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Preface

Scientist, innovator and entrepreneur – these qualities are attributed to Joseph
von Fraunhofer and are nowadays demanded of executive managers in Fraunhofer
Gesellschaft. And all three attributes apply fully to Professor Dr. Klaus Thoma,
director of the Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, and
professor at the University of the German Armed Forces in Munich.

This festschrift is dedicated to Klaus Thoma on the occasion of his 60th birth-
day in August 2009. His manifold activities in the scientific and industrial commu-
nity encompass the entire spectrum of dynamic applications. With Klaus Thoma’s
worldwide recognition there were many authors, familiar with him personally and
professionally, who had the desire to contribute to this work.

Klaus Thoma graduated from the Technical University Munich in Physics and
earned his PhD at the same university in 1978. The following nine years he made his
career in the research and development division of Messerschmitt-Bölkow-Blohm
(MBB), now EADS. His deep understanding of physics combined with his early
understanding of the potential of numerical solution methodologies provided the di-
rection for his becoming a leader in his field. Computer based investigations of au-
tomotive crash or military impact scenarios were anything but common in the early
1980’s. However, Klaus Thoma, with his innovative foresight, was already expert in
this area. His advanced knowledge and expertise led him to make close contacts to
the most prestigious research laboratories and software houses in the United States.
The detailed insight in the theoretical basics and the potential he recognized in the
combination of experiments and numerical simulation fascinated him so much that
it has been a guiding principal throughout his professional life.

Already head of a development department at MBB he decided to found his own
company CONDAT together with Josef Kiermeir in 1987.This was a manifestation
of the innate entrepreneurial talent of Klaus Thoma. Successfully they managed to
establish the company in the limited German market. Success was guaranteed again
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by his detailed understanding of physics and the implementation and application
through numerical methods.

Seven years later Klaus Thoma became professor at the University of the German
Armed Forces in Munich, but only for a short period of less than two years. A bigger
challenge was waiting for him in Freiburg. The Fraunhofer-Institut für Kurzzeitdy-
namik needed a new director and after a rigorous search process he was selected.
No other institute could be closer to Thoma’s expertise than the high-dynamic ex-
perimental laboratories at Ernst-Mach-Institut. But not content with the status quo,
his appointment also meant some fundamental changes to the institute. For exam-
ple, automotive crash was never a topic before at EMI. Moreover, the creation of a
new department concerned with numerical simulation and material testing allowed
for an important re-orientation of the research performed at EMI. At the same time
the traditional research topics at EMI were not only maintained but expanded where
possible, resulting in an overall growth in project activity.

Through Klaus Thoma’s leadership and vision the Ernst-Mach-Institut has be-
come synonymous with the most advanced and highest quality applied research
in dynamics. Be it material research for safer cars, invention of computer-tomo-
cinematography, electric armour or the development of protective shielding systems
for the International Space Station – Ernst-Mach is involved and at the forefront.
And not one to stand still, Klaus Thoma has continuing, new ambitions for his insti-
tute. Public safety and security in times of asymmetric threats to mention only one
new area.

In 2007, as a further recognition of Klaus Thoma’s many contributions, he was
awarded the Bundesverdienstkreuz for his exceptional achievements in the sciences
and the transfer of technologies. The contributors to this book and the many col-
leagues that have been fortunate to know him, both personally and professionally,
fully expect that his fine work will continue into the future. Klaus Thoma with his
unique and powerful blend of scientist, innovator, entrepreneur and strong personal
character will clearly continue to provide vision, leadership, and friendship to the
international research community.

Oakland, Naury K. Birnbaum
April 2009 Vice President

ANSYS, Inc.
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Introduction

Stefan Hiermaier

Festschrift for Klaus Thoma

It is the excellency of the group of distinguished authors contributing to this
festschrift that makes it exceptional and, hence, appropriate for the natural aim of
a festschrift. Another unique point of this book is the wide spectrum of physics of
dynamic processes that is covered in three parts. And exactly as such the festschrift
reflects the spectrum of scientific interests and experiences that are characteristic for
the person it is dedicated to, Klaus Thoma.

Alone the term dynamic processes, in the sense of rapid load cases applied to
materials and structures, stands for a whole diversity of physical phenomena and
related applications. The meaning of the term ranges from crash analyses for auto-
motive safety over military impact and blast scenarios to the so-called hypervelocity
impact of space debris and meteorites on space vehicles and planets. It is the inten-
tion of this book to give an overview on the state-of-the-art numerical methodologies
for predictive simulations of these processes. Therefore, the whole book is organ-
ised in three parts, each dealing with the various simulation aspects of the individual
regime of dynamic processes.

It would lead beyond the scope of this book to describe the whole spectrum of
physical and mathematical basics that enable a predictive simulation of the dynamic
processes addressed in the various contributions. For such a purpose, the reader is
kindly referred to the manifold literature existing already. In this brief introduction,
an idea of the commonalities as well as of the differences between the individual
levels of dynamic processes shall be provided.

Stefan Hiermaier
Fraunhofer-Institute für Kurzzeitdynamik, Ernst-Mach-Institute, Eckerstr. 4, 79104, Freiburg, Ger-
many e-mail: hiermaier@emi.fraunhofer.de
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2 Stefan Hiermaier

Dynamic Processes – Physical Phenomena and Modelling Aspects

The characteristic difference between quasi-static, low-dynamic and high-dynamic
problems, respectively, is the increasing predominance of wave effects on the mate-
rial and structural behaviour. Therefore, to distinguish the dynamic processes cov-
ered here from cyclic load problems or eigenfrequency analyses, the term transient
processes would seem to be better suited. However, dynamic is the established key-
word and it is not the intention of this book to redefine terminologies.

What makes the transient character of dynamic processes so important for the
comprehension of the observed physical phenomena and for the predictive quality
of numerical methods modelling these processes?

Basically, the propagation of pressure and release waves inside solid structures
is the vehicle by which equilibrium between acting forces and a material depen-
dent deformation state is communicated. Even a quasi-static load, albeit applied as
tardily as possible, introduces stress waves to the material. These waves propagate at
the material’s sound speed. What we observe, however, is that the rate of change of
the applied load level influences the mechanical material behaviour. Dynamic load
application means high rates of changes in deformation and, as a consequence, the
propagated waves evoke increasing local strain rates and gradients. Directly related
are inertia effects on the microscopic level of the material, viscosity effects and,
hence, a strain rate dependent material behaviour is observed. The combination of
high rates of change in the load with high pressure amplitudes even leads to specific
wave types that are potentially catastrophic for structural integrity. These so-called
shock waves result from superimposed wave components, each of them travelling at
different sound speeds. Shock waves are characterized by extremely short pressure
rise times. Under quasi-static and low-dynamic loads, repeated propagation and re-
flection of acoustic waves lead to a final deformation state that may or may not lead
to failure. High-dynamic processes are characterized by wave propagations where
each individual wave can cause fundamental changes in the material state, e.g. local
failure or phase changes.

Thus, rate effects are generally present in dynamic processes. However, the re-
lated phenomena can range from strain rate dependent plasticity to material phase
changes. The strain rates in the low-dynamic regime are predominantly influencing
the strength properties of materials and, therefore, described in the deviatoric stress
space. Extremely high dynamics, on the other side, my lead to hydrostatic pressures
that exceed the strength thresholds of materials by orders of magnitude. That is why
we see the same types of code, i.e. the so-called hydrocodes, applied for automotive
crash analyses as well as for the simulation of nuclear explosions. In order to apply
the potential of the codes properly, it is important to separate the strain rate spectrum
into regimes and to formulate mathematical descriptions accordingly.
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Regimes of Dynamic Loading

Strain rate, i.e. the time rate of change of strain tensor components, has turned out to
be the measure of choice for the level of dynamic loading conditions. Accordingly,
we can separate the spectrum of dynamics into three distinct regimes:

Low Dynamics
Here, the dependency of a material’s mechanical behaviour on strain rates is ob-
served in its plastic and failure thresholds, typically formulated as surfaces in the
deviatoric stress space. Occasionally also the elastic properties of materials. The
regime is characterized by strain rates up to 500 [s−1]. Relevant applications are
automotive crash or deep drawing processes.

Moderate Dynamics
At strain rates between 500 and 105 [s−1] both material strength effects and shock
wave phenomena are observed. The formulation of a non-linear, though incom-
plete Equation of State (EoS) (see chapter 18) is necessary to describe the exis-
tence and propagation of shock waves. Representative applications are military
impact and blast loads.

High Dynamics
Strain rates of 106 [s−1] and beyond are present when debris particles impact
space vehicles or under planetary impact conditions. For the latter, shock waves
lead to pressures of 10 to 100 [GPa] and have a duration in the order of seconds.
The long shock durations demand for a complete EoS since now heat conduction
takes place at these extreme conditions.

With respect to the numerical simulation of processes in the above mentioned
regimes of dynamic loading conditions we find two main branches demanding for
attention:

• An adequate discretization of the problem in space and time

• and a mathematical description of material behaviour.

Hydrocodes – Numerical Simulation of Dynamic Processes

Hydrocodes, also called wave-propagation-codes, are the typical class of numerical
tool for the simulation of crash and impact and at the same time not linked to a
specific kind of discretization. Developed in the early 1950’s to simulate the phys-
ical effects of nuclear weapons, a fluid dynamic approach solving the conservation
equations for mass, momentum and energy was chosen. Landmarks in hydrocode
development have been set by the Los Alamos National Laboratory (LANL) and
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the Lawrence Livermore National Laboratory (LLNL). Nowadays available com-
mercial codes for crash and impact simulation all have at least parts of their roots in
these codes. The primary application at the time first hydrocodes were developed did
not demand for a constitutive equation of shear stresses nor for related failure crite-
ria since the prevailing hydrostatic pressures exceeded the shear strengths by orders
of magnitude. Only for later applications for detonation and impact induced shock
wave simulations in fluids and structures including structural deformations, devia-
toric stress components have been implemented. Over decades models for more and
more physical phenomena found implementation into hydrocodes. Therefore, by the
nature of their applications and their origins, hydrocodes are also an ideal platform
for coupled and adaptive discretizations. Typical representatives of hydrocodes, to
name but a few, are ABAQUS, AUTODYN, CTH, DYTRAN, EPIC, HEMP, HULL,
LS-DYNA, OURANOS, PAM-SHOCK and RADIOS.

Characteristic elements employed in a hydrocodes are:

• Solution of the conservation equations for mass, momentum and energy.

• Decoupled treatment of the stress tensor in terms of deviatoric and hydrostatic
components.

• Formulation of a nonlinear equation of state accounting for shock wave forma-
tion and propagation.

• Constitutive equations for elastic and inelastic, rate-dependent material behaviour
including damage, failure and post-failure behaviour.

• Arbitrary spatial and explicit time integration.

• A numerical methodology to capture shock waves, e.g. artificial viscosity or Go-
dunov methods.

The strain rate dependent finite deformation of structures is described by kine-
matic and constitutive equations. A solution of the related partial differential equa-
tions with the aim of investigating dynamic deformation and energy dissipation
needs to include a time resolved description of the process including wave prop-
agation effects. Thus, these equations are to be solved and hence discretized both in
space and time. Since analytical or closed form solutions for the complex processes
are not at hand, numerical methods have been and are being developed to find ap-
proximative solutions. Part of the approximation and core philosophy of numerical
methods is the so-called discretization of the governing equations, i.e. their selec-
tive solution at a finite number of spatial locations and instants of time within the
investigated domain. From the particular solutions at discrete locations a subsequent
overall continuous solution is reconstructed.
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Spatial discretizations of the basic equations may be achieved by various kinds
of finite methods to be described in the following chapters. Finite elements (FEM),
finite differences (FDM), finite volumes (FVM) or mesh-free methods (MFM) are
general categories of numerical methods developed to several different sub-branches
for specific applications each. Formulated in Lagrangean or Eulerian kinematics
the resulting individual methods are often specifically derived for certain structural
components or loading conditions. Examples are finite elements which can be for-
mulated as generally as a numerical method can be or as specific as e.g. plate or
shell elements for thin walled structures with two-dimensional stress states.

Concerning time discretization, explicit and implicit schemes based on finite dif-
ference approximations exist to account for the time dependence of the basic equa-
tions. Whereas the explicit formulations are of less computational costs compared
to implicit ones, their stability and precision is limited by the time step size. Im-
plicit methods are capable of larger time steps at the same or higher accuracy and
its precision can easily be controlled. However, for most dynamic processes under
crash or impact conditions an explicit integration scheme is still preferable since a
resolution of wave propagation effects demands for extremely short time steps in
the order of micro- or nano-seconds which is, thus, eliminating the advantage of
implicit methods.

Marching solutions in time, i.e. stepping forward along the discrete instants in
time at which solutions are provided, solve the set of equations at each time step in
a specific order. Typically, solutions of the time dependent equation in hydrocodes
are organized in the following, or a similar, manner:

A Define the initial conditions for the whole system at a start time t = t0.
B Evaluate the maximum size for a stable time step, i.e. without loosing informa-

tion or over-predicting propagation speeds.
C Solve the set of discretized equations according to a procedure equal or similar

to what is illustrated in Figure 1.
D Use the results of C to provide new initial conditions for the next time step and

continue with B until a predefined end-time is reached.
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Fig. 1 Consecutive solution of equations as to be solved at each discretizing entity i within each
time step n.
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Chapter 1
Simulation of Recoverable Foams under Impact
Loading

Stefan Kolling, Andre Werner, Tobias Erhart and Paul A. Du Bois

Abstract Simulation of recoverable foams is usually based on hyperelasticity. Since
foams are always strain-rate dependent, the viscosity of the material has to be con-
sidered additionally in the material model. One disadvantage of a viscous descrip-
tion is the time-consuming parameter identification associated with the determina-
tion of the damping constants. An alternative is given by tabulated formulations
where stress-strain relations based on uniaxial static and dynamic tensile tests at
different strain rates are used directly as input. This approach is implemented in the
material law no. 83 (Fu-Chang-Foam) in LS-DYNA, see [1] and [2]. We briefly
show the theoretical background and the algorithmic setup of the tabulated Fu-
Chang model and demonstrate the applicability of the model to non-uniaxial load-
ing. Major problems occur in the simulation of unloading processes. These difficul-
ties are due to the identification of unloading by the product of strain and strain rate
as implemented in material law no. 83 so far. If the strain rate oscillates strongly, a
unique identification of loading and unloading is no longer possible. Therefore, an
extension of the model with elastic damage is presented that is capable of identify-
ing unloading in a natural way, i.e. by a decrease of the stored hyperelastic energy
of the system. With our model, hysteresis effects can be simulated and energy is dis-
sipated. The model is formulated in a user-friendly way by a tabulated description
of damage.
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1.1 Introduction

Simulation of soft foams is an important topic in engineering practice and the for-
mulation of the proper deformation mechanism represents an interesting field in
academic research, too. The exciting thing (for a numericist) is that foams are not
continua but they are open- or closed cell structures. The mechanical properties thus
depend upon the geometric structure of the foam (i.e. size and shape of the cells)
and the intrinsic properties of the cell wall material. Deformation mechanisms in-
clude cell wall bending up to elastic buckling followed by a ”plastification” phase.
This behavior is reversible in soft polymer foams, hence the notation ”recoverable
foam”. The range of application goes from door and pillar paddings, dummy com-
ponents, seat cushions, bumpers to mattresses. In open cell structures, the property
of the contained fluid has an effect on the mechanical response [4]. For the numeri-
cal treatment of such foams, see [5] and [6].

In this paper, we describe the material behavior in a phenomenological way by
hyperelasticity and size effects are thus neglected. The chosen approach considers
the foam as a continuum and the foam’s macroscopic behavior is reproduced. This
method has been successfully used in many applications [7], [8], [9]. If strain-rate
dependency has to be considered, viscous dampers also have to be taken into account
in the material model. A disadvantage of such a description is time-consuming pa-
rameter identification associated with the damping constants. In the LS-DYNA im-
plementation according to Fu Chang [10], a tabulated formulation is used which
allows a fast generation of the input data based on uniaxial static and dynamic ten-
sile tests at different strain rates. In an extension of this material law, we use an
elastic damage formulation for the modeling of the unloading behavior, i.e. forming
of a hysteresis during cyclic loading, see [11] for the theoretical background. The
model is likewise formulated in a user-friendly way by a tabulated description of the
damage curve as shown in [12] and [13]. We show the basic equations and algorith-
mic setup of our model which has been implemented in LS-DYNA 971.

The results presented in this paper has already been published in [3] and [7] for
the most parts and are developed hand in hand with the experimental performance of
the Ernst Mach Institute in Freiburg. In this context the authors express their thanks
to Hartwig Nahme and Frank Huberth from EMI for their experimental support and
we seize the opportunity to dedicate this paper to the occasion of Prof. Dr. Klaus
Thoma’s birthday.
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1.2 Current Implementation According to Fu Chang

1.2.1 Theoretical Framework

The numerical simulation of foam materials is based on a tabulated approach of hy-
perelasticity formulated in the principal (true) stress space. In LS DYNA the case
for a material with uncoupled principal engineering stresses (foam) is covered in
MAT 083 or MAT FU CHANG FOAM. For clarity the algorithm will be briefly
summarized. We limit this to the case where the stress-strain curve covers both
the compressive and the tensile region (TFLAG=1) and the computation of stresses
consequently makes no distinction between tension or compression. A slightly sim-
plified formulation with linear stress-strain relationship in tension (TFLAG=0) is
also available in the code but not treated here. The algorithm under consideration
then proceeds as follows:

1. Compute the square of the left stretch tensor V from the deformation gradient F

V2 = FFT (1.1)

2. Diagonalize the left stretch tensor by computing the eigenvectors arranged in the
matrix Φ and compute the principal stretch ratios λi

λ 2 =ΦT V2Φ =

⎛
⎝
λ 2

1 0 0
0 λ 2

2 0
0 0 λ 2

3

⎞
⎠⇒ λ=

⎛
⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ (1.2)

3. Compute the strain rates via velocity gradient L in the principal directions of the
left stretch tensor

ε̇ =
1
2

(
L+LT ) , λ̇ =ΦT ε̇Φ =

⎛
⎝
λ̇1 0 0
0 λ̇2 0
0 0 λ̇3

⎞
⎠ (1.3)

4. Filter the principal strain rate values. Here we use a simple or running 12point
averaging scheme (SRAF=1/0):

λ ns
i =

n

∑
m=n−11

λm
i

12
if SRAF = 1

λ nr
i =

λ n
i

12
+

n−1

∑
m=n−11

λmr
i

11
if SRAF = 0

(1.4)

5. Compute principal engineering strains taking into account that the tabulated
stress-strain values are positive in compression and negative in tension

ε0i = 1−λi (1.5)
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6. Convert strain rates to engineering strain rates if needed (SFLAG=0/1). Set strain
rate value to zero in a principal direction if we have unloading:

ε̇i =

{∣∣∣λ̇i

∣∣∣ if λ̇iε0i < 0

0 if λ̇iε0i > 0
ε̇i = ε̇i (1− ε0i ∗SFLAG)

(1.6)

7. Compute principal engineering stresses by a table lookup. The table lookup uses
strain and strain rate in each principal direction (RFLAG=1). Then compute princi-
pal true stresses that are positive in tension.

σi = −σ0i (ε0i, ε̇i)
λ jλk

(1.7)

8. Compute Cauchy stresses in the global system using the fact that in a hyperelas-
tic material the eigenvectors of the true stress tensor and the left stretch tensor are
identical

σ =Φ

⎛
⎝
σ1 0 0
0 σ2 0
0 0 σ3

⎞
⎠ΦT (1.8)

This summarizes the approach followed in most foam material laws implemented
in LS-DYNA and in the popular MAT 083 or MAT FU CHANG FOAM in partic-
ular. It has proven to be a valid and useful tool for the simulation of foam structures
under dynamic loading in countless applications. More detail about some of the al-
ternative formulations that were made available can be found in [10].

It has to be emphasized, however, that this formulation considers not the real
viscosity of the material. The formulation is referred to as ”strain-rate-dependent-
hyperelasticity” (a nomenclature that is a contradiction in terms) that wangles vis-
cosity in a numerical way.

A further weak point of this material model was recently shown to be the un-
loading response. The unloading algorithm is incorporated in step 6 above. If the
signs of strain and strain rate are opposite the strain rate value is set to zero and
the computed stresses are automatically on the lowest curve of the tabulated input
data. The approach is in principle numerically stable but the unloading response is
rate-independent. In practical applications though, the oscillatory response which
is intrinsically linked to elastic behavior causes non-zero strain rate values to be
computed during the unloading phase. This will cause too high stress values to be
evaluated and rebound velocities of impactors are accordingly overestimated.

In the present study an alternative unloading model is proposed based on a dam-
age formulation. One of the advantages of this formulation is that the unloading
response of the material can be rate dependent.
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1.2.2 Validation Tests

In daily engineering practice, experimental data is available for compression and (if
any) tensile tests only. This is, of course, sufficient to validate a material card for
MAT 83. In this section, we show additionally the accuracy of the Fu Chang model
for non-uniaxial loads like shear and torsion.

The results are taken from [15]. In a first example, we simulate a compression test
as it is shown in Figure 1.1. The technical stress-strain relation obtained from this
can be used directly in MAT 83. As can be seen in Figure 1.1, the material shows
a Poisson coefficient close to zero. This is only the case for low density foams,
roughly below 200g/l. High density structural foams (> 200g/l)cannot be treated by
MAT 83 since they exhibit a non-negligible Poisson effect.

Fig. 1.1 Experimental performance of a compression test.

For EPP RG30 (RG denotes the density in g/l) the compression test has been sim-
ulated with LS-DYNA. The results of the computation and the corresponding FE-
model are given in Figure 1.2. The loading path can be fitted exactly with MAT 83.
Furthermore, the influence of the viscous coefficient DAMP is shown whereas it can
be seen that utilizing a DAMP constant of 0.5% leads to a slightly overestimation
of the stress level during the loading phase. However, the unloading path cannot be
simulated sufficiently. As one can see, in the unloading range the obtained stresses
deviate highly from the test results which are caused by the detection algorithm de-
ployed in the material model MAT 83.

In Figure 1.3 the strain rates and node velocities are shown. Looking at the pic-
ture clarifies the problem since one can clearly observe the varying positive and
negative strain rates which in turn lead simultaneously occurring loading and un-
loading areas.

In the next example, a tensile test for EPP RG40 is shown. The specimen and the
results for two different strain rates are given in Figure 1.4. The simulations show a
good agreement with the experiment given the fact that the results were computed
by using input data from different experimental tests. However, the obtained stress
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Fig. 1.2 Simulation of a compression test.

Fig. 1.3 Strain rates compression test unloading phase.

strain characteristic is close to the experimental test results. This fact and looking
at the loading path results of the compression test simulation where updated experi-
mental test data were used let us reasonable assume that if updated input data would
have been utilized the simulation results would have matched the experimental tests
very close.

Another imported fact should be emphasized namely that EPP shows a non-
negligible Poisson effect under tension, see corresponding experimental perfor-
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Fig. 1.4 Tensile test.

mance in [19], [20] and [17]. However, tensile stress plays fortunately a secondary
role in real structures made from EPP-foam.

Now we test the input data some non-uniaxial tests. First we consider a simple
shear test as it is shown in Figure 1.5. The experimental setup consists of two shear
test specimens glued with three steel plates. The lower and the upper steel plates are
fixed on the right hand side and a prescribed displacement is applied to the middle
plate. Thus a simple shear situation is forced.

Fig. 1.5 Shear test simulation.

The results of the simulation and the experimental data taken from [17] are given
in Figure 1.6. Up to 10mm the simulation is very close to the experiment whereas
deviation in initial stiffness can be observed. Furthermore for larger deformation, a
softening behavior caused by onset of failure of the tested material can be detected
that cannot be simulated with Fu-Chang’s foam.
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Fig. 1.6 Simple shear test.

As a last example, we simulate a torsion test presented by Schlimmer in [20].
Here, a cylindrical foam specimen is glued between two cylinders made from steel,
see Figure 1.7 and Figure 1.8. With this setup, a wide range of mixed mode load-
ing can be applied. Here a torsion test has been performed where one of the steel
cylinders is fixed and the other one performs a rotational motion whereas the lon-
gitudinal translational degree of freedom is free. The simulations were conducted
incorporating the viscous hourglass formulation available in LS-DYNA. Figure 1.7
shows the temporal evolution of the torsion test.

Fig. 1.7 Simulation of a torsion test at different torsion angles.

In the experiment, global shear stress and strain as well as the longitudinal strain
have been measured. Despite the fact that here a complex state of stress were simu-
lated using a constitutive law based on compression and tensile test data as well as
neglecting the Poisson effect results show a very good agreement to the experimen-
tal data. The small variation in both obtained result quantities are within a reasonable
range and the global behavior of the tested specimen can be modeled sufficiently.
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Fig. 1.8 Torsion test.

To sum up it can be said that the current implementation of MAT 83 leads to
pretty good results in comparison to experiments. It shows the applicability of Fu
Chang’s foam model for the simulation of structural parts made from soft foam even
for more complex stress states. The unloading path due to the hyperelastic model
remains the biggest stumbling block. In the next section, we show an extension of
the current formulation using elastic damage for unloading simulation.

1.2.3 Application: Leg Impact

The following example is taken from [7]. It shows a typical application of Chang’s
foam model. The legform impactor consists of two metal tubes with an outer diam-
eter of 70mm representing the tibia and the femur. Physical properties such as mass,
moments of inertia and center of gravity are specified in the EEVC-WG17 report.
for both femur and tibia, a layer of Confor foam (CF-45 1; thickness 25mm) is used
to model the flesh.

The impactor is covered by a 6 mm thick neoprene skin. For extended validation
a specific test configuration was designed, see Figure 1.9. This target has a wooden
solid block with three pieces of foam material attached to it. The position, depth and
stiffness of the foam blocks are variable. These parameters were adjusted to meet
a reasonable range for all recorded signals (bending angle, tibia acceleration and
shear displacement).

Calibration of the foam material was completed by performing pre-tests with a
steel cylinder hitting the foam. In the validation test procedure several configura-
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tions were analyzed: tests at different speeds (40, 35 kph), variations of vertical
position of the legform impactor relative to the target and angular tests (up to 15).
A typical result of the validation procedure is shown in Figure 1.9. The main focus
is an overall satisfying correlation of test and simulation.

Fig. 1.9 Leg impact test configuration and results of the validation.
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1.3 Addition of a Damage Model

1.3.1 Theoretical Framework

First one must realize that the current formulation of our foam material law is noth-
ing else then a tabulated generalization of a hyperelastic material law based on the
Hill functional [14]. Hill gives the energy per unit undeformed volume of the mate-
rial as

W =
3

∑
i=1

m

∑
j=1

μ j

α j

(
λα j

i −1
)

+
1
n

m

∑
j=1

μ j

α j

(
J−nα j −1

)
(1.9)

The corresponding expression for the true stress is easily obtained by differenti-
ation:

σi =
1
λkλ j

∂W
∂λi

=
m

∑
j=1

μ j

J

[
λα j

i − J−nα j

]
(1.10)

The case of a foam material corresponds to setting n=0 meaning the material has
a zero Poisson coefficient, for the engineering stress we then obtain:

σ0i =
∂W
∂λi

=
m

∑
j=1

μ j

λi

[
λα j

i −1
]

(1.11)

Which is a fully uncoupled expression: any principal engineering stress compo-
nent in a foam depends solely on the value of the stretch ratio in the corresponding
principal direction. The polynomial expression can then be replaced by any contin-
uous tabulated function which can be directly obtained from the test:

σ0i = σ0i (ε0i) = σ0i (1−λi) (1.12)

Here we have defined the engineering strain to be positive in compression as is
usually done for foams. Rate effects are then considered by replacing the single load
curve data by a table of load curves corresponding to experiments at different strain
rates:

σ0i = σ0i (ε0i, ε̇0i) (1.13)

In the damage model we will need to evaluate the hyperelastic energy as well
as the true stress in the material, expressing Hill’s functional for n = 0 shows that
the energy per unit undeformed volume is also uncoupled in terms of the principal
stretch ratios:
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lim
n→0

W =
3

∑
i=1

m

∑
j=1

μ j

α j

(
λα j

i −1
)

+ lim
n→0

1
n

m

∑
j=1

μ j

α j

(
J−nα j −1

)

=
3

∑
i=1

[
m

∑
j=1

μ j

α j

(
λα j

i −1
)
−

m

∑
j=1
μ j lnλi

]
. (1.14)

Consequently the energy can also be generalized to a sum of 3 tabulated func-
tions of the principal stretch ratios:

W =
3

∑
i=1

Wu (λi) (1.15)

So in a foam, the energy per unit undeformed volume is uncoupled in the princi-
pal directions. It is easily seen that the function corresponds to the energy absorption
under uniaxial loading. Indeed uniaxial loading in a foam corresponds to:

λi �= 1, λ j = λk = 1 (1.16)

And thus

Wu (λi) =
3

∑
i=1

[
m

∑
j=1

μ j

α j

(
λα j

i −1
)
−

m

∑
j=1
μ j lnλi

]

=
m

∑
j=1

μ j

α j

(
λα j

i −1
)
−

m

∑
j=1
μ j lnλi (1.17)

Consequently, in the generalized case the function Wu is obtained by integration
of the engineering stress curve measured in a uniaxial tension/compression test:

Wu (λi) =
λi∫

0

σ0 (ε0)dε0 (1.18)

The damage model will now be defined from a quasistatic experiment where
loading and unloading path are carefully measured. Tensile and compressive tests
should be performed ideally.

To each stress strain point on the loading curve corresponds a value of the uniax-
ial energy obtained by integration. Maximum tensile and compressive deformation
correspond to maximum values of the energy in tension and compression: Wmax t and
Wmaxc. A damage value is then attributed as a function of the current of maximum
energy ratios:
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Fig. 1.10 Loading and unloading curves.

d =

⎧
⎪⎪⎨
⎪⎪⎩

d

(
W

Wmaxc

)
= 1− σulc

σlc
if ε0 > 0

d

(
− W

Wmax t

)
= 1− σult

σlt
if ε0 < 0

(1.19)

Fig. 1.11 Damage as function of energy ratio (qualitative sketch).

It should be noticed that the energy is set to a negative value in case of tension.
This has the advantage that only one damage function will be necessary for the
whole range of compression and tension.



22 Stefan Kolling, Andre Werner, Tobias Erhart and Paul A. Du Bois

Consequently from the usual tabulated data σ0i = σ0i (ε0i, ε̇0i) we will internally
derive and store two additional load curves: the uniaxial hyperelastic energy Wu (εoi)
and the damage function d (W/Wmax).

With these additional data available the damage algorithm becomes very efficient
and the modifications to the basic algorithm presented earlier are minor. An addi-
tional step is created.

5b. Compute quasistatic principal engineering stresses, check if we are in tension or
in compression and compute the damage:

σoi = σoi (ε0i,0)
W = Wu (λ1)+Wu (λ2)+Wu (λ3)
Wmax = max(W,Wmax)
J = λ1λ2λ3

J ≤ 1 ⇒ d = d

(
W

Wmax

)

J > 1 ⇒ d = d

(
− W

Wmax

)
(1.20)

Steps 6 and 7 are then modified as follows:

ε0i = 1−λi

ε̇i =
∣∣∣λ̇i

∣∣∣
ε̇i = ε̇i (1− ε0i ∗SFLAG)

σi = −(1−d)
σ0i (ε0i, ε̇i)
λ jλk

(1.21)

Showing that rate effects are now applied also during unloading and hysteresis is
a consequence of the damage mechanism rather then the viscosity. For this model
the quasistatic unloading and loading paths should be the first two curves in the ta-
ble corresponding to very low values of the strain rate. They will then determine the
hysteresis and hardly have any influence on the viscosity of the material. For good
functioning of the model, it is essential that these two curves form a closed loop, i.e.
begin- and endpoint should be identical for both curves.

1.3.2 Examples

1.3.2.1 Cyclic Loading

At first the effect of the new damage formulation will be shown in a single element
test, where compressive uniaxial loading is applied with prescribed motion. Load-
ing and unloading curves are given in tabulated form as closed loop with maximum



1 Simulation of Recoverable Foams under Impact Loading 23

strain εmax = 0.47 (see dashed line in Figure 1.12).

Fig. 1.12 Simulation of cyclic loading with and without damage.

As expected, loading can be reproduced exactly with and without the new dam-
age formulation. On the other hand, clear differences are present in case of un-
loading. Without the damage formulation, strain rate is set to zero if the unloading
criterion is met. This results in a sudden jump of the stress path from loading curve
to unloading curve. In case of load path 1 with εmax = 0.47, which exactly matches
the prescribed curves, this seems to be no problem. But in case of load path 2 with
less deformation (εmax = 0.40) an unphysical abrupt stress drop can be observed.
Load path 3 with higher compression εmax = 0.55 is even worse, since the jump
from loading to unloading curve leads to an increase in stress, which is physical
nonsense. With the new damage formulation, we obtain the exact curve as given in
the input data again for load path 1. For load paths 2 and 3, the unloading behavior
is affine to the prescribed unloading and therefore appears to be reasonable from an
engineering point of view.

1.3.2.2 Impact test

In this experiment, a rigid sphere (mass 10kg, diameter 135mm) centrally hits a rect-
angular foam block (RG110, 200x200x40 mm) with an initial velocity of 5.22m/s.
After a maximum of penetration is reached, the ball bounces back in the opposite
direction.

Comparing the force over time curves in Figure 1.13, it gets obvious that the
loading phase is well captured with the old and the new formulation. Apparently
this is not the case during the rebound phase, which is governed by unloading of the
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Fig. 1.13 Impact test – experiment vs. simulation with and without damage.

foam material. With the new damage formulation, an enhancement of the simulation
result is evident.
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Chapter 2
The Numerical Simulation of Foam – An
Example of Inter-Industrial Synergy

Paul A. Du Bois

Abstract Low density foams made by some expansion process of polymeric mate-
rials are widely used in industry. Their main mechanical characteristic is the high
compressibility expressed by the near zero value of the Poisson’s ratio. The numeri-
cal simulation of these materials remained secondary and enigmatic throughout the
1980’s. It was the automotive safety related CAE work that prompted systematic
research into a methodology for the reliable and predictive simulation of foam ma-
terials in the 1990’s. This research program was carried out by an FAT working
group and would last 12 years. Complementary work preliminary with respect to
high velocity impact, sever shear deformation and tensile fracture was performed
by NASA during the Columbia accident investigation and the results of this devel-
opment work have in turn benefited the automotive industry. The article reviews the
history of the foam simulation related R& D work during the last 2 decades.

2.1 Introduction

Throughout history the defence industry has acted as an engine for technological
innovation. It suffices to realize that most of Archimedes’ inventions were moti-
vated by the defence needs of Syracuse and that Newton and his contemporaries
unravelled the mystery of gravity while working on very down to earth problems of
ballistics [1]. Similarly, the ultimate discontinuity in humanity’s technological evo-
lution : world war 2, has given us radar technology, electrical computing, nuclear
energy, jet engines and space flight amongst many other innovations. Industry as
a whole has profited traditionally from the investments made in defence research
through a continuous technological transfer.

Paul A. Du Bois
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Fig. 2.1 Compression test on a low density foam.

Numerical simulation has not been an exception to this general rule, the roots of
modern simulation techniques go back to the war years at Los Alamos where John
von Neumann and Robert Richtmeyer supported the design of the implosion device
that would render the plutonium bomb possible. Up to the 1960’s publications on
simulation work [2] show mainly applications originating in the defence commu-
nity. The simulation of foam materials on the other hand originated, at least to the
best of knowledge of this author, entirely in the automotive world but its evolution
was not less diverse nor inter-disciplinary and somewhat remarkable. The purpose
of this article is to review this interesting story.

2.2 Foams – Physical Nature and Numerical Modeling

From the viewpoint of a material scientist, any material that is manufactured by
an expansion process is considered a foam. The base material is thereby irrelevant
and can be polymeric, metallic or other. Foams are of course used in every indus-
try ranging from furniture to building isolation products but the need for simulation
originally arose in the automotive world. In automobiles foams are needed for com-
fort (seats), safety (bumpers and paddings) and stiffness ( so called structural foams).

To a numericist the intuitive notion of a foam has little to do with the art of man-
ufacturing and a material is said to be foam-like if it exhibits no lateral deformation
under a uniaxial compressive load (see Figure 2.1). Most foam materials are also
elastic in the sense that they recover to their undeformed configuration after some
period of time. The numerical simulation of foams is based on the observation of
Storakers [3] that Hill’s energy functional of hyperelasticity can be used to describe
the simple special case of foams where principal engineering stresses are uncoupled
, i.e. depend only upon the stretch ratio in the corresponding principal direction. To
see this we start from the expression for Hill’s energy functional

W =
k

∑
m=1

μm

αm

(
λαm

1 +λαm
2 +λαm

3 −3+
1
n

(
J−αmn −1

))
(2.1)
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Fig. 2.2 Member Companies of the FAT AK27 Working Group Foam.

and set n=0 :

W =
k

∑
m=1

μm

αm

(
λαm

1 +λαm
2 +λαm

3 −3
)

(2.2)

We then obtain the expression for engineering and true principal stresses in the
usual way of hyperelasticity :

λlλkσi = τi =
∂W
∂λi

(2.3)

τi =
1
λi

k

∑
m=1

μm
(
λαm

i −1
)

(2.4)

The decisive step for practical applications is then made by observing that a tab-
ulated generalisation is trivial due to the uncoupled nature of the equations. Conse-
quently the results of uniaxial tensile and compressive tests in terms of engineering
stress and engineering strain can be used directly as input to the material model for
use in an engineering software such as LS-DYNA.([6] and [7]).

However, the way from a theoretical model to industrial application usually
proves to be a long and tedious path. The number of practical problems to be solved
is important to say the least. We are confronted with the physics of foams that show
viscosity causing such phenomena as damping, rate dependency, hysteresis, stress
relaxation and creep. All these phenomena cannot be described by simple hyperelas-
ticity and imply that the solution of the problem in terms of computing stresses from
strains and strain rates no longer has a unique solution. Then there is the problem
of numerical stability, accuracy and efficiency. The efficiency aspect when dealing
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Fig. 2.3 Comparison test/Simulation results for a sphere impact on Bayfill RG70.

with explicit integration codes that are used in crash simulations and dynamic sim-
ulations of all kinds is strongly depending on the stable timestep of the simulation.
Foams are highly compressible and small dimensions of the compressed finite ele-
ments will inevitably lead to small timesteps and correspondingly high computing
times.

2.3 Numerical Modeling of Foams in Automotive Crash

Due to the necessity of simulating foam response during an automotive crash
event and the lack of fast, reliable solution algorithms as well as material data a
working group foams (’Arbeitsgruppe Schaum’) was founded by the German FAT
( Forschungsgemeinschaftautomobiltechnik) in the autumn of 1996. Participating
members of the working group were most of the German automotive companies
(Volkswagen, AUDI, Mercedes-Benz, Opel, Ford and Porsche) and a number of
supplier companies (JCI, Keiper, Karmann, BAYER, BASF and Autoliv). (See Fig-
ure 2.2) Speaker of the working group was dr. Christian Stender from Volkswagen
during the entire research effort. The project would consist of a large combined
numerical/experimental program where the author would perform numerical sim-
ulations with 3 widely use softwares (LS-DYNA, Pamcrash and Radioss) and the
experimental data would be produced by a team around Dr. Hartwig Nahme at EMI
(Ernst Mach Institute) in Freiburg. The total effort would extend over a period of
roughly 12 years and was completed recently towards the end of 2008. The project
was divided into two phases. The first phase or methodology phase ran from 1996
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till 2002. Four classes of low density foams were selected : seatfoam, PU-bumper
foam, padding foam and EPP-bumper foam. For each of these materials a suitable
simulation technology able to accommodate the dynamic response under impact
loading was developed. This was done based on the example of a single material for
each class of foams with a selected density of around 50 g/l. In the second phase of
the project databases were created for all 4 classes of foams at different densities,
varying between 30 g/l and 200 g/l.

Fig. 2.4 Simulation model for a large sphere impact on a Foam Block, deformed shape.

Realizing that only a massive approach can lead to a reliable simulation tool, the
FAT project involved many thousands of experiments and corresponding numerical
simulations. Indeed maybe the most challenging aspect of numerical simulation is
to define what can be reasonably expected from a simulation result. In other words
: how close to the test result can we get, how predictive can we possibly be. The
answer to this question lyes in a good understanding of experimental spread and
model limitations. In the case of foams the problem seems somewhat freightening
at first sight. Indeed a foam is not a continuum but a structure consisting of open
and/or closed cells. The mechanical properties are a function of the intrinsic mate-
rial properties of the cell wall material but also of the geometry of the structure : the
size and shape of the cells. The numerical model is based on solid finite elements
and uses continuum theory. It consequently cannot account for microstructural ef-
fects and can only be valid as long as the element size exceeds the cell size by some
factor ( preferably at least 10 ). Due to the small cell size in automotive foams this is
usually uncritical (with the exception of certain thin structures such as roof covers)
but other problems arise at the macroscopic level.

Density variations are the main problem in foam parts. Global density variations
can occur in individual batches due to the manufacturing process. Local density
variations showing a density gradient from the surface to the inner of the part are an
inevitable consequence of skin formation that occurs in the cold forming process of
PU foams and during the pressure bonding of EPF (Expanded particle foams). These
local density variations depend (amongst other factors) upon the part geometry and
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Fig. 2.5 Comparison test/Simulation results for a sphere impact on Bayfill RG70 Kernel density
assumed 70g/l.

Fig. 2.6 Comparison test/Simulation results for a sphere impact on Bayfill RG70 Kernel density
assumed 76g/l.

are impossible to account for in an exact way in a numerical model. An approximate
way is to lump the skin effect or the higher density part of the foam component in a
single layer of solid elements at the surface of the part. Only practical and massive
experience can determine the confidence level that may be attributed to such an
approach. In [4] an example is shown of the influence of a density variation in the
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kernel of a PU bumperfoam upon the maximum force measured during the impact
of a 30kg aluminium sphere on a foam block with and without skin layer. Figure
2.4 shows the test setup. In Figure 2.3 the comparison between test an simulation
results is shown for the foam block without skin ( a so-called cut sample) and a
density of 70 g/l. The correspondence is good in particular where the initial slope
of the force-time curve is concerned. The high intrusions later on lead to rupture
in the foam block which was not simulated and thus leads to a divergence between
test and numerical results. However these differences are explainable. next a cold
formed part was examined. The intention was to manufacture a cold formed part
with a kernel density of 70 g/l. The resulting global and thus measurable density
was 85 g/l due to the higher density in the skin layer. In Figures 5 and 6 we again
compare test and simulation results. In Figure 5 the numerical model assumed a
kernel density of 70g/l ( resulting in a rather bad comparison to test) and in Figure 6
the kernel density was assumed to be 76 g/l. The variation of less then 10% in kernel
density could very well occur in real manufacturing circumstances. The conclusions
from studies like these are very important for the industrial analyst:

• Repeated tests are essential to get an idea of the scatter in test results
• Different kinds of tests are essential to deal with unknown parameters such as the

density distribution in the part
• There are always outlayers
• Much time could otherwise be waisted fitting models to single test results
• Kernel density is decisive rather than the nominal density
• Damage (and failure) modeling is desirable (but was not assessed by the working

group at this point in time)

The first phase of the FAT project resulted in numerous improvements of the
foam material laws in all 3 participating softwares. A user friendly setup based on
input of directly measurable engineering stress-strain curves under uniaxial com-
pression and uniaxial tension was at the base of the methodology. Further improve-
ments with regard to numerical stability included optimized estimates of the stable
timestep as well as stiffness proportional damping and strain rate filtering. Under-
integrated solid elements were usually employed in order to accommodate the huge
aspect ratios that can occur due to the high compression ( up to 98%) that is some-
times locally observed in foams.

Engineering stress-strain curves can be defined for loading and unloading regimes
at different strain rates. Suitable experimental techniques were developed by EMI,
in particular the need for dynamic testing at constant velocity (constant engineering
strain rate) was clearly established. An example of static and dynamic input curves
for a PU62IF70 foam with a density of 70 g/l is shown in Figure 2.8. Maybe the
most important aspect of the data preparation for foam material laws is the need to
extrapolate the experimental data at high compressions. Foam plateau stresses are
very low ( less then 1. MegaPascal) compared to the yield strength of the surround-
ing metallic structures. Experimental data are at best available to 20 times the level
of the plateau stress and thus still an order of magnitude below the stresses that can
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Fig. 2.7 Simulation model and results comparison for a Foam validation test.

Fig. 2.8 Static and dynamic stress-strain curves for Bayfill RG70.

occur during a crash event when the metallic parts are plastified. The extrapolation
of experimental data is always to some degree arbitrary. We have consistently used
a higher order hyperbolic function with good practical results and an example of our
extrapollation procedure is shown in Figures 2.9 till 2.11.
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Fig. 2.9 Quasistatic stress-strain curves for Bayfill RG70 test results versus material model input-
data up to 0.6MPa.

Fig. 2.10 quasistatic stress-strain curves for Bayfill RG70 test results versus material model input-
data up to 20.0MPa.

2.4 Impacted Foam – The Columbia Accident

Such was the situation when on January 16 2003, Columbia’s leading edge was im-
pacted by a chunk of foam suspected to have separated from the external tank bipod
ramp at 81 seconds into its launch. Columbia was traveling at Mach 2.46, at an alti-
tude of 65,860 feet. The foam was calculated to have hit the orbiter at 700 – 800 feet
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Fig. 2.11 quasistatic stress-strain curves for Bayfill RG70 test results versus material model input-
data up to 120.MPa.

Fig. 2.12 BX250 foam block like the one that separated from the bipod ramp.

per second. A similar chunk of foam is shown in Figure 2.12. The object was sus-
pected to have hit the Reinforced Carbon-Carbon (RCC) Panels Protect the Leading
Edges of the Orbiter (Figure 2.13 and 2.14). The GRC (Glenn research Center) Im-
pact Lab was Requested to Assist in the Columbia Accident Investigation based on
its extensive expertise in impact testing and analysis. Most of GRC’s previous work
had been in jet engine debris containment. Now they were asked to provide simula-
tion and testing work in support of the full scale impact test that would be performed
in San Antonia Texas by SWRI. The first part of the job was to do Impact Testing to
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Characterize ET Foam and RCC and constitute adequate material models for both
materials.

Fig. 2.13 Reinforced Carbon-Carbon Panels Protect the Leading Edges of the Orbiter.

Fig. 2.14 RCC Leading Edge with T-Seal.

The analysis work was performed with the LS-DYNA code by a team around dr.
Kelly Carney from GRC. Through literature and personal contacts with the author
the results of the FAT investigations were available to this group but they soon real-
ized that the circumstances of the Columbia accident called for extensive additional
research. In particular it became necessary to investigate the response of the foam
at very high strain rates and assess the response in vacuum. It was also proven im-
portant to simulate the tensile failure of the material upon impact.

In addition to the traditional quasistatic testing of the BX250 ET foam dy-
namic testing was performed to evaluate the projectile performance of the material
model. The test originally employed to verify the MAT83 model was performed at
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Fig. 2.15 90 degree impact simulation and test.

NASA/GRC, consisting of a foam projectile impacting a comparatively rigid plate.
Load cells were mounted at the corners of the plate and high speed video was also
employed. The test set-up was modeled employing LS-DYNA and results were pro-
cessed based on the output of the analytical load cells and visual data available via
LSPREPOST. A freeze frame video clip for both analysis and test may be seen
compared in Figures 2.19 and 2.20, for 90 and 23 degree impacts respectively. The
dynamic impact tests required a specially built 2 inch vacuum gun. BX250 ET foam
specimens were shot at angles of 10, 15, 23, and 90 degrees on load cells at 700 and
800 ft/sec to evaluate foam projectile response at 1 psi and atmospheric pressures.

The strain rate testing was limited to less than 500 sec−1 due to equipment oper-
ation limits. The actual strain rate experienced at a point mid way in the specimen
has been solved for analytically and were seen to be far in excess of anything tested
before. However, the effect of strain rates within the limited testing performed indi-
cated that the strain rate dependence of the stress strain relationship becomes con-
stant above the existing 429/s curve.

The simulation boundary forces were summed in the plate normal direction and
compared to the summed plate normal load cell responses as shown in Figures 2.21
and 2.15 for 90 and 23 degree impacts respectively. As can be seen in these fig-
ures, the model conservatively replicates the loading events from the projectile as
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Fig. 2.16 23 degree impact simulation and test.

predicted from test. These experimental data were at the base of the analysis foam
model. The high strain rate and failure response of the material was reverse engi-
neered by comparison of numerical and test results.

In a second phase of the investigation foam samples were shot at RCC coupons
and the response was used to evaluate the RCC numerical model. Finally different
impact scenarios were investigated with foam blocks impacting RCC leading edge
panels at different angles and velocities. For this purpose a numerical model of the
RCC panel was built with 43000 shell elements and the foam block was modeled
with 147000 solid elements. Figure 2.16 shows the numerical model used in the
simulation of the critical panel 8 impact event. The LS-DYNA predictions corre-
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Fig. 2.17 Simulation vs Test Plate Normal Boundary Forces (90 deg.).

Fig. 2.18 Simulation vs Test Plate Normal Boundary Forces (23 deg.).

Fig. 2.19 Simulation model for impact of Foam Block on Orbiter Leading Edge Mock-Up.

lated well with the full scale test that was ultimately performed in San Antonio.
(See Figures 2.17 and 2.18).

The external tank foam test and simulation program had thereby been completed.
It was demonstrated full scale tests at SWRI at atmosphere would be representative
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Fig. 2.20 Ballistic impact test results.

Fig. 2.21 LS-DYNA Simulation result.

of actual impact event in vacuum and a validated foam model for computer analysis
predictions had been developed. In particular the numerical model for the foam in-
cluded a tensile rupture criterion allowing the foam block to separate into multiply
connected parts after impact.

2.5 Summary and Conclusion

In the Columbia accident investigation NASA had added a capability to simulate
extreme conditions to the foam material models. This became relevant to the auto-
motive industry in the 21st century with the implementation of pedestrian protection
legislation and the subsequent use of very low density (30 g/l) foams in bumpers
leading to extreme deformations and occasional rupture during lower leg impact
test events. The next step in the simulaton of these high deformation phenomena
could be the introduction of meshless or particle methods such as EFG ( element
free Galerkin) which allow to push the simulation beyond the point where classical
Lagrangean elements can go. In conclusion, it can be said that the industrial appli-
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cation pushes the simulation techniques forward as more challenging problems are
assessed. Specific problems and the subsequent research and progress in simulation
technology occurs in many different fields but most of the resulting methods turn
out to be amazingly general and useful in a broad range of industries. The value of
a continued exchange of information can therefore not be overstated.
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Chapter 3
Influence of Hardening Relations on Forming
Limit Curves Predicted by the Theory of
Marciniak, Kuczyński, and Pokora

Heinrich Werner

Abstract The forming limit curve (FLC) is one of the tools to predict the maxi-
mum permissible strains of thin metallic sheets which are loaded in the membrane
plane in different states of stress. It may be used to assess forming operations in
the press shops as well as unintentional deformations, such as vehicle, aircraft, or
train crashes. In the present work, the FLC theory of Marciniak, Kuczyński and
Pokora, originally written for a Swift type hardening relation and a power law type
strain rate dependence, is formulated in detail for generalized hardening relations
σ̄ = g

(
ε̄, ˙̄ε

)
. The derivation is restricted to the tension-tension quadrant of the FLC

and neglects inertia effects. Special attention is paid to the initial conditions of the
numerical integration of the resulting two evolution equations. By applying differ-
ent formulations to the quasi-static and later to the strain rate dependent hardening
relation of a particular material, the substantial influence of this aspect of the consti-
tutive material model on the calculated FLC is demonstrated. The results underscore
the necessity for highly accurate experimental input data to avoid extrapolation of
the hardening relation. This is of particular importance over the large strain region;
as well as for the entire anticipated strain rate interval.

3.1 Introduction

Historically the interest in predicting process limits in the plastic deformation of thin
metallic sheets has its roots in the press shops. There are however, many situations
were thin sheets are subjected to unintentional deformations up to fracture, such as
in vehicle, aircraft, or train crashes. The importance of predicting the maximum per-
missible strains in different states of stress – experimentally as well as theoretically
– is undisputed. This is reflected in the multitude of papers written since Keeler and
Backofen [19] and Goodwin [8] introduced the concept of forming limit diagrams

Heinrich Werner, BMW Group, Knorrstrasse 147, 80788 Munich, Germany e-mail: hein-
rich.werner@bmw.de

S. Hiermaier (ed.), Predictive Modeling of Dynamic Processes, 43
DOI 10.1007/978-1-4419-0727-1 3, c© Springer Science+Business Media, LLC 2009
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in the 1960s.

Fig. 3.1 The Forming Limit Curve (FLC) is defined as the connection of all points which mark
the onset of instability for a sequence of strain paths. Dashed rectangles indicate sheet size at start
of deformation; grey shaded rectangles indicate their shape at onset of instability. (A): Representa-
tion in principal strain space (classical FLC), (B): Equivalent strain as a function of the ratio of
principal strain increments.

As indicated in Figure 3.1, the thin sheet is subjected to a sequence of membrane
strain states. For each individual strain path, which is characterised by the ratio of
minor to major strain increment, the strain state at which the local necking (through
the sheet thickness) becomes unstable is recorded. Major and minor strains at the
onset of instability provide the individual data points (the forming limit) in principal
strain space, indicated by a circle in Figure 3.1-(A). Connecting the forming limits
for a sequence of strain states establishes the forming limit curve (FLC) . The value
of the alternative graph of Figure 3.1-(B) is to display the data in a clearer manner
for cases in which successive forming operations are to be displayed on the same
diagram.

In experimental practice the detection and definition of the onset of instability is
a topic of considerable complexity, see Hotz and Timm [16], Hora and Tong [14] as
well as the standards ISO 12004 [17] and ASTM E2218 [1].

Regarding the theoretical prediction of FLCs, the work of Marciniak and co-
workers [23, 24] represents an outstanding contribution. Subsequent work in this
field has focused on refining constitutive material models and on taking non-
proportional strain paths into account, see Ghosh [7] and Graf and Hosford [9, 10],
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to name just a few. At present three approaches are prevalent in the theoretical
prediction of FLC. First, there are models based on the Marciniak theory, i.e. the
CRACH algorithm of Gese and Dell [6] containing a sophisticated constitutive
model; or those of Banabic et al. focusing on improved yield criteria [2] and ef-
fects of stresses normal to the plane of the sheet [3]. Second there are the models of
Hora and Tong [14, 15] based on the enhanced modified maximum force criterion
(eMMFC), and third, the finite element based approaches where a domain similar
to that of Figure 3.2 is discretized. The benchmark test BM1 of Numisheet 2008
provides a good overview of the capabilities of these various models; see Volk et al.
[30, 31].

In order not to miss the broader picture of failure modelling it should be pointed
out that the onset of instability – which is generally expressed in FLCs – is but one
process, ultimately leading to fracture. Since fracture depends on such a multitude
of influencing factors, any comprehensive numerical model must include more than
one FLC-based failure criterion, see for instance Hooputra et al. [13], Kessler et al.
[20] and the models compared in a survey of Wierzbicki et al. [32]. Hiermaiers book
[11] and an extensive book chapter authored by El-Magd [4] provide a rich source
of information on failure modelling.

In the present work, the theory of Marciniak, Kuczyński and Pokora [24], orig-
inally written for a Swift type hardening relation and a power law type strain rate
dependence, is formulated in detail for generalized hardening relations σ̄ = g

(
ε̄, ˙̄ε

)
.

The derivation is restricted to the tension-tension quadrant of the FLC (positive mi-
nor principal strain, ε2 ≥ 0) and neglects inertia effects. Special attention is paid
to the initial conditions of the numerical integration of the resulting two evolution
equations. By applying different formulations to the quasi-static and later to the
strain rate dependent hardening relation of a particular material, the substantial in-
fluence of this aspect of the constitutive material model on the FLC is demonstrated.
The results underscore the necessity for highly accurate experimental input data,
particularly over the large strain region; as well as for the entire anticipated strain
rate interval.

3.2 Theoretical Model

Figure 3.2 shows part of a sheet subject to a membrane loading by the principal
stresses σ1A and σ2A acting at some distance from the small initial imperfection, the
neck. σ1A, the major principal stress acts perpendicular to the neck axis. In regions A
and B the material properties are identical. The initial imperfection is characterised
by the inhomogeneity parameter1 fi, which is defined by the differences in initial

1 To predict forming limit curves for a given sheet material fi must be determined from at least one
experimental strain path (α = const.) in order to determine the sheets specific properties.
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sheet thickness of regions A and B:

fi = 1− t0B

t0A
(3.1)

Fig. 3.2 Schematic representation of the initial imperfection in the sheet.

According to the time history of the applied stresses, the strains at some distance
from the neck will evolve. This strain path, which is actually prescribed in a nu-
merical solution method need not necessarily be constant during the deformation
process. It may adequately be defined by the ratio of the principal plastic strain in-
crements in region A:

dε2A

dε1A
= α (3.2)

During the deformation process, there will suddenly be a stronger increase in ef-
fective plastic strain in region B as compared to region A; indicating the onset of
plastic instability. Therefore, the ratio:

dε̄A

dε̄B
= β (3.3)

will be used as the indicator of plastic instability2. Solving the evolution equations
for β is the central task of the theory, and will be covered in more detail in the
following sections.

2 In the examples shown later, the criterion for onset of instability is dε̄A
/

dε̄B ≤ 1
/

25.
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3.2.1 Constitutive Equations

Consistent with Marciniak and Kuczyński’s approach [23], it will be assumed that
the elastic strain components are negligible relative to the plastic components.
Therefore, the Lévy - von Mises flow rule [21, 25] is applicable. In order to model
this rigid-plastic material behaviour, the flow rule of Hill [12] is applied. For a planar
isotropic material3 which is characterised by a time independent average R-value

R̄ =
R0 +2R45 +R90

4
(3.4)

the increments of plastic strain are given by:

dε1 =
(
σ1 −

R̄
1+ R̄

σ2

)
dε̄
σ̄

(3.5)

dε2 =
(
− R̄

1+ R̄
σ1 +σ2

)
dε̄
σ̄

(3.6)

dε3 = −dε1 −dε2 = −σ1 +σ2

1+ R̄
dε̄
σ̄

(3.7)

Based on the hypothesis of equivalent plastic work

σ1dε1 +σ2dε2 +σ3dε3 = σ̄dε̄ , (3.8)

the increment of equivalent plastic strain dε̄ becomes:

dε̄ =

√
1+ R̄

1+2R̄

√
(1+ R̄)

(
dε2

1 +dε2
2

)
+2 R̄dε1 dε2 (3.9)

and the related equivalent stress σ̄ is given by:

σ̄ =

√
σ2

1 −
(

2R̄
1+ R̄

)
σ1σ2 +σ2

2 (3.10)

Any reasonably well-defined function may be used to define a unique hardening
relation as a function of equivalent plastic strain and strain rate:

σ̄ = g
(
ε̄, ˙̄ε

)
(3.11)

Examples of this function are (3.38) and the relations in Tables 3.3 and 3.4.

3 In the plane of the sheet the material properties are identical in all directions whereas through the
thickness they are different. Thus, a state of planar isotropy and normal anisotropy is assumed.
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3.2.2 Derivation of Evolution Equations for the Onset of Instability

Given the inhomogeneity parameter, the initial sheet thickness in region B is given
by:

t0B = (1− fi) t0A (3.12)

The sheet thicknesses are related to the strains in thickness direction by:

tA = t0A exp(ε3A) (3.13)

tB = t0B exp(ε3B) (3.14)

The force equilibrium in 1-direction requires that:

σ1A tA = σ1B tB (3.15)

A relation for the stress and strain components in region A as a function of α and
R̄ is obtained as follows: equations (3.2), (3.5), (3.6) and (3.9) are written for region
A and solved for the unknowns σ1A, σ2A, dε1A and dε2A. The result is:

σ1A

σ̄A
=

√
1+ R̄
1+2R̄

[1+ R̄ (1+α)]√
1+α2 + R̄ (1+α)2

(3.16)

σ2A

σ̄A
=

√
1+ R̄
1+2R̄

[α+ R̄ (1+α)]√
1+α2 + R̄ (1+α)2

(3.17)

The major principal stress σ1A is positive if the condition α > −(1+ R̄)
/

R̄ is
fulfilled. From (3.16) and (3.17) the ratio of the principal stress components follows
as:

σ2A

σ1A
=
α+ R̄ (1+α)
1+ R̄ (1+α)

(3.18)

Table 3.1 shows the ratio of the stress components for three important strain
paths, valid for region A as well as for region B.

The increment of the principal strain parallel to the necking axis becomes:

dε2A

dε̄A
= α

√
1+2R̄
1+ R̄

1√
1+α2 + R̄ (1+α)2

(3.19)

Applying the constant volume assumption,

dε1A +dε2A +dε3A = 0 (3.20)

as well as equations (3.2) and (3.19), the strain increment through the thickness in
region A becomes:
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Table 3.1 Ratios of stress components for three strain paths (plane stress, σ3 = 0).

– Uniaxial Tension Plane Strain Equibiaxial Strain

– α = − R̄
1+R̄ α = 0 α = 1

σ1
σ̄ 1

1+R̄√
1+2R̄

√
1+R̄

2

σ2
σ̄ 0

R̄√
1+2R̄

√
1+R̄

2

σ2
σ1

0
R̄

1+R̄ 1

dε3A

dε̄A
= −

√
1+2R̄
1+ R̄

(1+α)√
1+α2 + R̄ (1+α)2

(3.21)

Table 3.2 Ratios of strain components for three strain paths (plane stress, σ3 = 0).

– Uniaxial Tension Plane Strain Equibiaxial Strain

– α = − R̄
1+R̄ α = 0 α = 1

dε1
dε̄ 1

√
1+2R̄
1+R̄

1√
2(1+R̄)

dε2
dε̄ − R̄

1+R̄ 0
1√

2(1+R̄)

dε3
dε̄ − 1

1+R̄ −
√

1+2R̄
1+R̄ −

√
2

1+R̄

The derivation of the corresponding relations for region B begins with the strain
increment dε2B. The equivalent stress in region B according to (3.10) becomes:

σ̄B =

√
σ2

1B −
(

2R̄
1+ R̄

)
σ1Bσ2B +σ2

2B (3.22)
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Taking (3.6) into account, the strain component dε2B is:

dε2B =
(
− R̄

1+ R̄
σ1B +σ2B

)
dε̄B

σ̄B
(3.23)

By inserting (3.22), the strain increment in region B parallel to the axis of the neck
follows as:

dε2B

dε̄B
= signum(α)

√
1− (1+2R̄)

(1+ R̄)2

(
σ1B

σ̄B

)2

(3.24)

Solving the three equations (3.19), (3.23) and the following compatibility relation

dε2A = dε2B (3.25)

for the unknowns σ1B, dε2A and dε2B, the ratio σ1B
/
σ̄B results in the relation:

σ1B

σ̄B
=

√
(1+ R̄)2

1+2R̄
− (1+ R̄) α2

1+α2 + R̄ (1+α)2

(
dε̄A

dε̄B

)2

(3.26)

To ensure a strictly positive argument of the square root in (3.26) – especially in
cases of nonproportional loading histories (α �= const.) –, the condition

∣∣∣∣
dε̄A

dε̄B

∣∣∣∣ <

√√√√ (1+ R̄)
[
1+α2 + R̄ (1+α)2

]

α2 (1+2R̄)
(3.27)

must be verified.

The strain increment in the thickness direction in region B results from solving
(3.23) and (3.7) as applied to region B

dε3B = −σ1B +σ2B

1+ R̄
dε̄B

σ̄B
(3.28)

Solving for σ2B and dε3B results in:

dε3B

dε̄B
= − 1

(1+ R̄)
dε2B

dε̄B
− (1+2R̄)

(1+ R̄)2

(
σ1B

σ̄B

)
(3.29)

By introducing (3.24) and (3.26) into (3.29), the first evolution equation is found:

dε3B
dε̄B

= −
√

1+2R̄
(1+R̄)

[
signum(α)

√
α2

(1+R̄)[1+α2+R̄(1+α)2]

(
dε̄A
dε̄B

)

+
√

1− (1+2R̄)α2

(1+R̄)[1+α2+R̄(1+α)2]

(
dε̄A
dε̄B

)2
] (3.30)
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The second fundamental equation used to determine the onset of instability fol-
lows from the force equilibrium relation (3.15):

σ̄A tA

(
σ1A

σ̄A

)
= σ̄B tB

(
σ1B

σ̄B

)

Introducing (3.12) to (3.14) yields
(
σ1A
σ̄A

)
(
σ1B
σ̄B

) = (1− fi)
σ̄B

σ̄A
exp(ε3B − ε3A) (3.31)

and the final form is achieved by introducing (3.16) and (3.26) into (3.31):

1+R̄(1+α)√
(1+R̄)[1+α2+R̄(1+α)2]−(1+2R̄)α2

(
dε̄A
dε̄B

)2

−(1− fi)
σ̄B(ε̄B, ˙̄εB)
σ̄A(ε̄A, ˙̄εA)

exp(ε3B − ε3A) = 0
(3.32)

It should be emphasised that the strain rate within the neck ˙̄εB is coupled to the
strain rate in region A. From

˙̄εB

˙̄εA
=

dε̄B

dt
dt

dε̄A

the strain rate in region B follows as:

˙̄εB =
1
β

˙̄εA (3.33)

Consequently, the strain rate within the neck is approximately one order of mag-
nitude greater than that of region A in the final stage of the neck development (see
footnote 2). For materials exhibiting a positive strain rate sensitivity, a significant
delay in the onset of the instability may result, see sections 3.5 and 3.7.2. Therefore,
the inclusion of strain rate effects in the FLC calculation should be mandatory. Re-
lations (3.30) and (3.32) together with the hardening relation (3.11) form the basis
of a numerical integration scheme which uses the ratio β = dε̄A

/
dε̄B as its primary

unknown. The initial conditions for this system are described in section 3.4.

3.3 Numerical Solution Method

The numerical determination of the onset of instability is accomplished by using
an implicit integration method to solve equations (3.30) and (3.32). The primary
unknown β = dε̄A

/
dε̄B is determined as a function of the equivalent plastic strain

in the area of the neck (region B). By defining a constant step size dε̄B, typically on
the order of 2 ·10−4, the solution is advanced in steps from n = 0, 1, 2, . . . , N:
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ε̄B|n+1 = ε̄B|n +dε̄B (3.34)

The equivalent plastic strain at some distance from the neck (region A) follows
from:

ε̄A|n+1 = ε̄A|n +
dε̄A

dε̄B

∣∣∣∣
n+1/2︸ ︷︷ ︸

βn+1/2

dε̄B (3.35)

Figure 3.3 illustrates the arithmetic averaging of the gradient β between steps
n and n + 1. It results in a method whose discretization error approaches zero as
dε̄B → 0, like c · dε̄B for some constant c (see section 3.6 for an example of its
convergence properties).

Fig. 3.3 Integration scheme to determine the increment in plastic strain dε̄A.

In order to determine βn+1 for each integration step, an iterative solution pro-
cedure is applied. It guarantees that (3.32) is fulfilled within machine tolerance at
step n + 1. During the iteration, outlined in Figure 3.4, β is varied from 1 to 0 in
steps of 0.01. A change in sign of the left hand side of (3.32) signals a successful
bracketing of the solution space for β . The final solution βn+1 is subsequently deter-
mined by a secant method, which makes use of the same set of equations as shown
in Figure 3.4. Details of the secant method may be found in Press et al. [26].

The numerical integration is continued until βn+1 < 1/25. The equivalent plastic
strain in region A at this instant is defined as the onset of plastic instability ε̄∗A .
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Fig. 3.4 Basic algorithm for an iterative determination of ε̄B|n+1, βn+1, ε3B|n+1, ε̄A|n+1 and
ε3A|n+1 during one integration step from n to n+1.

3.4 Initial Conditions

To start the integration algorithm outlined in section 3.3, five entities must be pre-
scribed: ε̄A|0 , ε3A|0 , ε̄B|0 , ε3B|0 , dε̄A

/
dε̄B

∣∣
0 = β0. It will be assumed that the

stresses in region A are just about to induce plastic flow:

ε̄A|0 = 0 (3.36)

ε3A|0 = 0 (3.37)
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A very small positive value is assigned to the equivalent plastic strain in region
A in actual computations. This helps to avoid convergence problems encountered
in certain kinds of hardening relations. For instance, the Hollomon formulation
σ̄ = C1ε̄n shows an infinite gradient dσ̄

/
dε̄ for ε̄ → 0 and 0 < n < 1.

The remaining three values are determined iteratively. As illustrated in Figure
3.5, for two values ε̄A|0 = 10−12 and ε̄A|1 = 10−4 the strains in region B are deter-
mined in complete analogy to the basic algorithm of Figure 3.4. This allows β0 to be
found from a finite difference approximation of the gradient dε̄A

/
dε̄B as illustrated

in Figure 3.5.

Fig. 3.5 Numerical approximation of the initial value β0.

This comparatively complex process ensures that a mathematically consistent set
of initial values is determined. The differences between using the process described
above and a much simpler process which uses β0 = 1 as an approximate initial value
are shown in Figure 3.6 for a specific example.

Figure 3.6 indicates that the final result is hardly different when β0 = 1 is used.
Although it may be tempting to use the simpler initial conditions in practical com-
putations, the present author is not aware of guidelines for determining under which
circumstances a proper solution will result4. Tests have revealed that the amplitude
of the oscillation decreases with decreasing values of the inhomogeneity parameter
fi.

4 The investigations of Lorenz [22] in the field of meteorology are one prominent example that the
solutions of even small systems of ordinary nonlinear equations may seriously be affected by small
changes in initial conditions.



3 Influence of Hardening Relations on FLCs 55

Fig. 3.6 A consistent set of initial conditions leads to a smooth function whereas the approximate
initial condition β0 = 1 leads to a damped oscillation. For dε̄B > 0.01 both solutions are nearly
identical.

3.5 Validation

Marciniak, Kuczyński and Pokora published detailed results in their Figure 3.2 of
[24] for a hardening relation as a function of equivalent strain and strain rate:

σ̄ = C1 (0.01+ ε̄)0.22 ˙̄εm (3.38)

The exponent m, representing the strain rate sensitivity of the material, had been
varied whereas the parameters α = 1 (equibiaxial strain path), R̄ = 1 (isotropic ma-
terial behaviour) and fi = 0.02 were kept constant. Constant C1 does not influence
the results in any way and may therefore be chosen in a numerically convenient
manner. Figure 3.7 shows a comparison of the results of Marciniak et al.[24] and
those of the present work. For four values of the exponent m, the equivalent strain
in region A ε̄A is shown as a function of the equivalent strain in region B ε̄B. The
agreement with respect to the functional dependence as well as the equivalent strain
ε̄∗A marking the onset of instability is excellent.

Figure 3.8 shows the accompanying development of the gradient β = dε̄A
/

dε̄B

as a function of the equivalent strain in the neck ε̄B. Special emphasis is given to the
initial values of β .

By comparing the forming limit curves for proportional loading conditions
(α = const.) in Figure 3.9, the significant influence of strain rate effects on the onset
of instability becomes evident, especially near plane strain conditions (ε2 → 0).
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Fig. 3.7 Development of equivalent plastic strain in region A as a function of the equivalent plastic
strain in the neck (region B) for four values of the strain rate exponent m. Crosses mark the results
of Marciniak et al. ([24], Fig. 2); the full lines were computed with the algorithm of sections 3.3
and 3.4. Results for equibiaxial strain path α = 1.

Fig. 3.8 Development of the gradient β as a function of the equivalent plastic strain in the neck
(region B) for four values of the strain rate exponent m. Results for equibiaxial strain path α = 1.
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Fig. 3.9 Forming limit curves for the test case of Marciniak et al. [24] emphasising the influence of
strain rate effects on the onset of instability. (A): major vs. minor principal strain. (B): equivalent
strain vs. α .

A final comment on the parameters m and fi may be necessary. For ferritic steel
grades, the maximum m-values are around 0.025 while the typical inhomogeneity
parameters fi are approximately one order of magnitude lower than in the test ex-
ample above, see the Participants Information of Gese in Volk et al. ([31], p 25).
Comparing the forming limit in plane strain conditions5 for a value of m = 0 with
those of m = 0.025 shows an increase of 104% in the major principal strain at the
onset of instability! Therefore, the strain rate behaviour of the material in question
must be reflected in the computation of forming limit curves.

3.6 Convergence Properties

In order to demonstrate that the integration schemes discretization error approaches
zero with decreasing step size dε̄B, an example from section 3.5 is used in which
α = 1, R̄ = 1 , m = 0.05, fi = 0.02. For a sequence of nine step sizes, dε̄B = 2k ·
10−4, k = 0, 1, 2, . . . , 8 the onset of instability ε̄∗A is determined6. As shown in
Figure 3.10, the solution tends towards a limiting value. By halving the step size
the absolute error is reduced by approximately the same factor. This can be seen by
comparing for instance, errors e7 and e8 as shown below. It should be remarked that

5 The hardening relation (3.38) was used in combination with fi = 0.001.
6 The computations were carried out on a PC in DOUBLE PRECISION resulting in a floating
point precision of 2.2 ·10−16 according to the definition of eps in Press et al. ([26], section 20.1).
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a further reduction in step size, to below 1 ·10−4 is unnecessary and may very well
be counterproductive as the solution is diverging due to round-off errors.

Fig. 3.10 Convergence of the numerical solution with decreasing step size. Convergence is towards
the limiting value ε̄∗A = 0.9741, which indicates the onset of instability.

3.7 Influence of Different Hardening Relations on the FLCs

The results of theoretically determined FLCs depend crucially on the constitutive
model of the material behaviour employed. In this section the influences of the hard-
ening relation on the forming limit curve will be examined. The equally important
shape of the yield locus will not be treated in this paper. Neglecting the yield locus, a
quantitative comparison of the theoretical FLCs with the experimentally determined
FLC does not make sense and is therefore left out of this discussion. Graf and Hos-
ford [9] have shown the pronounced influence of the yield locus onto the shape of
the forming limit curve.

A TRIP steel has been chosen as the object of investigation. Detailed data has
been determined for this material within a transnational research project [28]. Sec-
tion 3.7.1 will focus on the effect of different approximations of the quasi-static
hardening relation only; while in section 3.7.2, the main emphasis will be on strain
rate effects.
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3.7.1 Effect of Various Quasi-Static Hardening Relations on
Forming Limit Curves

Within the research project [28], tensile tests had been carried out over strain rates
from 0.004 s−1 (quasi-static) to 200 s−1. Bulge tests at the quasi-static strain rate
provided additional important information in the higher ranges of equivalent strain,
which cannot be generated from pure tensile tests.

Often, however, the numerical analyst is faced with the problem that only data
from tensile tests is available; which is generally far too limited for the computation
of a FLC. Extrapolation of the hardening curve becomes thus inevitable, raising the
frequently asked question for the ”best” extrapolation function. Table 3.3 contains
an undoubtedly subjective choice of four hardening relations which were fitted to
the test data using various strategies. Function 1, abbreviated as g1 (ε̄), serves as
the reference since it utilizes both tensile and bulge test data. The constants of the
remaining functions were fitted using only the available tensile test data. The be-
haviour of function 4 for higher values of equivalent strain is governed by the linear
term 1055.8 ε̄ . Its gradient, 1055.8 has been determined directly from the last two
measured points, see arrows in Figure 3.11 . Upon initial inspection of Figure 3.11
, all four functions provide a very satisfactory material description in the range of
the tensile test data. Beyond an equivalent strain of 0.18, however, the hardening be-
haviour is clearly different, raising questions about its effect on the resulting forming
limit curves.

Table 3.3 Hardening relations used to approximate experimental data of a TRIP steel for a qua-
sistatic strain rate of 0.004 s−1 . Stress in [MPa].

No. Hardening Relation Strategy to fit constants

1 σ̄ = 502.6+250.4ε̄+527.7
[
1− exp

(
−ε̄

/
0.135

)]0.6

︸ ︷︷ ︸
g1(ε̄)

tensile and bulge test

data.

2 σ̄ = 1037− (1037−559.5)exp(−12 ε̄) tensile data.

3 σ̄ = 1435.2 (0.011+ ε̄)0.22 tensile data.

4 σ̄ = 478.8+1055.8 ε̄+345.4
√

1− exp
(
−ε̄

/
0.072

)
tensile data. Gradient ex-
trapolation, see text.

Figure 3.12 shows the resulting FLCs for the hardening relations of Table 3.3.
An inhomogeneity parameter fi = 0.0011, isotropic material behaviour R̄ = 1, and
constant strain paths α = const. are the basis of these results. Since the gradient of
the hardening relation dσ̄

/
dε̄ is of dominating influence, it is clear that relation No.
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Fig. 3.11 Comparison of the hardening relations for a TRIP steel according to Table 3.3 with
experimentally determined data. Arrows mark points used for extrapolation by last known gradient
in function 4.

Fig. 3.12 Theoretical forming limit curves for the hardening functions of Table 3.3, approximating
the TRIP steel to various degrees of accuracy in the high strain region. (A): major principal strain
vs. minor principal strain. (B): equivalent strain vs. α .

4 will lead to the highest forming limits. The difference between these four results
is predominantly visible near plane strain α→ 0 and therefore of considerable prac-
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tical importance. With reference to hardening relation 1, relation 2 provides a limit
strain which is 17% lower, see Figure 3.12 (B). Relation 3 results in a 22% higher
value and relation 4 shows a striking 92% increase! The essential message to be
derived from this comparison is to avoid any extrapolation of hardening relations.
Measurements of high quality stress strain curves at equivalent strain levels far be-
yond those of standard tensile tests are the essential basis of theoretically determined
forming limit curves.

3.7.2 Effect of Various Strain Rate Formulations on the Forming
Limit Curves

Since the hardening properties of many materials depend on strain rate, influences
on the forming limit curve are to be expected – an effect clearly shown by Marciniak
et al. [24] more than three decades ago. Similar to the choice of suitable functions
for the approximation of quasistatic hardening relations, strain rate dependencies
may be formulated in a multitude of ways. Additive or multiplicative terms, which
extend pure quasi-static approximations, are among the most popular formulations.
Three different approximations of this type are applied to the TRIP steel data in-
vestigated in [28]. Since only tensile test data is available at higher strain rates,
extrapolation beyond an equivalent strain of 0.18 is even more demanding; see the
comments at the end of section 3.7.2. Table 3.4 lists the functions, which were used
in combination with the quasi-static approximation g1 (ε̄) of Table 3.3.

Table 3.4 Strain rate dependent hardening relations used to approximate experimental data of a
TRIP steel for 0.004s−1 ≤ ˙̄ε ≤ 200s−1. Stress in [MPa].

No. Hardening Relation Author

1a σ̄ = g1 (ε̄) ·
(

˙̄ε
/

0.004
)0.01

Cowper-Symonds [29]

1a σ̄ = g1 (ε̄) ·
[
1+0.0105 ln

(
˙̄ε
/

0.004
)]

Johnson-Cook [18]

1b σ̄ = g1 (ε̄)+45.8
(

˙̄ε 0.2 −0.0040.2
)

El-Magd [5]

1c σ̄ = g1 (ε̄)+
[

1.39+ 2180
1+55ε̄

(
0.004

˙̄ε

)0.6
+ Werner

+ (5461ε̄−228)
(

0.004
˙̄ε

)0.55
](

˙̄ε−0.004
)0.7

Denoting both, the Cowper-Symonds and Johnson-Cook formulation by 1a is
justified because the differences are negligible in the region of interest. The rate de-
pendence 1b developed by El-Magd is based on a microstructural model, whereas
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the present author’s purely empirical function 1c sought to provide a well-behaved
optimum fit of the data points. Figure 3.13 illustrates these hardening relations to-
gether with experimental data points.

Fig. 3.13 Comparison of the strain rate dependent hardening relations for a TRIP steel according
to Table 3.4 with experimentally determined data (crosses).

The forming limit curves resulting from the hardening relations of Table 3.4 are
shown in Figure 3.14 for proportional strain paths α = const. and two strain rates
applied in region A at some distance from the neck. Even in forming operations, lo-
cal strain rates of 10 s−1 are not uncommon, whereas in automotive crash situations
10 s−1 represents the lower end of observable strain rates in areas undergoing severe
deformations.

At first glance, Figure 3.14 reveals major differences in the vicinity of plane
strain, ε2A → 0. Whereas the rate formulations 1a and 1b do not display such
pronounced influences, approximation 1c, fitting the experimental data the ”best”,
shows a substantial strain rate effect. The reason for putting the word best in quo-
tation marks becomes obvious when considering the degree of extrapolation of the
rate-dependent experimental data. In case of plane strain, ε2A = 0 in Figure 3.14 (B),
the equivalent strain at onset of instability for approximation 1c is 0.43. Looking at
Figure 3.13 the measured rate-dependent data points end at an equivalent strain of
0.18. This means that an extrapolation of 0.43/0.18 = 2.4 was required to generate
the data. Nonetheless, this ends up constituting the best result! For the equibiaxial
strain path ε2A = ε1A, the onset of instability takes place at an equivalent strain of
2.49, resulting in an extrapolation factor of nearly 14! In this situation, it would be
unreasonable to claim such an empirical fit to be adequate.
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Fig. 3.14 Theoretical forming limit curves resulting from the strain rate dependent hardening func-
tions of Table 3.4. For reference, curve 1 of Figure 3.12 is included. (A): Deformation in region A
proceeds at a constant strain rate of 0.01 s−1. (B): Deformation proceeds at constant strain rate of
10 s−1.

3.8 Summary

Predicting the structural failure of thin sheet components in complex forming and
crash situations remains a demanding task. The forming limit curve (FLC) is one of
several tools which are routinely applied in project work at BMW using the finite
element analysis software Abaqus [27] in order to evaluate the likeliness of failure
in bodies in white subjected to various crash load cases.

The present work provides a detailed derivation and validation of the theoretical
method of Marciniak et al. [24] used to determine the FLC of thin sheets. Because
of its critical importance in crash situations, the main focus is on applying general-
ized relations which describe the hardening of a material as a function of strain and
strain rate. By comparing FLCs, resulting from various approximations for the rate
dependent hardening relation of one particular steel, the following conclusions may
be drawn:

1. The results clearly indicate that the theoretical prediction of a FLC makes great
demands on the quality and the comprehensiveness of the experimental input
data used as the basis for the constitutive model. Differences of 20% to 90% may
result from improperly chosen extrapolations of the hardening relation!

2. The FLC computation is particularly sensitive to the constitutive model used.
Therefore, in order to maximize the benefit of this theory, yield locus, flow rule
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and rate dependent hardening relations must be based on carefully measured data
– not on extrapolated or even assumed data.

Provided that these requirements are fulfilled, the Marciniak theory and its de-
scendants greatly help to improve the prediction of failure in thin sheets– in forming
as well as in crash analyses.

Acknowledgements The author greatly appreciates the kind and competent assistance of Chris-
tian Suciu in improving the phrasing of this article.
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Chapter 4
The Challenge to Predict Material Failure in
Crashworthiness Applications: Simulation of
Producibility to Serviceability

André Haufe, Markus Feucht and Frieder Neukamm

Abstract In recent years, the requirements on passive safety of cars have grown to
high standards, leading to a permanent demand on an increase in simulation accu-
racy. Additionally, demands on fuel efficiency and CO2 – reduction are confronting
the car body designers with the need of substantial weight reduction. Here the in-
creasing use of high and ultrahigh strength steel grades for bodies in white can
be identified as major trend. At the same time simulation techniques are urged to
predict formability and crashworthiness performance better and better. The present
contribution will focus on one of the most urging challenges in sheet metal form-
ing and crashworthiness simulation for high strength steels, namely alternative or
enhanced constitutive formulations to predict failure and cracking of the blank and
furthermore the inclusion of forming results in crashworthiness finite element mod-
els in order to predict material failure in such numerical investigations. In a broader
view this simulation process chain may be termed as ’producibility to serviceability’
since the diving force behind forming simulations used to be the question if a certain
part can be produced on certain press equipment with a defined number of forming
stages from a specific material of given initial thickness. Carrying over the forming
results to other simulation disciplines like crashworthiness or NVH, where the ser-
viceability of the designed structure is investigated further, will eventually give more
insight into the effects of pre-straining and possible pre-damaging emerging from
production processes on the target discipline. The whole topic is rather demanding
since nowadays the crashworthiness of bodies in white is assessed to a major extend

André Haufe
DYNAmore GmbH, Industriestrasse 2, D-70565 Stuttgart, Germany, e-mail: an-
dre.haufe@dynamore.de

Markus Feucht
Daimler AG, EP/SPB, W059/HPC X271, 71059 Sindelfingen, Germany e-mail:
markus.feucht@daimler.com

Frieder Neukamm
Daimler AG, EP/SPB, W059/HPC X271, 71059 Sindelfingen, Germany e-mail:
frieder.neukamm@daimler.com

S. Hiermaier (ed.), Predictive Modeling of Dynamic Processes, 67
DOI 10.1007/978-1-4419-0727-1 4, c© Springer Science+Business Media, LLC 2009
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by finite element simulations without taking the production history into account. In
this context, high strength steel qualities are known to be more problematic. The
present contribution discusses two possible engineering driven approaches to close
the constitutive gap between the forming and crashworthiness world.

4.1 Introduction

As mentioned earlier the production history may have an enormous effect on part
performance in crashworthiness applications. The present contribution will focus on
parts made of high strength steel and will disregard similar problems that may arise
for polymers and plastics in occupant safety simulation. It is clear though, that the
process chain of sheet metal manufacturing not only starts at sheet metal forming
but instead the blank has already some history of production before it is actually
formed into some automotive part. Great effort is being put into the theory and ap-
plication of numerical models that are able to predict constitutive properties of every
single stage during sheet metal production. One of the projects that focuses on the
earlier stages of production history is present in section 2, while section 3 will dis-
cuss some of the new models that may become more popular in future. Section 4
discusses path dependent localization in the context of a newly proposed damage
mode. Section 5 focuses on the post critical behaviour while section 6 will present
first results gained with a demonstrator part.

4.2 The Process Chain of Sheet Metal Part Manufacturing

The individual process steps of sheet metal production are illustrated in Fig. 4.1
together with the principal properties a descriptive model should take into account
in order to enable predictive numerical studies. Within a research project supported
by funds of ’WING’ by the German Federal Ministry of Education and Research
(BMBF), grant # 03X0501E, most of the simulation problems along the process
chain were solved. So a newly developed data transfer structure that includes the
various results of a previous simulation step are passed on to the corresponding fol-
lowing step. Hereby, the data is meaningfully reduced. This procedure also allows
feedback to the preceding step, i.e. from cold-rolling or heat treating to the material
design or crashworthiness to forming simulation and thus allows purposeful ma-
terial optimization by e.g. the steel manufacturer. Moreover, the software solution
developed within the project provides a precise description of the steel character-
istics which can be passed on also to customers of the steel manufacturer, i.e. the
automotive industry.
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Within the WING project the process chain simulation is exemplified by a dual
phase steel that is being newly developed. In addition the individual process steps
like cold-rolling, annealing, skin-pass-rolling, forming, spring back, and the crash-
worthiness simulation are illustrated with the help of continuum-mechanical and
micromechanical material models.

Fig. 4.1 Process chain modeling: Principle work- and data-flow.

For a continuous process chain simulation where macroscopic properties are
considered, micro-structure, texture and damage parameters of existing simulation
tools based on a continuum mechanical approach and physically based models are
to be unified on the so called meso-scale. In addition these models need to be
adapted to common simulation tools. This applies particularly to models of tex-
ture simulation. In order to be able to compute all parameters of the individually
scaled and applied models along the process chain (e.g. micro-, meso- & macro-
scale models), the aforementioned data management structure needs to be able to
unify all different demands and characteristics of the individual mechanical models
that are applied. For the description of texture and yield locus of forming simu-
lations Taylor-based models, finite element based polycrystalline models and self-
consistent models are available, which shall also be able to capture the behaviour
of multi-phase steel. For the description of the micro-structure development dur-
ing annealing and possible welding new thermodynamic-kinetic models describing
nucleus formation and growth of all phases of the matrix are being used for the
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first time. For the characterisation of deformation boundaries during rolling and
forming damage-mechanical models are adapted to the corresponding process con-
ditions.

Along the process chain predominantly the finite element method is being used.
Micro-structural characteristics are modelled by local variables, whose evolution is
described by internal equations. Experimental methods like tension test, tension-
compression tests or biaxial tests of sheet metal are used to gain necessary macro-
scopic parameters for the applied plasticity models on forming and crashworthiness
level. However usually different constitutive models – though usually based on clas-
sical plasticity theory – are used in forming and crashworthiness simulations. Hence
in order to unify the approach and enable the usage of history data from forming sim-
ulations in crashworthiness applications new or updated constitutive models need to
be developed.

4.3 Some Ideas for Failure Modelling in Forming and
Crashworthiness Simulations

On behalf of improvements for crashworthiness simulations, great effort has been
done throughout the past years regarding the treatment of crack formation and prop-
agation. Current state of the art here is the use of failure models that accumulate
damage on an incremental basis. Most models are based on the observations of
Bridgman [1], who found that failure strain in metallic materials depends on the hy-
drostatic pressure. Examples of models in use are the Gurson model with extensions
by Tvergaard and Needleman [2], and the failure model of Johnson and Cook [3].
As a shortcoming, the mechanical properties of sheet metal parts for crashworthi-
ness calculations are usually assumed to be as in a maiden-like material delivery
state. This disregards the changes in constitutive properties resulting from previ-
ous treatment in the process chain of sheet metal part manufacturing, including i.e.
deep-drawing. In the easiest case, a local increase of the yield stress due to work
hardening can be expected which may play an important role for low-speed impact
cases. Since plastic pre-straining also results in a reduction of the remaining strain
up to failure, the effect of pre-damaging should be phenomenologically taken into
account in crashworthiness simulations. This in turn leads to the fact that not only
plastic strains but also the damage state evolved during forming simulations should
be modelled.

For crashworthiness computations, the constitutive models used are usually
isotropic and based on the von Mises flow rule or the Gurson, Tvergaard & Needle-
man approach (see Fig 4.2(b)). For forming simulations, a more sophisticated and
anisotropic description of yield loci - often based on the Hill-criterion - is consid-
ered important (see Fig 4.2(a)), which makes it necessary to use different constitu-
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Fig. 4.2 Process chain modeling: Principle work- and data-flow.

tive models for both parts of the process chain. A damage model suitable to be used
for both disciplines therefore has to be able to correctly predict damage regardless
of the details of the constitutive model formulation.

4.3.1 The Barlat Constitutive Model for Forming Simulations

The constitutive model used in the actual approach for the forming simulation is
the anisotropic yield locus by Barlat, Lege and Brem 1991 [4], which is used to
allow for a consideration of anisotropic yield loci in crashworthiness calculations
also. The model is based on the assumption of isochoric plastic behaviour, thus by
definition yielding a volumetric strain rate ε̇ pl

p equal to zero.

For the plane stress case (implemented in LS-DYNA as Mat 036), the yield func-
tion is defined as

Φ = a |K1 +K2|M +a |K1 −K2|M + c |2K2|M = 2σM
Y (4.1)

with

K1 = σx+hσy
2

K2 =

√(
σx−hσy

2

)2
+ p2τ2

xy

(4.2)

Here, σy is the actual yield stress; a, c, h and p are anisotropy parameters usually
calculated from planar r-values.
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4.3.2 Constitutive Models for Crashworthiness Applications

The Gurson-model with extension by Tvergaard and Needleman [2] is based on
a micromechanical model describing growth and nucleation of spheroid voids in
rigid-perfectly plastic material. It offers a complete description of ductile material
behaviour, including softening and failure. The yield function is dependent on hy-
drostatic pressure and the effective void volume fraction f :

Φ =
q2

σ2
M

+2q1 f ∗ cosh

(
−3q2 p
2σM

)
−1− (q1 f ∗)2 = 0 (4.3)

With
σM: actual flow stress in matrix material
p: hydrostatic pressure
q: equivalent (von Mises) stress
f ∗: effective void volume fraction

Damage evolution is defined in a cumulative way:

Δ f = (1− f )Δε pl
p︸ ︷︷ ︸

void growth

+ AΔε pl
M︸ ︷︷ ︸

void nucleation

(4.4)

with

A =
fN

sN
√

2π
e
− 1

2

(
ε pl
M −εN

sN
√

2π

)2

(4.5)

As can be seen from equation 4.4, damage evolution consists of void growth due
to volumetric plastic straining, and the nucleation of voids due to deviatoric plastic
straining. Usually, void growth is considered the dominating mechanism of material
deterioration under tensile loading. This implies the volumetric part of the plastic
strain rate ε̇ pl

p being different from zero as long as the void volume fraction f –
and therefore the damage – is growing. This will happen under arbitrary loading
conditions of tensile nature, i.e. positive mean stress. Although based on the von
Mises plastic potential, the Gurson model violates by its definition the assumption
of isochoric plastic flow, which is common in classical plasticity theory. In terms of
practical use, this is shown by a plastic Poisson’s ratio being different from 0.5.

νp = −εp,yy

εp,xx
(4.6)

Hence, the volume increase during loading is caused by a growing void volume
fraction f .
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4.3.3 A Hybrid Approach to Estimate the Void Volume Fraction in
Forming Simulations

As mentioned above, the GTN model is constructed by two internal variables:
namely the equivalent plastics strain and the void volume fraction f . While the plas-
tic stain is a common history variable also for standard forming constitutive models,
the void volume fraction is specific to the GTN model. Hence, when the GTN model
shall be applied in combination with a forming simulation, the void volume fraction
f is needed for initialization. One approach to gain this necessary parameter is to use
the evolution equations of the GTN model hybridly during the forming simulation
to estimate the void volume fraction (see Fig 4.3).

Fig. 4.3 Combination of Gurson and Barlat models by the hybrid Gurson approach in forming
simulations.

The difference in volumetric plastic straining is the reason for the fact that the
Gurson model cannot be coupled to an isochoric material model by simply trans-
ferring the calculated stress and strain tensors. To calculate the corresponding pore
volume fraction from an isochoric constitutive model, the volumetric strain rate of
the Gurson model has to be estimated from the existing strain rate tensor. For this
purpose, the compatibility equation and the flow rule of the GTN model are used:

The associated flow rule

Δε p
i j = Δλ

∂Φ
∂σi j

(4.7)

is separated into a volumetric and deviatoric part

Δε p
kk = Δεp = Δλ ∂Φ∂ p

Δε p
eq = Δεq = Δλ ∂Φ∂q

}
Δεp

∂Φ
∂q

+Δεq
∂Φ
∂ p

= 0 (4.8)
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→ Δεp = −Δεq

∂Φ
∂ p
∂Φ
∂q

(4.9)

Employing the respective derivatives of the flow ruleΦ (σi j), and approximating
using a Taylor series expansion, leads to the following relation for the volumetric
strain increment as a function of the deviatoric strain increment:

Δεp = −Δεq
−3q2q1σM f ∗

2q
sinh

(
−3q2 p
2σM

)
(4.10)

By using this relation, the adjacent volumetric strain increment of the GTN model
can be estimated from an isochoric model like e.g. the Barlat model.

The differences in mechanical behaviour between the two models are yet not
cured. Since the GTN model would lead to a volume increase, which the Barlat
model does not, different strains will be computed during forming. This leads to
incorrect values of damage when compared to a pure GTN model, getting worse the
higher the void volume fraction, and therefore the change in volume is. This is a
principal problem of the two material models, which can be considered fundamen-
tally incompatible. A simulation using the GTN model, simply leads to different
results in terms of strains compared to e.g. the Barlat model.

To solve this problem, a correction term to the Gurson damage evolution is con-
sidered. Based on the known relation of two principal plastic strains, for incom-
pressible models like Barlat in uniaxial tension (−ε1 = 2ε2), and the relation for
arbitrary Poisson’s ratio (−νε1 = ε2), a correction term was derived:

Δ f = c

[
(1− f )Δεq

3q2q1σM f ∗

2q
sinh

(
−3q2η p

2σM

)
+AΔεq

]
(4.11)

with

c =
4

4+3q2
2 q1 f ∗η

dx (4.12)

The relation derived as equation 4.11 associates isochoric strain increments of
the Barlat model to an increment of void volume fraction of the Gurson model. For
the uniaxial tension case, the correction term is exact for the known appearance of
the strain rate tensors of both models. For different load cases such as equibiaxial
tension, this relation has to be set up separately, as no closed formulation of the
correction term for arbitrary values of triaxiality η can be found. As a workaround,
a correction factor S was introduced based on phenomenological findings. The cor-
rection term now reads as follows:

c =
4

4+q2
2q1 f ∗S

(4.13)
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Using simple numerical tests of characteristic load cases, a table of correction
factors S can be defined, to get a satisfactory fit of damage evolution for arbitrary
values of triaxiality η . While this approach is unusual from continuum mechanics
point of view, it has been implemented and tested with good results within a master
thesis supervised DYNAmore and Daimler. The interested reader is referred to [10].

4.3.4 A Generalized Scalar Damage Model for Forming and
Crashworthiness Simulations

In the following, the damage model GISSMO (Generalized Incremental Stress-State
dependent damage MOdel), which is currently under development at Daimler will
be presented. The main issues of the model are a combination of the proven fea-
tures of a failure description provided by damage models for crashworthiness cal-
culations, together with an incremental formulation for the description of material
instability and localization. Yet, a user-friendly and simplified input of material pa-
rameters is intended, which will be achieved by a phenomenological formulation of
ductile damage. Special attention is paid to considering the point of instability or
localization, as this is a central issue in forming simulations. For crashworthiness
simulations of ductile materials, the correct description of instability and localiza-
tion can also greatly influence computation results.

In general, it can be expected that stress states will usually not be the same in a
forming process compared to a following crash loading scenario. The model there-
fore includes not only the description of failure, but also functionality to provide an
incremental and therefore path-dependent treatment of instability. This is needed to
avoid a limitation of the traditional forming limit curve (FLC), which considers only
the final state of deformation at the end of a forming process, and therefore does not
take into account possible changes in strain path. Therefore the conventional FLC
can not be used for multi-stage deformation processes, as which the two steps –
forming and crash – of the sheet metal process chain can be considered.

In order to allow for the treatment of arbitrary strain paths in the prediction of lo-
calization and failure, incremental formulations were chosen for both. The concept
is to independently accumulate a measure for forming intensity F, and a measure for
damage D, respectively.

ΔD =
n
ε f

D

(
1−1/n

)

Δεv (4.14)

This equation represents a generalization of the well-known linear accumula-
tion rule for damage as proposed by Johnson and Cook [3]. In this equation, the
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exponent n allows for a nonlinear accumulation of damage until failure. This intro-
duces a possibility to fit the model to data of multi-stage material tests. The actual
equivalent plastic strain increment is denominated as Δ εv. The quantity ε f repre-
sents the triaxiality-dependent failure strain, which is used as a weighting function
in this relation. The input of this failure strain is realized as a load curve of failure
strain values vs. triaxiality, which allows for an arbitrary definition of triaxiality-
dependent failure strains. This is needed to ensure flexibility when used for a wide
range of different metallic materials.

As soon as the forming intensity measure F reaches unity, a coupling of accu-
mulated damage to the stress tensor using the effective stress concept proposed by
Lemaitre is initiated. When – as an input for the accumulation of forming intensity
F – a curve of triaxiality-dependent material instability is used this value represents
the onset of material instability and therefore the end of mesh-size convergence of
results.

Fig. 4.4 (a) Influence of the fading Exponent m. (b) Regularization of tensile test simulations with
different element sizes.

For the practical application of the model to finite element simulations with lim-
ited mesh sizes, this marks the beginning of the need for regularization of different
mesh sizes. For the GISSMO model, the regularization treatment is combined with
the damage model. The basic idea here is to regularize the amount of energy that is
dissipated in the process of crack development and propagation. For a finite element
model this results in a variation of the rate of stress reduction through element fade-
out. It is achieved through a modification of Lemaitre’s effective stress concept:
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σ∗ = σ
(

1−
(

D−Dcrit
1−Dcrit

)m)

f or D ≥ Dcrit

(4.15)

This introduces an exponent m, which governs the rate of fading stress and can
be defined depending on the actual element size.

4.4 Path-Dependent Localization

In the following methods of treating material instability or localized deformation as
applied in the GISSMO model (see section 4.3.4) will be described. The basic idea
is to determine the strains at the onset of localization from tests under constant stress
state (proportional loading). For example, tensile tests with various notch radii, shear
tests and biaxial tests can be used. The resulting forming limit curve is used as an
input for the aforementioned constitutive model. Furthermore the curve is used as
weighting function for the path-dependent accumulation of necking intensity up to
the expected point of instability.

In general, the localization behaviour of materials in numerical simulations de-
pends on yield locus and evolution of the yield stress. As a direct determination of
yield curves from specimen tests is not possible for the post-critical range of defor-
mation, stress extrapolation based on engineering assumptions (or models) is used.
Due to this, and as a cause of the inherent mesh-dependency of results in the post-
critical range, the used parameters of an extrapolation would determine the material
properties in the post-critical range, and lead to mesh-dependent results. Therefore,
a damage-based regularization for the post-critical range is proposed in the present
contribution. A more comprehensive description of localization issues can be found
in De Borst et al. [9].

A motivation for the treatment of instability is to determine the beginning of ma-
terial softening, which is used as a damage threshold for the coupling of damage
to the yield stress in crashworthiness applications. This will be described further in
section 6.

4.4.1 Stress and Strain Measures

The traditional way of treating possible instabilities in sheet metal forming pro-
cesses is the comparison of resulting strains in the final stage with a fixed curve of
principal strain values (Forming Limit Curve - FLC). It is well known that the form-
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ing limit curve does not take into account any changes in strain path as it considers
only the final stage of deformation.

A practical approach for a strain-path dependent forming limit determination was
made by Müschenborn and Sonne [5]. They proposed a transformation of the FLC
from principal strain (ε1, ε2)-space to a notation using the equivalent plastic strain
εv :

εv =
2√
3

√
ε2

1 + ε2
2 + ε1ε2 (4.16)

The idea in treating non-proportional strain paths was to consider the FLC curve
as the locus of equivalent strain to necking, depending on the respective strain state.
The usual notation for crashworthiness purposes is a characterization of load state
using the invariants of the stress tensor. This is sufficient for isotropic material mod-
els, since the invariant notation is independent of the respective material direction
considered.

For the plane stress case, which is a common assumption for sheet metal prob-
lems, strain increments can be directly related to stress values. Therefore, the strain-
based notation of the FLC can be transformed to a notation in invariants of the stress
tensor. In crashworthiness computations the notation using the stress triaxiality η is
common practice:

η =
σm

σv
(4.17)

with σm (mean stress) being the first invariant of stress tensor here given for plane
stress (σ3 = 0):

σm =
σ1 +σ2

3
= −p (4.18)

Furthermore σv is the equivalent or von Mises stress:

σv =
√
σ2

1 +σ2
2 −σ1σ2 (4.19)

Using these quantities, the FLD can be directly transformed to this notation. It
will be used in the following since the GISSMO model has been developed with
respect to these quantities. Both strain- and stress-based notations are equivalent for
the isotropic and plane stress case and proportional loading, therefore a determina-
tion of the necking locus could also be formulated in strain-based notation. Defining
the ratio of principal strain increments

ρ =
dε2

dε1
(4.20)

which is equal to the ratio of principal strains if proportional loading is assumed,
and the ratio of principal stresses
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α =
σ2

σ1
=

1+2ρ
2+ρ

(4.21)

allow the expression of the triaxiality ratio η as a function of the principal strain
ratio:

η =
α+1

3
√
α2 −α+1

(4.22)

This relation is only valid for plane stress, isotropy and proportional loading.
Similar transformations to a number of different notations can also be found in Bai
and Wierzbicki [6]. Figure 4.5 depicts a FLC in principal strain coordinates trans-
formed to the corresponding strain/triaxiality coordinates.

Fig. 4.5 FLC in principal strain coordinates and in strain/triaxiality coordinates.

The usual way would be to compare the actual value of accumulated equivalent
plastic strain to the limit value for a respective triaxiality. This corresponds to using
the principal strain notation and would inherently result in the same limitations as
there is no consideration of strain path changes.

4.4.2 Linear Accumulation of the Instability Criterion

The implementation in the GISSMO model uses therefore the transformed FLC
curve in coordinates of equivalent plastic strain and triaxiality as a weighting func-
tion for the accumulation of ’Forming Intensity’, which, in this context, rather is a
measure of the remaining formability. For this purpose the forming limit curve is
introduced to the linear incremental formulation that was proposed by Johnson and
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Cook [3] for the linear accumulation of damage to failure:

ΔF =
Δεv

εv,loc
(4.23)

Where εv,loc is the equivalent plastic strain to localization, defined as a function of
triaxiality η – see Figure 4.5. F is therefore accumulated linearly, while the function
of equivalent plastic strain to necking represents a triaxiality-dependent weighting
function. When F reaches unity, necking is expected to occur. Proportional loading
is included as special case and leads to a necking strain that is the same as predicted
by the standard FLC.

4.4.3 Nonlinear Accumulation of the Instability Criterion

Recent publications indicate a possible nonlinearity in the relation of damage and
equivalent plastic strain, even for proportional strain paths. Weck et al. [7] per-
formed measurements on a model material, that showed a rather exponential relation
between strain and damage in form of void growth. It seems a reasonable assumption
that the development of plastic strain up to necking also obeys a nonlinear relation,
yet no method that would allow for a direct measurement of this quantity is known
to the authors.

Despite this a nonlinear means of accumulation is introduced to the GISSMO
model, using the same relation as for the accumulation of ductile damage to failure.
An identification of parameters for this relation will hardly be possible from direct
tests, rather by means of reverse engineering simulations of multi-stage forming
processes. The introduction of an additional parameter n therefore allows to fit the
model to existing test data.

The linear accumulation (eqn. 4.23) is replaced by

ΔF =
n
εv,loc

F

(
1−1/n

)

Δεv (4.24)

introducing the accumulation exponent n ≥ 1. For n = 1, eqn. 4.24 reduces to
the linear form of eqn. 4.23. For proportional loading, or – in general – constant
values of εv,loc , eqn. 4.24 can be integrated to yield a relation between the ’forming
intensity’ F and the equivalent plastic strain:

F =
(
εv

εv,loc

)n

f or εv,loc = const. (4.25)
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For n = 1, eqn. 4.25 is a linear relation of current equivalent plastic strain and
equivalent plastic strain to failure as depicted in Figure 4.6.

Fig. 4.6 Nonlinear accumulation εv,loc = 0.68.

Using these relations, the forming intensity parameter F is accumulated the same
way as the damage parameter D. The difference is limited to the use of a different
weighting function, which is defined as a curve of limit strain depending on triax-
iality for F, whereas for the failure parameter D the fracture strain as a function of
triaxiality is input.

4.5 Post Critical Behaviour

The post-critical range of deformation usually is not of interest for forming simula-
tions, since the occurrence of instability or necking phenomena are already consid-
ered as failure due to the fact that a part showing these effects will not pass quality
assurance for production. However, for crashworthiness purposes it is important to
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capture the post-critical behaviour of a material, since a maximum in energy ab-
sorption can be achieved only through a complete use of material ductility. The
modelling of the post-critical behaviour of metals using the Finite Element Method
always introduces an undesired mesh-size dependency on results. As soon as the in-
stability develops, deformation reduces to a localized area and is no longer uniform.
From this point on, no mesh convergence can be achieved. Through discretisation,
an artificial length scale is introduced to the model, which will lead to unphysical
results if no countermeasures are taken.

For the correct description of post-critical behaviour different flow curves for
each mesh size considered would have to be used since the amount of energy that
has to be dissipated in post-critical regime strongly depends on the mesh size. In-
stead of using this rather impractical approach the mesh-size regularization is re-
alized through the damage formulation. Energy regularization is done through the
definition of a mesh-size dependent failure strain and the coupling of damage to
the stress tensor in post-critical deformation. The GISSMO model uses the effective
stress concept which was proposed by Lemaitre [8].

4.5.1 Damage-Dependent Yield Stress

As was proposed by Lemaitre [8] the damage and stress tensor are related according
to the effective stress concept:

σ∗ = σ (1−D) (4.26)

In combination with the treatment of material instability as described above a
damage threshold can be defined. As the damage parameter D reaches the damage
threshold damage and flow stress will be coupled. The current implementation al-
lows for to either entering a damage threshold as a fixed input parameter or for using
the damage value corresponding to the instability point detected as described above.
Either way as soon as the post-critical range of deformation is reached a value of
critical damage Dcrit is determined and used for the calculation of the effective stress
tensor:

σ∗ = σ
(

1−
(

D−Dcrit
1−Dcrit

)m)

f or D ≥ Dcrit

(4.27)

Here a fading exponent m is introduced which will be further described below.
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4.5.2 Energy Dissipation and Fadeout

In order to model the physical phenomena of failure, which include the formation of
voids and micro-cracks, formation of a macroscopic crack, and crack propagation
up to complete failure, it is necessary to take into account the amount of energy that
is dissipated throughout the process. Also, for numerical reasons, it is not of help
for model stability to simply delete elements which are still holding considerable
amounts of stress.

Fig. 4.7 Influence of the fading Exponent m.

The strategy followed in the GISSMO model is the definition of an element-size
dependent fading exponent m, see equation (4.27). Using this coefficient, one can
directly influence the amount of energy that is dissipated during element fade-out.
In Figure 4.7 the effect of different values for m are shown by the area below the
true stress-true strain curve.

This allows for a regularization not only of fracture strains, but also of the energy
consumed during the post-critical deformation. Using this approach one can achieve
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a reasonably good regularization of the resulting engineering stress-engineering
strain curves in tensile tests with different mesh sizes, see figures 4.8 and 4.9.

Fig. 4.8 Tensile test specimen modelled with different element sizes.

4.6 Application of a Demonstrator Part

As a demonstrator part the drawing process of a cross-die specimen is used. It pro-
vides a wide range of stress states during loading which in turn allows the control
of failure predictions in wide domain that shows certain stress states. The following
picture shows the computation results using artificial material parameters of dual
phase steel:

In these regions, the coupling of damage and stress tensor according to equation
4.27 is used and localization develops. This leads eventually to fracture and rupture
at a drawing depth of 50mm as depicted in Figure 4.11.
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Fig. 4.9 Simulations of tensile tests using different mesh sizes compared to experimental curve.

The regions at the edge of the specimen at which the value of the damage pa-
rameter D are close to unity can be seen. The first failed elements are deleted at the
front of the specimen.

4.7 Conclusions

In the present contribution the latest work on closing the constitutive gap between
sheet metal forming simulations and crashworthiness have been shown. Clearly,
there is much more work on the way in academia, at research institutes and other
privately owned companies than shown in this paper. However, the main challenge
of any model that may be applied successfully will be the ease of use and the com-
patibility with existing models. For many years companies spend a lot of money to
calibrate material parameters of certain plasticity models by an enormous amount
of test data – this holds for the forming as well as fro the crashworthiness world.
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Fig. 4.10 Contour plot showing regions with beginning localisation (F = 1 at a drawing depth of
43mm.

Any new model must integrate this past efforts into its approach. Otherwise it will
not be used simply for economical reasons.

In the present work a hybrid model has been discussed. Here the necessary data
to initialize the Gurson, Tvergaard & Needleman models used in crashworthiness
applications is gained by a damage formulation that mimics the evolution law of
the GTN model within the forming simulation framework. While this idea is gener-
ally working, it has to be calibrated for each constitutive model that is to be used.
So beside its applicability it might be too complicated to be implemented for every
constitutive model in commercial finite element codes.

Alternatively a newly developed damage mode has been introduced. The present
state of the GISSMO damage model as described above shows some promising
potential when used for the simulation of tensile, shear and biaxial test specimen.
Though phenomenologically based it introduces a number of features that might be
suited to describe the physics of ductile damage and failure in a variety of stress
states and for different materials. Yet, limitations in predictive performance result
not only from deficiencies in material modelling, but also from coarse discretization
especially in crashworthiness simulations. Further research has to be done to take
modelling problems resulting from limited mesh sizes into account. Further work on
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Fig. 4.11 Contour plot of damage D at the moment of crack initiation (Arrows). Drawing depth is
50mm.

the model is needed in order to extend the functionality, including a visco-plastic for-
mulation that allows for a consideration of strain-rate effects on material behaviour.
Further investigations and comparison with results from deep-drawn parts will have
to be conducted to proof the practical relevance of the methods described above.

Depending on the materials, a greater number of different specimen tests will be
needed to identify the parameters for the damage model. Methods of numerical op-
timization will have to be considered in order to allow for an effective preparation
of material cards.
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Chapter 5
Cohesive Zone Modeling for Adhesives

Matthias Nossek and Stephan Marzi

Abstract Adhesives are very widely used in industry. In each application field, the
adhesive that is used must fulfill specific requirements. Adhesive types can be clas-
sified for instance by their (thermo-) mechanical properties, their machining or their
curing conditions. This paper describes, by way of example, the characterization
criteria for structural and flexible adhesives with respect to differences in their me-
chanical properties under various test conditions such as loading rate or environ-
mental temperature.

For further increased industrial application of adhesives, for example to improve
the crash performance of cars, the ability to predict the mechanical behavior by nu-
merical simulation is required. Cohesive Zone Models (CZMs) are well suited for
modeling adhesives. In this paper a tri-linear, strain-rate dependent CZM is pre-
sented. This model is compared to the bi-linear, strain-rate independent model im-
plemented in ABAQUSTM.

The parameters of these models are determined by direct testing of tensile bulk,
tapered double cantilever beam, lap-shear and T-peel specimens. The model vali-
dation was carried out by comparing experiment results and simulations for a U-
shaped specimen under different loading velocities. The application of these CZMs
in offset crash test simulations is presented and compared to experimental data.
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5.1 Introduction

The increasing use of bonded joints in the automotive industry requires the devel-
opment of simulation tools, which are able to predict the mechanical behavior from
initial elasticity up to failure. Typical adhesives used in car structures may differ in
their mechanical properties as they have to fulfill various conditions depending on
their particular function in the car structure.

The choice of the proper adhesive depends on various boundary conditions. For
example, structural adhesives possess high stiffness and show elastic-plastic strain-
rate dependent behavior. These adhesives are commonly applied in thin bond lines
with an adhesive layer thickness below half a millimeter. In contrast, flexible adhe-
sives may be used to fill larger gaps, where layer thicknesses of a few millimeters
occur. Flexible adhesives can take high elastic strains up to several hundred percent,
while their stiffness does not exceed values above a few MPa. Section 5.2 outlines
the characterization procedure for two typical adhesives: the structural adhesive A
and the flexible adhesive B. For the determination of material parameters, the fol-
lowing test types will be presented: tensile bulk, tapered double cantilever beam,
lap-shear and T-peel tests. Effects of rate-dependency are considered for the struc-
tural adhesive, while the flexible adhesive is investigated at different environmental
temperatures.

Cohesive zone models can be successfully used to model the fracture behavior
of a bonded joint in a crash simulation. However, models available in commercial
Finite-Element codes do not currently consider rate-dependencies which are ob-
served in experimental results. Therefore a tri-linear, rate-dependent cohesive zone
model is proposed in section 5.3. The model is applied for thin bond lines and the
structural adhesive A.

The validation of the new model is presented in section 5.4 for a U-shaped speci-
men. The numerical results are compared to the experiments at different loading ve-
locities. Furthermore, the proposed rate-dependent, tri-linear cohesive zone model
is compared to the bi-linear formulation.

Finally, section 5.5 presents an application in a front car module. An offset crash
test of the module is simulated using both the bi-linear and the tri-linear cohesive
zone model and the results are compared with experimental observations.

5.2 Characterization Procedure

This chapter shows the mechanical characterization of two adhesives: the struc-
tural adhesive A and the flexible adhesive B. Corresponding to their field of ap-
plication, the structural adhesive A is investigated for thin adhesives layers, tadh =
0.2− 0.3mm, while the flexible adhesive B is analyzed for applications consisting
of thick adhesive layers, tadh = 5mm. The characterization procedure used to iden-
tify the mechanical properties presented here can be separated into three groups
of tests: bulk tests investigate the general mechanical properties of the adhesive,
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coupon tests of adhesive joints consider the interaction with the adherend materials
and fracture mechanical tests give information about the energy dissipated when a
crack propagates through the adhesive layer. A typical bulk specimen which is used
to determine the stiffness, Poisson’s ratio, fracture strain and elastic-plastic behav-
ior of a material is the tensile bulk specimen, which is standardized in EN ISO 527.
The experimental results show significant differences in the mechanical behavior
between the structural and flexible adhesive (section 5.2.1). Hence, the adhesives
can first be classified by tensile bulk tests.

Besides the characterization of the pure bulk properties, the failure behavior of a
bonded joint is of prime interest in a crash case. Coupon tests consider the influence
of the adherends, the surface pretreatment and other manufacturing parameters on
the mechanical failure behavior of the joint, as found in a real automotive structure.
Since the loading of an adhesive joint can in general be separated into peel and
shear, T-Peel tests characterize the peel behavior, while lap-shear samples are used
to analyze the shear behavior of the joint (section 5.2.2).

The crack propagation inside the adhesive layer can be described by the critical
energy release rate, which is measured in fracture mechanical tests for specific crack
modes. For Mode-I this can be done with the (tapered) double cantilever beam test
and for Mode-II with, for example, the end-notched flexure test or the end-loaded
shear joint. Tapered double cantilever beam tests were carried out for the adhesive
A and the results are given in section 5.2.3.

5.2.1 Bulk Tensile Tests

Fig. 5.1 Adhesive A: Stress-strain curves,
strain rate ε̇ = 8.35s−1.

Fig. 5.2 Adhesive B: Stress-strain curves,
strain rate ε̇ = 1.67s−1.

Figures 5.1 and 5.2 show strain-stress relationships for adhesive A and adhe-
sive B obtained in tensile bulk tests under quasi-static loading conditions. The dif-
ferences in the stress and strain behavior between the adhesives are clearly visi-
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ble. Adhesive A behaves like a typical elastic-plastic material, with a maximum
strain at failure below 15% and a yield stress above 40MPa. The flexible adhesive
B takes large elastic strains, εmax ≈ 250%, with low maximum stresses at failure,
σmax < 4MPa.

5.2.2 Coupon Tests

Compared to bulk tests, specimen types such as T-Peel (Fig. 5.3) and lap-shear (Fig.
5.4) are closer to the application in automotive structures because joints with the
adherend materials from the real structure are investigated. In T-Peel tests, the mea-
sured force increases until a peak load is reached and the adhesive layer starts to
fail. During the failure, the force reaches some plateau value. Both peak and plateau
load can be taken into account for characterization of the adhesive joint. Evaluating
lap-shear tests, the maximum force which is reached is of greatest interest. After
this maximum force is reached, the failure of the joint usually occurs quite fast,
depending on the overlap length of the specimen.

[mm]

Fig. 5.3 Dimensions of a T-Peel adherend (half
a specimen).

[mm]

Fig. 5.4 Dimensions of the single lap-shear
specimen.

For the adhesive A, T-Peel tests were carried out at two velocities, vtest =
0.033mm/s and vtest = 2.5mm/s, while for the lap-shear tests the test velocities
vtest = 0.083mm/s and vtest = 7.0mm/s were chosen. The coupon specimens fab-
ricated with the flexible adhesive B were tested in a rotary impact device to obtain
results at high deformation rates. The samples were conditioned at three different
temperatures (T = −30◦C,23◦C and 80◦C).

In the T-Peel tests, the data measured show a significant increase in the peel and
the plateau force with increasing test velocity (Fig. 5.5). An increasing test velocity
in lap-shear tests causes an increase in the obtained nominal shear strength (Fig.
5.6). However, the stiffness of both investigated specimen types does not depend on
the test velocity.

Figures 5.7 and 5.8 show the results of the T-Peel and lap-shear tests with the ad-
hesive B. It can be seen that the specimens conditioned at −30◦C do not take large
deformations. Comparing the samples conditioned at 23◦C and 80◦C, no differences
in the shape of the obtained results can be detected. The adhesive was applied on
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Fig. 5.5 Adhesive A: T-Peel test results.
Fig. 5.6 Adhesive A: Single lap-shear test re-
sults.

Fig. 5.7 Adhesive B: Results of dynamic T-
Peel tests at different temperatures (vtest =
5600mm/s.)

Fig. 5.8 Adhesive B: Results of dynamic sin-
gle lap-shear tests at different temperatures
(vtest = 5600mm/s.)

varnished adherend surfaces. When testing specimens conditioned at 80◦C, the fail-
ure occurs between the varnish and the adherend. Thus, an earlier failure is detected
under hot conditions, but this failure is not caused by the adhesive properties.

5.2.3 Fracture Mechanical Tests

The critical energy release rate under Mode I loading, GIC, is measured with a Ta-
pered Double Cantilever Beam (TDCB) specimen (Fig. 5.9). The adherends consist
of steel of width w = 5mm.

The specimen (Fig. 5.9) is loaded until a crack starts to propagate through the
adhesive layer. Then, this crack propagation is stopped by unloading the specimen
and the crack area is measured on the fracture surface of the specimen after the test.
GIC is found by correlation of this measured crack area with the integrated force
displacement curve (Fig. 5.10) as proposed in [1]. For the adhesive A, GIC is some-
what insensitive to the load rate, GIC = 5.6± 0.5N/mm for quasi-static conditions
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Fig. 5.9 Dimensions of TDCB specimen.
Fig. 5.10 Typical force-displacement curve
obtained in a TDCB test.

and GIC = 5.0± 0.3N/mm at fast test velocities. The evaluation of GIC according
to [1] assumes that the amount of energy additionally dissipated to form a plastic
region at the crack tip prior to crack propagation is negligibly small. New inves-
tigations of Marzi et al. [2] found this assumption to be flawed when referring to
the actual TDCB specimen dimensions. According to their results, the correct GIC

seems to be smaller, approx. 60−80% of the value given here.
The end-notched flexure (ENF) specimen is widely used to measure the criti-

cal energy release rate GIIC under Mode-II loading. However, when investigating
high strength, structural adhesives such as adhesive A, this specimen type seems to
be inappropriate for several reasons. The adherends must deform purely elastically
in an ENF test in order to evaluate GIIC by an analytical solution. This theoreti-
cal requirement will not be satisfied when the investigated adhesives possess large
fracture toughness, as expected for crash-optimized, structural adhesives. There are
further disadvantages from a practical point of view. Ensuring a proper, constant ad-
hesive thickness over the whole adhesive layer is quite difficult because of the large
specimen dimensions, and the large specimen mass will cause testing problems at
higher velocities. Hence, Marzi et al. [3] propose an end-loaded shear joint (ELSJ)
specimen, which possesses many benefits compared to standard tests according to
the state of the art. With this specimen, GIIC can also be determined for high strength
adhesives under both quasi-static and dynamic test conditions.

5.3 Cohesive Zone Model

From a macroscopic point of view the cohesive zone approach is well suited for
modeling cohesive debonding. Finite element formulations based on this approach
combine fracture mechanics with continuum damage formulations. In fracture me-
chanics, generally speaking, the initiation and growth of cracks is analyzed. Three
types of crack modes are distinguished as shown on the right side of fig. 5.11.
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cohesive traction

cohesive zone crack tip

separation

Fig. 5.11 Cohesive debonding and fracture mechanical crack modes.

In the cohesive zone model it is assumed that during crack growth a fracture pro-
cess zone exists ahead of the crack tip. In that zone, micro-scale cracks or voids
initiate, grow, and eventually coalesce with the main crack. All these microscopic
processes dissipate energy. From a macroscopic point of view, this amount of en-
ergy is necessary to create new material surfaces. In the cohesive zone approach this
energy dissipation is modeled using a relationship between cohesive traction and
separation (see fig. 5.11, left). The integral of the cohesive traction over the separa-
tion until its final value δ f determines the fracture energy or critical energy release
rate (see eq. 5.1). An overview of various traction-separation relationships used in
specific cohesive zone models can be found in [4].

GC =
∫ δ f

0
σ dδ (5.1)

Cohesive zone models are suitable not only for crack modeling, but also for mod-
eling the behavior of adhesive layers. In contrast to standard cohesive zone model-
ing, the approach has to be extended for adhesive modeling in order to take into
account adhesive characteristics such as plasticity or strain-rate dependency. Such
an extension is presented in the following sections. As a basis, the cohesive zone
model of Camanho and Davila [5] implemented into AbaqusTM is used. Camanho
and Davila use a bi-linear constitutive relationship between separation and cohesive
traction. The interface is linear elastic until failure initiation, followed by a linear
degradation for increasing separation (see Fig. 5.12). For adhesive modeling it is
not necessary to distinguish between Mode-II and Mode-III. For every crack mode,
three material parameters are used: stiffness (Ki = E/t), ultimate strength (σ0) and
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critical energy release rate (GC). Due to the fact that negative Mode-I separation
cannot cause debonding, the constitutive relationship for this type of load is purely
elastic.
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Fig. 5.12 Bi-linear constitutive relationship for crack Mode I (left) and II (right).

The points a-e in fig. 5.12 mark different states of the cohesive debonding pro-
cess, from initially elastic (a) until complete failure (e). The closing and reopening of
cracks before failure is modeled using cohesive tractions on line back to the origin.
In the case of Mixed-Mode loading (consisting of contributions from Mode-I and
Mode-II), interaction criteria for both damage initiation and crack-propagation are
used. For the determination of Mixed-Mode states the quantities δm (Mixed-Mode
separation) and β (Mixed-Mode ratio) of eq. 5.2 are used.

δm =
√
{δI}2 +δ 2

II , 0 ≤ β = δII
{δI} < ∞ (5.2)

β = 0 represents pure Mode-I loading, β = ∞ is pure Mode-II. In eq. 5.2, as in
the following, the curly brackets denote Macaulay brackets, which take into account
only positive values. For damage initiation, a normalized quadratic stress failure
criterion (eq. 5.3) is used. σ0

I and σ0
II are material strength parameters for Mode-I

and Mode-II respectively.

(
{σI}
σ0

I

)2

+
(
σII

σ0
II

)2

= 1 → δ 0
m =

⎧
⎨
⎩
δ 0

I δ 0
II

√
1+β 2

(δ 0
I )2+(βδ 0

II)
2 δ 0

I > 0

δ 0
II δ 0

I ≤ 0
(5.3)

For Mode-I, due to the Macaulay brackets, traction debonding under pressure
does not occur. Based on the normalized quadratic stress interaction criterion and
the initial linear elasticity, a Mixed-Mode damage initiation separation value δ 0

m can
be calculated for the current Mixed-Mode state.

After damage initiation the interaction during crack opening is modeled with
the so-called Benzeggagh-Kenane (B-K) criterion [6] (eq. 5.4). The Mixed-Mode
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energy release rate is always bounded by the Mode-I and Mode-II critical energy
release rate. In eq. 5.4, η is the Mixed-Mode interaction coefficient.

GIC +(GIIC −GIC)
(

GIIC

GIC +GIIC

)η
= GC (5.4)

Based on eq. 5.4 and the bi-linear constitutive relationship, the final Mixed-Mode
separation can be calculated from eq. 5.5.

δ f
m =

{
2(1+β 2)

δ 0
m(KI+β 2KII)

[
GIC +(GIIC −GIC)

(
β 2KII

KI+β 2KII

)η]
δI > 0

δ f
II δI ≤ 0

(5.5)

In continuum mechanical modelling, the isotropic damage model of eq. 5.6 is
used.

σi =
[
(1−d)+δiI

{−δ3}
δ3

d

]
Kiδi ,i = I, II (5.6)

The first summand within the square brackets controls the influence of plasticity
and damage on the traction value. With the second summand this influence on the
Mode-I traction is removed for negative Mode-I separation. Therefore the Macaulay
bracket definition and the Kronecker-delta is used. d is the isotropic damage value.
Thermodynamic consistency is assured by fulfilling eq. 5.7 which demands a non-
decreasing damage value.

ḋ ≥ 0 (5.7)

For the bi-linear constitutive relationship and a current Mixed-Mode state, a trial
damage value d∗ is calculated from 5.8. If the trial damage value is higher than the
current damage, the current damage is updated.

d∗ =

⎧
⎪⎪⎨
⎪⎪⎩

0 δ 0
m > δm

δ f
m(δm−δ 0

m)
δm(δ f

m−δ 0
m)

δ 0
m ≤ δm < δ f

m

1 δ f
m ≥ δm

(5.8)

With the bi-linear constitutive relationship, adhesive characteristics such as plas-
ticity or strain-rate dependency cannot be adequately described. One possibility for
phenomenological modeling of the plastic adhesive behavior is to use a tri-linear
traction-separation relationship. In this simple manner, no irreversible strain com-
ponents are taken into account, only their effects on the traction are modeled. Just
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as in the bi-linear constitutive relationship, unloading and reloading processes are
described by a line to the origin in the traction-separation diagram (Fig. 5.13).
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Fig. 5.13 Tri-linear constitutive traction-separation relationship.

For modeling the effects of plasticity within the tri-linear constitutive relation-
ship, two additional parameters are used, f K and f P. Here, both are isotropic model
parameters and cannot be chosen independently for every crack mode. Due to its re-
lationship to the other material parameters (K , σ0 and GC), the size of the plateau
region can strongly differ from Mode-I to Mode-II. In the plateau region the slope
can be controlled by f K , for example using values greater than 0 for increasing
stress under plastic deformation (hardening). The end of the plateau region is deter-
mined by f P. It defines the fraction of stored energy of the current separation state
in relation to the critical energy release rate GC. The strain-rate dependence on ul-
timate strength is modeled by a logarithmic dependency (see eq. 5.9), which is also
used in other models, for example the Johnson-Cook model [7].

σ0(ε̇) = σqs
0

(
1+C ln

ε̇
ε̇0

)
(5.9)

The equations necessary to determine the trial damage values for the isotropic
damage model in eq. 5.6 and the tri-linear constitutive relationship are given in eq.
5.10.

d∗ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 δm ≤ δ 0
m

(δm−δ 0
m)(1− f K)
δm

δ 0
m < δm ≤ δ p

m

δ f
m(δm−δ p

m)+(δ p
m−δ 0

m)(δ f
m−δm)(1− f K)

δm(δ f
m−δ p

m)
δ p

m < δm < δ f
m

1 δ f
m ≥ δm

(5.10)

For the tri-linear constitutive relationship, fig. 5.14 shows possible states of criti-
cal traction as a limit surface over a plane of Mode-I and Mode-II separation. Along
the axes, the constitutive behavior is pure Mode-I or Mode-II. In negative Mode-
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I direction the limit surface extends to infinity; the response in this region is pure
Mode-II.

Mode-II Mode-I� II
�

I

�
m

f

�
m

�
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Fig. 5.14 Limit surface as traction over separation.

5.4 Validation

With respect to the application in full car simulations, the cohesive zone model is
validated by a test case of intermediate complexity. The experimental setup and the
numerical model are shown in fig. 5.15. In contrast to the experiments within the
characterization procedure, in this test case, the states of Mixed-Mode and strain-
rate in the adhesive change strongly.

The test specimen consists of a steel sheet bonded on a U-shaped steel frame. The
steel sheet is loaded quasi-statically and dynamically by a hemispheric impactor.
The displacement and force of the impactor were recorded. Furthermore, the be-
havior of the adhesive was observed by two high-speed cameras. One observed the
adhesive behavior on the open front side of the cantilever, the other on the specimen
side. The films are used for determining crack initiation and crack speed.

The simulations were performed with ABAQUSTM. Two different mesh sizes
were investigated: an element length of 4mm and a finer mesh of 2mm element
length. The U-shaped steel frame is modeled with reduced integrated solid elements
(C3D8R), its support (see fig. 5.15, right) with shells (S4R). The material behav-
ior of both these components is modeled as linear elastic. Reduced integrated shell
elements (S4R) are also used for the steel sheet. The material of the steel sheet
is modeled as elastic-plastic, strain-rate dependent and temperature dependent. For
the adhesive, three-dimensional cohesive zone elements (COH3D8) are used. The
constitutive adhesive behavior is modeled in two ways: Firstly with the standard bi-
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Fig. 5.15 Validation with U-shaped specimen: experimental setup and numerical model.

linear and strain-rate independent AbaqusTM model and secondly with the tri-linear
strain-rate dependent model using a user subroutine. For the different loading veloci-
ties, independent material parameter sets were identified for the standard, strain-rate
independent model from the characterization procedure.

Fig. 5.16 Deformation of U-shaped specimen: final experimental state (left) and state during sim-
ulation.

Both experiments and simulations show crack initiation in the adhesive on the
inner side of the open front of the specimen. The crack then grows slowly to the
outer side. After full cracking over the cantilever width, the steel sheet is peeled from
the frame and the impact force is considerably reduced. The final deformation state
for an experiment is shown in fig. 5.16 (left). The right side of fig. 5.16 shows an
intermediate state of deformation in the simulation. Due to the dynamic deformation
process, the Mixed-Mode states and the strain-rate change strongly. The Mixed-
Mode state is dominated by Mode-I on the inner side of the cantilever and changes
to nearly pure Mode-II on the outer side.
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Fig. 5.17 Force-displacement diagram for experiments and simulations.

The experiments show loading-dependent maxima in the force (see fig. 5.17).
It must be pointed out that at the higher loading speed there was a slight move-
ment between frame and fixture in the experiments, resulting in a lower slope in the
force-displacement diagram. The loading-speed dependent peak forces are repli-
cated using with the tri-linear strain-rate dependent cohesive zone model. With the
standard bi-linear, strain-rate independent cohesive zone model, the force maxima
in the dynamic case are also predicted well, but for the quasi-static loading speed
(using the quasi-static parameter set) the simulation underestimates the peak force.
The reasons for this can be found in the strong local increase in the strain-rate in
the adhesive just ahead of the crack tip. The resulting increase in adhesive strength
cannot be modeled using the strain-rate independent model.

The global response of the specimen is quite independent of the mesh in the
investigated range. Here, in general, we observed little mesh dependence in simula-
tions with cohesive elements as long as the elements were smaller than the size of
the damage process zone.

5.5 Application

The cohesive zone models presented here are used in actual crash simulation. Com-
pared to real crash tests, the ability to make prognoses and the influence of the
adhesive model are analyzed. This was done for a pre-development test car having -
compared to a series production car - a high number of bond lines (shown in red in



102 Matthias Nossek and Stephan Marzi

fig. 5.18, right) and a reduced number of spot welds1. Due to this reduction, the ad-
hesive bond lines play a more important role in assuring the cohesion of assemblies.
The test case is an offset crash, as shown in fig. 5.18.

Fig. 5.18 Offset crash test of test car; Right: bond lines in test car (courtesy of BMW Group).

In the crash test, the force on the barrier and the acceleration of several points
within the test car were recorded. In the simulations with ABAQUSTM, cohesive
elements are used for the adhesive. Both the strain-rate independent cohesive zone
model and the tri-linear strain-rate dependent cohesive zone model are used. Due to
inaccuracies of the geometric model, the geometry of the cohesive layer cannot be
taken from the geometric model. Instead, constant values for the adhesive thickness
and width are used. This is in contrast to real production processes where, due to
the joining process, small variations in thickness and width cannot be avoided. The
simulation predicts the experimental force on the barrier very well, both in charac-
teristics and maxima (see fig. 5.19, left). Comparison of the simulation results shows
that the differences in the cohesive zone model (bi-linear and tri-linear) only lead to
small differences in the full car test. This is evident for the force on the barrier as
well as for the acceleration of gauge points in the test car.

Keeping in mind that the adhesive bond lines are essential in this pre-development
test, these results show the applicability of the cohesive zone model in crash simu-
lations. It has to be pointed out that the element size used in such a simulation is 3
to 4mm, meaning that local deformations in flanges and the adhesive process zones
can only be modeled approximately. However, the model seems to be robust enough
to yield acceptable results in such cases as well. The small differences between the
results for the two models show furthermore that the global solution is not very sen-
sitive to details in the adhesive model. This is in contrast to the results obtained for
the U-shaped specimen and can be explained by the limited influence of the adhe-
sive on the global response of a full-size car. Whereas characterization tests or test

1 The test has been performed solely for validating the crash simulation software ABAQUSTM and
does not represent or suggest any actual BMW internal design criteria. The configuration tested
does not represent the series production status.
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Fig. 5.19 Offset crash test: force on the barrier (left) and x-acceleration of the gauge point in the
test car (courtesy of BMW Group).

cases like the U-shaped specimen are designed to be sensitive to the adhesive be-
havior, in large and more complex structures many other effects are also important
and good results will be obtained if the cohesive zone model describes key features
of the adhesive. This finding was also emphasized by a study on solution sensitivity
carried out at the BMW Group. It showed a higher dependency on numerical pa-
rameters such as the type of shell element formulations or on simplifications in the
geometrical modeling than on the details of the cohesive zone model, as long as two
basic parameters, the critical energy release rate and the failure stress, are preserved.

The simulations can be used for predicting the high-loaded regions in the bond
lines. This is shown in fig. 5.20. In this figure, intact elements are shown in green
whilst failed elements are shown in red. Once again, the simulation with the tri-
linear model produces similar results to the bi-linear model (not shown), with re-
spect to the behavior of the bond lines.

Fig. 5.20 Behavior of bond lines in a car offset crash1; Right: detailed view on the wheelhouse
and engine support (courtesy of BMW Group).
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5.6 Summary

Compared to conventional joining techniques, adhesive bonds provide many advan-
tages for industrial applications. The fields of applications range from structural
adhesive joints with a bond thickness below 0.5mm to flexible joints with a thick-
ness of a few millimeters. Differences in the mechanical behavior of these adhesive
classes were shown within the characterization. Bulk, coupon and fracture mechan-
ical tests were carried out to investigate the influence of loading-rate, temperature
or surface pretreatment on the test results. A new specimen type is described [3]
for evaluating the critical energy release rate, GIIC , under pure Mode-II loading of
high-strength, structural adhesives.

Special numerical models are required to represent an adhesive joint within a
crash simulation. The cohesive zone model is particularly well suited for modeling
adhesive joints in large structures, since it provides a compromise between numer-
ical accuracy and computational efficiency. However, as structural adhesives show
elastic-plastic behavior, standard bi-linear traction-separation relationships are in-
adequate in some cases. A cohesive zone model with a phenomenological, tri-linear
traction-separation law was presented. Additionally, the model contains strain-rate
effects at the traction level.

The new cohesive zone model was validated by experiments on a U-shaped spec-
imen, and the results were compared to results obtained with the bi-linear model. For
this kind of specimen, the influence of the type of adhesive model was particularly
evident from the results. Finally, both models were successfully applied in an offset
crash test. Due to the minor influence of the adhesive layer on the global response,
major differences do not arise. For this large structure with a high number of compo-
nents, good results were obtained with both cohesive zone models. For cases where
the behavior of the adhesive influences the global response more strongly, a detailed
description including the effects of strain-rate and plasticity is now available.
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bverbindungen des Fahrzeugbaus unter Crashbelastung. FOSTA-project P676, Düsseldorf.

2. Marzi S, Hesebeck O, Brede M, and Kleiner F (2009) A rate-dependent cohesive zone model
for adhesive layers loaded in mode I, J. Adh. Sc. Tech. 23:881–898

3. Marzi S, Hesebeck O, Brede M, and Kleiner F (2009) An end-loaded shear joint (ELSJ)
specimen to measure the critical energy release rate of tough, structural adhesives in mode II,
J. Adh. Sc. Tech., submitted for publication.

4. Alfano G (2006) On the influence of the shape of the interface law on the application of
cohesive zone models, CST, 66:723–730.



5 Cohesive Zone Modeling for Adhesives 105

5. Camanho PP and Davila CG (2002) Mixed-mode decohesion elements for the simulation of
delamination in composite materials, NASA TM-2002-211739.

6. Benzeggagh ML and Kenane M (1996) Measurement of mixed-mode delamination fracture
toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus,
CST 56:439–449.

7. Johnson GR and Cook WH (1983) A constitutive model and data for metals subjected to
large strains, high strain rates and high temperatures, Proceedings International Symposium
on Ballistics.



Chapter 6
Modeling the Plasticity of Various Material
Classes with a Single Quadratic Yield Function

Markus Wicklein

Abstract In this paper, a general quadratic yield function is discussed, which was
originally proposed by Chen et al for fiber-reinforced composites [1]. Its applica-
bility to plastically deformable foams, honeycombs, and CFRP (carbon fiberrein-
forced plastic) is shown. For isotropic elastic-plastic foams it is proven, that the el-
lipsoid model is a special case of Chen’s quadratic yield function, and the according
plasticity coefficients are determined analytically. The applicability to aluminum
honeycombs is demonstrated by simulation of 4-point bending tests of sandwich
structures. Both analytical and experimental procedures are utilized for the deriva-
tion of the plasticity coefficients of the honeycomb core. Hypervelocity impact tests
on CFRP and numerical simulations are presented as validation of the modeling
approach to this kind of material. Finally, suggestions are given for further develop-
ments of the plasticity model that could overcome existing limitations.

6.1 Introduction

Since Tresca’s pioneering work in the 19th century, the importance of plasticity the-
ory for understanding the deformation behavior of solid materials has continuously
grown. With the establishment of the finite-element method and its realization on
computer systems in the second half of the 20th century, plasticity modeling has
become a standard for engineers to evaluate structures under mechanical loading.
Today, the number of plasticity models available for constitutive modeling of mate-
rials under crash and impact is enormous and keeps increasing with new materials
being developed almost every day. Therefore, it is worthwhile to consider theoret-
ical yield functions, which offer general mathematical descriptions that allow to
model different materials or even different classes of materials only by changing the
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parameter sets. However, usually the number of material constants in a plasticity
model increases with increasing flexibility and generality. Before applying such a
model, all parameters must be determined – from theory, experiment, or numerical
simulations. Hence, the generality of the model has to be traded off against the effort
of parameter identification.

In this paper, a general quadratic yield function is discussed, which was originally
proposed by Chen et al for fiber-reinforced composites [1]. Its applicability to plas-
tically deformable foams, honeycombs, and CFRP (carbon fiber-reinforced plastic)
is shown. Each of these materials is heterogeneous – only on different scales. For
example, the cell size in a foam may be a few millimeters, while the diameter of
a fiber in a composite can be as small as a few micrometers. Nevertheless, these
materials can be considered as homogeneous continua if the spatial load distribu-
tion changes slowly, compared to the materials’ characteristic lengths. This is true
for the applications regarded in this paper. If this condition is not fulfilled, micro-
scopic and mesoscopic approaches are necessary. There are many publications on
such studies to be found.

Evaluating existing plasticity models, two important distinctions become obvi-
ous: the symmetry of the material (isotropic or anisotropic) and its plastic com-
pressibility (constant or non-constant volume plasticity). If we combine these two
criteria, a matrix of four different material classes can be established (Figure 6.1).

It is generally accepted that cast metals are isotropic and do not change their
volume under purely plastic deformation, i. e. if no microporosity exists. Constant
volume plasticity is also a good approximation for extruded metals and sheet met-
als. However, the material properties are anisotropic due to the extrusion or rolling
process. Many different manufacturing routes are available for metal foams. De-
pending on the quality of the process, anisotropies can be induced in the foam.
However, metal foams are usually considered as isotropic – especially, when com-
pared to honeycombs, where the mechanical properties in the out-of-plane direction
are radically different from those within the plane. Because of the cellular structure
of foams and honeycombs, volume changes are possible under plastic deformation
in contrast to non-porous metals.

In Figure 6.1 only one example is given for each of the four material classes.
However, there are many other materials that are actually included in each class.
Metallic materials were discussed above, but polymers can be considered as well.
Although the physical processes on the atomistic scale are completely different in
polymers compared to metals, the description of polymers through yield functions
can be of advantage for many engineering applications.
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Fig. 6.1 Classification of plastically deformable materials. Examples are given for each combina-
tion of isotropic/anisotropic behavior and constant/non-constant volume plasticity, respectively.

6.2 A Quadratic Yield Function

The yield function proposed by Chen et al [1] is quadratic in the components of
the stress tensor referring to the principal directions 1, 2, and 3 of an orthotropic
material:

f (σi j) = a11σ2
11 +a22σ2

22 +a33σ2
33+

+2a12σ11σ22 +2a23σ22σ33 +2a13σ11σ33+

+2a44σ2
23 +2a55σ2

31 +2a66σ2
12 = k

(6.1)

It is defined by ten material parameters. The nine plasticity coefficients a11, ...a66

determine the shape of the yield surface in stress space. Its size is given by the hard-
ening parameter k. The plasticity coefficients are assumed to be constant. Thus, by
changing the value of k, isotropic hardening or softening can be modeled.

With the assumption of an associated flow rule (dλ is a non-negative scalar factor
of proportionality)
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dε p
i j = dλ

∂ f
∂σi j

(6.2)

and insertion of the yield function (6.1), the increments of plastic strain can be
calculated:
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As we consider isotropic hardening, the hardening process can be described by a
single master curve using a function of the effective stress in terms of the effective
plastic strain. These values are given for uniaxial tensile loading in the 1-direction
of the material by

σ̄ ≡
√

3
2

f =

√
3a11

2
|σ11| (6.4)

and

ε̄ p =

√
2
3

∣∣ε p
11

∣∣ with ε p
11 = ε11 −

σ11

E11
, (6.5)

respectively. E11 is the corresponding Young’s modulus of the material in 1-direction.

Chen et al [1] stated that the plasticity coefficients of the yield function (6.1) can
be chosen in such a way that it reduces either to the criterion proposed by von Mises
[9] or by Hill [6]. The first two columns of table 6.1 show the coefficients for these
two plasticity models, which can be applied for example to cast metals and extruded
metals, respectively.

Table 6.1 Specification of plasticity parameters of the general yield function for various materials.

Cast metals Extruded metals Foamed metals Metallic CFRP
honeycombs

Ref. [9] Ref. [6] 6.3 Ref. [8] Ref. [10]

a11 2/3 a11 a11 1 0.025
a22 2/3 a22 a11 158 1
a33 2/3 a33 a11 158 0.660
a12 -1/3 a33 − (a11 +a22 +a33)/2 a11 −3/2 0 -0.129
a23 -1/3 a11 − (a11 +a22 +a33)/2 a11 −3/2 0 -0.473
a13 -1/3 a22 − (a11 +a22 +a33)/2 a11 −3/2 0 0
a44 1 a44 3/2 50 3.157
a55 1 a55 3/2 3.1 2.128
a66 1 a66 3/2 0.5 0.061
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Note that the hardening parameter k is not included in the table. It is treated as
a free variable in this paper. For the von Mises model, all plasticity coefficients are
quantitatively fixed, implying that the shape of the yield surface cannot be varied.
Nevertheless, its size changes with k, which can be related to a uniaxial yield stress.
As the von Mises criterion can be written as a function depending only on the second
invariant of the stress deviator tensor, it is an isotropic plasticity model. Its plastic
incompressibility can be shown by evaluating the plastic strain increments (6.3).
The relative plastic volume change during deformation is given by [2]:

dV
V

= dε p
ii (6.6)

Insertion of (6.3) into (6.6) yields

dV
V

= [(a11 +a12 +a13)σ11 +(a12 +a22 +a23)σ22 +(a13 +a23 +a33)σ33]2dλ
(6.7)

Using the plasticity coefficients of the von Mises model, the dilatation is zero for
any stress state, and constant volume plasticity is proven.

In the case of Hill (see table 6.1), six independent plasticity coefficients are avail-
able, i. e. a11, a22, a33, a44, a55, and a66. The coupling coefficients a12, a23, and a13

are functions of these. It is obvious that the Hill model is generally anisotropic. The
plastic incompressibility can be proven similarly as in von Mises’ case.

Fig. 6.2 Typical yield surfaces for the material classes defined in Fig. 1.1 in normal and shear
stress space, respectively. For non-constant volume plasticity, the yield surfaces in normal stress
space are closed.
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The parameter set for foams in table 6.1 will be discussed in detail in section 6.3.
The values for metallic honeycombs and CFRP were derived by Spinner and Wick-
lein [8] and Wicklein et al [10], respectively. Some of the results of those studies
will be outlined in sections 6.4 and 6.5.

The yield functions of the different material classes correspond to yield surfaces
in six-dimensional stress space, which are impossible to plot. Therefore, they are
visualized in Fig. 6.2 by separate surfaces in normal stress space (shear stresses set
to zero) and shear stress space (normal stresses set to zero). The von Mises yield
surface in normal stress space is the famous hollow cylinder with the hydrostatic
axis as center of its rotational symmetry. In shear stress space, we obtain the surface
of a sphere centered at the origin of the coordinate system. The anisotropy of Hill’s
theory results in deformations of the von Mises yield surfaces in the different mate-
rial directions.

6.3 Parameter Identification for Foams

The total elastic strain energy per unit volume W of a linear elastic, isotropic mate-
rial is given by [2] :

W =
1+ν

E
J2 +

1−2ν
6E

I2
1 (6.8)

Here, ν is the elastic Poisson number, E the Young’s modulus, J2 the second in-
variant of the stress deviator tensor, and I1 the first invariant of the stress tensor. The
first term is the distortional energy, while the second one describes the dilatational
energy. For the modeling of isotropic materials, the von Mises equivalent stress σvM

and the hydrostatic pressure p are more common quantities to be used than the in-
variants. They are defined as

σvM =
√

3J2 (6.9)

and

p =
I1

3
(6.10)

Thus, equation (6.8) becomes

W =
1+ν
3E

σ2
vM +

3−6ν
2E

p2 (6.11)

If we assume that, in an isotropic material, plastic deformations occur, when W
reaches a critical value, equation (6.11) can be interpreted as a yield function. And,
because it takes into account both the distortional and the dilatational energy, it is a
yield criterion for plastically compressible materials. Indeed, by rearranging (6.11),
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the ellipsoid model for elastic-plastic foams, of which different versions were re-
viewed by Hanssen et al [5], is found

(σvM

a

)2
+
( p

b

)2
= 1 (6.12)

with the two material constants a and b. Note that the von Mises model can be
derived likewise by neglecting the dilatational contribution. As Chen’s yield func-
tion (6.1) and the ellipsoid model (6.12) are both quadratic functions of the stresses,
it will be examined in the following whether or not the ellipsoid model is a special
case of the general yield function (6.1). If this applies, it will be possible to deter-
mine the plasticity coefficients ai j in terms of the material constants a and b. For
the purpose of comparison and as the general yield function is given in [stress2], we
rewrite (6.12):

σ2
vM +

(a
b

)2
p2 = a2 (6.13)

Using

σ2
vM =

1
2

[
(σ11 −σ22)

2 +(σ22 −σ33)
2 +(σ33 −σ11)

2
]
+3σ2

12 +3σ2
23 +3σ2

31

(6.14)
which is identical to

σ2
vM = σ2

11 +σ2
22 +σ2

33 −σ11σ22 −σ22σ33 −σ11σ33 +3σ2
12 +3σ2

23 +3σ2
31 (6.15)

and

p2 =
1
9

(
σ2

11 +σ2
22 +σ2

33 +2σ11σ22 +2σ22σ33 +2σ11σ33
)

(6.16)

the ellipsoid model becomes
(

1+ 1
9

(
a
b

)2
)
σ2

11 +
(

1+ 1
9

(
a
b

)2
)
σ2

22 +
(

1+ 1
9

(
a
b

)2
)
σ2

33+

+
(

2
9

(
a
b

)2 −1
)
σ11σ22 +

(
2
9

(
a
b

)2 −1
)
σ22σ33 +

(
2
9

(
a
b

)2 −1
)
σ11σ33+

+3σ2
23 +3σ2

31 +3σ2
12 = a2

(6.17)

A comparison of equations (6.17) and (6.1) shows that the ellipsoid model is
a special case of the general yield function. The relations between the plasticity
coefficients, the hardening parameter k, and the material constants a and b are:

a11 = a22 = a33 = 1+
( a

3b

)2
(6.18)

a12 = a23 = a13 =
( a

3b

)2
− 1

2
(6.19)
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a44 = a55 = a66 =
3
2

(6.20)

k = a2 (6.21)

Insertion of (6.18) into (6.19) yields

a12 = a11 −
3
2

(6.22)

as documented in table 6.1. Hence, when elastic-plastic foams are to be mod-
eled with the yield function (6.1), a11 and k are the only free parameters. While a
and b define the half axes of the ellipsoid (see Fig. 6.2, normal stress space), a11

and k determine its aspect ratio and size, respectively. The isotropy of the ellipsoid
model is self-evident, because the derivation was based on the energy W of isotropic
materials only. The relative plastic volume change (6.7) for this foam model is:

dV
V

= 6dλ (a11 −1)(σ11 +σ22 +σ33) = 18dλ (a11 −1)p (6.23)

As a and b are positive, a11 is greater than 1 (see equation (6.18). Therefore,
the plastic volume change is unequal to zero, if the hydrostatic pressure and dλ are
unequal to zero.

6.4 Application to Honeycombs

The most complex material class of those presented in Fig. 6.1 is the combination
of anisotropy and non-constant volume plasticity. Aluminum honeycombs are ex-
amples of this class. They are being used as core materials in sandwich structures,
where high stiffness and low weight are necessary, e. g. in the aerospace industry.
On the other hand, their plastic compressibility makes them attractive for applica-
tions where energy absorption is required. In the Apollo lunar module, for example,
aluminum honeycombs were already used in the primary struts for energy absorp-
tion during landing [7]. In the automotive industry, their use as crash barriers is well
established. Protection of buildings against blast waves is another promising appli-
cation of aluminum honeycombs, see for example [3].

In [8] the applicability of the yield function (6.1) to regular aluminum honey-
combs was shown, it will be shortly summarized in the following. The 1-axis of the
material coordinate system was defined in the out-of-plane direction of the honey-
combs. Compression tests in 1-direction were used to determine the master hard-
ening curve. The coefficient a11 can be set to 1 without loss of generality, when
the initial value of k is adjusted to the results of the compression tests. Choosing
another value for a11 would also be possible, if the new value for k is chosen corre-
spondingly. The initial effective stress of the master curve σ̄#1 could be determined
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from the compressive yield stress with equation (6.4). No experimental data was
available in the 2-direction. Therefore, the analytical approximation by Gibson and
Ashby [4] was applied. There, the yield stress in 2-direction of a honeycomb with
double thickness vertical walls is given in terms of the cell wall thickness t, its length
l, the characteristic angle θ , and the yield stress of the solid cell wall material σ y

S .

σ y
22 =

( t
l

)2 1
2cos2 (θ)

σ y
S (6.24)

For regular honeycombs θ = 30◦. We can now calculate a22 from the fact that
this initial yield stress must correspond to the initial effective stress of the master
curve (see equation (6.4).

σ̄#1 =

√
3a22

2

∣∣σ y
22

∣∣ (6.25)

For regular honeycombs, the plasticity coefficients a22 and a33 are identical. The
coupling coefficients can be derived from the plastic Poisson numbers of the hon-
eycomb. For example, let us consider a uniaxial compressive loading in 1-direction.
Equation (6.3) becomes:

⎛
⎜⎜⎜⎜⎜⎜⎝

dε p
11

dε p
22

dε p
33

dε p
23

dε p
31

dε p
12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11σ11

a12σ11

a13σ11

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

·2dλ (6.26)

For loading in 1-direction, plastic strains perpendicular to the loading direc-
tion can be neglected for aluminum honeycombs. Thus, a12 and a13 must be zero.
The shear coefficients can be calculated following an approach similar to equation
(6.25). The complete parameter set is included in table 6.1. The yield surface for the
honeycombs in normal stress space (Fig. 6.2) is a very elongated ellipsoid aligned
in the 11-direction. The elongation results from the high yield stress in the out-of-
plane direction compared to all in-plane directions. The reasons for its orientation
along the 11-axis are the vanishing plastic Poisson ratios and the assumption of an
associated flow rule. For uniaxial loading, the direction of plastic flow (perpendicu-
lar to the yield surface) must not have components in any other direction.

The validation of the plasticity model was done by simulation of 4-point bending
tests of sandwich structures with CFRP face sheets with different support distances.
Details of the sandwich structures are described in [10]. Fig. 6.3 illustrates the de-
formations of a sandwich in both experiment and simulation with the finite-element
code ANSYS R© AUTODYN R©.
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Fig. 6.3 4-point bending test of a sandwich structure with CFRP face sheets and aluminum hon-
eycomb core. Contours of effective plastic strain are given in the simulation plot.

Compressive and shear loading dominate in the honeycomb core. Localization of
the deformation can be observed in the contour plot of the simulation. The quanti-
tative results are summarized in Fig. 6.4. The force diagram of the experiment (Fig.
6.4 a) shows an initial elastic regime followed by a peak and an almost constant
plateau. The force peak which was also observed under uniaxial compression, can-
not be modeled in the simulation, because the master curve in the applied FE-code
can only reproduce continuously increasing yield stresses. The overall predicted
force level of the simulation is satisfying. However, strong oscillations of the simu-
lated force are visible. One explanation for this is the limited modeling of the CFRP
face sheets for this loading scenario. In the experiment, the plates fail under in-plane
compression, which was not modeled in [10]. For crash applications of aluminum
honeycombs, it is important to predict the amount of absorbed energy correctly. Fig.
6.4 b) proves that this was achieved in the simulation.

Fig. 6.4 Comparison of experimental and numerical results for the 4-point bending test from 6.3.
a) Force-displacement diagram. b) Absorbed energy.
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6.5 Application to Carbon Fiber-Reinforced Plastics

For modeling purposes, the mechanical behavior of CFRP is usually represented
by a combination of elasticity, damage, and failure models. Nevertheless, in real-
ity, irreversible plastic deformations can occur. They are usually much smaller than
for the materials shown in Fig. 6.1. Sometimes it can be necessary to model these
plastic deformations, e. g. when CFRP plates are loaded in out-of-plane direction
under impact. The yield function (6.1) was originally developed for fiber-reinforced
composites in general, not CFRP specifically. One motivation for the yield function
was that fiber-reinforced composites can exhibit plastic compressibility [1]. Fur-
thermore, as such materials are in general anisotropic, it is interesting to note that
fiber-reinforced composites exist, which belong to the same material class in Fig.
6.1 as aluminum honeycombs (anisotropic, non-constant volume plasticity).

The general yield function (6.1) was applied to CFRP in a study funded by
ESA/ESTEC under contract 18763/04/NL/SFe. Some results of that work are pre-
sented in [10]. The primary aim of the investigation was the numerical simulation
of CFRP under hypervelocity impact, as it can occur when a satellite wall is hit by
a space debris particle. A CFRP representative for satellite applications was chosen
for the study. The laminate’s lay-up was anisotropic with no fibers in the 2-direction
of the material. Tension tests in this direction revealed plastic deformations which
can be attributed to the epoxy resin matrix. In the numerical simulations, the indi-
vidual layers of the laminate were not modeled explicitly. Instead, they were ho-
mogenized over the thickness in the sense of an orthotropic continuum approach.
The hardening behavior in 2-direction was used for the master curve of the model.
As for the honeycomb before, the corresponding plasticity coefficient was chosen
as 1. The other coefficients were derived from an evaluation of the deformation and
failure behavior of the CFRP under various states of stress. As an example, let us
consider tensile loading in 1-direction, where no plasticity was observed before fail-
ure. For the determination of a11, this was taken into account by ensuring that the
failure stress corresponded to σ̄#1 , the first effective stress value of the master curve.
Thus, for a loading in that direction, no plasticity will be predicted in the simulation
before failure.

For the numerical simulations of the hypervelocity impact on CFRP, ANSYS R©
AUTODYN R© was utilized. In order to capture the complete behavior of the com-
posite under this highly dynamic loading, orthotropic elasticity, a polynomial equa-
tion of state, and a damage and failure description were combined with the plasticity
model. Due to the extremely large deformations and fragmentation occurring under
impact, the material close to the impact region was discretized using the meshfree
SPH (smoothed particles hydrodynamics) method. Depending on the size of the pro-
jectile, up to 18 particles over the thickness were used for the 1.37 mm thick CFRP
sheets. The material model was validated by simulations of planar plate impact and
hypervelocity impact tests. Different projectile diameters, velocities, and impact an-
gles were investigated for hypervelocity impact. Fig. 6.5 a) illustrates the debris
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Fig. 6.5 Perpendicular hypervelocity impact (4.577 km/s) of an aluminum sphere (diameter 0.782
mm) on two CFRP plates. a) High-speed image. The projectile impacted from the right-hand side
on the front plate. b) Comparison of delamination between experiment and simulation.

cloud during one test and Fig. 6.5 b) the resulting damage in the CFRP. The projec-
tile perforates the front plate (Fig. 6.5 a), but not the rear plate. The delamination
of the CFRP plates was determined from ultrasonic tests (Fig. 6.5 b), ’experiment’).
Delamination is clearly visible in the front sheet, while the rear is almost undam-
aged.

In the simulation, the projectile also perforates only the front plate. In Fig. 6.5 b),
the white areas in the simulation results represent material with an effective plastic
strain of at least 0.155 % (A 3d truncated contour plot was used to visualize the
plasticity within the plates as well). This was the largest value of plasticity found
in the characterization tests before failure. Therefore, the plotted regions can be
interpreted as minimum extensions of the damaged areas in the simulations. Com-
parison of experiment and simulation reveals that these plastic deformations within
the plates correspond well with the delamination region in the test. Note that a value
of 0.155 % of plastic deformation is still orders of magnitudes smaller than the val-
ues occurring in honeycomb modeling, for example.

6.6 Outlook

The applicability of the quadratic yield function (1) to plasticity modeling of differ-
ent material classes has been demonstrated in the preceding sections. For foams, a
parameter set for the ellipsoid model, which is often applied for isotropic cellular
materials, has been derived. For honeycombs and CFRP, the predictive modeling
capabilities were validated by comparison of experimental and numerical results.
However, limitations exist in the plasticity model discussed in section 2, which
should be overcome in future developments:
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1. The yield function (6.1) does not distinguish between tension and compression
for uniaxial normal loading due to its quadratic formulation. Introducing an offset
tensor σi j,0 would shift the yield locus from the origin of stress space allowing
for a tension/compression asymmetry.

2. Constant plasticity coefficients only permit to model isotropic hardening. How-
ever, the hardening behavior of the materials of the previous sections can vary
dramatically for different stress states. A general hardening description is pos-
sible by substitution of the plasticity coefficients by plasticity functions of the
effective plastic strain. In the same way, strain rate effects could also be included
in these functions: ai j = ai j

(
ε̄ p, ˙̄ε

)
. With such plasticity functions, deformation

induced anisotropy of initially isotropic materials could be modeled as well. This
type of behavior can occur in foams, for example.

3. Finally, a non-associated flow rule would provide a further degree of freedom in
modeling.

Therefore, an enhanced yield function would be:

f
(
σi j,σi j,0, ε̄ p, ˙̄ε

)
= a11

(
ε̄ p, ˙̄ε

)
(σ11 −σ11,0)

2 +a22
(
ε̄ p, ˙̄ε

)
(σ22 −σ22,0)

2 +

+a33
(
ε̄ p, ˙̄ε

)
(σ33 −σ33,0)

2 +2a12
(
ε̄ p, ˙̄ε

)
(σ11 −σ11,0)(σ22 −σ22,0)+

+2a23
(
ε̄ p, ˙̄ε

)
(σ22 −σ22,0)(σ33 −σ33,0)+2a13

(
ε̄ p, ˙̄ε

)
(σ11 −σ11,0)(σ33 −σ33,0)+

+2a44
(
ε̄ p, ˙̄ε

)
σ2

23 +2a55
(
ε̄ p, ˙̄ε

)
σ2

31 +2a66
(
ε̄ p, ˙̄ε

)
σ2

12 = 1
(6.27)

Note that the hardening parameter k is eliminated here, because the hardening is
now modeled by the nine plasticity functions. Hence, the dimension of these func-
tions is [stress−2].
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Chapter 7
On the Computation of a Generalised Dynamic
J-Integral and its Application to the Durability
of Steel Structures

Ingbert Mangerig and Stefan Kolling

Abstract A theoretical description and a computational method are presented to
calculate the J-integral in the context of the finite element method. In the deriva-
tion, we use the theory of configurational forces where the fully three-dimensional
case and large deformations for non-linear elastic materials under dynamic loading
are taken into account. Analogue to the local balance of momentum, the so-called
Eshelby stress holds a configurational force balance, where configurational forces
correspond to the volume forces in the physical space. A discretised finite element
description is obtained by the weak form of the configurational force balance. Thus,
the configurational forces acting on the finite element nodes may be computed as the
physical boundary value problem is solved. For the static case and small deforma-
tions, the configurational force corresponds to the well known J-integral in fracture
mechanics, though not restricted to the crack-mode I state. As a practical example,
we show how the J-integral, combined with Paris’ equation, can be used to predict
the ultimate life time of a steel structure containing components with cracks.

7.1 Introduction

In many fields of industrial application, the mechanism and prediction of fracture
processes play an important role. Such as in construction engineering where many
of the bridges made from steel have been built fifty years ago or even earlier. The
investigation of these bridges due to their durability is a great field of interests in
civil engineering. In particular if so-called ’vital elements’, i.e. parts of the structure
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which are responsible for load carrying capacity of the entire structure, are cracked.
The basis for the treatment of structures with initial cracks is the energy release rate
during a virtual displacement of the crack-tip: the so-called J-integral introduced by
Rice [1]. In linear elastic fracture mechanics, the J-integral combined with Paris’
equation, see Paris and Erdogan [2], results in an empirical concept to predict the
durability due to fatigue of a structure. For a non-standard geometry, the J-integral
has to be computed numerically, e.g. by the finite element method. Although many
commercial FE-packages are able to calculate the J-integral, the results are usually
restricted to simple cases like crack mode-I, small deformations and quasi-static
loading. Most of the commercial finite element codes are not able to calculate the
J-integral in the fully three-dimensional case and if dynamic effects has to be taken
into account. In this paper, we present a numerical technique based on the theory of
configurational forces, which is able to overcome this restrictions. The theory stands
for a more general context and has been established as a useful tool to investigate the
energy change of inhomogeneous continuum mechanical systems. Configurational
forces allow the numerical simulation in a wide range of mechanics and material
science.
The idea of calculating configurational forces with finite elements goes back to the
work of Braun [3]. Especially with respect to fracture mechanics, this numerical
technique has been applied in the papers by Steinmann [4], Steinmann, Ackermann
and Barth [5] and Mueller, Kolling and Gross [6]. In the latter one it is shown addi-
tionally, how configurational forces can be used to improve discretization meshes.
In a later work, Mueller and Maugin [7] demonstrate how configurational forces can
be used to simulate mixed mode crack propagation.

Fig. 7.1 Spatial and material forces on a two-phase bar.

In the static case, the change of the energy is given by the gradient of the total
potential. The result is a generalised force, which is called the configurational (or
material) force and was introduced by Eshelby in 1951 [8]. In Figure 7.1, we demon-
strate the difference between spatial (Newtonian) forces Fi and material forces Gi on
a two-phase bar consisting of two different materials with Young’s moduli E1 and
E2: While spatial forces are generated by variations of the energy W relative to the
ambient space at fixed position in the material, i.e.
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∂W
∂xi

∣∣∣∣
XI

= Fi ,

material forces are generated by variations relative to the ambient material at fixed
position in space, i.e.

∂W
∂XI

∣∣∣∣
xi

= GI .

With other words: material forces act on material inhomogeneities (the phase bound-
ary that separates the two materials in Figure 7.1). The physical meaning of this
force is given by the considered problem: direction of diffusing atoms, dislocation
movement or crack propagation among others. In the dynamic case, the change of
the energy is given by the gradient of the Lagrangian, i.e. the difference of kinetic
and strain energy. This results in the so-called dynamic energy momentum tensor
which, likewise, was introduced by Eshelby [9]. In the present paper, Eshelby’s
idea to derive a generalised (configurational) balance equation (balance of momen-
tum for the material motion problem) is recast. A weak formulation of this balance
equation is used to obtain the J-integral by finite elements very convenient without
using the usual way of defining an integration path surrounding the crack tip. The
focus is set to hyper-elastic materials. For an extension of the theory towards plas-
ticity and visco-elasticity, see the books by Maugin [10], Gurtin [11] and Kienzler
and Herrmann [12].

7.2 Basic Equations

Our subject under consideration is a homogeneous body B (density ρ0) with body
forces fi. In our derivations following [3] and [13], Cartesian coordinates and the in-
dex notation are used for more clarity. The small indices (e.g. xi) denote coordinates
with respect to the actual (material) configuration and the capitals (e.g. XJ ) refer
to the reference configuration. In a hyper-elastic continuum, there exists a strain
energy function W = Ŵ (FiJ) from which the stresses can be derived as

PiJ =
∂W
∂FiJ

. (7.1)

Here, FiJ = ∂xi/∂XJ is the deformation gradient and PiJ is the first Piola-Kirchhoff
stress-tensor. With the stress-tensor in equation (7.1), the local form of the momen-
tum balance can be written as

PiJ,J + fi = ρ0v̇i , (7.2)

where vi is the (local) velocity.
The second Piola-Kirchhoff (pseudo) stress SIJ = 2∂W/∂CIJ is obtained by de-
riving the energy function with respect to the right Cauchy-Green strain tensor
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CIJ = FkIFkJ . First and second Piola-Kirchhoff stresses are related by PiK = FiLSLK .
The (true) Cauchy stress σi j can be obtained by forming

σi j = J−1PiKFjK = J−1FiLSLKFjK , (7.3)

where J = detFiJ is the relative volume.

7.3 Theory of Configurational Forces

A number of different approaches exist of the meanwhile well known concept of
configurational forces. Without going mathematically into detail, it is instructive to
begin with a summary of some well-established approaches that can be found in the
literature cited above.

Eshelby’s Approach: The force on a dislocation or point defect, as understood in
solid-state physics, and the crack extension force of fracture mechanics are exam-
ples of quantities which measure the rate at which the total energy of a physical
system varies as some kind of departure from uniformity within it changes its
configuration. In this statement, Eshelby considers the driving force on a mate-
rial defect as the rate of energy associated with a virtual movement of the defect.
Consequently, configurational forces can be derived from the gradient of the La-
grange function using standard analysis of the classical balance laws.

Gurtin’s Approach: · · ·configurational forces should be viewed as basic primitive
objects consistent with their own force balance, rather than as variational con-
structs. Consequently, an independent system of configurational forces and their
balance is assumed and the balance of configurational forces is elevated to the
level of an autonomous law of nature, which is as fundamental as Newton’s law
of motion. This is in contrast to the original papers by Eshelby in which the con-
stitutive assumptions of the bulk material play a central role in the derivation of
the form of the configurational force.

Maugin’s Approach: Balance of configurational forces is the pull-back of the
standard balance to the material manifold, configurational forces are secondary
quantities. Starting point is the balance of forces in the deformed configuration
written in terms of quantities defined with respect to the undeformed configu-
ration. Multiplying by the transposed deformation gradient from left leads, af-
ter some simplifications, to the balance of standard linear momentum and the
balance of configurational (material) linear momentum. This procedure is also
referred to as invers motion.

In the following Eshelby’s approach is used for the derivation, where the contin-
uum is generalised to an inhomogeneous body B. The Lagrangian L = T −W of the
system is defined as the difference of the kinetic energy
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T = T̂ (ρ0,vi) =
1
2
ρ0vivi (7.4)

and the strain energy W = Ŵ (FiJ , XK). Now, the strain energy depends on the de-
formation gradient FiJ and on the position XK explicitly to consider inhomogeneous
materials. Formulating the gradient of the Lagrangian yields

∂L
∂XK

=
∂T
∂XK

− ∂W
∂XK

=
∂T
∂ρ0

∂ρ0

∂XK
+
∂T
∂vi

∂vi

∂Xk
− ∂W
∂FiJ

∂FiJ

∂XK
− ∂W
∂XK

∣∣∣∣
expl

(7.5)

Using (7.1) and (7.4), we obtain

∂T
∂ρ0

=
1
2

vivi ,
∂T
∂vi

= ρ0vi , and
∂W
∂FiJ

= PiJ (7.6)

and equation (7.5) can be rewritten as

L,K =
1
2

viviρ0,K +ρ0vivi,K −PiJFiJ,K − ∂W
∂XK

∣∣∣∣
expl

(7.7)

Inserting vi,K = Ḟi,K , FiJ,K = FiK,J , the identity PiJFiK,J = (PiJFiK),J −PiJ,JFiK and
(7.2) yields

L,K =
1
2

viviρ0,K +ρ0viḞiK − (PiJFiK),J + PiJ,J︸︷︷︸
=ρ0v̇i− fi

FiK − ∂W
∂XK

∣∣∣∣
expl

⇔ −L,JδKJ − (PiJFiK),J +
1
2

viviρ0,K − fiFiK − ∂W
∂XK

∣∣∣∣
expl

= −ρ0viFiK −ρ0viḞiK

⇔ (−LδKJ −PiJFiK︸ ︷︷ ︸
ΣKJ

),J +
1
2

viviρ0,K − fiFiK − ∂W
∂XK

∣∣∣∣
expl︸ ︷︷ ︸

gK

= −ρ0 (viFiK)· .

The second order tensor ΣKJ in the brackets of the left side is called energy momen-
tum tensor and the force gK is the material force (configurational force), see [9].
Now, a compact equation has been found:

ΣKJ,J +gK = −ρ0 (FiKvi)
· , (7.8)

which has the same structure as the balance of momentum (7.2) and is called config-
urational force balance. A further notation which also can be found in literature is
balance of linear pseudo-momentum. In the static case, the terms in equation (7.8)
are simplified to

ΣKJ,J +gK = 0 , (7.9)

where the energy momentum tensor is

ΣKJ = WδKJ −PiJFiK (7.10)
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and the configurational force is

gK = − fiFiK − ∂W
∂XK

∣∣∣∣
expl

. (7.11)

For small deformations, the energy momentum tensor is finally reduced to

Σk j = Wδk j −ui,kσi j . (7.12)

In this case, the first component (using dx1 = n1dΓ ) of the material force acting on
a crack-tip is related to the J-integral, see the original paper by Rice [1]:

J = −∂W
∂a

=
∫

Γ

Wdx1 −ui,1σi jn j dΓ (7.13)

where Γ is an arbitrary path surrounding the crack-tip. The interpretation of the J-
integral is the energy release rate of the system with respect to a virtual movement
δa of the crack-tip along the ligament. The usual way to calculate J is to define a
path Γ and solve equation (7.13). The problems we are facing then, is that J is not
always path independent, e.g. if mixed mode loading has to be considered. In what
follows, an alternative way to determine J consistent with the finite element method
is shown.

7.4 Finite Element Formulation

Starting point of the finite element discretization is the weak formulation of the con-
figurational force balance (7.8). To obtain the weak form, we multiply (7.8) by a test
function ηK and integrate over B:

∫

B

(ρ0 (FiKvi)
· +ΣKJ,J +gK)ηK dV =

∫

B

(ρ0FiKvi︸ ︷︷ ︸
=:−PK

)·ηK +(ΣKJηK),J −ΣKJηK,J +gK ηK dV = 0 .

Here, ṖK is called the pseudo momentum vector. Integrating by parts leads to
∫

B

−ṖKηK −ΣKJηK,J +gK ηK dV +
∫

∂B

ΣKNJηK dA = 0 . (7.14)

If we consider stationary boundaries, i.e. boundaries which remain fixed, the bound-
ary integral in (7.14) vanishes. Now, the test function is approximated in each ele-
ment
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ηK,J =∑
l

Nl
,Jη l

K . (7.15)

Inserting (7.15) in (7.14) yields

∑
l

η l
K

∫

B

{
−ṖKNl −ΣKJNl

,J +gK Nl
}

dV = 0 . (7.16)

Since this equation has to be fulfilled for arbitrary η l
K , the bracket has to be zero and

the discrete material forces are given by

Gl
K =

∫

B

gK Nl dV =
∫

B

ṖKNl +ΣKJN
l
,J dV (7.17)

To obtain the total material force GI
K acting on the node I, the forces GI

K of all
elements adjacent to node I have to be assembled, i.e.

GI
K =

ne⋃

l=1

Gl
K . (7.18)

With this formulation, the material forces (and thus the J-integral) can be calculated
simply as the physical boundary value is solved: all quantities to compute ΣKJ and
ṖK are already known in every time step.

7.5 Fatigue, Stress Intensity Factor and Crack Growth Rate

Fatigue of a steel structure can be considered as a mechanism of crack growing.
Fatigue cracks occur by cyclic load under lower stress condition than allowable
stress. During the lifetime of a structure, fatigue cracks propagate mostly in form of
subcritical crack growth. For assuring safety of a steel structure, cracks should be
detected and monitored in this period of subcritical crack growth. The assessment
of a crack can be done by the stress intensity factor K = K̂(σ ,a,Y ). It defines the
amplitude of the crack tip singularity and is a function of applied nominal stress
σ , crack length a and a geometric function Y . The stress intensity factor can be
computed via the J-integral (7.13):

J =
K2

E ′ , (7.19)

e.g. numerically by the presented technique. In the two-dimensional case, the mod-
ulus of elasticity E ′ has to be distinguished between plane stress and plane strain:

E ′ =

{
E for plane stress
E

1−ν2 for plane strain
(7.20)
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where ν is Poisson’s ratio. Fatigue crack growing process is classified to three re-
gions according to the change of fatigue crack growth rate da/dN, where a is the
crack length and N(a) is the load cycle. Region I is a state of crack initiation (cracks
are not detectable visually). If we detect a crack, we may take our attention to the re-
gion II, where crack growing speed increases according to the crack length a. Now,
the stress intensity factor K and the crack growth rate da/dN show a relationship of
direct proportion, which is known as Paris’ equation, see [2]

da
dN

= C (ΔK)m (7.21)

where C and m are experimentally determined material constants. Within this region
II, crack propagation is called stable crack growth. In region III, crack growth rate
quickly increases and the member is about to failure. This is called unstable crack
growth. The stress intensity factor at failure is called fracture toughness Kc.

7.6 Application to Durability Analysis

From the theoretical description above, we may suggest a simple way for the dura-
bility analysis of a structural part with an initial crack a0. As an example, we con-
sider a steel-plate (thickness t=18mm) as sketched in Figure 7.2a. The material con-
stants for steel S235 are taken from standard literature: C = 5.0 · 10−12, m = 3.0
for Paris’ parameter and JC = 87N/mm for the critical J-integral. From standard
structural analysis, a maximum stress maxσ = 174,8N/mm2 and a cyclic stress
Δσ = 35N/mm2 are obtained for the structural part under consideration. A section
of the finite element model (using a very fine mesh at the crack tip) for computing
the J-integral is shown in Figure 7.2b.

In what follows, we give a step-by-step recipe for the evaluation of the structure
with respect to fatigue. Please note that this procedure is very general and not re-
stricted to the given example.
In the first step, we compute the J-integral of the structure for different crack lengths
and stresses, e.g. via material forces as described in section 7.4. Figure 7.3 shows the
results for the considered steel-plate. We chose a crack length variation of a = 30,
40, 50 and 60mm over normal stresses from 20N/mm2 up to 360N/mm2. From the
maximum stress maxσ in the structure together with the material parameter Jc, we
obtain the critical crack length ac. This is the maximum crack length before unsta-
ble crack propagation and, thus, failure of the entire structure occurs. In our exam-
ple, the critical crack length is ac = 56mm (by interpolating between the computed
curves).
Cycling loading results in minimum and maximum stress

Δσ = maxσ −minσ . (7.22)
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Fig. 7.2 Example of a structure with initial cracks and the corresponding FE model.

Fig. 7.3 J-integral for different stresses.

In the second step, we therefore calculate the cyclic stress intensity factor ΔK from
the J-integral as a function of the crack length a using equation (7.19) and get

ΔK(a) = K (maxσ)−K (minσ) =
√

[J (maxσ)− J (minσ)]E ′ . (7.23)

The resulting function for our example is plotted in Figure 7.4 where a least-square-
fit has been used for interpolation of the finite element results.
We finally integrate in the third step Paris’ equation (7.21)
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Fig. 7.4 Cyclic stress intensity factor.

N(a) =
∫

da
C [ΔK(a)]m

, (7.24)

e.g. numerically and we obtain the number of cycles before failure as

Nc = N(ac)−N(a0) (7.25)

where a0 denotes the initial crack length. Figure 7.5 shows the result for the given
example. If the crack grows to a length a > a0, the number of load cycles before
failure can then be approximated by this diagram as Nc = N(ac)−N(a).

7.7 Summary

The theory of configurational forces and the corresponding finite element formula-
tion has been presented in the context of non-linear elastic materials under dynamic
loading. Using this method, the discrete configurational forces acting on finite ele-
ment nodes are obtained consistent with the FE-formulation. For crack mode I, the
configurational forces are used to compute the J-integral and thus the stress intensity
factor is obtained for evaluating a structural part with an initial crack. Furthermore,
we have shown how this method can be used in industrial practice for durability
analysis of steel structures using Paris’ equation. With the presented method of con-
figurational forces, the J-integral is defined not only for mode I but for a general
three dimensional stress state. Moreover, inertia effects may also be taken into ac-
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Fig. 7.5 Number of load cycles over crack length.

count due to the fully dynamic formulation. The required experimental setup for
using this finding in durability analysis is a topic of further investigation.
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Chapter 8
The MAX-Analysis: New Computational and
Post-Processing Procedures for Vehicle Safety
Analysis

David Vinckier

Abstract In vehicle safety analysis there is a need for precise finite element simu-
lations of mine blast and improvised explosive device attacks on armored vehicles
to support the design process. Because of the multitude of data that is generated in
these simulations – even more so when multiple load cases are analyzed for one
vehicle – these computations demand for an intelligent tool for summarization and
compression of the simulation data. This paper presents the MAX-analysis, a new
set of computational and post-processing tools to summarize all the main quantities
of the numerical simulations in just a few images.

8.1 Introduction

After the substantial progress that was made in the last twenty years in crash simula-
tion for the automotive industry, it could be expected that the finite element methods
(FEM) would also play an important role in the development of armored vehicles. In
fact, since about ten years now, FEM-simulations are used more and more for the de-
velopment of armored components, fixation systems, armor modules and complete
vehicles. However, the crash behaviour in traffic accidents is not the main topic here.
The emphasis is rather on the dynamic loading of the vehicle and its occupants as a
result of ballistic threats, mines and improvised explosive devices.

The reasons for the need of precise simulation results in the area of armored
vehicles are very similar to the ones that pushed the automotive crash simulation:
whereas the functionality requirements on the vehicles are getting more diverse, the
vehicle weight limits are reached quickly, and the development cost and time frames

David Vinckier
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make it practically impossible to produce an acceptable design based on experimen-
tal knowledge only.

For the ballistic and improvised explosive attacks there exists another argument
that shows that simulations are indispensible: even if substantial efforts are made
to standardize the load conditions and to mimimize the number of these load cases
using worst case scenarios, it is not acceptable to limit the analyses to these worst
case scenarios only. To be able to define a degree of protection for a vehicle with
respect to a specific threat, one has to analyze all relevant shot lines and blast loaded
surfaces. This leads to two questions:

• Are the prediction capabilities of the simulation tools sufficient to predict the
structural behaviour for all load cases and thereby to define a protection degree
for the vehicle?

• How can all these detailed informations be summarized and presented?

With its GSS-package, CONDAT has developed a tool that already answers these
questions for the ballistic protection issue. GSS is a simulation program, that was
verified in numerous projects and is able to predict vehicle protection degrees for
all current ballistic threats with a high level of precision. GSS was used to evaluate
degrees of ballistic protection for almost every armored vehicle in the German Bun-
deswehr.

The computational methods for simulations of mine blast and improvised ex-
plosive device (IED) attacks have also reached a very good level, but there is still
some work to be done regarding a condensed graphical presentation of the compu-
tational results. The reason for this is, that ballistic threats generally interact with
the structure in a small localized area, whereas exploding devices typically interact
non-locally on much larger surfaces. If for example a shaped charge interaction with
a an armor module is to be evaluated, then typically only the line of sight properties
of the armor would be needed. For a blast IED load case however a complete vehicle
section needs to be taken into account to be able to predict the structural response.

In able to summarize the multitude of informations that are generated in these
vehicle blast simulations, a series of new computational and post-processing meth-
ods were developed. These methods, called ’MAX-analysis’ are presented in this
paper.

8.2 Prediction Capabilities for Vehicle Mine and IED Blast
Simulations

In 1995, CONDAT performed its first finite element simulations of the blast mine
loading of an armoured vehicle as part of a specific armor development project.
Since then numerous mechanical problems were investigated using numerical tools
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for all kinds of light and heavy tracked or wheeled vehicles. In the first phase, the
prediction of the local structural deflections was the main goal of the simulations.
Now detailed computer aided engineering defines the bulk of the computational
activities in this field. Typical themes that are currently being investigated for all
kinds of vehicles are:

• the simulation of the local deflections and the computation of the required free
deflection spaces,

• the distribution of plastic deformations and the estimation of existing reserves
until structural failure,

• the loading level and failure probability of door hinges and locks,
• the loading and dimensioning of screw joints,
• recommendations for the dimensioning of welding joints,
• the simulation of the deformations and vibrations of floors, seating systems and

their interaction with the occupants,
• the computation of tibia and lumbar spine forces of the occupant dummies.

Fig. 8.1 Impact of an explosively formed projectile on a welded structure.

Even if the blast loading often dominates the design of the armor and the vehi-
cle base structure, the effects of fragment and projectile forming mines cannot be
neglected. In a recent project, the risk of spalling of welding joints in the vehicle in-
terior due to the impact of an explosivley formed projectile was investigated. Figure
8.1 shows the result of a preliminary simulation on a generic vehicle part in prepa-
ration of this project.

The essential property of all these investigations is that the they are not performed
to produce a qualitative impression of the structural dynamics, but rather to provide
precise quantitative data , that can directly be input into the vehicle design. This
is only possible with a reliable prediction capability tool that is continuously been
improved based upon the following key elements:

• powerful modeling and computational capabilities with longtime experience,
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• the follow-up of numerous experimental campaigns with generic setups to cali-
brate the computational tools,

• the continuous actualization and update of material models using laboratory tests
and small scale tests,

• the verification of almost all full-scale vehicle computations in the corresponding
development or qualification tests.

8.3 The MAX-Analysis: Unification of the Computational
Results

The evaluation of the structural behavior of the vehicle is generally done with regard
to the probabality of injuries for the occupants. If – in a simulation – a structure does
not collapse and there is no catastrophic structural failure, then usually the following
quantities are used for this evaluation:

1. the dynamic structural deformations: these dermine if a contact or impact can
take place between the occupant and the the vehicle structure,

2. the structural velocities: these quantities have a direct influence on the injury
probabilities, if contact occurs between the occupant and the vehicle,

3. the plastic material deformations: for many material types they are a good mea-
sure for the risk of structural failure

4. the structural accelerations: they determine the dynamic loads on local fixations
and the corresponding devices.

Fig. 8.2 Vehicle model with witness block.

Even if these quantities are dynamic variables, the post-processing can often be
limited to their maximum values. The maximum deformations are the best mea-
sure for a possible contact bewteen structure and occupant. As another example, the
maximum velocities of a floor panel allow a good first estimation of the tibia forces
in the occupant dummy. And the maximum plastic deformations, section forces and
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accelerations can describe very well the risk for possible material or structural fail-
ure.

To evaluate the structural defomations, a so called ’witness block’ method is
used here, as primarily the deformations relative to the occupants are relevant –
and not the global deformations. For that purpose a volume is defined that encloses
the available space for the occupants. This volume is called the witness block. Its
surface is positioned at a predefined distance (the free deflection space) to the vehi-
cle structure. Wherever the deformed vehicle structure penetrates the witness block,
the impact and the contact velocity are registered on the witness block. With this
method, the classical image with structural deformations is replaced by an image
showing the witness block violations.

Fig. 8.3 Definition of the response spectrum.

The common procedure for the interpretation of accelerations is through the so
called shock response spectra. These spectra provide the maximum output acceler-
ation of a single degree of freedom mass-spring-system as a funtion of its eigen-
frequency, when triggered by an input acceleration (figure 8.3). This means that
theoretically, in a simulation, a spectrum can be generated for each nodal point in
the model and that for a clearly arranged summary these values need to be com-
pressed once more. The simplest method is to evaluate the spectral values relative
to a reference spectrum and to compute the maximum deviation from this reference



140 David Vinckier

spectrum for all frequencies. This then reduces the spectrum to a single value per
nodal point. A similar approach can be used to determine the maximum section
forces in device fixations as these forces can also be computed from the same single
mass-spring-systems. And going one step further, one can then even compute from
these maximum forces minum areas for screw fixations.

Fig. 8.4 Vehicle model with explosive charge.

Using these MAX-analysis methods, all post-processing values can be summa-
rized in a few images. Figure 8.4 shows a computational model of a generic armored
vehicle, that is loaded by a blast IED. Figure 8.5 shows the MAX-analysis results
for the main simulation quantities and one position of the IED.

If several load positions must be investigated for the same threat, then all single
load MAX-analyses can be compressed to one integrated multi load MAX-analysis
as shown in figure 8.6. This also allows to identify the dominating load case as
shown in this figure.

8.4 Summary

Detailed full scale vehicle models for vehicle safety analysis nowadays contain up
to 1 million elements. A stable time step for the computation of these models with
a finite element program with explicit time integration typically varies between 0,5
and 1 μs, sometimes even below 0,5 μs. This means that for the usual simulation
time frame of 50 ms one needs up to 105 single time steps and therefore up to 106
x 105 = 1011 element states are to be analyzed and evaluated!
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Fig. 8.5 MAX-Analysis of a blast loaded vehicle.

Fig. 8.6 Integrated MAX-deformation analysis for 5 load cases.
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In order to handle and process these huge amount of data, new computational
and post-processing methods are needed. The MAX-analyses that are presented in
this paper are a first step towards an intelligent and transparent visual summary of
mine and IED blast vehicle simulations.

These computational development activities are only feasible if full access ex-
ists to the programming tools so that the simulation tools can be swiftly updated if
needed for the engineering problems of current interest. For its structrural dynamics
simulations CONDAT uses CONDAT-DYNA3D since more than twenty years. This
program was introduced in 1988 by Prof. Thoma, who was in charge of the numer-
ical activities at CONDAT in that period.



Chapter 9
10 Years RHT: A Review of Concrete Modelling
and Hydrocode Applications

Werner Riedel

Abstract The RHT concrete model has been developed at Ernst-Mach-Institut 10
years ago. It is combines detailed trixial strength descriptions at moderated strain
rates before and beyond damage with non-linear equation of state properties for
strong shock waves. The model is readily available to all users of the commercial
hydrocode AUTODYN and continuously supported since the year 2000. Over the
last decade it has found numerous worldwide applications reflected in publications.
They deal with dynamic load cases such as projectile and shaped charge penetration,
contact detonation, internal and external blast loading. The key aspects during the
development at EMI and the validation, discussion and extended use of the model
by various research and development organizations are reviewed in the following.

9.1 Introduction: Dynamic Measurements and Model
Development

9.1.1 The Starting Point of the Developments

The development of a new concrete model for hydrocodes started at Ernst-Mach-
Institut early 1997 with the perspective of the later dissertation by Riedel [13], un-
der the direction of Prof. Dr. Thoma and close support by Prof. Dr. Hiermaier. The
initials ’RHT’ of this development team later formed the characteristic abbrevia-
tion for the model. At that time substantial knowledge on different aspects of the
mechanical behavior of concrete was available. Yet, the overlapping disciplines of
static strength descriptions, rate dependent strength and shock behavior were not
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consistently combined to cover with one model approach the range of dynamic ap-
plications accessible through hydrocode simulations.

Classical civil engineering models detailed stress-based limit surfaces for failure
mainly under uni- and biaxial loads. Measurements and failure surfaces for com-
plete three-dimensional stress states were more seldom, as highly confined condi-
tions only appear statically in very massive constructions with pressures not much
above the compressive strength. However, full triaxial stress states were of primary
interest for highly dynamic finite element methods, because when compression and
release waves become dominant, already relatively slender building components ex-
perience high hydrostatic pressures on short timescales. Chen’s summarizing work
[23] on fully tri-axial stress-based failure surfaces inspired the work towards the
RHT model. He described a closed failure surface depending on pressure and stress
tri-axiality. Furthermore, he postulated an elastic limit surface inside the failure en-
velope closed towards high pressures stresses when pores start to crush (see Figure
9.1). The elastic limit surface expanded during hardening towards coincidence with
the failure surface.

Detailed stress-strain states beyond the failure envelope, especially residual shear
resistance of damaged concrete under triaxial compressions, are normally less rel-
evant for civil engineering analysis. Under dynamic loads such as penetration pro-
cesses or contact detonation more detailed description of concrete degradation is
essential, as the failed material still exhibits resistance and takes kinetic energy dur-
ing the dynamic event. Holmquist and Johnson [35] were the pioneers in proposing
a phenomenological model suitable to cover a wide range of highly dynamic load-
ing scenarios in the hydrocode EPIC. Similar to the widely used Johnson and Cook
model for metals, they gave a simple, parametric formulation of the concrete fail-
ure surface with decoupled factors for the dependencies on pressure, strain rate and
damaged states (9.1). They included a pressure dependent shear resistance surface
after partially and total damage of the concrete. This proved to be a key aspect to
capture penetration resistance of concrete targets. Deficiencies for a wider applica-
bility of the model turned out to be details of low pressure strength. Their formula-
tion (9.1) did not allow for a consistent fit to tensile, compressive and shear strength
(see Figure 9.1) and higher pressure meridians with a single parameter set.

f (p,J2, ε̇) =
√

3J2 − f ′c
(
A(1−D)+Bp∗N )

(
1+C ln

ε̇
ε̇0

)
= 0 (9.1)

where

D =∑Δεp +Δμp

ε f
p +μ f

p

(9.2)

and
ε f

p +μ f
p = D1

(
p∗ − p∗spall

)D2 ≥ EFMIN (9.3)

Beyond several key aspects of dynamic distortional resistance, Holmquist and
Johnson’s model also described an important mechanism of concrete behavior to-
wards shock compression: They included a nonlinear equation of state with pore
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Fig. 9.1 Elastic and failure surfaces based on Chen’s concept [23], with stress points and areas
measurable by different static and dynamic loading techniques.

compaction, a process known to dissipate large amounts of energy. Yet, equation of
state data for concrete was still in the process of being generated and understood,
mainly due to large scale heterogeneity of the material. Grady, Kipp and Chhabildas
[31] – [33] adapted two-stage light gas gun projectile and target configurations to
measure shock and release conditions on samples large enough to represent almost
unscaled conventional strength SAC-5 concrete. The resulting data points from their
unique plate impact facility on a two-stage light gas gun are displayed in Figure 9.2,
left, using Xs and crossed markers. Contact detonation experiments were developed
in the nineties for example at University of Karlsruhe [40] (e.g. data points ’Ock-
ert 97’ in Figure 9.2, left) and later at the Bundeswehr Technical Center WTD52
[29] to generate Hugoniot data for concrete. This technique allowed to test much
larger samples, yet suffered from deficiencies to produce planar and steady shock
waves and the difficulty to measure shock pressures directly in the composite. Still,
the summary of all data gathered up to that time (see Figure 9.2) clearly indicated
strongly nonlinear shock compression behavior of concrete with a marked drop of
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shock over particle velocity at pressures between 500 MPa to 2 GPa. But the true
reasons for this minimum, whether being porosity, heterogeneity or bond behavior,
were not well understood.

Fig. 9.2 Left: Concrete Hugoniot from literature references and newly derived curves (dashed
lines); Right: Mortar sample on sabot for inverse plate impact.

9.1.2 Equation of State for a Large-Scale Heterogeneous
Composite

Starting from this state-of-the-art, a different route was undertaken at Ernst-Mach-
Institute to provide concrete shock data for pressures across the range of dynamic
applications. In the developed mesomechanical method [15] the concrete was de-
composed into aggregates lager than 1 mm and the remaining fine-grained mortar
between all larger grains (see Figure 9.3). After measuring equation of state proper-
ties of the two components separately, hydrocode simulations of the meso-structure
were used to derive macroscopic shock data of complete and unscaled concrete.

Inverse plate impact experiments on both components, but specifically with the
concrete mortar, were the key experimental method to derive the highly dynamic
compression data. The use of Aluminium and Copper witness plates with known
material properties during impact of the concrete constituent samples allowed direct
derivation of the shock states without further knowledge of its compression behav-
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ior. The Rankine-Hungoniot relationships and the known equation of state properties
of the impacted witness plate (density ρwitness , soundspeed cB,witness, slope Switness)
were used together with the measured free surface velocity u2 at the initial shock
plateau. Equations (9.4)-(9.9) allowed deduction of the shock states σh, up, Us, e, ρh

in the concrete sample [15].

σh = ρwitnesscB,witness

(
1
2

u2

)
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2
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ρh (Us −up) = ρ0 (Us −u0) (9.8)

εh =
up

Us
(9.9)

Low impedance Aluminium witness plates and backings were used around the
mortar samples to measure moderate shock amplitudes up to 5 GPa and subsequent
release states, which are markedly different due to compaction processes. Shock re-
verberation of samples between much thicker copper samples of higher impedance
provided reflected shock pressures up to 18 GPa. The methodology was developed
with Dr. Hartwig Nahme at EMI and used in parallel for composites under space
debris impact conditions [24], [41]. From the plate impact tests and additionally
confined and unconfined static compression experiments and ultrasonic measure-
ments, detailed dynamic material models were derived for mortar and, also with
data from literature, for aggregate.

A direct simulation approach of the mesomechanical structure in a hydrocode
was the method of homogenization to derive concrete data from constituents’ prop-
erties. Therefore a representative sample of concrete was filled with aggregate and
mortar matrix. During the implantation of aggregates, sizes were taken from civil en-
gineering sieve lines under statistical distribution of dimensions and locations. Fig-
ure 9.3 shows a resulting, visually realistic concrete mesostructure in a hydrocode.
To derive shock data, a planar shock (or compression) wave was excited by applying
a constant velocity boundary condition to one end of the numerical sample. Lateral
dimensions were large enough to describe a representative concrete volume. The lat-
eral boundaries were constrained in normal movement to provide a uniaxial strain
compression waves on the macroscopic scale. Figure 9.3, right, shows an example
of a moderate elastic-plastic shock wave of 3.2 GPa pressure traveling from left to
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Fig. 9.3 Mesomechanical concrete model to derive the equation of state; Right: Velocity and pres-
sure distributions in a 4.3 GPa planar shock.

right through the heterogeneous sample. The actual transition from mesomechan-
ical states of individual cells to macroscopic properties was achieved through the
evaluation of the effective macroscopic wave propagation speed Us. The compres-
sion wave was considered to be arrived when half of the cells of a cross section had
reached half the boundary particle velocity up.

Varying boundary particle velocities from 1m/s to 3000m/s created compression
and shock waves ranging from 10MPa beyond 20 GPa. Interestingly, the character-
istic drop of shock versus particle velocity observed in earlier experimental series
by Grady and others could be explained in the mesomechanical simulation by the
porous compaction properties of the mortar. Alterations of bond strength and bond
density on the contrary were shown not to have an effect on the plain strain com-
pression waves [13]. Two different density and distribution mixtures of conventional
strength concrete were studied in the original work, high strength concrete has been
analyzed in the same complete methodology later [15].

9.1.3 Combining Civil Engineering Knowledge and Shock Physics

The detailed shock properties of concrete then had to be coupled with state-of-
the-art knowledge of macroscopic concrete strength. The key requirements for the
model development were:

• consistent description from low velocity impacts to highest dynamic loads in
shock waves (>10 GPa)

• improved triaxial description compared to the Holmquist and Johnson model,
from higher confinements down to lower pressure regime, shear and tension
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• rate dependent strength
• description of residual shear resistance of partly and fully damaged concrete un-

der confinement

Despite all the different requirements and phenomena, the complexity of the
model should still be user friendly.

f (p,σeq,θ , ε̇) = σeq −YT XC(p) R3(θ)FRate (ε̇) = 0 (9.10)

with

p = f (ρα,e) and α = 1+(αinit −1)
[

pcomp − p

pcomp − pel

]N

(9.11)

The RHT model was developed as a synthesis of existing approaches from differ-
ent loading regimes. Holmquist and Johnson’s basic concepts of rate and pressure
dependent failure surface (factors FRate(ε̇) and YT XC(p) in equation (9.10)), a sur-
face for residual friction resistance and a porous equation of state were taken as a
starting point. Also the strain-based, pressure dependent damage evolution law (9.2)
was adopted, yet only with respect to deviatoric deformations.

Chen’s two surface concept for an initial elastic surface and hardening was ad-
ditionally introduced with a Willam-Warnke formulation for a Lode angle depen-
dence R3(θ) in the deviatoric plane. As in Chen’s work, the elastic limit surface
was closed towards high hydrodynamic pressures (elliptic a cap function Fcap(p)
applied to (9.10)). This provided consistency with the variable pore crush pressure
of a p-alpha equation of state.

A von Mises potential for plastic flow, neglecting associativity and low pressure
shear dilation was used in favor of preserving the classical separation of equation of
state and strength properties in hydrodocodes.

With this comprehensive phenomenology but modular formulation (9.10) the
model was first proposed in 1998 [12], fully developed and discussed until 2000
in the dissertation [13] and summarized again later in [16]. Professor Thoma initi-
ated the integration as a standard model into the commercial hydrocode AUTODYN
[42]. The adjustment was concluded in cooperation with Richard Clegg of Century
Dynamics Ltd. in 2000 in version 4.1, where it has been continuously supported
without further changes as ’RHT concrete’. This step made the model readily avail-
able to all users of the commercial hydrocode, forming the basis for the worldwide
applications and discussions summarized in the following.
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Fig. 9.4 Three RHT limit surfaces of elasticity, ultimate strength and post failure shear resistance
depending on pressure, strain rate, triaxial stresses, controled by porous compaction, hardening
and damage evolution.

9.2 Applications in Impact Analysis

9.2.1 Extended Validation and Sensitivity Analysis

The initial validation in [12], [13] simulated the normal impact of a 430kg ogival
penetrator (L=1200mm, D=360mm) at 250m/s on a 7.2 x 7.2 m and 1.6 m thick
reinforced conventional strength concrete target. The simulations were compared to
a unique full scale test series at the Bundeswehr Technical Center Meppen WTD91
[46] and 1:4 scaled light gas gun experiments at the Efringen-Kirchen site of Ernst-
Mach-Institut. In the simulations, first principal 3D simulations were conducted,
but 2D cylindrical symmetric simplification was still extensively used for the nor-
mal impact configurations. The rebar was modeled explicitly but simplified in shell
layers of equal macroscopic strength and weight for front and rear layers of bend-
ing reinforcement. The shear rebar, identified as primary resistance factor close to
the ballistic limit in sensitivity analysis, was represented as overlaid connections
between front and rear reinforcement of equal strength and weight. For the test
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case very close to the perforation limit of the concrete slab, the new model proved
to be converging into the range of experimental scatter. Damage extensions were
represented reasonably, the effect of scaling proved to be slightly under predicted,
possibly an effect of inversed strain rate scaling.

Fig. 9.5 First extensive 3D simulations by FOI including normal and oblique impact and explicit
rebar modeling [18].

Håkan Hansson [18], [19] from the Swedish Defense Research Agency FOI first
conducted and documented extensive studies with full three-dimensional represen-
tation of concrete targets including rebar. He validated the model against deep pen-
etration of 3.6 kg ogival projectiles into unreinforced 48 MPa concrete at 420 m/s.
For the normal impact validations he found good correlation between experimental
penetration depth of 490 mm and simulations with 529 mm depth, a deviation below
8%. He stated reduced accuracy for perforation cases of plain concrete, dominated
by tensile cracking.

His further simulation studies of oblique impacts were the first to include and
document explicit rebar modeling using beam elements for every individual rein-
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forcement beam (see Figure 9.5). He also analyzed applicability of different types
of discretisations, such as Lagrangian mesh based and meshless representations as
well as space-fixed Eulerian grids for the concrete target. In parallel, FOI conducted
full characterization of a 115 MPa high strength concrete in the complete method-
ology summarized in chapter 1 with derivation of the concrete equation of state by
mesomechanical characterization and simulations [15], triaxial compression experi-
ments at the ERDC-WES up to 500MPa hydrostatic pressure [1] and Hopkinson-Bar
experiments to derive the dynamic strength and fracture energy [45]. All the results
were condensed to a high strength concrete parameter set for the RHT model.

Fig. 9.6 Influence of model complexity on the replication of a R/C ballistic limit curve by Tham,
Inst. High Performance Computing Singapore [17].

An investigation of different strength model complexities on the details of the
ballistic limit curve has been reported by Tham from the Institute of High Perfor-
mance Computing at Singapore [17]. He conducted further validation against bal-
listic limit data from Hanchak et. al. [34] for an ogival steel projectile (m=0.5kg, D
25,4mm) under normal impact between 300 and 1000m/s. He found good correla-
tion with the detailed concrete strength description in the RHT model with respect
to perforation velocities and damage extensions (Figure 9.7). Figure 9.6 summarises
his sensitivity studies and points out, that perforations well above the ballistic limit
are rather insensitive on details of the concrete strength model. Phenomena like
pressure dependent failure and strain rate influence become important close to the
ballistic limit.

Leppänen [4] at Chalmers University of Technology, Gteborg, Sweden analysed
remaining deficiencies of the RHT concrete model. He correctly stated the lack of
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Fig. 9.7 Exit crater comparison for perforation with impact/exit velocity of 749 / 600 m/s [17].

explicit representation of fracture energy and details of the strain rate dependence
as potential weak spots in tensile behaviour of unreinforced concrete. He used the
test case of spherical steel projectiles impacting around 1900 m/s and 1100m/s on
140mm thick unreinforced concrete (fc = 68.9 MPa) to conduct sensitivity studies
on these two phenomena. The conclusion from his analysis was:

• The description of fracture energy strongly influences scabbing and cracking on
the rear sides of the target. It has a minor effect on depth of penetration and
spalling on the impacted side.

• The shape of the softening curve is less important than the inclusion of the correct
amount of fracture energy to be dissipated by cracking.

• The crack zone and width is only moderately influenced by details of the strain
rate dependent strength formulation.

Validation with respect to the limit Ricochet angle with detailed modeling of a
deformable projectile has recently been conducted by Klein at Ernst-Mach-Institute.
He simulated a thin hull 900kg penetrator at impact angles between 30◦ and 50◦ to
the normal, comparing to earlier full scale tests at WTD91, Meppen and scaled
experiments at Ernst-Mach-Institut [20]. Good correlation of deformations in rein-
forced concrete target and penetrator hull were found and are displayed in Figure
9.10.

The precision in replicating the limit case was necessary to further predict the
Ricochet trajectory and velocity and ultimately the location of a possible detonation
initiated from a time-controlled fuse (Figure 9.9). A subsequent blast simulation of
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Fig. 9.8 200m/s impact footprint and deformed penetrator after a limit Ricochet chase in simula-
tion and experiments at WTD91 and EMI.

the pre-damaged concrete target at relatively close distance was the last step to prove
the integral resistance of a heavy shelter structure.

Fig. 9.9 Ricochet and subsequent close detonation on a damaged concrete target with detailed
explicit rebar.

9.2.2 Deformable Projectiles and Coupling with Explosions

Joint impact of blast and fragments has been analyzed in a comprehensive study
by Leppänen at Chalmers University of Technology at Göteborg, Sweden [5]. The
authors placed a fragment charge of 1.3 kg high explosive at 0.6 m distance, acceler-
ating predefined fragments of 4 mm radius at 1650m/s onto concrete blocks of 500
mm thickness.

They studied the joint effect of blast and impact on the damage zone in depth of
the concrete both by experimental and numerical studies. In the experimental series
the residual strength of the impacted concrete blocks was investigated in sections
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subjected to compression and splitting tension tests. They found in simulations and
test samples undamaged concrete below the impact zone down to a depth of 150
mm. Beneath that level increased damage was observed by both methods. Their
numerical parameter study with and without synergy effects of blast and fragment
loading demonstrated that the blast wave does increase the damage in the thick con-
crete target.

The impact of shaped charge jets has been studied by Berg at Sandia National
Laboratories [2]. The simulated penetration depths of 660 mm for a two calibre
stand-off lay quite consistently between the hydrodynamic prediction (584 mm) and
test with high strength granite (900 mm). One example of their modelling applica-
tions is the comparison of damage zone extension for different stand-offs in Figure
9.10.

Fig. 9.10 Damage zones for shaped charge penetration into concrete from different caliber stand-
offs, simulated at Sandia Nat. Laboratories [2].

9.3 Protecting Critical Infrastructure against Explosion Effects

Protection of infrastructure against explosion effects, such as air blast, contact and
internal detonation, is a class of applications for which the RHT model has not
been validated during the initial development. However, the consistent description
from moderate strain rate effects and low pressure triaxial strength meridians across
pore compaction processes up to extremely high pressures in a detailed equation of
state promised applicability of the model also to this regime. At Ernst-Mach-Institut
and several other research establishments the model has been used analyzed and
discussed describing concrete structures under blast and contact detonations. The
following chapter will give a condensed review of some key aspects.
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A number of different explosion phenomena occurring on a six storey high rise
building loaded by 1 ton TNT at 30m distance has recently been studied numeri-
cally by Lu et al. [6] from Nanyang Technological University, Singapore. The entire
building frame including the basement was modeled by concrete volume elements
and explicit rebar beams for storey plates and concrete beams (beams 400x400mm,
storey height 3m, height and width above ground 20 x 10m, fc=30MPa). Body fixed
and space fixed hydrocode formulations were coupled to model interactions between
building, surrounding gas flow field and soil.

Fig. 9.11 Reinforced concrete frame, blast and ground shock domain for a fully coupled simulation
of global and local damage by Lu at Nanyang University, Singapore [6].

The authors implemented their own soil model as a user subroutine. It describes
the three phases of water, air and soil particles (indices w, g and s) in an equation
of state (9.12) with a continuum damage model for the soil skeleton. Shear strength
f (J2) depending on pressure (I1) and strain rate is formulated as (9.13).

d p−
(

dV − ∂Vs

∂ p
d p

)[(
∂Vg

∂ pb
+
∂Vw

∂ pp

)−1

+
∂ pa

∂Vp
+
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∂Vp

]
= 0 (9.12)

f =
√

J2 − (αI1 − k)
(

1+β ln

(
ε̇e f f

ε̇0

))
= 0 (9.13)

The comparison between fully coupled simulations with re-runs only with air-
blast and in turn ground shock gave a unique insight into the role and contribution
of the different loading regimes. Figure 9.12 displays the simplified response of the
second floor ceiling for all three simulation cases. The fully coupled and exclusive
air shock analyses are virtually identical for the early peak responses. Decisively
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later acts the ground interaction, providing no further critical amplitudes to the struc-
ture in the given configuration.

Fig. 9.12 Comparison of fully coupled, isolated air shock and isolated ground shock (left to right):
velocity of second floor ceiling. The air shock proves to be dominant loading mechanism [6].

Comparing damage patterns for all three cases and timing of displacement in
mid-span of front elements and floor plates, they further illustrated that the response
of the complete structure does not alter the response of the most exposed elements.
All these phenomena and their specific roles on blast resistance of building are of-
ten addressed but are hard to analyze. Therefore the work by Lu is seen as a very
enlightening, comprehensive study.

A further interesting work on ground shock of buried reinforced concrete struc-
tures has been issued by the same group [7]. They used the same concrete and soil
models and discretisations to study a buried side charge at a scaled distance of 2.7
m/kg1/3). They highlighted a number of interesting results on possible assumptions
in this case of loading scenarios:

• A 2D plain strain model provides similar concrete damage pattern on the directly
affected side wall as a three-dimensional analysis.

• Noticeable differences occur between 2D and 3D in the floor plate accelerations
by the shock wave refracted around the corner.

• Comparison with TM-5-1300 engineering formula for free field ground shock
peak velocities and accelerations reveals much higher loads in the simulations
(58g instead of 6.45g, 1.3m/s instead of 0.31m/s) when the structure is included
and its structural response explicitly simulated
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• Shock response spectra are evaluated and identify 100 Hz as critical frequencies

Ground shock in the sense of rock fragmentation has been analyzed by Preece
[11] at Sandia National Laboratories. For a first qualitative study they modeled rock
using the RHT concrete data set and studied fragmentation around explosive filled
boreholes with and without pre-split crack behind.

9.3.1 Comparison to Engineering Models and Empirical Formula

Fig. 9.13 Hydrocode and SDOF simulation of the limit loading of a heavy bunker wall by internal
detonation at Sandia [3].

More quantitative validations have been published by Berg and Preece [3]
from Sandia National Laboratories while using the model for internal detona-
tion in a heavy concrete shelter. Besides a number of buildings sections predicted
purely numerically they also compared a two-way spanned wall to a single-degree-
of-freedom model (SPAn32 of US Army Corps of Engineers [43]). The SDOF
model predicted a peak velocity vmax =10.5m/s and a maximum displacement xmax

=42mm at 8 ms, the hydrocode simulated vmax =5.5m/s and xmax =54mm at 20 ms



9 10 Years RHT: A Review of Concrete Modelling and Hydrocode Applications 159

(see also Figure 9.13). Seen the massive structure they found very reasonably agree-
ment of a load case with large shear failure, but not total collapse.

Fig. 9.14 Prediction of blast response and bending failure, compared to shock tube experiments
and BAUEX-SDOF calculations [14].

A further work by the author (Riedel et al. [14]) compared shock tube test on rein-
forced concrete panels, to single-degree-of-freedom predictions using EMI-BAUEX
and hydrocode simulations of concrete with explicit rebar. Good agreement concern-
ing bending failure mechanisms and peak loads has demonstrated in the paper and
Figure 9.14. The simplified shock tube samples replicated a typical reinforced con-
crete wall section (t=24 cm, 0.5% tensile reinforcement.content) of security relevant
office building (see Figure 9.15).

9.3.2 From Power Plant Security to Future High-Rise-Buildings

Riedel et al. [14] also compared experiments, predictions using the empirical engi-
neering tool XPLOSIM [27] and FE simulations with respect to contact detonations
(figures 9.16 and 9.17).

Motivation for the higher efforts using detailed FE models and many time steps
of explicit time integration is the prediction of more complex scenarios involving
the same failure mechanisms. Figure 9.18 shows an application in nuclear security
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Fig. 9.15 Predictive hydrocode simulation of a security relevant office building under blast, vali-
dated by shock tube tests in Figure 9.14.

Fig. 9.16 Validation fo hydrocde simulations (right) against experiments (left).

analysis to wall sections composed of different thicknesses and reinforcement de-
grees.

Aircraft impact was in the past most extensively studied in the context of nuclear
security analysis [44]. Hydrocode simulations and single and two degree of free-
dom models were also established, validated and used for design purposes in this
domain. The know-how has recently been reviewed and readapted to the security
of high rise buildings. In Germany the civil engineering company Schüßler-Plan
Consulting Engineers has proposed a concept of a future secure high-rise building
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Fig. 9.17 Validation fo hydrocde simulations (middle) against experiments (top) and XPLOSIM
[27] engineering tool predictions (lower) in [14].

called ’security scraper’ [10]. An ongoing research with the University of Kassel,
the principal German competence for ultra-high-performance concretes and Ernst-
Mach-Institut deals with the development of a security core, which resists aircraft
impact without perforation [9]. Nöldgen [10] showed that SDOF calculations for
the dynamics deflection under the momentum of the impact of a complete aircraft
provide global bending deflection of the building similar to peak wind gusts. He
concluded that penetration resistance against engine impact, with weights up to 6.5
tons for largest civilian airliners, is the critical load case.

As a consequence, he studied in detail the local response of the UHPC high-
rise core during the engine impact. Figure 9.19 summarizes the simplification of
the engines mass distribution in equivalence to Sugano’s analysis [44], leading to a
mass spring model simulated by hydrocde (Figure 9.20) and two-degree-of-freedom
model. Currently, a best fit of the RHT concrete model to UHPC strength meridians
and equation of state properties is used to predict the ballistic limit. A detailed rep-
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Fig. 9.18 Prediction of intrusion resistance with explosive attacks for nuclear security, courtesy by
EnBW AG.

Fig. 9.19 Civilian aircraft impact analysis by Nöldgen, Schüßler-Plan Consulting Engineers
[9][10], based on earlier nuclear safety studies [38].

resentation of the significant fracture energy of 1% to 2.5% fiber content is ongoing
work. Hopkinson-Bar experiments recently measured dynamic fracture energies of
11000 N/m, which indicate an increase by more than one order of magnitude com-
pared to 380 N/m for conventional concrete without fibers [39].
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Fig. 9.20 First predictions of failure mechanisms and ballistic limit during aircraft engine on ultra
high performance concrete [9].

9.4 Summary and Outlook

One decade after the development and broader entrance to service of the RHT model
the understanding and predictive capabilities for the dynamic behavior of concrete
have well advanced. The EMI concrete model has contributed to the progress to-
gether with other plasticity models as for example by Malvar [37] in the commercial
hydrocode LS-Dyna, by Weidlinger Assoc. [38], [25] in the proprietary tool NLFlex
or fundamentally different descriptions as by Bazant [21]. During the development
at Ernst-Mach-Institut deeper understanding of the equation of state properties of
concrete has been built. A number of following developments has been triggered, as
the detailed experimental techniques to derive dynamic tensile strength and fracture
energy in Hopkinson-Bar spallation tests [45],[39] and the proposition of similar
models [30][28].

The RHT model has proven in a number of worldwide applications to success-
fully link low dynamic strength details to shock physics and to be applicable across
the dynamic range of hydrocode simulations. Yet, truly predictive modeling going
beyond qualitative agreement with this class of highly non-linear finite-element-
methods will always require a significant level of expertise. If this is respected, val-
idation experiments can be reduced and much better predicted prior to the test today.
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Chapter 10
Numerical Simulations of the Penetration of
Glass Using Two Pressure-Dependent
Constitutive Models

Sidney Chocron and Charles E. Anderson Jr.

Abstract

10.1 Introduction

Penetration of long gold (Au) rods into borosilicate glass was investigated experi-
mentally as a function of impact velocity [1]. Flash radiography was used to measure
the nose position and rod length as a function of time, and high-speed photography
was used to measure the position of the failure front as a function of time. It was
found that the failure front, which propagates at a speed much faster than the pene-
trating rod, quickly outdistances the projectile-target interface. Thus, except for the
first few moments after impact, the rod presumably penetrates failed glass.

Independently, the responses of initially intact and predamaged borosilicate glass
as a function of confinement have been measured. Two methods were used: triax-
ial compression and confined sleeve. The two characterization methods will be de-
scribed briefly. The characterization data will then be interpreted using two pressure-
dependent constitutive models – Drucker-Prager and Mohr-Coulomb – and con-
stants for the two models derived from the results of the laboratory experiments.
Next, numerical simulations of the glass impact experiments, using these two con-
stitutive models, are presented. The numerical results are compared with the exper-
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imental data, and conclusions made concerning the applicability of the two consti-
tutive models for representing the penetration response of borosilicate glass.

10.2 Materials

Laboratory characterization tests, using the same type of glass as in the impact ex-
periments, were performed on intact and predamaged samples of borosilicate glass.
The brand name of the glass is Borofloat, manufactured by Schott Glass using a
float process. X-ray fluorescence analysis performed on the test samples indicates
an approximate composition (by weight) of: 80.5% SiO2, 12.7% B2O3, 2.5% Al2O3,
3.5% Na2O, and 0.64% K2O [2]. Mechanical properties of the intact glass, obtained
by ultrasound measurement techniques [2], are: elastic modulus E = 62.2 GPa and
Poisson’s ratio ν = 0.20 [2]. The density (ρ) is 2.23 g/cm3.

10.3 Experimental Techniques for Material Characterization

The two laboratory test techniques are briefly described. The two test techniques are
complementary since one explores lower pressures (the bomb test) than the other
(confined sleeve). The fact that they overlap at confining pressures of 300 or 400
MPa increases the confidence of interpretation of the confined sleeve technique.

10.3.1 ’Bomb’ Technique

The triaxial compression test is a ’classic’ test used to characterize pressure-
dependent materials like sands or concrete; for example, see Ref. [3]. A specimen is
placed inside a thick-wall steel pressure vessel (the pressure ’bomb’). The pressure
bomb is placed in an MTS machine. A steel piston runs from the loading platen of
the MTS machine to the specimen through an alumina-loading anvil. A hydraulic
fluid, controlled by a pump, is used to load the specimen at different constant fluid
pressures. An axial load is applied from the MTS machine. For simplicity, this test
will be referred as ’the bomb technique’ in the text. Both intact and predamaged
samples were tested. The cracks in the predamaged samples were generated by ther-
mal shock as described in Ref. [4].

The equivalent stress for this simple load configuration with cylindrical symmetry
is given by:
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σeq = |σz −σr| = σ̃z − σ̃r (10.1)

where σz is the axial load applied through the piston and σr is the fluid pressure
(σ < 0 in compression, σ̃ > 0 in compression). Tests were performed at fluid pres-
sures of 25, 50, 100, 250, and 400 MPa. The nominal strain rate in these tests was
0.001 s−1. The axial strain of the specimen was measured with a calibrated clip gage
during the tests.

The results of four typical tests are shown in Fig. 10.1. Tests BF-63 and BF-61
were performed on intact samples at confinement pressures of 250 and 400 MPa, re-
spectively. The dotted lines are straight reference lines that permit determination of
when the measurements deviate from linearity. The exact cause of the non-linearity
is unknown (perhaps densification?), but this non-linearity is not thought to be re-
lated to the propagation of cracks since failure for these samples is ’catastrophic’.
Failure occurs suddenly (denoted by the vertical arrows), and after failure, the load
carrying stress is zero since the samples ’exploded’ in compression.

Fig. 10.1 Two intact samples (BF-61 and BF-63) and two predamaged samples (BF-49 and BF-53)
tested in the pressure bomb at 250 and 400 MPa nominal confinement pressures.

Failure of predamaged samples is very different, as shown in Fig. 1 for tests
BF-49 and BF-53. Upon reaching some maximum axial stress, the load drops, but
the specimen still supports a significant amount of load for large strains. The initial
drop in load carrying capability (at 2-4% axial strain) results from the formation of
a shear plane. The stress-strain curve after this initial failure has a saw-tooth shape,
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probably because the failure surfaces of the shear plane slide over each other, occa-
sionally ’catching’ and then releasing, creating the saw-tooth pattern. The load that
the sample can support after its maximum will be called the ’residual’ load. The
residual load is not a uniquely defined quantity; instead, the residual load is repre-
sented by the ’peaks and valleys’ of the sawtooth response.

The maximum confining pressure of ∼375-400 MPa is limited by the hydraulic
pump and the seals. Currently, the hydraulic pump cannot sustain pressures above
approximately 400 MPa; however, the seals begin to leak profusely above ∼500
MPa.

10.3.2 ’Sleeve’ Technique

A second testing technique consists of placing the specimens inside a confinement
sleeve. The specimen is inserted into a Vascomax steel sleeve that is honed to fit
the specimen. An axial compressive stress is applied to the specimen with an MTS
servohydraulic machine by means of tungsten carbide or silicon carbide (SiC-N)
platens.

The sleeve technique has also been used in the past to determine pressure depen-
dence of the yield strength. For example, Chen and Ravichandran [5]-[6] character-
ized ceramics at high strain rates and high pressures by confining them in metallic
sleeves. Ma and Ravi-Chandar [7], and Lu and Ravichandran [8] characterized alu-
minum and a metallic glass at slow strain rates, respectively. More recently, Chen
and Luo [9] characterized intact and damaged ceramics under low confinement pres-
sures at high strain rates. A confinement sleeve was also used by Forquin, et al.
[10], in combination with numerical simulations, to characterize concrete at high
pressures. In general the above references confine the samples at low to moderate
pressures (100-300 MPa). In the present work, confinement pressures are signifi-
cantly higher, on the order of 1 GPa.

An example of the results for a test series with multiple load cycles on a pre-
damaged specimen is shown in Fig. 10.2. Jumps in the stress and pressure are ap-
parent during the test, Fig. 10.2(a), and they imply a sudden discontinuity in the
pressure applied to the specimen, probably due to internal slippage along a fracture
plane. The jumps occur as the axial load is being applied. We believe that the jumps
provide fundamental information of how the sample fails as a function of confine-
ment pressure. Consequently, all the jumps recorded in each of the tests (four jumps
in the one shown in Fig. 10.2) are placed on an equivalent stress versus hydrostatic
pressure graph (the equivalent stress is computed from Eqn. (10.1) once the radial
stress is calculated from the hoop strain gage). This technique is explained in detail
in Ref. [11]. The right plot in Fig. 10.2 is a summary of the jumps recorded in all the
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Fig. 10.2 Interpretation of the sleeve tests with predamaged specimens: only the points where
sudden jumps occur (left figure, test BF-21) are considered in constructing the constitutive model,
right figure.

tests conducted on predamaged samples by the confined sleeve test. It is noted that
the hydrostatic pressure is a combination of the confining pressure and the pressure
generated by the axial load.

10.4 Constitutive Model Interpretations

As mentioned in the Introduction, the assumption that will be made is that the pro-
jectile penetrates failed glass [1]. This is not exactly true at the very beginning of
penetration, and details of the transition of intact to failed glass might be important
at early times. However, for the range of impact velocities studied here, the failure
front propagates at least twice as fast as the rod is penetrating; thus, it would appear
that the assumption that the rod penetrates failed material is reasonable. We thus
avoid needing a description of how the glass fails. The results of the laboratory ex-
periments are now used to determine constitutive constants for computational ma-
terial models to describe the strength of failed glass as a function of confinement
pressure. A brief description of the models and the model constants is provided in
the paragraphs below.

10.4.1 Drucker-Prager Model

The Drucker-Prager (DP) model [12] has the form:
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Y =
{

Y0 +βP P < (Ycap −Y0)/β
Ycap P ≥ (Ycap −Y0)/β

(10.2)

where Y0 is the zero-pressure strength, β is the slope, P is the hydrostatic pressure
(negative of the mean stress), and Ycap is the limiting flow stress. Failure data ob-
tained from tests like the ones shown in Fig. 10.2 were plotted in an equivalent stress
versus hydrostatic pressure graph, as shown in Fig. 10.3. The solid triangles indicate
predamaged confined tests. The open triangles represent the results of unconfined
experiments. The equivalent stress for the confined specimens can be described by
a linear function of the hydrostatic pressure. The data in Fig.10.3 suggests that an
appropriate Drucker-Prager (DP) model for the predamaged samples can be written
as:

Y = 0.423+1.2P(units in GPa) (10.3)

A similar procedure was followed to find the DP constants for intact specimens.
The constants are shown in Table 10.1 for the two experimental methods. Addition-
ally, the residual strength constants for the bomb tests were obtained from the same
test that was used to estimate the predamaged constants. The saw-tooth portion of
the data curve after failure was used to determine the ’residual’ strength.

Fig. 10.3 Equivalent stress at failure for predamaged samples tested in the bomb.

It is observed that β , within the uncertainty of the measurements, is the same for
the bomb tests and the confined sleeve tests, and is independent of the damage level.
However, Y0 decreases as damage increases. This observation will be important later
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as we compare numerical results with penetration data. β = 1.2 will be used as the
slope for the DP model; the influence of Y0 on the computational predictions will be
shown in a parametric study.

Table 10.1 DP parameters for intact and predamaged borosilicate glass.

Bomb Test Sleeve Test
Specimen Y0 [GPa] β Y0 [GPa] β

Intact 1.6 1.2 1.3 1.1

Predamaged 0.42 1.2 0.73 1.0 – 1.3

Residual 0.14 1.1 – 1.2 - -

Table 10.2 MC parameters obtained for intact and predamaged specimens.

Bomb Test Sleeve Test
Specimen μ c [GPa] μ c [GPa]

Intact 0.6 0.755 0.55 0.58

Predamaged 0.6 0.200 0.61 0.25

Residual 0.63 0.63 - -

The last parameter required for the DP model is Ycap. Ignoring a few ’outlier’
points in Fig. 10.2b, the equivalent stress appears to fall between 1.90 GPa and
2.25 GPa, for a nominal value for Ycap = 2.1±0.2 GPa. The data in Fig. 10.2 were
obtained for quasi-static loading rates, and loading rates are high in penetration
events. A limited number of tests were also performed at high strain rates and the
results show that there is no (or negligible) strain-rate effect for borosilicate glass
[13]. Bourne, et al. [14], conducted flyer-plate impacts on borosilicate glass and
determined the shear strengths of intact and failed borosilicate glass. They found
that the failed material has a strength of 1.6± 0.5 GPa. The data in Fig. 10.2b and
Bourne’s data are consistent within measurement uncertainties, but the data scatter
is sufficiently large that it is not particularly helpful in selecting a value for Ycap.
Numerical simulations will be used to refine a value for Ycap.

10.4.2 Mohr-Coulomb Model

Predamaged specimens tested in the bomb systematically showed a shear plane at an
angle between 55 and 70 degrees. The angle seems to be independent of the confine-
ment pressure applied to the specimen. The DP model is based on the first invariant
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of the stress tensor, I1, and the second invariant of the stress deviator tensor, J2. The
flow surface in the π-plane is a circle, and thus, the DP model can never have a
characteristic failure angle. Incorporating the third invariant J3 into the description
of failure results in flow surface on the π-plane being a polygon, which then has a
characteristic failure angle. The Mohr-Coulomb (MC) model incorporates J3, and
has a characteristic failure angle independent of the confinement pressure (see Ref.
[15]); thus, it was felt that the MC model could be an appropriate candidate for de-
scribing the response of glass.

Fig. 10.4 MC failure points for predamaged samples tested in the bomb. σ1 and σ3 are the maxi-
mum and minimum principal stresses respectively.

The data from the bomb and confined sleeve tests were reanalyzed from the per-
spective of a MC model; results for the predamaged bomb specimens are displayed
in Fig. 10.4. The MC model gives the maximum shear stress, τ , that the glass can
support on any plane:

τ = c+μσ̃n (10.4)

where c is the cohesion, μ ≡ tan(Φ) is the friction coefficient (Φ is the friction
angle), and σ̃n the normal stress (positive in compression). Letting σ1 and σ3 be
the maximum and minimum principle stresses, respectively, then (σ1 +σ3)/2 is the
center of the Mohr circle, and (σ1 −σ3)/2 is the radius of the Mohr circle (maxi-
mum shear stress). A linear least squares fit of (σ1 −σ3)/2 versus (σ1 +σ3)/2 was
performed on the test data to obtain an intercept and slope, as shown in Fig. 10.4,
for the predamaged material: a = 173 MPa, b = 0.51. The relations between these
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regression coefficients and the MC parameters are given by:

Φ = arcsin(b) μ = tan(Φ) c = a/cos(Φ) (10.5)

Therefore, for the predamaged samples, a MC model representation can be writ-
ten as (units in GPa):

τ = 0.21+0.6σ̃n (10.6)

Similar analyses were performed for the intact samples, residual strength and the
sleeve tests. The constants are presented in Table 10.2.

There is more damage in the predamaged specimens than in the intact specimens.
The residual strength measured in the bomb corresponds to a specimen with more
damage than for the predamaged specimen. It is remarkable (maybe only a coinci-
dence) that the friction coefficients for intact, predamaged and residual strengths are
very similar ( ≈ 0.6) while the cohesion is severely reduced with increasing damage.
This is analogous to what was found for the DP model.

10.5 Numerical Simulation of Penetration

We now apply the two constitutive descriptions to the penetration of glass. Behner,
et al. [1], performed long-rod penetration experiments of gold (Au) rods into intact
Borofloat 33 glass cylinders with a length of 60 mm and a diameter of 20 mm. The
pure Au rods had a diameter of 1 mm and a length of 50 or 70 mm. The experiments
were conducted in the reverse ballistics mode where the glass target was launched
at the suspended Au rod, which was aligned using a laser. The impact velocity (vp)
was varied over a range of approximately 0.4 to 3.0 km/s. Flash radiographs were
used to obtain penetration-time and rod length-time data. The slopes of the linear
regression fits to the data provide the penetration (u) and consumption velocities
(vc), respectively, which are plotted in Fig. 10.5 as a function of vp. High-speed
photography was also used to measure the propagation of the failure front in the
glass. More details of the experiments are given in Ref. [1].

The nonlinear wave propagation and material response computer program CTH
[16] was used to conduct the numerical simulations. CTH contains a wide range
of equations of state and viscoplastic models. Although the DP model was resident
within CTH, the MC model was not; thus, the MC model needed to be implemented
(as described in the Appendix). In addition to the inelastic response of the glass, as
represented by either the DP or MC models, the elastic behavior of the damaged
material must be modeled. It has been shown that if the material is well confined,
a severely cracked sample has elastic constants similar to an intact specimen [17];
thus, the elastic response of failed material is the same as that of the intact material.
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Fig. 10.5 Penetration and consumption velocities vs. impact velocity for borosilicate glass im-
pacted by gold rods (regression lines recalculated to include highest velocity data points [1]).

The Mie-Grneisen equation of state was used to describe the thermodynamic
response of the glass and the Au rod. The bulk modulus is 33.23 GPa; it was as-
sumed that the glass had no nonlinear compressibility effects, i.e., P = κ (ρ/ρo −1)
, where κ is the bulk modulus, ρ is the density, and the subscript ’o’ refers to the ini-
tial density. This is clearly an oversimplification, but it is believed that the penetra-
tion velocity would only be marginally affected by the inclusion of nonlinear terms.
However, this assumption will be explored in future simulations. The Grneisen co-
efficient (Γ ) was set to 1.0. The Steinberg-Guinan model was used to describe the
equation of state and constitutive response of the Au [18], which has a density of
19.3 g/cm3. Seven zones were used to resolve the radius of the projectile (cylindrical
symmetry), and this zoning was used throughout the problem.

10.5.1 Drucker-Prager Model

An estimate for Ycap was made from the experimental data in Fig. 10.2, but there was
uncertainty in whether the equivalent stress had, in fact, reached a maximum value.
Previous work [19] demonstrated that the most important constitutive parameter at
high impact velocities is Ycap, i.e., the computational results are fairly insensitive to
changes in Y0 and β at high impact velocities. The highest velocity datum point was
not included in the regression fit for u and vc versus vp in Ref. [1]. Since we decided
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to use the highest velocity point to determine Ycap, the regression analyses for u and
vc were redone, and these are shown in Fig. 10.5. We selected the highest velocity
point (2.817 km/s) and conducted a parametric study on the influence of Ycap. Ycap

was varied from 1.0 GPa to 2.4 GPa in increments of 0.2 GPa. The results are shown
in Fig. 10.6.

Fig. 10.6 The dependence of the penetration velocity on Ycap.

Two horizontal lines are drawn in Fig. 10.6: one line represents the penetration
velocity for the datum point at 2.817 km/s, while the other represents the least-
squares fit of u versus vp (the dashed line in Fig. 10.5). The simulation results were
extrapolated to the triangular point to estimate Ycap for a penetration velocity of
1.828 km/s. Note that Ycap must be varied considerably to change the penetration
velocity from nominally 1.83 km/s (Ycap = 2.72 GPa) to 1.89 km/s (Ycap = 1.78
GPa); Ycap must be decreased by 34% to increase the penetration velocity by 3.3%.
In spite of this large variation in Ycap, these values are consistent with an interpre-
tation that confining pressures were sufficiently high in the laboratory tests (Fig.
10.2b) that the cap was achieved.

For the next set of simulations, it was decided that the parameters of the constitu-
tive model should be selected to reproduce the average penetration response, which
is represented by the dash line in Fig. 10.5. The next set of simulations was con-
ducted over the entire range of impact velocities using Eqn. (10.3) and Ycap = 1.78
GPa. Computational results (not shown) fall significantly below the data at impact
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velocities less than 1.5 km/s. Examining Table 10.1, it is observed that β is essen-
tially constant (1.2) for the intact, pre-damaged, and residual damaged materials; but
that Y0 decreases with increasing levels of damage. We therefore hypothesize that
the glass in front of the penetrator is more highly damaged than in our laboratory
experiments, leading to a lower value of Y0. Therefore, we conducted a parametric
study on Y0, with β = 1.2 and Ycap = 1.78 GPa. The impact velocity was incre-
mented in steps of 0.25 km/s, as Y0 was varied between 0 and 100 MPa. The results
are plotted in Fig. 7, where they are compared to the experimental data. The dashed-
dot line represents the least-squares regression – as shown in Fig. 10.5 – through the
experimental data. It is seen that a value of 25MPa ≤ Y0 ≤ 50MPa reproduces the
penetration velocity quite well for the lower impact velocities. Y0 is thus taken as an
average of 25 and 50 MPa, i.e., Y0 = 38 MPa.

Fig. 10.7 Sensitivity study on Y0 (with β = 1.2 and Ycap = 1.78 GPa)..

As already indicated, the penetration velocity is not particularly sensitive to
changes in Ycap. The simulations indicate that the cap could be between 1.78 GPa
and 2.72 GPa (the triangle in Fig. 6); whereas the experimental data indicate that
the cap is 2.1± 0.2 GPa. We therefore use the experimental data in Fig. 10.2b to
provide the estimate for the cap. However, simulations are required to estimate Y0

for comminuted glass. Thus, for highly damaged borosilicate glass, the applicable
DP constants are:
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Y =
{

0.038+1.2P P ≤ 1.72 GPa
2.1 GPa P > 1.72 GPa

(10.7)

where all units are in GPa.

Fig. 10.8 Comparison of the simulation results to position-time data Y0 = 25 MPa).

Penetration versus time is nonlinear for the lowest impact velocities [1]. The
penetration-time simulation results, using 25 MPa for Y0, are compared to the ex-
perimental data for the experiments conducted at 0.787 km/s and 1.00 km/s in Fig.
10.8. The experimental data points are linked by the dotted lines. The solid lines
are the computational results, and they clearly overpredict the depth of penetration.
However, the late time (>∼ 20μs) penetration velocity is captured quite-well by the
simulations, as indicated by the dashed lines, which are drawn at the same slopes
as the solid lines. There is slight nonlinearity of the penetration-time data at early
times for vp = 1.2 km/s, but by 1.5 km/s, the penetration-time curves are linear (i.e.,
constant penetration velocity). Thus, it is concluded that at the lowest impact veloc-
ities, the assumption that the gold rod penetrates only highly damaged glass is not
valid; that is, details of the transition from intact to damaged glass are important
and cannot be ignored during the early stage of penetration at low impact velocities.
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10.5.2 Mohr-Coulomb Model

As mentioned above, the MC model was implemented into CTH. For the first set of
simulations, constitutive parameters very similar to the ones obtained in the bomb
tests for predamaged samples were used (a two-parameter model, Equation 10.6).
It was found that the penetration velocity was greatly underestimated unless the
friction angles and cohesion were greatly reduced. A mesh sensitivity study was
conducted, varying the number of zones resolving the projectile radius between 5
(coarse) and 15 (very fine) zones; the simulation results showed very little sensitiv-
ity to changes in zoning. Thus, the numerical simulations are numerically resolved.

Fig. 10.9 The dependence of the penetration velocity on τcap.

Therefore, we went to a 3-parameter model by imposing a cap on the shear stress,
τcap. In general, there is not a one-to-one correspondence between DP and MC
constitutive parameters. However, for a cylindrical triaxial test where there is radial
confinement along with an axial load, then the following equation applies:

τcap =
Ycap

2
(10.8)

The conditions of cylindrical triaxiality are reasonably reproduced immediately
beneath the penetrating projectile, so Eqn. (10.8) should approximately hold. A
parametric study on τcap was conducted, similar to the one that was done for Ycap

(Fig. 10.6), using the MC model, at an impact velocity of 2.817 km/s. The results
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are shown in Fig. 10.9. We see the same sensitivity between τcap and the penetration
velocity as was shown for Ycap. The results of the parametric study are extrapolated
to the penetration velocity of the datum point, represented by the triangle. Again, we
elect to model the average penetration response, which from Fig. 10.9 gives a value
of τcap = 0.925GPa. This is within 4% of the prediction from Eqn. (10.7) using
Ycap = 1.78 GPa. Given the accuracy of the simulations (particularly in estimating
the penetration velocities), we can state that Eqn. (10.8) provides a relationship be-
tween the caps of the DP and MC models.

Next, a parametric study was conducted on the cohesion, c, with μ = 0.6 and
τcap = 0.925 GPa. Results are shown in Fig. 10.10. The numerical results look es-
sentially identical to the results using the DP model, Fig. 10.7. The cohesion c in the
MC model is analogous to Y0 in the DP model. The fact that numerical simulations
need a very small cohesion value to match the ballistic experiments is not seen as
a contradiction with the characterization tests. As discussed when the bomb tests
were presented, the cohesion decreases with damage. The cohesion of the ’residual-
strength’ material, see Table 10.2 is already small and, presumably, the material
under the projectile is more damaged than the ’residual-strength’ material tested in
the bomb.

Fig. 10.10 Sensitivity study on c (with μ = 0.6 and τcap = 0.925 GPa.

Not shown is a graph for the MC model analagous to Fig. 10.8. The same ob-
servations and conclusions hold for the MC model as for the DP model concerning
early-time penetration at the lower impact velocities.
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Similar to Ycap, it was decided to estimate τcap from the experimental data in-
stead of taking the value from an ’exact’ match of the simulations. Given the above
considerations, the three parameter MC model proposed for damaged borosilicate
glass is:

{
τ = 0.012+0.6σ̃n σ̃n ≤ 1.65 GPa
τ = 1.0 GPa σ̃n > 1.65 GPa

(10.9)

This model reproduces the characterization experiments (stresses and failure pat-
tern), and the ballistic tests (penetration velocity), albeit the cohesion needs to be
increased for the characterization experiments.

10.6 Summary and Conclusions

Numerical simulations of a gold rod penetrating borosilicate glass were conducted
using two different pressure-dependent constitutive descriptions – Drucker-Prager
(DP) and Mohr-Coulomb (MC) – for the glass. Constants for the two models were
derived from laboratory characterization experiments. These laboratory experiments
were triaxial compression (’bomb’) and confined sleeve tests. The confined sleeve
test explores higher pressures than possible with the triaxial test, but the results for
the two tests overlap at pressures of about 350 MPa, providing increased confidence
in the results.

The slope (β ) for the DP model and the friction angle (Φ) for borosilicate glass
were determined from the characterization experiments, and were found to be in-
dependent of the degree of damage to the glass (intact, predamaged, residual dam-
aged). However, the zero-pressure strength (Y0) and the cohesion (c) for the DP and
MC models, respectively, depended upon the degree of damage, with these parame-
ters decreasing as damage increased.

The confining pressures in the confined sleeve experiments were sufficiently high
to achieve a saturation of the load-carrying ability of the damaged glass, i.e., a cap.
There was some uncertainty however, because of data scatter, in interpretation of
the experimental data. Previous work [19] demonstrated that the cap controls the
penetration velocity at high impact velocities so parametric simulations were con-
ducted to investigate the dependence of the penetration velocity on the cap (Ycap and
τcap). The parametric studies here show that the penetration velocity of an Au rod
into borosilicate glass is relatively insensitive to quite large variations in the value
of the cap. A ∼40% increase in the cap resulted in only a ∼3% decreased in the
penetration velocity. Nevertheless, the value deduced for the cap from numerical
simulations was in agreement with the experimental characterization results. Fur-
ther, it was shown that τcap = Ycap/2.



10 Numerical Simulations of the Penetration of Glass 183

It was assumed that the projectile penetrated failed material; thus, details of the
transition of intact glass to failed glass were avoided. The rationale for this ap-
proach was that the failure front propagates much more rapidly than the projectile
penetrates; thus, the projectile penetrates failed material.

Parametric studies were required to deduce the zero-pressure strength (Y0) and
the cohesion (c) for the DP and MC models to reproduce the penetration velocities
of the gold rod at the lower impact velocities (vp < 1.5km/s). The values deduced
from the simulations were significantly lower than obtained for the characteriza-
tion experiments. It was concluded that the material beneath the penetrator is more
highly damaged (comminuted) than the damaged glass characterized in the labora-
tory experiments.

It was also seen that at the lowest impact velocities that the constitutive model
underestimates the penetration resistance of the glass at early penetration times;
however, the simulations reproduce the later time penetration velocities. This sug-
gests that details of the transition of intact to damage glass are important at the lower
impact velocities, and that a more comprehensive glass model (intact, damage initi-
ation, damage propagation) is required in order to model projectile penetration over
the full range of impact velocities.

At this point, the DP and MC constitutive models do equally well in predicting
the penetration response of a gold rod into damaged borosilicate glass. Two of the
three constitutive constants needed for each model were derived from laboratory
characterization experiments, but a third parameter – one that appears to be associ-
ated with the degree of damage – had to be inferred from matching simulations to
ballistic experiments. These observations could potentially simplify a more compre-
hensive glass model: damage seems to affect only the zero-pressure intercept (DP
model) or cohesion (MC model) of the glass. A potential advantage of the Mohr-
Coulomb model, which may be more relevant for the intact material, is that the MC
model provides a characteristic failure angle, whereas for the DP model, damage is
isotropic.
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Appendix: Implementation of the Mohr-Coulomb Model into
CTH

CTH is a nonlinear wave propagation and material response (hydrocode) com-
puter program developed by Sandia National Laboratories [16]. CTH contains a
wide range of equations of state and viscoplastic models that can be selected by
the user, depending upon the problem. For brittle materials like ceramics or glass,
which have a strength that is pressure dependent, the typical choices would be the
Johnson-Holmquist [20] Drucker-Prager models. As mentioned earlier, although the
DP model can successfully reproduce stress-strain curves obtained in the pressure
bomb, it lacks the capability of reproducing a failure pattern like the one observed in
the experiments. Since it was not known how important this feature would be when
simulating projectile penetration, it was decided to implement the MC model into
CTH.

Flow Surface and Implementation

Nayak [21] developed an equation for the MC flow surface that can be very conve-
niently implemented in hydrocodes:

F = σmsinΦ+ σ̄ cosθ0 −
σ̄√

3
sinθ0sinΦ− c cosΦ = 0 (10.10)

where σm = σii/3 is the mean stress, σ̄ is the equivalent stress, and θ0 is the lode
angle defined by:

θ0 =
1
3

arcsin

(
−3

√
2

2
J3

σ̄3

)
(10.11)

J3 is the third invariant of the stress deviator tensor. CTH uses radial return for
most of its viscoplastic models, for example, the von Mises and Drucker-Prager
models. That means that the flow rule is non-associative but the return is done in the
π-plane and at constant pressure. To circumvent the implementation of the radial
return and stress rotations, CTH was modified to use, where possible, algorithms al-
ready in CTH. The subroutine implemented calculates F according to Eq. (10.10) for
each cell and time step. The algorithm first assumes that the response is completely
elastic. If F < 0, nothing more needs to be done; but, if F > 0, the cell material is
yielding and the subroutine computes the radial return scaling factor to bring the
deviatoric stress back to MC surface, see Fig. 10.11. It also computes the strength
as if it were a von Mises flow surface. This strength is then passed on to CTH so
CTH can actually perform the radial return and stress rotations.
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Fig. 10.11 Implementation of Mohr-Coulomb model into CTH.

The parameter m that scales the stress deviators to the flow surface (see, for
example, Wilkins [22]) is easy to compute from Eq. (10.11) by just replacing σ̄ =
mσ̄∗ and σm = σ∗

m where σ∗ is a trial stress found assuming that the body is elastic:

m =
ccosΦ−σ∗

msinΦ

σ̄∗
(

cosθ0 − sinθ0sinΦ√
3

) (10.12)

where, again, c is the cohesion of the MC solid and Φ its friction coefficient.

A shear stress cap τcap was also implemented in CTH to limit the shear stress the
solid can bear. Therefore, the actual MC model that was implemented is:

{
τ = c+ tan(Φ)σn when τ < τcap

τ = τcap τ ≥ τcap
(10.13)

where now the material constants are c, cohesion, μ = tanΦ , friction coefficient,
and τcap is the cap. The scaling factor when τmax > τ̄ is given by:
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m =
τ̄

σ̄∗cosΦ0
(10.14)

The implementation of the code was thoroughly checked using simple cases
where the answer was known analytically, for example, uniaxial strain or uniax-
ial stress in compression and tension, pure shear, and triaxial compression.
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Chapter 11
On the main mechanisms in ballistic perforation
of steel plates at sub-ordnance impact velocities

Tore Børvik, Sumita Dey, Odd Sture Hopperstad and Magnus Langseth

Abstract This review is a summary of earlier published work carried out by CRI-
SIMLab during the last decade on the ballistic perforation of steel plates at sub-
ordnance impact velocities. The reason for carrying out these studies was twofold.
First, we wanted to increase our understanding of the many physical phenomena
taking place during structural impact by studying some of the main parameters af-
fecting the ballistic perforation resistance of steel plates in the sub-ordnance veloc-
ity regime. Second, we wanted to generate high-precision experimental data for the
validation of computational tools to be used in the design of protective structures.
The main focus in this summary has been on the experimental part. Since several
parameters in the experimental studies are similar, such as the velocity regime, the
projectile material and mass, and the target material and geometry, the comparison
between the various experimental results are both easier and more reliable. The ex-
perimental set-up and the various experimental programmes are first presented in
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brief. Then some main experimental results from five different experimental studies
are presented and discussed in some detail. A material model used for numerical
simulations of the impact event, together with a short description of the material
tests and identification of material constants, are described next. Finally, a selec-
tion of results from non-linear finite element simulations of the experimental tests
is presented, before some concluding remarks are given.

11.1 Introduction

Structural impact problems have become increasingly important for modern indus-
try and society. In design of offshore structures, account is taken for accidental loads
such as dropped objects, collisions, explosions and penetration by fragments. Such
loads are also pertinent in the design of protective structures in the nuclear and pro-
cess industry, and in the design of fortification installations for defence purposes.
The need for lightweight protection against terrorist attacks and in peacekeeping
operations in vulnerable areas of the world is increasing. Also the request for a
lighter and more mobile defence has emerged during later years. In the transporta-
tion industry, energy absorption and crashworthiness are today critical issues in the
design process of vehicles, vessels and aircrafts. Accidental impacts of space debris
and meteoroids are still a major concern for the protection of spacecrafts. In addi-
tion, many of the problems found in structural impact are relevant to various types
of metal forming operations, such as deep drawing, stamping and forging.

This review is a summary of earlier published work carried out by CRI-SIMLab
during the last decade on the ballistic perforation of steel plates at sub-ordnance
impact velocities ([1] –[22]). The reason for carrying out these studies was twofold.
First, we wanted to increase our understanding of the many physical phenomena
taking place during structural impact by studying some of the main parameters af-
fecting the ballistic perforation resistance of steel plates in the sub-ordnance velocity
regime. Second, we wanted to generate high-precision experimental data for the val-
idation of computational tools to be used in the design of protective structures. No
attempts have been done in this study to review and acknowledge the many other
available studies on this topic presented in the open literature over the years. It is
thus referred to the original papers given in the reference list to find extensive re-
views of similar studies.

In this paper, the main focus will be on the experimental work. Since several pa-
rameters in the experimental studies are similar, such as the velocity regime, the
projectile material and mass, and the target material and geometry, the compar-
ison between the various experimental results are both easier and more reliable.
In Section 11.2, the experimental set-up and the various experimental programmes
are presented in brief. In Section 11.3, experimental results from five experimental
studies are presented and discussed. Section 11.4 presents a material model used for
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numerical simulations of the impact event, together with a short description of the
material tests and identification of material constants. Section 11.5 gives a selection
of results from non-linear finite element simulations of the experimental tests, be-
fore some concluding remarks are given in Section 11.6.

11.2 Experimental Studies

11.2.1 Experimental Set-Up

All ballistic tests presented in the following have been carried out in the compressed
gas gun shown in Fig. 11.1 [1]. The main components of the gas gun are the 200
bar pressure tank, the purpose-built firing unit for compressed gas, the 10 m long
smooth barrel of calibre 50 mm and the 16 m3 closed impact chamber. During test-
ing, the projectile is mounted in a nine-pieced serrated sabot that is stripped by a
sabot trap prior to impact. The projectile is launched at striking velocities just be-
low and well above the ballistic limit, i.e. the critical impact velocity of the target
configuration. After about 2 m of free flight, the projectile impacts the target. The
penetration event is captured by an Ultranac FS 501 ultra-high-speed image con-
verter camera or a Photron Ultima APX-RS digital high-speed video camera. Initial
and final velocities are measured by different laser-based optical devices (shown to
be accurate to within 1-2 %) and by the high-speed camera systems. More details
regarding the experimental set-up and instrumentation used during testing can be
found in e.g. Børvik et al. [1][7].

Fig. 11.1 Sketch of compressed gas gun used in the ballistic tests [1].
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11.2.2 Projectiles and Targets

Projectiles were manufactured from Arne tool steel with a nominal mass and diam-
eter of 197 g and 20 mm, respectively. In order to keep a constant mass the length
of the projectile varied slightly depending on the nose shape. The dimensions of the
four different projectiles used in these studies (i.e. blunt, hemispherical, conical and
ogival) are given in Fig. 11.2. After machining, they were oil-hardened to a nominal
Rockwell C value of about 53. The projectiles were finally measured, painted dead
black and equipped with fiducial marks for high-speed camera measurements. Fig.
11.3 (left) shows typical engineering stress-strain curves from quasi-static tensile
tests on specimens spark eroded from a projectile after hardening [2].

Fig. 11.2 Geometry and dimensions (in mm) for blunt, hemispherical, conical and ogival nosed
projectiles [5] [10].

Fig. 11.3 Typical material test data for the hardened projectile (left) and the steel targets (right).

Target plates were made of Weldox 460E, Weldox 700E or Weldox 900E steel
from SSAB. Typical true stress-strain curves for the steels are shown in Fig 11.3
(right) [10]. Square plates with dimension 600600 mm2 were cut from larger plates,
carefully sandblast on both sides and pre-drilled. They were then clamped into a
circular frame with diameter 500 mm and tightened with 16 bolts (see Fig. 11.4).
To allow high-speed photography during penetration, the frame was equipped with
a 150 mm framing window. Initial geometrical imperfections and final target defor-
mations were measured in-situ both before and after each test.
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Fig. 11.4 Target plate and clamping frame [7].

11.2.3 Experimental Programs

Five experimental programmes are presented and discussed in the following. The
different programmes are outlined in Table 11.1. As mentioned, the primary objec-
tives were to study the main phenomena taking place during structural impact of
steel plates in the sub-ordnance velocity regime, and to generate precision test data
for computer code validation. Since the impact conditions in the experimental stud-
ies are somewhat similar, the comparison between the various experimental results
is both easier and more reliable.

Table 11.1 Experimental programmes.

Test Series Velocity Range Nose Shape Target Thickness Target Material

Effect of projectile 150 – 400 m/s Blunt 12 mm Weldox 460 E
impact velocity

Effect of target 70 – 500 m/s Blunt 6 – 30 mm Weldox 460 E
thickness

Blunt,
Effect of projectile 150 – 400 m/s hemispherical, 12 mm Weldox 460 E
nose-shape conical and ogival

Weldox 460 E
Effect of target 150 – 400 m/s Blunt, conical 12 mm Weldox 700 E
strength and ogival Weldox 900 E

12 mm (monolithic)
Effect of target 140 – 380 m/s Blunt and ogival 2 x 6 mm (in contact) Weldox 700 E
layering 2 x 6 mm (24 mm spacing)
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11.3 Experimental Results

11.3.1 Effect of Projectile Impact Velocity

To study the effect of impact velocity during penetration and perforation, 12 mm
thick Weldox 460E steel plates were impacted by blunt projectiles (see also Table
1). The details in the study are presented in [1], but some of the most important
experimental findings are plotted in Fig. 11.5.

Fig. 11.5 Effect of projectile impact velocity [1].

Here, all parameters in the experimental tests were kept constant except for the
projectile impact velocity that varied between 150 and 400 m/s, representing impact
velocities just below and well above the ballistic limit velocity of the target plate.
From the experimental tests the following main effects are observed:

• All targets failed by localized adiabatic shear banding, pushing a plug with diam-
eter approximately equal to the nose diameter of the projectile out of the target
plate. Inside the localized shear bands, and in front of the crack tip, clear proofs of
void growth were observed in the scanning electron microscope (see Fig. 11.6).

• A rather distinct jump in residual projectile velocity was seen at the ballistic limit,
and the residual velocity was never found really low. The residual velocity of the
plug was always found to be higher than that of the projectile. This behaviour was
related to multiple impacts between the projectile and plug during perforation and
the release of elastic stress waves at failure.

• At the highest impact velocities the energy absorption became constant, indi-
cating that no more energy was absorbed by the projectile-target system as the
impact velocity is increased (at least within the limitations of this study).

• Even though the projectiles were hardened, mushrooming took place in the nose
at the highest impact velocities. This effect should not be neglected by assuming
the projectile as rigid, because considerable energy is absorbed in this deforma-
tion mode.
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• The permanent target deformation consisted of a combination of localized bulging
and global dishing, which decreased from a maximum value at the ballistic limit
velocity towards a constant value at higher impact velocities. The deformations
under impact generated loading conditions were much more localized than in
similar static cases, where the deformation reached out to the boundary.

Some high-speed camera pictures from a typical test in this study can be found
in Fig. 11.16 – 11.19.

Fig. 11.6 Metallurgical images of the localized shear zone (x32) showing void growth [1] [2].

11.3.2 Effect of Target Thickness

The effect of target thickness was studied by firing blunt projectiles into 6 to 30 mm
thick Weldox 460E targets at impact velocities between 70 and 500 m/s. Details
from the study can be found in [7], while some of the data are plotted in Fig. 11.7.
From these data, the following main conclusions are given:

• A monotonic increase in ballistic limit with target thickness was found. However,
a kink in the ballistic limit versus target thickness curve was obtained at a target
thickness of about 10 mm (see Fig. 11.7). The change in target response was
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Fig. 11.7 Effect of target thickness – experimental data [7].

related to the observed change in deformation mode with target thickness (Fig.
11.8), from typically thin plate global deformation towards thick plate shear lo-
calization. This observation is important in the design of lightweight protective
structures.

• Both the jump in residual velocity at the ballistic limit and the slope of the initial
versus residual velocity curve were found to decrease with target thickness and
projectile impact velocity.

• At thicknesses above 20 mm the projectile fragmented at impact with only lim-
ited damage in the target plate, since it failed to establish the through-thickness
shear bands required for plugging. This type of behaviour is difficult to capture
in finite element simulations (as also will be discussed in Section 11.5).

• The perforation time was found to be fairly constant for all target thicknesses at
impact velocities close to the target’s respective ballistic limit.

• While the maximum target deformation was nearly twice the thickness for the
thinnest plates, hardly any global deformation could be measured for plates
thicker than 16 mm. The projectile deformation on the other hand, increased
almost exponentially with target thickness and impact velocity.

The change in deformation mode and projectile break-down at a target thickness
above 20 mm are illustrated in Fig. 11.8, while some high-speed camera pictures
from typical tests in this study can be found in Fig. 11.16 – 11.19.

11.3.3 Effect of Projectile Nose-Shape

Projectiles with four different nose shapes (blunt, hemispherical, conical and ogival
as shown in Fig. 11.2) were used to penetrate 12 mm thick Weldox 460 E steel plates
at impact velocities from 150 to 400 m/s (see Table 11.1). Some of the experimental
data from this study are plotted in Fig. 9, while the details from the studies are re-
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Fig. 11.8 Effect of target thickness – cross-sections of impacted plates [7].

Fig. 11.9 Effect of projectile nose shape – experimental data [5] [10].

Fig. 11.10 Effect of projectile nose shape – failure modes [5].
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ported in [5] and [10]. Based on the obtained results, the following main conclusions
can be drawn:

Fig. 11.11 Failure modes as function of projectile nose shape at impact velocities just below the
ballistic limit velocity [5].

• Both the ballistic limit velocity and the failure mode of the target plate were
severely affected by the nose shape of the projectile. Hemispherical, conical and
ogival projectiles gave a similar ballistic limit close to 300 m/s, while the ballistic
limit velocity was only about 185 m/s for blunt projectiles.

• Also the initial-residual velocity curves were influenced by the projectile nose
shape. For blunt and hemispherical projectiles, the curves seemed to coincide as
the impact velocity became high compared to the ballistic limit. The curves for
pointed projectiles seemed to exceed the other two at the highest impact veloci-
ties and became parallel to the limit line, i.e. the line where the residual velocity
is equal to the initial velocity.

• The differences in ballistic limit velocities were attributed to the change in energy
absorption and failure mode of the target with projectile nose shape. It appeared
that both local and global deformations in the target were largest for pointed
projectiles, followed by hemispherical and blunt projectiles in that order.

• Conical and ogival projectiles perforated the target by ductile hole growth, which
is controlled by the material’s resistance to plastic flow. Hemispherical projectiles
caused a localized region of intense tensile strain that finally gave failure due
to necking, and a cup-shaped plug was ejected. Blunt projectiles perforated the
target by plugging.
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• The difference in slope between the various initial-residual velocity curves was
most likely due to the difference in projectile deformation during impact. Blunt
projectiles deformed (mushroomed) almost exponentially with impact velocity
in the actual velocity regime, while pointed projectiles hardly deformed at all.
Conical and ogival projectiles required less energy to perforate the target plate
than blunt projectiles when the impact velocity was above 440 m/s. For lower
impact velocities, the energy consumption was least for blunt projectiles. Plas-
tic deformations also occurred in hemispherical projectiles, but not to the same
extent as for the blunt ones.

• From sectioned target plates, it was revealed that sliding frictional effects can
be neglected for blunt projectiles. Small frictional effects seemed present for
the other projectile nose shapes, and could be accounted for in finite element
simulations. However, by including frictional effects in the contact algorithms,
predicted ballistic limits will always increase.

The effect of projectile nose shape on the failure modes during penetration and
perforation is shown in Fig. 11.10 and Fig. 11.11, while Fig. 11.16 – 11.19 gives
high-speed camera pictures from some typical tests.

11.3.4 Effect of Target Strength

Impact tests were performed on 12 mm thick steel plates with blunt, conical and
ogival projectiles where the effect of target strength was studied. The target materials
were Weldox 460 E, Weldox 700 E and Weldox 900 E (see Table 11.1), where the
number indicates the nominal yield stress of the various steels. True stress-strain
curves from tensile tests on smooth axisymmetric specimens at quasi-static strain
rate and room temperature for the materials are shown in Fig. 11.3 (right), while
the details of the experimental program can be found in [10]. Obtained ballistic
limit velocities from the experimental study are given in Fig. 11.12. Based on the
experimental observations, the following main conclusions are reached:

• In tests using blunt projectiles, the ballistic limit velocity decreased for increasing
yield strength, while the opposite trend was found in tests with conical and ogival
projectiles.

• Perforation with conical and ogival projectiles caused failure by ductile hole
growth in all materials. This failure mode requires more energy when the tar-
get strength increases.

• Blunt projectiles caused failure by shear plugging. The decrease in ballistic limit
for increasing target strength using blunt projectiles occurred due to the presence
of highly localized adiabatic shear bands (4-12 μm) in Weldox 700 E and Weldox
900 E plates, while less localized (i.e. only deformed) adiabatic shear bands (>
100 μm) were found in Weldox 460 E plates.



200 Tore Børvik, Sumita Dey, Odd Sture Hopperstad and Magnus Langseth

Fig. 11.12 Effect of target strength – ballistic limit velocity versus projectile nose shape and target
material [10].

• The ballistic limit velocity of the target was markedly affected by the nose shape
of the projectile. Conical and ogival projectiles gave ballistic limit velocities in
the order of 300 m/s, while the ballistic limit velocities were well below 200 m/s
for blunt projectiles.

• Tests on Weldox 700 E and Weldox 900 E targets with conical projectiles resulted
in fragmentation of the projectile nose part during impact, which may have af-
fected the ballistic limit for these two materials. Ogival projectiles did not shatter
in any of the tests.

• Although there are large differences in the yield strength of the targets, the dif-
ference between the ballistic limits were relatively small for the same projectile
nose shape.

Light-microscopy pictures of the localized shear bands as function of target
strength are shown in Fig. 11.13. The shear band in Weldox 460E has a width of
more than 100 μm and is only deformed, while the shear bands in Weldox 700E
and Weldox 900E have widths varying from 8 to 12 μm and 4 to 10 μm, respec-
tively. It should at this point be mentioned that in a later study [15], these shear
bands were investigated using SEM and TEM. No proofs of a phase transforma-
tion, indicating that the temperature rise due to plastic work reached about 730◦C in
the shear bands, were found. However, clear proofs of transformed adiabatic shear
bands were found in 20 mm thick Weldox 460E targets impacted by blunt projec-
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Fig. 11.13 Shear localization as function of target strength [10].

tiles. High-speed camera pictures of some typical tests in this study are given in Fig.
11.16 – 11.19.

11.3.5 Effect of Target Layering

When studying the effect of target thickness (see Section 11.3.2), a kink in the
initial-residual velocity curve was observed when the deformation mode changed
from thin plate global deformation to thick plate shear localization. This indicates
that in a certain thickness range, an increase in target thickness (and consequently
weight) only gives a slight increase in perforation resistance. Similarly, when study-
ing the effect of target strength (see Section 11.3.4) it was found that localized shear
bands become more distributed as the plate deflects globally. Thus, strongly local-
ized shear bands leading to premature plugging do not occur to the same extent for
thinner plates. From findings like these it is reasonable to assume that several thin
plates that deform globally will absorb more of the projectile’s kinetic energy during
impact than one thick plate. Thus, layered targets of thin plates may seem to be a
better energy absorber during ballistic impact than a monolithic target of equal total
thickness.

Motivated by these results, the effect of target layering was investigated. In the
tests, 12 mm thick target configurations of Weldox 700E were struck by blunt and
ogival projectiles and the ballistic limits were determined. The target configurations
consisted of 12 mm thick monolithic plates, two 6 mm thick plates in contact (i.e.
2x6 mm) and two 6 mm thick plates spaced with 24 mm of air (i.e. 2x6 + 24 mm).
The ballistic perforation resistance of single 6 mm thick plates of Weldox 700 E was
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Fig. 11.14 Effect of target layering – blunt projectiles (left) and ogival projectiles (right) [16].

also determined. Test results are reported in [16], while some of the most interesting
data are plotted in Fig. 11.14. From this study, the following main effects are found:

• The increase in ballistic limit velocity using monolithic targets and blunt pro-
jectiles was only about 20% when increasing the target thickness from 6 to 12
mm.

• By double-layering the target using two 6 mm thick plates in contact, an increase
in ballistic limit of nearly 50% was obtained compared to a monolithic target of
equal total thickness for blunt projectiles. Similarly, for plates spaced with 24
mm of air an increase in ballistic limit of 40% was obtained. This was caused by
a change in deformation and failure mode when moving from a monolithic to a
layered target, since the plug from the first plate delays and partly prevents the
shear localization in the second plate.

• The increase in ballistic limit for monolithic targets and ogival projectiles was
about 60 when increasing the target thickness from 6 to 12 mm.

• By double-layering the target using two 6 mm thick plates, a decrease in ballistic
limit of about 10% was obtained both for plates in contact and plates spaced
with 24 mm of air compared to a monolithic target of equal total thickness for
ogival projectiles. The reason for this is that neither shear nor tensile stresses
can be transferred between the layers, so that the resistance of layered targets is
expected to be weakened.

• Within the limitations of the study, a main conclusion was that the overall protec-
tion level, i.e. the minimum ballistic limit independent of projectile nose shape,
seemed to increase significantly by layering the target.

Fig. 11.15 shows pictures of cross-sections of sliced targets at impact velocities
close to their respective ballistic limits, revealing the difference in global deforma-
tion between the different target configurations. Especially the difference in global
deformation between monolithic and layered plates, and between the first and the
second plate in the double-layered targets, should be noticed. Some typical high-
speed camera images from this study are given in Fig. 11.16 – 11.19.
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Fig. 11.15 Cross-section of 12 mm thick target configurations (monolithic/layered) perforated by
blunt (left) and ogival (right) projectiles at impact velocities close to their ballistic limits [16].

11.3.6 Summary of Experimental Data

Fig. 11.16 Typical high-speed camera images from some of the tests.

Fig. 11.20 gives a comparison between the ballistic limits from all the test series
(involving 21 different test configurations), plotted in ascending order. The various
configurations are defined in Table 11.2. It is interesting to note that for the lowest
ballistic limits, i.e. below 200 m/s, all targets (independent of target material or
thickness) are impacted by blunt projectiles, while for the highest ballistic limits,
i.e. above 300 m/s, only pointed projectiles are involved.
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Fig. 11.17 Typical high-speed camera images from some of the tests.

Fig. 11.18 Typical high-speed camera images from some of the tests.
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Fig. 11.19 Typical high-speed camera images from some of the tests.

Fig. 11.20 Comparison between ballistic limits from all test series and configurations (see Table
11.2 for the definition of the various target configurations). The number close to each data point
gives the thickness of the respective target configuration.
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Table 11.2 Ballistic limits from all test series and configurations in ascending order.

Configuration Material Yield Stress Thickness Nose Shape Ballistic Limit

# Type [MPa] [mm] [m/s]

1 W700E 859 6 Blunt 140.8

2 W460E 499 6 Blunt 145.5

3 W460E 499 8 Blunt 154.3

4 W900E 992 12 Blunt 161.0

5 W460E 499 10 Blunt 165.3

6 W700E 859 12 Blunt 168.0

7 W460E 499 12 Blunt 184.5

8 W700E 859 6 Ogival 198.0

9 W700E 859 2x6+24 Blunt 243.6

10 W460E 499 16 Blunt 236.9

11 W700E 859 2x6 Blunt 247.3

12 W700E 859 2x6+24 Ogival 280.0

13 W700E 859 2x6 Ogival 288.3

14 W460E 499 12 Conical 290.6

15 W460E 499 12 Hemi 292.1

16 W460E 499 20 Blunt 293.9

17 W460E 499 12 Ogival 295.9

18 W700E 859 12 Ogival 318.1

19 W900E 992 12 Ogival 322.2

20 W700E 859 12 Conical 335.0

21 W900E 992 12 Conical 340.1

11.4 Material Modelling, Material Tests and Identification of
Material Constants

11.4.1 Constitutive Relation and Fracture Criteria

Ballistic impacts on ductile materials involve contact, large plastic strains, high
strain rates, softening due to adiabatic heating, varying stress states and loading
histories, strain localization, damage and failure. Thus, the computational material
model must be able to take all these effects into account. Further, damage softening
may either be uncoupled or coupled with the constitutive equation. In the uncoupled
approach, the yield condition, the plastic flow and the strain hardening are assumed
to be unaffected by the damage evolution (i.e. the nucleation and growth of voids in
ductile materials). On the contrary, damage affects the plastic deformation and may
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lead to softening in the final stage before fracture in the coupled approach. In this
paper, most simulations shown are carried out assuming uncoupled damage.

A modified version of the well-known Johnson-Cook constitutive relation (or the
MJC model in the following to distinguish it from the original model) was used to
model the target material. The model is formulated within the framework of ther-
moelasticity, thermovisco-plasticity and continuum damage mechanics. A detailed
description of the model is provided in [4] and only the main equations are given
below. By assuming an isotropic (von Mises) material, and by adopting the effective
stress concept and the principle of strain equivalence, the equivalent stress σeq and
the accumulated plastic strain rate ε̇eq are defined as [4]

σeq =

√
3
2
σ ′ : σ ′ = (1−βD) σ̃eq, ε̇eq =

√
2
3

dp : dp =
ṙ

(1−βD)
(11.1)

where σ ′ is the deviatoric stress tensor, σ̃eq is the damage equivalent stress, dp is
the plastic deformation rate tensor, ṙ is the damage accumulated plastic strain rate,
D is the damage variable and β is the damage coupling parameter (i.e. β = 0 for
uncoupled damage and β = 1 for coupled damage). The equivalent stress is then
expressed as

σeq = (1−βD)(A+Brn)(1+ ṙ∗)C(1−T ∗m) (11.2)

where A, B , n , C and m are material constants. The dimensionless damage
plastic strain rate is given by ṙ∗ = ṙ

ε̇0
, where ε̇0 is a user-defined reference strain

rate. The homologous temperature is defined as T ∗ = T−Tr
Tm−Tr

, where T is the absolute
temperature, Tr is the room temperature and Tm is the melting temperature. The rate
of temperature increase is computed from the energy balance by assuming adiabatic
conditions

Ṫ = χ
σ : dp

ρCp
= χ

σeqε̇eq

ρCp
= χ

σ̃eqṙ

ρCp
σeq (11.3)

where ρ is the material density, Cp is the specific heat andχ is the Taylor-Quinney
coefficient that represents the proportion of plastic work converted into heat.

The damage evolution during plastic straining is expressed as

Ḋ =

{
0 for εeq ≤ εd

DC
ε f −εd

ε̇eq for εeq > εd
(11.4)

where DC is the critical damage and εd is a damage threshold. For simplicity it
is assumed in this study that DC is a material constant and that εd = 0. The fracture
strain is given as

ε f = (D1 +D2 exp(D3σ∗))(1+ ε̇∗eq)
D4(1+D5T ∗) (11.5)
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whereD1 ,..., D5 are material constants determined from material tests, σ∗ = σH
σeq

is the stress triaxiality ratio where σH is the hydrostatic stress, and ε̇∗ep =
˙varepsiloneq
ε̇0

is the dimensionless strain rate. Fracture occurs by element erosion (i.e. the stresses
in the integration points are set to zero) when the damage of a material element
equals the critical damage DC ≤ 1. Note that if the damage coupling parameter β in
Eq. (11.1) is set equal to zero, σ̃eq → σeq , ṙ → ε̇eq andDC → 1, and the uncoupled
damage formulation (as used in the original JC model) reappears.

Alternatively, for uncoupled damage (i.e. β = 0 in Eq. (11.2)) failure can be
modelled using a fracture criterion proposed by Cockcroft and Latham (CL) where
it is assumed that fracture depends on the stresses imposed as well as on the strains
developed [14]. The model can be expressed as

D =
W

Wcr
=

1
Wcr

ε f∫

0

〈σ1〉dεeq (11.6)

where W is the Cockcroft-Latham integral, σ1 is the major principal stress,
〈σ1〉 = σ1 when σ1 ≥ 0 and 〈σ1〉 = 0 when σ1 < 0. It is seen that fracture can-
not occur in this model when there is no tensile stress operating, which implies that
the effect of stress triaxiality on the failure strain is implicitly taken into account.
The advantage with the CL failure criterion is that the critical value Wcr can be de-
termined from one uniaxial tensile test. Moreover, the model captures some main
experimental observation for many steels exposed to impact. From experiments it
is seen that for increasing temperature the strength decreases and the ductility in-
creases, while for increasing strain rate the strength increases and the ductility de-
creases. Thus, Wcr remains fairly constant for varying temperature and strain rate. It
was shown in Dey et al. [12] that the one-parameter CL model gives equally good
results as the five-parameter MJC fracture criterion in LS-DYNA simulations of
perforation of steel plates. Also the CL model is coupled with element erosion that
erodes the element when reaches its critical value Wcr.

In addition to the MJC or the CL fracture criterion, a temperature-based erosion
criterion is used in some simulations. The value of the critical temperature is taken
as Tc = 0.9Tm, which means that the element is eroded when the temperature T in
the material reaches 90% of the melting temperature Tm. It is assumed that at these
temperatures, the material is so weakened that it does not add much shear resistance
to the penetrating projectile. In some simulations a shape-based erosion criterion is
also adopted, which erodes the element when the aspect ratio (identified as the ratio
between the diagonals in the case of rectangular elements) reaches a critical value of
0.05. This erosion criterion (which is purely numerical) is used to get rid of severely
distorted, pathological elements causing time-step drops and error termination [16]
[18]. Only a few elements are eroded due to this criterion. The constitutive relation
and the various failure criteria are implemented as ∗mat107 in LS-DYNA.
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It is not recommended to model the projectile as a rigid body, since elastic and
plastic deformations that may alter the FE results will take place in the projectile
(especially when impacted against hard and/or thick targets, as also discussed in
Section 11.3). However, a rather simple constitutive relation for the projectile ma-
terial is chosen. Due to the shape of the measured stress-strain curves from tensile
test specimens taken from hardened projectiles (see Fig. 11.3) it is modelled as a
bilinear, elastic-plastic, von Mises material with isotropic hardening (but without
strain rate effects and failure/fragmentation) using ∗mat3 in LS-DYNA, i.e.

σ =
{

E ε
σ0 +Et(ε− ε0)

ε ≤ ε0

ε > ε0
(11.7)

where σ0 is the yield stress, E is Young’s modulus and Et is the tangent modulus.

No additional equation-of-state or artificial bulk viscosity has been introduced in
the simulations to treat possible shock waves. Thus, the relation between the pres-
sure p and the volumetric strain εV is given by the linear expression p = K εV , where
K is the bulk modulus. This assumption seems appropriate for weak shocks at im-
pact velocities below 1000 m/s.

11.4.2 Material Data and Model Calibration

A comprehensive material test programme was carried out for Weldox 460 E, Wel-
dox 700 E and Weldox 900 E, where the effects of strain hardening, strain rate hard-
ening, temperature and stress triaxiality on the strength and ductility of the material
were studied. Three types of tensile tests were carried out: quasi-static tests with
smooth and pre-notched specimens, quasi-static tests at elevated temperatures and
dynamic tests over a wide range of strain rates. All specimens were taken parallel to
the rolling direction of the plate since the steels were found to be isotropic both in
plastic flow and strain to failure. Details from the various material test programmes
can be found in e.g. [2]–[3], [8]–[12] and [14]–[15], while some data from the ex-
perimental tests are plotted in Fig. 11.21 and Fig. 11.22. Both the equivalent stress
and the fracture strain for the steels were found sensitive to stress state, temperature
and strain rate.

The modified Johnson-Cook constitutive relation defined in Equation (11.2), the
modified Johnson-Cook fracture strain defined in Equation (11.5) and the critical
value of the Cockroft-Latham fracture criterion defined in Equation (11.6) were cal-
ibrated based on the material test data. Both the constitutive relation and fracture
criteria were calibrated by minimising the residuals between model results and cor-
responding experimental data using the method of least squares. Fig. 11.21 and Fig.
11.22 give a comparison between the material test data and model results for the
three steels, while Table 11.3 lists the model constants (based on Dey et al [10]).
Even though some deviations are seen, the agreement between test data and model
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Fig. 11.21 Comparison between data from material tests and model results for Weldox 460 E,
Weldox 700 E and Weldox 900 E [10].

Fig. 11.22 Comparison between data from material tests and model results for Weldox 460 E,
Weldox 700 E and Weldox 900 E [10].
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Table 11.3 Model constants for the three materials [10].

Material Weldox 460 E Weldox 700 E Weldox 900 E

Yield Stress A [MPa] 499 859 992

Strain Hardening B [MPa] 382 329 364

n [-] 0.458 0.579 0.568

Strain Rate Hardening C [-] 0.0079 0.0115 0.0087

Temperature Softening m [-] 0.893 1.071 1.131

MJC Fracture Criterion D1 [-] 0.636 0.361 0.294

D2 [-] 1.936 4.768 5.149

D3 [-] -2.969 -5.107 -5.583

D4 [-] -0.014 -0.0013 0.0023

D5 [-] 1.014 1.333 0.951

CL Fracture Criterion Wcr [MPa] 1219 1424 1510

Table 11.4 Relevant material constants needed in the target’s material model [2].

E ν ρ CV χ α T0 Tr Tm ε̇0

[GPa] [-] [kg/m3] [J/kgK] [-] [K−1] [K] [K] [K] [s−1]

210 0.33 7850 452 0.9 1.2·10−5 293 293 1800 5.0·10−4

Table 11.5 Material constants for hardened projectile [2].

E ν ρ σ0 Et

[GPa] [-] [kg/m3] [MPa] [MPa]

204 0.33 7850 1900 15000

predictions is in general good. Note that the calibration shown in this study is car-
ried out assuming uncoupled damage, i.e. β = 0 and DC = 1 in Equations (11.2) and
(11.4). Examples of material constants for the materials assuming coupled damage
can be found in [2] and [18]. Other relevant material constants that are needed for
the target materials in numerical simulations are given in Table 11.4, while model
constants for the projectile are presented in Table 11.5.

11.5 Numerical Studies

All experimental studies presented in Sections 11.3 have been analyzed using the ex-
plicit solver of the non-linear finite element code LS-DYNA and the material models
and constants presented in Section 11.4. In the following, some main conclusions
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from these studies will be given in brief, while more details from the various studies
can be found in the original papers.

Fig. 11.23 Example of a typical FE mesh used in simulations of a blunt projectile impacting a
double-layered target spaced with air (configuration # 9 – see Table 11.2). The coarsening of the
mesh towards the boundary using transition elements is also shown for each plate [16].

11.5.1 Numerical Models

The geometry of the finite element models closely resembles the geometry of the
various experimental configurations defined in Table 11.2. In a similar way as for
the experimental tests, the only variable in each numerical configuration was the im-
pact velocity of the projectile that was varied to exactly determine the ballistic limit
of the target based on a number of runs. All targets were assumed axisymmetric with
a free span diameter of 500 mm and fully clamped at the support, while the projec-
tiles were modelled with a nominal mass of 197 g and a diameter of 20 mm. The
various parts were meshed with 4-node axisymmetric elements with one integration
point and stiffness-based hourglass control. A typical element size in the impact
region of the target was 100 100 μm2, while projectiles were modelled using a
much coarser mesh. Contact between the various parts during impact was modelled
using 2D automatic penalty formulations available in LS-DYNA, normally without
frictional effects. Note that simulations involving blunt projectiles were carried out
using a fixed element mesh, while simulations involving pointed projectiles needed
adaptive rezoning of the mesh to avoid numerical problems [6]. It should finally be
mentioned that the finite element models have developed over the years, and may
therefore differ between the various numerical studies. In any case, as an example
a plot of a typical finite element model of a blunt projectile impacting a double-
layered target spaced with air (configuration # 9 – see Table 11.2) is shown in Fig.
11.23.
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Fig. 11.24 Comparison between numerical and experimental ballistic limits (see Table 11.2 for
the definition of the various target configurations), where the number close to each data point gives
the thickness of the respective target configuration.

11.5.2 Some Numerical Results

The many details from the various numerical simulations are presented in the origi-
nal papers given in the reference list. However, Fig. 11.24 gives a direct comparison
between the experimentally obtained ballistic limits and the predicted counterparts.
In the same way as for Fig. 11.20, the various configurations are defined in Table
11.2. From this plot and the original papers, the following main conclusions can be
drawn:

• Very good agreement is in general obtained between the numerical predictions
and the experiment results. Thus, finite element simulations using proper material
models are able to capture the main physical behaviour during penetration and
perforation for a variety of different impact configurations, at least within the
limitations of these studies. However, it is important to include the effects of
strain hardening, strain rate hardening, thermal softening and stress triaxiality in
the numerical models to have reliable results.

• The phenomenological and rather simple modified Johnson-Cook constitutive
relation was found to give better results than the physically based and more com-
plex Zerilli-Armstrong model [12], while the five-parameter modified Johnson-
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Fig. 11.25 Numerical simulations of the perforation process of Weldox 460E steel plates.

Cook and the one-parameter Cockcroft-Latham failure criteria has proven to give
similar results [14].

• The only numerical results that seem to significantly deviate from the experi-
mental data are those involving the highest strength steels and blunt projectiles.
The reason for this is the increased shear localization with target strength, as dis-
cussed in Section 11.3.4 and shown in Fig. 11.12 and Fig. 11.13. Thus, while
the experimental data show a drop in capacity with increasing target strength,
the numerical results show the opposite. Until now it has been found difficult to
simulate this behaviour correctly regardless of applied material model, but work
in progress [21] using a damage-based fracture criterion with quasi-unilateral
conditions seems to give promising results.

• On the other hand, as long as the shear localization is diffuse, or when the failure
mode is dominated by plastic flow (as in perforation using pointed projectiles),
the numerical results are normally close to the experimental data. However, it
should be noticed that most numerical predictions of the ballistic limit veloc-
ity are non-conservative. Care must therefore be taken when the finite element
approach is used in computer-aided design.

• Strong mesh-dependency is found in impacts involving shear localization and
plugging for blunt projectiles, while the mesh-size dependency is far less dis-
tinct for problems involving pointed nose projectiles. Viscoplasticity and nonlo-
cal damage seem to counteract the problem, but will not remove the mesh-size
sensitivity completely. However, for most practical applications the ballistic limit
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Fig. 11.26 Numerical simulations of the perforation process of Weldox 460E steel plates.

changes slowly with mesh refinement when the element size is sufficiently small.
For the most localized shear bands, the physics in the problem makes it unprac-
tical to use an element size at the order of the shear band width, so mesh-size
dependency must be expected and accounted for.

• Another problem that is very hard to simulate, is projectile fragmentation during
impact. This behaviour is e.g. found during blunt projectile impact of very thick
or hard plates. When such failure modes are likely, it seems necessary to change
the numerical approach, and element erosion should not be used alone [22].

• It should finally be mentioned that it is obviously not possible to describe
petalling and radial cracking using axisymmetric finite element models. For such
problems, 3D models using brick elements are required. However, 3D models
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of structural impact problems are still a challenge from a computational point of
view.

Fig. 11.27 Details of crack propagation and fracture in a 8 mm thick Weldox 460E target plate
during impact (plotted as fringes of accumulated plastic strain) [4].

Fig. 11.25 and Fig. 11.26 give some typical plots (as fringes of accumulated
plastic strain) from simulations of the perforation process of Weldox 460E plates
using various plate thicknesses and projectile nose shapes, while Fig. 11.27 shows
the details of the crack propagation and fracture in a 8 mm thick target during im-
pact. Compared to the high-speed camera images in Fig. 11.16 – 11.19, the overall
agreement is excellent. Finally, Fig. 11.28 shows plots of the perforation process of
double-layered Weldox 700E steel targets spaced with air struck by blunt and ogival
projectiles. Also for these configurations, the agreement with the experimental data
is good.

11.6 Concluding Remarks

It has been shown that the compressed gas gun is an excellent tool in order to carry
out high-precision impact tests in the sub-ordnance velocity regime to study the
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Fig. 11.28 Plots of the perforation process of a 26 mm thick double-layered Weldox 700E steel
target a) spaced with 12 mm of air impacted by a blunt projectile and b) spaced with 24 mm of air
impacted by an ogival projectile [16].

main mechanisms governing the perforation resistance of high-strength steel target
plates. In addition, the experimental results have proven to be suitable for validation
of computational methods since both the energy absorption mechanisms and failure
mode may easily be changed by varying different impact conditions, such as the
projectile nose shape and target thickness.

The LS-DYNA simulations predict with good accuracy the residual projectile
velocity and ballistic limit as function of impact velocity, target thickness and pro-
jectile nose shape. The numerical models also describe the correct failure modes
for varying impact conditions, but rezoning is needed for pointed projectiles [6]. It
is also found that simulations with fixed element meshes and rezoning give similar
results. However, problems still arise when trying to simulate the drop in ballistic
limit with increasing target strength when struck by blunt projectiles [10], even for
extremely refined meshes [18] [21], and in situations involving projectile fragmen-
tation during impact of hard and/or thick plates [22].
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Chapter 12
Dimensioning of concrete walls against small
calibre impact including models for deformable
penetrators and the scattering of experimental
results

Norbert Gebbeken, Tobias Linse, Thomas Hartmann, Martien Teich and Achim
Pietzsch

Abstract A new engineering tool for the assessment of impact of small calibre pro-
jectiles on concrete targets has been developed. As the experimental data of small
calibre impact scatters noticeably, the inclusion of a model that describes the scat-
tering of the results was needed. This is of special interest for the assessment of
the safety, the remaining risk and an economical dimensioning of concrete walls.
The threat level of ordinary small calibre munition is often overestimated, because
the deformation of the projectiles is usually neglected. Hence, two models for de-
formable projectiles were developed and implemented. One model is for full jack-
eted projectiles and deduced from experimental data, the second model is for ho-
mogenous projectiles and is based on the analysis of data generated by numerical
simulations. The key results of the research during the last years and the functional-
ity of the tool are described in this article.

12.1 Introduction

The assessment of the consequences of projectile impact on concrete structures has
been studied by scientists for more than a century. In 1910 Pétry (e.g. in [14]) was
the first who published an equation with which the penetration depth of munitions
can be determined for different materials. Up to today there are at least 20 pene-
tration formulas for different fields of application. To name just a few, the pene-
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tration formulas from the Army Corps of Engineers (ACE), the National Defense
and Research Committee (NDRC), Hughes [13], Fullard [9], CEA-EDF [5], Kar
and UKAEA are some of the most famous ones. Li, Kennedy and Yankelevesky
reviewed many of these formulas in [14, 16, 28].

These existing penetration formulas were developed for different specific areas
of application. Some were deduced for small bullets or small calibre projectiles that
are usually much faster than the speed of sound. Others were developed for missiles
that are slower but much heavier than small calibre projectiles. Most penetration
formulas determine the penetration depth in an infinitely thick half-space. Some
equations, like the equation from CEA-EDF, determine the required thickness to
prevent perforation. All these equations were established by curve fitting to exper-
imental data. The result of these formulas is always just one single parameter. In
most cases this is the penetration depth. To determine the minimum thickness to
prevent spalling or perforation, many additional formulas exist. Adeli and Amin [1]
collected and compared some of these formulas to experimental data. Often it is not
obvious whether the result represents an average level or a dimensioning level. To
illustrate this, the result can either be an average penetration depth or a worst case
penetration depth. The worst case penetration depth or the required thickness on di-
mensioning level already include safety factors. Some existing formulas are on the
safe side and lead to an inefficient dimensioning of walls - especially for deformable
penetrators, as they do not account for the deformation capacity of the projectiles.
Often, it is not clear for which area of application the formulas were designed for.
If this is not clear there is a risk of misapplication. Last but not least, concrete is a
very inhomogeneous material composed of different types and sizes of aggregates.
This leads to a noticeable scattering of the impact behaviour. Furthermore, there ex-
ist very different types of projectiles, non-deformable solid projectiles or jacketed
projectiles which deform during the impact.

As these aspects show, the prediction of the effects of penetration is still compli-
cated, inconvenient and imprecise. Furthermore, the behavior of deformable or jack-
eted projectiles is not yet fully investigated. A statistical examination, with which it
is possible to estimate the remaining risk, and which can be a basis for an economic
dimensioning of protective concrete walls is still lacking.

Hence, the focus of research was put on the development and implementation
of an algorithm that fulfills all the requirements like accounting for scattering and
regarding deformable projectiles, residual velocities, ballistic limits and geometries
of damages.

Within this paper, first, the applicability of the mentioned penetration formulas
for this project is discussed. After that, the basis of the new penetration algorithm
and its derivation are briefly presented. Based on this it is possible to determine pen-
etration depths, residual velocities and minimum thicknesses of concrete walls for
non-deformable penetrators. Then, after dealing with non-deformable projectiles,
the two models for the deformable penetrators are explained. In a further step, the
derivation of the model for the consideration of the scattering of the experimental re-
sults is shown. Finally, as the result of the conducted research, the new engineering
tool PenSim is presented.
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12.2 Penetration and perforation of concrete walls with
non-deformable penetrators

A relatively new penetration formula is the penetration formula developed by Forre-
stal, Altmann, Cargile and Hanchak [8]. This penetration formula is based on an al-
most analytical approach, the so-called Cavity Expansion Theorie (CET). The CET
was originally introduced by Bishop in 1945 [6] and further extended by Goodier
[12] in 1965. The advantage of this approach is that only the constant describing the
resistance of the concrete has been empirically adjusted to experimental data. The
main idea of this approach is to establish an equation that describes the acting force
F on the projectile. If the force on the projectile can be appropriately represented,
the progress of the deceleration, the velocity and the position of the projectile can
be determined by integration with appropriate boundary and transition conditions.
Equation (12.1) shows an extended version of Forrestal’s approach for the Force F0

that acts on the projectile. There are three recognisable domains of definition: the
cratering phase, the tunneling phase and the breakthrough phase. This formulation
was proposed by Sjøl and Teland [21]. They added the breakthrough phase to For-
restal’s approach in order to be able to calculate residual velocities, ballistic limits
and minimum thicknesses to prevent perforation of the concrete wall.

X1 is the depth that corresponds to the end of the cratering phase and to the
beginning of the tunneling phase. X2 represents the transition between the tunneling
phase and the breakthrough phase. X3 is either the thickness of the concrete wall or
the penetration depth. The notations of the velocities are defined analogously.

F =

⎧
⎨
⎩

c · x 0 < x < X1

F0 X1 < x < X2

F0 ·α(x) X2 < x < X3 .
(12.1)

The force F0 that is acting on the projectile during the tunneling phase is

F0 =
πd2

4
(Sσc +Nρv2) (12.2)

with

N =
8ψ−1
24ψ2 , ψ =

s
d

, S = 82.6 σ−0.544
c (12.3)

c constant cratering phase [−]
x x-coordinate of the projectile’s nose [m]
N nose parameter [−]
d diameter of projectile [m]
σc concrete strength [Pa] for S in [MPa] [MPa / Pa]
ρ concrete density [kg/m3]
S material parameter to describe the concrete strenght [−]
m mass of the projectile [kg]
s radius of the ogive of the projectile [m]
ψ ratio between radius of the ogive and the diameter [−]
v impact velocity [m/s]
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Forrestal’s penetration equation was further extended for blunt projectiles by
Lixin [17] and Teland [26]. The material constant S that describes the concrete was
adjusted to experimental data for high performance concrete by Sjøl [20]. Sjøl and
Teland also proposed an extension of Forrestal’s formula that allows to determine
residual velocities and the minimum thickness to prevent perforation. Forrestal as-
sumed that the target is much thicker than the penetration depth. For this case, the
third area of definition is not necessary. With some mathematical manipulations
Forrestal’s penetration formula

X =
2M
πN

ln

(
1+

NV 2
1

SM

)
+2 (12.4)

with

V 2
1 =

V 2 − π
2 S

1+ π
2

N
M

(12.5)

and the dimensionless parameters

X =
x
d

, V =
√

m
d3σc

· v, M =
m

d3ρt
(12.6)

can be determined. V1 is the velocity at the transition between the cratering and
the tunneling phase. For reason of clarity, the notation proposed by Sjøl and Teland
is used in this paper. Forrestal used another notation without dimensionless parame-
ters. The complete derivation of Forrestal’s equation is explained in [8]. The deriva-
tion of the extended version is shown in [21].

The derivation of more universally applicable equations which e.g. also allow the
calculation of penetration of thin targets is too extensive to be presented here. The
basic ideas are represented in [21] and their realization in [11]. It is assumed that
the length of the projectile’s nose corresponds to X1. In order to get equilibrium of
forces between the force that acts on the penetrator and the force of inertia, three
equations can be established by applying Newton’s second law. With boundary and
transition conditions, these equations can be transformed, leading to the following
two equations.

V 2
2 = V 2

0 −C

[
X2

1 +2
∫ X2

X1

αXdX

]
(12.7)

∫ X3

X2

α∂X =
[

2M
πN

ln

(
1+

NV 2

SM

)]V3

V2

=
2M
πN

[
ln

(
1+

NV 2
3

SM

)
− ln

(
1+

NV 2
2

SM

)]
(12.8)
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By substituting eq. (12.7) in eq. (12.8) an equation with the two unknown param-
eters V3 and X3 is obtained. For the case of the perforation, X3 corresponds to the
thickness of the concrete wall. In this case the equation has to be solved for V3. Then
V3 corresponds to the residual velocity of the projectile. If no perforation occurs, the
residual velocity must vanish (V3 = 0) and the equation has to be solved for X3.
α is a function that reduces the resistance of the concrete in the vicinity of the

wall’s rear side. Sjøl and Teland [21] developed several approaches by using the
Mohr-Coulomb material model and the von Mises material model and applying the
spherical and cylindrical Cavity Expansion Theorie. Figure 12.1 shows the curves
for the different definitions of α . As there is no sufficient experimental data, it is not
clear which function approximates reality best. However, as the functions within
each CET do not differ extremely, there is no significant variation of the results.

Fig. 12.1 Relative target resistances as functions of distance to backside.

With eq. (12.7) and eq. (12.8) it is possible to determine residual velocities, min-
imum required thicknesses and ballistic limits. To be able to implement and to solve
these equations, three possible cases have to be distinguished:

• The projectile stops in the undamaged region of the concrete wall. This means,
the penetration depth is smaller than the thickness of the wall minus the damaged
region, that is described with the parameter α .

• The projectile stops in the damaged region.
• The projectile perforates the concrete wall.
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As each of these cases requires completely different numerical treatment, it is
necessary to elaborate functions that allow the distinction of the different cases prior
to computation. To do so, the equivalent thickness Xequi of the wall is determined by
integration of the function α . Additionally the depth Xα is defined as the penetra-
tion depth at which the decay function α starts to affect the material resistance. By
comparing the theoretical penetration depth in an infinitely thick wall X∞ with Xequi

and Xα the three different cases can then be distinguished (see also [11]), and the
appropriate numerical treatment can be applied.

12.3 Deformable projectiles

12.3.1 Jacketed projectiles

Ordinary munitions for small calibre weapons are jacketed projectiles. This means
the projectile is composed of a soft metal jacket and a core made of either soft or
hard metals. Figure 12.2 shows an example for such projectiles. However, the pro-
jectiles mostly used for laboratory experiments and, hence, for the derivation of the
penetration formulas are usually homogenous projectiles made of steel with a high
strength. For the derivation of Forrestal’s penetration equation such projectiles were
used, too. Certainly, non-deformable projectiles represent the worst case for penetra-
tion events, but if the penetration depth of standard munition is determined applying
Forrestal’s penetration formula, the penetration depths will be largely overestimated.
Table 12.1 compares experimental penetration depths with calculated penetration
depths.

Table 12.1 Comparison of experimental penetration depths [15] and calculated penetration depths.

Calibre Distance No. of Penetrator Concrete Penetration depth Eff.
tests m V0 d Core strength Analyt. Exp. η

[mm] [m] [-] [g] [m/s] [mm] [MPa] [cm] [cm] [-]

5.56 x 45 50 7 4 920 5.56 DC 27.6 15.1 4.0 19.8%
5.56 x 45 50 1 4 920 5.56 SC 27.6 15.1 3.9 20.0 %
7.62 x 51 50 MW 4 9.45 820 7.83 SC 24.7 15.8 3.9 18.2%
7.62 x 51 50 MW 2 9.7 844 7.83 HC 24.7 16.9 8.8 42.5%
5.56 x 45 3 MW 3 4 920 5.56 DC 31.8 14.4 4.1 47.3%
5.56 x 45 3 1 4 920 5.56 SC 31.8 14.4 2.5 12.1%
7.62 x 51 3 MW 3 9.45 820 7.83 SC 32.3 14.4 4.0 17.7%
7.62 x 51 3 1 9.7 844 7.83 HC 32.3 15.3 7.0 38.7%
5.56 x 45 100 MW 4 4 920 5.56 DC 24.4 15.8 4.7 22.9%
7.62 x 51 100 MW 4 9.45 820 7.83 SC 24.4 16.2 4.5 20.9%

DC = Double core projectile, SC = Soft core projectile, HC = Hard core projectile
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Nr. Description Material
1 hull aluminium alloy
2 device for flash light MX71-Magnesium
3 filler polyester resin
4 core tungsten carbide
5 hull aluminium alloy
6 ring for conduction
7 tracer
8 cap brass
9 hull for charge steel
10 charge
11 igniter

Fig. 12.2 Cartridge 20 mm x 139 mm DM43.

Fig. 12.3 Stripping-off of the hull during impact (from [19]).

The penetration depth of ordinary jacketed munition is significantly smaller than
of quasi-rigid penetrators, because the soft jacket is stripped off when the projectile
hits the target (figure 12.3). During this process a part of the penetrator’s energy is
dissipated. On the one hand the deformation of the hull dissipates energy while on
the other hand, due to the increased penetrator diameter, the concrete target shows a
higher resistance. That is why more energy is absorbed by the concrete target.
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Therefore, one task of this research project was to find a possibility to better asses
the penetration depth of ordinary munition. The way chosen to solve this problem
was to determine the degree of efficiency of different types of penetrators. For this
purpose, experimental data of 139 experiments, mainly from [2, 3, 4, 15], was col-
lected. For each shot, the theoretically necessary velocity to get the right penetration
depth with Forrestal’s penetration formula (12.4) was calculated. Knowing the nec-
essary velocity, the necessary kinetic energy E of the projectile can be determined.
Then, the degree of efficiency is defined as

η =
Erigidbody pro jectile

Ereal pro jectile
. (12.9)

Similar to table 12.1, table 12.2 provides further data on the degrees of efficiency
for different projectiles. Details on the experimental setups can be found in the given
references.

Table 12.2 Degree of efficiency for different types of munitions determined from experimental
data.

Type of Munition Reference Core Efficiency
η

5.56 x 45 mm [15] DC 26.6 %
5.56 x 45 mm [15] SC 16.1 %
7.62 x 51 mm [15] SC 19.0 %
7.62 x 51 mm [27] SC 18.7 %
7.62 x 51 mm [15] HC 41.2%
7.62 x 51 mm [27] HC 24.8 %
7.62 x 51 Smk [3] HC 52.1 %
7.62 x 51 Smk [2] HC 27.9 %
7.62 x 54R B32 [4] HC 55.5 %
7.62 x 54R B32 [4] HC 21.3 %
7.62 x 54R B32 [3] HC 61.7 %

20 x 139 mm DM43A1 [3] HC 78.1 %

For the rapid assessment of the threat level for different types of projectiles, a
classification is needed. Hard core projectiles have a degree of efficiency between
21.3 % and 78.1 %. Hard core projectiles with a larger diameter have a higher degree
of efficiency. The reason for this is the higher mass fraction of the core in larger
projectiles. Soft core projectiles show a degree of efficiency of just about 20 %,
whereas with a degree of efficiency of about 30 % double core projectiles are slightly
better.

Due to the large set of data on which the values are based, for unknown projectiles
we suggest the degrees of efficiencies outlined in table 12.3. However, as these
values are solely determined from experiments with munition used by the German
Armed Forces, they must be used carefully.
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Table 12.3 Degree of efficiency for different types of munitions.

Typ of core Degree of efficiency Remark

Soft Core 20%
Double Core 30%
Hard Core 55% if d < 7 mm

55% - 80 % linear interpolation
80% if d ≥ 12 mm

12.3.2 Homogenous deformable projectiles

As the model for jacketed projectiles (see section 12.3.1) is not suitable for homoge-
nous deformable projectiles, a second model was developed in order to assess the
effects of these penetrators, too.

Besides the impact velocity, the stresses in the projectile depend on various pa-
rameters: the projectile diameter, the shape of the nose, and the material densities of
target and projectile materials.

All projectiles, even projectiles made of high strength materials like tungsten car-
bide, deform if a certain impact velocity is exceeded. This limit is called the ”limit
of non-deformable penetration” and the corresponding velocity is called the ”critical
velocity”. Certainly, the deformation of a projectile made of lead will differ signifi-
cantly from a projectile made of tungsten carbide. Chen [7] described the transition
from non deformable penetration to deformable penetration. He showed that if the
critical velocity is exceeded the penetration depth decreases significantly because
of the deformation of the penetrator. For deformable penetration or hydrodynamic
penetration several models exist. The first model for hydrodynamic penetration was
derived by Birkhoff in 1948. A more sophisticated model is the model of Alkesee-
viskii and Tate which was published in 1966 and which was extended by Jones,
Gillis and Foster. Tate refined his model in 1986 [23, 24]. In 1991 Luk and Pieku-
towski and in 1992 Cinnamon, Jones, House and Wilson published further models
[18]. Teland summarised these models and some of the derivations in [25].

A major shortcoming of all these models is that they are rather complicated and
that it is often not clear for which kind of penetration they can be applied. Further-
more, with the transition from non-deformable to deformable penetrators, it was not
possible to integrate one of these models into the concept of the new engineering
tool. Hence, a complete new approach was pursued.

The idea was to find a methodology to describe the penetrator’s shape after
the impact depending on the material properties and the impact velocity. Knowing
the penetrator geometry after deformation, the penetration process can be approxi-
mately described applying the already explained algorithm for rigid body projectiles
(section 12.2).

Chen [7] showed that the critical velocity vc at which deformable penetration
occurs can be determined by
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vc =

√
2 · (YP −RT )

ρT
(12.10)

with

YP yield strength of the material of the penetrator,
RT yield strength of the material of the target,
ρ density of the target material.

With eq. (12.10), it is possible to estimate at which velocity deformation starts
to occur. This expression, however, does not consider the projectile’s nose shape.
Furthermore, there is no formulation describing the projectile’s shape and diameter
after the impact. These necessary descriptions were determined by a large number
of simulations (more than 200) with the Hydrocode Autodyn. In order to verify the
results of the simulations, extensive numerical studies were conducted and sum-
marised in [10].

For the determination of the necessary functions that describe the penetrator di-
ameter after impact, several computations have been carried out where the material
strengths, the projectile diameter, the impact velocity and the nose shape were varied
and their influence on the penetrator’s deformation was investigated. For each simu-
lation, the shape and the diameter of the penetrator after the impact was determined.
Based on these data, new relationships could be established. Figure 12.4 shows the
results of the simulations conducted to extend eq. (12.10) for ogive nose projec-
tiles. In the figure the numerically determined diameters after impact are plotted as
a function of the impact velocity and the material strength of the penetrator. The
numerical studies show that an ogive nose projectile begins to deform significantly
later than blunt projectiles, and the critical velocity for ogive nosed penetrators is
about 100 % higher.

Introducing the constant Φ for the nose shape in eq. (12.10) yields

vc =Φ ·
√

2 · (YP −RT )
ρT

(12.11)

and
Φ = 2−N , (12.12)

where N is the penetrator nose parameter from eq. (12.3).
As soon as the projectile nose begins to deform, the diameter of the penetrator

increases significantly. In figure 12.4 the measured deformation factors Δ , which
describe the deformed/undeformed diameter ratio, are plotted. Thus, a deformation
factor of Δ = 2 means that the diameter after impact is twice the diameter before
the impact.

To describe the deformation, the following relation is proposed:
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Δ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 v
vc

< 0.8

2.5 v
vc
−1 0.8 < v

vc
< 1.2

2 v
vc

> 1.2 .

(12.13)

The results of the simulations also showed good agreement for the blunt pro-
jectiles (cf. [11]) and by applying eqs. (12.11), (12.12) and (12.13), all numerical
results can be well reproduced. Furthermore, even a comparison with experimental
data from jacketed projectiles with soft cores - which can be approximated as ho-
mogenous deformable penetrators - shows good agreement. Hence, this model can
be considered as suitable to assess whether penetrators of certain materials will be
deformed during a specific impact process. Generally, a direct comparison of this
theoretical deformation and data gained from experiments with deformable projec-
tiles would be of great interest. However, there is no sufficient data available at the
moment.

Fig. 12.4 Deformation factors for different impact velocities and yield strengths and critical ve-
locity for different yield strengths.
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12.4 Scattering of experimental data

It is a well-known fact that most experimental data scatter in a certain range. Espe-
cially due to the inhomogeneity of concrete the results of experiments with small
calibre penetrators scatter noticeable. Höcherl and Kunz [15] studied the penetra-
tion depth of hard core munition fired from the German assault rifle G36 in concrete
targets. Table 12.4 shows the penetration depths measured in seven experiments.
The mean value of the experiments is 40 mm, the maximum value is 60 mm and the
minimum value is 32 mm. This shows that the deviation of the mean value is not
negligible. In the development of a model for the design of concrete walls against
impact the scattering has to be considered.

Table 12.4 Comparison of experimental penetration depths [15].

Shot number 5-1 5-2 5-3 5-4 5-5 5-6 5-7
Penetration depth [mm] 60 31,5 45 40 32 34 37

As concrete is a composite of aggregates and cement paste, it is a highly inhomo-
geneous material. In particular for small penetrators this is of special importance.
Due to the inhomogeneity of the concrete the forces acting on the penetrator are not
evenly distributed and lead to a deviation from the firing direction. That is proba-
bly one of the reasons why Forrestal’s constant for the material resistance S does
not represent the resistance of the concrete satisfactorily for large penetrators. An
approach that as well accounts for the diameter of the penetrator as for the mean
diameter of the aggregates might deliver a better description for S. However, such a
description does not exist yet.

Another reason for the scattering of experimental results are the yaw and impact
angle of the projectiles.

For setting up a broad statistical study, it would be necessary to have a large
number of shots with different penetrators and different penetrator velocities and
different concrete compositions. To gather information how the experiments are
performed and its influence on the results, it might also be interesting to have the
experiments performed by several experimental laboratories.

However, as such a statistical database does not exist, it is not possible to evalu-
ate the significance and scattering of all important parameters. A number of seven
repetitions must unfortunately already be considered as high. Nevertheless, to quan-
tify the scattering it is reasonable to calculate the deviation of the experimental data
from the prediction of the theoretical model. This approach has the advantage that a
single frequency distribution of the deviation of all experiments with different pro-
jectile velocities, masses, nose shapes, diameters and different concrete strengths
can be obtained.

Figure 12.5 shows a comparison of calculated (theoretical) and experimental
data. The data depicted in the figure was taken from experimental results from Sjøl,
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Forrestal and Bergmann for non-deformable projectiles with a diameter less than
25 mm (details in [11]).

Fig. 12.5 Comparison of experimental data from Sjøl [22] and calculated penetration depths.

For 86 experimentally determined penetration depths the theoretically necessary
impact velocity was calculated using equation (12.4). This velocity was then com-
pared to the experimental impact velocity. As the criterion to describe the variation
of the results the kinetic energy was chosen. Sorting the experiments by their vari-
ation of the energy the empiric distribution function for the deviation of the impact
energy is obtained (top of figure 12.6).

The lower chart in figure 12.6 shows the empiric cumulative distribution function,
which is obtained by integration of the empiric distribution function. On the axis of
abscissas the variation of the energy and on the ordinate the cumulated probability
is plotted. With this function it is possible to determine the level of confidence and
to calculate the necessary additional projectile energy to obtain a desired safety
margin.

The table 12.5 shows the necessary factors for the impact energies for some prob-
abilities of occurrence. These factors can be interpreted as safety factors. If the prob-
ability of perforation of a concrete wall should be less than 5 % the design value of
the penetrator’s energy must be increased by a factor of 1.45.

This approach enables the user to get information on the confidence level of the
predicted results. This is of special interest for an economic dimensioning of walls
and the assessment of risk for existing walls.
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Fig. 12.6 Empiric distribution and cumulative distribution function for penetrators with a diameter
smaller than 25 mm.

Table 12.5 Increase factors for the impact energy considering different safety levels.

Certainty Increase factor
for impact energy

0,7 1,15
0,8 1,2
0,9 1,38
0,95 1,45
0,99 1,8
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12.5 The new software-tool PenSim

The aim of this research project was to develop an engineering tool that is easy to
use, has clear ranges of application, and delivers more information about deformable
penetrators than existing tools. The above mentioned and briefly described results
of this research project have been implemented. Many more studies were necessary
that are not presented in this paper, e.g. studies to describe the geometry of the dam-
ages. All results of this research project, the complete algorithm and the verification
of its results are described in detail in [11].

Fig. 12.7 Graphical user interface of PenSim - Input and Result Window.

Fig. 12.8 Graphical user interface of PenSim - Selection of the typ of projectile.
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Figure 12.7 shows the Graphical user interface (GUI) where the necessary data
that characterises the projectile and the concrete wall can be entered. On the right
hand side of the depicted program window the results of the computation are dis-
played graphically. In figure 12.8, the different types of projectiles are illustrated for
the program input. Additionally, different penetrators can be stored in a library for
convenience. Further can be mentioned that the GUI is available in German, English
and French.
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Chapter 13
Numerical Analysis of Fluiddynamic
Instabilities and Pressure Fluctuations in the
Near Field of a Detonation

Arno Klomfass

Abstract The near field of a blast wave generated by the detonation of a centrally ig-
nited, spherical TNT charge is investigated via numerical simulation. The study fo-
cuses on the effects of the Rayleigh-Taylor and the Richtmyer-Meshkov instabilities
on fluctuations in the pressure field. The numerical simulations are performed with
a finite volume multi-fluid ALE-method on globally adapted grids, which stretch
with the expanding blast wave. The paper describes the details of the applied meth-
ods and gives a survey on the results obtained.

13.1 Introduction

The detonation of a High Explosive (HE) produces mainly gaseous products in a
state of high pressure (typically some 100 kbars) and high density (comparable to
the density of the unreacted HE). The expansion of the product gas drives a strong
shock wave in the surrounding air. This is illustrated in figure 13.1 for a spherical
detonation of 1 kg TNT. The expansion of the product gas starts when the detonation
wave reaches the outer surface of the charge at a time about 8 μs after initiation at
its center. At that instance the primary and secondary shock waves are generated by
refraction of the detonation wave at the interface between product gas and ambient
air. The expansion of the product gas starts with about 7000 m/s and comes to a
rest after about 1 ms when the cloud of product gas reaches a first maximum at a ra-
dius of about 0.85 m. The primary shock front propagates outward and continuously
separates from the cloud of product gas; its propagation velocity asymptotically ap-
proaches the ambient sound speed. The secondary wave initially propagates towards
the center of the sphere against the outward directed flow of expanding product gas.
After about 1.3 ms the wave is reflected at the center; it reaches the surface of the

Arno Klomfass
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product gas at about 2.4 ms. There it is refracted into the outward propagating sec-
ondary shock and the inward propagating tertiary wave. This again is reflected at
the center at about 4.2 ms and leaves the cloud of product gas at about 5.6 ms 1
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Fig. 13.1 Trajectories of the fluid interface and the primary shock and trajectories of subsequent
waves as computed with EMI Flow Solver APOLLO.

During the expansion of the product gas perturbations arise at the interface be-
tween product gas and air. Their amplitudes quickly grow and the initially spherical
surface of the product gas evolves into an irregular shape resembling a cauliflower,
c.f. figure 13.2. This process is caused by the Rayleigh-Taylor (RT) and Richtmyer-
Meshkov (RM) instabilities. Both concern the motion of an interface between two
fluids of different densities. The RTI occurs when a fluid of higher density is acceler-
ated into a fluid of lesser density. This situation occurs upon the initial expansion of
the product gas. The RMI occurs when an interface between fluids of different den-
sities is impulsively accelerated. Such a situation exists when the detonation front
and later the secondary shock pass the surface of the product gas.

For further insight the figure 13.3 (left) shows the evolution of the density ratio
and the impedance ratio, respectively, between air and product gas at the fluid in-
terface during the expansion process. Prior to the generation of the primary shock
front, the density and the impedance of the ambient air are negligible in compar-
ison to the conditions of the product gas and also the unreacted HE. Upon com-
pression and heating by the primary shock wave however, the impedance of the air

1 The amplitudes of the secondary wave and the tertiary wave are relatively small; it is therefore
difficult to identify their exact positions in the numerical solution. The visible jumps in the shown
trajectories result from this difficulty.
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Fig. 13.2 Image obtained with a high speed camera, showing the rough, cauliflower-like surface
of the cloud of product gas.

becomes comparable to the condition of the product gas at the fluid interface (ratio
value about 0.3). The density ratio however remains small (about 0.1) throughout
the expansion process. The assimilation of the impedances is responsible for the
generation of the secondary and tertiary waves by refraction. The dissimilarity of
the densities enables the enduring affect of the instabilities.

The static pressure and the velocity are constant across the fluid interface at any
time. Due to the different densities the dynamic pressure pdyn = ρv2/2 however
differs on both sides of the interface. Figure 13.3 (right) shows the evolution of
the ratio between the dynamic and the static pressure individually for both air and
product gas at the interface during the expansion process. It can be recognized that
the dynamic pressure in the product gas is clearly larger than the static pressure
almost throughout the entire expansion process. In the air, the dynamic pressure at
the interface rapidly falls below the static pressure. Pressure measurements, which
contain a dynamic part (e.g. the total pressure or the reflected pressure), will provide
different values depending on whether the measurement position is inside or outside
of the product gas. The irregular surface of the cloud of detonation products thus
directly inflicts spatial and temporal fluctuations of such pressure measurements in
the near field.

If the detonation occurs close to the ground or near a large solid object, the situa-
tion becomes more complex. The primary shock is reflected back into the expanding
cloud of product gas; the cloud itself is deflected laterally on the object surface. The
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Fig. 13.3 Ratios of density and impedance between air and product gas at the fluid interface during
the expansion of the product gas (left); ratio of dynamic pressure to static pressure for air and
product gas at the fluid interface during the expansion of the product gas (right) as calculated with
APOLLO.

interaction of the reflected shock with the product gas and the primary shock leads
to strongly inhomogeneous pressure distributions in distinct regions.

The work described in this paper aims to clarify the processes in the near field
of a detonation and their effects on the pressure fields through specifically tailored
numerical simulations.

While standard hydro-code simulations provide useful results for most detonation-
and blast problems, they are typically performed with moderate spatial resolutions
which are not sufficient for an adequate capturing of the instabilities. The capturing
of the instabilities is indeed a demanding task, as it requires an accurate multi-fluid
algorithm and a high spatial resolution.

An efficient approach for the simulation is the application of a globally adapted
grid, which stretches with the expanding blast wave and thus ensures an adequate
spatial resolution throughout the expansion process. Furthermore, the relative mo-
tion between the fluid and the co-expanding grid becomes small on the average.
Thereby the effects of numerical diffusion are decreased by this approach.

The paper describes the numerical method applied in this study and presents the
results for two cases: spherical free field detonations of 1kg TNT in air and the
detonation of 1 kg TNT at a height of 0.2 m above ground. Since diffusion, heat
conduction and viscosity are neglected in the applied physical model, the obtained
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results are invariant against changes in length scale. The results can thus be scaled
to other charge sizes.

13.2 Physical Models

The conservation equations for time dependent flows of compressible fluids provide
the basic model for the subject matter. As a simplifying approximation the fluids are
considered inviscid, non-heat conducting and non-diffusive, i.e. the two different
fluids (air and product gas) do not mix on the molecular level in this model. Applied
to a material volume Vm, the conservation equations can be written as:

D
Dt

∫

Vm

UdV =
∮

Am

LndA

U =
(
1,ρ,ρ v,ρ etot)T

, L = (v,0,−pI, pv)T , etot = e+
1
2

vv ,

(13.1)

where n is the outward pointing normal vector to the surface Am of the material
volume and I is the unit tensor. The geometric conservation law which describes the
rate of change of the volume has been added to the system of equations in a con-
sistent way (first equation in the system). The above equations can be re-formulated
for control volumes V , which arbitrarily move relative to both the fluid and labo-
ratory space by using Reynolds transport theorem. The following ALE (Arbitrary
Lagrange Euler) formulation of the equations is then obtained:

d
dt

∫

V
UdV +

∮

A
U(v−vA)ndA =

∮

Am

LndA. (13.2)

Here d/dt denotes the time derivative with respect to the control volume V , the
surface of which moves with the velocity field vA.

For the numerical solution on arbitrarily moving grids the equations have to be
extended to mixed material volumes. The method applied here follows a volume-
of-fluid methodology in the most general form, where a full set of conservative
variables Uα is assigned to each fluid α = 1,N. For a control volume which contains
multiple fluids the extended conservation equations are:

d
dt

∫

V
fαUα dV +

∮

A
fαUα (vα −vA)ndA = φα

∮

Am

LndA+
∫

Vm

Sα dV. (13.3)

The factor fα is a scalar field, which describes the spatial distribution of the
fluids. It assumes values of either one or zero depending on the presence ( fα = 1)
or absence ( fα = 0) of fluid α at a point in space. The volume integral over fα -
as in the first term on the left side of (13.3) - thus renders the partial volume Vα of
fluid α in the mixed material volume. The surface integral over fα (as in the second
term on the left hand side) renders the partial surface area Aα covered by the fluid.
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Note, that the surface integral on the right hand side gives the total rates of change
of volume, mass, momentum and energy for the mixed material volume. The factor
φα is the diagonal matrix of the partitioning factors. They control, which fractions
of the total rates of change act on the different fluids within the mixed volume. The
elements of φα are therefore defined as:

φα = diag

(
δVα
δV

,
δMαvα,x

δMvx
, . . . ,

δMαvα,z

δMvz
,0,
δEtot

α
Etot

)
. (13.4)

In the above relation, quantities without subscript α denote the total values of
the mixed volume (sum over all fluids). The source term Sα describe the internal
transfer and equilibration processes among the fluids within the mixed volume.

By summing the equations over the individual fluids the original conservation
equations are recovered, provided that ∑φα = I and ∑Sα = 0. Hence, the above
equations inherently obey fluid-wise and global conservation.

The conservation equations are closed by equations of state for each fluid. For
the present purpose we use an ideal gas equation of state for air and a JWL equation
of state for TNT.

Additional closures are required for the partitioning factors and source terms. As
a model for the derivation of the first factor in (13.4) a volume of mixed material
under isentropic compression is considered. As we refer to a material volume and
no chemical reactions occur between the fluids, the mass fractions Xα = Mα/M are

constant. With Yα = Vα/V denoting volume fractions and a = (∂ p/∂ρ)1/2
s denoting

the sound speed the following relations can be derived:

δVα
δV

= Yα
ρa2

ραa2
α

with a =
(
∑
α

ρYα
ραa2

α

)− 1
2

and ρ =∑
α
ραYα . (13.5)

As each fluid in a mixed volume has individual density and energy, the pressures
of the fluids will generally differ from each other. Using the above expression, an
average pressure can be defined as:

p =∑
α

pα
δVα
δV

. (13.6)

By this definition the fluid with the larger compressibility dominates the average
pressure more than the stiffer fluid.

The partitioning of the change of momentum is calculated under the assumption
that all fluids in the mixed volume experience the same acceleration. This assump-
tion leads to the partitioning factors for momentum components being equal to the
mass fractions. The average velocity within the mixed volume is also calculated by
mass weighting.

δMαvα,i

δMvi
= Xα , v =∑

α
Xαvα . (13.7)
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Finally, the partitioning of the change of total energy of the mixed volume must
be derived. As Etot

α = Eint
α + Ekin

α we first consider the partitioning factors of the
kinetic and internal energies separately. Under the assumption that the individual
fluid pressures and fluid velocities are about equal to the respective average values,
the partitioning factors for the energies become:

δEint
α

δEint =
δVα
δV

,
δEkin

α
δEkin = Xα . (13.8)

With these factors, the partitioning of the change of total energy can be calculated
according to

δEtot
α

δEtot =
δVα
δV

dEint

dEtot +Xα
dEkin

dEtot . (13.9)

For the evaluation of this expression, the actual change rates of the internal en-
ergy and the kinetic energy of the mixed material volume are determined as in the
conservation equations:

dEtot = −
∮

Am

pvndA, dEkin = −v
∮

Am

pIndA, dEint = dEtot −dEkin.

(13.10)
With these relations the partitioning factors are completely defined. The source

terms Sα are all zero in the current model with the exception of the momentum
exchange between the fluids in a mixed volume. For this part we assume that the
velocity component normal to the fluid interface within the volume is equilibrated
instantaneously. Research on adequate models for the equilibration processes is con-
tinuing and a detailed discussion will therefore be postponed.

13.3 Numerical Methods

For the numerical solution of the extended conservation equations an explicit finite
volume scheme on block structured grids is used.

In this scheme the time integration of the discretized equations is performed with
an operator split. In a first step a Lagrangian update is calculated (neglect the second
term on the left hand side of equation 13.3) and in a subsequent second step the
remapping to the arbitrarily moving and deforming grid cell is performed (evaluate
the second term on the left hand side of equation 13.3).

In the first step the fluxes L which depend on the pressure and the material ve-
locity on the cell surfaces are obtained from an approximate solution of a Riemann
problem via a HLL-type solver. For the evaluation of the Riemann problem any
mixed cells are homogenized by using the average values of pressure, velocity, den-
sity and sound speed as defined above.

The second step covers the convection of the fluids relative to the moving and
deforming grid. In this step, the fluxes fαUα(vα−vA) are calculated via a donor-cell
method. The treatment of mixed cells in the second step requires the determination
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of the partial surface areas Aα,i covered by the individual fluids for each cell surface
i. For this evaluation we use an approximate relation for the fraction g of a cell
surface covered by a fluid α:

Aα,i :=
∮

Ai

fα dA ≈ Ai g(Yα ,ninα) with nα =
grad (Yα)
|grad (Yα)| . (13.11)

The function g depends on the volume fraction Yα of fluid α in the donor cell and
the orientation of the fluid interface in the donor cell towards the considered cell sur-
face. Assuming a locally planar fluid interface this orientation is expressed through
the scalar product ninα where ni is the normal vector to the cell surface and nα the
normal vector to the fluid interface. The normal to the fluid interface is obtained
from the local gradient of the volume fraction, which is numerically approximated
by a central difference. The relation g(Yα ,ninα) was determined empirically and is
incorporated in the code in tabular form. Figure 13.4 shows an isoline representation
of this relation.
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Fig. 13.4 Graphical representation of the preferential transport function.

The properties of the function g can be explained by considering some partic-
ular cases. If the gradient vector is pointing normally to a considered cell surface
(ninα = 1), the covered fraction of the cell surface is one; if the gradient is pointing
in opposite direction (ninα = −1) the covered fraction is zero. In case the gradient
is parallel to a cell surface (ninα = 0), the covered area fraction is directly propor-
tional to the volume fraction. The function establishes what is called a preferential
or non-diffusive transport.

Both flux steps, the Lagrangian and the remap step, are carried out with higher
order accuracy by using a MUSCL-type scheme, which is here based on a tri-linear
reconstruction of the conservative variables. Within mixed cells, the order of ac-
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curacy is reduced to one. Finally, it should be mentioned, that the actual process
of detonation is modeled via a programmed burn algorithm, which adds a specific
amount of internal energy to the unburned TNT material as a function of space, time
and prescribed detonation velocity. This is a standard procedure as applied in most
hydro-codes.

13.4 Computational Methodology

The numerical method described above is implemented in the APOLLO flow solver
of the institute. This code is parallelized by domain decomposition and permits sim-
ulations with large grids on a Linux cluster. For the presented 3D case we used up
to 65 processors and a total grid size of about 18 million cells. The 2D cases were
run on 25 processors with total grid size up to about 1 million cells.

In all presented cases the detonation of 1 kg TNT (a sphere with radius 5.27 cm)
in air at standard conditions was studied. The spherical body of TNT was ignited at
its center at t=0.

To obtain a reference solution with perfectly spherical symmetry a 1D simula-
tion with very high resolution was carried out. The same perfectly symmetrical 1D
solution at the time immediately after the detonation front reaches the surface of
the TNT sphere (t ≈ 8 μs) was also used as initial condition for the 2D and 3D
simulations.

For the investigated free field detonation, the initial dimensions of the compu-
tational grid were x,y ∈ [0,0.2 m] in the 2D case and x,y,z ∈ [0,0.2 m] in the 3D
case, with the center of explosion at x=y=z=0, such that a 90 degree section of the
initially spherical configuration is considered in the simulation. The 2D grid was
wedge shaped with an opening angle of 10 degrees along both x-axis and y-axis and
had one cell in thickness-direction. The initial resolution of the grids was varied in
different simulations between 0.8 mm and 0.2 mm for the 2D cases. The 3D case
was run with an initial resolution of 0.8 mm only. In the course of the computation
the grid is stretched according to a prescribed velocity-time profile, such that the
blast front is contained within the computational domain up to a radius of about 2 m
reached at about t=2 ms. The grid motion is then stopped and the blast front leaves
the domain through extrapolation boundary conditions. Note that the cloud of deto-
nation gases has reached its maximum expansion in the free field case at a time of
about t=1 ms.

For the simulation of the detonation above ground the initial grid dimension was
x ∈ [0,0.3 m] (radial direction) and y ∈ [0,0.4 m] (height direction). Here only a
2D simulation with axial symmetry was performed. The center of explosion was
located at x=0 m and y=0.2 m. The initial grid resolution was 0.4 mm. The grid is
stretched within 2 ms to dimensions x ∈ [0,2.6m], y ∈ [0,3.5 m].

As a stimulus for the onset of the instabilities a pre-defined perturbation field was
overlaid onto the initial perfectly symmetrical velocity field. This perturbation field
was defined by
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v(r,β ,δ ) = v(r)(1+ξ f (β ,δ )d(β ,δ )) , (13.12)

where β and δ are angular coordinates with respect to the center of the charge
and v(r) is the radial velocity component. The function f ∈ [−1,1] describes a si-
nusoidal distribution with the smallest possible wavelength that can be resolved on
the given grid (four cells per period). In the 3D case the function f describes an
even distribution of dimples (similar to a golf ball), again with the smallest possible
wavelength for the given grid. The function d ∈ [0,1] describes a smooth angular
variation of the amplitudes, such that the overlaid perturbations become small in the
x,y and z−direction through the center of the charge and large in the diagonal di-
rection. The motivation is explained in the following. The instabilities would in fact
also occur without the overlaid perturbations, as the inherent perturbations result-
ing from the Cartesian grid suffice for their triggering. However, the grid-inherent
perturbations exhibit an anisotropic behavior, as the sphere surface has different ori-
entations towards the cell surfaces at different positions in the grid. This leads to
the undesired effect that the instabilities start to grow at different rates in different
directions from the center of the sphere: in the direction where the fluid interface is
parallel to cell surfaces the initiation is faster than in the diagonal direction. The ad-
ditionally overlaid perturbations were intended to overrule this effect. A remaining
anisotropy however can especially be recognized in the simulations for the detona-
tion above ground.

13.5 Results 1D, 2D and 3D Free Field

The following figure 13.5 shows a comparison of blast parameters obtained from
1D simulations with the empirical fits given in [1]. The comparison documents the
basic accuracy of the model. The figure 13.1 shown in the introduction has also been
obtained from the same 1D solution.

Figure 13.6 shows density fields obtained from the 2D computations with differ-
ent resolutions. Overlaid is the contour of the fluid interfaces. The plots were taken
at times of about t=0.92 ms, which corresponds to the time when the cloud of det-
onation gas first reaches its maximum expansion. Figure 13.7 shows an image from
the 3D computation taken at the same time. For comparison with the 2D results two
diagonal planar slices were extracted from the 3D fields.

It can be seen that the protuberances are less regular in the 3D calculation than
in the 2D calculation with identical resolution. Furthermore it can be recognized
in the 2D simulations, that the lengths of the protuberances become smaller as the
resolution is increased, while at the same time their number increases. In figure 13.8
a comparison of the calculated time dependent volume of product gas is shown in
terms of the time dependent radius of an equivalent sphere. It can be seen, that the
oscillation of the cloud volume is less pronounced in the 2D and 3D cases than in
the 1D reference computation. With increasing resolution however, the amplitude of
oscillation increases slightly towards the 1D solution.
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Fig. 13.5 Comparison of calculated blast parameters (1D spherical) with empirical fits from [1].

In figure 13.9 and 13.10 some selected time curves of the static and total pressure
at different positions are presented for the 2D simulations with the highest initial
resolution (0.2mm). The curves in each plot were taken at the same radius but at
different angular positions, which were selected arbitrarily. Notable deviations from
spherical symmetry due to the fluid dynamic instability are recognized at the fluid
interface and also at the blast front.

Figures 13.11 and 13.12 provide an overview of the variations of static and total
overpressure amplitudes and impulses obtained from the simulations with different
resolutions. These results can be summarized as follows:

• The static overpressure amplitudes exhibit significant variations in a zone of
scaled distances between about 0.2 and 0.7 m/kg1/3, with maximum variations
of about ±10% to ±15% at a scaled distance of about 0.4 - 0.5 m/kg1/3. The
variation grows with increasing grid resolution.

• The total overpressure amplitudes show similar variations in the same range of
scaled distances. The variation however decreases with increasing grid resolu-
tion.

• The impulses exhibit a corresponding tendency; the maximum variations reach
about 7% - 8%.
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13.6 Results 2D Above-Ground Detonation

For the above ground detonation of the spherical charge the blast field can be subdi-
vided into two distinct zones with time dependent extent: a zone above and a zone
below the wave, which is reflected off the ground. In the first zone undisturbed free
field conditions prevail and thus the findings of the preceding section apply to this
zone. The second zone would ideally (if no instabilities would occur) be axially
symmetric. An analysis of the effects of the instabilities will thus require 3D simu-
lations. The 2D axially symmetric simulations carried out so far thus focus only on
the effects of the reflected wave on the blast field.

Figure 13.13 shows some selected total pressure fields which illustrated the evo-
lution of the blast field. In these plots one can also observe the numerically caused
anisotropic initiation and growth of the instabilities, which could for this calculation
not be prevented by the overlaid initial perturbations.

Some details of the occurring wave interactions are explained with figure 13.14.
In a central zone the reflected wave propagates upward against the flow of expand-
ing product gas; this part of the wave (A) is almost planar and parallel to the ground.
In the zone of shock heated air between the primary blast front and the product gas
the wave velocity is larger than in the product gas. The part (B) of the reflected
wave thus runs upward with a higher velocity than part (A) of the reflected wave.
The wave (B) is refracted at both the blast front and the fluid interface. At the in-
tersection points of wave (B) with these surfaces new waves (C,E) are created. The
superposition with the primary blast front leads to an outward inclination of the
primary blast front (C). This again leads to a further reflection on the ground, (D).
Similarly, the wave (E) interacts with the part (A) of the reflected wave.

In these zones of wave interactions and refractions a spatially and timely strongly
inhomogeneous pressure distribution already prevails. The fluid dynamic instabili-
ties lead to additional fluctuations.

Figure 13.13 provides an overview of the spatial distribution of blast parameters.
Displayed are the maximum amplitudes and impulses of the static and the total
overpressure as occur in the simulated time interval between 0 and 4 ms. Note that
the displayed range of values is truncated at the maximum value: white regions thus
indicate any values above the referenced value. The plots clearly indicate zones
where the superposition of the primary and the reflected wave lead to increased
pressure amplitudes and impulses. Especially at the boundaries of these regions
large gradients of these blast parameters occur. Measurements taken in the vicinity
of these boundaries will thus sensitively depend on the position. Furthermore, the
zone boundaries can be affected by the fluid dynamic instabilities. Repeatability of
measurements can be very poor in the vicinity of these boundaries.
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13.7 Conclusions

The presented simulations indicate that the fluid dynamic instabilities can indeed
lead to fluctuations of the pressure in the near field of a detonation. For the inves-
tigated case of a 1 kg TNT detonation in free field a zone extending from 0.2 to
about 0.7 m was identified where significant fluctuations of both the local peak val-
ues and the impulses of the total pressure and the static pressure occur. The extent
of this zone obeys the usual scaling laws. At positions beyond the specified zone
pressure fluctuations might still occur, but do not affect the peak values or impulses
any more.

The evolution of the unstable fluid interface shows a fractal behavior, with a
large spectrum of length scales. The simulations therefore depend strongly on the
grid resolution such that convergence is difficult both to measure and to achieve. For
this reason the reliability of the results concerning the strength of the fluctuations is
still questionable. Further investigations on the grid convergence and the influence
of distinct modeling parameters are necessary to clarify this aspect.

The blast field generated by a detonation above ground is dominated by the re-
flected wave and its interaction with the expanding product gas and the primary
blast front. Due to these interactions distinct zones exist in the spatial distributions
of peak pressures and impulses. The position and extent of these zones could be
identified by the performed 2D simulations. At the boundaries of these zones very
strong gradients of the blast parameters occur. In the vicinity of these boundaries
the values of the blast parameters therefore depend sensitively on positions and re-
peatability of measurements might thus be very poor. In addition, the position of
these zones might be affected by the fluid dynamic instabilities. In order to clarify
this aspect 3D simulations are necessary, which have not been carried out yet.
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Fig. 13.6 Density fields from 2D simulations with initial resolutions of 0.8 mm, 0.4 mm and 0.2
mm (top to bottom) at time t = 0.92 ms.
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Fig. 13.7 Image obtained from the 3D simulation with initial resolution 0.8 mm at time 0.92 ms
(top) and two diagonal slices extracted from the same 3D simulation - compare with 2D result with
same resolution (top of figure 14.7).
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with initial resolution of 0.2 mm.
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Fig. 13.11 Upper and lower bounds of static and total overpressure amplitudes and impulses ob-
tained in the 2D simulations with different grid resolutions.
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sure amplitudes and impulses obtained in the 2D simulations with different grid resolutions.



13 Pressure Fluctuations in the Near Field of a Detonation 257

Fig. 13.13 Sequence of total pressure fields for the detonation of 1kg TNT at 0.2 m (center of
charge) above ground. Times from top to bottom: 0.03 ms, 0.26 ms, 1.3 ms
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Fig. 13.14 Details of the wave interaction processes as explained in the text.
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Fig. 13.15 Spatial distribution of amplitudes (above) and impulses (below) of static (left) and total
overpressures (right) as recorded in the simulations.



Chapter 14
Numerical Simulation of Muzzle Exit and
Separation Process for Sabot–Guided Projectiles
at M > 1

Jörn van Keuk and Arno Klomfass

Abstract Coupled fluid–structure simulations of muzzle exit and separation process
for sabot–guided sub–caliber projectiles in supersonic flight are presented. In order
to guarantee a separation without significant perturbations for the projectile aspects
of both aerodynamics and structure loading have to be considered. Such simulations
require sophisticated methods for fluid–structure interaction. A particular challenge
results from the significant relative motion of sabot, projectile and muzzle. A two
stage strategy based on a switch from an earth–based to a moving coordinate system
is proposed. By this means, an investigation of the complete physical process for the
separation including interactions with the barrel and the high pressure gas is possi-
ble. The AUTODYN software extended by in–house developed user–subroutines is
applied for the simulations. Results for high–strength sabots of caliber 40 mm and
different muzzle velocities are presented and compared with corresponding experi-
mental data.

14.1 Introduction

The muzzle exit and separation process of sabot–guided projectiles include sev-
eral physical processes that influence the exterior ballistic flight of the projectile
downstream from the muzzle [2]. Barrel oscillations can cause non–symmetric in-
teractions between the barrel and the projectile. Additionally, the high–pressure gas
leaves the muzzle exit at a high Mach number leading to a significant incident flow
from reverse for a short time. Both effects can perturb the flight trajectory due to
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asymmetries. Finally, for sub–caliber projectiles the separation process from the
sabot starts directly behind the muzzle exit.

In order to guarantee a muzzle exit and separation without significant perturba-
tions of the projectile the sabot has to be designed appropriately regarding both as-
pects of aerodynamics and structural loading. Additionally, lowest possible weight
is desired for the sabot since it represents a parasitic mass. Therefore, the applica-
bility of light–weighted materials e.g. Magnesium or Magnesium–Lithium alloys is
subject of recent research work in this field [3, 4].

14.2 Technical Specifications / Experimental Setup

The applicability of light–weighted materials for sabots of sub–caliber projectiles
is investigated experimentally at the German–French Research Institute [3, 4]. The
experimental configuration consists of a long rod made of tungsten surrounded by a
4–part–sabot for the guidance inside the barrel (see Fig. 14.1).

Fig. 14.1 Penetrator / sabot model [3, 4].

Different materials e.g. Magnesium, Magnesium–Lithium alloys, are investi-
gated for the sabot. The characteristic dimensions of the configuration and the ex-
perimental conditions are listed in the following tables (see Tab.14.1,14.2).

Table 14.1 Technical specifications for the projectile / sabot configuration

Projectile caliber 10 mm
Projectile length 200 mm
Sabot caliber 40 mm
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Table 14.2 Experimental Conditions [3, 4]

Shot A [3] Shot B [4]

Sabot material density [g/cm3] 1.78 (Mg) 1.52 (Mg Al3 Li9)
Propellant Mass [kg] 0.38 0.4
Max. Gas Pressure [MPa] 341.2 380.3
Muzzle Velocity [m/s] 1510.0 1633.0
Acceleration [m/s2] 794008.0 897000.0

14.3 Numerical Solution Method

The numerical solution method presented in this paper is based on a switch from
an earth–based coordinate system to a moving coordinate system at a distinct time
during the solution process. Initially, the physical phenomena near the muzzle exit
are simulated using an earth–based coordinate system (Phase A). By this means, the
interactions between the barrel and the projectile as well as the incident flow from
reverse can be explicitly simulated. At a sufficient distance downstream from the
barrel the computation is stopped and the coordinate system is switched. Hence, the
second part of the simulation can be reduced to the close vicinity of the projectile
and the sabot (Phase B). Following this approach the required computational cost
can be reduced to a reasonable amount and nevertheless all essential physical effects
of the process can be captured. For a schematic of this method see Fig. 14.2.

Fig. 14.2 Numerical solution method (switch of coordinate system).

For the simulations shown in this paper the commercial code AUTODYN [1] was
used as basis. The method proposed demands an explicit modification of the stan-
dard solution procedure in this code to allow the switch of the coordinate system.
This was done via appropriate, in–house developed user–subroutines.

Since the gas modelling in AUTODYN is confined to air as a perfect gas, it is
not possible to do interior ballistics computations with this code. For that reason
the computation is started inside the barrel close to the muzzle exit. The effects of
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Fig. 14.3 Axis-symmetric computation of the firing process for a cylindrical body.

the high–pressure gas as well as the compressed air directly ahead of the projectile
are considered via appropriate initial and boundary conditions (IC1, IC2, BC in
Fig. 14.2).

In order to obtain proper data for the initial and boundary conditions a prelimi-
nary investigation was carried out for the firing process of a simple, cylindrical body.
Here, the AUTODYN code was used in its 2D axis–symmetric option. The results
for the flow phenomena at the muzzle exit are shown in Fig. 14.3. Additionally, a
comparison of the body velocity and the flow velocity close to the back of the pro-
jectile (distance 10mm) is plotted. Both figures show the significant incident flow
from reverse for ∼ 0.2ms that was already mentioned above.

14.4 Simulation Results / Comparison with Experiments

Numerical simulations of muzzle exit and separation process for a sabot–guided
penetrator were carried out for different sabot materials and firing conditions us-
ing the method described above. Corresponding technical specifications are given
in Tab.14.1 and 14.2. The experimental results obtained at the German–French Re-
search Institute [3, 4] were used for validation purposes.

The sequence of the proposed method in principle can be understood from
Fig. 14.4. On the left hand side of the figure a snapshot of the separation process and
the computed velocity field including the muzzle exit and high pressure gas from the
earth–based view (Phase A) is plotted. The right hand side of the figure shows the
phenomena for a later time step after the coordinate switch to a moving observer.

Fig. 14.5-14.7 show a comparison of computed results for the relative position of
penetrator and sabot with photographs from the experiments for Shot B. The camera
positions downstream from the barrel in the experiment define distinct time levels
in the simulation after the coordinate switch. The overall agreement of simulation
and experiment is satisfactory for the method proposed in this work (simulation of
phases A and B). The kinematics of separation was qualitative correctly predicted
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Fig. 14.4 Computed velocity fields during phases A and B.

and even the time dependence of the process is acceptably captured. For the purpose
of comparison additional simulations were carried out using a simpler approach of
computing only Phase B. The muzzle exit was neglected in these simulations and
an instantaneous inflow for long rod and sabot was chosen as the initial condition
in this case. The consequence is a worse resolution of the temporal behavior of the
process due to the neglect of the physical effects at the muzzle exit as can be seen
in Fig. 14.6.

In Fig. 14.8-14.10 the corresponding comparison for Shot A is depicted. The
qualitative agreement concerning the kinematics of separation is again satisfactory,
but the temporal behavior of the process shows stronger discrepancies, whereby the
proposed method of computing Phase A and B again performs better. A possible
reason is the penetrator pike in this case that was not taken into account in the
simulations.
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Fig. 14.5 Photographs from the experiments for Shot B [4].

Fig. 14.6 Numerical simulation of phase B for Shot B [5].

Fig. 14.7 Numerical simulation of phase A and B for Shot B [5].
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Fig. 14.8 Photographs from the experiments for Shot A [3].

Fig. 14.9 Numerical simulation of phase B for Shot A [5].

Fig. 14.10 Numerical simulation of phase A and B for Shot A [5].
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Finally, in Fig. 14.11 the computed Mises stresses for two target points located
at the ”bottleneck” of the sabot are shown. Again, the importance of considering
the muzzle exit is obvious, that leads to significantly stronger mechanical loadings
during the first – critical – part of the process. These higher stresses are caused by the
strong incident flow from reverse that cannot be captured by the simpler approach
of only simulating Phase B.

Fig. 14.11 Comparison of computed Mises stresses for different concepts.

14.5 Conclusions / Future Work

Numerical simulations of muzzle exit and separation process for sabot–guided pro-
jectiles have been presented. A two stage strategy based on a switch of the coordi-
nate system was proposed as solution procedure. Initially, an earth–based coordinate
system is preferred in order to resolve the complicated flow situation and interac-
tions at the muzzle exit. At a sufficient distance downstream from the barrel the
computation is stopped and restarted using a moving coordinate system.

Results were compared to corresponding experimental investigations showing
an overall good agreement regarding the kinematics of separation. The necessity of
explicitly taking into account physical effects of the muzzle exit was demonstrated.

As an essential result of the simulations penetrator / sabot undergo a significant
inflow from reverse directly behind the muzzle exit. This situation leads to a critical
mechanical loading for the sabot structure during this phase.

Subject of future work will be an improvement of initial and boundary conditions
in order to increase the temporal accuracy of the numerical results. Additionally, the
sensitivity of the results with respect to the sabot material model will be investigated.
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Chapter 15
Numerical Analysis of the Supercavitating Flow
about blunt Bodies

Arno Klomfass and Manfred Salk

Abstract The paper presents a physical model and a numerical method which are
suitable for a detailed analysis of compressible supercavitating flows. The numeri-
cal method solves a 3D finite-volume approximation of the conservation equations
for an inviscid fluid with two phases in local equilibrium using a two-step explicit
time integration scheme. The applied equation of state is based upon the IAPWS
formulation which is incorporated in the solver in tabular form. The validity of the
method and the model are evaluated by comparison with available experimental data
for cavity shapes and drag coefficients of blunt bodies. Features of steady state flow
fields are discussed, with special respect to the effects of compressibility.

15.1 Introduction

The flow field about a body travelling with high velocity in water is dominated by a
phase transition from liquid to gaseous state. This phase transition occurs when the
fluid pressure is locally reduced to the saturation pressure. At 20oC the saturation
pressure of water is about 20 mbar such that a phase transition in a flow with that
temperature and a free stream static pressure of 1 bar can occur at flow velocities
above about 10 m/s. At such low velocities the phase transition exhibits itself in
the appearance of small vapor bubbles in the low pressure region of the flow field.
At significantly higher velocities a closed gaseous cavity is formed, into which the
body -apart from its bow- may be fully embedded, c.f. fig.15.1. This regime, called
supercavitation, is of specific interest for high speed underwater body motion, as
the viscous drag becomes negligible within the cavity. General aspects of interest
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Fig. 15.1 Slender body in supercavitating flight, experiment EMI, 2004

are the forces and moments that act on a body in supercavitating flow, the shapes
of cavities, and the strength of the shock waves generated in the water. Numerous
investigations were carried out with respect to these issues over the past decades.
Most of them focused on steady state flows over discs and cones. For the cavity
shape behind a disc Savchenko proposed the following relations, see e.g. [2]:

Rc(x)/Rn =
√

3.659+0.847(x/Rn −2)−0.23σ (x/Rn −2)2 , x/Rn > 2.0

Rc(x)/Rn = (1+3x/Rn)
1/3 , x/Rn < 2 . (15.1)

where Rn is the radius of the disc, and σ = 2(p∞− pc)/ρv2
∞ is the cavitation num-

ber, which relates the difference of free stream ambient pressure and pressure inside
the cavity to the dynamic pressure of the flow. On the basis of the potential flow
theory, Brennen, [3], as well as Garabedian, c.f. [2], obtained numerical solutions
for the cavity shapes and the drag coefficients for blunt bodies in incompressible su-
percavitating flows. The values typically reported in literature for discs and spheres
at σ → 0 are 0.82 and 0.32, respectively. The influence of compressibility is rarely
addressed in literature as water with an ambient sound speed of about 1450 m/s may
well be assumed incompressible up to velocities of several hundred m/s. Current
theoretical and numerical treatment of supercavitation is mainly based on the full
set of conservation equations. There, models of local thermodynamic equilibrium
and thermodynamic non-equilibrium can be distinguished. Under the assumption of
local equilibrium a unique two-phase equation of state (EOS) suffices for the de-
scription of the two-phase fluid. A variety of approximations and combinations of
liquid state EOS and gaseous state EOS are found in literature for this case. In the
non-equilibrium case the two phases are treated as individual fluids that are gov-
erned through finite rate evaporation and condensation processes.
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15.2 Physical Models

15.2.1 Conservation Equations

The physical model applied in this work is the full set of conservation equations
for an inviscid, non heat-conducting, compressible fluid in local thermodynamic
equilibrium. The effects of viscosity are small for the considered high velocity flows
over blunt bodies: with an ambient viscosity of 0.001 kg/ms Reynolds numbers are
typically in excess of 106 for the considered flows. Furthermore, due to the small
compressibility of the liquid the heating is moderate even at high velocities and the
effects of heat-conduction are thus negligible. The EoS, p = p(ρ,e), is thus the only
fluid specific model required for the closure of the system of equations.

For the numerical solution the conservation equations are here applied in inte-
gral form to an arbitrarily moving and deforming control volume. This so-called
ALE-formulation allows to solve the equations on time dependent grids and thus
to simulate flows around accelerated bodies. It also forms a suitable basis for the
two-step integration scheme described in section 15.3.

d
dt

∫

V
UdV =

∮

S
(L+K)ndS , (15.2)

U = (1,ρ,ρv,ρetot)T , L = (v,0,−pI,−pv)T , K = U(w−v) .

In the above equations U contains the set of conservative variables, where v denotes
the material velocity. The column matrices L and K denote the Lagrangian and the
convective flux densities, respectively, that act on the control volume’s surface S,
with outward directed normal unit vector n. The prescribed velocity field w governs
the time dependent motion of the control volume surface (i.e. the grid motion in the
numerical integration). For a consistent numerical approximation, the conservation
equations for mass, momentum and density are augmented by the so-called geomet-
rical conservation law for the size of the control volume, which forms the first of the
equations comprised in the above system (15.2). The system is subject to boundary
and initial conditions.

15.2.2 Equation of State

The EoS of a pure substance covers the three phases solid, liquid and gas. The dif-
ferent phases can in certain regions coexist, as e.g. within the vapor region (mixture
of liquid and gas). An equation of state, that covers the liquid-, the gas- and the
vapor regions must be non-linear in density or volume, as these quantities attain
non-unique values within the vapor region (for a given pressure and temperature
below the critical point any density between the corresponding boiling and conden-
sation points can exist in thermodynamic equilibrium). A simple model pertaining
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to this feature is the van der Waals equation of state, which is however too simple
for use in quantitative investigations. On the other side numerous elaborate models
with high accuracy exist, that are either computationally too expensive for usage in
CFD or simply have the wrong set of independent variables (e.g. p,T) that makes
them unsuitable for CFD calculations based on conservative variables.
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Fig. 15.2 Isotherms of pressure, specific energy and sound speed of pure water according to the
IAPWS model
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The EOS initially used in the current work was based on the models of an
ideal gas, a liquid with linear density- and temperature-dependent pressure and the
Clausius-Clapeyron-relation for the vapor pressure. This model was however lim-
ited to temperatures sufficiently below the critical point, as the two independent
models for liquid and gas do not coalesce at and above the critical point. For an
extended range of application a suitable model was found in the IAPWS formulation
for scientific use, which covers temperatures and pressures up to 1273K and about
1GPa. It is available as a collection of FORTRAN routines (e.g. from www.ruhr-uni-
bochum.de/thermo/), with a variety of combinations of dependent and independent
state variables, [1]. As the codes are not efficient enough for direct usage in CFD
calculations a tabular representation and suitable interpolation procedures are used
instead. Figure 15.2 gives an overview for several thermodynamic properties; in fig-
ure 15.3 a comparison with the Tait EOS for liquid water and the so-called Shock-
EOS is given. The latter assumes a linear relation D = a0 + sV between material
velocity V and shock velocity D. These models are defined as

p(Tait) =
ρ0a2

0

n

((
ρ
ρ0

)n

−1

)
, p(shock) = ρ0a2

0
ε

(1− sε)2 , ε = 1− ρ0

ρ
, (15.3)

with n = 7.15,s = 1.9,a0 = 1450m/s,ρ0 = 1000kg/m3. Both agree well with the
Hugoniot and the Isentrope, which were numerically integrated from the IAPWS
model.

15.3 Numerical Method

The numerical method applied in this work is a spatially three dimensional finite-
volume scheme with explicit time integration, that works with cell-centered conser-
vative variables on block structured body-fitted hexaeder grids. It is implemented in
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the institute’s APOLLO code. In order to treat the strongly non-linear equation of
state in a robust manner, the original one-step integration scheme of APOLLO has
been modified into a two-step scheme, where the first step produces a Lagrangian
update and the second step treats the convection process. With superscript k indicat-
ing an initial time level, ∗ the Lagrangian status at t +Δ t and k + 1 the final status
at the new time level, the integration steps can be written as

(UV )k+1 = (UV )∗ +Δ t∑K∗nkSk , (UV )∗ = (UV )k +Δ t∑LknkSk . (15.4)

An acoustic Riemann solver is applied in the first step for the calculation of the
velocity, pressure and power at the material interface used in L. The subsequent re-
mapping from the Lagrangian updated cells onto the actual grid cells at the new time
step k+1 is achieved with a donor cell method for the calculation of K. Both fluxes,
L and K, are approximated to higher order accuracy by employing a MUSCL-type
extrapolation of the conservative cell-averaged quantities.

15.4 Steady State Flow Fields

In the following, selected results for a disc, a sphere and different cones at zero
angle of attack are presented. All considered bodies had base radii of 0.5 cm and
were embedded centrally in grids of size 40x40 cm, with a resolution of about 0.25
mm in the vicinity of the body. In circumferential direction the grids covered an
angular section of 14 degree with one computational cell. Free field conditions were
1 bar ambient pressure and 293 K. In the flow fields shown below the cavity shapes
according to (15.1) and the streamline emanating from the disc edge are added to
the plots.

The streamlines coincide well with the cavity surfaces, which suggests that the
steady state cavity surface is a contact surface with no mass transported across it.
The cavity obtained from the numerical solution for V∞ = 1000 m/s agrees in the
upstream part with Savchenko’s formula for incompressible flow; the deviation ob-
served further downstream is attributed to the closeness of the grid boundary, which
affects the numerical solution increasingly as M → 0. At 2300 m/s the cavity is
clearly narrower within the whole downstream range due to the effect of compress-
ibility.

From the entirety of results, the approximation (15.5) was derived, which de-
scribes the influences of Mach number and body shape on the cavity radius Rc(x).
Here δ denotes the half angle of a conical cavitator, Rn the (base) radius of the body,
Rc,re f refers to the disc at M = 0, e.g. as given by relation (15.1).

Rc(x)−Rn

Rc,re f (x)−Rn
= fshape

√
1−0.13M2 , fcone = 1− 0.16

tan(δ )
, fsphere = 0.69 .

(15.5)
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The following figures show the drag coefficients for different Mach numbers and
body shapes together with available literature data. Using a formula suggested by
Guzevin for M → 0, c.f. [2], the drag coefficient of a conical cavitator can be esti-
mated as

CD(M,δ ) =
1
2

+1.81

(
δ
π
− 1

4

)
−2

(
δ
π
− 1

4

)2

+0.15 M . (15.6)

Fig. 15.4 Calculated steady state flow fields (isodensity lines) about a disc at 1000 m/s and 2300
m/s.

15.5 Summary

The presented results provided an extended view into compressible supercavitat-
ing flows. The suggested models and methods were confirmed by comparison with
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Fig. 15.5 Summary of cavity shapes for different Mach numbers and body geometries.

available data from literature. This holds also for the results obtained for transient
flows, which could not be included in the present paper due to limited space. Current
investigations focus on the flight behavior of slender bodies, which are inherently
meta-stable in supercavitating flows. Figure 15.7 shows, as an example, a still from
a free flight simulation, where the fluid dynamic equations are solved on a moving
grid simultaneously with the rigid body equations of motion.
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Fig. 15.7 Instantaneous pressure field during tail-cavity interaction in a free flight simulation



Chapter 16
Numerical Analysis Method for the RC
Structures Subjected to Aircraft Impact and HE
Detonation

Masahide Katayama and Masaharu Itoh

Abstract This paper proposes and demonstrates a numerical simulation method
suitable to analyze the local damage and dynamic response of the structures com-
posed of the reinforced concrete (RC) and/or the geological materials subjected to
the severe impulsive loading by the aircraft impact and the high explosive detona-
tion. After the brief description about the numerical simulation method, the former
part of this work attests that the present method has an enough accuracy to simu-
late the dynamic behavior of the RC structures subjected to the impulsive loading,
through the comparison of the numerical analysis results with those of reference
experiments. In the latter part of this work, three-dimensional numerical simulation
results are investigated which were performed by using the basically the same anal-
ysis method as applied in the former part, but for much more complicated physical
system. Through the discussion on the numerical simulation results the effective-
ness of the present method is demonstrated from the viewpoint of the high-velocity
impact safety, the explosion safety, and the structural integrity evaluation.

16.1 Introduction

Recently the serious hazards have increased such that terrorists attack various public
buildings and structures by using high explosives (HE). At the same time, another
type of hazards cannot be ignored, i.e. the hazards caused by the industrial accidents
in use of the energetic materials like reactive gas mixtures as well as high explosives.
Since these hazards are not small-size problems, it is indispensable to discuss as
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interactions between the energetic materials and the constructional structures. How-
ever, these problems consist of highly non-linear and complex physical systems
so that numerical analyses for such problems, especially in the three-dimensional
model, can never have been solved until around a decade ago except for a few huge
computer systems in the world. Both hardware and software are now available in
order to solve some of such difficult problems, not to say sufficient.

From another viewpoint, an accident previously considered hypothetical became
real when the hijacked Boeing 767 passenger jet crashed into the North Tower of
the New York World Trade Center on 11th September, 2001. The possibilities of
aircraft impacts against infrastructures have been investigated mainly in nuclear in-
dustries since 80’s [1, 2, 3]. However, the aircrafts discussed in these studies were
not commercial jetliners but military jet fighters such as an F-4 Phantom.

In the meantime, the concrete and geological materials indicate complicated be-
haviors in the compressive and the tensile region, especially when subjected to the
severe impact or impulsive loading. Therefore, a number of material properties are
necessary to describe such highly nonlinear and dynamic phenomena. On the other
hand, it is general that only the limited properties are measured in the usual material
test of theses materials, i.e. limited to density, elastic moduli and static compressive
strength. So it is of great use, if the present scheme provides us the recommended
values of the dynamic material properties based on the correlation between the static
compressive strength and the other properties. The author and others have proposed
and improved such constitutive and failure models for over ten years [4, 5], and K.
Thoma et al. also have been developed their own model for the concrete referred to
as the RHT model [6] .

In this paper we proposes and demonstrates a numerical simulation method by
using these two material models suitable to analyze the local damage and dynamic
response of the structures composed of the reinforced concrete (RC) and/or the ge-
ological materials subjected to impulsive loading by the aircraft impacts and the HE
detonations.

16.2 Analytical Method

16.2.1 Analysis Code

A multiple solver type hydrocode: AUTODYN [7, 8] is used for the numerical sim-
ulation conventional, Godunov-type and FCT (Flux-Corrected Transport)], the ALE
(Arbitrary Lagrangian-Eulerian), the SPH (Smoothed Particle Hydrodynamics), the
shell and the beam solvers, moreover the interactions among these solvers can be
taken into account in a problem. These solvers are compared and investigated in
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order to clarify what solver is the most suitable and efficient to model the individual
part of the present problem: the concrete, the reinforcement, the soil/sand, the air
and the HE, etc. The three-dimensional calculation for such complex physical sys-
tem is very heavy even for the current advanced computers. The modeling method
for the actual problems is proposed from the practical viewpoint that we persist in
using not so expensive but easily obtainable and easily usable computers.

16.2.2 Material Models

The material model in AUTODYN consists of two parts: i) the equation of state
(E.O.S.) describes the relationship among pressure (p), density (ρ) and internal en-
ergy (e) as indicated by Eq. (16.1), and ii) the material strength model does the
constitutive relation including the failure model, as many hydrocodes do.

p = F(ρ, e) . (16.1)

In the low-velocity structural analyses, the Young’s modulus (E) and the Poisson
ratio (ν) are used for the solid materials. And the bulk modulus (K) is derived by
Eq. (16.2), so that the usage of E and ν is just equivalent to that of K.

K =
E

3(1−2ν)
(16.2)

Considering that the definition of the bulk modulus is given by Eq. (16.3), this
can be recognized as using the simplest EOS, i.e. the proportional (linear) E.O.S. to
the density and neglecting the energy term,

p = −K
dV
Vre f

= K

(
ρ
ρre f

−1

)
(16.3)

where V is the volume and subscript ’ref’ denotes reference variable.

In this study, we applied the linear E.O.S. sometimes to the concrete in the in-
terests of simplicity, and did all the times to the beam and shell elements, because
the change of density cannot be taken into account in these elements. The porous
E.O.S. was applied sometimes to the concrete and all the times to the soil, but we
leave out its detailed descriptions because limitations of space here.

The numerical erosion model is not exactly a physical material model, but it is
very useful to model the cratering and spalling (scabbing) of the solid materials, as
well as the scattering of the liquid materials in the Lagrangian frame of reference.
During the subsequent calculations, some of the Lagrangian elements can become
grossly distorted and, unless some remedial action is taken, can seriously impair the
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progress of the calculation. Therefore, procedures have been incorporated into AU-
TODYN to remove such Lagrangian elements from the calculation, if a pre-defined
strain exceeds a specified limit. When an element is removed from the calculation
process in this way the mass within the element can either be discarded or distributed
to the corner nodes of the element. If the mass is retained, conservation of inertia
and spatial continuity of inertia are maintained. However the compressive strength
and internal energy of the material within the element are lost whether or not the
mass is retained.

In AUTOYDN, Lagrangian grids can impact and slide along any Lagrangian
surface, at the same time, this surface can be dynamically redefined as the surface
changes through the numerical erosion. Erosion is a technique wherein Lagrangian
elements are transformed into free mass points not connected to the original el-
ement. These free nodes can optionally further interact with other bodies or the
original body from which they were eroded. This feature allows the study of impact
interaction problems including deep penetrations in the low to hypervelocity range
using a Lagrangian technique.

16.2.2.1 Concrete

We adopted two-parameter Drucker-Prager criterion instead of the four- or five-
parameter failure surface used by Han and Chu in the static non-uniform hardening
plasticity model [9]. In this paper we show the numerical results only on a rela-
tively high-velocity (> 100m/s) impact problem as a concrete structure. However,
we demonstrated and verified in other opportunity that the present material model
(referred to as DYCAP model) is also applicable to the lower velocity impact prob-
lems of the concrete [5].

To describe dynamic behavior of fragile material such as concrete is compli-
cated because it shows highly nonlinear behaviour and its multi-axial behaviour is
hard to be measured by the experiment. Many constitutive equations of concrete
were proposed until now, but the only few ones can predict dynamic behaviour of
concrete in the multi-axial stress state, and the applicable region are often very lim-
ited. We are concerned with two constitutive equations that can be applicable to the
multi-axial stress state. One is Drucker-Prager’s equation that shows good results
in the region of high strain rate. Another is Han & Chen’s non-uniform hardening
plasticity model that can be applied to the region of low strain rate. We combined
both equations together to establish a new constitutive model (DYCAP), introduc-
ing strain rate dependency and strain hardening to this. In this model yield surface
is described by:

f = σy − s(k0c,k0t , p) σd
y = 0 (16.4)
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where σy is yield stress, σd
y is the ultimate stress surface that is Drucker-Prager’s

criterion, s is the shape factor that describes non-uniform hardening behaviour, p is
hydrostatic pressure, k0c is the hardening parameter for compression, and k0t is the
hardening parameter for tension.

To incorporate the strain rate effect, the dynamic compressive strength f̂ ′c and the
dynamic tensile strength f̂ ′t proposed by Yamaguchi et al.[10] are introduced to the
Drucker-Prager’s equation as shown in Eq. (16.5) and (16.6).

f̂ ′c (ε̇) =
[
1.021−0.05076log ε̇+0.2583(log ε̇)2

]
f ′c (16.5)

f̂ ′t (ε̇) =
[
0.8267−0.02987log ε̇+0.04379(log ε̇)2

]
f ′t (16.6)

where ε̇ is strain rate ε̇ =
√(

2
/

3
)
ε̇i j ε̇i j and strain rate tensor ε̇i j.

The strain hardening effect is incorporated by use of the shape factor s, which is
a function of hardening factors: k0c and k0t . The shape factor sis defined in the three
different regions in the same manner as Chen’s method [11], that is in the tensile re-
gion, I the transitional region, and in the compression region. The detailed equation
is found in the literature by Itoh et al. [4]. The typical relation between yield stress
and pressure in the DYCAP model is shown in Fig. 16.1 . The curve is arranged
by εt/ε

′d
t where εt is the largest tensile strain in its history and ε ′dt is the dynamic

ultimate tensile strain.

Fig. 16.1 Typical relation between yield stress and pressure in the DYCAP model.
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16.2.2.2 High explosives (HE)

We applied the JWL equation of state to the HE proposed by Lee et al. [12], and us-
ing programmed ’on-time burning’ model assuming the ideal stationary detonation.
The equation of state is shown in Eq. (16.7), and the detonation properties and the
parameters of the JWL equation for many high explosives have been compiled by
Dobratz et al. for a couple of decades [13].

p = AJWL

(
1− ωη

R1

)
exp

(
−R1

η

)
+BJWL

(
1− ωη

R2

)
exp

(
−R2

η

)
+ωηρre f e

(16.7)
where η = ρ/ρre f and AJWL, BJWL, R1, R2, ω are the material properties of the

HE. In the handbook [13], the other important variables like the detonation velocity
(Vdet) and the initial internal energy (e0) are also included. The constitutive model
of the HE is neglected, namely assumed to be hydrodynamic.

16.2.2.3 Ductile materials

It has been known that a linear relationship between the shock velocity (Us) and
the particle velocity (up), as shown by Eq. (16.8), can adequately represent the
Hugniot relation for many condensed materials which impact at velocities less than
the threshold for shock-induced vaporization.

Us = c0 + s1 up (16.8)

where c0 and s1 are experimentally determined material constants and c0 de-
notes the bulk sound velocity. Then the following Mie-Grüneisen form of the shock
Hugoniot E.O.S. is derived by assuming Grüneisen Γ as shown in the Eq. (16.10)
of [14]:

p = pre f (ρ)+ρΓ
{

e(ρ)− ere f (ρ)
}

(16.9)

Γ ≡ 1
ρ

(
∂ p
∂e

)

ρ
(16.10)

This equation of state is not only recognized to be applicable for a wide variety
of solid and liquid materials, but also the material data of the E.O.S. for many ma-
terials are published by not a few research organizations [15].

In the Johnson-Cook constitutive model applied mainly to ductile materials, the
yield stress (Y ) is estimated by the function of strain (ε), strain rate (ε̇) and homol-
ogous temperature (T ∗) defined by Eq. (16.12).
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Y = (AJ−C +BJ−Cεn)(1+CJ−Clnε̇∗)(1−T ∗m) (16.11)

where ε̇∗ = ε̇
/
ε̇0 is the dimensionless plastic strain rate for ε̇0 = 1.0s−1,

T ∗ ≡ T −Troom

Tmelt −Troom
(16.12)

and Troom and Tmelt are the room temperature and melting temperature, respec-
tively. The variables: AJ−C, BJ−C, CJ−C, m and n are determined by an experimen-
tal procedure [12]. However, the thermal term is neglected for the beam and shell
solvers, because no volume changes, consequently no temperature changes, of the
elements are calculated in these solvers.

16.3 Numerical Analyses

16.3.1 Missile Impact on RC Structure (2D)

16.3.1.1 Numerical analysis models

In order to verify the present material model of the concrete, we carried out a num-
ber of numerical analyses [4] to simulate an experimental test program conducted
by Muto et al. [2]. The main purpose of the reference test is to investigate the local
damage of the reinforced concrete structure caused by the accidental aircraft impact
on the nuclear related protective structures. The test program consists of three scale
models for F-4 Phantom fighter: 1/7.5-, 1/2.5- and full-scale models. Two types of
projectiles, i.e. rigid and deformable, were adopted to model the engine part of the
aircraft in the experiment.

Although the target RC structures are square in the experiment, two-dimensional
axisymmetric model was used in the numerical analysis so that the targets may be
assumed to be the circular plates with the equivalent sectional areas. The parts of
concrete material were modeled by the Lagrangian frame of the reference, shell
elements were applied to the reinforcement and the thin parts of the 1/7.5-scale
deformable missile as shown in Fig. 16.2. Therefore, the reinforcement was also
modeled by the thin circular plate with the equivalent mass. It should be noted that
the bending moment was taken into account for the shell elements in the missile,
while was ignored for the shell element modeling the reinforcement, i.e. was as-
sumed to be membrane. Each lower half indicates the numerical mesh used in the
calculation in Fig. 16.2. The concrete plate was constrained at the radial end to both
the axial and radial directions. To the interface between the missile and the RC struc-
ture, the slide/impact interactive boundary condition without friction was applied,
and all the elements in the concrete, missile and reinforcement were also enabled
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to interact with the elements that exist in the same component after subjected to a
serious deformation. The capabilities of the interaction and the numerical erosion
triggered by the maximum geometric strain enable us to simulate the complicated
deformation processes. For Lagrangian elements the erosion strains 100 to 500 %
were used, while the erosion strains equivalent to the ultimate physical (material)
strains were applied for shell and beam elements, because there do not occur any
bulk deformations in the case of these two- or one-dimensional elements.

Fig. 16.2 Geometrical models and numerical meshes in the analysis.

16.3.1.2 Numerical results

Only the results of the 1/7.5-scale model are discussed in this paper, and the cases
and results in both the experiment and the numerical analysis are summarized in
Fig. 16.3, 16.4 and Table 16.1 for the selected 1/7.5 model tests reported in the ref-
erences [2]. Both results are compared in their residual velocities of the projectiles,
in the vertical/horizontal/average diameters of the front craters and rear scabbing of
the target plates, and in the overall damage status of the target plates. The numerical
results can be considered to simulate the overall deformations of the reinforced con-
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crete panels, because the present numerical results nearly predict both the cratering
in the front side and the scabbing (spalling) in the rear side.

Fig. 16.3 Numerical results for the 1/7.5-scale model cases.

Table 16.1 Conditions and results of the 1/7.5 model comparing between the calculations (C) and
the experiments(E).

ID C/E T ∗ V ∗∗
imp V ∗∗∗

res Projectile Front Diameter Depth Rear Diameter Status
(mm) (m/s) (m/s) ver. hor. av. (mm) ver. hor. av.

(mm) (mm) (mm) (mm) (mm) (mm)

a) C 60 194 138 deformable – – 155 – – – 292 perforated
1-1 E 60 194 143 deformable 178 171 175 – 420 335 378 perforated
b) C 150 143 -1.94 rigid – – 169 32.3 – – 482 scabbing
1-3 E 150 143 N/A rigid 155 185 170 N/A 590 440 515 scabbing
c) C 350 198 -11.8 rigid – – 189 37 – – – perforated

1-8 E 350 198 N/A rigid 320 302 311 42 – – – perforated

∗: Thickness ∗∗: Impact Velocity ∗∗∗: Residual Velocity
ver.: vertical hor.:horizontal av.:average
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Fig. 16.4 Experimental results for the 1/7.5-scale model cases.

16.3.2 HE Detonations On and Near the RC Slab (2D & 3D)

16.3.2.1 Analysis models

The effects of the detonation on RC slabs have been investigated experimentally,
when the HE is placed and detonated on the surface of the RC slab [17, 18, 19, 20].
Some numerical studies on the damage of the RC slabs subjected to the contact
HE detonation have also conducted over the comparison with the experimental re-
sults [17, 21, 22]. However, almost all numerical analyses are carried out by two-
dimensional models until recently. The reason of such a limitation seems to have
come from both the computational hardware and software capabilities as they were,
when those studies were conducted.

In the experiment by Kraus et al. [17], the RC slab has the dimensions 2.0 2.0
0.3 m with a concrete compressive strength of 44 to 48 MPa, and has a percent-
age of reinforcement of 42 kg/m2. The cubic high explosive is placed in the center
of and directly on the slab. The used HE is PETN with a mass of 1.0 kg and the
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Fig. 16.5 Configuration of the HE detonation test on the RC slab by Tanaka et al.

density of 1.5 g/cm3. In the calculation, the concrete, reinforcement and HE were
modeled by the Lagrangian element. Next, Fig. 16.5 depicts the configuration of
one of a series of HE detonation tests on the RC slab conducted by Tanaka et al.
[19]. We performed a three-dimensional calculation to simulate this experimental
condition. In this calculation, the concrete and HE were modeled by the Lagrangian
element with the numerical erosion capability, while the reinforcement was done by
the beam element, by using finer numerical discretization than the previous calcu-
lation. The numerical grids used in the present calculation are indicated in Fig. 16.6.

Fig. 16.6 Three-dimensional numerical grids to simulate the HE detonation test on RC slab by
Tanaka et al.

The compressive strength of the concrete measured 28-day later is 56 MPa, and
the reinforcement has the yield strength of 300 MPa and the tensile strength of 419
MPa. The cylindrical HE with a diameter of 41.8 mm is placed in the center of and
directly on the slab. The HE is the pentolite with a mass of 95 g.
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Fig. 16.7 Reinforcement Layout of the the RC slab by Morishita et al.

Fig. 16.8 Setup of the Experiments by Morishita et al.
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Thirdly, Morishita et al. conducted another type of HE detonation tests near the
RC slab, in which the HE are placed in the center of RC slabs but at the position
standoff from the surface of RC slab [20]. Figures 16.7 and 16.8 indicate the con-
figuration for the tests. It should be noted that the alignment of the reinforcements
is different from the above mentioned contact explosion experiment, especially that
there are no reinforcements at the center of the RC slab. We also performed two nu-
merical simulations for this type of experiment: with the standoffs of 100 mm and
50 mm. In these calculations, the concrete was modeled by the Lagrangian element
with the numerical erosion capability, the reinforcement was done by the beam ele-
ment, as they were modeled in the contact explosion calculation. However, the HE
was modeled by the Eulerian frame of reference, and the atmosphere was taken into
account by the same numerical grid that the HE was modeled.

Fig. 16.9 Comparison of the present 3-D calculation with the experimental results by Kraus et al.

The main parts of these numerical simulations were carried out in the three-
dimensional model, after a preliminary axisymmetric two-dimensional calculation
to simulate the pentolite detonation and its propagation process in the atmosphere
with the initial pressure of 101.3 kPa. The preliminary calculation was carried out
by using the multiple-material Eulerian solver. Then, the two-dimensional distribu-
tion of the physical properties of the pentolite products and air at the final stage was
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remapped to the three-dimensional analysis model as an initial condition. All the
pentolite products are assumed to be in the gas phase at this moment.

Fig. 16.10 Comparison of the 3-D calculation of the HE detonation on RC slab with the experi-
mental results by Tanaka et al.

In the three-dimensional calculation we applied FCT-Euler solver to the gas ma-
terials (pentolite products and air), because this solver is suitable to model the shock
in the gas and is much faster than the multiple-material Eulerian solver. The Euler-
Lagrange interactive boundary condition was applied to the front surfaces of the RC
slab. In order to attain this motivation, the E.O.S. for the pentolite was switched
from the JWL equation to the ideal gas equation (as shown in Eq. (13) as well as
the air, and the pentolite products were assumed to have the same ratio of specific
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heat (γ ) of 1.4 just same as the air, because the third term of the JWL E.O.S. is
equivalent to the ideal gas E.O.S., after perfectly burned.

p = (γ−1)ρ e (16.13)

16.3.2.2 Numerical results

First, Fig. 16.9 shows the schematic comparison of the three-dimensional calcula-
tion, which was performed in 1997 by the authors, with the experimental results
conducted by Kraus et al. This three-dimensional calculation was carried out by
using relatively coarse numerical discretization in today’s environment, so that the
deformed slab obtained by the calculation does not have so smoothed outline. The
schematic deformation in Fig. 16.9 only represents the typical parameters: i.e. the
diameters and depths of front and rear craters.

Secondly, Fig. 16.10 shows the comparison of the damage of the RC slab be-
tween the calculation and the experiment in the front and back sides for the Tanaka’s
experiment. The calculational result seems to evaluate the crater diameters in both
sides a little bit smaller than the experiment, but the overall damage of the RC slab
in the calculation indicates a fairly good agreement with the experiment. Especially,
the calculation successfully simulates the exposure of the reinforcement in the front
side and the pattern of the crack extension in the back side.

The lower figure depicts the damage and deformation of the reinforcement in
a three-dimensional bird’s-eye view by removing the concrete grid. Thirdly, Fig.
16.11 depicts the remapping procedure from two-dimensional model to three-
dimensional one for the Morishita’s experiment: the upper contours show the pres-
sure distributions and the lower ones do the density distributions. There appear no
material boundaries in the three-dimensional contours, because we assumed that
pentolite products in gas phase and air are the same material.

The comparison between the experimental and calculational results of the stand-
off explosion is shown in Fig. 16.12. Only very shallow craters are observed on
the front side in both experimental and calculational results of the 100-mm-standoff
case, whereas obvious craters appear in the 50-mm-standoff case. Calculational re-
sults successfully simulate the spalling and cracking behaviours on the back side
as well as the damages in the central cross section, in comparison with the corre-
sponding photos in the experiment for the 50-mm-standoff case, especially these
results might be characterized by the crack patterns both along the reinforcements
and in the radial directions. All the beam elements modeling reinforcements seem
to remain in the elastic state, differently from the result of contact explosion.
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Fig. 16.11 Remapping procedure from 2D/multiple-material Euler to 3D/FCT-Euler model.

16.3.3 F-4 Phantom Crashing on a RC Wall (3D)

16.3.3.1 Analysis Model

Next reference experiment was performed by Sandia National Laboratories on the
terms of the contract with the Muto Institute of Structural Mechanics, Inc. in Japan
[2, 3]. This experiment is situated as a full-scale model one of a series of impact
tests mentioned in the section 16.3.1. The experiment yielded an extensive set of
response data, of which we focus on the following main measurements,

1) Crushing behaviour of the F-4 Phantom,
2) Impact force loaded on the RC target structure,
3) Damage on the concrete.

Recommendations for future studies are also presented to improve the accuracy
of the proposed model. Before describing the numerical simulation we briefly sum-
marize the impact test. The primary purpose of the test was aimed at determining
the impact force as a function of time when an F-4 Phantom impacts onto a massive,
essentially rigid, reinforced concrete. Figure 16.13 is the instantaneous photograph
of the impact.
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Fig. 16.12 Comparison of the 3-D calculation of the HE detonation on RC slab with the experi-
mental results by Morishita et al.

Fig. 16.13 The instantaneous photograph of the F-4 impacting the target (Courtesy of Sandia Na-
tional Laboratories).
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Fig. 16.14 Test configuration of F-4 Phantom [16].

The test configuration of the F-4 is shown in Fig. 16.14. The front and the main
landing gears were removed. Instead a sled with a carriage structure was attached
on the under surface of the aircraft. The sled was mounted on two rails of 600 meter
long which guided the F-4, accelerated by rockets, to the target. The impact speed
was adjusted to 215 m/s. Note that the shape and layout of the fuel tanks were not
available, when this project started in 2004.

The total impact weight was 19 tones comprising 12.7 tones of the F-4, 1.5 tones
of the sled and the carriage, 4.8 tones of water which is used to simulate the weight
of fuel. The weight specification is listed in Table 16.2. The target was a rectangular
block of reinforced concrete 7 meter square and 3.66 meter thick which weighs 469
tones (i.e. approximately 25 times heavier than the F-4). It was placed on an air-
bearing platform which enabled almost free movement in the direction of impact.
The geometry of the fuselage of the F-4 Phantom is created first by the general-
purpose mesh generation computer program TrueGrid [23]. Then the obtained ge-
ometry is imported into the finite element model of the AUTODYN as shown in the
left-hand side of Fig. 16.15. The size of the F-4 is adjusted to fit to the configura-
tions shown in Fig. 16.14.
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Table 16.2 Specification of the impact weight.

Components Test (t) Simulation (t)

Fuselage and Wings, etc. 9.2 9.3
Engines 3.5 3.4
Water 4.8 4.8

Rocket and Sled 1.5 –

(Total) 19.0 17.5

Fig. 16.15 Geometrical models of the F-4 Phantom and the RC target structure.

Because of the severe impact loading condition a constitutive model for the ma-
terial of the aircraft is required to consider the strain hardening and the strain rate
effects. The Johnson-Cook model [24] was adopted and the material properties of
the 2024-T351 aluminium were taken from the material library of AUTODYN. The
material properties of Glass-Epoxy for the windshield were also taken from the same
library. Most components of the aircraft were modeled by shell elements except the
engines and the water inside the fuel tanks. They were discretized by solid elements.
We adopted the simple model for the engine which was designed for and used by
the separate impact test [2] as shown in the lower middle of Fig. 16.15 because the
actual GE-J79 engine is too complicated to consider. The material properties of the
engine were also taken from the same reference.
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As mentioned above the shape and layout of the fuel tanks were not provided
in the test report, we refer to [25] in order to place it inside the fuselage in the im-
proved model carried out in 2005. The lower left-hand side of Fig. 16.15 shows
the mesh of the tank in which water is filled with. The surface nodes of the water
were rigidly joined with the corresponding ones of the tank. The following material
properties were used for the water: density of kg/m3, bulk modulus of 2.25 GPa and
spall strength of -2.5 MPa.

We adopted a numerical method to scale the density of the aluminium which is
increased by four times that of the actual one. Without this technique the thickness
of the fuselage and the wings should be specified as 16 mm in order to match the
weight of 9.2 tones. We assume that a reasonable thickness is about one forth of it.
Hence the density is scaled up in order to save the computer time to improve the
Courant condition.

The concrete wall is divided uniformly as shown in the right-hand side of Fig.
16.15. Each element is approximately a cube of 0.1 meter. In order to represent
the material nonlinearity of the concrete we adopt the RHT [6] model which has
the following specific features like pressure hardening, strain hardening, strain rate
hardening and damage with tensile crack softening. The properties are taken from
the material library of the AUTODYN and calibrated with the compressive strength
of 23.5 MPa.

Also shown in Fig. 16.15 are the reinforcing bars which are modeled by beam
elements. The ratio of reinforcement of the test is 0.4 %. The same ratio is applied
to the model. The following material properties of the steel [16] are used: Young’s
modulus of 206 GPa, Poisson’s ratio of 0.3, yield strength of 490 MPa, ultimate
strength of 740 MPa and ultimate strain of 0.19.

In the test, it was observed that each wing tip and a portion of tail were sheared
off due to the impact, and the other parts were completely destroyed. Pieces of the
aircraft and lumps of crushed engines were found in the wide area. A sequence of
images recorded by high speed cameras at the test site displayed that the main wings
were severed by the edges of the target.

16.3.3.2 Numerical results

Figure 16.16 shows the deformed mesh configurations after impact. The aircraft
collapses from the front section as if it impacts into a rigid wall. Most of the finite
elements are numerically eroded because of large deformations. Only remained are
the pieces of the fuselage, the portions of the tail wings, the thickened parts of the
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Fig. 16.16 Sequence of the impact and deformation of F-4 and RC structure.

engines (Fig. 16.17(c)) and the tip of main wings. These results reproduce success-
fully the crushing behaviour of the aircraft observed in the test.

The impact force histories obtained by the test and by two sorts of simulation are
compared in Fig. 16.18. The case not modeling the fuel tanks (old one) underesti-
mates the impact force, as well as its peak shifts to the right-hand side. On the other
hand, the case modeling the fuel tanks (new one) simulates the impact force history
by the experiment fairly well in the shape, magnitude and timing. This agreement is
brought about by the feature of the numerical model, namely, the mass distributions
of the engines and water are approximately reproduced, and the sum of the weight
of these components amounts to almost half the weight of the aircraft, neglecting the
differences caused by not modeling the rockets, sled, etc. Note that the head of fuel
tanks is located before that of the engine, and that this fact causes the appearance of
the peak of the impact force in the new model. The impact force of the calculation is
evaluated by differentiating the momentum response of the whole RC structure by
time. The obtained transient curve is then shifted 8 ms to the origin (left) in order to
compare its peaks with the test ones.
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Fig. 16.17 The Damage aspect on the RC structure by the calculation (cal.) and the experiment
(exp.).

The impact of the engines caused craters like two ’eyes’ [2]. The formation of
the craters are illustrated by (c) and (d) of Fig. 16.17. The crater depth (60 mm)
reported in the experiment is slightly shallower than that obtained in the calculation
(65 mm). The impact of the fuselage inflicted only minor damage on the target to
form a shallow dent on the surface in both the experiment and the calculation. The
distinct shape like a flattened ’pear’ is formed similarly in both results. The impact
of the rockets and sled caused major damage to the concrete in the lower part. But
this cannot be reproduced by the calculation justifiably, as they were not taken into
account in the present calculation.

16.3.4 Boeing 747 Jet Impacting on Thick Concrete Walls (3D)

16.3.4.1 Analysis models

The objective of this work is to numerically asses the damage of the wall caused
by the impact of the B747 which is almost 15 times heavier than the F-4. All the
components of the jetliner in our numerical model, namely, the fuselage, the wings
and the engines were modeled by shell elements. The five different types of targets
were assumed to be reinforced or non-reinforced concrete walls with three differ-
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Fig. 16.18 The impact force histories loaded to the RC structure by the calculation (cal.) and the
experiment (exp.).

ent thicknesses, additionally a rigid wall case was also carried out. The impacts
between these elements were taken into account by using a contact capability. An
eroding slide-line capability was utilized to prevent mesh tangling.

Fig. 16.19 Geometrical grid and model of B747 and RC wall in the calculation.
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The shell solver was applied to the jetliner, the hexahedral solid solver to the
concrete wall, and the beam solver to the reinforcement by using AUTODYN-3D.
The geometry of the jetliner is created as a first step by using TrueGrid in a similar
way of the F-4 Phantom model. Then the obtained geometry was imported into the
AUTODYN finite element model as shown in Fig. 16.19. The overall length is 70.5
m and the wing span is 64.0 m. The thickness of the shell elements was adjusted so
that the numerical model was consistent with the actual Boeing 747 [[26]. The total
mass of the jetliner is thus 3.4105 kg (340 t) including four engines and the fuel.
The impact velocity of the jetliner was assumed to be 83.3 m/s (300 km/h) which
slightly exceeds the landing speed of about 77.8 m/s (280 km/h). Because of the in-
tense impact loading condition, a constitutive model for the material of the jetliner is
required to take into consideration both the strain hardening and strain rate effects.
The Johnson-Cook model is adopted and the material properties of the 2024-T351
aluminum are taken from a reference [16].

Table 16.3 Numerical analysis cases.

Case Name Wall Thickness Reinforcement

CASE-1 1 m 0.8%
CASE-2 2 m 0.8%
CASE-3 2 m None
CASE-4 3 m 0.8%
CASE-5 3 m None
CASE-6 Rigid –

Six cases of numerical analyses were carried out for different types of targets as
shown in Table 16.3. All the concrete targets have rectangular shapes with the same
150 m width and 60 m height. As indicated in the left-hand side of Fig. 16.19 for the
CASE–4, fine meshes were assigned to the central region where the impact loading
is concentrated while coarse meshes were used for the surrounding region. The fine
region has a face of 60 m30 m and a thickness of 3 m which consists of 1206015
meshes. The size of one solid element is then 0.5 m0.5 m0.2 m. The surrounding
region was divided uniformly into rectangular solid elements. Each element has a
size of 1.5 m1.5 m0.2 m. The concrete wall has 186,000 solid elements totally.

In order to represent the material nonlinearity of the concrete we adopted the
RHT [6] model which has the following specific features like pressure hardening,
strain hardening, strain rate hardening and damage with tensile crack softening. The
material properties calibrated with the compressive strength of 35 MPa were taken
from the material library of AUTODYN. The bottom of the wall was rigidly fixed,
while no boundary condition was applied to the other five surfaces.
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The right-hand side of Fig. 16.19 also depicts the double-reinforced arrange-
ment. The number of longitudinal rebars is 99 and that of lateral ones is 39. They
are placed 0.4 meter inside the front surface of the wall. The same number of bars is
put along the back surface. The ration of the reinforcement is corresponding to 0.8
percent. The following material properties were used for the reinforcement: density
of 7.8103 kg/m3: bulk modulus of 1.71105 MPa: shear modulus of 7.88105 MPa:
yield stress of 2.15102 MPa: fracture strain of 0.19.

16.3.4.2 Numerical results

Figure 16.20 summarizes the overview on the numerical results of the present study
for five different target walls except for CASE–6, while each assumption for the
impactor (jetliner) is the same. The calculations of CASE–1 through CASE–5 were
carried out up to 1 s and CASE–6 was done up to 0.6 s. The figures of (a-1) through
(c-1) depict the deformations or damages estimated to the jetliners and the concrete
walls in the impact side and the back side, for the CASE–1 through CASE–3 respec-
tively, as well as the figures of (d–1) through (f–1) do in the impact side and from
the upper viewpoint, for the CASE–4 through CASE–6 respectively. The graphs of
(a-2) through (f–2) indicate the energy balance histories by each material for the
CASE–1 through CASE–6 respectively. ’Body’ means all the material of the Jumbo
jet except for engines; ’Eng.’ does all the material in the four engines; ’Con.’ does
all the concrete material; ’R–F’ does all the reinforcement steel. On the other hand,
’Int.’ stands for the internal (distortional) energy and ’Kin.’ does the kinetic energy.

In every case the buckling occurs in the nose of the fuselage, and it is subjected
to serious deformation. However, outstanding crashes on four engines are observed
only in the CASE–1 (1 m thickness; with the reinforcement). On the contrary, every
jetliner except for CASE–1 drops its main wings in the tip, like birds do when they
flap. No significant deformations can be observed behind the main wings in every
case.

Comparing among Fig. 16.20 (a-1) through (f-1), we can know that the concrete
wall are perforated completely in the cases of CASE–1 and CASE–3 (2 m thick-
ness; without the reinforcement). Especially, in the case of CASE–1, the both front
and rear reinforcements are broken and cut in the vicinity of the impact surface. The
rear reinforcements of CASE–2 seem to survive, but they are not supportable in any
sense, actually some of them are known to be fractured by an additional output sep-
arately done. And outstanding spalling (scabbing) can be observed in the back side
of the concrete wall of CASE–2. Slight dents or multiple shallow craters are formed
around the impact area on the front side, whereas no significant deformations can
be observed on the back side, for both the CASE–4 and CASE–5 that have the same
thickness of 3 m.
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Fig. 16.20 Overview of the numerical results for five different concrete targets.
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By the comparison among six graphs shown in Fig. 16.20 (a-2) through (f-2), the
history of the kinetic energy of the jetliner of CASE–1, ’Body (Kin.)’, is apparently
different from the other cases: it indicates two-step decrease curve. This history tells
us that the nose of the jetliner perforated the concrete wall at about 0.15 s, and that
the four engines impacted on the wall again in order after about 0.3 s. And, it takes
over 0.8 s for the jetliner of CASE–1 to be decelerated sufficiently, while the jetlin-
ers of other cases are stopped or rebounded within 0.5 s. However, since the internal
energy of the concrete of the CASE–1 shows extraordinary increase, the calculated
fact that the increase of the internal energy of the jet (’Body’) is less than the other
cases can be recognized to be caused by some numerical energy error. That the total
energy of the system decreases less than the initial amount (the kinetic energies of
’Body’ and ’Eng.’) in the CASE–2 through the CASE–6 can be explained by the
numerical erosion of the elements.

From the comparisons between the CASE–2 and the CASE–3, and between the
CASE–4 and the CASE–5, any significant differences cannot be found, and this fact
is coincident with the former comparisons of the deformations and damages investi-
gated by (b-1) though (e-1). Although the histories of the energies for the CASE–4
and the CASE–5 differ from each other a little, there seem not to be any convictive
reasons, and it might be amplified by the asymmetry of the jets caused by a minute
numerical error.

Note that the elapsed computer time required to execute the CASE–6 was 1/15th
less than CASE–1, although the phenomenon time of the former case is 40 % shorter
than that of the latter case. We can see that most parts of the computing time of these
models were exhausted for the concrete walls.

16.3.5 HE Detonation in Tunnel Structure with Inner Steel Liner
(3D)

16.3.5.1 Analysis models

Here, we shall suppose a HE detonation problem in the concrete tunnel structure
with the inner steel liner, as shown in Fig. 16.21. The spherical HE is suspended in
the atmosphere and is ignited in the center of the charge. The concrete structure is
built on the soil, the one end of the tunnel is closed and the other end is open. The
structure has the vertical part with the height of 2 m and is embedded as a basis in
the soil to the depth of 1 m. The thin steel liner covers on the inner surface of the
tunnel without constraint to the concrete wall, but the inner surface of the closed end
of the concrete structure is bare. The high explosive is spherical TNT with a mass
of 1000 kg (1 t) and a diameter of 1.06 m.
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Fig. 16.21 Initial analysis model of the HE explosion in the tunnel vault structure with a inner
steel liner.

The main part of the numerical simulation was carried out in the three-dimensional
model, after a preliminary one-dimensional calculation, similarly in the case of the
standoff explosion analysis described in the Sec. 16.3.2. The preliminary calcula-
tion was carried out by using the multiple-material Eulerian solver for spherical
TNT. Then, the one-dimensional distribution of the physical properties of the TNT
products and air at the final stage was remapped to the three-dimensional analysis
model as an initial condition. All the TNT products are assumed to be in the gas
phase at this moment.

Fig. 16.22 depicts the one-dimensional calculation by the wedge-shaped grid,
and the remapping procedure from one-dimensional model to three-dimensional one
by showing the pressure distributions in both models.

The concrete and soil were modeled by the Lagrangian solver, the steel liner was
done by the shell solver of AUTODYN. The effect of reinforcements was taken into
account by the equivalent and homogeneous material model applied to Lagrangain
elements modeling the concrete. The interactive boundary condition with the free
slide was applied to the interfaces between the concrete and the liner, and between
the concrete and the soil. The Euler-Lagrange interactive boundary condition was
done to all the surfaces of the concrete, soil and liner faced to the air. The FCT-
Euler grid was defined 1 m below the soil surface in order to take account of the
subsequent deformation of the soil. The flow-out boundary condition was applied to
all the surfaces of the FCT-Euler grid except for those in the soil, and the transmit
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Fig. 16.22 Remapping procedure from 1D/multiple-material Euler to 3D/FCT-Euler model.

boundary condition was applied to all the surfaces except for the ground surface, as
to avoid unphysical reflections of the pressure wave.

The FCT-Euler method is much faster than the Godunov type multiple-material
Eulerian solver, however the method has the limitation of the applicability only to
the analysis of gas dynamics.

16.3.5.2 Numerical results

Figure 16.23 shows the pressure distribution in the gas region, at the same time, it
shows the material status map in the structural material region at 3 ms on the ver-
tical cross-sectional surface in the axial direction. We can see that the reflection of
the shock wave in the air occurs just after its first impact onto the inner surface of
the tunnel, and the reflection estimates the high pressure region over 4 MPa, conse-
quently the rise of the pressure on the inner surface of the tunnel causes spall failure
(scabbing) in the vicinity of the outer surface of it. The soil was evaluated to be
failed in wider region than the concrete at this moment. This fact might be because
the HE is located nearer from the soil and the soil has a weaker tensile strength than
the reinforced concrete. However, there can be observed no significant deformations
or displacements in the structural materials at 3 ms. It takes much more time for light
gases to deform the heavy structures significantly, due to their inertia.

The material status maps of the bird’s-eye view depict the aspects of the damage
only in the structural material regions at 75 ms, as shown in Fig. 16.24. The inner
steel liner is shifted and plotted to the right-hand side so that the material status of
the inner surface of the concrete may be observed clearly as well as that of the steel
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Fig. 16.23 Overview of the numerical results for HE explosion in the tunnel: Pressure in gas,
material status in structural components at 3 ms.

liner at the same time. We can see a deformation pattern in the left-hand side part
of the steel liner like the deep drawing of the plastic sheet metal forming, and al-
most all region of the steel liner is judged to be plastic at this moment. The concrete
structure has several failed lines in the axial direction and is also characterized to
have a number of cracks in circumferential direction near the source of explosion. It
indicates serious deformation and displacement at this moment. The failed region in
the soil has expanded much wider than at 3 ms, the maximum vertical displacement
of the soil surface is 0.23 m deep according to the calculational results at 75 ms.

Fig. 16.24 Overview of the numerical results for HE explosion in the tunnel: Material status in
structural components at 75 ms.

Another bird’s-eye view enables us to comprehend the outer aspect of the defor-
mation and damage of the concrete structure, and the aspect of the damage of the
soil surface, as shown in the lower right corner of Fig.16.24. This figure was cre-
ated to project mirror symmetric elements, as the three-dimensional calculation was
performed for only half the system.
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16.4 Conclusions

We have demonstrated the availability and effectivity of our proposed three-
dimensional numerical simulation method by AUTODYN in order to solve the im-
pact loading and subsequent effect on the concrete and geological material to the
severe impulsive loading by the aircraft impact and HE detonation, after the com-
parison of the results obtained by using same numerical method with basically sim-
plified experimental tests, whereas including an actual test like the F-4 Phantom
impact test. All of the calculations in this paper were carried out by using usual
personal computers, so that we can say that the current hardware and software for
the impact analysis to the complex physical system provide us useful solutions and
expressions to understand the phenomena. However, at the same time, we do still
have serious problems as shown below:

1) Requirement for the computer memory (hardware): even 106 times of the current
memory is not sufficient always, e.g. the assessment of the blast effect at the far-
away positions and high-velocity impact of the vehicles against to more complex
structures.

2) Requirement for the computing speed (hardware): for the large-scale and the
complicated interaction problem.

3) Requirement for the automatic mesh refinement (AMR) technique to trace the
shock front precisely without dulling (software): even in the very large-scale
problem.

We expect that more remarkable progress in both hardware and software will be
made in the future.
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Chapter 17
Groundshock Displacements – Experiment and
Simulation

Eliahu Racah

Abstract A basic work on groundshock experimental measurement and numerical
modeling and simulation is described. The work includes measurement of ground-
shocks caused by an above ground FAE explosion, soil data collection and inter-
pretation and numerical simulation. An anti-minefield ’Carpet’ system charge was
initiated above ground in order to form a FAE cloud detonated on ground surface.
Tri-axial seismograms were measured at different ranges.
Reproduction of these measurements in a numerical simulation requires the knowl-
edge of soil properties such as density, elastic moduli, compressibility and strength
envelope. In order to determine these properties, soil density measurements, a re-
fraction survey, direct shear tests and pressiometer tests at various ground depths
were performed. The soil properties were used in MSC.Dytran numerical simula-
tion. The DYMAT14 soil and crushable foam material model was used to model
the soil. At ranges equal to and greater than 30 m the maximum radial and vertical
displacements show a very good agreement (less than 0.05 mm difference) between
experimental and numerical results. At shorter ranges the experimental results are
jumpy and much higher than the numerical results. It is assumed that in the exper-
iment, the close range sensors, being attached to the ground surface by 10 cm long
pegs, were released by the explosion effect.
The results of this work show a numerical prediction capability of long range
groundshock effects. No soil properties calibration was needed in order to fit numer-
ical and experimental results. Further work is needed to get reliable measurements
and numerical validation of groundshocks at close ranges, especially groundshocks
caused by buried HE detonations coupled with large crater formation.
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17.1 Introduction

A comprehensive survey of analytical approaches to groundshocks is given in Smith
and Hetherington [1]. These approaches constitute the base for groundshock calcu-
lation in the popular weapons effects calculation program ConWep1.

The analytical approaches might give reasonable estimates of ground displace-
ments for engineering design of buried structures, based on simplifying assumptions
specified in design manuals like TM-5-855-1 [2]. Estimates of derived quantities
like velocities and accelerations are not to be trusted and in order to get a more ac-
curate wave mechanics history a numerical hydrodynamic simulation is needed.

Using numerical simulations for groundshock analysis is easier said than done.
Besides the obvious problem of soil properties varying from site to site, there are no
well proven models to represent soils stressed by dynamic loadings and there are no
well established methods to determine soil properties needed for such models. As
will be shown here, even the measurement of groundshock velocity and displace-
ment near an explosion is not an easy task.

The work presented here represents an effort to overcome these problems.

17.2 Experiment

17.2.1 Experimental Setup

The soil at the test site is sandy silt containing some limestone rock fragments.
Ground surface is made of approximately 30 cm thick layer of cemented sandy silt.

A fuel-air explosive (FAE) cloud, formed by an anti-minefield ’Carpet’ system
charge, was detonated on ground surface using two CH6 HE charges, on two oppo-
site sides2.

The ground surface velocities and displacements were measured3 using seis-
mic recording gauges of type GEOSONICS SSU2000DK and INSTANTEL MIN-
IMATE PLUS. In the former gauges the sensor (geophone) is connected to the
recorder via a 3 m long cable while in latter gauges the sensor is inside the recorder

1 ConWep: Conventional Weapons Effects Program, Prepared by D.W. Hyde, US Army Waterways
Experimental Station, Vicksburg, Mississippi, 2007
2 Experiment performed by RAFAEL/MANOR
3 Measurements made by the Geophysical Institute of Israel
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box. The geophones (designed to measure earthquakes and not explosions) were at-
tached to the ground surface by 10 cm long pegs.

In order to protect the recorders from explosion effects they were put inside cov-
ered bottomless steel boxes, which in their turn, were placed in a dug hole (Figure
17.1). Some of the external geophones were placed on the bottom of the holes but
most of them were placed outside the hole, 3 m away. Measurements were taken at
10, 20, 30, 40 and 80 m range.

Fig. 17.1 Protection steel box (uncovered) in a dug hole.

Pressure gauges to measure FAE blast were also placed in the test arena at 5 and
15 m range.

17.2.2 Experimental results

Typical graphs of tri-axial ground particle velocity and displacement vs time are
shown in Figure 17.2. The displacements are calculated by integration of the mea-
sured velocities. As there is no indication of positive and negative directions, only
the magnitudes should be considered. The transversal displacement shown is caused
by the interaction of detonation waves in the FAE cloud due to the two detonators.

At all ranges, the geophones placed inside the holes behaved erratically while the
geophones placed 3 m away gave reasonable results. It seems that the disturbed soil
in the holes prevented firm attachment of the geophone pegs to the ground.
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Fig. 17.2 Typical seismic gauge measurements (20 m range).

The maximum ground displacements acquired by the seismic gauges that seemed
to work properly are shown in Table 17.1.

Table 17.1 Maximum experimental displacements.

Range Radial Transversal Vertical
Displacement Displacement Displacement

[m] [mm] [mm] [mm]

10 2 2 > 27

20 0.6 0.5 1.7

30 0.19 0.06 0.21

40 0.14 0.12 0.17

80 0.05 0.02 0.07
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17.3 MSC.DYTRAN DYMMAT14 Material Model

The experiment was reproduced by a numerical simulation using MSC.Dytran [3].
The DYMAT14 material model [4] was used to model the soil. The DYMAT14
model is for materials exhibiting compressible plasticity; that is, their behavior is
pressure dependent. It can be used to model aspects of the behavior of a wide range
of materials that contain voids and crush or compact under pressure. Examples in-
clude soils, foams, concrete, metallic honeycombs and wood.

The material model uses isotropic plasticity theory and the response of the ma-
terial to deviatoric (shear) loading and hydrostatic (pressure) loading is completely
uncoupled.

17.3.1 Deviatoric Behavior

The yield surface in principal stress space is a surface of revolution centered about
the hydrostatic pressure line. It is defined by ΦS (J2, p) = 0

ΦS (J2, p) = J2 −
(
B0 +B1 p+B2 p2) (17.1)

where p is the pressure, J2 is the second invariant of the stress deviation tensor
Si j:

J2 =
1
2

Si jSi j (17.2)

The coefficients B0, B1 and B2 can be related to the user-defined constants A0 and
A1 according to:

B0 =
1
3

A2
0; B1 =

2
3

A0A1; B2 =
1
3

A2
1 (17.3)

The yield surface is cylindrical when A1 is zero and it has a shape as shown in
Figure 17.3 when A1 is non zero.

The yield stress σy can be expressed in terms of the coefficients A0 and A1. The
yield stress is defined as:

σy =

√
3
2

J2 where J2 = {J2|ΦS (J2, p) = 0} (17.4)

Thus,

σy =
√

3(B0 +B1 p+B2 p2) = A0 +A1 p (17.5)

The cut-off pressure value is calculated as the intersection point of the yield sur-
face with the hydrostat.
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Fig. 17.3 Yield surface with hydrostat.

The open end of the cylinder, cone or paraboloid points into compression and
is capped by a plane that is normal to the hydrostat. There is no strain hardening
on the yield surface, so the relationship between deviatoric stress σ ′ and deviatoric
strain ε ′ is elastic perfectly plastic as shown in Figure 17.4. The elastic behavior is
governed by the shear modulus G.

Fig. 17.4 Stress-strain curve.
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17.3.2 Hydrostatic Behavior

The hydrostatic component of the loading causes volumetric yielding. This means
that the cap on the open end of the yield surface moves along the hydrostat as volu-
metric yielding occurs. The relationship between hydrostatic pressure and volumet-
ric strain can be of any shape (Figure 17.5).

Fig. 17.5 Volumetric yielding.

The curve is defined in terms of the crush factor, 1−V/V0, where V is the current
volume and V0 the initial volume. It is a number between 0 and 1 where 0 indicates
no crush and 1 indicates that the material is completely crushed and has 0 volume.

The material unloads elastically from any point on the curve with bulk modulus
K. A failure pressure cutoff is specified (Figure17.6). If the pressure falls below the
failure pressure, the element fails and cannot carry tensile loading for the remainder
of the analysis. It can still carry compressive loading.

17.4 Soil Data

Soil data had to be collected and interpreted in order to use them in DYMAT14
material model.
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Fig. 17.6 Failure pressure cutoff.

17.4.1 Density

A test pit was dug in situ4 and disturbed specimens were taken from various depths,
up to 7.5 m, in order to measure the density and moisture content using the ’Sand
Cone’ method (Figure 17.7). The soil density was found to be 2010 kg/m3 except
for the 30 cm surface layer where it was found to be 1660 kg/m3. The solid matrix
density was found to be 2700 kg/m3 in the main soil body and 2790 kg/m3 in the
surface layer.

Fig. 17.7 Sampling field density (Sand Cone): sampling (left) and hole volume measurement using
a given density sand (right).

4 Geotechnical investigation made by the Building and Infrastructure Testing Laboratory, Technion
Research and Development Foundation
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17.4.2 Refraction Survey and Elastic Moduli

The pressure and shear wave velocities and the bulk and shear moduli in the ground
different layers, found by a refraction survey of the test site5, are shown in Table
17.2.

Table 17.2 Ground wave velocities and elastic moduli.

Depth Pressure Wave Shear Wave Bulk Modulus Shear Modulus
Velocity Velocity

[m] [m/s] [m/s] [MPa] [MPa]

0 – 0.3 710 300 627 149

0.3 – 10 1230 690 1762 957

> 10 1520 800 2955 1286

The wave velocities were measured using seismic recording gauges (see Exper-
imental Setup section above) and the energy sources were a falling hammer for
pressure waves and a lateral impact pendulum for shear waves (Figure 17.8).

Fig. 17.8 Refraction survey: pressure waves (left) and shear waves (right).

The shear modulus was calculated using the relation

G = ρ v2
s (17.6)

where vs is the propagation velocity of shear waves. The bulk modulus was cal-
culated using the relation

K =
2G(1+ν)
3(1−2ν)

(17.7)

where ν is the Poisson ratio which was calculated using the relation

5 Seismic refraction survey made by the Geophysical Institute of Israel
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ν =

(
vp
/

vs
)2 −2

2
(
vp
/

vs
)2 −2

(17.8)

where vp is the propagation velocity of pressure waves.

17.4.3 Pressiometer Tests and Volumetric Crush

Pressiometer tests measure soil volumetric changes vs hydraulic pressure applied in
a deep test borehole drilled in the site(Figure 17.9). The test results4 are represented
by the linear volumetric crush curve

p = K∗
(

1− V
V0

)
(17.9)

where K∗ is an engineering bulk modulus equal to 66.5 [MPa].

Fig. 17.9 Pressiometer test.
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17.4.4 Direct Shear Tests and Yield Surface

Soil cohesion strength, c, and angle of friction, φ , were measured4 by direct shear
tests using a double shear box instrument (Figure 17.10). The yield surface (eq.
(17.5)) coefficients A0 and A1 were calculated by the following equations ([5], [6]):

A0 =
6ccosφ
3− sinφ

(17.10)

A1 =
6sinφ

3− sinφ
(17.11)

The numerical values are given in table 17.3.

Fig. 17.10 Direct shear test.

Table 17.3 Yield surface coefficients.

Depth Cohesion Angle of A0 A1
Strength Friction

[m] [MPa] [◦] [MPa] [−]

0 – 0.3 0.04 38 0.08 1.55

> 0.3 0.12 58 0.18 2.36
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17.5 Simulation

17.5.1 Simulation Setup

The simulation setup is shown in Figure 17.11. Two orthogonal vertical symmetry
planes are used. The detonation of the FAE cloud in air is modeled using an Eule-
rian mesh while the ground is modeled using a Lagrangian mesh. The two meshes,
representing a quarter space of 150X150X95 m, are coupled.

The Eulerian mesh contains 100,352 cells. Cell size in the FAE cloud region is
0.2 m and it is growing from there in all directions. The Lagrangian mesh contains
81,536 cells. Cell size in the FAE cloud region is 0.2 m in the horizontal directions
and 0.15 m in the vertical direction, and it is growing from there in all directions.

Fig. 17.11 Simulation Setup.

Air is modeled as an ideal gas having atmospheric pressure. The toroidal fully
detonated FAE cloud is modeled as an ideal gas with a pressure of 1.06 MPa. This
is about half the real detonation pressure achieved by detonating the cloud at the lo-
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cation of the detonators. The latter method was avoided in order to allow the ground
Lagrangian mesh to adjust itself to the air atmospheric pressure. As a result, no
transversal waves were produced in the simulation.

The ground three layers are shown in Figure 17.12. The calculated sound speed
for each layer is identical to the sound speed found experimentally (Table 17.2).

17.5.2 Simulation Results and Discussion

Simulation results showed that plastic deformation of the ground was confined to
the FAE cloud region. Outside this relatively small region the ground waves are in
the elastic range (see Figure 17.13).

Figure 17.14 shows a characteristic comparison between graphs obtained in the
experiment and graphs calculated by the simulation.

Fig. 17.12 Ground Layers.
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Fig. 17.13 Vertical displacement after 500 ms.

The following points are worth noting in Figure 17.14.

• The vertical directions in the experimental graphs are plotted upside down.
• The vertical displacement reference line was lowered by 0.14 mm due to the

simulation delay in adjusting the ground pressure to the atmospheric pressure.
• The experimental graphs are sampled every millisecond while the calculation

step in the simulation is at least ten fold shorter. This partly explains the relative
noisiness of the simulation graphs.

• The simulation model doesn’t include an attenuation mechanism that can repre-
sent the inter-granular friction in real soils. Therefore, the simulation is invalid
beyond 100 ms from the first large oscillation.

Considering all the above reservations, it can be seen in Figure 17.14 that the
first displacement oscillations in both experimental and simulation graphs are very
similar, both qualitatively and quantitatively.

Maximum ground displacements obtained in the experiment and the simulation
are compared in Figure 17.15. It can be seen that at ranges of 30 m and above, the
maximum radial and vertical displacements show a similar behavior of moderate
gradient, in both experiment and simulation, with a quantitative difference of less
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than 0.05 mm. At ranges shorter than 30 m, the calculated graphs behave moderately
as in the longer ranges while the experimental graphs rise to order of magnitude
higher values.

Fig. 17.14 Comparison between experiment (right) and simulation (left) at 30 m range.

Fig. 17.15 Maximum ground displacements.
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There is no physical explanation to this rise in the experimental graphs but to as-
sume that the geophones 10 cm long pegs were too short for attaching them firmly
to the ground at short ranges. This resulted in a jumpy movement, independent of
the ground movement.

17.6 Conclusion

A capability of long range measurement and numerical prediction of groundshocks
was developed and proved, showing very good accuracy. Soil properties measure-
ment methods used didn’t require any calibration to fit numerical and experimental
results.

Further work is needed to get reliable measurements and numerical validation of
groundshocks at close ranges, especially groundshocks caused by buried HE deto-
nations coupled with large crater formation.
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Chapter 18
Hypervelocity Impact Induced Shock Waves and
Related Equations of State

Stefan Hiermaier

18.1 Introduction

Precondition for stable shock wave propagation is a convex Equation of State (EoS)
in terms of pressure and volume. The first mathematical proof for the existence and
dependence of shock waves on that non-linearity was derived by Bethe [1]. In this
introductory chapter, a more phenomenological approach to derive conditions for
shock wave formation will be given along with some examples for Equations of
State used in hydrocodes.

The other contributions in this third part of the book deal with the phenomena
observed during hypervelocity impact (HVI) on space vehicle structures and on ge-
ological materials. A well known general problem in the simulation of shock waves
related to the numerical discretization is the formation of unphysical oscillations.
Apart from specific shock related types of discretizations, e.g. Godunov methods,
any other existing type can be adjusted via the so-called artificial viscosity adressed
in the related chapter 19 of this part of the book. The specific need for meshfree
discretizations which, in addition, allow for the simulation of HVI-related fragment
cloud formation is reflected in the review chapter 20 on Smooth Particle Hydro-
dynamics (SPH). The chapters 21 and 22 deal with the analytical and numerical
methodologies for risk analyses os space vehicles related to hypervelocity impact.
The final chapter 23 deals with the numerical simulation of cratering processes re-
sulting from both meteorite impact and nuclear explosions.
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18.2 Shock Wave Formation and the Necessity of Adequate
Equations of State

18.2.1 Wave Dispersion due to Nonlinear Compressive Material
Characteristics

The origin of shock waves experienced in gaseous media upon the transit of super-
sonic objects was identified as the superposition of waves emitted from the object
(Doppler [2], Mach and Salcher [3] ). Obviously, another physical reason must be
present when shock waves are initiated under impact loads in solid matter. Expe-
rience shows that external dynamic compressive loads, e.g. initiated by impact or
blast, can possibly cause very strong waves with extremely short rise times inside
solid bodies. Again, superposition of different wave components is responsible for
the steepening of the wave front and ultimately leading to shock waves. However,
the corresponding wave superposition now takes place as a consequence of a spe-
cific type of dispersion, i.e. a change of sound speed with increasing pressure level.
This type of dispersion arises in media with nonlinear compressive behaviour and it
is a precondition for the shock formation in these media.

Physical reason for the mentioned type of dispersion is the relation between wave
speed c and density ρ or volume V , respectively. Basically, the adiabatic speed of
sound c in an arbitrary medium is defined by:

c2 =
∂ p
∂ ρ

∣∣∣∣
S
=
∂ p
∂ V

∣∣∣∣
S

∂ V
∂ ρ

∣∣∣∣
S
=
∂ p
∂ V

∣∣∣∣
S

∂
(
ρ−1

)
∂ ρ

∣∣∣∣∣
S

=
−1
ρ2

∂ p
∂ V

∣∣∣∣
S

(18.1)

Thus, the wave propagation speed c is proportional to the square root of the
pressure-volume gradient. In other words, compression of a material with a nonlin-
ear compressive characteristic, e.g. as illustrated in figure 18.1, results in strongly
varying wave speeds depending on the compression state. Starting the compression
from an initial condition described by volume V0, density ρ0 and pressure p0 = 0 an
elastic pressure wave will travel into the material at a speed of

c0 =
1

ρ2
0

√
− ∂ p
∂ V

∣∣∣∣
0
. (18.2)

As the material is further compressed into the plastic regime, we find a major
change in the slope of the governing p −V -characteristic. Consequently, related
pressure waves are now propagating slower. From state p2 −V2 onwards, however,
the slope is increasing again and, thus, leading to faster wave speeds.

The related processes of a steepening wave front, ultimately forming a shock
wave, is illustrated in figure 18.2. A dynamically applied load F(t) initiates pres-
sure waves in a material with a nonlinear pressure-volume characteristic p(V ). That
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Fig. 18.1 Nonlinear compressive p−V−characteristic of a material.

Fig. 18.2 Shock wave formation due to dispersion: (A) Imposed load history. (B) Nonlinear com-
pressive material behaviour. (C) Propagation of elastic and plastic wave components in the loaded
material.

nonlinearity leads to differences in the propagation speed of individual wave pack-
ages according to their pressure amplitude:

• Initially, elastic wave packages propagate at the elastic wave speed c0, already
defined in equation 18.2.
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• Wave packages originating from pressure levels around p1 propagate much
slower, causing the elastic wave components to run ahead as a so-called ’pre-
cursor’.

• From pressure levels equal or higher than p2 onwards, the related wave packages
propagate at ever increasing speeds.

• The increased wave speed leads to a steepening plastic wave front since wave
packages resulting from higher pressure levels overtake others resulting from
earlier initiated low-pressure states.

• Ultimately, a shock wave is formed.

In the light of these phenomenological observations and with a mathematical
description for the slopes in the p−V diagram of Figure 18.1, conditions for the
formation of shock waves can be formulated as:

∂ p
∂ V

< 0 and (18.3)

∂ 2 p
∂ V 2 > 0 (18.4)

18.2.2 Requirements to an EoS with Respect to Shock Formation

Obviously, the compression curve p(V ) can only cover an isothermal part of the
thermodynamic conditions that a solid material may undergo under dynamic defor-
mations. Therefore, criteria for the driving dispersion effect need to be found with
respect to the shape of the state surfaces p(V, e). Whether dispersion occurs or not,
depends on the shape of the state surfaces and thus on the Equation of State de-
scribing it. A first generalized thermodynamic description of conditions for a stable
shock wave propagation in media with an arbitrary Equation of State was estab-
lished in 1942 by Hans Bethe [1]. Investigating the behaviour of pressure, internal
energy, volume and entropy for various classes of solid, liquid and gaseous matter,
Bethe established two conditions for the existence and one for the stability of shock
waves. The two sufficient criteria for its existence are:

∂ 2 p
∂ V 2

∣∣∣∣
S
> 0 (18.5)

and

Γ = V
∂ p
∂ e

∣∣∣∣
V

> −2 (18.6)

where Γ denotes the Grüneisen parameter. In addition, Bethe found the inequality

∂ p
∂ V

∣∣∣∣
e
< 0 (18.7)
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as criterion for a shock wave to be stable against break-up .

With respect to an isothermal case reflected in a compression curve, the intu-
itively derived equations (18.3) and (18.4), are equivalent with conditions (18.5)
and (18.7).

How do the conditions (18.5) - (18.7) relate to the mentioned type of dispersion?
There is a single thermodynamic parameter G called fundamental derivative1 that
describes the link uniquely:

G = −1
2

V

∂ 3 e
∂ V 3

∣∣∣
S

∂ 2 e
∂ V 2

∣∣∣
S

= −1
2

V

∂ 2 p
∂ V 2

∣∣∣
S

∂ p
∂ V

∣∣∣
S

(18.8)

Using the sound speed c in the medium ahead of a shock wave defined by:

c2 = −V 2 ∂ p
∂ V

∣∣∣∣
S

(18.9)

the fundamental derivative

G =
V 3

2c2

∂ 2 p
∂ V 2
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S
= 1+

ρ
c
∂ c
∂ ρ
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S

(18.10)

quantifies more obviously the rate of change in sound speed with density as well as
the curvature of isentropes in the p−V plane and, thus, links the dispersion to the
convex shape of the Equation of State.

18.3 Equations of State for the Simulations of Shock Processes

18.3.1 Complete versus Incomplete Equations of State

Basically, any formulation of hydrostatic pressure p depending on density ρ and
specific internal energy e, or equivalently on volume V and temperature T , defines
an Equation of State (EoS):

p = p(ρ, e) = p(V, T ) = p(V, e) (18.11)

However, (18.11) does not cover heat conduction and other effects that would re-
quire temperature. Equations of State of that kind are therefore often called incom-
plete EoS. Complete formulations, on the other hand, take into account temperature

1 The fundamental derivative, also known as Duhem parameter was introduced by Thompson [5]
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T and specific entropy s and are therefore formulated using the specific Helmholtz
free energy ψ as:

ψ(V, T ) = e−T s (18.12)

From the Gibbs fundamental equation

dE = dQ−dW ≤ T dS− pdV (18.13)

and for the reversible limit case we find:

de = T ds− pdV (18.14)

and thus

p(V, T ) = −∂ ψ
∂ V

(18.15)

and

s(V, T ) = −∂ ψ
∂ T

(18.16)

for a complete Equation of State. Generally, the applications addressed in the con-
text of this book are not affected by heat conduction effects and, thus, incomplete
Equations of State can be used. For detailed derivations of complete EoS, interested
readers may be referred to Menikoff [23] to find examples of Helmholtz free ener-
gies and derived equations of state. As an example for complete Equations of State,
porous materials will be described with the Menikoff-Kober EoS in section 18.3.3.

An exceptional impact processes that demands for the application of complete
Equations of State is given in case of large meteorite impacts on geological struc-
tures. The term ’large’ indicates meteorite sizes of one to ten kilometers in diameter.
The huge dimensions of both impactor, i.e. the meteorite, and target, i.e. for exam-
ple earth, extends the time interval between shock initiation and arrival of the first
release wave to several seconds. Under such conditions, we find combinations of
extremely high shock pressures between 10 and 100 [GPa] with shock pressure du-
rations in the regime of seconds. Hence, heat conduction processes find enough time
to take place in the Hugoniot states. This makes the formulation of complete Equa-
tions of State inevitable.

Geologist investigating the cratering processes during large meteorite impact by
numerical simulation use and improve related complete Equations of State, e.g. the
ANEOS equation developed by Thompson et al. [24]. An important adjustment of
ANEOS – originally limited to monatomic gases – to realistic cratering processes
was recently provided by Melosh [25].
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18.3.2 Mie-Grüneisen Shock EoS

A very often found incomplete nonlinear EoS is the Mie-Grüneisen, or, Shock EoS.
It uses the experimentally derived Hugoniot pressures and energies (pH , eH ) as ref-
erence states together with the Grüneisen assumption

Γ = V
∂ p
∂ e

∣∣∣∣
V

(18.17)

to calculate pressures p from given volume V and specific internal energy e as2:

p(V,e) = pH − Γ (V )
V

(e− eH) (18.18)

An important part of the experimental derivation of the Hugoniot sates is the
description of a relation between shock velocities vS and particle velocities v1. For
example, a linear type of such a relation

vS = c0 +Sv1 (18.19)

using the two parameters c0 and S leads to a description of the Hugoniot states by

pH = p0 +ρ0 c2
0

η
(1−S η)2 (18.20)

eH = e0 +
η
ρ0

pH − η2

2
c2

0

(1−S η)2 (18.21)

with
η = 1− ρ0

ρ
(18.22)

Hence, besides the Hugoniot condition that can be experimentally characterized
using vS − v1 data of the material, the Grüneisen Γ is needed as final parameter
to establish the Equation of State. Some further thermodynamical relations can be
useful to identify data for the Grüneisen parameter:
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(18.23)

with the specific heats at constant volume and pressure cV and cP, respectively. In

that context, Meyers [7] points out that the term 1
V
∂ V
∂ T

∣∣∣
P

is equal to the volumetric

thermal expansion 3α and that − 1
V
∂ V
∂ P

∣∣∣
T

represents the isothermal compressibility

K. Thus, Γ can be expressed by

2 See Hiermaier [6] for a detailed introduction to the theories leading to the Mie-Grüneisen EoS.
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Γ = V
3α

cV K
(18.24)

Further ways to calculate the Grüneisen constant were developed by Slater [8] or
Dugdale and MacDonald [9]. Detailed discussions on the related theories are to be
found in Rice et al. [10] and, more recently, including a new own method in Na-
gayama et al. [11].

To estimate the accuracy and limitations of the Mie-Grüneisen EoS (18.18), it
can alternatively be understood as isochoric extrapolation off the shock Hugoniot
formulated as Taylor series developed around the Hugoniot pressure pH :

p(V,e) = pH −
(
∂ p
∂ e

)

V
(e− eH) + ... ≈ pH − Γ

V
(e− eH) (18.25)

Equation (18.25) explains the assumption needed to establish the Mie-Grüneisen
EoS and, thus, helps to assess the quality and limitations of it. Basically, it is a
first order approximation of the state surface in the neighbourhood of the measured
Hugoniot curve along an isochoric path. Another important limitation of the Mie-
Grüneisen EoS is that it is not capable of phase changes.

18.3.3 Equations of State for Porous Materials

There is a wide spectrum of materials with an inherent porosity which may be either
intentionally inserted or present to a certain unavoidable minimum due to production
reasons. Examples for deliberately produced porosity are cellular materials used to
provide thermal, acoustic or shock damping effects with a particular structural stiff-
ness at low specific weight. Others, e.g. polymers, concrete or energetic materials,
dispose of some level of porosity that is not always desirable and needs to be re-
flected in material characterization.

Dynamic deformation behaviour of porous and granular materials is most often
investigated regarding two particular aspects:

• The energy dissipation effect of porous materials like polymeric and metallic
foams or concrete is one focus. Propagation of acoustic as well as shock waves is
damped through irreversible deformation of cells. Kinetic energy of impact and
crash processes, ranging from low velocity head impact to hypervelocity impact
of micro-meteoroids on space vehicle structures, is transformed into plastic strain
and failure. The porosity and the stiffness of the matrix material determine the
stress level at which the structure deforms and, thus, for example the deceleration
of an impacting body.
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• Insensitivity as well as the detonation characteristics of plastic bonded energetic
materials is influenced by the porosity. Here, the shock velocities and the strain
localization due to the porous nature are of interest.

Energetic materials are not topic of this book. Readers interested in the dynamic
deformation behaviour of explosives are for example referred to Davison et al. [12].

Characteristic Deformation Phases in Porous Materials

The complexity in modelling porosity under shock loading conditions arises from
the unusual compaction behaviour of porous materials including distinct variations
in the materials’ stiffnesses in three phases:

• Typically, a first deformation phase of porous materials can be described as elas-
tic compression of the matrix material. The stiffness is defined by the properties
of the matrix material.

• Depending on the type of the matrix material, it is followed by a second phase
of failure and collapse of pores which can occur as ductile plastic deformation
or as brittle fragmentation and includes stability aspects on the scale of the pore
wall dimensions. Characteristic for the macroscopic aspect of this deformation
stadium is very little stiffness and subsequent deformation at a more or less con-
stant stress level. Hyperelastic matrix materials do not show this phase.

• A third and final deformation stadium, called compaction phase, is observed
when the pores are all compressed. The stiffness changes again drastically to-
wards the matrix material’s elastic-plastic compressive properties.

If the sound speed in the matrix material is cM and cP is the sound speed of
the porous material, the bulk modulus KP of the porous material in the first elastic
compaction phase can be described via the sound speeds:

KP = ρ
d p
dρ

= ρ c2
P (18.26)

In the third phase, the bulk modulus corresponds to the bulk modulus of the matrix
material.

The transition between phase one and three can be described in terms of the
material properties of the matrix material using a porosity parameter α:

α =
ρM

ρ
=

V
VM

(18.27)

that relates the matrix and, thus, fully compacted density ρM to the current den-
sity ρ of the porous material. Often, the inverse of α is used to relate the specific
volume of the matrix material VM at zero pressure to the current specific volume
of the porous material. In the context of the following section we will denote that
alternative measure of porosity by φ :
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φ =
VM

V
=

ρ
ρM

= α−1 (18.28)

The choice of φ over α was motivated through the use of specific volumes and the
preferred variation of φ between zero for a non-existing matrix, i.e. a vacuum, and
unity for a fully dense material. A preference that seems indeed more convenient
than the variation from infinity to unity.

With the porosity of the undeformed material αP = ρM/ρP the current sound
speed at an arbitrary compression state can be described through:

c = cP +(cM − cP)
(
α−αP

1−αP

)
(18.29)

and, thus, the current stiffness of the partly compacted material accordingly.

Influence of Porosity on the Hugoniot State

A characteristic phenomenon observed when porous materials are shock loaded is
the convex shape of the vS − v1 curves and the related deflection of the Hugoniot
curve:

Porosity in solids leads to a typical decrease in the observed shock velocity vS

with increasing v1 for low particle velocities. It is the dispersive nature of the prop-
agated stress waves in the regime just above the compressive strength of porous
materials that leads to the observed phenomenon. At a certain v1 value the shock
velocity shows a minimum and starts to rise again with convergence to the slope
of the solid materials vS − v1 characteristic. Riedel and Kawai [13] investigated the
phenomenon in mortar by experimental and numerical means. Their proposed stress
gauge instrumentation along with the theoretical distinctions of stress waves pro-
posed by Fowles and Williams [14] seems to be a promising methodology for a
better understanding of shock waves in inhomogeneous materials.

A porous material with very reproducible mechanical properties is achieved
when a matrix is filled with hollow spheres. As an example for that kind of cellular
material, epoxy resin filled with glass micro-spheres was investigated by Weirick
[15]. Figure 18.3 compares the findings of Weirick with the svS − v1 characteristic
of mortar reported by Riedel [16]. Hugoniot pressures of the micro-sphere filled
epoxy material and of the energetic material PBX-9407 as listed in Marsh [17] are
given in Figure 18.4. The graphs reflect the aforementioned characteristics of shock
loaded porous materials.
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Fig. 18.3 Shock-particle velocity results for Epoxy resin (dashed line) and Epoxy filled to 42 vol-
ume percent with glass micro-balloons (�) both investigated by Weirick [15] compared to mortar
data (•) provided by Riedel [16].

Herrmann’s p−α Equation of State

Deformation behaviour of porous materials has long been a topic of scientific inves-
tigations. First comprehensive description of shock loaded porous materials includ-
ing a formulation for a related Equation of State were derived more than forty years
ago. A first formulation of an EOS was proposed by Herrmann [18]. In order to
relate the porous materials’ EOS to the one of the solid matrix material, Herrmann
invented a porosity and energy dependent formulation, called p−α Equation of
State:

p = p(
V
α

, e) = p(φV, e) (18.30)

The distinction of (18.30) to other equations of state is the porosity in the argument
of the pressure function. Thus, any existing EOS can be used to replace the volume
dependency by the V/α-dependency.
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Fig. 18.4 Hugoniot states for pure Epoxy resin (�, dotted), Epoxy filled to 42 volume percent
with glass microspheres (�, solid) both Weirick [15]), and PBX-9407 (•, dashed) according to
data from Marsh [17].

Equation (18.30) was adjusted by Carrol and Holt [19] to average the pressure in
the matrix material over the total porous volume:

p =
1
α

p(
V
α

, e) = φ p(φV, e) (18.31)

The porosity is now a thermodynamic state variable depending on pressure and
internal energy:

α = α(p, e) (18.32)

where the energy dependence is mostly not formulated explicitly due to the lack of
data. This gap is usually closed to a sufficient degree of accuracy through an implicit
energy dependence carried in the Hugoniot reference curve referred to in the solid
materials EOS. This approach is valid as long as no additional energy source terms
are in the porous material. Swegle [20] points out that an important advantage of
(18.31) over (18.30) is that it avoids unphysically larger bulk sound speeds in the
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porous material than in the matrix material.
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Fig. 18.5 Compression curve and two release paths for cement modelled via a p−α Equation of
State (Data courtesy of Riedel [16]).

A possible description of the porosity parameter, amongst various other formu-
lations, was proposed by Butcher and Karnes [21] for porous iron:

α = 1+(αp −1)
(

pC − p
pC − pe

)n

(18.33)

with a parameter n set to n = 2 in [21]. The pressure at initial pore collapse pe and
pressure at the beginning of the compaction phase, denoted by pC, are further pa-
rameters to be defined experimentally. The implicit coupling of pressure, volume,
internal energy and porosity demands for an iterative solution of the equations in
numerical implementations.

Wünnemann et al. [26] recently proposed the so-called ε − α-model imple-
mented in the iSALE code as an extension to the p−α Equation of State for porous
geological materials under hypervelocity impact.

Menikoff-Kober Porous Equation of State

A thermodynamically consistent formulation of a complete Equation of State for
porous materials was introduced by Menikoff and Kober [22] via a decomposition
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of the Helmholtz potential into a contribution from the pure solid material ψs and
potential energy ψp associated with the porosity:

ψ(V, T, φ) = ψs(φV, T )+ψp(φ) (18.34)

where the porosity is here described via the solid volume fraction φ = VM/V =
ρ/ρM = α−1. Alternatively to (18.33), compaction laws for porous materials can
also be formulated using φ , a parameter pc denoting the pressure at full compaction,
i.e. closure of all pores, and an initial porosity 1−φ0 :

φeq(pV ) = 1− (1−φ0)e
− pV−p0V0

pcV0 (18.35)

To find the porosity φeq of an equilibrium state, Menikoff and Kober minimize
the free energy (18.34) to get:

pV −φeq
dψp

dφ
(φeq) = 0 (18.36)

which needs to be solved simultaneously with the equation for equilibrium pressure
peq that is defined according to (18.15) as:

peq(V, e) = −φeq
∂ ψ(Vs, es

∂ V
(18.37)

where Vs = φeqV and es = e−ψp(φeq) are the specific volume and internal energy of
the pure solid. Menikoff and Kober point out that equation (18.37) equals the p−α
equation, except for the thermodynamically requested distinction between specific
internal energy e of the porous material and the one of the solid matrix es.

Menikoff [23] uses the matrix material’s adiabatic exponent γs = ρs c2
s /Ps to de-

scribe the ratio of equilibrium and matrix sound speed as:

(
ceq

cs

)2

= 1−
(
γs −1
γs

)2 c2
s

c2
s +φ 2

eq
d2ψp

dφ2 (φeq)
(18.38)

and, thus, to quantify the decrease in sound speed with increasing porosity. Two fur-
ther interesting quantities for porous materials formulated in [23] are the Grüneisen
parameter:

Γ =

⎛
⎝ peq V +φ 2

eq
d2ψp

dφ2

c2
s +φ 2

eq
d2ψp

dφ2

⎞
⎠ Γs (18.39)

and the related specific heat at constant volume:
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CV =

⎛
⎝ φ 2

eq
d2ψp

dφ2 +φeq
dψp
dφ

φ 2
eq

d2ψp

dφ2 + c2
s −Γ 2

s CV s Ts

⎞
⎠ Γs

Γ
CV s (18.40)
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Gesellschaft der Wissenschaften in Prag 5 [V]: 293–306.

3. Mach E, Salcher P, (1887), Photographische Fixierung der durch Projectile in der Luft
eigeleiteten Vorgänge, Sitzungsbericht, Akad. Wiss. Wien 95 (IIa): 764–780.

4. Duhem P, (1909), Sur la Propagationdes Ondes de Choc au Sein des Fluides, Zeitschrift für
Physikalische Chemie 69: 169–186

5. Thompson PA, (1971), A Fundamental Derivative in Gas Dynamics, Physics of Fluids 14:
1843–1849

6. Hiermaier S, (2008), Sructures Under Crash and Impact, Springer, New York.
7. Meyers MA, (1994), Dynamic Behavior of Materials, John Wiley - Interscience Publication,

New York.
8. Slater JC, (1939), Introduction to Chemical Physics. McGraw-Hill, New York.
9. Dugdale JS, MacDonald DKC, (1953), The Thermal Expansion of Solids, Physical Review

89: 832–834.
10. Rice MH, McQueen RG, Walsh JM, (1958), Compression of Solids by Strong Shock Waves.

In: Seitz F, Turnbull D (eds), Solid State Physics, Volume 6, Academic Press Inc., Publishers,
New York and London.

11. Nagayama K, Mori Y, (1994), Simple Method of Calculating Grüneisen Parameter Based on
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Chapter 19
Artificial Viscosity Methods for Modelling Shock
Wave Propagation

James Campbell and Rade Vignjevic

Abstract The paper gives an overview of the artificial viscoity method widely used
today to alow the simulation of problems containg shock waves. The development of
the most common basic form of the viscosity term is summarised and its behaviour
is illustrated through simulations of a 1D piston problem. Test problems that are
commonly used to test different viscosity formulations are then discussed to further
illustrate the method. Finally other shock viscosity forms such as edge and tensor
viscosities are briefly discussed.

19.1 Introduction

The requirement to model shock wave propagation has been around since the earliest
days of hydrocodes, with finite difference simulations used at Los Alamos during
the Manhattan project in order to study the behaviour of shock waves. An under-
standing of shock propagation was critical for the design of the atomic bomb.

A shock wave has a thickness of the order of a few molecular mean free paths.
This is a very small dimension, much smaller than the typical length scale consid-
ered in continuum mechanics simulations. It is completely impractical to consider
modelling a macroscopic problem with a mesh size small enough to resolve this.
The result is that a shock represents a discontinuity in the solution, a surface over
which there is a jump in velocity, pressure, density and energy.
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One possible approach is to treat the shock as a interface between two regions of
the flow. In this approach the Hugoniot equations along with the material’s Equa-
tion of State (EOS) can be used to solve for the jump in solution variables across
the shock. These values are then applied as boundary conditions to the two regions
of flow. This approach can be used in one dimensional simulations, but in two- or
three- dimensional simulations it is impractical as the shock represents a moving
interface of potentially complex shape. Tracking this potentially arbitrary boundary
accurately, and applying the necessary jump conditions over the interface represents
a complex numerical and algorithmic challenge.

Two well established methods exist today for the treatment of shocks within nu-
merical simulations:

• Artificial viscosity
• Godunov’s method

The artificial viscosity concept, developed by von Neumann and Richtmyer [1],
allowed the first practical numerical simulations of problems containing strong
shocks. The concept involves the introduction into the numerical scheme of a viscos-
ity like term that acts to spread the thickness of any shock wave over several mesh
cells. As the shock no longer represents a discontinuity in the solution, standard
numerical methods can be used to simulate the shock propagation. This approach
has proved to be simple and robust, accounting for its continuing use today. The
drawbacks of the method is that it can introduce an unacceptable degree of mesh
sensitivity into the solution and there is a trade-off between shock thickness and
degree of oscillation behind the shock.

Godunov’s method [2] and the class of numerical methods developed from it rep-
resent an entirely different approach. In summary Godunov’s method assumes that
all solution variables within a cell are constant at the start of a step, with discontinu-
ities occurring at the edges of a cell treated through the solution of a Riemann prob-
lem. This approach allows the shocks in the solution to be physically and naturally
treated. The drawback is the high numerical cost of solving the Riemann problem.
This has required the use of approximate Riemann solvers which introduce fur-
ther approximations into the numerical method. Even approximate solutions of the
Riemann problem remain expensive when complex equations of state are required,
which has effectively limited the common application of the methods to fluid me-
chanics simulations. In addition, like the artificial viscosity method, it introduces
mesh sensitivity into the solution. Further information on Godunov’s method and
Riemann solvers can be found in Toro [3].

19.2 The Von Neumann - Richtmyer viscosity

The governing equations of Lagrangian hydrodynamics are the momentum (19.1),
the energy (19.2) and the continuity (19.3) equations:
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ρ
dv
dt

= ∇ ·σ , (19.1)

ρ
de
dt

= σ : D , (19.2)

dρ
dt

= −ρ∇ ·v (19.3)

where ρ is density, σ is the stress tensor, v is the velocity vector, e is the specific
internal energy. D is the rate-of-deformation tensor defined as the skew symmetric
part of L, the velocity gradient tensor:

L = (∇v)T and D =
1
2
(L+LT ) (19.4)

The approach taken by Von Neumann and Richtmyer [1] for one dimensional
shock wave calculations was to modify the momentum and energy equations by
adding a dissipative, viscosity like, term q to the stress tensor. Introducing this term
into the governing equation acts to smear out the shock so as to produce a thick-
ness of the order of the resolution length of the computational mesh. A particular
feature of this approach is that the term is added to the equations throughout the
computational domain, not just where a shock is present, removing the need to track
shocks. As the dissipative term is added for purely mathematical reasons, it can be
any function that satisfies the following constraints [1]:

1. The modified conservation equations (19.1-19.3) must possess solutions without
discontinuities.

2. The thickness of a shock must everywhere be of the order of the resolution length
of the mesh, independent of the strength of the shock.

3. The dissipative term must be negligible outside of the shock wave.
4. The Hugoniot equations must hold when all other dimensions are large compared

to the shock thickness.

The expression proposed by Von Neumann and Richmyer for their viscosity is
written for the one-dimensional case as

q = −ρ(cΔx)2 ∂v
∂x

∣∣∣∣
∂v
∂x

∣∣∣∣ , (19.5)

where c is a dimensionless constant. The viscous term q is then included in the
solution by replacing the stress, σ , in the governing equations by (σ−qI). This term
is quadratic in the velocity gradient and is positive in compression and negative in
tension. As the viscosity term is not required in expansion it is common to set q = 0
when ∂v

∂x > 0.
The Von Neumann-Richtmyer q shown in equation (19.5) does work effectively,

and with a value of c of the order of 2 will spread a shock over three to five mesh
cells [4]. Its disadvantage is that any oscillation that does occur behind the shock
is only slowly damped out and lowering the value of c to reduce the thickness of
the shock results in an overshoot that produces oscillation. To address this problem
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Landshoff [5] proposed an expression for q that was linear in the velocity gradient.
This term vanishes less rapidly behind a shock front and so rapidly damps out the
oscillation, but as the term is smaller in the shock front itself much larger overshoots
occur. Landshoff recommended that the two terms be combined to produce a q that
combines the best features of each:

q = −ρcLΔx a

∣∣∣∣
∂v
∂x

∣∣∣∣−ρcQ(Δx)2 ∂v
∂x

∣∣∣∣
∂v
∂x

∣∣∣∣ , (19.6)

where a is the local speed of sound and cL and cQ are dimensionless constants that
multiply the linear and quadratic terms respectively. This basic form of viscosity
proved effective and is still widely used today.

Extending the one-dimensional form of the viscosity (19.6) to two or three di-
mensions requires appropriate definitions of the velocity gradient and the character-
istic length. It is common to follow the original idea of Von Neumann and Richtmyer
[1] by replacing the velocity gradient term with the trace of the rate-of-deformation
tensor:

q = −ρcLl a Ḋkk −ρcQl2Ḋ2
kk if Ḋkk < 0

q = 0 if Ḋkk ≥ 0
(19.7)

The definition of the characteristic grid length, l, is not so simple. Ideally the char-
acteristic length used would be the element thickness in the shock propagation di-
rection, but calculating this for all elements every step is difficult and costly. The
usual approximation used in three dimensions is the cube root of the volume, 3

√
V ,

and in two dimensions the square root of the area,
√

A . These values are simple and
quick to calculate and provide a good estimate of the critical length provided the
aspect ratios of the elements are close to one. As the element aspect ratio becomes
poor the use of these estimates leads to increasing unphysical behaviour and even
numerical problems.

19.2.1 Demonstration

The behaviour of the von Neuman-Richtmyer viscosity will now be illustrated
through simulations of a 1D piston problem. In this problem a box with an initial
length of 1 is filled with a cold perfect gas with γ = 5/3 and initial density ρ0 = 1.0.
The right hand end of the box is fixed, while the left hand end is a piston that moves
into the box with a fixed velocity of 1.0. A shock of infinite strength (P0 = 0) is
generated by the piston motion and moves into the gas ahead of the piston, figure
19.1.

An exact solution to this problem can be obtained using the Hugoniot relations
that connect the state ahead of the shock with the state behind:

vs =
(v1 − v0)ρ1

ρ1 −ρ0
, (19.8)
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1 = 4 
e1 = 0.5 
P1 = 1.3333 
v1 = 1

0 = 1 
e0 = 0 
P0 = 0 
v0 = 0

vs   1.3333 

ShockPiston

Fig. 19.1 Diagram of the 1D piston problem, showing the state of the gas ahead and behind the
shock.

P1 −P0 = ρ0vs(v1 − v0), (19.9)

e1 − e0 =
P1 +P0

2

(
1
ρ0

− 1
ρ1

)
. (19.10)

These equations link the density, ρ , pressure, P, specific internal energy, e, and
particle velocity, v, across a shock travelling with velocity vs. The state ahead of the
shock is denoted with subscript 0 and behind the shock with subscript 1.

To calculate the exact solution for this problem a fourth equation is required, the
perfect gas equation of state:

P = (γ−1)ρe. (19.11)

These equations can now be solved explicitly to derive an expression for the pressure
jump across the shock in terms of the conditions ahead of the shock and the change
in particle velocity across the shock:

P1 = P0 +ρ0
(γ+1)

4
(Δv)2 +ρ0|Δv|

√(
γ+1

4

)2

(Δv)2 +a2
0, (19.12)

where a is the local speed of sound given by

a =

√
γP
ρ

(19.13)

The conditions ahead and behind the shock and the shock speed are given in 19.1.
Figures 19.2 to 19.6 show results from several simulations of this problem with

varying cL and cQ. All the simulations were performed using the DYNA Lagrangian
hydrocode [6], using the standard form of viscosity given by equation (19.7). The
model consists of 100 elements along the length of the box. Eight node hexahedral
continuum elements were used, along with symmetry boundary conditions to en-
force a state of uni-axial strain. All the elements are perfect cubes at the start of the
problem so l = 3

√
V is a good measurement of the critical length. All the results are

shown as plots of element pressure vs. element coordinate at time t = 0.7. At this
point the piston coordinate 0.7 and the shock coordinate is 0.93̇ .

The first simulation, figure 19.2, shows a result using the quadratic term only with
a small coefficient (cL = 0.0 and cQ = 0.5). The overshoot and oscillation behind
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Fig. 19.2 Pressure profile for piston problem at time t = 0.7, with cL = 0.0 and cQ = 0.5.
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Fig. 19.3 Pressure profile for piston problem at time t = 0.7, with cL = 0.0 and cQ = 2.0.
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Fig. 19.4 Pressure profile for piston problem at time t = 0.7, with cL = 0.1 and cQ = 0.5.

the shock can be clearly seen and is only slowly damped. In a practical analysis
the level of noise in this solution would not be acceptable. Increasing the value of
the quadratic coefficient reduces the level of overshoot and hence the oscillation as
can be seen in figure 19.3 (cL = 0.0 and cQ = 2.0). Here the solution behind the
shock is good, but at the cost of a wider shock front. The effect of introducing the
linear term is to more rapidly damp out the oscillations behind the shock as can be
seen in figure 19.4 (cL = 0.1 and cQ = 0.5). Here even a fairly small value for the
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Fig. 19.5 Pressure profile for piston problem at time t = 0.7, with cL = 1.0 and cQ = 0.5.

linear coefficient results in a much more rapid damping behind the shock with only
a small increase in the width. Increasing the linear coefficient eventually results in
a monotonic profile with no overshoot behind the shock but again at the cost of a
wider front, figure 19.5.

Today, in a 1D calculation like this, the width of the shock front is not a problem
as the computational cost of each simulation is negligible and a high spatial resolu-
tion can be used. In 3D models it is still desirable to keep the width of the shock as
small as practical as increasing the spatial resolution can easily result in models that
are too computationally expensive to use.
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Fig. 19.6 Pressure profile for piston problem at time t = 0.7, with cL = 0.06 and cQ = 1.5.

There is a further and more serious problem with artificial viscosity that must
be considered when selecting the values of the two coefficients. This problem was
studied by Noh who called it shockless Q heating [7]. The viscosity term is non-
zero everywhere where compression occurs and this leads to error in the solution
where the assumption that the dissipative term is negligable outside the shock wave
does not hold. Due to this error, as the linear term is larger than the quadratic term
when Ḋkk is small, it is common to keep the value of the linear coefficient small. The
default values used in the DYNA code are cL = 0.06 and cQ = 1.5 [6], experience has
shown that these values provide a reasonable balance between shock thickness and
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oscillation behind the shock for many cases. Results for the piston problem using
these coefficients are shown in figure 19.6. The value of the quadratic coefficient
results in a reasonably sharp shock front with a small overshoot and small linear
term damps out the oscillation behind the shock.

19.2.2 Wall Heating

This is an error that occurs on shock formation, for example at the start of the piston
problem. It manifests in the solution as region where the density is underestimated
and the internal energy overestimated. While this problem has been known and stud-
ied since the early days of shock computations, the now common name wall heating
comes from the study by Noh [7]. He showed that this error is unavoidable as it is
present in the solution of the governing differential equations contining a q term.
The presence of this error is often ignored as often it only affects the solution in a
small region and does not threaten the overall stability of the calculation. However
in some particular applications, such as when the shock is generated at the centre
of convergent geometry, the error can be significant and so solutions have been pro-
posed, an example is the artificial heat flux term developed by Noh [7] to smear out
this error. This error is still investigated; see for example Rider [8] for a more recent
study.

19.3 Test problems for shock viscosity formulations

Since its original development many different forms for the artificial viscosity term
have been proposed. The motivation has included improving the solution near the
shock and in particular reducing the mesh sensitivity introduced when the original 1-
D formulation has been extended to 2- and 3- dimensions. In principle any problem
involving shock propagation can be used to investigate the properties of a shock
viscosity, but one result of the continued development has been the emergence of
certain test problems that are more commonly used to test or illustrate different
formulations. Three problems will now be considered in more detail: the Sod shock
tube [9], the Noh problem [7] and the Saltzman piston problem [11]. Other test
problems that are used include the Sedov blast wave [10], uniform compression [7]
and the Coggeshall adiabatic ompression probelm [10].

19.3.1 Sod shock tube

In addition to the piston problem used previously another commonly used 1D prob-
lem is the Sod shock tube problem, named after Gary Sod who used this prob-
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lem to investigate the performance of several numerical methods [9]. This problem
consists of two regions of perfect gas with different initial densities and pressures,
figure 19.7. In both regions the gas is initially at rest. The solution consists of a rar-
efaction wave that travels to the left, a contact discontinuity and a shock that travels
to the right. In both regions the ratio of specific heats is γ = 1.4. It is common to take
the initial position of the contact discontinuity as x = 0.5. The exact solution for this
problem at t = 0.25 is shown in figure 19.8. As with the piston problem this can be
used to investigate the effect of the viscosity formulation on the shock front, but in
addition the viscosity should not affect the solution at the contact discontinuity or
in the rarefaction wave.

Left

L =  1.0 

PL  =  1.0 

vL  =  0.0 

Right

R =  0.125 

PR  =  0.1 

vR  =  0.0 

Fig. 19.7 Initial conditions of the Sod shock tube problem.
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Fig. 19.8 Exact solution for Sod shock tube problem showing density, velocity, pressure and en-
ergy at time t = 0.25.

The Sod shock tube problem is an example of a 1D Riemann problem for the
Euler equations which are commonly used for testing fluid dynamics codes [3].
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19.3.2 Noh generic constant velocity shock

This problem, usually just called the Noh problem, has become a widely used test
for hydrocodes since it was first described by Noh [7]. While it is a 1D problem there
are three variants, one in planar geometry, one in axi-symmetric geometry and the
final in spherically symmetric geometry. In all three cases the problem consists of a
region of cold ideal gas, γ = 5/3, with ρ0 = 1.0 and P0 = 0.0. The initial velocity
v0 = −1.0 everywhere. In all three cases the shock speed is vs = 1/3, and all have
constant post-shock conditions.
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Fig. 19.9 The exact solution for density at t = 0.6 for Noh’s axi-symmetric problem (left) and
spherical problem (right).

The planar version is identical to the piston problem considered previously; the
change is that is in a frame of reference where the piston is at rest. Exact results for
the density at t = 0.2 is shown in figure 19.9 for the axi-symmetric and spherical
cases. In both of these cases there is a region of uniform compression ahead of the
shock, and especially with the spherical case the shockless Q heating error can be
seen in this region.

Noh originally developed these problems to investigate the wall heating error. An
example of the wall heating error can be seen in figure 19.10, showing results for the
axi-symmetric problem calculated on a polar mesh. The effect of wall heating can be
seen in the significant under-estimate of the density near the point of convergence
in the numerical solution. The results shown use the edge viscosity formulation
developed by Caramana [10].

Another application of the Noh problem is to investigate the effect of mesh sensi-
tivity when the shock propagates through a non-uniform mesh. The example shown
in figure 19.10 used a polar mesh where the element edges are aligned with the flow
and the mesh reflects the symmetry of the flow. For practical reasons it is rare to
achieve this and using a rectangular mesh where all elements are initially square for
the Noh problem can be used to investigate the consequences.

Figure 19.11 shows the results from a DYNA simulation of the axi-symmetric
Noh problem. The elements are initially uniform cubes with symmetry boundary
conditions used to enforce plane strain. The simulation used the standard viscosity
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Fig. 19.10 Example axi-symmetric Noh problem results on a polar mesh (left) showing the density
error due to wall heating (right). Solution time t = 0.2.

(19.7) with the default values for the viscosity coefficients. The mesh sensitivity of
the solution can be seen in both the mesh plot, especially along the 45 degree line,
and in the scatter of the density results. The Noh problem does represent a tough
problem for shock codes as it involves an infinitely strong shock and hence the
level of mesh sensitivity is severe, but it must be understood that mesh sensitivity is
present in all simulations that use the artificial viscosity method to capture the shock
behaviour.
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Fig. 19.11 Simulation results for the axi-symmetric Noh problem on a Cartesian mesh using the
Von Neumann - Richtmyer viscosity at solution time t = 0.2. (a) Final mesh. (b) Plot of element
density vs. radius for all elements.

19.3.3 Saltzman piston

The Saltzman piston problem [11] is a problem that has been widely used to test
shock viscosities [10, 11, 12, 13, 14]. It tests the ability of a code to propagate a
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one dimensional shock through a two dimensional mesh. The initial conditions and
analytical solution are identical to the piston problem considered earlier, however
the initial mesh is different, figure 12. The mesh fills a rectangular domain that is
1.0 long by 0.1 high with 100 elements along the long edge and 10 elements along
the short edge. The initial x coordinate of each node is defined in terms of their
logical coordinates i and j as

x(i, j) = (i−1)dx+(11− j)sin

(
π(i−1)

100

)
dy, (19.14)

where dx = dy = 0.01. The result of this is a distorted mesh, figure 19.12, although
all elements have an aspect ratio close to one.

Fig. 19.12 Initial mesh for Saltzman piston problem

The standard viscosity is unable to preserve the one-dimensional solution, with
the distortion of the mesh behind the shock clear in figure 19.13.

Fig. 19.13 Mesh at t = 0.7 for the Saltzman piston problem using the default DYNA viscosity.

However, the numerical solution remains a reasonable approximation to the ana-
lytical solution. Two variants of the Saltzman piston have been proposed, both alter
the height of the rectangular domain leaving all other parameters unchanged. By
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altering the initial element aspect ratio both represent a tougher challenge for a vis-
cosity than the standard test. In the first variant the height of the domain is increased
by a factor of 100. This variant was originally proposed by Margolin [11] to investi-
gate how very high aspect ratio elements affect the solution. The standard viscosity
does not perform well on this problem [12] as the characteristic length calculated
from the element volume is much larger than the thickness of the element in the
shock direction. In the second variant the height of the domain is reduced by a fac-
tor of 4. This variant was originally proposed by Campbell and Shashkov [14] to
investigate how a moderate element aspect ratio affects the solution and to provide a
greater degree of discrimination between viscosity forms. A further option with the
Saltzman piston problem is to run the calculation past time t = 0.75. At this time
the shock reaches the fixed end of the piston and is reflected. The reflected shock
now propagates through mesh that has been distorted by the initial shock. Again this
provides a greater challenge to the analysis code.

19.4 Alternative forms of artificial viscosity

The problems and errors resulting from the use of artificial viscoity have lead to
the development of many different forms with varying properties. This section will
briefly discuss two basic forms: the edge centred and the tensor viscosities, illustrat-
ing each with an example.

All forms of viscosity should satisfy the four conditions set out by Von Neumann
and Richtmyer, see section 19.2 of this paper. More recently Caramana et al. [10]
specified five additional properties that an artificial viscosity should possess, these
are

1. Dissipativity: The artificial viscosity must only act to decrease kinetic energy.
2. Galilean invariance: The viscosity should vanish smoothly as the velocity field

becomes constant.
3. Self-similar motion invariance: The viscosity should vanish for uniform contrac-

tion and rigid rotation.
4. Wave-front invariance: The viscosity should have no effect along a wave front of

constant phase, on a grid aligned with the shock wave.
5. Viscous force continuity: The viscous force should go to zero continuously as

compression vanishes and remain zero for expansion.

A viscosity that satisfies these conditions will not suffer from the shockless Q heat-
ing error and should show reduced mesh sensitivity over the standard form.
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19.4.1 Edge centred viscosity

In an edge centred viscosity the viscosity force is calculated at an element edge
rather than centred within an element. The strength of this approach is that the un-
certainty over the choice of characteristic length in higher dimensions is removed,
the length of the edge is now the natural choice. Each element edge connects two
nodes and the forces resulting from the viscosity are directly applied to them. These
forces should be applied in the direction of the relative velocity of the two nodes,
not along the line joining then. This change significantly improves the results and
according to Margolin [11] is known as the Barton fix.

The viscosity developed by Caramana et al. [10] is an example of a modern edge
viscosity that includes limiter terms. It is based on an alternative to equation (19.6)
that was investigated by Wilkins [4] who attributed it to Kurapatenko [15].

qKur = ρ

⎧
⎨
⎩c2

(γ+1)
4

|Δv|+

√
c2

2

(
γ+1

4

)2

(Δv)2 + c2
1c2

s

⎫
⎬
⎭ |Δv| (19.15)

where c1 and c2 are non-dimensional constants, γ is the ratio of specific heats and
Δv = ∂v

∂xΔx. This expression was derived from the pressure jump across a shock in
an ideal gas. Wilkins shows that when simulating an ideal gas, using this viscosity
removes the overshoot behind a shock.

In two dimensions the viscosity force for edge k of element e, that connects two
nodes b and c, is

fk =

⎧
⎨
⎩

(1−ψk)qKur(Δ̂vk · se
c)Δ̂vk if (Δvk · se

c) < 0

0 if (Δvk · se
c) ≥ 0 .

(19.16)

fk then contributes to the total force at points b and c. Vector se
c is a unit vector in

the direction normal to the line connecting the mid-point of edge k to the centre of
element e. The velocity difference for the edge is Δvk = vb −vc, and Δ̂vk is the unit
vector in the direction of this velocity difference. For the edge the density and sound
speed are

ρk =
2ρbρc

ρb +ρc
, cs,k = min(cs,b,cs,c) . (19.17)

The density and sound speed at a node is the volume weighted average of the sur-
rounding elements. The function ψk is defined as

ψk = max[0,min(0.5(rl,k + rr,k) , 2rl,k , 2rr,k , 1)] , (19.18)

rr,k =
Δvk+1 · Δ̂vk

Δxk+1 · Δ̂xk

/
|Δvk|
|Δxk|

, rl,k =
Δvk−1 · Δ̂vk

Δxk−1 · Δ̂xk

/
|Δvk|
|Δxk|

. (19.19)
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Subscripts l and r refer to the left and right edges respectively. The left edge is
found by considering all other edges that connect to node b and selecting the edge
that forms the largest angle with edge k. The right edge is found in the same manner
by considering edges that connect to node c.

The term ψ can be considered as a multi-dimensional form of a one dimensional
TVD advection limiter. It acts to switch off the viscosity when the second derivative
of the velocity field is zero and ensures that the viscosity satisfies the conditions of
self-similar motion invariance and wave front invariance.
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Fig. 19.14 Mesh at t = 0.7 for the Saltzman piston problem using the Caramana edge viscosity.

Results for the Saltzman piston problem using the Caramana edge viscosity are
shown in figure 19.14, and shows a smoother solution than that obtained using the
standard form, figure 19.13.

19.4.2 Tensor viscosity

In a tensor viscosity the scalar q term is replaced by a tensor Q. The potential benefit
of this change is that the effect of the viscosity can be directionally dependent,
like an edge viscosity, while still being element centred. In addition there is no
requirement that Q be symmetric, and a nonsymmetric viscosity can remove mode
conversion [11]. This means that for a shear flow in which all velocities are parallel,
the viscous force will only act in the velocity direction. With a symmetric tensor
viscosity the force would have a component perpendicular to the velocity direction.

The tensor viscosity developed by Campbell and Shashkov [14] is an example of
a modern tensor viscosity that includes limiter terms. It assumes a form similar to
physical viscosity, but based on L rather than D and so is not symmetric:

Q = μLT . (19.20)

μ is a scalar coefficient defined as

μ = (1−ψ)ρ

⎧
⎨
⎩c2

(γ+1)
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1c2

s

⎫
⎬
⎭ l (19.21)
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where ψ is a limiter function similar to the function used in the Caramana edge
viscosity although using the value of Δv in four directions rather than two.

Results for the Saltzman piston problem using this tensor viscosity are shown in
figure 19.14, again showing a smoother solution than that obtained using the stan-
dard form. It should be noted that both the Caramana edge viscosity and this tensor
viscosity are formulated within the framework of mimetic finite difference meth-
ods although there is no reason why they could not be extended to other numerical
approaches.
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Fig. 19.15 Mesh at t = 0.7 for the Saltzman piston problem using the Campbell and Shashkov
tensor viscosity.

19.5 Summary

This paper discusses the artificial viscosity method for the simulation of shock
waves that is widely used today, especially for solid mechanics applications. The be-
haviour of the most widely available form of artificial viscosity is illustrated through
a set of examples covering test problems that are commonly used to test different
viscosity formulations. Finally other shock viscosity forms such as edge and tensor
viscosities are briefly discussed.
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Chapter 20
Review of Development of the Smooth Particle
Hydrodynamics (SPH) Method

Rade Vignjevic and James Campbell

Abstract The paper gives an overview of developments of the SPH method. Espe-
cial attention is given to the main shortcomings of the original form of the method
namely consistency, tensile instability and zero energy modes. A derivation of an ex-
ample of a correction necessary to assure first order consistency is given. The origin
of the tensile instability and a few proposed solutions to this problem are described.
Similar consideration is given with respect to the zero energy modes typical for the
collocational SPH method.

20.1 Introduction

This paper discusses the development of the Smooth Particle Hydrodynamics (SPH)
method in its original form, which is based on the updated Lagrangian formalism.
SPH is a relatively new numerical technique for the approximate integration of par-
tial differential equations.

It is a meshless Lagrangian method that uses a pseudo-particle interpolation
method to compute smooth field variables. Each pseudo-particle has a mass, La-
grangian position, Lagrangian velocity, and internal energy; other quantities are de-
rived by interpolation or from constitutive relations. The pseudo-particles move with
the velocity of the continuum, but are not associated with a grid and consequently
do not have fixed connectivity.
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The advantage of the meshless approach is its ability to solve problems that can-
not be solved effectively using other numerical techniques. It does not suffer from
the mesh distortion problems that limit Lagrangian approaches based on a structured
mesh when simulating large deformations. As it is a Lagrangian method it naturally
tracks material history information, such as damage, without the diffusion that typ-
ically occurs in Eulerian approaches due to advection.

Gingold and Monaghan[18] and Lucy [42] initially developed SPH in 1977 for
the simulation of astrophysics problems. Their breakthrough was a method for the
calculation of derivatives that did not require a structured computational mesh. Re-
view papers by Benz [10] and Monaghan [45] cover the early development of SPH.

From the early days of SPH the importance of the smoothing kernel function
as the essential feature of the SPH scheme was recognised. The Gaussian and the
cubic B spline kernel functions are the most widely used, see Monaghan and Lat-
tanzio [47]. However, most practical work relies on monotone splines which, when
used with small supports, allow for more accurate numerical solutions and higher
numerical efficiency according to Balsara [4]. Liu et al. [39] among a number of
other researchers demonstrated that in general, regardless of the choice of kernel
function, the SPH method is not even zero-order consistent. This is a consequence
of the fact that the accuracy of the kernel interpolation depends on the distribution
of the interpolation points within the kernel support. This effect is especially pro-
nounced in the vicinity of boundaries, where the kernel support extends beyond the
domain of the problem considered and consequently becomes incomplete Liu et al.
[40].

Libersky and Petchek [36] extended SPH to work with the full stress tensor in
2D. This addition allowed SPH to be used in problems where material strength is
important. The development of SPH with strength of materials continued with its
extension to 3D by Libersky [37]. Applications of SPH to model solids, i.e. materi-
als with strength, further highlighted shortcomings in the basic method: consistency,
tensile instability, zero energy modes, treatment of contact and artificial viscosity.
These shortcomings were discussed in detail in the first comprehensive analyses
of the SPH method by Swegle [68] and Wen [83]. The problems of consistency
and accuracy, identified by Belytschko [5], were addressed by Randles and Liber-
sky [59], Vignjevic and Campbell [76] and a number of other researchers. This
resulted in a normalised first order consistent version of the SPH method with im-
proved accuracy. The attempts to ensure first order consistency in SPH resulted in
the emergence of a number of variants of the SPH method, such as Element Free
Galerkin Method (EFGM) Belytschko [7], Kongauz [33], Reproducing Kernel Par-
ticle Method (RKPM) Liu [40][41], Moving Least Square Particle Hydrodynamics
(MLSPH) Dilts [16], Meshless Local Petrov Galerkin Method (MLPG) Atluri and
Zhu [1]. These methods allow the restoration of consistency of any order by means
of a correction function. It has been shown by Dilts [16] and independently by Atluri
et al. [2] that the approximations based on corrected kernels are identical to moving
least square approximations.
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A comprehensive stability analysis of particle methods in general by Belytschko
[8], Xiao and Belytschko [84], and independently by Randles [59] who worked
specifically on the SPH method provided improved understanding of the methods
analysed and confirmed the conclusions from Swegle’s initial study. Randles unique
analysis, which included space and time discretisation, showed that SPH can be sta-
bilised by precise choice of time step size and a predictor corrector type of time
integration. Rabczuk et al. [58] demonstrated that if used within a total Lagrangian
framework SPH does not exhibit tensile instability.

Tensile instability in SPH manifests as a non-physical motion of particles which
form clusters. This was first observed in materials loaded in tension (negative stress),
however the instability can develop under compressive loading, see Swegle [68]. In
simulations of solids this instability may result in non-physical numerical fragmen-
tation.

Another unconventional solution to tensile instability and the zero energy mode
instability problems was first proposed by Dyka [17] in which the stresses are cal-
culated at locations other than the SPH particles (non-collocational SPH). The re-
sults achieved in 1D were encouraging but a rigorous stability analysis was not
performed. A 2D version of this approach was investigated by Vignjevic and Camp-
bell [76], based on the normalised version of SPH. This investigation showed that
extension to 2D was possible, although general boundary condition treatment and
simulation of large deformations would require further research.

Monaghan [51] showed how the instability can be removed by using an artificial
stress which in the case of fluids is an artificial pressure. When used in simulation of
solids this artificial, in other words non-physical, stress may result in an unrealistic
material strength and therefore has to be used with caution.

In spite of these developments, the crucial issue of convergence in a rigorous
mathematical sense and the links with conservation have not been well understood.
Encouraging preliminary steps in this direction have already been made by Moussa
and Vila [54], who proved convergence of their meshless scheme for non-linear
scalar conservation laws; see also Moussa [53]. This theoretical result appears to
be the first of its kind in the context of meshless methods. Furthermore, Moussa
and Vila, proposed an interesting new way to stabilise normalised SPH and al-
low for treatment of boundary conditions by using approximate Riemann solvers
and up-winding, an approach usually associated with finite volume shock-capturing
schemes of the Godunov type. This work developed a strong following including:
Parshikov et al. [55] who also use a Riemann solver to calculate the numerical flux
between pairs of interacting particles; Cha and Whitworth [14], who have applied
the Riemann solver of van Leer [72][73] to isothermal hydrodynamics; and Inutsuka
[26] who proposed an interesting but fairly complex approach to obtain second-
order accurate SPH in 1D.
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The improvements in accuracy and stability achieved by kernel re-normalisation
or correction do not come for free; now it is necessary to treat the essential boundary
conditions in a rigorous way. The approximations in SPH do not have the property
of strict interpolants, so that in general they are not equal to the particle value of the
dependent variable, i.e. uh(x j) = ∑

I
φI(x j)uI �= uJ . Consequently it does not suffice

to impose zero values at the boundary positions to enforce homogeneous boundary
conditions. Another issue with this approach is that in conventional SPH the bound-
ary is diffuse. In the case of normalised SPH particles do lie on the domain boundary
which is in this case precisely defined.

The treatment of boundary conditions and contact could be and was neglected in
the conventional SPH method. If the imposition of the free surface boundary con-
dition (stress free condition) is simply ignored, then conventional SPH behaves in
an approximately correct manner, giving zero pressure for fluids and zero surface
stresses for solids, because of the deficiency of particles at the boundary. This is the
reason why conventional SPH gives physically reasonable results at free surfaces.
Contact between bodies in conventional SPH is treated by smoothing over all parti-
cles neighbouring the contact interface, regardless of material types in contact (for
instance contact between a solid body and a fluid). Although simple this approach
can give physically incorrect results, such as tensile forces between the bodies in
contact.

Campbell et al. [13] made an early attempt to introduce a more systematic treat-
ment of boundary condition by re-considering the original kernel integral estimates
and taking into account the boundary conditions through residual terms in the inte-
gral by parts. Very interesting work on boundary conditions in SPH is due to Takeda
et al. [70], who applied SPH to a variety of viscous flows.

A similar approach has also been used to a limited extent by Randles [59] with
the ghost particles added to accomplish a reflected symmetrical surface boundary
condition. Belytschko, Lu and Gu [7] imposed the essential boundary conditions
by the use of Lagrange multipliers leading to an awkward structure of the linear
algebraic equations, which are not positive definite. Krongauz and Belytschko [32]
proposed a simpler technique for the treatment of the essential boundary conditions
in meshless methods, by employing a string of finite elements along the essential
boundaries. This allowed for the boundary conditions to be treated accurately, but
reintroduced the shortcomings inherent to structured meshes.

Randles et al. [59][60] were first to propose a more general treatment of bound-
ary conditions based on an extension of the ghost particle method. In their approach
the boundary is considered to be a surface one half of the local smoothing length
away from the so-called boundary particles. A boundary condition is applied to a
field variable by assigning the same boundary value of the variable to all ghost par-
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ticles. A constraint is imposed on the boundary by interpolating it smoothly between
the specified boundary particle value and the calculated values on the interior par-
ticles. This serves to communicate to the interior particles the effect of the specific
boundary condition. There are two main difficulties in this:

• Definition of the boundary (surface normal at the vertices).
• Communication of the boundary value of a dependent variable from the boundary

to internal particles.

A penalty contact algorithm for SPH was developed by Campbell and Vignjevic
[12]. This algorithm was tested on normalised SPH in combination with the Ran-
dles approach for treatment of free surfaces. The contact algorithm considered only
particle-particle interactions, and allowed contact and separation to be correctly sim-
ulated. However tests showed that when this approach is used zero-energy modes
are often excited. Further development of this contact algorithm for the treatment of
contact problems involving frictionless sliding and separation under large deforma-
tions was achieved by the contact conditions through the use a contact potential for
particles in contact, see Vignjevic et al. [78]. Inter-penetration is checked as a part
of the neighbourhood search. In conventional SPH contact conditions are enforced
on the boundary layer, 2h thick, while in the case of the normalized SPH, contact
conditions are enforced for the particles lying on the contact surface.

In a number of engineering applications it is beneficial to discretise only certain
parts of the domain with particles and the rest with finite elements. The main rea-
sons for this is to take advantage of the strengths of both methods, which include
significantly better numerical efficiency of the finite element (FE) method, and in
SPH modelling arbitrary crack propagation, large deformations and adaptive refine-
ment of the discretisation.

One of the first coupling procedures for FE-SPH coupling was proposed by At-
taway et al. [3]. They developed a penalty based approach for modelling of fluid-
structure interactions where the fluid was discretised with particles and the structure
was modelled with finite elements. A similar approach was proposed by Johnson
[28] and Johnson et al. [29]. In addition to the contact algorithm, they developed
a tied interface where SPH particles are fixed to FE nodes. This allows for a con-
tinuous coupling of the SPH and the FE domains. Sauer [64] proposed an SPH-FE
coupling by extending the SPH domain onto the FE mesh. Different possibilities for
exchanging forces between FE nodes and particles were shown, and the approach
was used for adaptive conversion of elements into particles. The main difference
with most other coupling methods is the use of a strong-form coupling. This ap-
proach was successfully applied to a number of impact problems, see Sauer et al.
[65][66] and Hiermaier et al. [21][22]. Using a variation of the contact algorithm
they developed for SPH, De Vuyst and Vignjevic [15] coupled Cranfield University
SPH code with Lawrence Livermore National Laboratory DYNA3D.
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Coupling algorithms developed for other meshless techniques can be applied for
use with SPH. Among many recently proposed techniques a selected few are men-
tioned below. A mixed hierarchical approximation based on meshless methods and
FE, proposed by Huerta et al. [23][24], remove the discontinuities in the deriva-
tive across the interior boundaries when coupling FE and the element-free Galerkin
method (EFG). Belytschko and Xiao [9] proposed the ’bridging domain coupling
method’ which uses Lagrange multipliers over a domain where FE and particle dis-
cretisations overlap. They applied this approach to multi-scale simulations for cou-
pling continua with molecular dynamics. Another method for atomic and continua
scale bridging was proposed by Wagner and Liu [82] and Kadowaki and Liu [31].
By matching dynamic impedances of different discretisation domains spurious wave
reflection is prevented in this approach.

A comprehensive overview of techniques for coupling of a range of meshless
methods with FE with examples is given in Li and Liu [38].

20.2 Basic Formulation

The spatial discretisation of the state variables is provided by a set of points. Instead
of a grid, SPH uses kernel interpolation to approximate the field variables at any
point in a domain. For instance, an estimate of the value of a function f (x) at the
location x is given in a continuous form by an integral of the product of the function
and a kernel (weighting) function W (|x−x′|,h):

〈 f (x)〉 =
∫

Ω

f (x′)W (|x−x′|,h)dx′ (20.1)

Where: the angle brackets 〈 〉 denote a kernel approximation, h is a parameter
that defines the size of the kernel support known as the smoothing length and x′ is
the new independent variable.

The kernel function usually has the following properties:

• Compact support, which means that it is zero everywhere but on a finite do-
main, in conventional SPH this domain is taken to be all points within twice the
smoothing length, h, of the centre:

|x−x′| ≥ 2h (20.2)

• Normalised ∫

Ω

W (|x−x′|,h)dx′ = 1 (20.3)
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These requirements, formulated by Lucy [42], ensure that the kernel function
reduces to the Dirac delta function when h tends to zero:

lim
h→0

W (|x−x′|,h) = δ (|x−x′|,h) (20.4)

And therefore, it follows that:

lim
h→0

〈 f (x)〉 = f (x) (20.5)

If the function f (x) is only known at N discrete points, the integral of equation
20.1 can be approximated by a summation:

fI = f (xI) ≈ 〈 f (xI)〉 =
∫

Ω

f
(
x′
)

W (|x−x′|,h)dx′

≈
N

∑
J=1

mJ

ρJ
f (xJ)W (|xI −xJ |,h)

(20.6)

In the above equation, the subscript I and J denote particle number, mJ and ρJ the
mass and the density of particle J, N the number of neighbours of particle I (num-
ber of particles that interact with particle I, i.e. the support of the kernel), mJ

ρJ
is the

volume associated to the point or particle J and WIJ = W (|xI −xJ |,h).

In SPH literature, the term particles is misleading as in fact these particles have
to be thought of as interpolation points rather than mass elements.

Equation (20.6) constitutes the basis of the SPH method. The value of a variable
at a particle, denoted by superscript I, is calculated by summing the contributions
from a set of neighbouring particles (Figure 20.1), denoted by superscript J, for
which the kernel function is not zero:

〈 f (xI)〉 =∑
J

mJ

ρJ
f (xJ)W (|xI −xJ|,h) (20.7)

20.3 Conservation Equations

The conservation equations in the Lagrangian framework are given by:
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Fig. 20.1 Set of neighbouring particles.

Dρ
Dt

= −ρ∇ ·v (20.8)

Dv
Dt

=
1
ρ
∇ ·σ (20.9)

or

Dv
Dt

= ∇ ·
(
σ
ρ

)
+
σ
ρ2 ·∇ρ (20.10)

DE
Dt

=
1
ρ
σ : ∇v (20.11)

or

DE
Dt

=
1
ρ2σ : ∇(ρv)− σ ·v

ρ2 ·∇ρ (20.12)

where D
Dt is the material time derivative and v = ẋ.

Equations (20.10) and (20.12) are the forms proposed by Monaghan [46]. Ker-
nel interpolation allows the derivation of the basic SPH form of these conservation
equations as follows:
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〈
Dρ(x)

Dt

〉
=

∫

Ω

ρ(x′)∇ ·v(x′)W
(
|x−x′|,h

)
dx′ (20.13)

〈
Dv(x)

Dt

〉
=

∫

Ω

∇ ·
(
σ(x′)
ρ(x′)

)
W

(
|x−x′|,h

)
dx′

+
∫

Ω

σ(x′)
ρ(x′)2 ·∇ρ(x′)W

(
|x−x′|,h

)
dx′

(20.14)

〈
DE(x)

Dt

〉
=

∫

Ω

σ(x′)
ρ(x′)2 : ∇

(
ρ(x′)v(x′)

)
W

(
|x−x′|,h

)
dx′

−
∫

Ω

σ(x′) ·v(x′)
ρ(x′)2 ·∇ρ(x′)W

(
|x−x′|,h

)
dx′

(20.15)

All of the above equations contain integrals of the form:

∫

Ω

W
(
|x−x′|,h

)
f (x′)

∂g(x′)
∂x′

dx′ (20.16)

Using a Taylor series expansion at point x′ = x, it follows:

∫

Ω

W
(
|x−x′|,h

)
f (x′)

∂g(x′)
∂x′

dx′

=
∫

Ω

{
f (x)

∂g(x)
∂x

+(x−x′)
d
dx

(
f (x)

∂g(x)
∂x

)
+ ...

}
W

(
|x−x′|,h

)
dx′

(20.17)

As W is an even function, the terms containing odd powers of x′ −x vanish.
Neglecting second and higher order terms, which is consistent with the overall order
of the method, gives:

∫

Ω

W
(
|x−x′|,h

)
f (x′)

∂g(x′)
∂x′

dx′

= f (x)
∂g(x)
∂x

∫

Ω

W
(
|x−x′|,h

)
dx′ = f (x)

∂g(x)
∂x

(20.18)

Substituting
〈
∂g(x)
∂x

〉
for ∂g(x)

∂x gives:

f (x)
∂g(x)
∂x

= f (x)
∫

W
(
|x−x′|,h

) ∂g(x′)
∂x′

dx′ (20.19)
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Using the last relation in equations (20.13), (20.14) and (20.15) yields
〈

Dρ(x)
Dt

〉
= −ρ(x)

∫

Ω

W (|x−x′|,h)∇ ·v(x′)dx′ (20.20)

〈
Dv(x)

Dt

〉
=

∫

Ω

W
(
|x−x′|,h

)
∇ ·

(
σ(x′)
ρ(x′)

)
dx′

+
σ(x)
ρ(x)2

∫

Ω

W
(
|x−x′|,h

)
∇ρ(x′)dx′

(20.21)

〈
DE(x)

Dt

〉
=
σ(x)
ρ(x)2

∫

Ω

W
(
|x−x′|,h

)
∇
(
ρ(x′)v(x′)

)
dx′

− σ(x) ·v(x)
ρ(x)2

∫

Ω

W
(
|x−x′|,h

)
∇ρ(x′)dx′

(20.22)

Note that all equations include kernel approximations of spatial derivatives:

〈∇ f (x)〉 =
∫

Ω

∇ f (x′)W
(
|x−x′|,h

)
dx′ (20.23)

Integrating by parts gives:

〈∇ f (x)〉 =
∫

Ω

∇(W
(
|x−x′|,h

)
f (x′))dx′

−
∫

Ω

f (x′)∇W
(
|x−x′|,h

)
dx′

(20.24)

Using Green’s theorem, the first term of the right hand side can be rewritten as:
∫

Ω

∇
(

f (x′)W
(
|x−x′|,h

))
dx′ =

∫

S

f (x′)W
(
|x−x′|,h

)
ndS = 0 (20.25)

The surface integral is zero if the domain of integration is larger than the com-
pact support of W or if the field variable assumes zero value on the boundary of the
body (free surface). If none of these conditions are satisfied, modifications should
be made to account for boundary conditions.

One should observe that in Equations (20.20), (20.21) and (20.22) the spatial
derivatives of the field variables are substituted by the derivatives of the kernel func-
tion giving:
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〈
Dρ(x)

Dt

〉
= ρ(x)

∫

Ω

v(x′)∇W
(
|x−x′|,h

)
dx′ (20.26)

〈
Dv(x)

Dt

〉
= −

∫

Ω

σ(x′)
ρ(x′)

∇W
(
|x−x′|,h

)
dx′

− σ(x)
ρ(x)2

∫

Ω

ρ(x′)∇W
(
|x−x′|,h

)
dx′

(20.27)

〈
DE(x)

Dt

〉
= − σ(x)

ρ(x)2

∫

Ω

ρ(x′)v(x′)∇W
(
|x−x′|,h

)
dx′

+
σ(x)v(x)
ρ(x)2

∫

Ω

ρ(x′)∇W
(
|x−x′|,h

)
dx′

(20.28)

The final step is to convert the continuous volume integrals to sums over dis-
crete interpolation points. Finally, after a few algebraic manipulations to improve
the consistency between all equations, the most common form of the SPH discre-
tised conservation equations are obtained:

〈
DρI

Dt

〉
= ρI

N

∑
J=1

mJ

ρJ
(vJ −vI)∇W (|xI −xJ |,h) (20.29)

〈
DvI

Dt

〉
= −

N

∑
J=1

mJ

(
σJ

ρ2
J

+
σI

ρ2
I

)
∇W (|xI −xJ|,h) (20.30)

〈
DEJ

Dt

〉
= −σI

ρI

N

∑
j=1

mJ (vJ −vI)∇W (|xI −xJ |,h) (20.31)

20.4 Kernel Function

To complete the discretisation one has to define the kernel function. Numerous pos-
sibilities exist, and a large number of kernel function types are discussed in litera-
ture, ranging from polynomial to Gaussian. The most common is the B-spline kernel
that was proposed by Monaghan [46]:

W (v,h) =
C
hD

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1− 3

2 v2 + 3
4 v3

)
v < 1

1
4 (2− v)3 1 ≤ v ≤ 2

0 otherwise

(20.32)
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where v =
|x−x′|

h
, D is the number of dimensions of the problem (i.e. 1, 2 or 3)

and C is the scaling factor which depends on the number of dimensions and ensures
that the consistency conditions 2 and 3 are satisfied:

C =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
3 D = 1

10
7π D = 2

1
π D = 3

(20.33)

The derivatives of the kernel function have the following property
∂W(|x−x′|,h)

∂x′k
=

− ∂W(|x−x′|,h)
∂xk

. It is important not to forget the dimensionality of the kernel function

W . For instance, in one dimension, W has dimension of length−1 and the dimension

of
∂W
∂x

is thus length−2. The mass, m, should be interpreted as mass per unit area,

with the cross-sectional area equal to one.

20.5 Variable Smoothing Length

If large deformations occur, particles can move apart. In the case of conventional
(Eulerian) SPH, if the smoothing length remains constant, the particle spacing can
become so large that particles will no longer interact. On the other hand, in com-
pression, the number of neighbour particles within the support can become large,
which can significantly slow down the calculation. In order to avoid these problems,
Gingold and Monaghan [18] suggested that it would be preferable to allow h for any
particle to be related to its density according to

h = G

(
m
ρ

) 1
n

(20.34)

where n is the number of dimensions and G is a constant approximately G ≈ 1.3.
Benz [10] proposed the use of a variable smoothing length with the intent of main-
taining a healthy neighbourhood as the continuum deforms. His equation for the
evolution of h is:

h = h0

(
ρ0

ρ

) 1
n

(20.35)

where h0 and ρ0 are initial smoothing length and density and n is the number of
dimensions of the problem. Another frequently used equation for the evolution of h
based on conservation of mass is:

dh
dt

=
1
n

h∇ ·v (20.36)
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According to Monaghan [52] and Price and Monaghan [57], h should be determined
from the summation equations so that it is consistent with the density obtained from
the summation, i.e. ρI = ∑

J
mJW (|xI −xJ |,hI), where ρI is estimated from the SPH

summation.

It is important to observe that the methods for variation of h described above are
empirical in nature. The evolution of h if treated rigorously should be coupled and
consistent with the discretised form of the conservation equations. A rigorously de-
rived Eulerian SPH with a variable smoothing length requires further research and
is still outstanding.

20.6 Neighbour Search

In the SPH method the interpolation points move with the continuum and as a con-
sequence the neighbours of a particle are not fixed. This implies that the SPH kernel
approximation of any field variable at a particle I requires as a first step a search for
the neighbouring particles J that are within the kernel support of particle I.

Therefore, the neighbour search is an important and CPU-time consuming step
in an SPH computation. Based on the distance between the interpolation points the
neighbour search routine must list the particles that are inside the neighbourhood of
each particle at each time step. A direct search between every particle is particularly
inefficient, requiring a time proportional to N2, where N is the total number of par-
ticles.

A bucket sort algorithm is more efficient. In this method, an underlying grid of
cells of size 2hMAX is generated and the particles are sorted according to the box,
within a background grid, in which they are located (Figure 20.2). The total extent
of the grid is defined to contain all particles and is updated as the problem evolves.
Then for each particle, the neighbours are searched among the particles contained
in the same box and its neighbouring boxes. This allows the computational time to
be cut down to a time proportional to N logN, Monaghan and Lattanzio [47].

Each particle I carries the information about the box that currently contains the
particle. Then, to determine the neighbour list of the particle a search is performed
over all particles contained in the same box and its neighbouring boxes. This results
in a search over three boxes in 1D, nine boxes in 2D and 27 boxes in 3D.

Good algorithm design can minimise the computational cost of the search. For
example the coordinates of each particle can also be stored in an integer format
which reduces the time for data access. The integer coordinates xI

int are computed
from the particle position vector xI as:
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Fig. 20.2 Bucket sort and neighbour search.

xI
int = f loor

(
NSUB

2hMAX
xI
)

(20.37)

Where NSUB is the number of box subdivisions, typically NSUB = 1000.

20.7 SPH Shortcomings

As mentioned in the introduction, the basic SPH method has been shown to have
several problems:

• Consistency
• Tensile instability
• Zero-energy modes

20.7.1 Consistency

The SPH method even in its continuous form is inconsistent within 2h of the domain
boundaries due to kernel support incompleteness. In its discrete form the method
loses its 0th-order consistency not only in the vicinity of boundaries but also over the
rest of the domain if particles have an irregular distribution. Meglicki [43] showed
that node disorder results in a systematic error. Therefore a proper SPH grid should
be as regular as possible and not contain large discrepancies in particle spacing in
order to perform an accurate simulation.
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First-order consistency of the method can be achieved in two ways. Firstly, by
correcting the kernel function, and secondly, by correcting the discrete form of the
convolution integral of the SPH interpolation. Johnson [30] uses the former correc-
tion procedure and proposed the Normalised Smoothing Function. Vignjevic [76]
also implemented a kernel normalisation and correction to lead to a Corrected Nor-
malised Smooth Particle Hydrodynamics (CNSPH) method which is first-order con-
sistent. The full derivation of this correction is given below. In SPH methods based
on a corrected kernel, it is no longer possible to ignore boundary conditions. In basic
SPH, free surface boundary conditions are not imposed and are simply ignored as
variables tends to zero at boundaries because of the deficiency of neighbour parti-
cles.

20.7.1.1 Derivation of Normalised Corrected Gradient SPH formula

Starting from the conventional SPH method of Gingold and Monaghan, which is not
even zero-order consistent, a number of researchers worked on the development of
a first-order consistent form of SPH. The result of this effort at Cranfield was named
Normalised Corrected SPH (NCSPH) and the same term is used in this text for any
other similar version of the method.

The approximation of fields using a NCSPH interpolation has been published
by Randles and Libersky [60], Vignjevic [76] , Bonet [11]. Bonet used properties
of the integrals of motion (linear and angular momentum) to derive Normalisation
and Gradient Correction for kernel interpolation. This approach lacks generality
and does not provide the insight into the origin and the nature of the problem. A
full derivation of the correction, proposed by Vignjevic [76], is given below. The
derivation is based on the homogeneity and isotropy of space. These are properties
of space, which have as a consequence conservation of linear and angular momen-
tum, see Landau [34]. The mixed correction insures that homogeneity and isotropy
of space are preserved in the process of spatial discretisation.

An interpolation technique should not affect the homogeneity of space. One way
of demonstrating this is to prove that the interpolation of the solution space itself is
invariant with respect to translational transformation, in other words independent of
a translation of the coordinate axes. In order to express this statement mathemati-
cally one can start by writing the general expression for the SPH interpolation of a
vector field:

〈F(xI)〉 =∑
J

mJ

ρJ
F(xJ)W (|xI −xJ|,h) (20.38)

If the field to be interpolated is the solution space then F = x and Equation (20.38)
becomes:

〈x〉 =∑
J

mJ

ρJ
xJW (|xI −xJ |,h) (20.39)
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In a different, translated coordinate system, this equation is:

〈
x′
〉∣∣

x′=x′I
=∑

J

mJ

ρJ
x′JW

(
|x′I −x′J|,h

)
(20.40)

Where x′ is the coordinate vector in the new coordinate system. If the translation
vector by which the origin of the coordinate system was moved is defined as Δx
then the relationship between x and x′ is:

x′ = x−Δx (20.41)

If the interpolated coordinates of a point are independent of the translation of coor-
dinate axes then the following should hold:

〈
x′
〉

= 〈x〉−Δx (20.42)

By substituting Equation (20.42) into Equation (20.41) for both xI and xJ one ob-
tains:

〈
x′
〉

=∑
J

mJ

ρJ
xJW (|xI −xJ |,h)−∑

J

mJ

ρJ
ΔxW (|xI −xJ |,h) (20.43)

or 〈
x′
〉

= 〈x〉−Δx∑
J

mJ

ρJ
W (|xI −xJ |,h) (20.44)

By comparison of Equation (20.44) and Equation (20.42) it is clear that the discre-
tised space will only be homogeneous if the following condition is satisfied:

∑
J

mJ

ρJ
W (|xI −xJ |,h) = 1 (20.45)

Similarly, an interpolation technique should not affect isotropy of space. One
way of demonstrating this is to prove that the interpolation of the solution space
itself is independent of a rotation of the coordinate axes. The same holds for the
SPH approximation. The change in coordinates due to a rotation of the coordinate
axes is:

x′ = C ·x (20.46)

where C is the rotation transformation tensor. For small rotations this can also be
stated as:

x′ = x−Δφ ×x (20.47)

where Δφ is an infinitesimal rotation vector.
If one wants to ensure that the SPH approximation does maintain the fact that space
is isotropic then the approximation has to satisfy the following condition:

〈
x′
〉
≡ 〈C ·x〉 = C · 〈x〉 (20.48)

or
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〈C〉 = C (20.49)

In other words the rotation matrix has to be approximated exactly.
To consider this condition one can start by rewriting

x′ = x−Δφ ×x

= x−∇(Δφ ×x) ·x
= x−φ xx

= (I−φ x) ·x

(20.50)

where φ x is a skew-symmetric dyadic:

φ x =

⎡
⎣

0 −Δϕze1e2 Δϕye1e3

Δϕze2e1 0 −Δϕxe2e3

−Δϕye3e1 Δϕxe3e2 0

⎤
⎦ (20.51)

For small rotations, the rotation transformation tensor is given by:

C = I−φ x (20.52)

The approximation of the rotated coordinates is:
〈
x′
〉
≡ 〈Cx〉 = 〈C〉〈x〉 = 〈I−φ x〉〈x〉 (20.53)

This means that the requirement on the interpolation is:

I−φ x = 〈I−φ x〉 (20.54)

or
φ x = 〈φ x〉 (20.55)

Expanding this expression leads to:

〈φ x〉 =∑
J

mJ

ρJ
Δφ ×xJ∇W (xI −xJ ,h)

=∑
J

mJ

ρJ
(φ xxJ)∇W (xI −xJ ,h) (20.56)

= φ x∑
J

mJ

ρJ
xJ ⊗∇W (xI −xJ ,h)

Therefore to preserve space isotropy, i.e. φ x = 〈φ x〉 the following condition has to
be satisfied.

nnbr

∑
J=1

mJ

ρJ
xJ ⊗∇W (xI −xJ ,h) = I (20.57)

The form of the normalised kernel function and the approximation of the first or-
der derivatives which provides first-order consistency is given in Table 20.1. below.
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Table 20.1 Corrected forms of the kernel function and its gradient.

Space Homogeneity Space Anisotropy

Condition which

has to be satisfied
nnbr
∑

J=1

mJ
ρJ

W (xI −xJ ,h) = 1
nnbr
∑

J=1

mJ
ρJ

xJ ⊗∇W (xI −xJ ,h) = I

Normalised -

Corrected form W̃IJ = W (xI−xJ ,h)
nnbr
∑

J=1

mJ
ρJ

W (xI−xJ ,h)
∇̃W̃ IJ = ∇W̃ IJ

(
nnbr
∑

J=1

mJ
ρJ

xJ ⊗∇W̃IJ

)−1

Using the NCSPH approximations the conservation equations assume the fol-
lowing form:

〈
DρI

Dt

〉
= ρI

nnbr

∑
J=1

mJ

ρJ
(vJ −vI) · ∇̃W̃ IJ (20.58)

〈
DvI

Dt

〉
= −

nnbr

∑
J=1

mJ

(
σI

ρ2
I

+
σJ

ρ2
J

)
· ∇̃W̃IJ (20.59)

〈
DE
Dt

〉
= − σI

ρ2
I

nnbr

∑
J=1

mJ (vJ −vI) · ∇̃W̃ IJ (20.60)

20.7.2 Tensile Instability

A Von Neumann stability analysis of the SPH method was conducted by Swegle et
al. [68] and Balsara [4] separately. These revealed that the SPH method suffers from
a tensile instability. This instability manifests itself as a clustering of the particles,
which resembles fracture and fragmentation, but is in fact a numerical artefact, see
Figure 20.3 below.

Swegle concluded that the instability doesn’t result from the numerical time in-
tegration algorithm, but rather from an effective stress resulting from a non-physical
negative modulus being produced by the interaction between the constitutive re-
lation and the kernel interpolation. In other words the kernel interpolation used in
spatial discretisation changes the nature of the original partial differential equations.
These changes in the effective stress amplify, rather than reduce, perturbations in the
strain. From Swegle’s stability analysis it emerged that the criterion for stability was
that:

W ′′σ > 0 (20.61)
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Fig. 20.3 Typical colocated Eulerian SPH behaviour under tension. Although the linear elastic
model was used for this simulation (i.e. no fracture is included in the constitutive model), unphys-
ical fracture of the 2-D specimen occurs as a consequence of numerical instability in areas of high
tensile stresses.

where W ′′ is the second derivative of W with respect to its argument and σ is the
stress, negative in compression and positive in tension. A stability analysis leading
to the stability condition (20.61) is given at the end of this section.

This criterion states that instability can also occur in compression, not only in
tension. Indeed, if the slope of the derivative of the kernel function is positive, the
method is unstable in tension and stable in compression and if the slope is negative,
it is unstable in compression and stable in tension.

Fig. 20.4 Stability regimes for the B-spline kernel function (Swegle, 1994).

The fact that this instability manifests itself most often in tension can be ex-
plained. Figure 20.4 shows the stability regime for the B-spline kernel function.
The minimum of the derivative is situated at u = 2/3h. In standard configurations,
the smoothing length is 1.2 to 1.3 times the particle spacing. Thus, standard con-
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figurations are unstable in tension. This explains why this unstable phenomenon is
generally observed in tension and hence its misleading name ’tensile instability’.

In order to remedy this problem several solutions have been proposed. Guenther
[19] and Wen et al. [83] proposed a solution known as Conservative Smoothing.
Randles and Libersky [58] proposed adding dissipative terms, an approach related
to conservative smoothing. Dyka and Ingel [17] proposed an original solution by us-
ing a non collocated discretisation of stress and velocity points. At one set of points
the stresses are evaluated, while the momentum equation is calculated at another
set of points. The ’stress’ points are equivalent to the Gauss quadrature points in
FE, the other set of points is equivalent to the element nodes. This approach was
extended to two dimensions, in combination with kernel normalisation, by Vignje-
vic and Campbell [76]. Other solutions were proposed, for instance see Monaghan
[52] who proposes the addition of an artificial force to stabilise the computation.
Recently Randles and Libersky [60] combined MLS interpolation with the stress
and velocity point approach. They called this approach the Dual Particle Dynamics
method.

The conservative smoothing and the artificial repulsive forces methods have lim-
ited applicability and have to be used with caution because they may affect the
strength of material being modelled. At present, the most promising approach is
non-collocational spatial discretisation. This problem is the focus of attention for a
number of researchers working on meshless methods.

20.7.2.1 Stability analysis of conventional (Eulerian) SPH

For the analysis of the SPH momentum equation in current configuration, the fol-
lowing 1-D SPH momentum equation with nodal integration is considered:

mIüI = −∑
J∈S

VJW ′
I (xI − xJ ,h)σJ (20.62)

Where: VJ is the current volume of particle J, σJ is the Cauchy stress of particle J

and W ′
I (xI − xJ ,h) = ∂WI (xI − x′,h)/∂x

′∣∣∣
x′=xJ

. In order to introduce the displace-

ment perturbation on the right hand side of (20.62), the current volume VJ was ex-
pressed in terms of the initial particle mass and density as:

VJ =
m
ρ

∣∣∣∣
J

(20.63)

where the current density in (20.63) was defined as

ρ = J−1ρ0 (20.64)
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The substitution of equation (20.64) and equation (20.63) into equation (20.62)
and using the fact that in 1D J = F , yields:

mIüI = −∑
J∈S

mJ

ρ0
W ′

I (xI − xJ ,h)FJσJ (20.65)

In equation (20.65), the deformation gradient is expressed with respect to the
current configuration, hence:

FJ =
∂x
∂X

∣∣∣∣
J
=
∂u
∂X

∣∣∣∣
J
+1 =

∂u
∂x

∂x
∂X

∣∣∣∣
J
+1 =

1

1− ∂ u
∂ x

∣∣∣
J

(20.66)

Equation (20.65) is linearised using perturbations ū = u+ ũ, x̄ = x+ x̃, F̄ = F + F̃
and σ̄ = σ + σ̃ as follows:

mI ¨̄uI = −∑
J∈S

mJ

ρ0
W ′

I (x̄I − x̄J ,h) F̄Jσ̄J (20.67)

mI ¨̄uI = −∑
J∈S

mJ

ρ0
W ′

I (x̄I − x̄J ,h)(σ + σ̃)
(
F + F̃

)
(20.68)

which yields

mI ¨̄uI = −∑
J∈S

mJ

ρ0
W ′

I (x̄I − x̄J ,h)
(
σJFJ +σJF̃J + σ̃JFJ

)
(20.69)

in (20.69) the product σ̃ F̃ was neglected.

When perturbations x̄ = x + x̃ are introduced, the smoothing function values
change as:

W (x̄I − x̄J ,h) = W ((xI + x̃I)− (xJ + x̃J) ,h) (20.70)

with x̃I = uI and x̃J = uJ equation (20.70) can be rewritten as

W ((xI + x̃I)− (xJ + x̃J) ,h) = W ((xI − xJ)+(uI −uJ) ,h) (20.71)

Taylor series expansion yields:

W (x̄I − x̄J ,h) = W (xI − xJ ,h)+ΔxW ′ (xI − xJ ,h) (20.72)

where Δx = uI − uJ . Similarly, the derivative of the kernel function in equation
(20.72) can be approximated as:

W ′ (x̄I − x̄J ,h) = W ′ (xI − xJ ,h)+ΔxW ′′ (xI − xJ,h) (20.73)

Hence

W ′ (x̄I − x̄J ,h)−W ′ (xI − xJ,h) = (ũI − ũJ) W ′′ (xI − xJ ,h)
= W̃ ′ (xI − xJ ,h)

(20.74)
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Subtracting equation (20.62) from (20.69) yields:

mI ¨̃uI = −∑
J∈S

mJ

ρ0J
W ′

I (x̄I − x̄J ,h)
(
σJFJ +σJF̃J + σ̃JFJ

)

+∑
J∈S

mJ

ρ0J
WI (xI − xJ ,h)σJFJ

(20.75)

Equation (20.75) after rearranging becomes:

mI ¨̃uI = ∑
J∈S

mJ

ρ0J

(
−W ′

I (x̄I − x̄J ,h)+WI (xI − xJ ,h)
)
σJFJ

−∑
J∈S

mJ

ρ0J J
W ′

I (x̄I − x̄J ,h)
(
σJF̃J + σ̃JFJ

) (20.76)

And after substituting equation (20.74) into (20.76) one gets:

mI ¨̃uI = −∑
J∈S

mJ

ρ0J

[(
W̃ ′

I (x̃I − x̃J ,h)
)
σJFJ

+W ′
I (x̄I − x̄J,h)

(
σJF̃J + σ̃JFJ

)] (20.77)

To perform the Von Neumann stability analysis a Fourier form of perturbation was
substituted into the linearised momentum equation

ũ = u0ei(ϖt+κX) (20.78)

where κ is wave number and ω is frequency.

The resulting dispersion relation for the current configuration is expressed as
follows, the reader is referred to Randles et al. [60, 61] and Rabczuk et al. [58] for
a detailed explanation:

ω2 =
C̄στ

ρ

[
∑
J∈S

W ′ ( jΔx)sin(κ Δx)

]2

− σ
ρ

{
∑
J∈S

W ′′ ( jΔx) [1− cos(κ jΔx)] −
[
∑
J∈S

W ′ ( jΔx)sin(κ jΔx)

]2
⎫
⎬
⎭

(20.79)

Upon inspection of equation (20.79) it is immediately clear that the three terms
contained herein yield three different conditions for stability:

1) When the material is unstable, in other words when C̄στ vanishes, which corre-
sponds to the material instability of the continuum (ϖ2 = C̄κ2

ρ0
, C̄ ≤ 0, equation

(3.63), Reveles [63]). This implies (20.79) could have two possible solutions:
ω = ±i

√
x, the negative solution would yield Condition 2 outlined below.

2) At the cut-off wave number κ = π
Δx , j = −1, this is the onset of stability for

the particle equations in current configuration for an equally spaced particle ar-
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rangement. In this case, the first term in the right hand side of equation (20.79)
vanishes. Again, two possible solutions exist: ω = ±i

√
x, the negative solution

would yield Condition 2.
3) When σ > 0 and C̄στ �= 0, which is the tensile instability identified by Swegle.

The second term inside the brackets on the right hand side is always positive,

hence, if only C̄στ
ρ

[
∑

J∈S
W ′ ( jΔx)sin(κ Δx)

]2

and

(
∑

J∈S
W ′ ( jΔx)sin(κ jΔx)

)2

existed, the particle equation would be unconditionally stable (i.e. the only possi-
ble solution for ω is a positive real). However, if ∑

J∈S
W ′′ ( jΔx) [1− cos(κ jΔx)]

is sufficiently positive and σ > 0 , the product of what is in brackets in equa-
tion (20.79) and σ would yield a negative value, hence ω = ±i

√
x and again, the

negative solution would yield Condition 2. This condition is given by Swegle et
al. [68][69] as σW ′′ > 0 which defines the onset of tensile instability of the SPH
equations with nodal integration.

Note that stability condition 1) is desirable as it represents the stability of con-
tinuum equations. Conditions 2) and 3) are the result of the type of discretisation
carried out in SPH. From this analysis it is clear why some special smoothing func-
tions can reduce or eliminate the tensile instability altogether: as long as the smooth-
ing function is carefully selected, the second derivative might yield a negative value
which can restore stability in the particle equation. For the cubic spline, (widely em-
ployed for SPH approximations) the value of the second derivative of the smoothing
function at a distance u = 2/3 (Figure 20.4), from particle I is positive. Therefore,
the onset of tensile instability is defined by σW ′′ > 0 Swegle [68].

The stability analysis of the Eulerian SPH equations, presented above, has re-
vealed that the stability of the system is governed by three terms: a material stability
term, which is desirable since this term is also present in the continuum equations,
and two more terms which are the result of the type of discretisation carried out,
namely the spurious singular mode term and the tensile instability term.

An effective illustration of the distortion of material instability by the spatial
discretisation, for the case of a hyperelastic material, is given in Figure 20.5 taken
from [58]. The domains of material stability for the Lagrangian kernel, an Eulerian
kernel and that of the governing partial differential equation, i.e. the momentum
equation are clearly identified. The stable domains are defined in the space of the
two principal stretches, λ1 and λ2.

20.7.3 Zero-Energy Modes

Zero-energy modes are a problem that is not unique to particle methods. These spu-
rious modes, which correspond to modes of deformation characterised by a pattern
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Fig. 20.5 (a) Stable domain for MLS particle method with stress point integration and Lagrangian
kernel compared to the stable domain for the PDE; (b) Stable domains of MLS particle methods
for stress point integration with Eulerian and Lagrangian kernel for hyperelastic material; dashed
and solid lines bound the stable domains for Lagrangian and Eulerian kernels, respectively [58].

of nodal displacement that produces zero strain energy, can also be found in the fi-
nite difference and finite element methods.

Swegle [68] was first to show that SPH suffers from zero energy modes. These
modes arise from the nodal integration. The fundamental cause is that all field vari-
ables and their derivatives are calculated at the same locations (particle positions),
which makes the SPH method collocational. For instance, for a 1D oscillatory veloc-
ity field, illustrated in Figure 20.6, the kernel approximation would give negligible
velocity gradients and consequently stresses at the particles. These modes of defor-
mation are not resisted and can be easily exited by rapid impulsive loading. Another
explanation can be found in the origin of the kernel approximation. As the kernel
approximation, which is the basis of SPH, is an interpolation of a set of discrete
data, a constant field, can be approximated with a sinusoidal curve/surface if the
order of the interpolation is high enough.

If one approximates the derivative of the velocity field shown in Figure 20.5 with
a central difference formula:

dv
dx

∣∣∣∣
x=xi

=
f (vi+1)− f (vi−1)

xi+1 − xi−1
= 0 (20.80)

at all sampling points. Hence this mode can not be detected, and can grow un-
resisted in other words this mode could grow to a level where it dominates the
solution.

Zero energy or spurious modes are characterised by a pattern of nodal displace-
ment that is not rigid body motion but still produces zero strain energy.

One of the key ideas to reduce spurious oscillations is to compute derivatives
away from the particles where kernel functions have zero derivatives. Randles [60]
proposed a stress point method. Two sets of points are created for the domain dis-
cretisation, one carries velocity, and another carries stress. The velocity gradient
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Fig. 20.6 Velocity field that corresponds to a zero energy mode of deformation.

and stress are computed on stress points, while stress divergence is sampled at the
velocity points using stress point neighbours. According to Swegle et al. [68][69],
these spurious modes can be eliminated by replacing the strain measure by a non-
local approximation based on gradient approach. Beissel [5] proposed another way
to stabilise nodal integration, the least square stabilisation method.

20.8 Summary

The paper gives an overview of the development of the SPH method. Especial at-
tention is given to the main shortcomings of the original form of the method namely
consistency, tensile instability and zero energy modes. These are important to under-
stand as the SPH method is increasingly used in engineering analysis, and without
an understanding of the method inappropriate conclusions may be drawn from nu-
merical results.

The paper covers

• A discussion of the kernel interpolation that forms the basis of the SPH spatial
interpolation method. In kernel interpolation the variable at a particle is calcu-
lated from summing the contribution from all neighbouring particles. The use of
a differentiable kernel function allows the spatial gradient of the variable to be
approximated.

• An overview of the conventional SPH forms of the conservation equations of La-
grangian continuum mechanics. It should be noted that in these forms the bound-
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ary is diffuse and not clearly defined, which is important to understand when
modelling solids or liquids.

• A summary of the kernel function, varying smoothing length and neighbour
search algorithm that are commonly used in SPH implementations.

• An example of the derivation of a correction necessary to insure first-order con-
sistency is given. The conventional SPH method is not first order consistent and
is not even zero-order consistent except in the special case when particles are
evenly distributed.

• The introduction of corrected SPH requires boundary conditions to be treated
rigorously. In the conventional SPH method the deficiency in neighbour particles
at the boundary of the domain leads to an error in the interpolation that allows
free surfaces to be approximately treated.

• A summary of a stability analysis of SPH is presented and used to explain the so
called tensile instability problem. This problem is relevant for solid mechanics
simulations where the instability can lead to fracture occurring and preventing
accurate analysis of problems involving material fracture. A few proposed solu-
tions to this problem are described. Similar consideration is given with respect to
the zero energy modes typical for the collocational SPH method.

This paper provides an overview of the key aspects of the SPH method and dis-
cusses issues that any user of the method should be aware of.
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Chapter 21
Assessing the Resiliency of Composite Structural
Systems and Materials Used in Earth-Orbiting
Spacecraft to Hypervelocity Projectile Impact

William P. Schonberg

Abstract Spacecraft that are launched to operate in Earth orbit are susceptible to
impacts by meteoroids and pieces of orbital debris (MOD). The effect of a MOD
particle impact on a spacecraft depends on where the impact occurs, the size, com-
position, and speed of the impacting object, the function of the impacted system. In
order to perform a risk analysis for a particular spacecraft under a specific mission
profile, it is important to know whether or not the impacting particle (or its remnants)
will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit
equations (BLEs) have been developed for many different types of structural wall
configurations. BLEs can be used to optimize the design of spacecraft wall parame-
ters so that the resulting configuration is able to withstand the anticipated variety of
on-orbit high-speed impact scenarios. While the level of effort exerted in studying
the response of metallic multi-wall systems to high speed particle impact is quite
substantial, the extent of the effort to study composite material and composite struc-
tural systems under similar impact conditions has been much more limited. This
paper presents an overview of the activities performed to assess the resiliency of
composite structures and materials under high speed projectile impact. The activi-
ties reviewed will be those that have been aimed at increasing the level of protection
afforded to spacecraft operating in the MOD environment, and more specifically,
on those activities performed to mitigate the mechanical and structural effects of an
MOD impact.

21.1 Introduction

Spacecraft that are launched to operate in Earth orbit are susceptible to impacts
by meteoroids and pieces of orbital debris (MOD). These impacts can occur at ex-
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tremely high speeds and can damage flight- and mission-critical systems. As a result,
spacecraft designers must be aware of the response of various spacecraft compo-
nents and structural elements under high speed impact loading conditions. Precau-
tions must be taken to ensure that a spacecraft’s operation and functional units are
not compromised when it is (inevitably) struck by an orbital debris particle or by a
meteoroid.

Of course, the effect of a MOD particle impact on a spacecraft depends on where
the impact occurs, the size, composition, and speed of the impacting object, the
function of the impacted system, etc. The result of such an impact can be minimal
(a small hole or crater on a remote non-functional spacecraft surface), or it can de-
grade a functional spacecraft component (overlapping pits on a mirror or telescope
lens), or it can compromise spacecraft functionality, even to the point of loss of life
(a perforated ISS module).

The traditional approach to mitigating damage that would be caused by such im-
pacts consists of placing one or more ’bumper’ shields small distances away from
the primary load-bearing ’inner wall’ of the spacecraft. Behind the inner wall of such
a multi-wall system, as in the case of the International Space Station, for example,
are located the equipment racks, crew quarters, science experiment hardware, etc.
This concept was first proposed in 1947 as a means of mitigating the potentially
hazardous effects of meteoroids and, within the last three decades, orbital debris.
This ’bumper’ derives its effectiveness by shattering the projectile and converting it
from a discrete concentrated mass to a wide-angle spray of much smaller particles,
some of which could even be in a molten or gaseous state.

However, most satellites launched into Earth orbit, and even some manned space-
craft (such as the Space Shuttle), are constructed with honeycomb sandwich panels
as their primary structural load bearing elements without a bumper shield because
design, cost, and / or mission constraints prevent the inclusion of a protective shield.
In these cases, the load-bearing honeycomb sandwich panels (HC/SPs) also serve as
the protection systems for the spacecraft components that are located behind them,
such as electronics, avionics, fuel cells, pressure vessels, etc.

In order to perform a risk analysis for a particular spacecraft under a specific
mission profile, it is important to know whether or not the impacting particle (or its
remnants) will exit the rear of a spacecraft wall system, whether it is a ’Whipple-
type’ multi-wall system or a ’single’ HC/SP wall. This issue, that is, whether or not
the ballistic limit of a spacecraft wall system will be exceeded under a given set of
impact conditions, has been studied extensively over the last five decades by many
investigators. A variety of different ballistic limit equations (BLEs) have been de-
veloped for many different types of structural wall configurations. For an overview
of the various efforts performed in the areas of BLE development spacecraft protec-
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tion against damage caused by MOD impacts from the late 1950s through the early
2000s, the reader is referred to [1].

In general, BLEs define the threshold particle size that will cause perforation of
the rear wall of a structural wall system as a function of variables known to affect
the ballistic limit, namely, impact velocity and angle, particle density and shape, and
component wall thicknesses and material properties. These ballistic limit equations
are typically drawn as ballistic limit curves (BLCs) that are lines of demarcation
between regions of rear-wall perforation and no perforation for a given spacecraft
wall system under consideration. Once developed, BLEs and BLCs can be used to
optimize the design of spacecraft wall parameters so that the resulting configuration
is able to withstand the anticipated variety of on-orbit high-speed impact scenar-
ios. By understanding the debris environment size and velocity distributions that are
expected to impact a spacecraft, spacecraft shielding and designs, as well as their
associated BLEs, can also be tailored to meet spacecraft risk requirements while
minimizing weights.

NASA and ESA continue to develop BLEs for their structural configurations
of interest. The majority of the NASA and early ESA efforts have been directed to-
wards developing BLEs for dual-wall systems such as those that can be found on the
International Space Station. The high-speed impact testing that provided the data for
these BLEs typically used spherical aluminum projectiles fired in light gas guns at
impact velocities between 3 and 7 km/s. This data was fitted with scaled single-wall
equations below 3 km/s, and with theoretical momentum-based or energy-based
penetration relationships above 7 km/s to obtain three-part BLEs that cover the full
impact velocity range of interest, that is, from approx. 0.5 to 16 km/s. It is important
to note that the empirical nature of these BLEs subjects them to potential inaccu-
racy, particularly when applied to spacecraft wall configurations that have not been
well tested.

NASA has encoded their BLEs in Bumper II, the software application tool it
uses to perform MOD risk assessments. The original Bumper tool was developed
in the mid-1980s for the Space Station Freedom Program. Bumper was upgraded to
Bumper II in 1991, and separate versions of Bumper II are used now for Space Shut-
tle, Space Station, Constellation Program risk assessments. Reference [2] presents
an overview of the development of Bumper II, including the underlying advances in
high-speed impact response prediction for multi-wall structures from the mid-1960s
through the mid-2000s.

Similarly, the BLEs developed by ESA reside in that agency’s risk assessment
tool ESABASE. Like Bumper II, it is a 3-D numerical analysis tool for evalua-
tion of MOD environments, impact probabilities and resulting damage effects. It is
based on the latest MOD environment models and particle/wall interaction mod-
els, and provides impact probabilities and resulting damage effects for user speci-
fied spacecraft geometry and mission parameters. ESABASE, as does Bumper II,
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merges MOD environments, failure criteria, and damage predictions to produce risk
estimates for specified levels of crew, mission, or vehicle loss.

21.2 Historical Overview

A review of the literature reveals that while the level of effort exerted in studying the
response of metallic (mostly aluminum) multi-wall systems to high speed particle
impact is quite substantial, the extent of the effort to study composite material and
composite structural systems such as HC/SP panels under similar impact conditions
has been much more limited. The two main information sources for this subject are
the proceedings of the International Ballistics Symposia (published by the host or-
ganization) and the proceedings of the Hypervelocity Impact Symposia (published
by the International Journal of Impact Engineering). An overview of the papers pre-
sented at these venues on the subject of high speed impact of composite materials
and HC/SPs is shown in Fig. 21.1. Also shown in Fig. 21.1 is an accounting of
papers on this topic appearing in other venues and journals. As can be seen in Fig.
21.1, interest in this area of research is rapidly increasing, especially since the 1990s.

Fig. 21.1 Number of Papers on Composite and HC/SP HVI.

The objective of this paper is to present an overview of the activities performed
by the scientific and engineering communities to assess the resiliency of composite
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structures and materials under high speed impact. Specifically, in this paper we fo-
cus on composite materials subjected to hypervelocity impact, that is, impact speeds
on the order of 2 km/s and higher. This study of composite materials under these
loading conditions is a relatively new field of scientific and engineering study, as
opposed to the study of composite materials under low velocity impact. There is
also a phenomenological demarcation between impact regimes. At ’hypervelocity’,
the impacting materials behave, for all practical purposes, as fluids. That is, ma-
terial densities, equations of state, and the principles of shock physics govern the
impact and recovery processes; considerations of material strength, elasticity, and
even plasticity are second-order effects, and enter the response analysis primarily
in the later stages of such impact events. At ’low velocity’ the opposite is true: re-
sponse is governed primarily by material strength considerations.

The activities reviewed in this paper are those that have been aimed at under-
standing and increasing the level of protection afforded by such systems to satellites
and spacecraft operating in the MOD environment, and more specifically, on those
activities performed to mitigate the mechanical and structural effects of an MOD im-
pact. These effects include primarily the penetration and perforation of spacecraft
systems and subsystems. Since the results and papers presented at the IBS typically
deal with ordnance-type impacts involving armor/anti-armor engagements, the sub-
ject matter of these papers, as well as others concerned with ordnance-type impacts,
is outside of the scope of the current review activity.

21.3 Composite Material Panels

21.3.1 HVI Response Characterization

Early studies performed in the 1960s, 1970s, and 1980s stemmed from the realiza-
tion that earth-orbiting spacecraft and their components are exposed to ultra-high
speed impacts by meteoroids; orbital debris was not yet considered a problem (see,
e.g., [3]-[6]). Serious attention began to be paid to the problem of very high speed
impact of composite materials in the 1980s (see, e.g., [7, 8]) for a number of reasons.

• Manufacturing costs became more reasonable and construction protocols more
standard. This allowed composite materials to be considered for use in an increas-
ing number of spacecraft applications. Space station trusses [9], robotic arms and
booms [10, 11], fuel tanks and pressure vessels [12] were all designed to be to be
made from some form of composite material.

• Orbital debris rose to the forefront as perhaps the most serious spacecraft de-
sign consideration. Since the average impact velocity of a debris particle was as
much as a factor of 5 lower than that of a meteoroid, it was thought that the high
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strength of composite materials might be able to play a larger role in lowering
the damage potential of on-orbit impacts by orbital debris particles.

• LDEF post-retrieval symposia also provided many opportunities for scientists
and engineers to comment on impact damage morphologies in the composite
material portions of the retrieved satellite (see, e.g., [13]-[16]).

Most of the early HVI studies were performed to characterize the tendency of
an impacted composite material panel to degrade through delaminations within the
laminate at locations not readily apparent through visual inspection. This character-
istic of composite materials makes repairing whatever damage might have occurred
exceedingly difficult, which is in stark contrast to our ability to see and repair dam-
age to metallic panels. For example, a simple cratering event in a composite material
panel will also cause delaminations to occur over distances many times the crater
diameter away from the impact site. However, whatever crater damage is observed
in a metallic panel constitutes all or nearly all of the damage sustained by the panel;
whatever additional internal damage may exist is minimal and is in the immediate
vicinity of the original crater itself. It was, therefore, very important to characterize
this damage propagation characteristic of composite materials [17]-[21]. Residual
strength of impact composite material panels was concern [22], as was the syner-
gism between HVI damage and atomic oxygen erosion [23].

Some studies also tried to see if mathematical models currently used to approx-
imate the HVI response of metals could also be applied (and if so, with what level
of accuracy) in the modeling of the response of composite materials to HVI load-
ings. Yew and Kendrick [8], Sil’vestrov [24] and Homae [25] found that they could,
for example, if the impacted composite plates were ’relatively thick’ and if the re-
sponse characteristic of interest was a ’global’ quantity like a hole diameter or a
penetration depth. More recently sophisticated numerical and analytical modeling
techniques have been developed (see, e.g., [26]-[29]) that have allowed HVI load-
ings of composite materials to be analyzed by hydrocodes such as Autodyn.

Other response characterization studies were aimed at suggesting improvements
in laminate construction (e.g. braiding as opposed to filament winding [30] that
would increase those materials’ resistance HVI damage. One positive response char-
acteristic that was noted early on was that composite materials produce much less
impact ejecta than did metals under the same impact conditions. Furthermore, what-
ever ejecta are produced by an HVI on a composite material is much less dense
than the corresponding metallic ejecta [31]. These properties are important in space
applications where there is a desire to not only not pollute further the orbital envi-
ronment with more solid particulates, but also to not create particles that can strike
other exposed spacecraft components as they are ejected from the impact site. Of
course, composite material configurations are getting more and more sophisticated
– several recent studies have explore the HVI of CFRP sandwiched in between two
layers of Kevlar [32, 33].
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21.3.2 Use in MOD Protection Systems

As is the HVI response characteristics of composite materials began to be estab-
lished, attention quickly turned to their use as part of perforation resistant structural
systems on the international space station. Work in this area proceeded fairly se-
quentially, with first consideration being given to using composite materials as outer
bumpers in dual-wall systems, then as inner bumpers in multi-wall systems, and then
finally as the innermost walls in multi-wall systems. The following sections discuss
some of the highlights of the work performed by the HVI community in assessing
the effectiveness of composite materials as part of a perforation-resistant structural
wall system.

Composite Outer Bumpers

The response of dual-wall systems with Kevlar and graphite/epoxy (Gr/Ep) outer
bumpers was compared against that of equal-weight all-aluminum dual-wall sys-
tems in the late 1980s by Schonberg [34]. The aluminum bumpers were more effec-
tive in spreading out the debris created by the initial impact on the bumper than were
the Kevlar bumpers. Apparently the interaction of the shock waves in the projectile
and the Kevlar bumpers prevented complete break-up of the projectiles, which de-
creased the dispersion of debris cloud fragments, thereby increasing the likelihood
of pressure wall perforation. However, the pressure wall damage areas in dual-wall
systems with Gr/Ep bumpers more wide-spread than those in equivalent systems
with Kevlar bumpers. Pressure wall perforations in Gr/Ep systems consisted of sev-
eral small holes, not one large hole as in the Kevlar systems. From these results, it
was concluded that using a laminated composite as the outer bumper in a dual-wall
system does not offer any protection advantage as compared to the protection level
provided by an all-aluminum dual-wall system.

These results were supported by Christiansen [9], who performed an in-depth
study in the early 1980s to evaluate the effectiveness of metallic, composite, and ce-
ramic materials as MOD shields. Christiansen found that while Gr/Ep alone did not
shield as well as did aluminum, it had some potential to enhance MOD protection
levels when used as the second bumper in a double-bumper system with an alu-
minum outer bumper. The use of composite materials as inner bumpers is discussed
in the next section.

The 1990s saw an increase in the number of studies performed using composite
materials (either CFRP or metal-matrix) and/or ceramic materials as outer bumpers
in dual-and multi-wall systems. Porous fillers as part of all-aluminum multi-wall
systems were also considered [35, 36]. In nearly all of the studies, the results showed
that the composite material bumpers faired at best only marginally better in terms
of ballistic limit of the dual-wall systems than their equivalent monolith aluminum
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counterparts (see, e.g. [37]-[40]). However, there were some differences in bumper
hole sizes, fragmentation of the impacting projectile, debris cloud composition and
motion/spread between the dual-wall systems with composite and with aluminum
bumpers.

Composite Inner Bumpers

The response of triple-wall systems with Kevlar and Spectra inner bumpers was
compared against that of all-metallic triple-wall systems [41]. In nearly all the
Kevlar inner bumper tests the Kevlar panels were not perforated, whereas their alu-
minum counterparts sustained large holes. In the Spectra tests, both the Spectra and
aluminum inner bumpers were perforated. However, the pressure walls in the Spec-
tra systems sustained little or no damage, while those in corresponding all-aluminum
systems were usually perforated. These results demonstrate that using a composite
material as the inner bumper does increase the protection afforded to a spacecraft
against damage caused by MOD impacts. In a recent study, Katz [42] developed
an analytical model to study the energy absorption mechanisms that come into play
when composiste materials such as those considered by Schonberg in [41] are struck
by projectiles travelling at hypervelocities.

Other multi-wall shielding concepts involving composite materials as the inner
bumper(s) that have been tested under HVI loading conditions were a Nextel multi-
shock shield [43]-[46], a mesh double-bumper shield [44, 47, 48], a hybrid Nex-
tel/aluminum multi-shock shield [49], a double-bumper shield using with a GLARE
inner bumper [50], an all-mesh multi-bumper shield [51], and a so-called ’stuffed
Whipple shield’ in which a layer of Kevlar and Nextel cloth blankets is placed be-
tween the bumper and pressure wall of a traditional all-aluminum Whipple-type
system [52, 53].

As summarized by Schonberg in [1], the results of the various test programs
performed showed that multi-wall systems involving composite material bumpers,
especially those made of Nextel as in the stuffed Whipple shield, in combination
with aluminum bumpers produced less damaging secondary debris or ejecta, were

• more efficient in converting the projectile’s kinetic energy into internal thermal
energy,

• less sensitive to projectile shape,
• less sensitive to the obliquity of the impacting projectile,

and resulted in less cumulative damage to the pressure wall of the multi-wall system
when compared with traditional Whipple-type all-aluminum single-bumper systems
(see also [54]). In addition, such multi-wall systems were found to provide better
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protection against more hazardous non-spherical projectiles when compared to the
protection level offered by all-aluminum systems [55].

Regarding the performance of the stuffed Whipple shield, while the test results
in Ref. [52] showed that such a system provides a large increase in the ballistic limit
over corresponding unenhanced systems, test results obtained in the late 1990s have
shown that a perforation of a stuffed shield system, if it occurs, could be catastrophic
from a cracking standpoint [56]. As such, the marked increase in ballistic limit that
comes from using a Nextel/Kevlar blanket instead of the more traditional MLI blan-
ket must be balanced in a risk assessment calculation with possible increases in crew
vulnerability as a result of increased post-perforation air leak rates [57, 58]. Initial
results indicate that when all catastrophic failure modes are considered, catastrophic
loss appears to possibly be more likely for weaker shields than for the more robust
stuffed Whipple shield.

Composite Pressure Walls

In the mid-1990s, a study was performed to compare the response of dual-wall sys-
tems with Gr/Ep pressure walls against that of equal-weight all-aluminum dual-wall
systems [59]. The results showed there are several advantages of using Gr/Ep as
a pressure wall material: (1) it eliminates severe cracking and petalling sustained
by aluminum walls in systems impacted by large projectiles; (2) its ballistic perfor-
mance is superior to that of aluminum for impact velocities above 5.5 km/s; and (3)
patching a hole in a perforated Gr/Ep panel, even if it were larger than in an alu-
minum panel, would be relatively easy since the Gr/Ep remains non-deformed and
the patch can be, e.g., adhesively bonded. Repairing a perforated aluminum wall
would be a more difficult procedure since the aluminum would likely be cracked
and petalled. On-orbit repair of perforated aluminum panels would therefore require
cutting and welding tools that are EVA compatible, while the repair of perforated
Gr/Ep panels would not.

In a recent numerical study, Ito and Sekine [60] found that the ballistic limit of
a dual-wall system with an aluminum bumper and a Gr/Ep pressure wall can be
increased if a thin aluminum plate were to be bonded on the ’top’ surface of the
Gr/EP pressure wall. However, despite their apparent potential for use as the inner-
most wall in perforation resistant structures, it appears that other issues, such ease
of construction and manufacturability, continue to prevent composite materials from
being considered for and used in this capacity.
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21.4 Honeycomb Sandwich Panels

Most satellites launched into Earth orbit are constructed with honeycomb sandwich
panels (HC/SPs) as their primary structural load bearing elements. A typical honey-
comb sandwich panel is shown in Figure 21.2.

Fig. 21.2 Generic Honeycomb Sandwich Panel with Aluminum Facesheets.

Behind such panels are located spacecraft components that are appropriate for
the particular spacecraft or satellite mission and function (e.g. electronics, avionics,
fuel cells, pressure vessels, etc.). In order to be able to perform a risk analysis for
a particular satellite under a specific mission profile, it is important to know more
than just whether or not the satellite will be struck by a meteoroid or an orbital
debris (MOD) particle. It is equally important to know, in the event of such an im-
pact, whether or not the impacting particle (or its remnants) will exit the rear of the
HC/SP (i.e. whether or not the ballistic limit of the HC/SP will be exceeded) and,
if so, where the debris created in such an impact will land and what internal com-
ponents it will strike. In this section, we discuss the work that has been performed
by various researchers in the hypervelocity impact community to address these two
issues.

21.4.1 Early Work – The 1960s and 70s

Perhaps the first study performed involving HC/SPs being struck by very high speed
projectiles examined the effectiveness of aluminum honeycomb shields in prevent-
ing meteoroid damage to liquid-filled spacecraft tanks [61]. Much like the mono-
lithic shields proposed by Whipple, HC shields were found to shatter impacting
projectiles and scatter impact debris over a wide area of the protected tanks. The
spacing between the HC material and the tank was found to have a significant effect
on the damage levels sustained by the tanks. This led the authors to conclude that
the effectiveness of the HC shield material to protect against meteoroid impact was
inconclusive. This uncertainty in the effectiveness of HC shields was reinforced by
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a subsequent study that explored the channeling effect associated with impacts on
HC/SPs [62]. By subjecting a HC/SP mock-up to high speed impacts, this study
concluded that ’[do] indeed have the ability to channel debris against the second
sheet’ in a multi-wall configuration. Following these two studies, interest in using
HC/SPs as meteoroid shields for spacecraft being developed and flown in the 1960s,
70s, and 80s understandably declined.

In an effort to study the channel effect noted by early investigations, Jex, Miller,
and McKay subjected dual-wall systems without and without HC filler to high speed
impact [63]. Much to everyone’s surprise, they found that ’the HC structure had a
better predictive capability that the same structure without honeycomb when ballis-
tic limits were compared.’ They suggested the reason for this was that the secondary
fragmentation and energy loss associated with the initial impact debris fragments
hitting HC walls as that debris travelled through the HC more than overcompen-
sated for any channeling effects. However, by the time the results of this study were
made, monolithic shielding had already become the preferred configuration for pro-
tecting spacecraft against meteoroid impacts.

21.4.2 The 1980s and 90s

High speed impact testing of HCSPs experienced a rebirth in the late 1980s and early
1990s when an increasing number of satellites were being designed with HCSPs as
the main load-bearing structural elements and subsequently subjected to potential
impacts by man-made debris in earth orbit. The question naturally arose as to how
well these satellites would fare if such an impact were to occur. In an early study that
attempted to answer this question for the (then) newly developed RADARSAT [64],
it was found that yes indeed an orbital debris particle impact on certain critical satel-
lite components would bring the survivability down to an unacceptably low level.
As a result of the results obtained, ’[a] number of modifications considered practi-
cal in terms of weight, volume, and cost were implemented to improve protection
of the more critical units.’ In another satellite impact study, the results of eighteen
(18) tests that were performed (1) to determine the ballistic limits of typical AXAF
HC/SPs, and (2) to quantify the extent of damage to underlying AXAF components
in the event of an HC/SP perforation are presented and discussed in a fair amount
of detail [65, 66].

HC/SPs were also considered briefly as possible bumpers in early space station
wall impact studies (see, e.g., [67]). However, the thrust of this particular study, for
example, was not so much the HC/SPs or their protected systems, but rather the ex-
terior space station components in the vicinity of an impact that could be affected
by ricocheting secondary debris. No significant difference between the ricochet par-
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ticle generation ability of HC/SPs and that of monolithic bumpers was noted by the
authors.

Other spacecraft components either protected by or made with HC/SPs that were
tested under hypervelocity loading conditions include Ni-H battery cells [68] and
metallic thermal protection systems [69]. The tests involving Ni-H batteries showed
that for all of the test conditions investigated, the battery cells responded ’in a benign
manner ... [they] simply vented their hydrogen gas and some electrolyte following
a perforation, but did not burst or generate any large debris fragments.’ The authors
found that while a ’hypervelocity impact on a Ni/H2 cell used in space would result
in the loss of functionality of the battery of which it was part of [sic], but would not
result in a catastrophic failure that would cascade to other cells or nearby hardware.’
Unfortunately, with respect to the metallic TPS study, although the paper discusses
the results of some high speed impact tests performed in support of the development
of a ’superalloy honeycomb TPS concept’ for the Reusable Launch Vehicle, those
results are not actually presented. Hence, it is difficult to assess the validity of the
claims made regarding such a TPS construction as being an ’attractive, viable can-
didate for the RLV.’

Towards the end of the 1990s, a series of studies was performed in Europe to
’determine ways to improve the tolerance of unmanned spacecraft to hypervelocity
impacts by the use of shielding with minimal additional cost, mass and volume,’
and, by assessing the orbital debris and meteoroid threat for two (then) new satel-
lites, METOP and ERS-2, ’demonstrate the benefits of [that] new shielding.’ [70]-
[78] The work performed considered single as well as double-layer HC/SPs, and the
use of multi-layer insulation blankets, either on its own or with a HC/SP. The stud-
ies concluded that double-layer honeycomb shielding, combined with a secondary
shielding of internal components, wiring, etc, is a cost- and mass-effective way in
which to enhance the robustness of a spacecraft operating in the meteoroid and or-
bital debris environment.

The studies performed to develop cost-effective debris shields also compared the
response of dual-wall systems with HC panels against that of similar monolithic
all-aluminum systems. They found that because of its internal construction, an im-
pacted HC panel is able to absorb a significant portion of the energy associated with
the debris created by the original impact. As such, spacecraft protected by HC pan-
els would be expected to fare better in the M/OD environment from a protection
perspective than would comparable all-aluminum systems. These conclusions were
confirmed by other investigators as well (see, e.g., [79, 80]).
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21.4.3 Recent Work

Testing in support of the METOP and ERS-2 study was performed at the Fraunhofer
Ernst-Mach-Institute, where work was also underway to understand the response
of other typical satellite and/or spacecraft wall systems: Rosetta, EnviSat, GOCE,
BeppoSax, RADARSAT2, and the ATV [81]-[90]. These studies again confirmed
that ’sandwich panels have a better tolerance to hypervelocity impacts than mono-
lithic structures,’ and that placing a blanket of MLI ’in front of the sandwich panels
contributes significantly to the overall protection performance’ of those panels. De-
tailed numerical models of HC/SPs have also recently been developed to support
the tests being performed [91]. Information gleaned from numerical analyses of
HC/SPs under hypervelocity impact provides additional insights into the response
of such structures, and can be used to tailor a particular HC/SP design to enhance
its impact performance.

Most recently, over one hundred impact tests were performed at Fraunhofer EMI
to assess the vulnerability of a variety of representative spacecraft components (e.g.
fuel pipes, heat pipes, pressure vessels, electronics boxes, harnesses, and batteries)
to simulated MOD impacts [92]-[94]. Post-impact functionality of these compo-
nents was studied and compared and against required minimums. In the end, the
authors were able to provide recommendations for general spacecraft design con-
siderations with regard to the elements they test as well as an assessment of the
consequences on spacecraft operation of various possible damage levels. In addi-
tion, the study showed that the particle diameters that would lead to equipment or
component failure are several times those required to perforate the structural walls
of the spacecraft only.

Another outcome of the spacecraft component vulnerability study was a new
BLE that could be applied to various structural configurations, including single wall
systems, dual-wall systems, multi-wall systems with HC/SPs, batteries, e-boxes,
harnesses, etc. [95, 96]. To assess how well these BLEs performed in terms of pre-
dicting perforation (P) or non-perforation (NP) of HC/SP systems with aluminum
and composite facesheets, an exercise was undertaken to compare the P / NP predic-
tions of the equations in [95] and in [96] against actual P/NP occurrences as found in
the data from the experimental investigations discussed in this section [97]. It was
found that these BLEs are fairly conservative: they successfully predicted HC/SP
perforation in nearly all of the tests that resulted in perforation, while allowing ap-
proximately half of the non-perforating tests to be incorrectly labeled as tests with
a perforation. This indicates the likelihood that use of these BLEs in design appli-
cations could result in overly robust shielding hardware. The reader is also referred
to Reference [98] for additional details regarding the work performed on numerical
simulation of HC/SPs under MOD impact loads.

In addition to knowing whether or not the impacting particle (or its remnants)
will exit the rear of the HC/SP, it is equally important to know, if indeed the ballistic



410 William P. Schonberg

limit of the HC/SP has been exceeded, where the debris created in such an impact
will land and what internal components it will strike. To help address this issue, a
system of empirical equations that can be used to predict the trajectories and spread
of the debris clouds that exit the rear facesheet following a high speed perforating
impact of a HC/SP was recently developed [99]. The equations developed in this
study incorporate the following features:

• presence (or the lack thereof) and composition of a multi-layer thermal insulation
(MLI) blanket on the exterior of the HC/SP;

• material composition of the HC/SP facesheets (either aluminum or a carbon-
fiber-reinforced polymer, or CFRP);

• facesheet thicknesses and overall HC/SP thickness;
• HC core properties (core size, wall thickness, and material); and,
• projectile diameter, material, impact velocity, and trajectory obliquity.

Empirical equations were also developed to predict the dimensions of the holes
in the front and rear HC/SP facesheets. These hole dimension equations can be used
to calculate the amount of mass in a debris cloud if the HC/SP is perforated by a
high speed impact. The trajectory angles can then be used to determine where this
mass will travel and what spacecraft components will be impacted, and the spread
angles equations will determine the extent of the footprint made by this mass on any
encountered surface. All of this information can then be fed into a risk assessment
code to calculate the probability of spacecraft failure under a prescribed set of im-
pact conditions.

21.5 Conclusions

This paper has presented an overview of the work performed by the scientific and
engineering communities to assess the resiliency of composite structures and materi-
als under high speed impact. The activities reviewed are those that have been aimed
at understanding and increasing the level of protection afforded by such systems to
satellites and spacecraft operating in the MOD environment, and more specifically,
on those activities performed to mitigate the potentially deleterious mechanical and
structural effects of an MOD impact. It was found that

• using a laminated composite as the outer bumper in a dual-wall system does not
offer any protection advantage as compared to the protection level provided by
an all-aluminum dual-wall system;

• using a composite material as the inner bumper does increase the protection af-
forded to a spacecraft against damage caused by MOD impacts; and,

• there are several advantages of using a laminate composite as the pressure or
innermost wall material of a multi-wall system, including the elimination of the
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severe cracking and petaling that would be sustained by aluminum walls in sys-
tems impacted by large projectiles.

The study of HC/SPs under HVI loadings is an on-going research area, with most
of the activities focusing on determining whether or not, in the event of a very high
speed impact, the impacting particle (or its remnants) will exit the rear of the HC/SP
(i.e. whether or not the ballistic limit of the HC/SP will be exceeded) and, if so,
where the debris created in such an impact will land and what internal components
it will strike. The development of numerical models that simulate such impacts on
HC/SPs with increased fidelity is providing scientists and engineers much-needed
information that can ultimately be used to develop resilient satellites and spacecraft
systems.
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85. Lambert M, Schäfer F, Geyer T (2001). Impact Damage on Sandwich Panels and Multi-Layer
Insulation. International Journal of Impact Engineering, 21:369-380.

86. Ryan S, Riedel W, Schäfer F (2004). Numerical Study of Hypervelocity Space Debris Impacts
on CFRP/Al Honeycomb Spacecraft Structures. Paper No. IAC-04-W.1.02, Proceedings of
the 55th International Astronautical Congress, Vancouver, Canada.
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88. Schäfer F, et al (2005). Hypervelocity Impact Testing of CFRP/AL Honeycomb Satellite
Structures. Proceedings of the 4th European Conference on Space Debris, W. Flury, ed., ESA
SP-587.
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92. Putzar R, Schäfer F, et al (2005). Vulnerability of Shielded Fuel Pipes and Heat Pipes to
Hypervelocity Impacts. Proceedings of the 4th European Conference on Space Debris, W.
Flury, ed., ESA SP-587, Noordwijk, The Netherlands.
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Chapter 22
Numerical Simulation in Micrometeoroid and
Orbital Debris Risk Assessment

Shannon Ryan

Abstract The threat of micrometeoroid and orbital debris (MMOD) impacts on
space vehicles is assessed in terms of the probability of an impactor penetrating
the spacecraft hull, and the probability of a penetrating impact resulting in catas-
trophic failure. These values are calculated in risk analysis codes which combine
spacecraft geometry, debris environment models, and equations that define the pen-
etration limits of the spacecraft outer structure (called ballistic limit equations, or
BLEs). To characterize the performance of spacecraft structures under impact of
MMOD particles at hypervelocity, experimental facilities such as two-stage light
gas guns are commonly used. However, these facilities are only capable of repro-
ducing approximately 40% of expected in-orbit impact conditions. As a result, nu-
merical techniques are ideally suited for application in this field. The use of numer-
ical hydrocodes in MMOD risk assessment is, historically, very limited. However,
as code maturity continues to develop, their application becomes increasingly ac-
cepted. Within this chapter three examples are presented in which numerical hy-
drocodes were used in tandem with experimental testing for MMOD risk assess-
ments. Beginning with the most simplistic application, i.e. derivation of perforation
limits, the examples extend to the propagation of impact-induced dynamic distur-
bances through complex satellite structures.

22.1 Introduction

There are few engineering applications that lend themselves to numerical analysis
more naturally than the impact of micrometeoroid and orbital debris (MMOD) par-
ticles on spacecraft hardware at hypervelocity. For a spacecraft in Low Earth Orbit
(LEO), orbital debris encounter velocities range from 1 km/s to 15 km/s, with an av-
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erage of approximately 9 km/s. Encounter velocities with meteoroid particles range
from 11 km/s to 72 km/s, with an average of approximately 20 km/s. Experimen-
tal facilities, such as two-stage light gas guns, are capable of accelerating particles
to maximum velocities of approximately 9 km/s, allowing the reproduction of only
40% of on-orbit impact conditions in LEO. For the remainder, numerical techniques
are required.

MMOD risk assessment is performed with a geometric spacecraft model, orbit
profile, and planned mission duration. Meteoroid and orbital debris flux models such
as NASA’s Meteoroid Engineering Model (MEM) [1] and Orbital Debris Engineer-
ing Model (ORDEM2000) [2] are used to predict the MMOD impact flux relevant
for the spacecraft geometry and orbital profile. Environment models such as MEM
and ORDEM2000 provide information on debris flux in terms of threat direction
and velocity distribution. These are used together with penetration-limit equations
called Ballistic Limit Equations, or BLEs, to determine the critical debris particle
that will cause failure of the spacecraft MMOD shield or critical component, and
provide probabilities of its impact. This process is performed within MMOD risk
analysis software, such as NASA’s BUMPER-II, a functional overview of which is
provided in Fig. 22.1.

Fig. 22.1 Functional overview of NASA’s BUMPER-II Meteoroid and Orbital Debris Risk As-
sessment Tool.
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BLEs used in risk assessment software are generally based on analytical con-
siderations but use experimental data to empirically anchor the expressions at the
highest obtainable impact velocities (see e.g. [3] [4]). For the most common types
of spacecraft MMOD shielding configurations i.e. dual-wall configuration referred
to as a Whipple shield, the penetration equations are divided into three regimes: low
velocity, transition (or shatter), and hypervelocity. The limits of these regimes are
defined by the physical processes that occur during impact of the projectile upon
the front component of the multi-wall shield, known as a bumper. Upon impact,
compressive waves propagate into both the projectile and bumper plate. At free
boundaries these waves are reflected as rarefaction waves, or tensile release waves.
In the low velocity regime, pressures generated during impact are insufficient to
induce failure of the projectile because the amplitude of the rarefaction wave does
not exceed the tensile fracture strength of the projectile material. With increasing
projectile velocities, the amplitude of compressive shockwaves generated in both
impacting bodies increases until fragmentation of the projectile occurs. This indi-
cates the beginning of the transition or shatter impact regime. As impact velocities
are further increased, the projectile is fragmented into smaller and more finely dis-
persed fragments. In the low and intermediate velocity regimes, failure of the shield
rear wall is cratering and spallation from individual fragment impacts. The hyper-
velocity regime is defined at the point at which the rear wall failure mechanism
changes from a cratering type of failure to that of an impulsive failure, where the
impacting debris cloud acts as a blast load. For aluminum-on-aluminum impacts,
transition from the low-shatter regime and shatter-hypervelocity regime occurs at
∼3 and 7 km/s, respectively. The low-shatter regime transition velocity has been
shown to depend on the ratio of projectile diameter to bumper thickness (see e.g.
[5]).

In the hypervelocity regime, penetration limits do not scale optimally (i.e. with
projectile momentum) as a result of impact obliquity and non-spherical projectile ef-
fects. Rather, they are scaled at a rate above the cube root of impactor kinetic energy
to account for solid projectile/bumper fragments amongst the debris impacting upon
the shield rear wall or pressure hull [6]. For intermediate impact velocities, linear
interpolation between the regime velocity limits is commonly used. The majority
of HVI data used to empirically adjust and validate shielding ballistic limit equa-
tions has investigated the performance of traditional all-aluminum Whipple shield
structures impacted by spherical aluminum particle at velocities between 6.0-7.0
km/s (e.g. [7][8][9]). Thus, validation of these equations is primarily performed in
a regime with very little analytical basis.

In general, there exist a small number of BLEs for common shield configurations
such as single wall, Whipple shield, stuffed Whipple shield, etc. that have been val-
idated from test data on a baseline shield and a number of variations. For instance,
development of a ballistic limit equation for a Nextel/Kevlar stuffed Whipple shield
in [10] used 26 tests performed on seven variations of the shield using three differ-
ent bumper thicknesses, seven different stuffing configurations, two different rear
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Fig. 22.2 Fragment clouds (top) and resulting impact damages (bottom) in thick aluminum plates
for two impact tests on thin Al-plates in the transition velocity regime (left: 4.8 km/s; right: 6.7
km/s).

wall thicknesses, with constant spacing. Unfortunately, MMOD shielding config-
urations on flight hardware vary extensively, depending on perceived risk, design
requirements (i.e. weight, spacing), launch vehicle capacity, etc. On the Interna-
tional Space Station (ISS), there are hundreds of different MMOD shields that vary
by material, configuration, mass, thickness, and volume. Extensive impact testing
and derivation of validated ballistic limit equations for each shielding configura-
tion would be prohibitively expensive and time consuming. Therefore, these shields
are commonly grouped into rough shield categories such as the stuffed Whipple.
Generally such grouping is reasonable as the baseline equations are applicable for
multiple configurations, however, the variation within these groups can often exceed
the validated range of the equations. For instance, a sandwich panel shield with an
aluminum open-cell foam core may be considered as a stuffed Whipple shield in
which the areal weight of the foam core is considered the shield ’stuffing’. Clearly
the damage mechanisms and failure processes in an open-cell foam sandwich panel
would be expected to vary greatly from those in a stuffed Whipple shield, and there-
fore the application of this equation should be considered highly questionable. In
addition to grouping of widely different shield types into empirical equations with
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limited validity, hybrid ballistic limit equations which are a combination of baseline
BLEs, are regularly applied. With hybrid BLEs the penetration limits of an ablative
heat shield bonded to a support structure of aluminum honeycomb sandwich panel
may be approximated, for instance, by a summation of the critical diameters of the
individual ablator and sandwich panel. Again, such application of empirical equa-
tions is questionable yet is often considered necessary due to economic and time
restraints. This is an area ripe for the use of numerical tools.

For velocities above those obtainable in laboratory experiments, the ballistic limit
of a given structure is scaled in current penetration equations proportionally to im-
pactor kinetic energy raised to the one-third power, i.e. tw ∝ KE1/3. This approach
is consistent with NASA practice [11]. Schmidt et al. [12] investigated the use of
alternate materials to simulate the response of aluminum shields for impact veloc-
ities up to 18 km/s in order to assess the validity of kinetic energy scaling. They
considered cadmium as a surrogate material as it melts and vaporizes at much lower
specific energies than aluminum. The similarity between aluminum-on-aluminum
and cadmium-on-cadmium impacts was evaluated for complete projectile melt. The
authors theorized that if complete melt of an aluminum projectile impacting on an
aluminum plate occurs at a velocity of 7 km/s, the same condition for cadmium on
cadmium impact will occur at ∼2.25 km/s (i.e. velocity scaling factor of 3.1). When
failure of a multi-wall shield is caused by specific impulse loading of the completely
molten debris cloud, dimensional analysis shows cadmium as a superior surrogate
than other known materials due to similarity requirements of velocity, debris cloud
momentum, ratio of specific heats, and bumper strength. Zinc provides a slightly
better match for the similarity requirements; however, its velocity scaling is lower
than that of cadmium (2.1 vs 3.1). For cadmium impact tests up to a scaled veloc-
ity of 18 km/s, the perforation limits of the simulated aluminum Whipple shield
were found to increase in the hypervelocity regime as a result of vaporization of
the debris cloud (see Fig. 22.3). Although the scaled cadmium impact tests pro-
vided similar perforation limits to aluminum shields, the mechanism of failure was
not always reproduced. Thus, while cadmium provides good agreement for the di-
mensional analysis-derived similarity requirements, some conditions such as load
rate and peak stress that are directly related to impact velocity cannot be scaled.
Christiansen et al. [13] investigated the validity of cadmium scaling for a number
of aluminum Whipple shield configurations and impact conditions and found that
the ballistic limit of a shield varied by up to 25% between the baseline aluminum
and scaled cadmium tests. The authors concluded that the velocity scaling factor of
3.1 derived by Schmidt et al. is not constant, but likely varies as a function of shield
parameters and impact conditions.

A number of researchers have applied numerical techniques to investigate the
behavior of MMOD shields at velocities above current experimental limits (e.g.
[14][15]). The results of these numerical studies have shown, in general, agreement
with the cadmium scaling experiments (i.e. increased ballistic performance at ve-
locities above 8-11 km/s for Al-on-Al impacts). However, it should be noted that
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Fig. 22.3 Scaled ballistic limit curve for an aluminum Whipple shield developed from Cadmium
scaling impact tests up to velocities of 18 km/s (from [12]).

the modeling approach used in a number of the simulations casts some doubt over
their predicted results. For instance, validation of the numerical model in [14] was
performed via comparison with experimental damages at lower impact velocities
(7.2 km/s). The Shock (Mie-Grüneisen), Tillotson, and SESAME Equations of State
(EOS) were all used to simulate impact damage, with the Shock EOS providing the
most comparable result. However, this EOS does not model phase change. Thus, at
the higher impact velocities in which projectile vaporization is expected to cause an
upturn in the ballistic limit curve, material behavior is not accurately reproduced.

The maturity of predictive numerical tools, along with modern computing power,
has reached such a point that their application in micrometeoroid and debris risk
assessment for space vehicles is currently underutilized. Although test data will al-
ways be required for validation of numerical curves, there is a significant capacity
for application of simulation tools in support of experimental evaluations. In this
chapter, we will examine three applications for which numerical tools have already
been applied with a degree of success, and discuss the strengths and weaknesses of
these applications.
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22.2 Ballistic Limit Simulation of a Representative Satellite
Structure Wall

Sandwich panels with aluminum honeycomb cores and carbon fiber reinforced plas-
tic facesheets (CFRP/Al HC SP) are amongst the most commonly used structures
onboard satellites today. Their high strength, high stiffness, low weight, and low
thermal expansion make them ideal for such applications. However, until recently,
knowledge of the performance of these structures under impact from hyperveloc-
ity MMOD particles was relatively unknown. To remedy this, an extensive study
was performed at Fraunhofer Ernst-Mach-Institute (EMI) under European Space
Agency (ESA) contract to investigate the impact performance and damage mecha-
nisms in CFRP under hypervelocity impact (see [16]). In this study, six CFRP/Al
HC SPs representative of satellite structure walls were subject to extensive hyperve-
locity impact testing. For characterization of the sandwich panel ballistic limits, 27
impact tests were performed over a variety of impact velocities and angles and with
varying projectile diameters. The same structure walls were used in an additional 67
impact tests which evaluated the lethality of fragments ejected within the simulated
satellite interior onto critical components such as electronic boxes, cable harnesses,
batteries, etc.

Recent developments [17] in the modeling of fiber-reinforced composite materi-
als allow orthotropic constitutive behavior, non-linear equation of state, orthotropic
non-linear hardening, and individual material plane interactive failure initiation cri-
teria to be described. This represents a significant improvement over existing hy-
drocode capabilities in reproducing the behavior of anisotropic composite materials
during HVI. Although developed and validated for use with high-strength aramid
fiber composites, its application to structural composites (i.e. CFRP) was proven in
preliminary investigations.

With the new capabilities in composite material modeling, in addition to the im-
pact experiment database, numerical simulation of hypervelocity impact on compos-
ite materials appears to have reached a level of maturity such that its application in
vehicle design and analysis is reasonable. With this in mind, a number of numerical
simulations were performed using the commercial hydrocode ANSYS AUTODYN
3D [18] to evaluate the ballistic limit of a sandwich panel structure with an alu-
minum honeycomb core and CFRP facesheets.
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22.2.1 Target Definition

The CFRP/Al HC sandwich panel from ESA’s ENVISAT satellite was selected for
the numerical investigation, an overview of which is given in Fig. 22.4.

Fig. 22.4 Details of the ENVISAT CFRP/Al HC SP .

A preliminary material data set for the CFRP composite laminate in use on the
ENVISAT satellite (M40/914) is provided in [17] for application with the advanced
orthotropic composite material model. The material data is based on limited experi-
mental characterization of similar materials. Application of this data set in [17] and
[19] has shown accurate phenomenological reproduction of the material behavior
under hypervelocity impact. Details of the numerical setup are given in [19].

22.2.2 Experimental Validation of the Numerical Simulation

Validation of numerical models is generally performed via comparison with exper-
imental results. In this case, simulations are performed to characterize the failure
limits of the ENVISAT CFRP/Al HC SP, and as such, validation of the model is per-
formed through comparison of experimental damage extension and failure thresh-
olds. As with any experiment, HVI testing is subject to a degree of scatter. Thus,
for validation of the numerical model, it is imperative to first quantify this effect.
In Fig. 22.5, two nominally identical CFRP/Al HC SP structures subject to nom-
inally identical impacts are shown. Although front facesheet damages are similar,
variation in rear facesheet damage extension (both clear hole diameter and surface
spallation) exceed 100%. The differences in rear facesheet damage extension may
be due to variation in the target parameters, manufacturing flaws in the target ma-
terials, experimental facility operation, or numerous other reasons. For impacts on
HC core sandwich panels in which the projectile is smaller than the HC cell diam-
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eter, an additional source of experimental scatter is the non-homogenous nature of
the honeycomb. The impact location of the projectile relative to the hexagonal cells
can affect projectile fragmentation and dispersion, as shown in Fig. 22.6. An inves-
tigation of this effect found that impact location (relative tothe honeycomb cells)
does not affect the gross result of the impact simulation (i.e. perforation or no per-
foration). However, the mass, dispersion, and lethality of perforating fragments was
significantly affected.

Fig. 22.5 Facesheet damage experimental scatter for EMI experiment 4633 (left): dp = 5.0 mm, V
= 6.75 km/s, α = 0◦; and 4653 (right): dp = 5.0 mm, V = 6.69 km/s, α = 0◦. Top: front facesheet
damage; bottom: rear facesheet damage.

For validation of the ENVISAT numerical model, three impact experiments were
simulated. An overview of the impact conditions, damage, and result (i.e. perfora-
tion (P), detached spallation (SP) or no perforation (NP)) is given in Table 22.1. Of
the three experiments, only one of the three simulations predicted the correct re-
sult, however, in all simulations a detached spallation result was obtained. Given the
thickness (1.10 mm) and brittle nature of the CFRP material, the margin between a
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perforated and non-perforated result is expected to be within the experimental scat-
ter bounds. As such, a detached spallation test result is highly unlikely.

Table 22.1 Validation for the ENVISAT CFRP/Al HC sandwich panel numerical model.

Analysis EMI Velocity Projectile Impact Result
Type test no. diameter angle

[km/s] [cm] [◦] [P/SP/NP]

Exp 2285 6.30 1.10 0 SP

Sim – 6.30 1.10 0 SP

Exp 2287 5.30 1.10 0 P

Sim – 6.30 1.10 0 SP

Exp 2295 6.60 0.90 0 NP

Sim – 6.60 0.90 0 SP

22.2.3 Simulation Results

The ENVISAT model was used to perform an additional 25 ballistic limit simula-
tions over a range of impact velocities at normal incidence. The simulation parame-
ters and results can be seen in Fig. 22.7. For simulations providing a detached spall
result, the total mass of spall fragments was recorded, and is indicated in Fig. 22.7 by
the marker size. Including the three validation cases, a total of 28 simulations were
performed, for which twelve detached spall and nine no perforation results were
obtained. The large number of spallation results suggests that the numerical model
was not able to correctly reproduce the progression of damage states through incip-
ient spallation, spall ejection, and perforation of the sandwich panel rear facesheet.
To access the accuracy of the numerical simulations, the results can be compared to
ballistic limit equation predictions.

BLEs define the limits of structural perforation in terms of impactor mass, veloc-
ity and angle. They are commonly expressed as a ballistic limit curve, which demar-
cates between impact conditions causing structural perforation and no perforation in
projectile diameter-velocity space. A ballistic limit equation for triple wall structures
incorporating CFRP/Al HC SPs has been defined in [20] from 55 hypervelocity im-
pact experiments on six space-representative CFRP/Al HC SP structures. Modified
for application with dual-wall targets, the ballistic limit equation is expressed in the
low velocity regime (V

/
cosθ ≤VLV ), as :
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Fig. 22.6 The effect of honeycomb cell impact location on fragment channeling within a sandwich
panel honeycomb core (1.1 mm Al-sphere at 6.3 km/s, normal incidence). Upper: impact within a
cell; Lower: impact upon a 3-wall junction.

dc (V ) =

⎡
⎣ tw

/
K3S ·

(
σre f

/
40
)1/2 + tb

0.6 · (cosθ)4/3 ·ρ1/2
p ·V 2/3

⎤
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18/19

(22.1)

In the shatter regime (VLV < V
/

cosθ < VHV ) linear interpolation is used:

dc (V ) = dc (VLV )+
dc (VHV )−dc (VLV )

VHV −VLV
· (V −VLV ) (22.2)

In the hypervelocity regime (V
/

cosθ ≥VHV ):

dc (V ) =
1.155 ·S1/3 · tw ·

(
σre f

/
70
)1/3

K2/3
3D ·ρ1/3

p ·ρ1/9
re f ·V 2/3 · cosθ 4/3

(22.3)

The constants used in Equations (22.1)-(22.3) are defined in Table 22.2. The bal-
listic limit curve of the ENVISAT CFRP/Al HC SP is shown in Fig. 22.7 along
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Fig. 22.7 Ballistic limit curve and numerical simulation results for the ENVISAT CFRP/AL HC
SP (larger spall market indicates higher spall mass).

with the simulation results. Of the 28 simulations, 22 (79%) agreed with the em-
pirical equation predictions (detached spallation is considered failure). Across the
range of impact conditions simulated, the numerical model generally provides con-
sistent results in terms of increasing rear facesheet damage with increasing impact
energy. The exception to this is the two simulations at low velocity, which show that
a 1.375 mm sphere will perforate the structure at 1.0 km/s, while at an increased
velocity of 1.5 km/s there is no damage to the structure rear surface. The simulation
results mimic the shape of the ballistic limit curve, although the gain in shielding
performance in the intermediate impact velocity regime (due to increasing projectile
fragmentation) does not appear to be as significant as that predicted by the BLE.

22.3 Simulation of Hypervelocity Impact on a Representative
Satellite Structure Wall Causing Penetration and Fragment
Ejection

For manned spacecraft such as the Space Shuttle Orbiter and International Space
Station (ISS), the risk of mission failure due to impact is calculated in terms of the
probability of perforation of the pressure hull, and the probability of catastrophic
failure resulting from perforation (e.g. perforation of a critical flight component,
module unzipping, etc.). For unmanned spacecraft, calculating mission risk based
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Table 22.2 List of constants for use in the SRL ballistic limit equation for CFRP/Al HC SPs.

Constant Description Unit Value

ρre f Density of reference Al-alloy
(Al 2024-T81)

[g/cm3] 2.78

σre f 0.2% yield strength of refer-
ence Al-alloy (Al 2024-T81)

[ksi] 59.5

tb Front facesheet equivalent Al-
alloy thickness

[cm] tb,CFRP ·
ρb,CFRP
ρre f

+ ADMLI
ρre f

tw Rear facesheet equivalent Al-
alloy thickness

[cm] tw,CFRP · ρw,CFRP
ρre f

K3S Ballistic fit factor – 1.1

K3D Hypervelocity fit factor – 0.40

VLV Low-intermediate regime tran-
sition velocity

[km/s] 4.2

VHV Intermediate-hypervelocity
regime transition velocity

[km/s] 8.4

on penetration of the spacecraft structure wall fails to take into account the lack of
vehicle pressurization, and the intrinsic shielding of internal components. As such,
penetration-based risk assessments may be inherently conservative for unmanned
and un-pressurized vehicles. Putzar et al. [21] evaluated the vulnerability of satellite
components to MMOD impact, identifying critical components and failure thresh-
olds for both shielded and unshielded equipment such as batteries, electronic boxes,
fuel pipes, etc. The authors found that by considering failure to occur when pene-
tration of the satellite wall led to either temporary or permanent failure of critical
mission components instead of merely penetration of the spacecraft outer wall, mis-
sion MMOD failure probabilities could be significantly reduced.

The study by Putzar et al. looked at failure of components shielded behind alu-
minum bumper plates, aluminum honeycomb sandwich panels, and multi-layer in-
sulation (MLI). For spacecraft utilizing CFRP/Al HC SP structure walls, the vulner-
ability of internal components varies from those reviewed by Putzar et al. given the
minimal penetration lethality of CFRP fragments. CFRP ejecta causes minimal me-
chanical damage to internal components, however the slow moving debris forms a
conductive cloud that can lead to arc discharges and current leakage from unshielded
electronic components. To investigate the behavior of penetrating CFRP fragment
clouds, a number of numerical simulations were performed for conditions leading
to perforation of a CFRP/Al HC SP structure wall and ejection of material within a
satellite interior.
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22.3.1 Target Definition

For simulation of impacts leading to penetration and ejection of fragments within a
satellite body the RADARSAT-2 +/-Z platform CFRP/Al HC SP structure was se-
lected. Details of the panel are shown in Fig. 22.8. In the absence of material data,
a procedure defined in [22] that applies a number of common composite mechanics
and shock physics theories along with general material properties to derive a com-
plete preliminary material data set for use with the advanced orthotropic composite
material model was applied. The derived RADARSAT material data set used in the
simulations can be found in [22]. Details of the numerical setup are found in [23].

Fig. 22.8 Details of the RADARSAT-2 +/-Z platform CFRP/Al HC SP.

22.3.2 Experimental Validation of the Numerical Simulation

For validation of the numerical model, three hypervelocity impact experiments on
the RADARSAT CFRP/Al HC SP leading to perforation and fragment ejection were
simulated. Validity of the numerical model was assessed via damage measurements
in the front and rear facesheets of the sandwich panel (dh, DSP), dispersion of frag-
ments both within the honeycomb core (dhc) and following perforation of the sand-
wich panel (β ), and damage extension on the simulated internal component (DDUST ,
DWP99). Definition of damage measurements is provided in Fig. 22.9.

For conventional metallic targets, measurement of fragment cloud dispersion an-
gles and witness plate (satellite interior) damage is relatively straightforward, as
shown in Fig. 22.10. However, for impacts on CFRP/Al HC SP structures, these be-
come more difficult, as shown in Fig. 22.10. Initially, the expansion angle of the per-
forating debris cloud is effectively hemispherical (i.e. βext

∼= 180◦). At latter stages,
a high density zone of the fragment cloud can be observed, however this fails to
capture all debris fragments.
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Fig. 22.9 Definition of sandwich panel damage measurements for assessing the validity of the
RADARSAT numerical model.

Fig. 22.10 Measurement of fragment cloud dispersion angle and witness plate damaged area for
conventional aluminum targets (top) and CFRP/Al HC SPs (bottom).

Definition of fragment dispersion angles using witness plate damage is also more
difficult for CFRP/Al HC SPs than traditional metallic targets. As previously men-
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tioned, individual delaminated carbon fibers cause very little mechanical damage.
Indeed, charred CFRP deposits can simply be wiped off the surface of experimen-
tal witness plates without any apparent damage to the structure. The difficulties in
defining fragment ejecta angles and witness plate damage extension are also appli-
cable to the numerical model. In Fig. 22.11 a series of images are shown that demon-
strate the numerical propagation of perforating fragments. In the numerical model,
each individual finite element that passes through virtual membrane is propagated to
the location of the internal component (witness plate). The same question arises of
how (and when) the limits of the fragment cloud should be defined. Characteristics
of the fragment cloud dispersion are similar to those shown in Fig. 22.10: initially,
the fragment cloud shows a near hemispherical dispersion angle; at a later time, the
fragment cloud has separated into high- and low-density zones, the dispersion an-
gle of which varies significantly. Again, measurement of the deposit/damage area
is subject to interpretation. No standardized levels exist for measuring the fragment
cloud ejecta angle in either numerical simulations or experiments looking at ejec-
tion of charred CFRP fragments. It is possible with experimental images to define a
generic spectral limit that relates the amount of light transmitted through the frag-
ment ejecta to the cloud density. A technique that defines the fragment ejecta angle
based on cloud density is also possible for measurement of the numerical simula-
tion. However, in the simulations, the limit of the smallest fragment in the ejecta
cloud is limited to the grid discretization. Thus, the density of the fragment cloud
in the numerical simulation is only, at best, approximate given the small and fine
distribution of the ejected CFRP fragments. Furthermore, a comparison between the
two approximate methods is expected to be highly unreliable given the approximate
nature of the measurement techniques.

Fig. 22.11 Numerical fragment cloud expansion following perforation of a CFRP/Al HC SP.

Details of the three impact experiments used for validation of the RADARSAT
numerical model are provided in Table 22.3. Damage measurements from both the
experimental and numerical structures are provided in Table 22.4. In general it can
be noted that an increase in the projectile diameter corresponds to an increase in
the inaccuracy of the numerical model damage values. For normal impact of a 3.0
mm projectile at high velocity (S1), the simulated damage measurements agree rea-



22 Numerical Simulation in Micrometeoroid and Orbital Debris Risk Assessment 433

Table 22.3 Details of validation experiments (prefix E) and simulations (prefix S) used for valida-
tion of the RADARSAT numerical model.

Test no. EMI exp. Velocity Projectile diameter Impact angle
[km/s] [cm] [◦]

E1 4635 6.64 3.00 0

S1 n/a 6.70 3.108 0

E2 4671 2.60 4.00 0

S2 n/a 2.50 3.955 0

E3 4633 6.71 5.00 0

S3 n/a 6.70 5.085 0

sonably well with the experiment (30% with the exception of DWP99). An increase
in the projectile size to 4.0 mm (S2) results in significant (∼200%) over-prediction
of the damage measurements for both sandwich panel facesheets and WP deposits.
Following a further increase in the projectile diameter to 5.0 mm (S3), the devi-
ation of the simulation damage values from the experimental measurements was
even more pronounced: front surface measurements were over-predicted by up to
600% while rear surface measurements were under-predicted by up to 230%. The
front facesheet in the numerical model showed extensive delamination, which is a
phenomenon not observed in the experiments, leading to over-prediction of the front
facesheet damage extension in the numerical simulations. One possible cause is that
the through-thickness tensile strength of the laminate, a property approximated by
the quasi-static transverse tensile strength of a unidirectional ply, is under-estimated.
Nonetheless, the front facesheet damage extension is not expected to significantly
affect the behavior of fragments perforating the sandwich panel rear facesheet.

Table 22.4 Experimental and numerical simulation damage measurements for the three
RADARSAT CFRP/Al H CSP validation cases.

Test Front facesheet Rear facesheet Witness plate
no. dh Dsp dh Dsp DWP99 DDUST βext

[mm] [mm] [mm] [mm] [mm] [mm] [◦]

E1 8.4x8.8 11x10 5.8x6.4 15x10 49x49 113x110 55.6

S1 8.1x8.4 39x48 8.4x4.2 11x12 0x0 96x75 43.2

E2 7.8x8.2 9x12 4.5x5.4 15x19 33x13 50x54 26.5

S2 17.3x18.1 20x25 12.2x11.4 18x13 44x28 104x102 49.0

E3 11.3x11.7 14x14 53.6x38.8 73x52 72x73 137x153 52.6

S3 27.5x33.0 102x108 11.7x12.4 22x27 79x67 146x108 59.8
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22.3.3 Simulation Results

In addition to the validation cases, seven numerical simulations were performed to
investigate impacts leading to penetration of the RADARSAT CFRP/Al HC SP and
ejection of fragments within the satellite interior. The simulations were performed
over a range of impact velocities (2.50-10.0 km/s) and impact angles (0/45/60◦). The
results of the numerical simulations are summarized in Table 22.5. For S7, S8 and
S10, the front facesheets were excessively delaminated and as such damage mea-
surements are not provided. The results of the numerical simulations can be used to
develop trends in the behavior of the fragment cloud within the satellite interior. For
instance, under normal impact the dispersion of fragments following penetration of
the sandwich panel increases with increasing impact velocity. This trend has also
been observed in experiments [16]. Under oblique impact, however, an increase in
impact velocity results in a decrease in the diameter of the witness plate deposited
area, shown in Table 22.5.

Table 22.5 Results of the RADARSAT CFRP/Al HC SP numerical simulations causing penetra-
tion and fragment.

Test V dp α dh, f ront DSP, f ront dh,rear DSP,rear DWP99 DDUST,WP β
no. [km/s] [mm] [◦] [mm] [mm] [mm] [mm] [mm] [mm] [◦]

S4 10.00 3.955 0 23.8x30.8 79x91 9.9x10.7 22x20 62x44 144x132 65.1

S5 2.50 3.1075 0 11.8x12.8 19x22 10.4x6.4 13x12 25x13 90x65 38.1

S6 2.50 3.955 45 15.9x12.9 26x23 9.8x5.4 22x12 50x16 127x77 50.5

S7 10.00 3.955 45 – – 14.3x5.2 20x13 35x19 96x71 40.5

S8 6.70 3.955 60 – – 4.3x4.3 41x29 14x12 110x75 47.6

S9 2.50 3.955 60 18.0x8.4 34x34 11.4x4.3 11x9 42x4 123x85 51.4

S10 10.00 3.955 60 – – 14.0x9.8 28x31 0x0 113x58 40.4

In Fig. 22.12, witness plate deposits for three numerical simulations are shown.
The simulations were all performed at 60◦ with a 4.0 mm Al-sphere projectile. With
increasing impact velocity, the diameter of the deposited area is shown to clearly
decrease. However, rather than a decrease in total fragment mass, the concentration
of ejecta along the shot axis (0,0) is increased. A possible explana-tion for this is
that under increasing impact velocity, the facesheet fragments are more effectively
channeled within the honeycomb cells about the shot axis. Thus, following perfora-
tion of the rear facesheet, the fragments have a lower expansion angle. There is no
recognizable trend in rear facesheet damage extension for increasing impact veloc-
ity at oblique incidence.

In Fig. 22.13 the mechanical damage potential of fragments impacting the alu-
minum witness plate are shown for three impact angles: 0◦ /45◦ /60◦. Mechanical
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Fig. 22.12 The effect of increasing velocity on WP deposits for oblique (60◦) impact. From left to
right: 2.5/6.7/10.0 km/s.

damage is plotted as kinetic energy of aluminum fragments, following the assump-
tion that CFRP fibers induce minimal mechanical damage. The figure shows that an
increase in impact angle results in a decreased witness plate damage, which agrees
with the experimental findings.

Fig. 22.13 Contours of aluminum fragment kinetic energy in units of [J] for impact on an alu-
minum WP (4.0 mm Al-sphere at 10 km/s). From left to right: 0◦ /45◦ /60◦.

22.4 Numerical Simulation of Impact Induced Disturbances in
Satellite Structures

The previous studies have evaluated the application of predictive numerical tools
for the calculation of mission risk in terms of penetration-based failure of the space-
craft hull and failure of critical interior components. The next generation of Euro-
pean satellites will employ ultra-high sensitivity equipment that require platform
stability orders of magnitude higher than those of previous missions. For such sci-
ence missions, degradation of measurement accuracy due to a noisy dynamic back-
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ground would result in mission failure equal to, albeit less spectacularly, MMOD-
penetration based catastrophic failure. Regular impact of micro-sized debris parti-
cles can induce transient disturbances in satellite structures which, given the plat-
form stability required, are capable of propagating throughout the satellite structure
to areas of critical stability such as measurement devices.

The Global Astrometric Interferometer for Astrophysics (GAIA) will operate in
a Lissajous orbit about the Earth-Sun L2 point, at which the primary debris environ-
ment consists of natural, micro-sized particles traveling at velocities over 20 km/s.
As such, in-orbit impact conditions cannot be reproduced in laboratory experiments,
and numerical simulations are required to characterize the transient structural re-
sponse. Structural finite element analysis (FEA) codes are the preferred engineering
tool for investigating the response of structures under static and dynamic loading.
However, considering that there are three orders of magnitude variance between the
dimensions of the satellite and common impactor (m vs μm), simulation of the en-
tire satellite structure is not feasible in terms of the required computational time and
cost. Furthermore, structural analysis codes are not suited for simulation of such
extreme high loading-rate events. Considering the impact process, a high amplitude
shock wave is initially generated at the impact location, causing plastic deformation
(e.g. cratering) in the front surface of the target. As the shock wave propagates into
the surrounding structure, this plastic wave is rapidly damped out, evolving into an
elastic wave. Hydrocodes can be utilized to model the local structure during the im-
pact event for which the evolution of disturbance waves in the structural panel can
be characterized. Outside of the zone of plastic deformation, the elastic waveform
can be approximated by an analytical function that can then be used as a load-input
to a structural FE model of the entire satellite.

22.4.1 Target Definition

A CFRP panel representative of those used onboard the GAIA service module
(SVM) and payload module (PLM) was selected for simulation (details in Fig. 22.8).
In the absence of experimentally-characterized material data, properties were theo-
retically approximated using a procedure defined in [24]. Details of the numerical
setup can be found in [25].

22.4.2 Experimental Validation of the Numerical Simulation

Validation of the numerical model was performed via comparison of the experimen-
tally measured impact-induced disturbance waveform propagating in the sandwich
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Fig. 22.14 Details of the GAIA CFRP/Al HC SP.

panel rear facesheet. A Polytec Laser Vibrometer (LV) measurement that provides
an effectively massless measurement device was used in the experiments. Initial val-
idation experiments were performed on a 2 mm thick Al 7075-T6 plate, impacted
by a 2.0 mm Al-sphere at 5.3 km/s (normal incidence). The disturbance waveforms
(numerical and experimental) were measured 150 mm from the impact site, and
are shown in Fig. 22.15. The waveforms can be separated into three distinct phases
corresponding to different wave types: longitudinal, shear and flexural. The longitu-
dinal wave has the highest velocity and is represented in the acceleration signal by
the initial pulse. The flexural wave has the highest amplitude , lowest frequency, and
lowest propagation velocity (arrives at the sensor at ∼48 μs after impact). Based on
wave type propagation speeds it is considered that the signal between the longitudi-
nal and flexural waveforms represents the shear wave, however this remains unclear.
All three experimental waveform types are well reproduced well by the numerical
simulation.

Numerical disturbance waveforms in the CFRP laminates (facesheets) were also
simulated for comparison with experimental signals, see Fig. 22.16. Although the
longitudinal arrival time and directional dependency of the wave propagation were
reproduced correctly, significant discrepancies are noted in all three constituent
waveform types in the disturbance signal and in no way can the simulation be con-
sidered predictive. The inability of the numerical model to accurately reproduce the
numerical waveform highlights current limitations in material modeling for shock
wave propagation in anisotropic solids. A better method is required to handle the
shock wave physical assumptions in both experimental parameter derivation and
numerical equation of state formulation and stress tensor decomposition. For in-
stance, experimental derivation of anisotropic solid equation of state parameters is
performed with planar flyer plate impact experiments assuming a hydrostatic stress
condition. Although valid for isotropic materials, for anisotropic solids this is clearly
inadequate because of directional stress dependencies.

The facesheet model was carried over for validation of the honeycomb sandwich
panel model described in the previous section. A comparison between the numerical
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Fig. 22.15 Comparison of experimental and numerical disturbance waveform in a 2 mm thick Al
7075-T6 plate measured 150 mm from impact of 2.0 mm Al-sphere at 5.3 km/s (0◦).

Fig. 22.16 Comparison of experimental and numerical disturbance waveform in a 0.8 mm thick
CFRP facesheet measured 150 mm from impact of 0.8 mm Al-sphere at 4.9 km/s (0◦).

and experimental waveforms is made in Fig. 22.17. Although the facesheet numer-
ical model was unable to predict the disturbance waveform with any degree of ac-
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curacy, the sandwich panel model is shown to reasonably simulate a number of key
waveform characteristics. The longitudinal wave amplitude and arrival time are well
reproduced, in addition to the flexural wave arrival time, amplitude, and frequency.
Furthermore the shear wave trends (∼10-30 μs) after impact are reproduced to a
reasonable degree. The primary difference in the two waveforms is the -x velocity
section of the flexural waveform predicted in the numerical model. Although the
CFRP facesheet model was unable to reasonably simulate the disturbance signal,
the quality of the sandwich panel numerical signal is quite good. The reasoning for
this is that the honeycomb core acts to stiffen the structure in an isotropic manner,
making the anisotropic CFRP response less prominent.

Fig. 22.17 Comparison of experimental and numerical disturbance waveform in a CFRP/Al HC
SP measured 150 mm from impact of 1.5 mm Al-sphere at 5.69 km/s (0◦).

22.4.3 Simulation Results

A series of 14 simulations were performed to characterize shock wave propagation
through CFRP/Al HC SP structures, details of which are given in Table 6.

In order to be approximated by an empirical function, the disturbance waveform
must be simplified. The longitudinal waveform was found to rapidly dissipate with
propagation distance. Additionally, characterization of the disturbance waveform is
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Table 22.6 Hypervelocity impact-induced disturbance simulation details.

Proj. diameter Proj. mass Velocity Momentum
[mm] [mg] [km/s] [g m/s]

1 0.05 1.83x10−4 4.9 8.980x10−4

2 0.05 1.83x10−4 10.0 1.833x10−3

3 0.2 0.012 4.9 0.058

4 0.2 0.012 10.0 0.117

5 0.4 0.094 4.9 0.460

6 0.4 0.094 6.0 0.559

7 0.4 0.094 10.0 0.938

8 0.4 0.094 20.0 1.863

9 0.6 0.317 16.0 5.031

10 0.7 0.503 20.0 9.986

11 0.8 0.751 4.9 3.652

12 0.8 0.751 10.0 7.453

13 0.8 0.751 17.5 13.042

14 0.8 0.751 20.0 14.905

made for input in structural codes with a maximum valid frequency range of ∼500
kHz (longitudinal waveform frequency in CFRP was measured at ∼1 MHz). As
such, a 500 kHz low-pass filter is applied to the numerical signal prior to characteri-
zation. Considering the rapid decay of the longitudinal waveform and the frequency
filtering, it is apparent that the flexural waveform is the key signal feature. For ap-
proximation of the flexural waveform, a polynomial-exponential decay function is
applied:

V (t) = A(t − t0)
2 e−β (t−t0) (22.4)

where V is out-of-plane velocity (m/s), t is the time after impact (μs), t0 is the
arrival time of the disturbance signal at the measurement gauge (μs), and A and β
are constants.

Equation (22.4) defines a state initially at rest (for t < t0, the equation is not
valid). Upon arrival of the transient signal (t = t0), there is an initial acceleration in
the direction of the projectile velocity vector (V ). The disturbance velocity reaches
a maximum as the projectile either perforates or is halted by the CFRP facesheet,
following which it asymptotes to zero (i.e. rest). To characterize evolution of the
disturbance waveform as it propagates from the impact site, a series of disturbance
measurements are simplified using Equation (22.4) (an example of which is shown
in Fig. 22.18). The constants of the polynomial-exponential decay fits can then be
characterized in terms of distance from the impact site, an example of which is
shown in Fig. 22.18 for constant A.
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Fig. 22.18 Characterization of the disturbance waveform. Left: Fitting the polynomial-exponential
decay function to the filtered signal; Right: Characterizing the constant A in terms of distance from
the impact site (impact of a 0.6 mm Al-sphere at 16 km/s (0◦)).

Once the waveform evolution has been characterized, extrapolation of the con-
stants to the excitation origin can be performed from which the original elastic ex-
citation pulse is determined (shown in Fig. 22.19 for impact of a 0.6 mm Al-sphere
at 16 km/s). The excitation origin is defined on the front facesheet as the extension
of plastic damage, which is determined from extrapolation of the signal arrival time
t0, while the rear facesheet excitation origin is dependent on expansion of projectile
and front facesheet fragments within the honeycomb core. For the simulations con-
sidered, fragments were channeled within 2 honeycomb core cells (shown in Fig.
22.19). As such, the extension of the rear facesheet excitation zone is set equal to
twice the honeycomb cell diameter.

Fig. 22.19 Extrapolation of the simplified disturbance curves to the excitation origin defined as a
cylinder with diameter equal to twice the diameter of HC cells.
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A general excitation function can be defined that incorporates the effects of pro-
jectile diameter and impact velocity on the impact-induced disturbance in terms of
impactor momentum. For application as an excitation load within a structural code,
the function is defined as force with respect to time, where mass is equal to the front
or rear facesheet excitation origin, and acceleration is the time derivative of Equa-
tion (22.4).

F (t) = m ·a(t) (22.5)

a(t) = 2Ate−β t −At2βe−β t (22.6)

Fig. 22.20 Characterization of generalized excitation function constants for the sandwich panel
rear facesheet.

The constants in Equation (22.6) are characterized at the excitation origin in
terms of impactor momentum. For impacts that penetrate the front facesheet, im-
pact disturbances propagate in both the front and rear facesheets, however, only
the facesheet with the greatest amplitude excitation is considered. In Fig. 22.20,
characterization of the constants in Equation (22.6) is made for the rear facesheet.
Initially, particles with low momentum are unable to penetrate the sandwich panel
front facesheet and, therefore, all momentum transfer is made to the front facesheet.
As the projectile momentum is increased, excitation of the front facesheet also in-
creases until the facesheet is penetrated. Upon penetration of the front facesheet,
the fragment cloud propagates through the honeycomb core and impacts upon the
rear facesheet. The momentum of the perforated fragments is low at the penetration
threshold, and as such the majority of momentum transfer continues to occur in the
front facesheet. As the degree of perforation increases, the front facesheet demon-
strates an increasing ’punch-out’ type perforation, and the distribution of momen-
tum transferred to the sandwich panel becomes rear facesheet dominated. As the
rear facesheet perforation threshold is reached and exceeded, similar behavior is ex-
pected. The cubic shape of the fit curves for the constants A and β in Fig. 22.20
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describe this transition for the rear facesheet (i.e. reaching and exceeding a level of
’significant perforation’).

Table 22.7 Excitation function equation constants (front and rear facesheet).

Front facesheet Rear facesheet

m = 0.0382×10−3 kg m = 0.0860×10−3kg

A = 39.49−32.55×0.68Pp A = 7.19−1.79Pp +0.278P2
p −0.0125P3

p

β = 2.73−0.85Pp +0.22P2
p β = 0.91−0.25Pp +0.037P2

p −0.0015P3
p

The constants of the excitation function for the GAIA CFRP/Al HC SP are de-
fined in Table 22.7 for both the front and rear facesheets. In Fig. 22.21, the peak
force described by the excitation functions is plotted in terms of impactor momen-
tum. The front facesheet function is valid for impactor momentum less than 2.64
g.m/s, representing the condition of significant perforation in the front facesheet.
For larger momentum projectiles, the rear facesheet excitation function should be
applied. Ideally, there is a smooth transition between the peak force defined by the
two functions, however in this case, it is considered that in the 2.64-4.5 g.m/s range,
the equations provide a conservative approximation.

Fig. 22.21 Generalized excitation function peak force in terms of impactor momentum.
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In [27] the excitation function was applied to four points on the GAIA satel-
lite finite element model: two points on the service module and two points on the
payload module (telescope). For the four impact points considered, line of sight de-
viation of the telescope was evaluated in terms of the mission requirements. It was
determined that for daily impacts, disturbances will not affect telescope measure-
ments. However, impact of larger projectiles (e.g. 1 per year size impactors) as far
removed as the service module are capable of propagating through the satellite plat-
form and inducing line of sight deviations on the payload module (telescope) that
exceed specifications. It was concluded that the GAIA mission should expect re-
configuration from preliminary design due to HVI impacts degrading measurement
performance.

22.5 Discussion and Summary

Structures exposed to the space environment are subject to regular impact of mi-
crometeoroid and orbital debris (MMOD) particles travelling at velocities between
1-72 km/s. The threat of these impacts on mission safety must be evaluated for all
manned flights prior to launch. This is a task performed using software tools that in-
corporate debris environment models, spacecraft geometry models, and penetration
limit equations (ballistic limit equations). These equations are based on analytical
considerations, and use hypervelocity test data to empirically anchor them at the
limit of experimentally obtainable impact velocities (currently around 7-8 km/s).
Although a subject of research for over 40 years, the complexity of material behav-
ior and damage mechanisms at such high loading rates has thus far prevented the
derivation of analytically sound ballistic limit equations. As such, development of
penetration limit equations for new shielding configurations is performed by mod-
ifying existing BLEs for similar structures, and performing a minimal number of
validation tests when time and money permits. In a worst-case scenario, shields that
cover limited surface area and are not subject to high debris flux can have ballistic
limit equations assigned that were validated for configurations with little resem-
blance to the new configuration.

In this chapter, three investigations applying numerical tools in MMOD risk as-
sessment have been discussed. These studies have evaluated and tested the applica-
tion and accuracy of numerical tools to MMOD risk assessment for common satel-
lite structures (CFRP/Al HC SP). Numerical simulations investigating the failure
limits of satellite structures, the ejection of fragments within satellite interiors, and
the propagation of impact-induced disturbances throughout high stiffness satellite
platforms have been performed. Validation of the numerical predictions with ex-
perimental measurements have identified a number of short-comings in equation of
state definition and stress tensor decomposition for anisotropic materials models,
however the models have, for the most part, shown to provide qualitatively accurate
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reproduction of experimental phenomena. The findings have led to, for example, the
recommendation of preliminary satellite platform design reconfiguration [27].

Although the application of numerical tools in MMOD risk assessment is in-
creasing (as demonstrated by the three examples presented), they remain largely
underutilized. Ideally, numerical codes could be used during vehicle preliminary
design to evaluate different shielding concepts and perform parametric studies to
optimize subsequent impact testing. Furthermore, the simulations could be applied
to provide a stronger engineering basis to the extrapolation of damage equations to
velocities above experimentally obtainable limits. In theory, such numerical studies
would permit significant savings in development time and expense as well as pro-
vide a more optimally designed shield with well validated failure limits. In practice
however, shielding configurations often outpace the capability of numerical codes.
For instance, a numerically driven shielding development may be feasible for mono-
lithic metallic single or dual wall configurations today, however for new materials
or structures such as honeycomb sandwich panels or metallic foams the time asso-
ciated with material model development and implementation required for accurate
simulations can exceed by an order of magnitude, that of an experimental study.
For instance, the non-linear orthotropic material model used in the three studies
discussed in this chapter was developed for high-strength composites under ESA
contract over four years, and required an additional two year extension for applica-
tion to high stiffness composites. The conclusion of the study represented a large
step forward in the state-of-the-art, yet numerical simulations at the conclusion of
the study were still only capable of reproducing gross experimental results (i.e. per-
foration or no perforation) 66% of the time. Thus, application of numerical tools is
still limited by the maturity of advanced material models and the difficulty of model-
ing complex structures such as foams, fabrics, etc. Despite the difficulties, the large
number of configurations, particularly for composite materials, and limitations of
experimental facilities means that numerical tools must play an active and integral
role in MMOD risk assessment.
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Chapter 23
Numerical Modeling of Crater Formation by
Meteorite Impact and Nuclear Explosion

Charles L. Mader

Abstract The NOBEL code for modeling compressible fluid dynamics is used to
model the formation of the Arizona meteor crater by a 50 meter diameter iron as-
teroid impacting basalt at 12 kilometers/second. The code is also used to model the
crater generated by the SEDAN 104 kiloton nuclear explosion. To reproduce the ob-
served crater sizes it is necessary to include the properties of pulverized rock created
by the shocking and rarefaction of the rock.

23.1 The NOBEL Code

The U.S. Department of Energy’s Accelerated Strategic Computing Initiative (ASCI)
during 2000 to 2005 resulted in major advances in computer technology and in
methods for improving the numerical resolution of compressible reactive hydrody-
namic calculations.

In NOBEL, the three-dimensional partial differential equations for compressi-
ble flow are solved by a high resolution differencing scheme using an adaptive grid
technique described in [1]. The solution technique uses Continuous Adaptive Mesh
Refinement (CAMR). The decision to refine the grid is made cell-by-cell continu-
ous throughout the calculation. The computing is concentrated on the region of the
problem which require high resolution.

Refinement occurs when gradients in physical properties (density, pressure, tem-
perature, material constitution) exceed defined limits, down to a specified minimum
cell size for each material. With the computational power concentrated on the re-
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gions of the problem which require higher resolution, very large compu-tational
volumes and substantial differences in scale can be simulated.

The code can describe one-dimensional slab or spherical geometry, two-
dimensional slab or cylindrical geometry, and three-dimensional Cartesian geom-
etry.

The code incorporates multiple material equations of state (analytical or SESAME
tabular). Every cell can in principle contain a mixture of all the materials in a prob-
lem assuming that they are in pressure and temperature equilibrium. The assump-
tion of temperature equilibrium is inappropriate for mixed cells with interfaces be-
tween different materials. The errors increase with increasing density differences.
The problem is minimized by using fine numerical resolution at interfaces. The
amount of mass in mixed cells is kept small resulting in small errors being intro-
duced by the temperature equilibrium assumption. The strength is treated using the
Hooke’s Law, Von Mises yield model described in [1].

A variety of boundary conditions is available, the most important being reflec-
tive boundary walls, reflective internal boundaries, and ”freeze regions” which allow
specific inflows and unrestricted outflows of material.

Very important for cavity generation and collapse is the capability to initialize
and describe gravity correctly, which is included in the code. The initial density and
initial pressure changing with depth or altitude is correctly included.

The code was developed for general applications to run on a wide variety of
computers from desktop PC’s (Windows, Linux and Apple Macintosh) to the latest
MMP or SMP supercomputers. The code has operated on different super computers,
the oldest being the ASCI Red teraflop system installed at Sandia National Labora-
tory in 1996 to the Roadrunner pentaflop computer installed at Los Alamos National
Laboratory in 2008.

The code has all the techniques for modeling reactive flow and detonation chem-
istry and physics described in [1]. It has been used to model Richtmyer-Meshkov
and shock induced instabilities. Also modeled using Nobel is the 1958 Lituya Bay
impact landslide generated 485 meter high tsunami, the water cavities generated by
projectiles and explosions and resulting water waves, the 1883 Krakatoa hydrody-
namic volcanic explosion and resulting tsunami, shaped charge jet formation and
penetration, detonation wave propagation and failure, corner turning, desensitiza-
tion by preshocking, explosive performance and applications such as cylinder tests,
underwater explosions, denting of metal plates, Mach and regular shock and deto-
nation wave interactions and the problems associated with explosive hazards from
accidental inititiation. The K-T impact 65 million years ago at Chicxulub by a 10
kilometer diameter granite asteroid moving 15 kilometers/second has been modeled
using RAGE which is a version of NOBEL with radiation. These applications of the
NOBEL code are described in [1] and [2].
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23.2 Modeling the Arizona Meteor Crater

The Arizona Barringer meteor crater was generated about 50,000 years ago by an
iron asteroid about 50 meters in diameter and impacted the earth at about 12 kilome-
ters/second. A picture of the crater is shown in Figure 23.1. A sketch of the crater
is shown in Figure 23.2. The crater is 1.2 kilometers in diameter, currently 175
feet deep with a 50 meter high rim. In addition there is about 250 meters of rubble
below the current bottom of the crater making the initial asteroid generated crater
about 500 meters deep from the top of the rim. The impacted rock was basalt.

The rim of the crater was generated by the rock ejecta folding over the crater
rim as shown in Figure 23.3. The 640 kilogram iron-nickel fragment found near the
crater is shown in Figure 23.4.

Fig. 23.1 The Arizona Barringer meteor crater.

The impact of a 50 meter diameter iron asteroid moving at 12 kilometer/second
with Basalt was modeled using NOBEL. The equation of state used for iron was
the Sesame table number 4270. The iron shock Hugoniot was described by the
shock velocity US and particle velocity UP fit US = 0.458 + 1.49UP where the ve-
locity units are centimeters/microsecond. The initial iron density is 7.896 grams/cc.
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Fig. 23.2 Sketch of the geometry of the Arizona meteor crater.

Fig. 23.3 Sketch of the geometry of the folded rim of Arizona meteor crater.

Fig. 23.4 A 640 kilogram iron-nickel meteorite fragment found near the Arizona Barringer crater.

The equation of state used for Basalt was the Sesame table number 7530. The shear
modulus used was 0.25 and the yield was 0.02 kilobar. Gravity was included in the
calculation.

The geometry of the calculation was cylindrical with 0.5 kilometer of air above
2.0 kilometers of Basalt. Calculations were performed for a 50 meter and a 25 meter
mesh. The calculations were performed using personal computers.

If the Basalt is modeled as a fluid with a yield of 0.0 kilobar, the density pro-
files at various times are shown in Figure 23.5. After the cavity has been created, it
collapses and forms a jet that then falls back and forms waves just as does a rock
projected into water.
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Fig. 23.5 The density plots for a 50 meter diameter iron asteroid impacting Basalt modeled as a
fluid with a yield of zero. The basalt is 2 kilometers high and 2.5 kilometers wide in cylindrical
geometry with the axis on the left side of the figures. The time is shown in seconds. The initial
position of the asteroid is shown by the arrow next to the red sphere in the first frame.

If the basalt has a yield of 0.05 kilobar the final crater diameter is too small and
if the yield is 0.01 kilobar the crater is too large. A yield of 0.02 kilobar results in
a crater about the diameter of the crater and permits a rebound from the maximum
depth to about the final depth of the Arizona meteor crater. The density plots at var-
ious times are shown in Figure 23.6.

The small yield for the basalt is a result of the basalt being initially shocked and
melted and then rarefied to form a pulverized material with not much strength. The
term for the process is the basalt has been ’fluidized’. The yield required to describe
the basalt behavior represents the fluidized rock. In the SEDAN crater modeling that
process is represented by an initially large yield and after the cavity is generated and
fluidization has occurred the crater rebound is described by a smaller yield for the
fluidized rock.

The final crater geometry for Basalt with a yield of 0.02 kilobar for calculations
with an initial mesh of 50 x 50 cells and initial cell sizes of 50 and 25 meters are
shown in Figure 23.7.
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Fig. 23.6 The density plots for a 50 meter diameter iron asteroid impacting Basalt modeled with
a yield of 0.02 kilobar. The basalt is 2 kilometers high and 2.5 kilometers wide in cylindrical
geometry with the axis on the left side of the figures. The time is shown in seconds. The initial
position of the asteroid is shown by the arrow next to the red sphere in the first frame.

Fig. 23.7 The final crater geometry for Basalt with a yield of 0.02 kilobar for calculations with an
initial mesh of 50 x 50 cells and initial cell sizes of 50 and 25 meters.

23.3 Modeling the SEDAN Crater Created by a Nuclear
Explosion

The SEDAN nuclear test was performed July 6, 1962 as part of the Plowshare se-
ries of tests designed to develop earth evacuating techniques using the energy from
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nuclear explosions that resulted in low levels of residual radioactivity. The major
application was believed to be for the creation of a sea level channel to replace the
Panama canal.

The nuclear explosive device was buried 194 meters deep in the Nevada Tuff
rock. The energy of the explosion was equivalent to 104 kilotons of TNT. The height
of the dome before breach was 90 meters which occurred 3 seconds after the explo-
sion. The final crater diameter was 360 meters, the final crater depth was 97 meters.
After the explosion, drilling determined that the maximum depth of melt was 246
meters. The final crater dimensions are shown in Figure 8 and the crater is shown in
Figure 9. The explosion moved 12 million tons of earth. The Richter magnitude of
the event was 4.75.

The explosion is shown in Figure 10 about 10 seconds after the dome breach. The
picture is taken from a film of the explosion that is available at www.mccohi/crater/
sedanshot.mpeg.

Fig. 23.8 The crater geometry. The nuclear explosive was located 194 meters below the surface.
The final crater was 180 meters in radius and 97 meters deep with a melt zone shown by the outer
line with a maximum depth of 246 meters.

The NOBEL model for the SEDAN nuclear explosion was modeled by a 30 me-
ter diameter water sphere at 194 meter depth in Tuff with an initial energy of 104
kilotons or 4.353 x 1023 ergs. The Nevada test site Tuff has been extensively char-
acterized and the Sesame table number 7111 was used for modeling its equa-tion
of state. The Tuff shock Hugoniot was described by the shock velocity US and par-
ticle velocity UP fit US = 0.199 + 1.22UP where the velocity units are in centime-
ters/microsecond. The initial Tuff density was 1.39 grams/cc. The shear modulus
was 0.25 megabar. The Tuff yield was 0.1 kilobar for the first 2.5 seconds which
is approximately the time of maximum cavity size. The yield was then lowered
to 0.004 kilobar to account for the lower strength of pulverized Tuff that has been
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Fig. 23.9 The SEDAN crater in 1963 and 2003 with Los Alamos National Laboratory Scientists
on viewing platform. Author is second from right.

shocked and rarefied or ’fluidized’. Bingham first introduced the concept in his book
’Fluidity and Plasticity’ [3]. The concept and book was suggested by Dr. Bill Van
Dorn during our current efforts to model craters on the moon and their rings and
mascons.

Calculations for Tuff without strength (a yield of 0.0) results in a cavity diameter
that is more than twice too large. If the Tuff initially has a yield of 0.1 kilobar and
then lowered to 0.003 kilobar the cavity diameter is about as observed but there is
too much cavity collapse. The final cavity depth is smaller than observed.

As shown in Figure 23.9 the SEDAN crater is not exactly spherical and as shown
in Figure 23.10 the ejecta pattern was very irregular. The NOBEL numerical model
assumes that the SEDAN event can be modeled with cylindrical symmetry which
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Fig. 23.10 A frame from a film taken of the nuclear explosion after the dome breach. The film is
available at www.mccohi.com/crater/sedanshot.mpeg.

is only a first approximation of the actual complicated nature of the Tuff which has
significant density and composition inhomogenities.

The cylindrical geometry of the calculation was modeled by an initial mesh of 32
meters square and 32 x 64 cells or 1 kilometer radius and 2 kilometers high with 1
kilometer of air and 1 kilometer of Tuff. The calculations included gravity and were
performed using personal computers.

If the Tuff is modeled with a yield of 0.1 kilobar for the first 2.5 seconds and
then the yield is lowered to 0.004 kilobar, the resulting density profiles are shown in
Figure 23.11. The SEDAN crater dimensions are reproduced by the calculation.

The final cavity density profiles for a pulverized Tuff yield of 0.004 kilobar are
shown in Figures 12. The 0.004 yield results in a cavity similar to that of the SEDAN
nuclear explosion.

23.4 Conclusions

The NOBEL code for modeling compressible fluid dynamics was used to model
the formation of the Arizona Barringer crater by a 50 meter diameter iron asteroid
impacting at 12 kilometers/second. The strength of the basalt required to reproduce
the final crater dimensions had to be small (0.02 kilobar yield) because the basalt
was shocked and pulverized. Most of the ejecta was propelled outside the crater as
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Fig. 23.11 The SEDAN crater formation by a 104 kiloton nuclear explosive with a Tuff yield of
0.1 kilobars for the first 2.5 seconds, which is at about at the time of maximum cavity generation
and then lowered to 0.004 kilobars to account for the lower strength of the pulverized Tuff that has
been ’fluidized’.

was a significant amount of the iron asteroid with only a small amount falling back
into the final crater.

The SEDAN crater created in Nevada Tuff by a 105 kiloton nuclear explosion
buried 194 meters deep was modeled. To reproduce the crater dimensions the initial
yield of the Tuff was 0.1 kilobar for 2.5 seconds when the crater was at maximum
size and then the yield was reduced to 0.004 kilobar to model the pulverized or ’flu-
idized’ Tuff.

PowerPoint presentations and the AVI and MPEG movies of the NOBEL model-
ing of the Arizona Meteorite crater and SEDAN nuclear explosion generated crater
are available at www.mccohi.com/crater/crater.htm.

This modeling of craters is part of a program to calibrate crater modeling for our
study (with Dr. Van Dorn) of the multi-ringed lunar maria and underlying mascons
- the so called ’Lunar Tsunamis’ because they are similar to frozen tsunami waves.
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Fig. 23.12 The density profile of the SEDAN crater modeled including ’fluidization’.
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