables (12
state variables plus 10 auxiliaries) as its homogeneous equilibrium value plus a fluc-
tuating component. For example, the excitatory soma voltage is written

Ve(r, t) = V 0
e + δVe(r, t) , (12.30)

where r is the 2-D position vector, and δVe, the fluctuation about equilibrium V 0
e ,

has spatial Fourier transform

δ̃Ve(q, t) =
∫ ∞

−∞
δVe(r, t)e−iq·r dr (12.31)

with q being the 2-D wave vector. This is equivalent to assuming that the voltage
perturbation can be expressed as a spatiotemporal mode of the form,

δVe(r, t) = δVe(r,0)eΛ t eiq·r (12.32)

where Λ is its (complex) eigenvalue. If Λ has a positive real part, the perturbation
will grow, indicating that the equilibrium state is unstable.

After linearizing the 22 first-order DEs about homogeneous equilibrium, then
Fourier transforming in space, we compute numerically the 22 eigenvalues of the
Jacobian matrix for a range of finely-spaced wavenumbers, q = |q|. Arguing that the
stability behavior of the cortical model will be dominated by the eigenvalue Λ whose
real part is least negative (or most positive), we plot the distribution of dominant
eigenvalues as a function of wavenumber, looking for regions for which Re[Λ(q)] >
0, indicating the presence of spatial modes that can destabilize the homogeneous rest
state.
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Table 12.2 Other system variables for cortical
model

Variable Symbol Unit Equation

Total flux input Mab s−1 (12.11)

Firing rate Qa s−1 (12.19)

Dendrite filter impulse Hab s−1 (12.1)

Soma filter impulse Lb s−1 (12.4)

Reversal-potential weight ψab — (12.3)

Subcortical flux φ sc
eb s−1 (12.21)

12.3.2 Slow-soma stability

Figure 12.3 shows that, in the slow-soma limit, the homogeneous steady state can
be destabilized either by increasing the inhibitory diffusion D2 (Fig. 12.3(a)), or
by decreasing the level of subcortical drive s (Fig. 12.3(b)). Instability at a given
wavenumber q is predicted when its dominant eigenvalue crosses the zero-axis,
changing sign from negative (decaying mode) to positive (exponentially-growing
mode). For the case D2 = 4 cm2, s = 0.1 (top curve of Fig. 12.3(a)), all wavenum-
bers in the range 0.24 � q/2π � 0.7 cm−1 support growing modes, with strongest
growth predicted at q/2π ≈ 0.4 cm−1 (i.e., wavelength ≈ 2.5 cm), at the peak of the
dispersion curve. At this wavenumber, the eigenvalue has a zero imaginary part, so
the final pattern is expected to be a stationary periodic pattern in space—a Turing
structure of intermixed regions of high- and low-firing cortical activity. This spon-
taneous Turing emergence is similar to that reported in [26] for an earlier version
of the slow-soma model that had access to three homogeneous steady states (two
stable, one unstable).

12.3.3 Fast-soma stability

Figure 12.4(a) shows the set of dispersion curves obtained for the fast-soma ver-
sion of the model operating at the same s = 0.1 level of subcortical excitation used
in Fig. 12.3(a). In marked contrast to the slow-soma case, maximum instability is
obtained in the limit of zero inhibitory diffusion (D2 = 0), with the instability be-
ing promptly damped out as the diffusion increases. We see that small increases in
diffusion serve to narrow the range of spatial frequencies able to destabilize the equi-
librium state. Thus, when D2 = 0, the instability is distributed across the broad range
0.35 < q/2π < 3.48 cm−1 (this upper value is not shown on the Fig. 12.4 graph),
shrinking to 0.40–0.67 cm−1 when D2 = 0.04 cm2, and vanishing completely for
D2 ≥ 0.06 cm2.
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The fact that the dominant eigenvalue has a nonzero imaginary part indicates
that these fast-soma spatial instabilities will tend to oscillate in time: for spatial
frequency q/2π = 0.5 cm−1, the predicted temporal frequency is ∼29 Hz, at the
lower end of the gamma band. Writing ω = Im[Λ ], the slope of the ω-vs-q graph
is nearly flat (thin curves of Fig. 12.4(a)), implying that these wave instabilities
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Fig. 12.3 Slow-soma dispersion curves for (a) increasing inhibitory diffusion D2 and (b) increas-
ing subcortical drive s. (a) Imaginary (upper thin traces) and real (lower thick traces) parts of
dominant eigenvalue plotted as a function of scaled wavenumber q/2π for three values of dif-
fusion strength, D2 = [2.0, 2.5, 4.0] cm2; excitatory diffusion strength is set at 1% of inhibitory
strength: D1 = D2/100. Subcortical drive is fixed at s = 0.1 (i.e., φ sc = 10 s−1), corresponding to
homogeneous steady state (V 0

e ,V 0
i ) = (−59.41,−59.41) mV; (Q0

e ,Q
0
i ) = (6.37,12.74) s−1. (See

Table 12.4 for parameter values.) The homogeneous state is predicted to be unstable at all spatial
frequencies for which the real part of the dispersion curve is positive. Stationary Turing patterns are
predicted at q/2π ≈ 0.45 cm−1 for D2 � 2.5 cm2, and are enhanced by increases in D2 coupling
strength. (b) Eigenvalue distribution for three values of subcortical drive, s = [0.1, 0.3, 0.5]; exci-
tatory and inhibitory diffusion strength are fixed at (D1,D2) = (0.025, 2.5) cm2. The slow-soma
Turing instability at q/2π = 0.45 cm−1 is damped out by increases in subcortical tone, restoring
stability to the homogenous steady-state. (Figure reproduced from Ref. [27].)
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will propagate but slowly. For example, with D2 = 0.04 cm2, the group velocity at
q/2π = 0.5 cm−1 is dω/dq = 3.8 cm/s, so that, over the timescale a single gamma
oscillation (∼0.034 s), the wave will travel only 1.3 mm. This suggests that the
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Fig. 12.4 Fast-soma dispersion curves for (a) increasing inhibitory diffusion D2 and (b) in-
creasing subcortical tone s. (a) The three pairs of eigenvalue curves correspond to three values
for inhibitory diffusion, D2 = [0.0, 0.04, 0.10] cm2, with subcortical drive kept fixed at s = 0.1.
Wave instabilities of temporal frequency ∼29-Hz and spatial frequency 0.5 waves/cm are ex-
pected when D2 � 0.04 cm2. (b) Eigenvalue distribution for three values of subcortical drive,
s = [0.1, 0.3, 0.5], corresponding to subcortical flux rates of φ sc = [10, 30, 50] s−1, giving homo-
geneous steady-state firing rates Q0

e = [6.37, 7.28, 8.10] s−1; excitatory and inhibitory diffusion is
fixed at (D1,D2) = (0.0005,0.05) cm2. For s = 0.1 (lower-thick and upper-thin solid curves),
homogeneous steady-state destabilizes in favor of 29-Hz traveling waves of spatial frequency
0.49 cm−1. Increasing subcortical tone to 0.3 and 0.5 strengthens the wave instability, and raises
its frequency slightly to 31 and 32.5 Hz respectively. For s = 0.5, the peak at q/2π = 0 indicates
that the wave pattern will be modulated by a whole-cortex Hopf instability of frequency 35 Hz.
(Figure reproduced from Ref. [27].)
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instability will manifest as a slowly-drifting standing-wave pattern of 29-Hz gamma
oscillations, with wavelength ∼2 cm.

Another surprising difference in the behavior of the slow- and fast-soma mod-
els is their contrasting stability response to alterations in the level of subcortical
drive s. If the subcortical tone is stepped, say, from s = 0.1 to 0.3 to 0.5, the ho-
mogeneous excitatory firing rate for both models increases slightly, from Q0

e = 6.4
to 7.3 to 8.1 spikes/s (not shown here). In Fig. 12.4(b) we observe that this boost
in subcortical tone tends to destabilize the fast-soma cortex, increasing both the
strength and the frequency of the gamma wave instability—but for the slow-soma
cortex (Fig. 12.3(b)) the effect is precisely opposite, acting to damp out Turing in-
stabilities, encouraging restoration of the homogeneous equilibrium state. We will
argue in Sect. 12.4 that these interesting divergences in the slow- and fast-cortical
responses are consistent with the notion that the slow-soma could describe the
idling or default background state of the conscious brain, while the fast-soma could
describe the genesis of gamma resonances that characterize the active, cognitive
state.

12.3.4 Grid simulations

To test the linear-stability predictions of Turing and traveling-wave activity in the
cortical model, we ran a series of numerical simulations of the full nonlinear slow-
soma (12.28, 12.14, 12.18, 12.20) and fast-soma (12.29, 12.17, 12.18, 12.20) corti-
cal equations. The substrate was a 240×240 square grid, of side-length 6 cm, joined
at the edges to provide toroidal boundaries. We used a forward-time, centered-
space Euler algorithm custom-written in MATLAB 7.6, with the diffusion and wave-
equation ∇2 Laplacians implemented as wrap-around (toroidal) convolutions3 of the
3×3 second-difference mask against the grid variables holding Ve,i(r, t), the excita-
tory and inhibitory membrane voltages. The grid was initialized at the homogeneous
steady state corresponding to a specified value of subcortical drive s, then driven
continuously by two independent sources of small-amplitude unfiltered spatiotem-
poral white noise representing unstructured subcortical tone φ sc

ee,ei (see Eq. (12.21)).
The timestep was set sufficiently small to ensure numerical stability, ranging from
Δ t = 100 μs for the fast-soma (weak diffusion) runs, down to 1 μs for the slow-
soma runs with strongest inhibitory diffusion (i.e., D2 = 6 cm2).

The upper bound for the slow-soma timestep was obtained by recognizing that
D2/τi, the ratio of diffusive strength to membrane relaxation time, defines a diffu-
sion coefficient [units: cm/s] forinhibitory voltage change, so in time Δ t, a voltage

3 The 2-D circular convolution algorithm was written by David Young, Department of Informatics,
University of Sussex, UK. His convolve2() MATLAB function can be downloaded from The
MathWorks File Exchange, www.mathworks.com/matlabcentral/fileexchange.
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perturbation is expected to diffuse through an rms distance drms =
√

4D2Δ t/τi. Set-
ting drms = Δx = Δy, the lattice spacing, and solving for Δ t, gives

Δ t = 1
4 (Δx)2τi/D2 , (12.33)

which we replaced with the more conservative

(Δ t)max = 1
5 (Δx)2τi/D2 , (12.34)

to ensure that, on average, the diffusive front would have propagated by less than
one lattice spacing between consecutive timesteps.

For the fast-soma case, diffusion values are very weak, so it is the long-distance
wave equations (12.18) that set the upper bound for the timestep. The Courant sta-
bility condition for the 2-D explicit-difference method requires vα Δ t/Δx ≤ 1/

√
2.

Setting Δx = Lx/240 = 0.025 cm, and vα = 140 cm/s (see Table 12.4) gives
Δ t ≤ 126 μs, so the fast-soma choice of Δ t = 100 μs is safely conservative.

12.3.5 Slow-soma simulations

Figure 12.5 shows a sequence of snapshots of the firing-rate patterns that evolve
spontaneously in the slow-soma model when the inhibitory diffusion is sufficiently
strong, here set at D2 = 4 cm2. Starting from the homogeneous steady-state

(a) 0.1 s (b) 0.3 s (c) 1.3 s (d) 1.7 s (e) 2.0 s

Fig. 12.5 [Color plate] Grid simulation for slow-soma cortical model with subcortical drive
s = 0.1 (i.e., φ sc = 10 s−1), inhibitory diffusion D2 = 4.0 cm2. Cortex is a 240×240 square grid
of side-length 6 cm, with toroidal boundaries, initialized at its homogeneous steady-state firing-
rate (Q0

e ,Q
0
i ) = (6.37,12.74) s−1, driven continuously with small-amplitude spatiotemporal white

noise. Snapshots show the spatial and temporal evolution of Qe as bird’s-eye (top row) and mesh
(bottom row) perspectives. Consistent with Fig. 12.3(a), cortical sheet spontaneously organizes
into stationary Turing patterns of wavelength ∼2.5 cm. Turing structures grow strongly with time;
see Fig. 12.6. Grid resolution Δx = Δy = 0.25 mm; timestep Δ t = 1.5 μs. (Reproduced from
Ref. [27].)
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Fig. 12.6 Time-series showing formation of Fig. 12.5 Turing patterns. (a) Qe vs time for 10
sample points distributed down the middle of the cortical sheet. Inset: Zoomed view of the first
0.7 s of evolution from the homogeneous equilibrium firing rate Q0

e = 6.3677 s−1; scale bar =
0.005 s−1. Spatial patterns are fully developed after about 2 s. (b) Growth of fluctuations (devia-
tions from equilibrium firing-rate) plotted on a log-scale. Dashed line shows that, for the first 1.5 s,
fluctuations grow exponentially; the slope is 7.7 s−1, consistent with the Fig. 12.3(a) slow-soma
prediction.

corresponding to a subcortical stimulation rate of φ sc = 10 s−1 (i.e., s = 0.1),
small-amplitude white-noise perturbations (with zero mean) destabilize the uniform
equilibrium in favor of a spatially-organized stationary state consisting of inter-
mixed regions of high-firing and low-firing cortical activity. The pattern wavelength
of ∼2.5 cm is consistent with the Fig. 12.3(a) prediction of maximum instabil-
ity at wavenumber q/2π ≈ 0.4 cm−1. As is evident from Fig. 12.6, the patterns
evolve promptly, with fluctuations obeying an exponential growth law ∼ eαt with
α ≈ 7.7 s−1, matching the Fig. 12.3(a) prediction for the dominant eigenvalue. The
Turing structures are fully formed after ∼2 s, evolving on much slower time-scales
thereafter.

The Fig.-12.9 gallery of 24 snapshot images explores the sensitivity of the slow-
soma cortex to changes in subcortical stimulus intensity (s increasing from left-
to-right across the page), and to inhibitory diffusion (D2 increasing from top-to-
bottom). In Sect. 12.3.7 we compare and contrast these slow-soma patterns with the
corresponding Fig.-12.10 gallery of images for the fast-soma case.
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12.3.6 Fast-soma simulations

Figure 12.7 illustrates the response of the unstable fast-soma cortex to the impo-
sition of continuous low-level spatiotemporal white noise. With excitatory and in-
hibitory diffusion strengths set at (D1,D2) = (0.0005,0.05) cm2, and background
subcortical flux at φ sc = 30 s−1, the cortical sheet organizes itself into a dynamic
pattern of standing oscillations of temporal frequency ∼31 Hz and wavelength
∼2 cm, consistent with the peak in the (s = 0.3,D2 = 0.05 cm2) dispersion curve
of Fig. 12.4(b). The dominant spatial mode grows at the expense of higher- and
lower-frequency spatial modes that either decay with time (have dominant eigenval-
ues whose real part is negative) or that grow more slowly than the favored mode.

The semilog plot of fluctuation amplitude vs time in Fig. 12.8(b) reveals an expo-
nential growth law ∼ eαt with α ≈ 3.9 s−1 that persists until the onset of saturation
effects at t ≈ 2.2 s. We note that the growth rate for the standing-wave instabil-
ity is about a factor of two slower than the eigenvalue prediction of Fig. 12.4(b); the
reason for this anomalous slowing has not been investigated. Nevertheless, the quan-
titative confirmation, via nonlinear simulation, of gamma-frequency wave activity
emerging at the expected spatial and temporal frequencies, is most encouraging.

12.3.7 Response to inhibitory diffusion and subcortical excitation

The bold arrows labeled “D2 increasing” and “s increasing” in Figs 12.3 and 12.4
highlight the fact that increases in inhibitory diffusion and in subcortical driving are
predicted to act in contrary directions with respect to breaking or maintaining spatial
symmetry across the cortical sheet. For the slow-soma cortex, increased ii diffusion
D2 encourages formation of Turing patterns, while increased subcortical stimula-
tion s acts to restore stability to the uniform, unstructured state. These counteracting
slow-soma tendencies—predicted by Fig. 12.3—are illustrated in Fig. 12.9. This
figure presents a 6×4 gallery of excitatory firing-rate images captured after 2 s of
continuous white-noise stimulation. A vertical top-to-bottom traverse shows that for
constant subcortical drive (e.g., s = 0.01, left-most column), Turing formation is en-
hanced as D2 diffusion is strengthened. In contrast, if diffusion is held constant (e.g.,
at D2 = 2.5 cm2, second row), a horizontal scan from left-to-right shows the Turing
structures losing contrast, tending to wash out as subcortical drive is increased.

For the fast-soma cortex, Fig. 12.4 indicates that these counteracting tendencies
are reversed: gamma-wave instability should be enhanced as subcortical drive is
boosted, but suppressed when inhibitory diffusion is increased. These theoretical
claims are verified in the Fig. 12.10 gallery of fast-soma snapshots of the gamma-
band standing-wave patterns. The patterns have maximum contrast in the top-right
corner where subcortical drive is strong and inhibitory diffusion is minimal. A ver-
tical downwards traverse shows the patterns broadening and weakening as diffusion
is increased, eventually disappearing altogether when diffusion is set to moderate
levels. It is evident that the fast-soma gamma instabilities are vastly more sensitive
to small changes in inhibitory diffusion than are the slow-soma Turing instabilities.
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(a) 0.6 s (b) 1.0 s (c) 1.4 s (d) 1.8 s (e) 2.2 s

Fig. 12.7 [Color plate] Grid simulation for fast-soma cortical model with subcortical drive s = 0.3
(i.e., φ sc = 30 s−1), inhibitory diffusion D2 = 0.05 cm2. Cortex was initialized at homogeneous
steady-state (Q0

e ,Q
0
i ) = (7.28,14.55) s−1, and driven continuously with small-amplitude spa-

tiotemporal white noise. Snapshots show the spatial and temporal evolution of Qe at 0.4-s inter-
vals. Consistent with Fig. 12.4(b), grid evolves into a 31-Hz standing-wave pattern of wavelength
∼2.0 cm. Red = high-firing; blue = low-firing. The fluctuations grow strongly with time, with
successive panels displaying amplitude excursions, in s−1, of (a) ±0.005; (b) ±0.01; (c) ±0.05;
(d) ±0.2; (e) ±1.3 about the 7.28-s−1 steady-state. Timestep Δ t = 100 μs; other settings as for
Fig. 12.5. (Figure reproduced from Ref. [27].)
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Fig. 12.8 Time-series showing formation of gamma-band standing-waves of Fig. 12.7. (a) Qe vs
time for three sample points in the cortical sheet. Inset: Zoomed view of the first 1 s of evolution
from homogeneous equilibrium firing rate Q0

e = 7.2762 s−1; scale bar = 0.01 s−1. Spatial patterns
are fully developed after about 2.5 s. (b) Fluctuation growth plotted on a log-scale. Dashed line
shows that, for the first 2 s, fluctuation amplitudes increase with an exponential growth rate of
∼3.9 s−1.
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Fig. 12.9 [Color plate] Gallery of slow-soma Turing patterns for four values of subcortical drive
s (horizontal axis), six values of inhibitory diffusion D2 (vertical axis). Cortical sheet is initialized
at homogeneous equilibrium, driven continuously by low-level continuous spatiotemporal white
noise, and iterated for 2 s. Red = high-firing; blue = low-firing. Settings: Lx = Ly = 6.0 cm; Δx =
Δy = 0.25 mm. Larger D2 values required smaller timestepping: from top-to-bottom, timestep was
set at Δ t = [3,2,2,1.5,1,1] μs.
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Fig. 12.10 [Color plate] Gallery of fast-soma standing-wave patterns for four values of subcortical
drive s (horizontal axis), six values of inhibitory diffusion D2 (vertical axis). Wave instabilities can
emerge if diffusion is weak and subcortical stimulation is sufficiently strong. The wave patterns
oscillate in place at ∼30 Hz, with red and blue extrema exchanging position every half-cycle.
Timestep Δ t = 100 μs; other settings as for Fig. 12.9. (Figure reproduced from Ref. [27].)
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12.4 Discussion

The crucial distinction between the slow-soma and fast-soma models is the tempo-
ral ordering of reversal-potential weighting (the scaling by ψ) relative to Dendritic
integration (convolution with H): the slow-soma model assumes that the input flux
M is integrated at the dendrite, then modulated by the reversal function, while the
fast-soma model applies the reversal function directly to the input flux, then inte-
grates at the dendrite. In both cases, the dendrite-filtered output flux is integrated at
the soma, via convolution with the soma impulse response L, to give ΔV =V −V rest,
the voltage perturbation from rest.

Ignoring the contribution from gap-junction diffusion, the voltage perturbation
equations have the general forms,

V −V rest = L⊗ [ρψ · (H ⊗M)] , (slow soma), (12.35)

V −V rest = L⊗ [H ⊗ (ρψ ·M)] , (fast soma), (12.36)

where ρ is the (constant) synaptic strength at resting voltage. These general
forms are illustrated as flow-diagrams in Fig. 12.1, with the instantaneous voltage-
feedback—from soma to the dendritic reversal-weighting function—shown explic-
itly. As we have demonstrated in this chapter, swapping the order of dendrite
filtering and reversal-potential weighting makes qualitative changes to the dynami-
cal properties of the cortex.

For the slow-soma configuration (Fig. 12.1(a)), stationary Turing patterns can
form if inhibitory diffusion is sufficiently strong; in addition, a low-frequency (∼2-
Hz) whole-of-cortex Hopf oscillation emerges if the inhibitory PSP decay time-
constant is sufficiently prolonged (not shown here; refer to [28] for details). But
no evidence of higher-frequency rhythms—such as gamma oscillations—has been
predicted or observed in the slow-soma stability analysis or its numerical simulation.

In contrast, the fast-soma model (Fig. 12.1(b)) supports ∼30-Hz gamma rhythms
as cortical standing waves distributed across the 2-D cortex, with simulation be-
haviors being consistent with linear eigenvalue prediction. For this configuration,
gamma oscillations only arise when the inhibitory diffusion is weak or non-existent.
The contrary behaviors of the slow- and fast-soma mean-field models indicate that
a primary determinant of cortically-generated rhythms is the nature and timeliness
of the feedback from soma to dendrite.

Earlier mean-field work by Rennie et al. [20] also predicted gamma oscillations.
However, although we have chosen our model constants (and corresponding steady-
states) to be closely similar to theirs, the underlying convolution structures are very
different. Translating the Rennie et al. symbols to match those used here by way of
Table 12.3, their formulation for soma voltage reads,

V −V rest = H ⊗ [(ρψ ⊗L) ·M)] , (Rennie et al.). (12.37)

In the Rennie form, the incoming flux M is multiplied by a composite filter formed
by convolving the reversal-potential weight ψ against the soma filter L; the soma
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Table 12.3 Correspondence between major symbols used here and those used by Rennie et al.
[20]. Note that in our work, double-subscripts are read left-to-right, thus ab implies a→b; in Rennie
et al., subscripts are read right-to-left.

Quantity Symbol used here Symbol used by Rennie et al.

Synaptic strength ρa sba

Reversal-potential weight ψab Rba

Dendritic response function Hab Sba

Soma response function Lab Hba

voltage is then obtained by integrating the product at the dendrite filter H. The flow-
diagram for this sequence of operations (not shown) is difficult to interpret.

What is the biological significance of these slow- and fast-soma modeling predic-
tions? In [26] we identified the slow-soma Turing patterns with the default noncog-
nitive background state of the cortex that manifests when there is little subcortical
stimulation, and in [28] we demonstrated that these patterns can be made to oscil-
late in place at ∼1 Hz with a reduction in γie, the rate-constant for the inhibitory
post-synaptic potential (equivalent to rate-constant βie in this chapter). We argue
that these slow patterned oscillations might relate to the even slower hemodynamic
oscillations observed in the BOLD (blood-oxygen-level dependent) signals detected
in fMRI (functional magnetic resonance imaging) measurements recorded from re-
laxed, non-engaged human subjects [7, 8].

Increases in the level of subcortical activation tend to wash out the slow-soma
Turing patterns. Therefore any spatial patterns of firing activity observed during
times of elevated subcortical stimulation—for example, during active cognition—
cannot be explained using a slow-soma (with its implicit slow soma-to-dendrite
feedback) limit. Instead, we replace the slow feedback assumption with the prompt
feedback interactions implicit in the ordering of the convolutions adopted for the
fast-soma case. In this limit, increases in subcortical drive favor emergence of
traveling-wave instabilities of temporal frequency ∼30 Hz, in the low-gamma band.
Our grid simulations show that these gamma oscillations are coherent over distances
of several centimeters, synchronized by an underlying standing-wave modulation
of neuronal firing rates that provides a basis for the “instantaneous” action-at-a-
distance observed in cognitive EEG experiments [22].

The contrasting sensitivity to inhibitory gap-junction diffusion predicted by the
slow- and fast-soma models finds clinical support in brain-activity measurements
from schizophrenic patients. The brains of schizophrenics carry excess concentra-
tion of the neuromodulator dopamine [30]. Dopamine is known to have a number
of physiological impacts, one of these being a tendency to block neuronal gap junc-
tions [12]. For the slow-soma model, the closure of gap junctions will reduce the
inhibitory diffusion D2, and therefore, for a given value of subcortical drive s, will
reduce the likelihood of forming Turing pattern spatial coherences during the de-
fault noncognitive state—e.g., consider a bottom-to-top traverse of the Fig. 12.9
slow-soma gallery. This degraded ability to form default-mode Turing structures
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leads to the prediction that schizophrenics should exhibit impairments in the func-
tion of their default networks, and this is confirmed in two recent clinical studies
[3, 19].

Applying excess dopamine to the fast-soma model, coherent gamma activity is
predicted to emerge in the cognitively-active schizophrenic brain (see upper-right
panel of Fig. 12.10), but these patterns will be “spindly” and less spatially general-
ized than those observed in a normal brain with lower dopamine levels and there-
fore stronger inhibitory diffusion (e.g., bottom-right panel of Fig. 12.10). This is
consonant with gamma-band EEG measurements captured during cognitive tasks:
compared with healthy controls, schizophrenics exhibited diminished levels of long-
range phase synchrony in their gamma activity [29].

We acknowledge that, although the slow- and fast-soma models share identical
steady states, the two models, as presently constructed, are not strictly comparable.
This mismatch is evident in two respects. First, we find that the fast-soma model
is about two orders of magnitude more sensitive to variations in inhibitory diffu-
sion D2 than is the slow-soma. Second, in order to bring the instability peaks in the
respective dispersion graphs (Figs 12.3 and 12.4) into rough alignment at similar
wavenumbers, we found it necessary to set the spatial decay-rate Λ α

eb for the slow-
soma wave-equation four times larger (i.e., axonal connectivity drops off four times
faster) than for the fast-soma case (see Table 12.4). Despite these somewhat arbi-
trary model adjustments, we consider that the qualitative findings presented in this
chapter are robust, namely that:

• delayed soma-to-dendrite feedback, via membrane reversal potentials, supports
stationary or slowly fluctuating spatial firing-rate patterns

• prompt feedback from soma to dendrite enhances spatially-coherent gamma os-
cillations

• gap-junction diffusion has a strong influence on the stability and spatial extent of
neural pattern coherence.
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for the cortex. This research was supported by the Royal Society of New Zealand Marsden Fund,
contract 07-UOW-037.
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Appendix

Table 12.4 Standard values for the neural model. Subscript label b means destination cell can be
either of type e (excitatory) or i (inhibitory). Most of these values are drawn from Rennie et al.
[20].

Symbol Description Value Unit

τe,i soma time constant 0.050, 0.050 s

V rev
e,i reversal potential for AMPA, GABA channels 0, −70 mV

V rest
e,i resting potential −60, −60 mV

ρe,i synaptic gain at resting potential (2.4, −5.9)×10−3 mV·s
βee,βie PSP rise-rate in excitatory neurons 500, 500 s−1

βei,βii PSP rise-rate in inhibitory neurons 500, 500 s−1

αee EPSP decay-rate in excitatory neurons 68 s−1

αei EPSP decay-rate in inhibitory neurons 176 s−1

αie IPSP decay-rate in excitatory neurons 47 s−1

αii IPSP decay-rate in inhibitory neurons 82 s−1

Nα
eb long-range e→b axonal connectivity 3710 –

Nβ
eb,N

β
ib local e→b, i→b axonal connectivity 410, 800 –

Nsc
eb,N

sc
ib subcortical e→b, i→b axonal connectivity 80, 0 –

s control parameter for subcortical synaptic flux 0.1 –

vα
eb long-range e→b axonal speed 140 cm s−1

vβ
eb,v

β
ib local e→b, i→b axonal speed 20, 20 cm s−1

Λ α
eb inverse-length scale for long-range e→b axons (slow-soma) 4 cm−1

Λ α
eb inverse-length scale for long-range e→b axons (fast-soma) 1 cm−1

Λ β
eb,Λ

β
ib inverse-length scale for local e→b, i→b axons 50, 50 cm−1

Qmax
e,i maximum firing rate 100, 200 s−1

θe,i threshold voltage for firing −52, −52 mV

σe,i standard deviation for threshold 5, 5 mV

Lx,y length, width of cortical sheet 6, 6 cm
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Hopf bifurcation, 8, 83–85, 131, 133–134, 211,

227–229, 286
subcritical, 84
supercritical, 84

Hopf oscillator, 85
Hurst exponent, 92
Hypnic jerk, 20–23
Hysteresis, 13, 22, 193, 196–197

Ictogenesis, 101
IDE (integro-differential equation), 57, 272
Impulse response

alpha-function, 274
biexponential, 274, 278

Inhibitory diffusion, 284
Instability, see also Bifurcation

non-oscillatory, 70
of brain resting-state, 86–87
oscillatory, 63–66
spatiotemporal, 54, 77
wave, 273, 285–286, 290, 295

Integrator neuron, 9
subthreshold “resonance at dc”, 10

Interneurons
L-type, 280

Ion-channel density, 168–169
Ionic conductance, 3, 159, 165
IPSP (inhibitory PSP), 215, 225, 229
IS (intermediate sleep), 210, 215
IS–REM sleep transition, 212

Jacobian matrix, 283

K-complex, 237–238
Kalman filter, 30, 36, 38, 40
Kernel function, 57–59, 61–65, 67, 70
Ketamine, 209
Kuramoto–Sivashinsky equation, 57

LFP (local field potential), 150, 160
Limbic system, 103
Linear stochastic null hypothesis, 136
Luciferase, 11
Lyapunov exponent, 58, 68–70, 91–92, 131

Macrocolumn, 55, 59, 224
Mean-field model, 122–136, 204–207,

213–215, 223–226
construction, 124

dynamics, 130–136
EEG spectrum, 190
extended Liley model, 124–128
limitations of, 223
linear instability, 191
linearization, 128–129, 189
macrocolumn, 224
nonlinear instability, 191, 194
of neuronal activity, 181–183, 187
parameters, 186
physiological plausibility, 129–130
rationale, 180
steady states, 187

Mean-square stability, 68–70
MEG (magnetoencephalogram), 148, 271
Membrane

capacitance, 159
resistance, 280
time-constant, 281

Mesoscopic brain dynamics, 148–150
Metastability, 140–141

Hebbian perspective, 140
Mexican hat, 161, 256
Microsleeps, 196
Monte Carlo spreading simulation, 109
Mu rhythm, 119
Mutual information, 90–92

Narcolepsy, 196
Natural (internally-induced) phase transitions,

150–162
Nelder-Mead simplex algorithm, 39
Neocortical network model, 157–160
Network models, 99–112

cat cortex, 102
chronic limbic epilepsy, 104–105
hierarchical, 101–103, 105–112
neocortical, 157–160
paleocortical, 151–153
random, 106, 108, 111
scale-free, 101
self-organized, 100–101
small-world, 106, 108–110, 112
topology, 100, 106, 108, 111

Neuromodulator activity, 206, 210
Neuromodulator-induced phase transition,

155–156
Neuron models

classification, 5
FitzHugh–Nagumo, 84–86, 150
Frankenhaeuser–Huxley, 150, 167
Hodgkin–Huxley, 3, 81, 84, 150, 158, 273
phase transition, 2–10
type-I (integrator), 5, 9
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Neuron models (cont.)
type-II (resonator), 5, 9
Wilson spiking model, 3–5

Neuronal connectivity
anatomical, 81
functional, 82

Neurotransmitter
AMPA, 225
GABA, 225
NMDA, 259, 263

Noise covariance, 36
Noise-induced phase transition, 77, 150–151,

153–155
Nonlinear time-series analysis, 137–138
Nonstationarity, 36
NSF (nonspecific flux), 245–254
Null spike, 255–256

as marker for phase transition, 256
Nyquist frequency, 34

Olfactory cortex, 162–163
Order-parameter, 75
Orexin, 195
Ornstein–Uhlenbeck (Brownian motion)

process, 7, 10, 75

Pacemakers, 190
Paleocortical network model, 151–153
PCA (principal component analysis), 87, 94
PDE (partial differential equation), 57, 272
Phase cone, 254–255
Phase slip, 256
Phase synchronization, 93
Phase transition, 179–181, 190, 193, 198, 227,

255–256
anesthetic, 2, 13, 167
artificial (externally induced), 162–167
attention-induced, 156–157
ECT-induced seizure, 163–167
in single neuron, 2–10
intermediate to REM sleep, 212
natural (internally induced), 150–162
neuromodulator-induced, 155–156
noise-induced, 150–151, 153–155
SWS to REM sleep, 15–16
wake–sleep, 20–23

Phase-space trajectory, 238
Pitchfork bifurcation, 74
Power spectra, 248

centimetric scale, 248
macrocolumnar scale, 248, 251

Probability density function, 55, 58, 71, 75
Propagation speed, 56–58, 66
Propofol, 13

PseudoECoG, 210
PSP (postsynaptic potential), 13, 54, 224, 272

excitatory, 54, 120, 204, 206–208, 210, 275
inhibitory, 54, 131, 215, 275

Random fluctuations, 66–69, 71, 74, 76
Recurrent network, 54
REM (rapid-eye-movement) sleep, 188, 207,

210, 214–215, 227
Resonator neuron, 9

subthreshold ringing, 5, 10
Reversal potential, 3, 272–275

Saddle–node bifurcation, 9, 19, 22, 83, 131,
133, 182, 191, 193, 196, 237

Schizophrenia, 295
SDE (stochastic differential equation), 67
Seizure, 101, 104, 110

epilepsy, 240
ictogenesis, 101
spreading, 100–113
status epilepticus, 104

Self-organized criticality, 100–101
Serotonin, 155
Shilnikov bifurcation, 131, 133
Short-range flux, 279
Sigmoidal function, 56, 225
Slaving principle, 73
Sleep

in fetal sheep, 43–45
intermediate (IS), 212
rapid-eye-movement (REM), 227
slow-wave (SWS), 227

Sleep–wake cycle
AAS (ascending arousal system), 194–198
circadian drive, 195
homeostatic drive, 195
microsleeps, 196
physiological basis, 194
spectral characteristics, 190

Small-world network, see Network models,
small-world

Soma
“fast-soma” model, 274–278, 282–296
“slow-soma” model, 274–278, 282–296
impulse-response, 275, 277
time-constant, 275
voltage, 274–276, 278, 281–283

Soma potential, 205, 210
Somnogen, 206
Spatial diffusion, 231
Spatial interactions

local excitation–lateral inhibition (Mexican
hat), 60, 65



Index 305

local inhibition–lateral excitation (inverse
Mexican hat), 60

topological inhibition, 112
Spatial mode, 68–71, 77
Spindle, 215
Spiral wave, 240
Stability

asymptopic, 68, 70
linear, 53
mean-square, 68–70
stochastic, 68–70

Stable modes, 72
Standing wave, 272, 276, 287
State-space modeling, 30–35

modal representation, 32–33
Stationary state, 58, 63, 68–74, 226–227, 282,

287
STLR (spatiotemporal learning rule), 259
Stochastic

analysis, 74, 76
center manifold, 74–76
exploration, 3
stability, 68–70
volatility modeling, 36

Subcortical drive, 282, 287
Swift–Hohenberg equation, 57
SWS (slow-wave sleep), 206, 210, 227
SWS–REM sleep transition, 15–16, 206, 210,

214
Synchronization, 157
Synchronous oscillation, 251–252

Tau rhythm, 119
TCF (transcortical flux), 245–254
Thalamus, 184, 187, 190
Theta oscillation, 155, 211, 214
Time-series modeling

innovation, 28
Markov process, 28
maximum-likelihood estimation, 28–29
white-noise, 28

Topological inhibition, 112
Traveling wave, 251–252, 254–255
Turing bifurcation, 61–63, 71–77, 272–274,

276, 284–292

Unmyelinated axon, 279

Visual attention, 160–162
Volume conduction, 184

Wake–sleep transition, 20–23
Wave equation, 278–279
White noise, 3, 14, 28, 86, 92, 210, 224, 251,

279, 290
Wiener process, 67
Wilson neuron, 3–5

stochastic simulation, 5

Xylazine, 209

Zero-lag synchrony, 252


