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Introduction to Bayesian Response Modeling

1.1 Introduction

In modern society, tests are used extensively in schools, industry, and gov-
ernment. Test results can be of value in counseling, treatment, and selection
of individuals. Tests can have a variety of functions, and often a broad clas-
sification is made in cognitive (tests as measures of ability) versus affective
tests (tests designed to measure interest, attitudes, and other noncognitive
aspects).

The urge for testing increased in different fields, and tests were used more
and more for various purposes, like evaluating the efficiency of educational sys-
tems and students’ learning progress, besides measuring persons and individ-
ual differences. Parallel to this development, an increasing public awareness of
the importance, limitations, and impact of testing led to much criticism. Both
stimulated the development of better tests and the improvement of statistical
methods for analyzing test scores. Dealing with common test problems such
as constructing tests and analyzing and interpreting results also encouraged
the development of modern test theory or item response theory (IRT). In the
second half of the twentieth century, item-based statistical models were used
for the measurement of subjective states like intelligence, arithmetic ability,
customer satisfaction, or neuroticism.

Originally, the item response models developed in the 1970s and 1980s were
mainly meant for analyzing item responses collected under standardized con-
ditions in real test situations. Assigning a score, determining its accuracy, and
comparing the results were the main targets. Today, these item response mod-
els are widely applied for their well-known scaling and measurement proper-

However, together with an increasing demand for testing, in the 1980s
and 1990s new possibilities in computer technology made it possible to collect
more data, improving the quality of data and the efficiency of data collec-
tion. The introduction of computer-assisted interviewing, Web-based surveys,
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and statistical data centers, among other methods, has made the collection
of (response) data faster and more accurate. Nowadays, high-level data like
background data, data extracted from public registries, and administrative
data have become available via Web-enabled statistical databases. Typically,
in survey-based studies, more and more data are available, while the amount
of information is often limited at the individual level. Inferences are to be
made at the individual level and other finer levels of aggregation, taking the
level of uncertainty into account.

Parallel to the availability of high-quality data, new questions arose that
were focused on addressing challenges such as complex response behavior (e.g.,
guessing, extreme responding), missingness and nonresponse, and complex
sampling designs. Data from large-scale assessments are often hierarchically
structured, where subjects are nested in groups, responses nested in subjects,
or items nested within units. The nesting leads to more complicated depen-
dency structures, with sources of variation at the different levels of hierarchy.
The recognition of hierarchically structured data led to new challenges, like
accurately measuring subject differences and cross-level relationships when
accounting for nested sources of variation.

The increasing complexity of situations in which response data are col-
lected also posed new issues. For example, cross-national response observa-
tions are difficult to interpret when the test characteristics are not invariant.
Cross-national differences can possibly be explained by social background dif-
ferences and measurement characteristic differences, but it is difficult to iden-
tify the real effects with a test that operates differently across countries. This
problem gets more complicated when socially desirable answers to sensitive
survey questions (e.g., about consumption of alcohol or use of illicit drugs)
are obtained where respondents intentionally distort or edit their item re-
sponses. Tests are often used as surveys such that the performance on the test
does not yield direct consequences for the respondent, with the effect that the
amount of nonresponse increases significantly. In more complex survey stud-
ies, basic item response model assumptions are often violated and threaten
the statistical inferences. One of the challenges is to account for respondent
heterogeneity, cross-classified hierarchical structures, and uncertainty at dif-
ferent hierarchical levels while at the same time making accurate inferences
at a disaggregate level.

To meet these challenges, a Bayesian approach to item response modeling
was started in the 1980s by Mislevy (1986), Rigdon and Tsutakawa (1983), and
Swaminathan and Gifford (1982, 1985), among others. The Bayesian model-
ing framework supports in a natural way extensions of common item response
models. The response model parameters are described via prior models at sep-
arate levels to account for different sources of uncertainty, complex dependen-
cies, and other sources of information. This flexibility in defining prior models
for the item response model parameters is one of the strengths of Bayesian
modeling that makes it possible to handle for example more complex sampling
designs comprising complex dependency structures.
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In the 1980s, the conceptual elegance of the Bayesian approach had been
recognized, but major breakthroughs in computation were needed to make
a Bayesian modeling approach possible and attractive. Improved computa-
tional methods were needed to support a novel flexible modeling approach
that, among other things, acts upon the discrete nature of response data and
handles relationships with higher-level data where standard distributional as-
sumptions do not apply. This breakthrough was accomplished with the intro-
duction of Markov chain Monte Carlo (MCMC) methods, which stimulated
in a profound way a Bayesian item response modeling approach. Since the
early 1990s, response modeling issues and problems of making inferences from
response data have been attacked in a completely Bayesian way without com-
putational obstacles. A key element was that the MCMC methods for simul-
taneous estimation remained straightforward as model complexity increased.

Specific problems related to the modeling of response data make certain
Bayesian methods very useful. However, before discussing the attractiveness
of Bayesian methods, typical characteristics of item response data and the use
of latent variables are discussed.

1.1.1 Item Response Data Structures

Response data can be characterized in different ways, but a prominent feature
is that they come from respondents. The heterogeneity between respondents
is a typical source of variation in response data that needs to be accounted
for in a statistical response model. Generally, differences between respondents
are modeled via a probability distribution known as a respondents’ population
distribution, and inferences about respondents are always made with respect
to a population distribution, which will receive special attention throughout
this book.

Hierarchically Structured Data

In standard situations, respondents are assumed to be sampled independently
from each other. This standard sampling design is simple random sampling
with replacement from an infinite population. In many situations, respondents
are clustered and the population of interest consists of subpopulations. The
observations are correlated within clusters and reflect that the clusters differ in
certain ways. The observations are said to be hierarchically structured when
nested in clusters. Typically, response observations within each cluster are
not independently distributed, in contrast to (nonnested) observations from
different clusters.

There are various examples of clustered (response) data. Longitudinal data
are hierarchically structured when subjects are measured repeatedly on the
same outcome at several points in time. When the number of measurements
and spacing of time points vary from subject to subject, the observations
are viewed as nested within subjects. A slightly more general term is repeated
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measurements, which refers to data on subjects measured repeatedly at differ-
ent times or different conditions. The term clustered data, which characterizes
the hierarchical structured nature of the data, is often used when observa-
tions are nested in geographical, political, or administrative units, or when
respondents are nested under an interviewer or within schools. In educational
research, response data are often doubly nested when observations are nested
within individuals and are in turn nested within organizations. Multivariate
data also contain a hierarchical structure since for each subject multiple out-
comes are measured that are nested within the subject.

There are different terms used in the literature to characterize hierarchi-
cally structured data. The lowest level of the hierarchy is referred to as the
level-1, stage-1, micro-, or observational level. One higher level of the hierarchy
is referred to as level-2, stage-2, macro-, or cluster level. The terminology cho-
sen is that most appropriate to the context, and in the absence of a particular
context two levels of hierarchy are denoted by level 1 and level 2.

The heterogeneity between respondents is often of a complex nature, where
respondents (level 2) are nested in groups (level 3; e.g., schools, countries) and
responses (level 1) nested within individuals. Inferences have to be made at
different levels of aggregation, and therefore a statistical model has to com-
prise the different levels of analysis. The responses at the observational or
within-respondent level are explicitly modeled via a conditional likelihood
where typically conditional independence is assumed given a person parame-
ter. At a higher (hierarchical) level, a between-respondent model defines the
heterogeneity between respondents. Later on, it will be shown that hierarchi-
cally structured response data can be analyzed in a unified treatment of all
different levels of analysis via a Bayesian modeling approach.

Response data are often sparse at the respondent level but are linked to
many respondents. This sparsity complicates an estimation procedure for ob-
taining reliable estimates of individual effects. By borrowing strength from
the other individuals’ response data nested in the same group, improved esti-
mates of individual effects can be obtained. In the same way, more accurate
estimates can be obtained at an aggregate level using the within-individual
data.

Response data are often integer-valued, where responses can be obtained
as correct or incorrect or are obtained on a five- or seven-point scale. The
lumpy nature of response data requires a special modeling approach since the
standard distributional assumptions do not apply.

Response data are often obtained in combination with other input vari-
ables. For example, response data are obtained from respondents together
with school information, and the object is to make joint inferences about
individual and school effects given an outcome variable. In a Bayesian frame-
work, different sources of information can be handled efficiently, accounting
for their level of uncertainty. It will be shown that the flexibility of a Bayesian
modeling approach together with the powerful computational methods will
offer an attractive set of tools for analyzing response data.
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1.1.2 Latent Variables

Various definitions of latent variables are given in the literature. In this book,
a latent variable is defined as a random variable whose realizations cannot
be observed directly. It is obvious that a latent variable cannot be measured
directly or even in principle when it represents a hypothetical construct like
intelligence or motivation (e.g., Torgerson, 1958). An operational definition
states that the construct is related to the observable data. The relationship
is often defined in such a way that item responses serve as indicators for
the measurement of the underlying construct. For example, common item
response models define a mathematical relationship between a person’s item
responses and a latent variable that represents the property of the person
that the items measure. In common situations, a latent variable appears as
a continuous random variable. It is also possible that a latent variable is
defined to be categorical such that respondents are assigned to one of a set of
categories that may be ordered or unordered. Bartholomew and Knott (1999)
and Skrondal and Rabe-Hesketh (2004), among others, give a general overview
of latent variables and their uses in different social science applications.

For various reasons, latent variables play an important role in the statis-
tical modeling of response data, especially in behavioral and social research.
First, as mentioned, the item responses are often assumed to be indicators
of an underlying construct or latent variable, and interest is focused on its
measurement. IRT defines a relationship between item responses and respon-
dents’ latent variable values. Second, the direct specification of a joint dis-
tribution of the random observations is often extremely difficult, and some
sort of summarization is needed to identify the interrelationships of the many
random observations. Latent variables can be used to define an underlying
structure to reduce the dimensionality of the data, and relationships can be
specified for a smaller set of variables. Third, discrete response outcomes are
often observed that can be regarded as a partial observation of an underly-
ing continuous variable. For example, it is often assumed that realizations
from a latent continuous variable are not observed but a censoring mecha-
nism produces discrete responses on a fixed point scale. For binary responses,
a positive response is observed when an underlying continuous variable sur-
passes a threshold value, and a negative response is observed otherwise. The
latent continuous response formulation is very flexible and can handle almost
all sorts of discrete responses, and it will be used extensively in subsequent
chapters. Then, other advantages of the latent response formulation will be
revealed.

In the following sections, some traditional item response models are re-
viewed from which extended Bayesian response models can be built. Then,
a general Bayesian response modeling framework is introduced that is used
throughout the rest of the book.
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1.2 Traditional Item Response Models

The literature on the development, description, and applications of item re-
sponse models for item-based tests is very rich and will not be repeated here.
Only a short overview of some popular item response models will be given,
including their assumptions. This introduction will also be used to introduce
the notation. The classic book of Lord and Novick (1968) is often cited as the
beginning of model-based statistical inference in educational and psycholog-
ical measurement. However, the development of item response models has a
longer history. A general and historical overview of item response theory can
be found in Baker and Kim (2004), Bock (1997), Embretson and Reise (2000),
and van der Linden and Hambleton (1997), among others. Item response mod-
els are sometimes introduced as an answer to shortcomings of classical test
theory (e.g., Hambleton, Swaminathan and Rogers, 1991; Thissen and Wainer,
2001).

IRT is concerned with the measurement of a hypothetical construct that
is latent and can only be measured indirectly via the measurement of other
manifest variables. This hypothetical construct is a latent variable and often
represents the ability, skill, or more generally a latent person characteristic
that the items measure. Throughout the entire book, the latent variable will
also be called an ability parameter as a generic name for the latent construct
that is measured by the items and will usually be denoted as θ. When the
latent variable refers to a person characteristic such as ability or proficiency,
it will also be called a person parameter.

Item response models have several desirable features. Most of these fea-
tures result from the fact that a common scale is defined for the latent variable.
Item characteristic(s) and respondents’ characteristic(s) are both separately
parameterized within an item response model and are both invariant. This
means that the corresponding estimates are not test-dependent. Latent vari-
able estimates from different sets of items measuring the same underlying con-
struct are comparable and differ only due to measurement error. Estimates
of item characteristics from responses of different samples of individuals from
the same population are comparable and differ only due to sampling error.

There are two key assumptions involved in IRT. The first assumption states
that a change in the latent variable leading to a change in the probability of
a specified response is completely described by the item characteristic curve
(ICC), item characteristic function, or trace line. This ICC specifies how the
probability of an item response changes due to changes in the latent variable.
Different mathematical forms of the item characteristic curves lead to different
item response models. For dichotomous responses (correct or in agreement),
the probability of a success is modeled as a function of item and person pa-
rameters. The second assumption states that responses to a pair of items
are statistically independent when the underlying latent variable (the items
measure a unidimensional latent variable) is held constant. In that case, only
one (unidimensional) latent variable influences the item responses and local
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independence holds when the assumption of unidimensionality is true. The
assumption of local independence is easily generalized to a multidimensional
latent variable that states that responses to a pair of items are statistically
independent when the multidimensional latent variable is held constant.

A random vector of K responses is denoted as Yi, with observed values
yi = (yi1, yi2, . . . , yiK) of an individual indexed i with ability parameter θi.
Then the assumption of local independence can be stated as

P (yi | θi) = P (yi1 | θi)P (yi2 | θi) . . . P (yiK | θi) =
K∏
k=1

P (yik | θi). (1.1)

There is one latent variable underlying the observed responses when local
independence holds, and after conditioning on this latent variable the observed
responses are assumed to be independent. Therefore, the assumption of local
independence is also known as conditional independence.

There are two points of view on the meaning that (1.1) gives the condi-
tional probability that person i with ability θi will produce response pattern
yi (Holland, 1990; Molenaar, 1995). In the stochastic subject view, it is as-
sumed that subjects are stochastic in nature, which makes it meaningful to say
that a person with ability θi has a probability of producing a correct response.
The idea is that each person gives small response variations when confronting
the respondent with the same item over and over again and brainwashing the
person after each confrontation. Lord and Novick (1968) defined a so-called
propensity distribution that describes similar variations in the total test scores
in classical test theory. Holland (1990) mentioned that the stochastic subject
view may suggest that there is no need to consider a population model for the
respondents (examinee population), but the effect of the population will al-
ways be there (e.g., person and item parameters will always be estimated with
respect to a population). This leads to the other point of view, which is based
on the concept of sampling respondents from a population. In this so-called
random sampling view, each probability on the right-hand side of (1.1) is the
proportion of respondents with ability θi giving a correct response. This view-
point makes the population of respondents part of the probability model for
each response. The random sampling view for the meaning of the conditional
probability of a correct response is adopted. Throughout this book, specific
populations of respondents and items are included in the model since their
effects cannot be ignored.

1.2.1 Binary Item Response Models

The Rasch Model

The Rasch model (Rasch, 1960), the one-parameter logistic response model,
is one of the simplest and the most widely used item response model. In the
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Fig. 1.1. Item characteristic curves of the one-parameter IRT model corresponding
to three difficulty levels.

one-parameter response model, the probability of a correct response is given
by

P (Yik = 1 | θi, bk) =
exp(θi − bk)

1 + exp(θi − bk)
=
(
1 + exp(bk − θi)

)−1 (1.2)

for individual i with ability level θi and item difficulty parameter bk. In Figure
1.1, three ICCs corresponding to Equation (1.2) are plotted with different
item difficulties. Each ICC describes the item-specific relationship between the
ability level and the probability of a correct response. The difficulty parameter
bk is the point on the ability scale that corresponds to a probability of a correct
response of 1/2. An item is said to be easier when the probability of success is
higher in comparison with another item given the same ability level. In Figure
1.1, the plotted ICCs from the left to the right have increasing item difficulty
parameters. It can be seen that to maintain a probability of success of 1/2 on
each item one should increase its ability level from −1 to 1, starting from the
left ICC to the rightmost ICC. An important feature of ICCs corresponding
to the Rasch model is that the ICCs are parallel to one another. This means
that for these items an increase in ability leads to the same increase in the
probability of success. It is said that the items discriminate in the same way
between success probabilities for related ability levels.

Rasch (1960) presented the dependent variable as the log odds or logit of
passing an item, which equals the ability parameter minus the item difficulty
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parameter. The Rasch model has some desirable features. The probability
distribution is a member of the exponential family of distributions. As a result,
the Rasch model shares the nice mathematical and statistical properties of
exponential family models (see, e.g., Lehmann and Casella, 2003, pp. 23–32).
The structure of the Rasch model allows algebraic separation of the ability
and item parameters. Therefore, in the estimation of the item parameters, the
ability parameters can be eliminated through the use of conditional maximum
likelihood (CML) estimation. This can be achieved when the response space is
partitioned according to the raw sum scores, which are sufficient statistics for
the ability parameters. In the same way, the item scores are sufficient statistics
for the item difficulties.

It can be seen from Equation (1.2) that a response probability can be
increased by adding a constant to the ability parameter or subtracting this
constant from the item difficulty parameter. Both parameters are defined in
the same metric, and the metric is only defined up to a linear shift. This
identification problem is solved by specifying the constraint in such a way
that the location of the metric is known. This is usually done by adding
the restriction that the sum of the difficulty parameters equals zero or by
restricting the mean of the scale to zero.

A limitation of the Rasch model is that all items are assumed to discrim-
inate between respondents in the same way and, as a result, items only differ
in item difficulty. It is desirable from a practical point of view to param-
eterize item difficulties and item discriminations. Thissen (1982) developed
an estimation procedure (marginal maximum likelihood, MML) for the one-
parameter logistic model where all discrimination parameters are equal but
not restricted to be one.

Two-Parameter Model

In the two-parameter logistic model, a discrimination parameter is added to
the model, which leads to

P (Yik = 1 | θi, ak, bk) =
exp(akθi − bk)

1 + exp(akθi − bk)
=
(
1 + exp(bk − akθi)

)−1
. (1.3)

As a result, the item characteristic curve (ICC) has a slope parameter ak and
the items are no longer equally related to the ability parameter. In Figure
1.2, three ICCs for the two-parameter IRT model with the same difficulty
parameter (bk = 0) are plotted. The slope of each ICC is characterized by the
discrimination parameter ak.

The three ICCs have discrimination parameter values of 2, 1, and 1/2. The
ICC with ak = 2 has the steepest slope. The higher (lower) the discrimination
parameter, the (less) better the item is capable of discriminating between low
and high ability levels. Note that the item’s discrimination value is strongly
related to the item’s difficulty value. An item of high discrimination is only
useful in the area of the item’s difficulty level that corresponds to a certain
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Fig. 1.2. Item characteristic curves of the two-parameter IRT model corresponding
to three discrimination levels and an equal level of difficulty.

region of the ability scale. In Figure 1.2, it can be seen that the item with the
steepest slope is useful in the region between −1 and 1 of the ability scale,
whereas the item with the flattest ICC is useful in the region between −2 and
2.

There is no sufficient statistic for the ability parameters, and as a result
conditional maximum likelihood estimation is not possible. Bock and Lieber-
man (1970) and Bock and Aitkin (1981) developed an estimation procedure
based on MML for the two-parameter model. The item parameters are es-
timated from the marginal distribution by first integrating over the ability
distribution and thus removing the ability parameters from the likelihood
function.

A probit version of the two-parameter model is defined in the literature as
the normal ogive model (e.g., Lord and Novick, 1968, pp. 365–384) in which
the ICC is based on a cumulative normal distribution,

P (Yik = 1 | θi, ak, bk) = Φ(akθi − bk) =
∫ akθi−bk

−∞
φ(z)dz, (1.4)

where Φ(.) and φ(.) are the cumulative normal distribution function and the
normal density function,1 respectively. The logistic ICC and the normal ogive
1 Random variable Z is normally distributed with mean µ and variance σ2 when

its probability density function equals φ(z;µ, σ2) = 1√
2πσ2 exp

( −1
2σ2 (z − µ)2

)
. The

standard normal density function is defined by µ = 0 and σ = 1.
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ICC in Equations (1.3) and (1.4) closely resemble each other when the logistic
item parameter values are multiplied with a constant scaling factor d = 1.7.
Then, for different values of the ability parameter, the response probabilities
of the two-parameter logistic and the normal ogive differ in absolute value by
less than .01 (Hambleton et al., 1991, p. 15). The item parameters will also
be denoted by ξk, with ξk = (ak, bk)t.

The term akθi − bk in Equations (1.3) and (1.4) is often presented as
ak (θi − b∗k). The b∗k are defined on the same scale as the latent variable. That
is, as in the Rasch model, the b∗k is the point on the ability scale where an
examinee has a probability of success on the item of 1/2. The reparameter-
ization bk = ak · b∗k relates both parameters with each other. In subsequent
chapters, it is shown that the term akθi − bk (without parentheses) will be
useful and the (estimated) difficulty parameters are easily transformed to an-
other scale. In Figure 1.2, the difficulty levels of the items are zero, and in
that case both parameterizations lead to the same difficulty level. The metric
of the ability parameters is known from item response data only up to a linear
transformation. The metric can be identified by fixing a discrimination and
difficulty parameter or by adding constraints that the sum of item difficulties
and the product of item parameter values equals, for instance, zero and one,
respectively, or by fixing the mean and variance of the population distribution
of ability parameters. Note that the choice of the identifying restrictions can
lead to numerical problems in the estimation of the parameters.

Three-Parameter Model

The two-parameter normal ogive model can be extended to allow for guessing
by introducing a nonzero lower asymptote for the ICC; that is,

P (Yik = 1 | θi, ak, bk, ck) = ck + (1− ck)Φ(akθi − bk) (1.5)
= Φ(akθi − bk) + ck (1− Φ(akθi − bk)) , (1.6)

where ck is known as the guessing parameter of item k. The probability of
a correct response is given by a guessing parameter plus a second term rep-
resenting the probability of a correct response depending on item parameter
values and the ability level of respondent i. The logistic version becomes

P (Yik = 1 | θi, ak, bk, ck) = ck +
1− ck

1 + exp(bk − akθi)
(1.7)

=
1

1 + exp(bk − akθi)
+

ck
1 + exp(akθi − bk)

.

The item parameters of both models differ by a constant scaling factor (see
also Section 4.3.2). When ck = 0, the three-parameter model resembles the
two-parameter model. For ck > 0, the interpretation of bk is changed. In the
three-parameter model, the proportion responding correctly at bk/ak equals
1/2 + ck, and in the two-parameter model bk/ak is the value of θi at which a
respondent has a probability of 1/2 of responding correctly.
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In Figure 1.3, three ICCs of the three-parameter model are plotted with
the same discrimination and difficulty level but with three different levels of
guessing, low (.05), medium (.10), and high (.20). The height of the lower
asymptote is the guessing level of the item and corresponds to the probability
of success when guessing the response. It can be seen that for high-ability
respondents the effect of guessing on the success probability is very small
since the three ICCs are almost identical at the higher end of the ability
scale.
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Fig. 1.3. Item characteristic curves of the three-parameter IRT model corresponding
to three different levels of guessing and an equal level of discrimination and difficulty.

1.2.2 Polytomous Item Response Models

Measurement items are often presented with multiple categories: rating scale
items such as Likert-type items, multiple-choice items where each response
category is scored separately, and items that assign partial credit for partially
correct answers, among others. Most polytomous models are based on ordered
polytomous items, which are those items where the response categories can
be ordered with respect to the ability parameter. Responses to ordered poly-
tomous items are also referred to as graded responses. Although polytomous
item response models contain more item parameters, more precise information
about the ability level can be obtained when more than two scoring categories
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are used. The measurement information will be reduced when dichotomizing
polytomous response data. Cohen (1983) showed an increase in statistical
information from polytomous IRT models in comparison with dichotomous
item response models. A general overview and a historical discussion of poly-
tomous item response models can be found in Ostini and Nering (2006) and
Embretson and Reise (2000).

In this section, two commonly used polytomous item response models are
presented for ordinal response data. The partial credit model (PCM; Masters,
1982) was developed for test items. It requires multiple steps, and partial
credit is assigned for completing each step. The probability of a response in a
particular category c (c = 1, . . . , Ck) of item k is defined directly as

P (Yik = c | θi,κk) =
exp

∑c
l=1(θi − κk,l)∑Ck

r=1 (exp
∑r
l=1(θi − κk,l))

,

where κk,l is the item step difficulty parameter and
∑1
l=1(θi − κk,l) ≡ 0.

The number of categories per item may differ. The PCM model simplifies to
the Rasch model for an item with only two categories. The item parameters
are not subject to an order constraint since each item parameter is defined
locally with respect to two adjacent categories instead of taking into account
all categories simultaneously. Muraki (1992, 1993) developed the generalized
partial credit model that allows the items to have different slope parameters.

In the PCM, the cumulative probabilities are not modeled directly but are
the result of summing the category response functions. In the graded response
model (Samejima, 1997), the cumulative probabilities are modeled directly.
The probability of scoring in a specific category is modeled by the probability
of responding in (or above) this category minus the probability of respond-
ing in (or above) the next category. Let Ck denote the number of response
categories of item k. Then there are Ck − 1 thresholds between the response
options. The graded response model has the mathematical representation

P (Yik = c | θi,κk) = P (Yik ≥ c− 1 | θi,κk)− P (Yik ≥ c | θi,κk) (1.8)

=
∫ ∞
κk,c−1

ψ (z; akθi) dz −
∫ ∞
κk,c

ψ (z; akθi) dz

= Ψ (akθi − κk,c−1)− Ψ (akθi − κk,c)

=
exp(akθi − κk,c−1)

1 + exp(akθi − κk,c−1)
− exp(akθi − κk,c)

1 + exp(akθi − κk,c)
,

where ψ and Ψ are the logistic density2 and logistic cumulative distribution
function, respectively. The probability of scoring in or above the lowest cate-
gory is one and the probability of scoring above the highest category is zero.
2 Random variable Z is logistically distributed with mean µ and variance σ2π2/3

when its probability density function equals ψ(z;µ, σ2) = exp((z−µ)/σ)

σ(1+exp((z−µ)/σ))2
. The

standard logistic density function is defined by µ = 0 and σ = 1.
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Note that κk,c is the upper grade threshold parameter for category c. The
ordering of the response categories is displayed as −∞ = κk,0 < κk,1 ≤
κk,2, . . . , < κk,Ck =∞, where there are Ck categories.

The graded response model can also be written in cumulative normal re-
sponse probabilities; that is,

P (Yik = c | θi,κk) =
∫ κk,c

κk,c−1

φ (z; akθi) dz

= Φ (κk,c − akθi)− Φ (κk,c−1 − akθi) ,

which is the normal ogive version of the graded response model. Note that
this formulation is comparable to the one in Equation (1.8) since the logistic
as well as the normal distribution is symmetric. The graded response model
has an order restriction on the threshold parameters in comparison with the
generalized partial credit model. However, the graded response model has
an underlying continuous response formulation that will prove to be very
useful for estimating and testing parameters. For example, in Chapter 7, the
underlying response formulation will be utilized for a more complex situation
where measurement characteristics are allowed to vary across nations.

The polytomous models are identified by fixing the scale of the latent
ability parameter. This can be done by fixing a threshold parameter and
in the case of the generalized partial credit model and the graded response
model a discrimination parameter or by fixing the product of discrimination
parameters. In Section 4.4, the identification issues are discussed in more
detail.

1.2.3 Multidimensional Item Response Models

Some test items require multiple abilities to obtain a correct response. That is,
more than one ability is measured by these items. The most common example
is a mathematical test item presented as a story that requires both mathe-
matical and verbal abilities to arrive at a correct score. Several assumptions
can be made. First, the probability of obtaining a correct response to a test
item is nondecreasing when increasing the level of the multiple abilities being
measured. This relates to the monotonicity assumption for unidimensional
item response models. Second, individual item responses are conditionally in-
dependent given the individual’s ability values, which is the assumption of
local independence. On the basis of these assumptions, the basic form of a
multidimensional item response model for binary response data is a direct
generalization of the unidimensional item response model. In this generaliza-
tion, each respondent is described by multiple person parameters rather than
a single scalar parameter, where the person parameters represent the multiple
abilities that are measured.

This extension to multiple dimensions of the logistic unidimensional two-
parameter model has the mathematical representation
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P (Yik = 1 | θi,ak, bk) =
exp
(∑

q akqθiq − bk
)

1 + exp
(∑

q akqθiq − bk
)

=
exp
(
atkθi − bk

)
1 + exp

(
atkθi − bk

) ,
where respondent i has a vector of ability parameters θi with elements
θi1, . . . , θiQ. The elements of the discrimination matrix for item k, ak, can
be interpreted as the discriminating power of the item. The discriminating
level, akq, reflects the change in the probability of a correct response due to a
change in the corresponding ability level θiq. The dimensionality of the abil-
ity parameter can be increased to improve the fit of the model (exploratory)
or to support theoretical relationships between the items and the dimensions
(confirmatory).

Multidimensional item response models for binary response data were first
explored by Lord (1980) and McDonald (1967). Béguin and Glas (2001), and
Reckase (1985, 1997), among others, have further explored the utility of mul-
tidimensional item response models.

1.3 The Bayesian Approach

In the Bayesian approach, model parameters are random variables and have
prior distributions that reflect the uncertainty about the true values of the
parameters before observing the data. The item response models discussed
for the observed data describe the data-generating process as a function of
unknown parameters and are referred to as likelihood models. This is the
part of the model that presents the density of the data conditional on the
model parameters. Therefore, two modeling stages can be recognized: (1) the
specification of a prior and (2) the specification of a likelihood model. After
observing the data, the prior information is combined with the information
from the data and a posterior distribution is constructed. Bayesian inferences
are made conditional on the data, and inferences about parameters can be
made directly from their posterior densities.

The Role of Prior Information

Prior distributions of unknown model parameters are specified in such a way
that they capture our beliefs about the situation before seeing the data. The
Bayesian way of thinking is straightforward and simple. All kinds of infor-
mation are assessed in probability distributions. Background information or
context information is summarized in a prior distribution, and specific infor-
mation via observed data is modeled in a conditional probability distribution.

Objection to a Bayesian way of statistical inference is often based upon
the selection of a prior distribution that is regarded as being arbitrary and
subjective (see Gelman, 2008). The specification of a prior is subjective since
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it presents the researcher’s thought or ideas about the prior information that
is available. In this context, the prior that captures the prior beliefs is the only
correct prior. The prior choice can be disputable but is not arbitrary because
it represents the researcher’s thought. In this light, other non-Bayesian statis-
tical methods are arbitrary since they are equally good and there is no formal
principle for choosing between them. Prior information can also be based on
observed data or relevant new information, or represent the opinion of an
expert, which will result in less objection to the subjective prior. It is also
possible to specify an objective prior that reflects complete ignorance about
possible parameter values. Objective Bayesian methodology is based upon
objective priors that can be used automatically and do not need subjective
input.

Incorporating prior information may improve the reliability of the statis-
tical inferences. The responses are obtained in a real setting, and sources of
information outside the data can be incorporated via a prior model. In such
situations where there is little data-based information, prior information can
improve the statistical inferences substantially. In high-dimensional problems,
priors can impose an additional structure in the high-dimensional parameter
spaces. Typically, hierarchical models are suitable for imposing priors that
incorporate a structure related to a specific model requirement. By imposing
a structure via priors, the computational burden is often reduced.

1.3.1 Bayes’ Theorem

Response data can be obtained via some statistical experiment where each
event or occurrence has a random or uncertain outcome. Let N observations
be denoted as y = (y1, . . . , yN ), and assume that y is a numerical realization
of the random vector Y = (Y1, . . . , YN ). The random vector Y has some
probability distribution. For simplicity, Y is a continuous or discrete random
vector with probability function p(y) for y ∈ Y. This notation is slightly
sloppy since a continuous random variable has a probability density function
(pdf) and a discrete random variable a probability mass function (pmf). For
simplicity, the addition density or mass is often dropped. Formally, probability
distributions can be characterized by a probability density function, but the
terms distribution and density will be used interchangeably when not leading
to confusion.

Assume that response data are used to measure a latent variable θ that
represents person characteristics. The expression p(θ) represents the informa-
tion that is available a priori without knowledge of the response data. This
term p(θ) is called the prior distribution or simply the prior. It will often
indicate a population distribution of latent person characteristics that are un-
der study. Then, it provides information about the population from which
respondents for whom response data are available were randomly selected.

The term p(y | θ) represents the information about θ from the observed
response data. Considered as a function of the data, this is called the sampling
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distribution of the data, and considered as a function of the parameters, it
is called the likelihood function. Interest is focused on the distribution of the
parameters θ given the observed data. This conditional distribution of θ given
the response data is

p(θ | y) = p(y | θ)p(θ)/p(y) (1.9)
∝ p(y | θ)p(θ), (1.10)

where ∝ denotes proportionality. The term p(θ | y) is the posterior density
of the parameter θ given prior beliefs and sample information. It provides
probability beliefs about the parameters from prior and response data infor-
mation. The denominator in (1.9) is called the marginal density of the data,
the marginal likelihood, or the integrated likelihood, and evaluating this ex-
pression is often a costly operation in computation time. When it suffices to
know the shape of the posterior p(θ | y), the unnormalized density function
can be used as in (1.10).

Equation (1.9) represents a mathematical result in probability theory and
is known as a statement of Bayes’ theorem (Bayes, 1763). The factorization in
(1.10) is a product of the likelihood, l(y;θ), and prior since usually l(y;θ) =
p(y | θ). This likelihood function contains all sample information regarding θ.
The likelihood principle states that two samples contain the same information
about θ when the likelihoods are proportional (Casella and Berger, 2002).
Bayesian inference adheres to the likelihood principle since all inferences are
based on the posterior density and the posterior depends on the data only via
the likelihood.

The joint posterior density p(y,θ) can be factorized as

p(y,θ) = p(θ | y)p(y)
= p(y | θ)p(θ).

Thus, the joint posterior density can be factorized as the marginal density of
the data and the posterior of θ, but also as the prior of θ and the likelihood of θ
given y. The joint posterior density p(y,θ) is also known as the unnormalized
posterior density function, which leads to the (normalized) posterior of θ when
divided by p(y).

The posterior density of the parameters, p(θ | y), is used for making infer-
ences. Bayesian computational methods make it possible to make inferences
without having to rely on asymptotic approximations. Response data are typ-
ically nonnormally distributed and together with small amounts of sample
information per parameter, particularly at the within-individual level, it is
precarious to rely on asymptotic approximations without showing them to be
accurate. Fully Bayesian methods provide a way to improve the precision of
the parameter estimates. The prior contributes additional information, and
the posterior estimate is based on the combined sources of information (like-
lihood and prior), which leads to greater precision. The influence of prior
information on the posterior estimates is illustrated in Section 1.4.1.
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Constructing the Posterior

As an illustration, assume that five dichotomous responses y = (1, 1, 0, 0, 0)t

were observed from a respondent with ability θ. The object is to estimate the
posterior density of the ability parameter. Assume that all items are of equal
difficulty, say zero. According to the probit version of the Rasch model, let
P (Yk = 1 | θ) = Φ(θ) define the probability of a correct response to item k.

It is believed priori that the respondent has a nonzero probability of giving
a correct answer and a nonzero probability of giving an incorrect answer.
Therefore, let θ be a priori uniformly distributed on the interval [−3, 3] such
that .001 < Φ(θ) < .998.

The likelihood function for θ equals

p (y | θ) = Φ (θ)2 (1− Φ (θ))3 .

Multiplying the likelihood with the prior as in Equation (1.10), the posterior
density of θ is

p (θ | y) ∝ Φ (θ)2 (1− Φ (θ))3

for θ ∈ [−3, 3]. The posterior mode, at which the posterior density is maxi-
mized, can be computed by taking the first derivative of the logarithm of the
posterior, setting the expression equal to zero, and solving the equation for θ.
It follows that the posterior mode equals θm = Φ−1(2/5) ≈ −.25.

Updating the Posterior

Bayes’ theorem can be seen as an updating rule where observed data are used
to translate the prior views into posterior beliefs. Assume that the posterior
density of θ is based on K item observations. The posterior can be expressed
as the product of likelihood times the prior. The response observations are
conditionally independent given θ, and it follows that the posterior can be
expressed as

p (θ | y1, y2, . . . , yK) ∝ p (y1 | θ) p (y2 | θ) . . . p (yK | θ) p (θ)
∝ p (θ | y1, y2, . . . , yK−1) p (yK | θ) .

The posterior density given all but the last observation is updated via the
likelihood of the last observation.

To illustrate the updating nature of Bayes’ theorem, consider 26 responses
to the Mini-Mental State Examination (MMSE) for measuring cognitive im-
pairment (the MMSE data will be described in Section 6.6.4). The object is to
update the posterior density of a respondent’s cognitive impairment, based on
previous knowledge, using the subsequent response observation. It is assumed
that in the population from which respondents are independently sampled the
levels of cognitive impairment are normally distributed, where a high (low)
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θ value corresponds to mild (severe) cognitive impairment. A two-parameter
item response model defines the probability of a correct response given the
level of impairment, and the item parameters are assumed to be known. The
complete response pattern of a person consists of six incorrect responses (items
4, 12, 16, 17, 18, and 23).

The updated posterior densities are plotted in Figure 1.4. Without any
item observations, the standard normal prior reflects the a priori information
about the cognitive impairment (dotted line). The updated posterior densities
based on two (with symbol 2) and three (with symbol 3) items are shifted to
the right. The person’s cognitive impairment is less than expected a priori
since the items were answered correctly. A shift in the posterior means can be
detected, but the shapes of the posteriors are quite similar in correspondence
to the prior density. The fourth item was answered incorrectly. As a result,
the updated posterior (with symbol 4) is shifted to the left and the posterior
mean is negative. The posterior expectation about the person’s cognitive im-
pairment has changed dramatically due to an incorrect answer. Item five is
answered correctly, and the updated posterior shifts to the right. It can be seen
that when more than five item observations become available, the posterior
densities only become tighter, concentrated around the posterior mean.
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Fig. 1.4. Updated posterior densities of a person’s cognitive impairment for 2–26
item observations.
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1.3.2 Posterior Inference

In item response modeling, the person and item parameters are often of in-
terest, and the objective of inferences is their posterior distributions. The
posterior information is most often summarized by reporting the posterior
mean and standard deviation.

Besides the prior density p(θ) for the person parameters θ, let the item
characteristics be parameterized by ξ and let p(ξ) represent the prior be-
liefs. The item characteristic parameters have an important role in response
modeling, and their prior density will receive special attention in this book.
According to Bayes’ theorem, the joint posterior density of the parameters of
interest can be stated as

p(θ, ξ | y) = p (y | θ, ξ) p(θ, ξ)/p(y)
= p (y | θ, ξ) p(θ)p(ξ)/p(y),

where the prior densities are assumed to be independent from each other.
Summarizing the complicated high-dimensional joint posterior density is very
difficult since the posterior density has analytically intractable forms.

As a first step, when interest is focused on θ, the item parameters need to
be marginalized out in the posterior density of interest. In Bayesian inference,
the nuisance parameters are eliminated while accounting for their uncertainty
simply by integrating the joint distribution over them. It follows that

p(θ | y) =
∫
p(y | θ, ξ)p(θ)p(ξ)/p(y) dξ

=
∫
p(θ, ξ | y) dξ. (1.11)

From this point on, the range of integration will often be omitted from the ex-
pressions, as it will be specified implicitly by the differentials. Equation (1.11)
shows that the marginal posterior of interest is obtained by integrating out
the item parameters. In the same way, the marginal posterior of the item pa-
rameters is obtained by integrating out the person parameters. More integrals
need to be evaluated when the marginal posterior of a single component of,
for example, the vector of person parameters is required.

Summarizing the marginal posteriors remains difficult since the mathe-
matical forms are not known. Simulation-based methods will be shown to be
capable of generating samples from the marginal posteriors. Subsequently, the
samples are used for purposes of statistical inference.

The powerful simulation-based estimation methods (MCMC) will be dis-
cussed in Chapter 3. Without diminishing the importance of the estimation
methods, attention is first focused on the Bayesian way of thinking and mod-
eling. Until then, WinBUGS (Lunn, Thomas, Best and Spiegelhalter, 2000) is
used in the exercises and examples and it will be assumed that samples from
the posterior distributions (the common output of simulation-based estima-
tion methods) are available that can be used for making Bayesian inferences.
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1.4 A Motivating Example Using WinBUGS

A simple example is given to illustrate the Bayesian modeling approach and
the corresponding Bayesian inference. This example is worked out using the
program WinBUGS (Lunn et al., 2000). The WinBUGS program is part of the
Bayesian inference using Gibbs sampling (BUGS) project and allows one to
put together Bayesian models and estimate simultaneously all model parame-
ters, where WinBUGS facilitates the implementation of the simulation-based
estimation method. Ntzoufras (2009) gives a thorough introduction to the
WinBUGS program and illustrates the many Bayesian modeling possibilities
via data examples.

1.4.1 Modeling Examinees’ Test Results

In the Netherlands, primary schools administer the Cito Test developed by
the National Institute for Educational Measurement (Cito) to get a reliable
measurement of what children have learned during eight years of primary
education. The scores on the test are used to advise children about the type
of secondary education to take.

A relatively small sample of N=200 grade eight students responding to
K=5 dichotomously scored mathematics items is considered. For the moment,
the nesting of students in schools is ignored, but it will be discussed in Section
6.6.1. It will be assumed that the five math items measure a unidimensional
ability in mathematics represented by θ, which is a continuous random variable
that assumes values on the real line.

The probability of a correct response by examinee i to item k is modeled
by a two-parameter item response model,

P (Yik = 1 | θi, ak, bk) = Φ (akθi − bk) ,

according to the normal ogive model in Equation (1.4). The response model
consists of N ability parameters and K discrimination and K difficulty pa-
rameters. The examinees are assumed to be sampled independently from a
population, and a normal prior density is specified for the ability parameters
with mean zero and variance one. This restriction identifies the two-parameter
item response model and also defines a useful scale for interpreting estimated
ability values.

Prior densities for the item parameters will be thoroughly discussed in
Section 2.2. Here, a common normal prior is assumed for the discrimination
and difficulty parameters (e.g., Johnson and Albert, 1999),

ak ∼ N
(
µa, σ

2
a

)
I(ak > 0),

bk ∼ N
(
µb, σ

2
b

)
,

for k = 1, . . . ,K. The discrimination parameter is restricted to be positive and
usually takes on values between 1/2 and 3, and the prior should discourage



22 1 Introduction to Bayesian Response Modeling

smaller or higher values. Difficulty parameters outside the interval [−4, 4] will
characterize the item as extremely easy or difficult and will lead to all correct
or incorrect responses. The prior mean parameters are set to µa = 1 and
µb = 0, which indicates a moderate level of discrimination and average level
of difficulty. Both variance parameters are fixed to one.

WinBUGS

The model is implemented in WinBUGS for a response data matrix of N
persons by K items. Each case i represents the responses of examinee i, and
each column k represents all responses to item k. In the model description, all
data points and parameters need to be specified. Therefore, the description
contains a loop over observations (variable name Y ), examinees (variable name
theta), and items (variable names a and b).

Listing 1.1. WinBUGS code: Two-parameter item response model.

model{
for ( i in 1 :N){

for ( k in 1 :K){
p [ i , k ] <− phi ( a [ k ] ∗ theta [ i ]−b [ k ] )
Y[ i , k ] ˜ dbern (p [ i , k ] )

}
theta [ i ] ˜ dnorm(0 , 1 )

}
for ( k in 1 :K) {

a [ k ] ˜ dnorm(1 , 1 ) I ( 0 , )
b [ k ] ˜ dnorm(0 , 1 )

}
}

The WinBUGS output contains sampled values from each parameter’s
marginal posterior density. Each marginal posterior density provides com-
plete information about the parameter. For Bayesian inference, the sampled
values are usually used to compute summary statistics of posterior densities
of parameters of interest. In Table 1.1, the marginal posterior density of each
item parameter (discrimination and difficulty) is summarized. The posterior
mean provides information on where most of the posterior density is located.
The reported posterior mean is the expected value of the item parameter
under the marginal posterior density. The posterior standard deviation and
quantiles provide information about the spread of the posterior. As measures
of spread, the posterior standard deviation and the 2.5% and 97.5% quantiles
of each marginal posterior are reported.

The reported posterior means (expected a posteriori) are usually used
as point estimates of the parameters. It follows that item five discriminates
poorly and item one highly discriminates examinees of different ability. The
average estimated discrimination level is .90, which is slightly smaller than the
prior mean. The quantiles show that the posterior densities are nonsymmetric
and positively skewed (right tails are longer), which follows from the positivity
restriction on the discrimination parameter. The mean values are also higher
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than the median values. For the difficulty parameter densities, the estimated
posterior means are all negative. This means that the items are too easy
since each item was answered correctly by more than 50% of the examinees
given a zero average population level of ability. The raw data show that the
proportions of correct responses of the five items are 56%, 73%, 54%, 71%, and
65%. Most of the students performed well on the test, which makes it more
difficult to differentiate examinees. As shown, the items do not differentiate
well (four item discriminations are less than one) since the items are too easy.

Table 1.1. Item parameters’ posterior density information using WinBUGS.

Item Mean SD 2.5% Median 97.5%

Discrimination Parameter
1 1.54 .49 .82 1.45 2.75
2 .90 .25 .49 .87 1.47
3 .66 .18 .35 .65 1.05
4 .91 .24 .51 .88 1.43
5 .46 .15 .19 .45 .79

Difficulty Parameter
1 −.27 .17 −.65 −.26 .04
2 −.79 .15 −1.12 −.78 −.52
3 −.11 .11 −.33 −.12 .09
4 −.73 .15 −1.05 −.72 −.47
5 −.42 .10 −.63 −.42 −.23

The posterior means correspond with the posterior medians, which means
that the marginal posterior densities are approximately symmetric. However,
the mean prior difficulty level µb = 0 does not correspond with the estimated
average posterior difficulty of −.46. For items 2, 4, and 5, the 97.5% left-sided
posterior density interval does not contain the point zero. That is, the poste-
rior probability that the item difficulty is higher than zero is less than 2.5%,
which follows directly from the reported 97.5% quantile. This suggests that
there is a discrepancy between the prior information and the sample infor-
mation concerning the item difficulties. The posterior density is constructed
from the prior and sample information, where the prior parameters µb and σ2

b

define the prior weight.
To investigate the influence of this prior on the posterior, two cases will be

considered. In the first case, the model is fitted with a prior variance parameter
σ2
b = .1. This presents a stronger prior belief (a higher level of confidence),

in comparison with σ2
b = 1, in a common item difficulty level of zero. In

the second case, the variance parameter is not fixed but modeled via another
prior distribution, and an inverse gamma density is used to define a set of



24 1 Introduction to Bayesian Response Modeling

possible values. An inverse gamma prior with its parameters equal to .01 is
uninformative or vague about the variance parameter, so that inferences are
unaffected by information external to the data (provided that the variation is
supported by the data). Subsequently, the variance parameter σ2

b becomes a
model parameter that needs to be estimated.3

In Figure 1.5, the estimated posterior densities of the difficulty parameters
are plotted for each prior setting. The stronger belief in the difficulty’s prior
level where σ2

b = .1 leads to a shift of the posterior density to the right, towards
the prior mean. It follows that the prior’s variance parameter influences at
least the location of the posterior mean. Specifying prior parameters is difficult
when not much is known beyond the data. By defining a prior for the variance
parameter, instead of fixing its value, the data are used to estimate the prior
variance. This approach is advisable when no prior information is available
to specify the variance. The location of each posterior mean is constructed
by combining sample and prior information, where the level of uncertainty
about the prior mean is estimated by the response data. The estimated prior
variance equals σ̂2

b = .47 and, as a result, the corresponding posterior densities
of the item difficulty parameters (dotted lines) are located approximately in
the middle of the posterior densities with fixed prior parameters.

It was shown that the prior parameters influence the posterior analysis,
and they require careful attention when making Bayesian inferences about
parameters for which not much is known beyond the data. A flexible model-
ing framework was used that allows specific or noninformative prior settings,
which was illustrated by modeling the variance parameter of the prior for
the item difficulty parameters. This modeling framework will be explored
further to make accurate individual (item) parameter estimates when only
a few observations per respondent (item) are observed, to handle different
sources of prior information, and to handle complex sampling designs, among
other things. The modeling framework needs to be accompanied by a pow-
erful estimation method that supports a realistic and practical way to make
Bayesian inferences. Both computational and modeling issues will receive at-
tention throughout the book.

1.5 Computation and Software

For the well-known item response models, various commercial and non-
commercial programs are available. It is to the credit of the pioneering work of
the researchers involved that today so many popular IRT programs are avail-
able. To give a short overview, BILOG-MG (Zimowski, Muraki, Mislevy and
Bock, 1996) allows the estimation of IRT parameters for multiple groups and

3 In WinBUGS, the variance parameter of a normal distribution is parameterized
in terms of the inverse variance (precision) such that, in the second case, the
precision parameter is modeled by a gamma prior.
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Fig. 1.5. Estimated posterior densities of the difficulty parameters for different
prior choices.

enables detection of differential item functioning, among other uses. MULTI-
LOG (Thissen, 1991) can be used specifically to perform a multiple-category
IRT analysis for polytomous IRT models. PARSCALE (Muraki and Bock,
1997) is used for IRT scaling, item analysis, and scoring of rating scale data.
A popular noncommercial (Dutch) program is OPLM (Verhelst, Glas and Ver-
stralen, 1995); it can handle dichotomously or polychotomously scored items
using different one-parameter models.

In the 1990s, the introduction of powerful simulation-based estimation
methods made it possible to employ Bayesian methods without the com-
mon computational constraints, which also posed new statistical model-
ing opportunities. Twenty years later, the Bayesian paradigm is available
to those with and without programming skills. The WinBUGS program
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(www.mrc-bsu.cam.ac.uk/bugs) makes it possible to apply Bayesian meth-
ods to the analysis and modeling of data. The WinBUGS site has online help
and contains lots of examples. Despite the many advantages of WinBUGS, for
many models discussed in this book, the program is often too slow or simply
does not work (e.g., Gelman and Hill, 2007). The main advantage is that it
is very flexible in constructing models, but it can be slow, can get stuck with
large datasets, and cannot handle complex item response models.

The free R (R Development Core Team, 2010) and commercial S+ (TIBCO
Software, 2009) statistical programs are very popular in the Bayesian com-
munity. The programs contain methods for fitting specific models, but the
popular higher programming languages of R and S+ allow one to program
any model. Obviously, more knowledge of the estimation algorithm is needed
in comparison with WinBUGS. Since the 1990s many R and S+ programs
have been made available via the Internet; specifically, so-called R packages
have been developed that allow one to construct programs that run within the
R software environment. A list of contributed R packages can be found on the
Comprehensive R Archive Network (CRAN; http://cran.r-project.org/).
Several Bayesian (response) models used in marketing and microeconometrics
applications are implemented in the bayesm package of Rossi, Allenby and
McCullogh (2005). Bayesian inference for a number of response models using
posterior simulation can be performed using the package MCMCpack. Gel-
man and Hill (2007) developed R programs for hierarchical models, including
a two-parameter item response model. Various R packages are regularly up-
dated and extended, and new contributions are frequently made, which makes
it impossible to give a complete list of R packages that supports the Bayesian
analysis of item response data.

Press (2003, pp. 169–171) listed references to popular Bayesian programs.
This includes the Matlab and Minitab programs of Johnson and Albert (1999)
for the analyses of ordinal data using Bayesian computational algorithms.

Computer Code Developed for This Book

Some models in this book can be handled by the programs mentioned, and
other models require a specific implementation. To be free from the restrictions
of other software programs, and to be completely flexible in defining different
priors using different computational methods and computing or evaluating
various statistics, I have programmed all models and methods in this book.
The programs run in the R and S+ environments.

The revolution in Bayesian computational methods led to programs that
needed days to come up with a solution. Large datasets, complex models with
poorly identified parameters, and poorly implemented methods increased the
computation time. In correspondence with Rossi et al. (2005, p. 7), the meth-
ods become impractical when more than a few hours of computing time is
needed using a common computer. Users usually are not willing to wait that
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long, especially when a simplified approach (e.g., by making additional as-
sumptions, ignoring some complicating issues) only takes a few minutes. Fur-
thermore, any statistical analysis requires fitting different models consisting
of different priors and summarizing the inferences from different perspectives.
Then, after evaluating the outcomes, model expansions with different prior
information are considered, which is certainly impractical when each analysis
takes more than a few hours.

The developed programs discussed in this book are written in high- and
low-level languages to limit the computation time to around two hours. Several
programs are written in the R and S+ languages. The programs can be used for
the analysis of item response data but also serve as a basis for programming
more complex item response models. Changing pieces of code can be very
helpful in getting a better understanding of the substance and can be a first
step in developing programming skills. Further, R packages and S+ programs
are developed that make use of a dynamic link library (dll), which is a shared
Microsoft Windows library. In Fortran (Intel Visual Fortran version 11 using
IMSL Numerical Library version 6), programs are written that can be called
within the R and S+ environment. The tools developed in Fortran are directly
accessible, as are their input and output, and they can be manipulated within
the statistical programs. To make the more complex models accessible for
practical use, a low-level language is needed, and in my experience it will
reduce the computation time roughly by a factor of ten.

Despite the increased CPU time and the increased size of available mem-
ory, the computational elements are important to make Bayesian inferences
possible in a reasonable amount of time. Computation plays an important part
in Bayesian statistical modeling, and to stress the importance of the compu-
tational methodology, the implemented algorithms are also described in this
book. Those who just want to apply the models can use the software, but it
also aims to serve those who want to implement and/or learn to develop and
implement algorithms by themselves.

The programs and the data for the examples in the book are available
on the World Wide Web at www.jean-paulfox.com, which contains more
supporting material.

1.6 Exercises

WinBUGS and Listing 1.1 can be used to obtain the sampled values from the
marginal posterior densities for making posterior inferences. The following
exercises are based on output from WinBUGS. When fitting an item response
model in WinBUGS, run one chain of 10,000 MCMC iterations and use the
last 5,000 iterations.

1.1. In the example in Section 1.4, samples are obtained from each ability
posterior density p(θi | yi).
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(a) Graph the posterior density of the ability parameter of respondent i. Argue
that the plotted posterior is not necessarily a symmetric density although a
symmetric prior was assumed.
(b) Explain the summary statistics of θi reported by WinBUGS using the
posterior density plot of Exercise 1.1(a).
(c) Graph the posterior density of a respondent’s ability parameter that has
all items correct and one that has all items incorrect. Given that a standard
normal prior for the ability parameters was assumed, explain the direction of
the skewness of the plotted densities.
(d) For a respondent who scores perfect, will the skewness of the ability pos-
terior density increase or decrease when more items are administered?

1.2. The ability posterior density of examinee i is summarized.
(a) Argue that the posterior mean is often considered to be a good point
estimate of the ability parameter. Note that the posterior mean equals the
expected posterior ability and can be expressed as

E (θi | yi) =
∫
θip (θi | yi) dθi.

(b) Explain when the posterior mode might be considered as a point esti-
mate. Note that the posterior mode equals the posterior ability point θMAP

(maximum a posteriori) at which the posterior density is maximized,

θMAP = max
θi

p (θi | yi) .

(c) Given the sampled values, show how the posterior mean can be estimated
and that the computation of the posterior mode is more complex.
(d) Argue that the posterior mean and variance can be used for adequately
summarizing a symmetric posterior density but that various central points
such as the mean, mode, and median, together with a region of high posterior
probability are needed to summarize a nonsymmetric density.

1.3. (continuation of Exercise 1.1) Consider the computed posterior means as
estimates of the ability parameters.
(a) Graph the density of the estimated abilities, and explain that this is the
estimated empirical population density or sample density.
(b) Explain that the empirical population density is expected to be positively
skewed where the right tail of the density is longer. (Note that the estimated
item difficulty parameters are all negative.)
(c) Compute the sample skewness of the empirical population density with

√
N
∑N
i=1

(
θi − θ̄

)3(∑N
i=1

(
θi − θ̄

)2)3/2
,

where θ̄ is the estimated mean ability. (Listing 1.2 provides code to compute
the sample skewness,)
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Listing 1.2. WinBUGS code: Computing the sample skewness.

for ( i in 1 :N){
numerator [ i ] <− (1/N)∗pow( theta [ i ] − mean( theta [ ] ) , 3 )
}

skewness <− sum( numerator [ ] ) / (pow( sd ( theta [ ] ) , 3 ) )

(d) Does a skewed empirical population density indicate a model violation
since a normal population prior is assumed?

1.4. (continuation of Exercise 1.1) Each model parameter has a (posterior)
density function, which makes it possible to compute (posterior) probability
statements.
(a) Compute the prior probability that the ability of examinee i = 1 is below
the population average; that is,

P (θ1 < 0) =
∫ 0

−∞
φ (x;µ = 0, σ = 1) dx.

(b) Compute the posterior probability that the ability of examinee i = 1 is
below the population average; that is,

P (θ1 < 0 | y) =
∫ 0

−∞
p (θ1 | y) dθ1.

Use the WinBUGS code of Listing 1.3 or the sampled values from the posterior
density to compute the posterior probability since the analytical form of the
posterior density is unknown.

Listing 1.3. WinBUGS code: Computing the posterior probability of the event
θ1 < 0.

count ing <− max( theta [ 1 ] , 0 )
p r obab i l i t y <− equals ( counting , 0 )

(c) In the same way, compute the prior and posterior probabilities that item
three appears to be more difficult than item one.

1.5. Define priors for discrimination and difficulty parameters when additional
information is available.
(a) Define an item difficulty prior that reflects a known order of items by
difficulty. Explain how this influences the estimated item characteristic curves.
(b) Define an item discrimination prior that reflects a known order of items by
discrimination. Explain how this influences the estimated item characteristic
curves.
(c) Define a prior for the item parameters that reflects an ordering of items
by difficulty and discrimination.
(d) Define a prior for the item parameters such that it is expected a priori
that the more difficult an item is, the better it will discriminate.
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